WorldWideScience

Sample records for physiology molecular phylogeny

  1. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... evidence regarding the systematic classification of Ranunculaceae plants, we used molecular ... Ranunculaceae is a family of flowering plants known as ... and in the analysis of the evolutionary rate for lower level phylogeny ...

  2. Molecular phylogeny of Ranunculaceae based on internal ...

    African Journals Online (AJOL)

    The botanical family Ranunculaceae contains important medicinal plants. To obtain new evolutionary evidence regarding the systematic classification of Ranunculaceae plants, we used molecular phylogenies to test relationships based on the internal transcribed spacer region. The results of phylogenetic analysis of 92 ...

  3. Molecular phylogeny of Duvenhage virus

    Directory of Open Access Journals (Sweden)

    Louis H. Nel

    2011-11-01

    Full Text Available The Duvenhage virus (DUVV constitutes one of the 11 species in the Lyssavirus genus and causes fatal rabies encephalitis. The virus is associated with insectivorous bat species and three human cases have been reported, all of which were linked to contact with bats. Few of these isolates have been studied and thus little is known about the phylogeny and epidemiology of this lyssavirus. Until 2007, when an isolate was made from the East African country of Kenya, all isolations of this virus had been from southern Africa. This discovery led to many questions regarding the spread and diversity of this lyssavirus. Phylogenetic analysis indicated that the DUVV isolates constitute two different lineages, in which the southern African isolates group together to form one lineage and the more recent isolate from Kenya constitutes a new, second lineage. We found that the new isolate has a genetic variation that has not yet been seen for DUVV. Not only is our lack of knowledge regarding the geographical distribution of this uniquely African virus emphasised, but we have also demonstrated the potential diversity within this genotype.

  4. Phytopythium: molecular phylogeny and systematics

    NARCIS (Netherlands)

    Cock, de A.W.A.M.; Lodhi, A.M.; Rintoul, T.L.; Bala, K.; Robideau, G.P.; Gloria Abad, Z.; Coffey, M.D.; Shahzad, S.; Lévesque, C.A.

    2015-01-01

    The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and

  5. Haemoprotozoa: Making biological sense of molecular phylogenies

    Directory of Open Access Journals (Sweden)

    Peter O'Donoghue

    2017-12-01

    Full Text Available A range of protistan parasites occur in the blood of vertebrates and are transmitted by haematophagous invertebrate vectors. Some 48 genera are recognized in bood primarily on the basis of parasite morphology and host specificity; including extracellular kinetoplastids (trypanosomatids and intracellular apicomplexa (haemogregarines, haemococcidia, haemosporidia and piroplasms. Gene sequences are available for a growing number of species and molecular phylogenies often link parasite and host or vector evolution. This review endeavours to reconcile molecular clades with biological characters. Four major trypanosomatid clades have been associated with site of development in the vector: salivarian or stercorarian for Trypanosoma, and supra- or peri-pylorian for Leishmania. Four haemogregarine clades have been associated with acarine vectors (Hepatozoon A and B, Karyolysus, Hemolivia and another two with leeches (Dactylosoma, Haemogregarina sensu stricto. Two haemococcidian clades (Lankesterella, Schellackia using leeches and mosquitoes (as paratenic hosts! were paraphyletic with monoxenous enteric coccidia. Two major haemosporidian clades have been associated with mosquito vectors (Plasmodium from mammals, Plasmodium from birds and lizards, two with midges (Hepatocystis from bats, Parahaemoproteus from birds and two with louse-flies and black-flies (Haemoproteus and Leucocytozoon from birds. Three major piroplasm clades were recognized: one associated with transovarian transmission in ticks (Babesia sensu stricto; one with pre-erythrocytic schizogony in vertebrates (Theileria/Cytauxzoon; and one with neither (Babesia sensu lato. Broad comparative studies with allied groups suggest that trypanosomatids and haemogregarines evolved first in aquatic and then terrestrial environments, as evidenced by extant lineages in invertebrates and their radiation in vertebrates. In contrast, haemosporidia and haemococcidia are thought to have evolved first in

  6. Molecular data and phylogeny of family

    International Nuclear Information System (INIS)

    Shinwari, Z.K.; Shinwari, S.

    2010-01-01

    Family Smilacaceae's higher order taxonomy remained disputed for many years. It was treated as an order 'Smilacales' and was also placed under Liliales by several taxonomists. Even some considered as part of family Liliacaeae. In present paper, we investigated the family's higher order phylogeny and also compared its rbcL gene sequence data with related taxa to elucidate its phylogeny. The data suggests that its family stature is beyond dispute because of its advanced karyotype, woody climbing habit and DNA sequence data. The data suggest that Smilacaceae may be a sister group of order Liliales and it forms a clear clade with the order. (author)

  7. Molecular phylogeny and evolution of mosquito parasitic Microsporidia (Microsporidia: Amblyosporidae)

    Czech Academy of Sciences Publication Activity Database

    Vossbrinck, C. R.; Andreadis, T.; Vávra, Jiří; Becnel, J. J.

    2004-01-01

    Roč. 51, č. 1 (2004), s. 88-95 ISSN 1066-5234 Institutional research plan: CEZ:AV0Z6022909 Keywords : Microsporidia * molecular phylogeny * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.403, year: 2004

  8. A molecular phylogeny of living primates.

    Science.gov (United States)

    Perelman, Polina; Johnson, Warren E; Roos, Christian; Seuánez, Hector N; Horvath, Julie E; Moreira, Miguel A M; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C; Silva, Artur; O'Brien, Stephen J; Pecon-Slattery, Jill

    2011-03-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.

  9. A Molecular Phylogeny of Living Primates

    Science.gov (United States)

    Perelman, Polina; Johnson, Warren E.; Roos, Christian; Seuánez, Hector N.; Horvath, Julie E.; Moreira, Miguel A. M.; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C.; Silva, Artur; O'Brien, Stephen J.; Pecon-Slattery, Jill

    2011-01-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. PMID:21436896

  10. A molecular phylogeny of living primates.

    Directory of Open Access Journals (Sweden)

    Polina Perelman

    2011-03-01

    Full Text Available Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb from 186 primates representing 61 (~90% of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.

  11. Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales)

    Science.gov (United States)

    D. Jean Lodge; Mahajabeen Padamsee; P. Brandon Matheny; M. Catherine Aime; Sharon A. Cantrell; David Boertmann; Alexander Kovalenko; Alfredo Vizzini; Bryn T.M. Dentinger; Paul M. Kirk; A. Martin Ainsworth; Jean-Marc Moncalvo; Rytas Vilgalys; Ellen Larsson; Robert Lucking; Gareth W. Griffith; Matthew E. Smith; Lorilei L. Norvell; Dennis E. Desjardin; Scott A. Redhead; Clark L. Ovrebo; Edgar B. Lickey; Enrico Ercole; Karen W. Hughes; Regis Courtecuisse; Anthony Young; Manfred Binder; Andrew M. Minnis; Daniel L. Lindner; Beatriz Ortiz-Santana; John Haight; Thomas Laessoe; Timothy J. Baroni; Jozsef Geml; Tsutomu Hattori

    2013-01-01

    Molecular phylogenies using 1–4 gene regions and information on ecology, morphology and pigment chemistry were used in a partial revision of the agaric family Hygrophoraceae. The phylogenetically supported genera we recognize here in the Hygrophoraceae based on these and previous analyses are: Acantholichen, Ampulloclitocybe, Arrhenia, Cantharellula, Cantharocybe,...

  12. Molecular phylogeny of extant Holothuroidea (Echinodermata).

    Science.gov (United States)

    Miller, Allison K; Kerr, Alexander M; Paulay, Gustav; Reich, Mike; Wilson, Nerida G; Carvajal, Jose I; Rouse, Greg W

    2017-06-01

    Sea cucumbers (Holothuroidea) are a morphologically diverse, ecologically important, and economically valued clade of echinoderms; however, the understanding of the overall systematics of the group remains controversial. Here, we present a phylogeny of extant Holothuroidea assessed with maximum parsimony, maximum likelihood, and Bayesian approaches using approximately 4.3kb of mt- (COI, 16S, 12S) and nDNA (H3, 18S, 28S) sequences from 82 holothuroid terminals representing 23 of the 27 widely-accepted family-ranked taxa. Currently five holothuroid taxa of ordinal rank are accepted. We find that three of the five orders are non-monophyletic, and we revise the taxonomy of the groups accordingly. Apodida is sister to the rest of Holothuroidea, here considered Actinopoda. Within Actinopoda, Elasipodida in part is sister to the remaining Actinopoda. This latter clade, comprising holothuroids with respiratory trees, is now called Pneumonophora. The traditional Aspidochirotida is paraphyletic, with representatives from three orders (Molpadida, Dendrochirotida, and Elasipodida in part) nested within. Therefore, we discontinue the use of Aspidochirotida and instead erect Holothuriida as the sister group to the remaining Pneumonophora, here termed Neoholothuriida. We found four well-supported major clades in Neoholothuriida: Dendrochirotida, Molpadida and two new clades, Synallactida and Persiculida. The mapping of traditionally-used morphological characters in holothuroid systematics onto the phylogeny revealed marked homoplasy in most characters demonstrating that further taxonomic revision of Holothuroidea is required. Two time-tree analyses, one based on calibrations for uncontroversial crown group dates for Eleutherozoa, Echinozoa and Holothuroidea and another using these calibrations plus four more from within Holothuroidea, showed major discrepancies, suggesting that fossils of Holothuroidea may need reassessment in terms of placing these forms with existing crown

  13. Molecular phylogeny and morphological change in the Psittacula parakeets.

    Science.gov (United States)

    Groombridge, Jim J; Jones, Carl G; Nichols, Richard A; Carlton, Mark; Bruford, Michael W

    2004-04-01

    We reconstruct a phylogeny of the African and Asian Psittacula parakeets using approximately 800bp of mitochondrial cytochrome b sequence to examine their evolutionary relationships in reference to their head plumage and major morphological tail innovations. Our phylogeny identifies three groups, whose distinctiveness is also apparent from their possession of three different head plumage characters: a neck ring, a distinctive colouration of the head, and a 'moustache'-shaped pattern that extends from the chin to the cheek. We examine the extent of sexual dimorphism in tail length across the phylogeny and reveal large differences between closely related forms. We apply a range of published avian cytochrome b substitution rates to our data, as an alternative to internal calibration of a molecular clock arising from incomplete paleontological information. An ancestral Psittacula form appears to have evolved during the late Miocene-early Pliocene (3.4-9.7MYA), a time when regional geological processes on the Asian continent may have promoted subsequent diversity at the species level, and many forms diverged relatively early on in the evolutionary history of Psittacula (between 2.5 and 7.7MYA). However, others, such as the derbyan and moustached parakeets, diverged as recently as 0.2MYA. Our phylogeny also suggests that the echo parakeet from Mauritius diverged from the Indian ringneck parakeet as opposed to the African ringneck, and may have done so relatively recently. The molecular results indicate support for a southwards radiation from India across the Indian Ocean to Mauritius, where the arrival-date of the echo parakeet appears consistent with the island's volcanic formation.

  14. Precambrian Surface Temperatures and Molecular Phylogeny

    Science.gov (United States)

    Schwartzman, David; Lineweaver, Charles H.

    2004-06-01

    The timing of emergence of major organismal groups is consistent with the climatic temperature being equal to their upper temperature limit of growth (T_{max}), implying a temperature constraint on the evolution of each group, with the climatic temperature inferred from the oxygen isotope record of marine cherts. Support for this constraint comes from the correlation of T_{max} with the rRNA molecular phylogenetic distance from the last common ancestor (LCA) for both thermophilic Archaea and Bacteria. In particular, this correlation for hyperthermophilic Archaea suggests a climatic temperature of about 120°C at the time of the LCA, likely in the Hadean.

  15. Molecular physiology of seeds

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  16. Molecular phylogeny of Eriocaulon (Eriocaulaceae)

    DEFF Research Database (Denmark)

    Ito, Yu; Tanaka, Norio; Barfod, Anders

    Eriocaulon is a genus of about 400 species of monocotyledonous flowering plants in the family Eriocaulaceae. The genus is widely distributed in the world, with the centers of diversity in tropical regions, such as tropical Asia and tropical Africa. A previous molecular phylogeny implied an Africa...... the genus. In this talk, we provide preliminary results of our molecular phylogenetic analysis of the genus aiming to i) assess the biogeographic origin, ii) explore phylogenetic origins of submerged species, and iii) address the evolutionary role of polyploids.......Eriocaulon is a genus of about 400 species of monocotyledonous flowering plants in the family Eriocaulaceae. The genus is widely distributed in the world, with the centers of diversity in tropical regions, such as tropical Asia and tropical Africa. A previous molecular phylogeny implied an African...... origin for Eriocaulon as a sister relationship between the genus and an African endemic one was recovered. The species of Eriocaulon primarily grow in wetlands while some inhabit shallow rivers and streams with an apparent adaptive morphology of elongated submerged stems. Polyploidy is known from...

  17. A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences

    Science.gov (United States)

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses. PMID:23144967

  18. Molecular Phylogeny of the Bamboo Sharks (Chiloscyllium spp.

    Directory of Open Access Journals (Sweden)

    Noor Haslina Masstor

    2014-01-01

    Full Text Available Chiloscyllium, commonly called bamboo shark, can be found inhabiting the waters of the Indo-West Pacific around East Asian countries such as Malaysia, Myanmar, Thailand, Singapore, and Indonesia. The International Union for Conservation of Nature (IUCN Red List has categorized them as nearly threatened sharks out of their declining population status due to overexploitation. A molecular study was carried out to portray the systematic relationships within Chiloscyllium species using 12S rRNA and cytochrome b gene sequences. Maximum parsimony and Bayesian were used to reconstruct their phylogeny trees. A total of 381 bp sequences’ lengths were successfully aligned in the 12S rRNA region, with 41 bp sites being parsimony-informative. In the cytochrome b region, a total of 1120 bp sites were aligned, with 352 parsimony-informative characters. All analyses yield phylogeny trees on which C. indicum has close relationships with C. plagiosum. C. punctatum is sister taxon to both C. indicum and C. plagiosum while C. griseum and C. hasseltii formed their own clade as sister taxa. These Chiloscyllium classifications can be supported by some morphological characters (lateral dermal ridges on the body, coloring patterns, and appearance of hypobranchials and basibranchial plate that can clearly be used to differentiate each species.

  19. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha,Cicadomorpha,Heteroptera, and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes demonstrated that rapidly evolving and saturated sites should be removed from the analyses.

  20. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.

    Science.gov (United States)

    Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V

    2017-04-01

    Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Arthropod phylogeny based on eight molecular loci and morphology

    Science.gov (United States)

    Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.

    2001-01-01

    The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.

  2. Molecular phylogeny of elasmobranchs inferred from mitochondrial and nuclear markers.

    Science.gov (United States)

    Pavan-Kumar, A; Gireesh-Babu, P; Babu, P P Suresh; Jaiswar, A K; Hari Krishna, V; Prasasd, K Pani; Chaudhari, Aparna; Raje, S G; Chakraborty, S K; Krishna, Gopal; Lakra, W S

    2014-01-01

    The elasmobranchs (sharks, rays and skates) being the extant survivors of one of the earliest offshoots of the vertebrate evolutionary tree are good model organisms to study the primitive vertebrate conditions. They play a significant role in maintaining the ecological balance and have high economic value. Due to over-exploitation and illegal fishing worldwide, the elasmobranch stocks are being decimated at an alarming rate. Appropriate management measures are necessary for restoring depleted elasmobranch stocks. One approach for restoring stocks is implementation of conservation measures and these measures can be formulated effectively by knowing the evolutionary relationship among the elasmobranchs. In this study, a total of 30 species were chosen for molecular phylogeny studies using mitochondrial cytochrome c oxidase subunit I, 12S ribosomal RNA gene and nuclear Internal Transcribed Spacer 2. Among different genes, the combined dataset of COI and 12S rRNA resulted in a well resolved tree topology with significant bootstrap/posterior probabilities values. The results supported the reciprocal monophyly of sharks and batoids. Within Galeomorphii, Heterodontiformes (bullhead sharks) formed as a sister group to Lamniformes (mackerel sharks): Orectolobiformes (carpet sharks) and to Carcharhiniformes (ground sharks). Within batoids, the Myliobatiformes formed a monophyly group while Pristiformes (sawfishes) and Rhinobatiformes (guitar fishes) formed a sister group to all other batoids.

  3. Molecular phylogeny and morphological change in the Psittacula parakeets

    OpenAIRE

    Groombridge, Jim J.; Jones, Carl G.; Nichols, Richard A.; Carlton, Mark; Bruford, Michael W.

    2004-01-01

    We reconstruct a phylogeny of the African and Asian Psittacula parakeets using approximately 800 bp of mitochondrial cytochrome b sequence to examine their evolutionary relationships in reference to their head plumage and major morphological tail innovations. Our phylogeny identifies three groups, whose distinctiveness is also apparent from their possession of three different head plumage characters: a neck ring, a distinctive colouration of the head, and a 'moustache'-shaped pattern that ext...

  4. Towards a new paradigm in mayfly phylogeny (Ephemeroptera): combined analysis of morphological and molecular data

    Czech Academy of Sciences Publication Activity Database

    Ogden, T. H.; Gattolliat, J. L.; Sartori, M.; Staniczek, A. H.; Soldán, Tomáš; Whiting, M. F.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 616-634 ISSN 0307-6970 R&D Projects: GA AV ČR 1QS500070505 Institutional research plan: CEZ:AV0Z50070508 Keywords : Ephemeroptera * phylogeny * morfological a molecular data Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.467, year: 2009

  5. Molecular phylogeny of Acerentomidae (Protura), with description of Acerentuloides bernardi sp. nov. from North America

    Czech Academy of Sciences Publication Activity Database

    Shrubovych, J.; Starý, Josef; D'Haese, C.A.

    2017-01-01

    Roč. 100, č. 2 (2017), s. 433-443 ISSN 0015-4040 R&D Projects: GA MŠk ME08019 Institutional support: RVO:60077344 Keywords : Acerentulus * DNA barcoding * Indiana * phylogeny * Podolinella * USA Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 0.964, year: 2016

  6. A large phylogeny of turtles (Testudines) using molecular data

    NARCIS (Netherlands)

    Guillon, J.-M.; Guéry, L.; Hulin, V.; Girondot, M.

    2012-01-01

    Turtles (Testudines) form a monophyletic group with a highly distinctive body plan. The taxonomy and phylogeny of turtles are still under discussion, at least for some clades. Whereas in most previous studies, only a few species or genera were considered, we here use an extensive compilation of DNA

  7. Molecular phylogeny of Neotropical monogeneans (Platyhelminthes: Monogenea) from catfishes (Siluriformes)

    Czech Academy of Sciences Publication Activity Database

    Mendoza-Palmero, Carlos Alonso; Blasco-Costa, I.; Scholz, Tomáš

    2015-01-01

    Roč. 8, MAR 18 2015 (2015), s. 164 ISSN 1756-3305 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Phylogeny * Monogenea * Dactylogyridae * Neotropical region * Diversity * Siluriformes * 28S rRNA Subject RIV: EG - Zoology Impact factor: 3.234, year: 2015

  8. A molecular phylogeny of selected species of genus Prunus L ...

    African Journals Online (AJOL)

    (Syn. Prunus amygdalus) and Prunus cornuta (Wall. ex. Royle) Steudel. These are indigenous to Pakistan. In the ITS strict consensus results for example, the clade consisting of Laurocerasus, Padus and Cerasus subgenera are sister to the rest of the clades in the phylogenetic tree. Key words: Phylogeny, Prunus, Pakistan, ...

  9. A molecular approach to arthrotardigrade phylogeny (Heterotardigrada, Tardigrada)

    DEFF Research Database (Denmark)

    Fujimoto, Shinta; Jørgensen, Aslak; Hansen, Jesper Guldberg

    2017-01-01

    The marine order Arthrotardigrada (class Heterotardigrada, phylum Tardigrada) is known for its conspicuously high morphological diversity and has been traditionally recognized as the most ancestral group within the phylum. Despite its potential importance in understanding the evolution of the phy...... of the inferred phylogeny....

  10. Molecular phylogeny of the Nearctic and Mesoamerican freshwater mussel genus Megalonaias

    Science.gov (United States)

    Pfeiffer, John M.; Sharpe, Ashley; Johnson, Nathan A.; Emery, Kitty F.; Page, Lawrence M.

    2018-01-01

    Megalonaias is the most geographically widespread genus of the subfamily Ambleminae and is distributed across much of the eastern half of North America, from Minnesota to Nicaragua. Despite the large geographic distribution, the species-level diversity of Megalonaias is quite depauperate (2 spp.), suggesting the genus may not be constrained by the same physical, ecological, or physiological barriers that limit dispersal in many other amblemines. However, this hypothesis is contingent on the assumption that the current taxonomy of Megalonaiasaccurately reflects its evolutionary history, which remains incompletely understood due to the marginalization of Mesoamerican populations in systematic research. Using one mitochondrial (COI) and one nuclear marker (ITS1) sequenced from 41 individuals distributed across both the Nearctic and Mesoamerican ecoregions, we set out to better understand the species boundaries and genetic diversity within Megalonaias. The reconstructed molecular phylogeny and the observed genetic diversity suggests that Megalonaias is a monotypic genus and that Megalonaias nickliniana, currently considered a federally endangered species, is not a valid species. These results are discussed in the context of their systematic and conservation implications, as well as how the unusual life history strategy of Megalonaias may be influencing its molecular diversity.

  11. Physiological and molecular insights into drought tolerance ...

    African Journals Online (AJOL)

    Physiological and molecular insights into drought tolerance. Sagadevan G Mundree, Bienyameen Baker, Shaheen Mowla, Shaun Peters, Saberi Marais, Clare Vander Willigen, Kershini Govender, Alice Maredza, Samson Muyanga, Jill M Farrant, Jennifer A Thomson ...

  12. Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae).

    Science.gov (United States)

    Wells, J D; Sperling, F A

    1999-05-01

    Mitochondrial DNA was used to infer the phylogeny and genetic divergences of Chrysomya albiceps (Wiedemann) and C. rufifacies (Maquart) specimens from widely separated localities in the Old and New World. Analyses based on a 2.3-kb region including the genes for cytochrome oxidase subunits I and II indicated that the 2 species were separate monophyletic lineages that have been separated for > 1 million years. Analysis of DNA, in the form of either sequence or restriction fragment-length polymorphism (RFLP) data, will permit the identification of problematic specimens.

  13. Artificial neural networks can learn to estimate extinction rates from molecular phylogenies

    NARCIS (Netherlands)

    Bokma, Folmer

    2006-01-01

    Molecular phylogenies typically consist of only extant species, yet they allow inference of past rates of extinction, because. recently originated species are less likely to be extinct than ancient species. Despite the simple structure of the assumed underlying speciation-extinction process,

  14. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea)

    Czech Academy of Sciences Publication Activity Database

    Tkach, V.V.; Kudlai, Olena; Kostadinova, Aneta

    2016-01-01

    Roč. 46, č. 3 (2016), s. 171-185 ISSN 0020-7519 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Echinostomatoidea * Molecular phylogeny * Systematics * Echinostomatidae (sensu stricto) * Caballerotrematidae n. fam. * Himasthlidae * Echinochasmidae * Host associations Subject RIV: EG - Zoology Impact factor: 3.730, year: 2016

  15. Molecular phylogeny of the Oriental butterfly genus Arhopala (Lycaenidae, Theclinae) inferred from mitochondrial and nuclear genes

    NARCIS (Netherlands)

    Megens, H.J.W.C.; Nes, Van W.J.; Moorsel, van C.H.M.; Pierce, N.E.; Jong, de R.

    2004-01-01

    We present a phylogeny for a selection of species of the butterfly genus Arhopala Boisduval, 1832 based on molecular characters. We sequenced 1778 bases of the mitochondrial genes Cytochrome Oxidase 1 and 2 including tRNALeu, and a 393-bp fragment of the nuclear wingless gene for a total of 42

  16. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    Science.gov (United States)

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  17. Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae-Opuntioideae).

    Science.gov (United States)

    Ritz, C M; Reiker, J; Charles, G; Hoxey, P; Hunt, D; Lowry, M; Stuppy, W; Taylor, N

    2012-11-01

    The cacti of tribe Tephrocacteae (Cactaceae-Opuntioideae) are adapted to diverse climatic conditions over a wide area of the southern Andes and adjacent lowlands. They exhibit a range of life forms from geophytes and cushion-plants to dwarf shrubs, shrubs or small trees. To confirm or challenge previous morphology-based classifications and molecular phylogenies, we sampled DNA sequences from the chloroplast trnK/matK region and the nuclear low copy gene phyC and compared the resulting phylogenies with previous data gathered from nuclear ribosomal DNA sequences. The here presented chloroplast and nuclear low copy gene phylogenies were mutually congruent and broadly coincident with the classification based on gross morphology and seed micro-morphology and anatomy. Reconstruction of hypothetical ancestral character states suggested that geophytes and cushion-forming species probably evolved several times from dwarf shrubby precursors. We also traced an increase of embryo size at the expense of the nucellus-derived storage tissue during the evolution of the Tephrocacteae, which is thought to be an evolutionary advantage because nutrients are then more rapidly accessible for the germinating embryo. In contrast to these highly concordant phylogenies, nuclear ribosomal DNA data sampled by a previous study yielded conflicting phylogenetic signals. Secondary structure predictions of ribosomal transcribed spacers suggested that this phylogeny is strongly influenced by the inclusion of paralogous sequence probably arisen by genome duplication during the evolution of this plant group. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Molecular phylogeny and evolutionary history of Moricandia DC (Brassicaceae

    Directory of Open Access Journals (Sweden)

    Francisco Perfectti

    2017-10-01

    Full Text Available Background The phylogeny of tribe Brassiceae (Brassicaceae has not yet been resolved because of its complex evolutionary history. This tribe comprises economically relevant species, including the genus Moricandia DC. This genus is currently distributed in North Africa, Middle East, Central Asia and Southern Europe, where it is associated with arid and semi-arid environments. Although some species of Moricandia have been used in several phylogenetic studies, the phylogeny of this genus is not well established. Methods Here we present a phylogenetic analysis of the genus Moricandia using a nuclear (the internal transcribed spacers of the ribosomal DNA and two plastidial regions (parts of the NADH dehydrogenase subunit F gene and the trnT-trnF region. We also included in the analyses members of their sister genus Rytidocarpus and from the close genus Eruca. Results The phylogenetic analyses showed a clear and robust phylogeny of the genus Moricandia. The Bayesian inference tree was concordant with the maximum likelihood and timing trees, with the plastidial and nuclear trees showing only minor discrepancies. The genus Moricandia appears to be formed by two main lineages: the Iberian clade including three species, and the African clade including the four species inhabiting the Southern Mediterranean regions plus M. arvensis. Discussion We dated the main evolutionary events of this genus, showing that the origin of the Iberian clade probably occurred after a range expansion during the Messinian period, between 7.25 and 5.33 Ma. In that period, an extensive African-Iberian floral and faunal interchange occurred due to the existence of land bridges between Africa and Europa in what is, at present-days, the Strait of Gibraltar. We have demonstrated that a Spanish population previously ascribed to Rytidocarpus moricandioides is indeed a Moricandia species, and we propose to name it as M. rytidocarpoides sp. nov. In addition, in all the phylogenetic

  19. A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).

    Science.gov (United States)

    Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A

    2013-05-01

    The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography. Copyright © 2013. Published by Elsevier Inc.

  20. Genera of euophryine jumping spiders (Araneae: Salticidae), with a combined molecular-morphological phylogeny.

    Science.gov (United States)

    Zhang, Junxia; Maddison, Wayne P

    2015-03-27

    Morphological traits of euophryine jumping spiders were studied to clarify generic limits in the Euophryinae and to permit phylogenetic classification of genera lacking molecular data. One hundred and eight genera are recognized within the subfamily. Euophryine generic groups and the delimitation of some genera are reviewed in detail. In order to explore the effect of adding formal morphological data to previous molecular phylogenetic studies, and to find morphological synapomorphies, eighty-two morphological characters were scored for 203 euophryine species and seven outgroup species. The morphological dataset does not perform as well as the molecular dataset (genes 28S, Actin 5C; 16S-ND1, COI) in resolving the phylogeny of Euophryinae, probably because of frequent convergence and reversal. The formal morphological data were mapped on the phylogeny in order to seek synapomorphies, in hopes of extending the phylogeny to include taxa for which molecular data are not available. Because of homoplasy, few globally-applicable morphological synapomorphies for euophryine clades were found. However, synapomorphies that are unique locally in subclades still help to delimit euophryine generic groups and genera. The following synonyms of euophryine genera are proposed: Maeotella with Anasaitis; Dinattus with Corythalia; Paradecta with Compsodecta; Cobanus, Chloridusa and Wallaba with Sidusa; Tariona with Mopiopia; Nebridia with Amphidraus; Asaphobelis and Siloca with Coryphasia; Ocnotelus with Semnolius; Palpelius with Pristobaeus; Junxattus with Laufeia; Donoessus with Colyttus; Nicylla, Pselcis and Thianitara with Thiania. The new genus Saphrys is erected for misplaced species from southern South America.

  1. Molecular phylogeny analysis and species identification of Dendrobium (Orchidaceae) in China.

    Science.gov (United States)

    Feng, Shang-Guo; Lu, Jiang-Jie; Gao, Ling; Liu, Jun-Jun; Wang, Hui-Zhong

    2014-04-01

    Dendrobium plants are important commercial herbs in China, widely used in traditional medicine and ornamental horticulture. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to molecular phylogeny analysis and species identification of 31 Chinese Dendrobium species. Fourteen SRAP primer pairs produced 727 loci, 97% of which (706) showed polymorphism. Average polymorphism information content of the SRAP pairs was 0.987 (0.982-0.991), showing that plenty of genetic diversity exists at the interspecies level of Chinese Dendrobium. The molecular phylogeny analysis (UPGMA) grouped the 31 Dendrobium species into six clusters. We obtained 18 species-specific markers, which can be used to identify 10 of the 31 species. Our results indicate the SRAP marker system is informative and would facilitate further application in germplasm appraisal, evolution, and genetic diversity studies in the genus Dendrobium.

  2. Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom.

    Science.gov (United States)

    Bourlat, Sarah J; Nielsen, Claus; Economou, Andrew D; Telford, Maximilian J

    2008-10-01

    The new animal phylogeny inferred from ribosomal genes some years ago has prompted a number of radical rearrangements of the traditional, morphology based metazoan tree. The two main bilaterian clades, Deuterostomia and Protostomia, find strong support, but the protostomes consist of two sister groups, Ecdysozoa and Lophotrochozoa, not seen in morphology based trees. Although widely accepted, not all recent molecular phylogenetic analyses have supported the tripartite structure of the new animal phylogeny. Furthermore, even if the small ribosomal subunit (SSU) based phylogeny is correct, there is a frustrating lack of resolution of relationships between the phyla that make up the three clades of this tree. To address this issue, we have assembled a dataset including a large number of aligned sequence positions as well as a broad sampling of metazoan phyla. Our dataset consists of sequence data from ribosomal and mitochondrial genes combined with new data from protein coding genes (5139 amino acid and 3524 nucleotide positions in total) from 37 representative taxa sampled across the Metazoa. Our data show strong support for the basic structure of the new animal phylogeny as well as for the Mandibulata including Myriapoda. We also provide some resolution within the Lophotrochozoa, where we confirm support for a monophyletic clade of Echiura, Sipuncula and Annelida and surprising evidence of a close relationship between Brachiopoda and Nemertea.

  3. Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae)

    Czech Academy of Sciences Publication Activity Database

    Musilová, Zuzana; Říčan, Oldřich; Janko, Karel; Novák, J.

    2008-01-01

    Roč. 46, - (2008), s. 659-672 ISSN 1055-7903 R&D Projects: GA MŠk LC06073 Grant - others:GA UK(CZ) 182/2004/B-BIO; GA UK(CZ) 139407 Institutional research plan: CEZ:AV0Z50450515 Keywords : molecular phylogeny * Cichlids * south America Subject RIV: EG - Zoology Impact factor: 3.871, year: 2008

  4. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  5. Molecular phylogeny of the Drusinae (Trichoptera: Limnephilidae): preliminary results

    Science.gov (United States)

    Pauls, S.; Lumbsch, T.; Haase, P.

    2005-05-01

    We examine the phylogenetic relationships within the subfamily of the Drusinae using molecular markers. Sequence data from two mitochondrial loci (mitochondrial cytochrome oxidase I, mitochondrial ribosomal large subunit) are used to infer the relationships within and among the genera of the Drusinae. Sequence data were generated for 21 taxa from five genera from the subfamily. The molecular data were analyzed using a Bayesian Markov Chain Monte Carlo and a Maximum Parsimony approach for both single gene and combined data sets. Several hypotheses of relationships previously inferred based on morphological characters were tested. The study revealed a very close relationship between Drusus discolor and D. romanicus suggesting that divergence between these two species occurred recently. The relationships inferred by molecular data suggest that larval morphology may be an important taxonomic character, which has often been neglected. The data also indicate that the genera Ecclisopteryx and Drusus are polyphyletic with respect to one another.

  6. Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees

    Science.gov (United States)

    Kenah, Eben; Britton, Tom; Halloran, M. Elizabeth; Longini, Ira M.

    2016-01-01

    Recent work has attempted to use whole-genome sequence data from pathogens to reconstruct the transmission trees linking infectors and infectees in outbreaks. However, transmission trees from one outbreak do not generalize to future outbreaks. Reconstruction of transmission trees is most useful to public health if it leads to generalizable scientific insights about disease transmission. In a survival analysis framework, estimation of transmission parameters is based on sums or averages over the possible transmission trees. A phylogeny can increase the precision of these estimates by providing partial information about who infected whom. The leaves of the phylogeny represent sampled pathogens, which have known hosts. The interior nodes represent common ancestors of sampled pathogens, which have unknown hosts. Starting from assumptions about disease biology and epidemiologic study design, we prove that there is a one-to-one correspondence between the possible assignments of interior node hosts and the transmission trees simultaneously consistent with the phylogeny and the epidemiologic data on person, place, and time. We develop algorithms to enumerate these transmission trees and show these can be used to calculate likelihoods that incorporate both epidemiologic data and a phylogeny. A simulation study confirms that this leads to more efficient estimates of hazard ratios for infectiousness and baseline hazards of infectious contact, and we use these methods to analyze data from a foot-and-mouth disease virus outbreak in the United Kingdom in 2001. These results demonstrate the importance of data on individuals who escape infection, which is often overlooked. The combination of survival analysis and algorithms linking phylogenies to transmission trees is a rigorous but flexible statistical foundation for molecular infectious disease epidemiology. PMID:27070316

  7. Molecular markers for genetic diversity and phylogeny research of ...

    African Journals Online (AJOL)

    Brazilian sheep descended from several breeds brought to the New World by Portuguese and Spanish colonists, and they have evolved and adapted to local climatic variations and acquired tolerance or resistance to many diseases. Molecular markers are widely used in analyzing genetic variability, and markers such as ...

  8. Burning phylogenies: fire, molecular evolutionary rates, and diversification.

    Science.gov (United States)

    Verdú, Miguel; Pausas, Juli G; Segarra-Moragues, José Gabriel; Ojeda, Fernando

    2007-09-01

    Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters

  9. A preliminary molecular phylogeny of shield-bearer moths (Lepidoptera: Adeloidea: Heliozelidae) highlights rich undescribed diversity.

    Science.gov (United States)

    Milla, Liz; van Nieukerken, Erik J; Vijverberg, Ruben; Doorenweerd, Camiel; Wilcox, Stephen A; Halsey, Mike; Young, David A; Jones, Therésa M; Kallies, Axel; Hilton, Douglas J

    2018-03-01

    Heliozelidae are a widespread, evolutionarily early diverging family of small, day-flying monotrysian moths, for which a comprehensive phylogeny is lacking. We generated the first molecular phylogeny of the family using DNA sequences of two mitochondrial genes (COI and COII) and two nuclear genes (H3 and 28S) from 130 Heliozelidae specimens, including eight of the twelve known genera: Antispila, Antispilina, Coptodisca, Heliozela, Holocacista, Hoplophanes, Pseliastis, and Tyriozela. Our results provide strong support for five major Heliozelidae clades: (i) a large widespread clade containing the leaf-mining genera Antispilina, Coptodisca and Holocacista and some species of Antispila, (ii) a clade containing most of the described Antispila, (iii) a clade containing the leaf-mining genus Heliozela and the monotypic genus Tyriozela, (iv) an Australian clade containing Pseliastis and (v) an Australian clade containing Hoplophanes. Each clade includes several new species and potentially new genera. Collectively, our data uncover a rich and undescribed diversity that appears to be especially prevalent in Australia. Our work highlights the need for a major taxonomic revision of the family and for generating a robust molecular phylogeny using multi-gene approaches in order to resolve the relationships among clades. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. A Complex Approach for Unravelling Musaceae Phylogeny at Molecular Level

    Czech Academy of Sciences Publication Activity Database

    Němcová, Pavla; Hřibová, Eva; Valárik, Miroslav; Doležel, Jaroslav

    2011-01-01

    Roč. 897, SEP 14 (2011), s. 139-142 ISSN 0567-7572. [INTERNATIONAL ISHS-PROMUSA SYMPOSIUM ON GLOBAL PERSPECTIVES ON ASIAN CHALLENGES. Guangzhou, 14.08.2009-16.08.2009] R&D Projects: GA AV ČR IAA600380703 Institutional support: RVO:61389030 Keywords : DArT * low-copy genes * molecular phylogenetics Subject RIV: EF - Botanics http://www.actahort.org/books/897/897_14.htm

  11. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum.

    Science.gov (United States)

    Qiu, Dajun; Huang, Liangmin; Liu, Sheng; Zhang, Huan; Lin, Senjie

    2013-01-01

    Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium). Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.

  12. Apical groove type and molecular phylogeny suggests reclassification of Cochlodinium geminatum as Polykrikos geminatum.

    Directory of Open Access Journals (Sweden)

    Dajun Qiu

    Full Text Available Traditionally Cocholodinium and Gymnodinium sensu lato clade are distinguished based on the cingulum turn number, which has been increasingly recognized to be inadequate for Gymnodiniales genus classification. This has been improved by the combination of the apical groove characteristics and molecular phylogeny, which has led to the erection of several new genera (Takayama, Akashiwo, Karenia, and Karlodinium. Taking the apical groove characteristics and molecular phylogeny combined approach, we reexamined the historically taxonomically uncertain species Cochlodinium geminatum that formed massive blooms in Pearl River Estuary, China, in recent years. Samples were collected from a bloom in 2011 for morphological, characteristic pigment, and molecular analyses. We found that the cingulum in this species wraps around the cell body about 1.2 turns on average but can appear under the light microscopy to be >1.5 turns after the cells have been preserved. The shape of its apical groove, however, was stably an open-ended anticlockwise loop of kidney bean shape, similar to that of Polykrikos. Furthermore, the molecular phylogenetic analysis using 18S rRNA-ITS-28S rRNA gene cistron we obtained in this study also consistently placed this species closest to Polykrikos within the Gymnodinium sensu stricto clade and set it far separated from the clade of Cochlodinium. These results suggest that this species should be transferred to Polykrikos as Polykrikos geminatum. Our results reiterate the need to use the combination of apical groove morphology and molecular phylogeny for the classification of species within the genus of Cochlodinium and other Gymnodiniales lineages.

  13. Molecular Phylogeny and Revision of Copepod Orders (Crustacea: Copepoda).

    Science.gov (United States)

    Khodami, Sahar; McArthur, J Vaun; Blanco-Bercial, Leocadio; Martinez Arbizu, Pedro

    2017-08-22

    For the first time, the phylogenetic relationships between representatives of all 10 copepod orders have been investigated using 28S and 18S rRNA, Histone H3 protein and COI mtDNA. The monophyly of Copepoda (including Platycopioida Fosshagen, 1985) is demonstrated for the first time using molecular data. Maxillopoda is rejected, as it is a polyphyletic group. The monophyly of the major subgroups of Copepoda, including Progymnoplea Lang, 1948 (=Platycopioida); Neocopepoda Huys and Boxshall, 1991; Gymnoplea Giesbrecht, 1892 (=Calanoida Sars, 1903); and Podoplea Giesbrecht, 1892, are supported in this study. Seven copepod orders are monophyletic, including Platycopioida, Calanoida, Misophrioida Gurney, 1933; Monstrilloida Sars, 1901; Siphonostomatoida Burmeister, 1834; Gelyelloida Huys, 1988; and Mormonilloida Boxshall, 1979. Misophrioida (=Propodoplea Lang, 1948) is the most basal Podoplean order. The order Cyclopoida Burmeister, 1835, is paraphyletic and now encompasses Poecilostomatoida Thorell, 1859, as a sister to the family Schminkepinellidae Martinez Arbizu, 2006. Within Harpacticoida Sars, 1903, both sections, Polyarthra Lang, 1948, and Oligoarthra Lang, 1948, are monophyletic, but not sister groups. The order Canuelloida is proposed while maintaining the order Harpacticoida s. str. (Oligoarthra). Cyclopoida, Harpacticoida and Cyclopinidae are redefined, while Canuelloida ordo. nov., Smirnovipinidae fam. nov. and Cyclopicinidae fam. nov are proposed as new taxa.

  14. Molecular phylogeny of the highly diversified catfish subfamily Loricariinae (Siluriformes, Loricariidae) reveals incongruences with morphological classification.

    Science.gov (United States)

    Covain, Raphaël; Fisch-Muller, Sonia; Oliveira, Claudio; Mol, Jan H; Montoya-Burgos, Juan I; Dray, Stéphane

    2016-01-01

    The Loricariinae belong to the Neotropical mailed catfish family Loricariidae, the most species-rich catfish family. Among loricariids, members of the Loricariinae are united by a long and flattened caudal peduncle and the absence of an adipose fin. Despite numerous studies of the Loricariidae, there is no comprehensive phylogeny of this morphologically highly diversified subfamily. To fill this gap, we present a molecular phylogeny of this group, including 350 representatives, based on the analysis of mitochondrial and nuclear genes (8426 positions). The resulting phylogeny indicates that Loricariinae are distributed into two sister tribes: Harttiini and Loricariini. The Harttiini tribe, as classically defined, constitutes a paraphyletic assemblage and is here restricted to the three genera Harttia, Cteniloricaria, and Harttiella. Two subtribes are distinguished within Loricariini: Farlowellina and Loricariina. Within Farlowellina, the nominal genus formed a paraphyletic group, as did Sturisoma and Sturisomatichthys. Within Loricariina, Loricaria, Crossoloricaria, and Apistoloricaria are also paraphyletic. To solve these issues, and given the lack of clear morphological diagnostic features, we propose here to synonymize several genera (Quiritixys with Harttia; East Andean members of Crossoloricaria, and Apistoloricaria with Rhadinoloricaria; Ixinandria, Hemiloricaria, Fonchiiichthys, and Leliella with Rineloricaria), to restrict others (Crossoloricaria, and Sturisomatichthys to the West Andean members, and Sturisoma to the East Andean species), and to revalidate the genus Proloricaria. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Molecular phylogeny of Anopheles hyrcanus group (Diptera: Culicidae) based on mtDNA COI.

    Science.gov (United States)

    Fang, Yuan; Shi, Wen-Qi; Zhang, Yi

    2017-05-08

    The Anopheles hyrcanus group, which includes at least 25 species, is widely distributed in the Oriental and Palearctic regions. Some group members have been incriminated as vectors of malaria and other mosquito-borne diseases. It is difficult to identify Hyrcanus Group members by morphological features. Thus, molecular phylogeny has been proposed as an important complementary method to traditional morphological taxonomy. Based on the GenBank database and our original study data, we used 466 mitochondrial DNA COI sequences belonging to 18 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its worldwide geographic range. The results are as follows. 1) The average conspecific K2P divergence was 0.008 (range 0.002-0.017), whereas sequence divergence between congroup species averaged 0.064 (range 0.026-0.108). 2) The topology of COI tree of the Hyrcanus Group was generally consistent with classical morphological taxonomy in terms of species classification, but disagreed in subgroup division. In the COI tree, the group was divided into at least three main clusters. The first cluster contained An. nimpe; the second was composed of the Nigerrimus Subgroup and An. argyropus; and the third cluster was comprised of the Lesteri Subgroup and other unassociated species. 3) Phylogenetic analysis of COI indicated that ancient hybridizations probably occurred among the three closely related species, An. sinensis, An. belenrae, and An. kleini. 4) The results supported An. paraliae as a probable synonym of An. lesteri, and it was possible that An. pseudopictus and An. hyrcanus were the same species, as evident from their extremely low interspecific genetic divergence (0.020 and 0.007, respectively) and their phylogenetic positions. In summary, we reconstructed the molecular phylogeny and analysed genetic divergence of the Hyrcanus Group using mitochondrial COI sequences. Our results suggest that in the future of malaria surveillance, we should not only pay

  16. Higher-level molecular phylogeny of the water mites (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae).

    Science.gov (United States)

    Dabert, Miroslawa; Proctor, Heather; Dabert, Jacek

    2016-08-01

    With nearly 6000 named species, water mites (Hydrachnidiae) represent the largest group of arachnids to have invaded and extensively diversified in freshwater habitats. Water mites together with three other lineages (the terrestrial Erythraiae and Trombidiae, and aquatic Stygothrombiae), make up the hyporder Parasitengonina, which is characterized by having parasitic larvae and predatory nymphs and adults. Relationships between the Hydrachnidiae and other members of the Parasitengonina are unclear, as are relationships among the major lineages of water mites. Monophyly of water mites has been asserted, with the possible exception of the morphologically distinctive Hydrovolzioidea. Here we infer the phylogeny of water mites using multiple molecular markers and including representatives of all superfamilies of Hydrachnidiae and of almost all other Parasitengonina. Our results support a monophyletic Parasitengonina including Trombidiae, Stygothrombiae, and Hydrachnidiae. A monophyletic Hydrachnidiae, including Hydrovolzioidea, is strongly supported. Terrestrial Parasitengonina do not form a monophyletic sister group to water mites. Stygothrombiae is close to water mites but is not nested within this clade. Water mites appear to be derived from ancestors close to Stygothrombiae or the erythraoid group Calyptostomatoidea; however, this relationship is not clear because of extremely short branches in this part of the parasitengonine tree. We recovered with strong support all commonly accepted water mite superfamilies except for Hydryphantoidea, which is clearly paraphyletic. Our data support the previously proposed clades Protohydrachnidia (Hydrovolzioidea and Eylaoidea), Euhydrachnidia (all remaining superfamilies), and the euhydrachnid subclade Neohydrachnidia (Lebertioidea, Hydrachnoidea, Hygrobatoidea, and Arrenuroidea). We found that larval leg structure and locomotory behavior are strongly congruent with the molecular phylogeny. Other morphological and behavioral

  17. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses.

    Directory of Open Access Journals (Sweden)

    Zhonglou Sun

    Full Text Available The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes. Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma. Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma. Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.

  18. Correlating molecular phylogeny with venom apparatus occurrence in Panamic auger snails (Terebridae.

    Directory of Open Access Journals (Sweden)

    Mandë Holford

    2009-11-01

    Full Text Available Central to the discovery of neuroactive compounds produced by predatory marine snails of the superfamily Conoidea (cone snails, terebrids, and turrids is identifying those species with a venom apparatus. Previous analyses of western Pacific terebrid specimens has shown that some Terebridae groups have secondarily lost their venom apparatus. In order to efficiently characterize terebrid toxins, it is essential to devise a key for identifying which species have a venom apparatus. The findings presented here integrate molecular phylogeny and the evolution of character traits to infer the presence or absence of the venom apparatus in the Terebridae. Using a combined dataset of 156 western and 33 eastern Pacific terebrid samples, a phylogenetic tree was constructed based on analyses of 16S, COI and 12S mitochondrial genes. The 33 eastern Pacific specimens analyzed represent four different species: Acus strigatus, Terebra argyosia, T. ornata, and T. cf. formosa. Anatomical analysis was congruent with molecular characters, confirming that species included in the clade Acus do not have a venom apparatus, while those in the clade Terebra do. Discovery of the association between terebrid molecular phylogeny and the occurrence of a venom apparatus provides a useful tool for effectively identifying the terebrid lineages that may be investigated for novel pharmacological active neurotoxins, enhancing conservation of this important resource, while providing supplementary information towards understanding terebrid evolutionary diversification.

  19. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses.

    Science.gov (United States)

    Sun, Zhonglou; Pan, Tao; Hu, Chaochao; Sun, Lu; Ding, Hengwu; Wang, Hui; Zhang, Chenling; Jin, Hong; Chang, Qing; Kan, Xianzhao; Zhang, Baowei

    2017-01-01

    The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes). Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma). Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma). Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.

  20. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences.

    Science.gov (United States)

    Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar

    2003-09-01

    This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.

  1. Molecular characterization and phylogeny of four new species of the genus trichonympha (Parabasalia, trichonymphea) from lower termite hindguts

    Czech Academy of Sciences Publication Activity Database

    Boscaro, V.; James, E. R.; Fiorito, R.; Hehenberger, E.; Karnkowska, A.; del Campo, J.; Kolísko, Martin; Irwin, N. A.T.; Mathur, V.; Scheffrahn, R. H.; Keeling, P. J.

    2017-01-01

    Roč. 67, č. 9 (2017), s. 3570-3575, č. článku 002169. ISSN 1466-5026 Institutional support: RVO:60077344 Keywords : parabasalids * SSU rRNA phylogeny * termite symbionts * trichonympha Subject RIV: EB - Gene tics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.134, year: 2016

  2. Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes).

    Science.gov (United States)

    Vélez-Zuazo, Ximena; Agnarsson, Ingi

    2011-02-01

    Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively

  3. Molecular phylogeny of the hominoid primates as indicated by two-dimensional protein electrophoresis

    International Nuclear Information System (INIS)

    Goldman, D.; Giri, P.R.; O'Brien, J.O.

    1987-01-01

    A molecular phylogeny for the hominoid primates was constructed by using genetic distances from a survey of 383 radiolabeled fibroblast polypeptides resolved by two-dimensional electrophoresis (2DE). An internally consistent matrix of Nei genetic distances was generated on the basis of variants in electrophoretic position. The derived phylogenetic tree indicated a branching sequence, from oldest to most recent, of cercopithecoids (Macaca fascicularis), gibbon-siamang, orangutan, gorilla, and human-chimpanzee. A cladistic analysis of 240 electrophoretic characters that varied between ape species produced an identical tree. Genetic distance measures obtained by 2DE are largely consistent with those generated by other molecular procedures. In addition, the 2DE data set appears to resolve the human-chimpanzee-gorilla trichotomy in favor of a more recent association of chimpanzees and humans

  4. Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea).

    Science.gov (United States)

    Tkach, Vasyl V; Kudlai, Olena; Kostadinova, Aneta

    2016-03-01

    The Echinostomatoidea is a large, cosmopolitan group of digeneans currently including nine families and 105 genera, the vast majority parasitic, as adults, in birds with relatively few taxa parasitising mammals, reptiles and, exceptionally, fish. Despite the complex structure, diverse content and substantial species richness of the group, almost no attempt has been made to elucidate its phylogenetic relationships at the suprageneric level based on molecules due to the lack of data. Herein, we evaluate the consistency of the present morphology-based classification system of the Echinostomatoidea with the phylogenetic relationships of its members based on partial sequences of the nuclear lsrRNA gene for a broad diversity of taxa (80 species, representing eight families and 40 genera), including representatives of five subfamilies of the Echinostomatidae, which currently exhibits the most complex taxonomic structure within the superfamily. This first comprehensive phylogeny for the Echinostomatoidea challenged the current systematic framework based on comparative morphology. A morphology-based evaluation of this new molecular framework resulted in a number of systematic and nomenclatural changes consistent with the phylogenetic estimates of the generic and suprageneric boundaries and a new phylogeny-based classification of the Echinostomatoidea. In the current systematic treatment: (i) the rank of two family level lineages, the former Himasthlinae and Echinochasminae, is elevated to full family status; (ii) Caballerotrema is distinguished at the family level; (iii) the content and diagnosis of the Echinostomatidae (sensu stricto) (s. str.) are revised to reflect its phylogeny, resulting in the abolition of the Nephrostominae and Chaunocephalinae as synonyms of the Echinostomatidae (s. str.); (iv) Artyfechinostomum, Cathaemasia, Rhopalias and Ribeiroia are re-allocated within the Echinostomatidae (s. str.), resulting in the abolition of the Cathaemasiidae, Rhopaliidae

  5. Taxonomy, phylogeny and molecular epidemiology of Echinococcus multilocularis: From fundamental knowledge to health ecology.

    Science.gov (United States)

    Knapp, Jenny; Gottstein, Bruno; Saarma, Urmas; Millon, Laurence

    2015-10-30

    Alveolar echinococcosis, caused by the tapeworm Echinococcus multilocularis, is one of the most severe parasitic diseases in humans and represents one of the 17 neglected diseases prioritised by the World Health Organisation (WHO) in 2012. Considering the major medical and veterinary importance of this parasite, the phylogeny of the genus Echinococcus is of considerable importance; yet, despite numerous efforts with both mitochondrial and nuclear data, it has remained unresolved. The genus is clearly complex, and this is one of the reasons for the incomplete understanding of its taxonomy. Although taxonomic studies have recognised E. multilocularis as a separate entity from the Echinococcus granulosus complex and other members of the genus, it would be premature to draw firm conclusions about the taxonomy of the genus before the phylogeny of the whole genus is fully resolved. The recent sequencing of E. multilocularis and E. granulosus genomes opens new possibilities for performing in-depth phylogenetic analyses. In addition, whole genome data provide the possibility of inferring phylogenies based on a large number of functional genes, i.e. genes that trace the evolutionary history of adaptation in E. multilocularis and other members of the genus. Moreover, genomic data open new avenues for studying the molecular epidemiology of E. multilocularis: genotyping studies with larger panels of genetic markers allow the genetic diversity and spatial dynamics of parasites to be evaluated with greater precision. There is an urgent need for international coordination of genotyping of E. multilocularis isolates from animals and human patients. This could be fundamental for a better understanding of the transmission of alveolar echinococcosis and for designing efficient healthcare strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A robust molecular phylogeny of the Tricladida (Platyhelminthes: Seriata) with a discussion on morphological synapomorphies.

    Science.gov (United States)

    Carranza, S; Littlewood, D T; Clough, K A; Ruiz-Trillo, I; Baguñà, J; Riutort, M

    1998-01-01

    The suborder Tricladida (Platyhelminthes: Turbellaria, Seriata) comprises most well-known species of free-living flatworms. Four infraorders are recognized: (i) the Maricola (marine planarians); (ii) the Cavernicola (a group of primarily cavernicolan planarians); (iii) the Paludicola (freshwater planarians); and (iv) the Terricola (land planarians). The phylogenetic relationships among these infraorders have been analysed using morphological characters, but they remain uncertain. Here we analyse the phylogeny and classification of the Tricladida, with additional, independent, molecular data from complete sequences of 18S rDNA and 18S rRNA. We use maximum parsimony and neighbour-joining methods and the characterization of a unique gene duplication event involving the Terricola and the dugesiids to reconstruct the phylogeny. The results show that the Maricola is monophyletic and is the primitive sister group to the rest of the Tricladida (the Paludicola plus the Terricola). The Paludicola are paraphyletic since the Terricola and one paludicolan family, the Dugesiidae, share a more recent common ancestor than the dugesiids with other paludicolans (dendrocoelids and planariids). A reassessment of morphological evidence may confirm the apparent redundancy of the existing infraorders Paludicola and Terricola. In the meantime, we suggest replacing the Paludicola and Terricola with a new clade, the Continenticola, which comprises the families Dugesiidae, Planariidae, Dendrocoelidae and the Terricola. PMID:9881470

  7. Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera

    Science.gov (United States)

    Watson, Linda E; Bates, Paul L; Evans, Timothy M; Unwin, Matthew M; Estes, James R

    2002-01-01

    Background Subtribe Artemisiinae of Tribe Anthemideae (Asteraceae) is composed of 18 largely Asian genera that include the sagebrushes and mugworts. The subtribe includes the large cosmopolitan, wind-pollinated genus Artemisia, as well as several smaller genera and Seriphidium, that altogether comprise the Artemisia-group. Circumscription and taxonomic boundaries of Artemisia and the placements of these small segregate genera is currently unresolved. Results We constructed a molecular phylogeny for the subtribe using the internal transcribed spacers (ITS) of nuclear ribosomal DNA analyzed with parsimony, likelihood, and Bayesian criteria. The resulting tree is comprised of three major clades that correspond to the radiate genera (e.g., Arctanthemum and Dendranthema), and two clades of Artemisia species. All three clades have allied and segregate genera embedded within each. Conclusions The data support a broad concept of Artemisia s.l. that includes Neopallasia, Crossostephium, Filifolium, Seriphidium, and Sphaeromeria. However, the phylogeny excludes Elachanthemum, Kaschgaria, and Stilnolepis from the Artemisia-group. Additionally, the monophyly of the four subgenera of Artemisia is also not supported, with the exception of subg. Dracunculus. Homogamous, discoid capitula appear to have arisen in parallel four to seven times, with the loss of ray florets. Thus capitular morphology is not a reliable taxonomic character, which traditionally has been one of the defining characters. PMID:12350234

  8. Molecular phylogeny of tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora.

    Science.gov (United States)

    Calvente, Alice; Zappi, Daniela C; Forest, Félix; Lohmann, Lúcia G

    2011-03-01

    Tribe Rhipsalideae is composed of unusual epiphytic or lithophytic cacti that inhabit humid tropical and subtropical forests. Members of this tribe present a reduced vegetative body, a specialized adventitious root system, usually spineless areoles and flowers and fruits reduced in size. Despite the debate surrounding the classification of Rhipsalideae, no studies have ever attempted to reconstruct phylogenetic relationships among its members or to test the monophyly of its genera using DNA sequence data; all classifications formerly proposed for this tribe have only employed morphological data. In this study, we reconstruct the phylogeny of Rhipsalideae using plastid (trnQ-rps16, rpl32-trnL, psbA-trnH) and nuclear (ITS) markers to evaluate the classifications previously proposed for the group. We also examine morphological features traditionally used to delimit genera within Rhipsalideae in light of the resulting phylogenetic trees. In total new sequences for 35 species of Rhipsalideae were produced (out of 55; 63%). The molecular phylogeny obtained comprises four main clades supporting the recognition of genera Lepismium, Rhipsalis, Hatiora and Schlumbergera. The evidence gathered indicate that a broader genus Schlumbergera, including Hatiora subg. Rhipsalidopsis, should be recognized. Consistent morphological characters rather than homoplastic features are used in order to establish a more coherent and practical classification for the group. Nomenclatural changes and a key for the identification of the genera currently included in Rhipsalideae are provided. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Molecular phylogeny of selected species of the order Dinophysiales (Dinophyceae) - testing the hypothesis of a Dinophysioid radiation

    DEFF Research Database (Denmark)

    Jensen, Maria Hastrup; Daugbjerg, Niels

    2009-01-01

    additional information on morphology and ecology to these evolutionary lineages. We have for the first time combined morphological information with molecular phylogenies to test the dinophysioid radiation hypothesis in a modern context. Nuclear-encoded LSU rDNA sequences including domains D1-D6 from 27...

  10. LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies

    Directory of Open Access Journals (Sweden)

    Daniel L. Rabosky

    2006-01-01

    Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at http://cran.r-project.org.

  11. Molecular phylogeny of moth-specialized spider sub-family Cyrtarachninae, which includes bolas spiders.

    Science.gov (United States)

    Tanikawa, Akio; Shinkai, Akira; Miyashita, Tadashi

    2014-11-01

    The evolutionary process of the unique web architectures of spiders of the sub-family Cyrtarachninae, which includes the triangular web weaver, bolas spider, and webless spider, is thought to be derived from reduction of orbicular 'spanning-thread webs' resembling ordinal orb webs. A molecular phylogenetic analysis was conducted to explore this hypothesis using orbicular web spiders Cyrtarachne, Paraplectana, Poecilopachys, triangular web spider Pasilobus, bolas spiders Ordgarius and Mastophora, and webless spider Celaenia. The phylogeny inferred from partial sequences of mt-COI, nuclear 18S-rRNA and 28S-rRNA showed that the common ancestor of these spiders diverged into two clades: a spanning-thread web clade and a bolas or webless clade. This finding suggests that the triangular web evolved by reduction of an orbicular spanning web, but that bolas spiders evolved in the early stage, which does not support the gradual web reduction hypothesis.

  12. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Pasi Sihvonen

    Full Text Available BACKGROUND: The moth family Geometridae (inchworms or loopers, with approximately 23,000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. METHODOLOGY/PRINCIPAL FINDINGS: We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae. CONCLUSIONS/SIGNIFICANCE: Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic.

  13. Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae).

    Science.gov (United States)

    Musilová, Zuzana; Rícan, Oldrich; Janko, Karel; Novák, Jindrich

    2008-02-01

    We have conducted the first comprehensive molecular phylogeny of the tribe Cichlasomatini including all valid genera as well as important species of questionable generic status. To recover the relationships among cichlasomatine genera and to test their monophyly we analyzed sequences from two mitochondrial (16S rRNA, cytochrome b) and one nuclear marker (first intron of S7 ribosomal gene) totalling 2236 bp. Our data suggest that all genera except Aequidens are monophyletic, but we found important disagreements between the traditional morphological relationships and the phylogeny based on our molecular data. Our analyses support the following conclusions: (a) Aequidens sensu stricto is paraphyletic, including also Cichlasoma (CA clade); (b) Krobia is not closely related to Bujurquina and includes also the Guyanan Aequidens species A. potaroensis and probably A. paloemeuensis (KA clade). (c) Bujurquina and Tahuantinsuyoa are sister groups, closely related to an undescribed genus formed by the 'Aequidens'pulcher-'Aequidens'rivulatus groups (BTA clade). (d) Nannacara (plus Ivanacara) and Cleithracara are found as sister groups (NIC clade). Acaronia is most probably the sister group of the BTA clade, and Laetacara may be the sister group of this clade. Estimation of divergence times suggests that the divergence of Cichlasomatini started around 44Mya with the vicariance between coastal rivers of the Guyanas (KA and NIC clades) and remaining cis-andean South America, followed by evolution of the Acaronia-Laetacara-BTA clade in Western Amazon, and the CA clade in the Eastern Amazon. Vicariant divergence has played importantly in evolution of cichlasomatine genera, with dispersal limited to later range extension of species within genera.

  14. Molecular phylogeny of Neotropical bioluminescent beetles (Coleoptera: Elateroidea) in southern and central Brazil.

    Science.gov (United States)

    Amaral, D T; Arnoldi, F G C; Rosa, S P; Viviani, V R

    2014-08-01

    Bioluminescence in beetles is found mainly in the Elateroidea superfamily (Elateridae, Lampyridae and Phengodidae). The Neotropical region accounts for the richest diversity of bioluminescent species in the world with about 500 described species, most occurring in the Amazon, Atlantic rainforest and Cerrado (savanna) ecosystems in Brazil. The origin and evolution of bioluminescence, as well as the taxonomic status of several Neotropical taxa in these families remains unclear. In order to contribute to a better understanding of the phylogeny and evolution of bioluminescent Elateroidea we sequenced and analyzed sequences of mitochondrial NADH2 and the nuclear 28S genes and of the cloned luciferase sequences of Brazilian species belonging to the following genera: (Lampyridae) Macrolampis, Photuris, Amydetes, Bicellonycha, Aspisoma, Lucidota, Cratomorphus; (Elateridae) Conoderus, Pyrophorus, Hapsodrilus, Pyrearinus, Fulgeochlizus; and (Phengodidae) Pseudophengodes, Phrixothrix, Euryopa and Brasilocerus. Our study supports a closer phylogenetic relationship between Elateridae and Phengodidae as other molecular studies, in contrast with previous morphologic and molecular studies that clustered Lampyridae/Phengodidae. Molecular data also supported division of the Phengodinae subfamily into the tribes Phengodini and Mastinocerini. The position of the genus Amydetes supports the status of the Amydetinae as a subfamily. The genus Euryopa is included in the Mastinocerini tribe within the Phengodinae/Phengodidae. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Science.gov (United States)

    Vuataz, Laurent; Rutschmann, Sereina; Monaghan, Michael T; Sartori, Michel

    2016-09-21

    Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups

  16. Molecular phylogeny of Oncaeidae (Copepoda using nuclear ribosomal internal transcribed spacer (ITS rDNA.

    Directory of Open Access Journals (Sweden)

    Iole Di Capua

    Full Text Available Copepods belonging to the Oncaeidae family are commonly and abundantly found in marine zooplankton. In the Mediterranean Sea, forty-seven oncaeid species occur, of which eleven in the Gulf of Naples. In this Gulf, several Oncaea species were morphologically analysed and described at the end of the XIX century by W. Giesbrecht. In the same area, oncaeids are being investigated over seasonal and inter-annual scales at the long-term coastal station LTER-MC. In the present work, we identified six oncaeid species using the nuclear ribosomal internal transcribed spacers (ITS rDNA and the mitochondrial cytochrome c oxidase subunit I (mtCOI. Phylogenetic analyses based on these two genomic regions validated the sisterhood of the genera Triconia and the Oncaea sensu stricto. ITS1 and ITS2 phylogenies produced incongruent results about the position of Oncaea curta, calling for further investigations on this species. We also characterised the ITS2 region by secondary structure predictions and found that all the sequences analysed presented the distinct eukaryotic hallmarks. A Compensatory Base Change search corroborated the close relationship between O. venusta and O. curta and between O. media and O. venusta already identified by ITS phylogenies. The present results, which stem from the integration of molecular and morphological taxonomy, represent an encouraging step towards an improved knowledge of copepod biodiversity: The two complementary approaches, when applied to long-term copepod monitoring, will also help to better understanding their genetic variations and ecological niches of co-occurring species.

  17. Molecular phylogeny and phylogeography of genus Pseudois (Bovidae, Cetartiodactyla): New insights into the contrasting phylogeographic structure.

    Science.gov (United States)

    Tan, Shuai; Wang, Zhihong; Jiang, Lichun; Peng, Rui; Zhang, Tao; Peng, Quekun; Zou, Fangdong

    2017-09-01

    Blue sheep, Pseudois nayaur , is endemic to the Tibetan Plateau and the surrounding mountains, which are the highest-elevation areas in the world. Classical morphological taxonomy suggests that there are two subspecies in genus Pseudois (Bovidae, Artiodactyla), namely Pseudois nayaur nayaur and Pseudois nayaur szechuanensis . However, the validity and geographic characteristics of these subspecies have never been carefully discussed and analyzed. This may be partially because previous studies have mainly focused on the vague taxonomic status of Pseudois schaeferi (dwarf blue sheep). Thus, there is an urgent need to investigate the evolutionary relationship and taxonomy system of this genus. This study enriches a previous dataset by providing a large number of new samples, based on a total of 225 samples covering almost the entire distribution of blue sheep. Molecular data from cytochrome b and the mitochondrial control region sequences were used to reconstruct the phylogeny of this species. The phylogenetic inferences show that vicariance plays an important role in diversification within this genus. In terms of molecular dating results and biogeographic analyses, the striking biogeographic pattern coincides significantly with major geophysical events. Although the results raise doubt about the present recognized distribution range of blue sheep, they have corroborated the validity of the identified subspecies in genus Pseudois . Meanwhile, these results demonstrate that the two geographically distinct populations, the Helan Mountains and Pamir Plateau populations, have been significantly differentiated from the identified subspecies, a finding that challenges the conventional taxonomy of blue sheep.

  18. Molecular phylogeny of Pasiphaeidae (Crustacea, Decapoda, Caridea) reveals systematic incongruence of the current classification.

    Science.gov (United States)

    Liao, Yunshi; De Grave, Sammy; Ho, Tsz Wai; Ip, Brian H Y; Tsang, Ling Ming; Chan, Tin-Yam; Chu, Ka Hou

    2017-10-01

    Caridean shrimps constitute one of the most diverse groups of decapod crustaceans, notwithstanding their poorly resolved infraordinal relationships. One of the systematically controversial families in Caridea is the predominantly pelagic Pasiphaeidae, comprises 101 species in seven genera. Pasiphaeidae species exhibit high morphological disparity, as well as ecological niche width, inhabiting shallow to very deep waters (>4000m). The present work presents the first molecular phylogeny of the family, based on a combined dataset of six mitochondrial and nuclear gene markers (12S rDNA, 16S rDNA, histone 3, sodium-potassium ATPase α-subunit, enolase and ATP synthase β-subunit) from 33 species belonged to six genera of Pasiphaeidae with 19 species from 12 other caridean families as outgroup taxa. Maximum likelihood and Bayesian inference analyses conducted on the concatenated dataset of 2265bp suggest the family Pasiphaeidae is not monophyletic, with Psathyrocaris more closely related to other carideans than to the other five pasiphaeid genera included in this analysis. Leptochela occupies a sister position to the remaining genera and is genetically quite distant from them. At the generic level, the analysis supports the monophyly of Pasiphaea, Leptochela and Psathyrocaris, while Eupasiphae is shown to be paraphyletic, closely related to Parapasiphae and Glyphus. The present molecular result strongly implies that certain morphological characters used in the present systematic delineation within Pasiphaeidae may not be synapomorphies and the classification within the family needs to be urgently revised. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    Science.gov (United States)

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    The pantropical orb web spider family Nephilidae is known for the most extreme sexual size dimorphism among terrestrial animals. Numerous studies have made Nephilidae, particularly Nephila, a model lineage in evolutionary research. However, a poorly understood phylogeny of this lineage, relying only on morphology, has prevented thorough evolutionary syntheses of nephilid biology. We here use three nuclear and five mitochondrial genes for 28 out of 40 nephilid species to provide a more robust nephilid phylogeny and infer clade ages in a fossil-calibrated Bayesian framework. We complement the molecular analyses with total evidence analysis including morphology. All analyses find strong support for nephilid monophyly and exclusivity and the monophyly of the genera Herennia and Clitaetra. The inferred phylogenetic structure within Nephilidae is novel and conflicts with morphological phylogeny and traditional taxonomy. Nephilengys species fall into two clades, one with Australasian species (true Nephilengys) as sister to Herennia, and another with Afrotropical species (Nephilingis Kuntner new genus) as sister to a clade containing Clitaetra plus most currently described Nephila. Surprisingly, Nephila is also diphyletic, with true Nephila containing N. pilipes+N. constricta, and the second clade with all other species sister to Clitaetra; this "Nephila" clade is further split into an Australasian clade that also contains the South American N. sexpunctata and the Eurasian N. clavata, and an African clade that also contains the Panamerican N. clavipes. An approximately unbiased test constraining the monophyly of Nephilengys, Nephila, and Nephilinae (Nephila, Nephilengys, Herennia), respectively, rejected Nephilengys monophyly, but not that of Nephila and Nephilinae. Further data are therefore necessary to robustly test these two new, but inconclusive findings, and also to further test the precise placement of Nephilidae within the Araneoidea. For divergence date estimation

  20. Another Chloromyxid Lineage: Molecular Phylogeny and Redescription of Chloromyxum careni from the Asian Horned frog Megophrys nasuta

    Czech Academy of Sciences Publication Activity Database

    Jirků, Miloslav; Bartošová, Pavla; Kodádková, Alena; Mutschmann, F.

    2011-01-01

    Roč. 58, č. 1 (2011), s. 50-59 ISSN 1066-5234 R&D Projects: GA ČR GAP506/10/2330 Institutional research plan: CEZ:AV0Z60220518 Keywords : Amphibia * Anura * Chloromyxum careni * LSU rDNA * Megophrys nasuta * molecular phylogeny * Myxozoa * redescription * SSU rDNA * ultrastructure Subject RIV: EG - Zoology Impact factor: 2.659, year: 2011

  1. Molecular Phylogeny of the Astrophorida (Porifera, Demospongiae p) Reveals an Unexpected High Level of Spicule Homoplasy

    Science.gov (United States)

    Cárdenas, Paco; Xavier, Joana R.; Reveillaud, Julie; Schander, Christoffer; Rapp, Hans Tore

    2011-01-01

    Background The Astrophorida (Porifera, Demospongiae p) is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Ancorinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. Astrophorida taxa have very diverse spicule sets that make them a model of choice to investigate spicule evolution. Methodology/Principal Findings With a sampling of 153 specimens (9 families, 29 genera, 89 species) covering the deep- and shallow-waters worldwide, this work presents the first comprehensive molecular phylogeny of the Astrophorida, using a cytochrome c oxidase subunit I (COI) gene partial sequence and the 5′ end terminal part of the 28S rDNA gene (C1-D2 domains). The resulting tree suggested that i) the Astrophorida included some lithistid families and some Alectonidae species, ii) the sub-orders Euastrophorida and Streptosclerophorida were both polyphyletic, iii) the Geodiidae, the Ancorinidae and the Pachastrellidae were not monophyletic, iv) the Calthropellidae was part of the Geodiidae clade (Calthropella at least), and finally that v) many genera were polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, Rhabdastrella, Stelletta and Vulcanella). Conclusion The Astrophorida is a larger order than previously considered, comprising ca. 820 species. Based on these results, we propose new classifications for the Astrophorida using both the classical rank-based nomenclature (i.e., Linnaean classification) and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. A key to the Astrophorida families, sub-families and genera incertae sedis is also included. Incongruences between our molecular tree and the current classification

  2. Physiological and molecular characterization of cowpea [Vigna ...

    African Journals Online (AJOL)

    Diaga Diouf

    Cowpea, Vigna unguiculata (L.) Walp. presents phenotypical variabilities and in order to study the genetic diversity of cultivated Senegalese varieties, two experimental approaches were used. First, a physiological characterization based on nitrogen fixation was used to assess cowpea breeding lines. Inoculation with two ...

  3. Physiology and molecular biology of petal senescence

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2008-01-01

    Petal senescence is reviewed, with the main emphasis on gene expression in relation to physiological functions. Autophagy seems to be the major mechanism for large-scale degradation of macromolecules, but it is still unclear if it contributes to cell death. Depending on the species, petal senescence

  4. Molecular phylogeny and larval morphological diversity of the lanternfish genus Hygophum (Teleostei: Myctophidae).

    Science.gov (United States)

    Yamaguchi, M; Miya, M; Okiyama, M; Nishida, M

    2000-04-01

    Larvae of the deep-sea lanternfish genus Hygophum (Myctophidae) exhibit a remarkable morphological diversity that is quite unexpected, considering their homogeneous adult morphology. In an attempt to elucidate the evolutionary patterns of such larval morphological diversity, nucleotide sequences of a portion of the mitochondrially encoded 16S ribosomal RNA gene were determined for seven Hygophum species and three outgroup taxa. Secondary structure-based alignment resulted in a character matrix consisting of 1172 bp of unambiguously aligned sequences, which were subjected to phylogenetic analyses using maximum-parsimony, maximum-likelihood, and neighbor-joining methods. The resultant tree topologies from the three methods were congruent, with most nodes, including that of the genus Hygophum, being strongly supported by various tree statistics. The most parsimonious reconstruction of the three previously recognized, distinct larval morphs onto the molecular phylogeny revealed that one of the morphs had originated as the common ancestor of the genus, the other two having diversified separately in two subsequent major clades. The patterns of such diversification are discussed in terms of the unusual larval eye morphology and geographic distribution. Copyright 2000 Academic Press.

  5. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera).

    Science.gov (United States)

    Gómez, Africa; Serra, Manuel; Carvalho, Gary R; Lunt, David H

    2002-07-01

    Continental lake-dwelling zooplanktonic organisms have long been considered cosmopolitan species with little geographic variation in spite of the isolation of their habitats. Evidence of morphological cohesiveness and high dispersal capabilities support this interpretation. However, this view has been challenged recently as many such species have been shown either to comprise cryptic species complexes or to exhibit marked population genetic differentiation and strong phylogeographic structuring at a regional scale. Here we investigate the molecular phylogeny of the cosmopolitan passively dispersing rotifer Brachionus plicatilis (Rotifera: Monogononta) species complex using nucleotide sequence variation from both nuclear (ribosomal internal transcribed spacer 1, ITS1) and mitochondrial (cytochrome c oxidase subunit I, COI) genes. Analysis of rotifer resting eggs from 27 salt lakes in the Iberian Peninsula plus lakes from four continents revealed nine genetically divergent lineages. The high level of sequence divergence, absence of hybridization, and extensive sympatry observed support the specific status of these lineages. Sequence divergence estimates indicate that the B. plicatilis complex began diversifying many millions of years ago, yet has showed relatively high levels of morphological stasis. We discuss these results in relation to the ecology and genetics of aquatic invertebrates possessing dispersive resting propagules and address the apparent contradiction between zooplanktonic population structure and their morphological stasis.

  6. Molecular phylogeny and ecological diversification in a clade of New World songbirds (genus Vireo).

    Science.gov (United States)

    Cicero, C; Johnson, N K

    1998-10-01

    We constructed a molecular phylogeny for a clade of eye-ringed vireos (Vireo flavifrons and the V. solitarius complex) to examine existing hypotheses of speciation and ecological diversification. Complete sequences of the mtDNA cytochrome b gene were obtained from 47 individuals of this group plus four vireonid outgroups. Mean levels of sequence divergence in the clade varied from 0.29% to 5.7%. Differences were greatest between V. flavifrons and four taxa of 'V. solitarius'. The latter separated into three taxonomic, geographical and ecological groups: V. plumbeus plumbeus, V. cassinii cassinii, and V. solitarius solitarius plus V. solitarius alticola. These differed by an average of 2.6-3.2%. Populations within each group revealed low levels of sequence variation (x = 0.20%) and little geographical structuring. The mtDNA data generally corroborate results from allozymes. V. plumbeus shows a loss of yellow-green carotenoid pigmentation from the ancestral condition. The occupancy of relatively dry habitats by this species and V. cassinii represents a derived ecological shift from more-humid environments occupied by other species of vireonids. Ecological divergence in this clade occurred in allopatry and is associated with generic-level stability in morphometrics and foraging styles. Migratory behaviour and seasonal habitat shifts apparently evolved multiple times in vireos breeding in temperate environments. Present geographical and ecological distributions, and low levels of intrataxon genetic divergence, are hypothesized to be the result of postglacial regionalization of climate-plant associations and rapid northward expansion of breeding ranges.

  7. A molecular phylogeny shows the single origin of the Pyrenean subterranean Trechini ground beetles (Coleoptera: Carabidae).

    Science.gov (United States)

    Faille, A; Ribera, I; Deharveng, L; Bourdeau, C; Garnery, L; Quéinnec, E; Deuve, T

    2010-01-01

    Trechini ground beetles include some of the most spectacular radiations of cave and endogean Coleoptera, but the origin of the subterranean taxa and their typical morphological adaptations (loss of eyes and wings, depigmentation, elongation of body and appendages) have never been studied in a formal phylogenetic framework. We provide here a molecular phylogeny of the Pyrenean subterranean Trechini based on a combination of mitochondrial (cox1, cyb, rrnL, tRNA-Leu, nad1) and nuclear (SSU, LSU) markers of 102 specimens of 90 species. We found all Pyrenean highly modified subterranean taxa to be monophyletic, to the exclusion of all epigean and all subterranean species from other geographical areas (Cantabrian and Iberian mountains, Alps). Within the Pyrenean subterranean clade the three genera (Geotrechus, Aphaenops and Hydraphaenops) were polyphyletic, indicating multiple origins of their special adaptations to different ways of life (endogean, troglobitic or living in deep fissures). Diversification followed a geographical pattern, with two main clades in the western and central-eastern Pyrenees respectively, and several smaller lineages of more restricted range. Based on a Bayesian relaxed-clock approach, and using as an approximation a standard mitochondrial mutation rate of 2.3% MY, we estimate the origin of the subterranean clade at ca. 10 MY. Cladogenetic events in the Pliocene and Pleistocene were almost exclusively within the same geographical area and involving species of the same morphological type.

  8. Trees of unusual size: biased inference of early bursts from large molecular phylogenies.

    Directory of Open Access Journals (Sweden)

    Matthew W Pennell

    Full Text Available An early burst of speciation followed by a subsequent slowdown in the rate of diversification is commonly inferred from molecular phylogenies. This pattern is consistent with some verbal theory of ecological opportunity and adaptive radiations. One often-overlooked source of bias in these studies is that of sampling at the level of whole clades, as researchers tend to choose large, speciose clades to study. In this paper, we investigate the performance of common methods across the distribution of clade sizes that can be generated by a constant-rate birth-death process. Clades which are larger than expected for a given constant-rate branching process tend to show a pattern of an early burst even when both speciation and extinction rates are constant through time. All methods evaluated were susceptible to detecting this false signature when extinction was low. Under moderate extinction, both the [Formula: see text]-statistic and diversity-dependent models did not detect such a slowdown but only because the signature of a slowdown was masked by subsequent extinction. Some models which estimate time-varying speciation rates are able to detect early bursts under higher extinction rates, but are extremely prone to sampling bias. We suggest that examining clades in isolation may result in spurious inferences that rates of diversification have changed through time.

  9. Molecular phylogeny of the spoonbills (Aves: Threskiornithidae) based on mitochondrial DNA

    Science.gov (United States)

    Chesser, R. Terry; Yeung, Carol K.L.; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien

    2010-01-01

    Spoonbills (genus Platalea) are a small group of wading birds, generally considered to constitute the subfamily Plataleinae (Aves: Threskiornithidae). We reconstructed phylogenetic relationships among the six species of spoonbills using variation in sequences of the mitochondrial genes ND2 and cytochrome b (total 1796 bp). Topologies of phylogenetic trees reconstructed using maximum likelihood, maximum parsimony, and Bayesian analyses were virtually identical and supported monophyly of the spoonbills. Most relationships within Platalea received strong support: P. minor and P. regia were closely related sister species, P. leucorodia was sister to the minor-regia clade, and P. alba was sister to the minor-regia-leucorodia clade. Relationships of P. flavipes and P. ajaja were less well resolved: these species either formed a clade that was sister to the four-species clade, or were successive sisters to this clade. This phylogeny is consistent with ideas of relatedness derived from spoonbill morphology. Our limited sampling of the Threskiornithinae (ibises), the putative sister group to the spoonbills, indicated that this group is paraphyletic, in agreement with previous molecular data; this suggests that separation of the Threskiornithidae into subfamilies Plataleinae and Threskiornithinae may not be warranted.

  10. A molecular phylogeny of the Australian huntsman spiders (Sparassidae, Deleninae): implications for taxonomy and social behaviour.

    Science.gov (United States)

    Agnarsson, Ingi; Rayor, Linda S

    2013-12-01

    Huntsman spiders (Sparassidae) are a diverse group with a worldwide distribution, yet are poorly known both taxonomically and phylogenetically. They are particularly diverse in Australia where an endemic lineage, Deleninae, has diversified to form nearly 100 species. One unusual species, Delena cancerides, has been believed to be the sole group-living sparassid. Unlike all of the other subsocial and social spiders which are capture-web based or live in silken tunnels, D. cancerides are non-web building spiders that live in large matrilineal colonies of a single adult female and her offspring from multiple clutches of under the bark of dead trees. Here we report the discovery of two additional prolonged subsocial sparassid species, currently in Eodelena but here formally proposed as a synonomy of Delena (new synonoymy), Delena (Eodelena) lapidicola and D. (E.) melanochelis. We briefly describe their social demographics, behavior, and habitat use. In order to understand the evolutionary relationships among these species, and thus origin of sociality and other traits in this group, we also offer the first molecular phylogeny of Deleninae and relatives. We employ model based phylogenetic analyses on two mtDNA and three nuDNA loci using maximum likelihood and Bayesian methods, including both 'classical' concatenation approach as well as coalescent-based analysis of species trees from gene trees. Our results support the hypothesis that the delenine huntsman spiders are a monophyletic Australian radiation, approximately 23 million year old, and indicate that the current ten genera should be merged to six genera in four clades. Our findings are inconsistent with some relatively recent changes in the taxonomy of Deleninae. The three known group-living delenine species are related and likely represent a single origin of sociality with a single reversal to solitary life-styles. Our results provide strong support for the classical Isopeda, but not for the recent splitting of

  11. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  12. Traditional taxonomic groupings mask evolutionary history: a molecular phylogeny and new classification of the chromodorid nudibranchs.

    Directory of Open Access Journals (Sweden)

    Rebecca Fay Johnson

    Full Text Available Chromodorid nudibranchs (16 genera, 300+ species are beautiful, brightly colored sea slugs found primarily in tropical coral reef habitats and subtropical coastal waters. The chromodorids are the most speciose family of opisthobranchs and one of the most diverse heterobranch clades. Chromodorids have the potential to be a model group with which to study diversification, color pattern evolution, are important source organisms in natural products chemistry and represent a stunning and widely compelling example of marine biodiversity. Here, we present the most complete molecular phylogeny of the chromodorid nudibranchs to date, with a broad sample of 244 specimens (142 new, representing 157 (106 new chromodorid species, four actinocylcid species and four additional dorid species utilizing two mitochondrial markers (16s and COI. We confirmed the monophyly of the Chromodorididae and its sister group relationship with the Actinocyclidae. We were also able to, for the first time, test generic monophyly by including more than one member of all 14 of the non-monotypic chromodorid genera. Every one of these 14 traditional chromodorid genera are either non-monophyletic, or render another genus paraphyletic. Additionally, both the monotypic genera Verconia and Diversidoris are nested within clades. Based on data shown here, there are three individual species and five clades limited to the eastern Pacific and Atlantic Oceans (or just one of these ocean regions, while the majority of chromodorid clades and species are strictly Indo-Pacific in distribution. We present a new classification of the chromodorid nudibranchs. We use molecular data to untangle evolutionary relationships and retain a historical connection to traditional systematics by using generic names attached to type species as clade names.

  13. Traditional taxonomic groupings mask evolutionary history: a molecular phylogeny and new classification of the chromodorid nudibranchs.

    Science.gov (United States)

    Johnson, Rebecca Fay; Gosliner, Terrence M

    2012-01-01

    Chromodorid nudibranchs (16 genera, 300+ species) are beautiful, brightly colored sea slugs found primarily in tropical coral reef habitats and subtropical coastal waters. The chromodorids are the most speciose family of opisthobranchs and one of the most diverse heterobranch clades. Chromodorids have the potential to be a model group with which to study diversification, color pattern evolution, are important source organisms in natural products chemistry and represent a stunning and widely compelling example of marine biodiversity. Here, we present the most complete molecular phylogeny of the chromodorid nudibranchs to date, with a broad sample of 244 specimens (142 new), representing 157 (106 new) chromodorid species, four actinocylcid species and four additional dorid species utilizing two mitochondrial markers (16s and COI). We confirmed the monophyly of the Chromodorididae and its sister group relationship with the Actinocyclidae. We were also able to, for the first time, test generic monophyly by including more than one member of all 14 of the non-monotypic chromodorid genera. Every one of these 14 traditional chromodorid genera are either non-monophyletic, or render another genus paraphyletic. Additionally, both the monotypic genera Verconia and Diversidoris are nested within clades. Based on data shown here, there are three individual species and five clades limited to the eastern Pacific and Atlantic Oceans (or just one of these ocean regions), while the majority of chromodorid clades and species are strictly Indo-Pacific in distribution. We present a new classification of the chromodorid nudibranchs. We use molecular data to untangle evolutionary relationships and retain a historical connection to traditional systematics by using generic names attached to type species as clade names.

  14. Traditional Taxonomic Groupings Mask Evolutionary History: A Molecular Phylogeny and New Classification of the Chromodorid Nudibranchs

    Science.gov (United States)

    Johnson, Rebecca Fay; Gosliner, Terrence M.

    2012-01-01

    Chromodorid nudibranchs (16 genera, 300+ species) are beautiful, brightly colored sea slugs found primarily in tropical coral reef habitats and subtropical coastal waters. The chromodorids are the most speciose family of opisthobranchs and one of the most diverse heterobranch clades. Chromodorids have the potential to be a model group with which to study diversification, color pattern evolution, are important source organisms in natural products chemistry and represent a stunning and widely compelling example of marine biodiversity. Here, we present the most complete molecular phylogeny of the chromodorid nudibranchs to date, with a broad sample of 244 specimens (142 new), representing 157 (106 new) chromodorid species, four actinocylcid species and four additional dorid species utilizing two mitochondrial markers (16s and COI). We confirmed the monophyly of the Chromodorididae and its sister group relationship with the Actinocyclidae. We were also able to, for the first time, test generic monophyly by including more than one member of all 14 of the non-monotypic chromodorid genera. Every one of these 14 traditional chromodorid genera are either non-monophyletic, or render another genus paraphyletic. Additionally, both the monotypic genera Verconia and Diversidoris are nested within clades. Based on data shown here, there are three individual species and five clades limited to the eastern Pacific and Atlantic Oceans (or just one of these ocean regions), while the majority of chromodorid clades and species are strictly Indo-Pacific in distribution. We present a new classification of the chromodorid nudibranchs. We use molecular data to untangle evolutionary relationships and retain a historical connection to traditional systematics by using generic names attached to type species as clade names. PMID:22506002

  15. Congruence between molecular phylogeny and cuticular design in Echiniscoidea (Tardigrada, Heterotardigrada)

    DEFF Research Database (Denmark)

    Guil, Noemi; Jørgensen, Aslak; Giribet, Gonzalo

    2013-01-01

    Although morphological characters distinguishing echiniscid genera and species are well understood, the phylogenetic relationships of these taxa are not well established. We thus investigated the phylogeny of Echiniscidae, assessed the monophyly of Echiniscus, and explored the value of cuticular ...

  16. Phylogeny and systematics of the brake fern genus Pteris (Pteridaceae) based on molecular (plastid and nuclear) and morphological evidence.

    Science.gov (United States)

    Zhang, Liang; Zhang, Li-Bing

    2018-01-01

    The brake fern genus Pteris belongs to Pteridaceae subfamily Pteridoideae. It is one of the largest fern genera and has been estimated to contain 200-250 species distributed on all continents except Antarctica. Previous studies were either based on plastid data only or based on both plastid and nuclear data but the sampling was small. In addition, an infrageneric classification of Pteris based on morphological and molecular evidence has not been available yet. In the present study, based on molecular data of eight plastid markers and one nuclear marker (gapCp) of 256 accessions representing ca. 178 species of Pteris, we reconstruct a global phylogeny of Pteris. The 15 major clades identified earlier are recovered here and we further identified a new major clade. Our nuclear phylogeny recovered 11 of these 16 major clades, seven of which are strongly supported. The inclusion of Schizostege in Pteris is confirmed for the first time. Based on the newly reconstructed phylogeny and evidence from morphology, distribution and/or ecology, we classify Pteris into three subgenera: P. subg. Pteris, P. subg. Campteria, and P. subg. Platyzoma. The former two are further divided into three and 12 sections, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A molecular phylogeny of the Cephinae (Hymenoptera, Cephidae based on mtDNA COI gene: a test of traditional classification

    Directory of Open Access Journals (Sweden)

    Mahir Budak

    2011-09-01

    Full Text Available Cephinae is traditionally divided into three tribes and about 24 genera based on morphology and host utilization. There has been no study testing the monophyly of taxa under a strict phylogenetic criterion. A molecular phylogeny of Cephinae based on a total of 68 sequences of mtDNA COI gene, representing seven genera of Cephinae, is reconstructed to test the traditional limits and relationships of taxa. Monophyly of the traditional tribes is not supported. Monophyly of the genera are largely supported except for Pachycephus. A few host shift events are suggested based on phylogenetic relationships among taxa. These results indicate that a more robust phylogeny is required for a more plausible conclusion. We also report two species of Cephus for the first time from Turkey.

  18. Phylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data

    Science.gov (United States)

    Giribet, Gonzalo; Edgecombe, Gregory D.; Wheeler, Ward C.; Babbitt, Courtney

    2002-01-01

    The ordinal level phylogeny of the Arachnida and the suprafamilial level phylogeny of the Opiliones were studied on the basis of a combined analysis of 253 morphological characters, the complete sequence of the 18S rRNA gene, and the D3 region of the 28S rRNA gene. Molecular data were collected for 63 terminal taxa. Morphological data were collected for 35 exemplar taxa of Opiliones, but groundplans were applied to some of the remaining chelicerate groups. Six extinct terminals, including Paleozoic scorpions, are scored for morphological characters. The data were analyzed using strict parsimony for the morphological data matrix and via direct optimization for the molecular and combined data matrices. A sensitivity analysis of 15 parameter sets was undertaken, and character congruence was used as the optimality criterion to choose among competing hypotheses. The results obtained are unstable for the high-level chelicerate relationships (except for Tetrapulmonata, Pedipalpi, and Camarostomata), and the sister group of the Opiliones is not clearly established, although the monophyly of Dromopoda is supported under many parameter sets. However, the internal phylogeny of the Opiliones is robust to parameter choice and allows the discarding of previous hypotheses of opilionid phylogeny such as the "Cyphopalpatores" or "Palpatores." The topology obtained is congruent with the previous hypothesis of "Palpatores" paraphyly as follows: (Cyphophthalmi (Eupnoi (Dyspnoi + Laniatores))). Resolution within the Eupnoi, Dyspnoi, and Laniatores (the latter two united as Dyspnolaniatores nov.) is also stable to the superfamily level, permitting a new classification system for the Opiliones. c2002 The Willi Hennig Society.

  19. Molecular phylogeny of Pompilinae (Hymenoptera: Pompilidae): Evidence for rapid diversification and host shifts in spider wasps.

    Science.gov (United States)

    Rodriguez, Juanita; Pitts, James P; Florez, Jaime A; Bond, Jason E; von Dohlen, Carol D

    2016-01-01

    Pompilinae is one of the largest subfamilies of spider wasps (Pompilidae). Most pompilines are generalist spider predators at the family level, but some taxa exhibit ecological specificity (i.e., to spider-host guild). Here we present the first molecular phylogenetic analysis of Pompilinae, toward the aim of evaluating the monophyly of tribes and genera. We further test whether changes in the rate of diversification are associated with host-guild shifts. Molecular data were collected from five nuclear loci (28S, EF1-F2, LWRh, Wg, Pol2) for 76 taxa in 39 genera. Data were analyzed using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic results were compared with previous hypotheses of subfamilial and tribal classification, as well as generic relationships in the subfamily. The classification of Pompilus and Agenioideus is also discussed. A Bayesian relaxed molecular clock analysis was used to examine divergence times. Diversification rate-shift tests accounted for taxon-sampling bias using ML and BI approaches. Ancestral host family and host guild were reconstructed using MP and ML methods. Ancestral host guild for all Pompilinae, for the ancestor at the node where a diversification rate-shift was detected, and two more nodes back in time was inferred using BI. In the resulting phylogenies, Aporini was the only previously proposed monophyletic tribe. Several genera (e.g., Pompilus, Microphadnus and Schistonyx) are also not monophyletic. Dating analyses produced a well-supported chronogram consistent with topologies from BI and ML results. The BI ancestral host-use reconstruction inferred the use of spiders belonging to the guild "other hunters" (frequenting the ground and vegetation) as the ancestral state for Pompilinae. This guild had the highest probability for the ML reconstruction and was equivocal for the MP reconstruction; various switching events to other guilds occurred throughout the evolution of the group. The diversification of

  20. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences.

    Science.gov (United States)

    Poortvliet, Marloes; Olsen, Jeanine L; Croll, Donald A; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    2015-02-01

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders

  1. Molecular Phylogeny and Biogeography of the Amphidromous Fish Genus Dormitator Gill 1861 (Teleostei: Eleotridae)

    Science.gov (United States)

    Galván-Quesada, Sesángari; Doadrio, Ignacio; Alda, Fernando; Perdices, Anabel; Reina, Ruth Gisela; García Varela, Martín; Hernández, Natividad; Campos Mendoza, Antonio; Bermingham, Eldredge; Domínguez-Domínguez, Omar

    2016-01-01

    Species of the genus Dormitator, also known as sleepers, are representatives of the amphidromous freshwater fish fauna that inhabit the tropical and subtropical coastal environments of the Americas and Western Africa. Because of the distribution of this genus, it could be hypothesized that the evolutionary patterns in this genus, including a pair of geminate species across the Central American Isthmus, could be explained by vicariance following the break-up of Gondwana. However, the evolutionary history of this group has not been evaluated. We constructed a time-scaled molecular phylogeny of Dormitator using mitochondrial (Cytochrome b) and nuclear (Rhodopsin and β-actin) DNA sequence data to infer and date the cladogenetic events that drove the diversification of the genus and to relate them to the biogeographical history of Central America. Two divergent lineages of Dormitator were recovered: one that included all of the Pacific samples and another that included all of the eastern and western Atlantic samples. In contrast to the Pacific lineage, which showed no phylogeographic structure, the Atlantic lineage was geographically structured into four clades: Cameroon, Gulf of Mexico, West Cuba and Caribbean, showing evidence of potential cryptic species. The separation of the Pacific and Atlantic lineages was estimated to have occurred ~1 million years ago (Mya), whereas the four Atlantic clades showed mean times of divergence between 0.2 and 0.4 Mya. The splitting times of Dormitator between ocean basins are similar to those estimated for other geminate species pairs with shoreline estuarine preferences, which may indicate that the common evolutionary histories of the different clades are the result of isolation events associated with the closure of the Central American Isthmus and the subsequent climatic and oceanographic changes. PMID:27074006

  2. Knowledge environments representing molecular entities for the virtual physiological human.

    Science.gov (United States)

    Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M

    2008-09-13

    In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.

  3. Physiology, phylogeny, and LUCA

    Directory of Open Access Journals (Sweden)

    William F. Martin

    2016-11-01

    Full Text Available Genomes record their own history. But if we want to look all the way back to life’s beginnings some 4 billion years ago, the record of microbial evolution that is preserved in prokaryotic genomes is not easy to read. Microbiology has a lot in common with geology in that regard. Geologists know that plate tectonics and erosion have erased much of the geological record, with ancient rocks being truly rare. The same is true of microbes. Lateral gene transfer (LGT and sequence divergence have erased much of the evolutionary record that was once written in genomes, and it is not obvious which genes among sequenced genomes are genuinely ancient. Which genes trace to the last universal ancestor, LUCA? The classical approach has been to look for genes that are universally distributed. Another approach is to make all trees for all genes, and sift out the trees where signals have been overwritten by LGT. What is left ought to be ancient. If we do that, what do we find?

  4. Morphology, ultrastructure, molecular phylogeny, and autecology of Euplotes elegans Kahl, 1932 (Hypotrichida; Euplotidae) isolated from the anoxic Mariager Fjord, Denmark.

    Science.gov (United States)

    Julian Schwarz, M V; Zuendorf, Alexandra; Stoeck, Thorsten

    2007-01-01

    The morphology, autecology, and molecular phylogeny of an euryhaline Euplotes isolate collected from the anoxic water column of the Mariager Fjord in Denmark were investigated. The isolate matches the original description of Euplotes elegans Kahl, 1932 very well. However, its dorsal silverline system is clearly distinct from the redescription of this species by Tuffrau. Thus, a neotypification is proposed for E. elegans Kahl, 1932. The oval-shaped cell has a mean size of 107 x 51 microm and is characterized by 9.4 dorsolateral kineties, seven prominent dorsal ridges, large elongated ampullae, which encircle the dorsal kinetids, 18 kinetids in the middorsal row, nine frontoventral cirri, five transversal cirri, and three caudal cirri (two right caudal cirri and one left marginal cirrus). The dorsal silverline system is of the double type with the narrow polygons located on the right side of the dorsal kinetids. The ecological tolerances of this species to pH, salinity, temperature, and oxygen match the ambient environmental conditions of the sampling site. Molecular phylogeny was studied using small subunit rRNA (SSU rRNA) gene sequences. The molecular data cluster E. elegans with Euplotes raikovi, a member of the Euplotopsis group. The data suggest that the E. elegans-E. raikovi clade represents an isolated and deep branch at the base of the Euplotes tree.

  5. Molecular and physiological manifestations and measurement of aging in humans.

    Science.gov (United States)

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina

    Czech Academy of Sciences Publication Activity Database

    Yurchenko, V.; Votýpka, Jan; Tesařová, Martina; Klepetková, H.; Kraeva, N.; Jirků, Milan; Lukeš, Julius

    2014-01-01

    Roč. 61, č. 2 (2014), s. 97-112 ISSN 0015-5683 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Kinetoplastida * Trypanosomatidae * monoxenous kientoplastids * Leishmaniinae * molecular taxonomy * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.147, year: 2014

  7. Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates

    Czech Academy of Sciences Publication Activity Database

    Doležalová, J.; Vallo, Peter; Petrželková, Klára Judita; Foitová, I.; Nurcahyo, W.; Mudakikwa, A.; Hashimoto, C.; Jirků, M.; Lukeš, J.; Scholz, T.; Modrý, D.

    2015-01-01

    Roč. 142, č. 10 (2015), s. 1278-1289 ISSN 0031-1820 R&D Projects: GA ČR GA524/06/0264; GA ČR GA206/09/0927 Institutional support: RVO:68081766 Keywords : Bertiella * Anoplocephala * phylogeny * primates * zoonotic potential Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.031, year: 2015

  8. Molecular Phylogeny Of Microbes In The Deep-Sea Sediments From Tropical West Pacific Warm Pool

    Science.gov (United States)

    Wang, F.; Xiao, X.; Wang, P.

    2005-12-01

    The presence and phylogeny of bacteria and archaea in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1cm-, 3cm-, 6cm-, 10cm-, 12cm- layer) of the 12-cm sediment core of WP-0 were checked and compared. The microbial diversity in the five deep-sea sediments were similar as revealed by denaturing gradient gel electrophoresis, and all of them contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. The composition of methylotrophs including methanotrophs, sulfate reducing bacteria in the WP-0 sediment core were further investigated by molecular marker based analysis of mxaF, pmoA, dsrAB, specific anoxic methane oxidation archaeal and sulfate reducing bacterial 16S rRNA genes. From MxaF amino acid sequence analysis, it was demonstrated that microbes belonging to α - Proteobacteria most related to Hyphomicrobium and Methylobacterium were dominant aerobic methylotrophs in this deep-sea sediment; and small percentage of type II methanotrophs affiliating closest to Methylocystis and Methylosinus were also detected in this environment. mxaF quantitative PCR results showed that in the west Pacific WP sediment there existed around 3× 10 4-5 methylotrophs per gram sediment, 10-100 times more than that in samples collected from several other deep-sea Pacific sediment sample, but about 10 times less than that present in samples collected from rice and flower garden soil. Diverse groups of novel archaea (named as WPA), not belonging to any known archaeal lineages were checked out. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. Possible sulfate reducing bacterial related with Desulfotomaculum, Desulfacinum, Desulfomonile and Desulfanuticus were also detected in our study. The vertical distributions of WPA

  9. Physiological response, molecular analysis and water use efficiency ...

    African Journals Online (AJOL)

    With a view to study the effects of irrigation scheduling on the water use efficiency and physiological response and molecular basis of maize hybrids of different maturity groups, a field experiment was conducted at Water Management Research Center (WMRC), Belvatagi, University of Agricultural Sciences, Dharwad, India ...

  10. Molecular characterization and phylogeny of four new species of the genus Trichonympha (Parabasalia, Trichonymphea) from lower termite hindguts.

    Science.gov (United States)

    Boscaro, Vittorio; James, Erick R; Fiorito, Rebecca; Hehenberger, Elisabeth; Karnkowska, Anna; Del Campo, Javier; Kolisko, Martin; Irwin, Nicholas A T; Mathur, Varsha; Scheffrahn, Rudolf H; Keeling, Patrick J

    2017-09-01

    Members of the genus Trichonympha are among the most well-known, recognizable and widely distributed parabasalian symbionts of lower termites and the wood-eating cockroach species of the genus Cryptocercus. Nevertheless, the species diversity of this genus is largely unknown. Molecular data have shown that the superficial morphological similarities traditionally used to identify species are inadequate, and have challenged the view that the same species of the genus Trichonympha can occur in many different host species. Ambiguities in the literature, uncertainty in identification of both symbiont and host, and incomplete samplings are limiting our understanding of the systematics, ecology and evolution of this taxon. Here we describe four closely related novel species of the genus Trichonympha collected from South American and Australian lower termites: Trichonympha hueyi sp. nov. from Rugitermes laticollis, Trichonympha deweyi sp. nov. from Glyptotermes brevicornis, Trichonympha louiei sp. nov. from Calcaritermes temnocephalus and Trichonympha webbyae sp. nov. from Rugitermes bicolor. We provide molecular barcodes to identify both the symbionts and their hosts, and infer the phylogeny of the genus Trichonympha based on small subunit rRNA gene sequences. The analysis confirms the considerable divergence of symbionts of members of the genus Cryptocercus, and shows that the two clades of the genus Trichonympha harboured by termites reflect only in part the phylogeny of their hosts.

  11. Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates

    Czech Academy of Sciences Publication Activity Database

    Doležalová, J.; Vallo, P.; Petrželková, Klára Judita; Foitová, I.; Nurcahyo, W.; Mudakikwa, A.; Hashimoto, C.; Jirků, Milan; Lukeš, Julius; Scholz, Tomáš; Modrý, David

    2015-01-01

    Roč. 142, č. 10 (2015), s. 1278-1289 ISSN 0031-1820 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GA206/09/0927 Institutional support: RVO:60077344 Keywords : Bertiella * Anoplocephala * phylogeny * primates * zoonotic potential Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.031, year: 2015

  12. Testing mitochondrial sequences and anonymous nuclear markers for phylogeny reconstruction in a rapidly radiating group: molecular systematics of the Delphininae (Cetacea: Odontoceti: Delphinidae

    Directory of Open Access Journals (Sweden)

    Kingston Sarah E

    2009-10-01

    Full Text Available Abstract Background Many molecular phylogenetic analyses rely on DNA sequence data obtained from single or multiple loci, particularly mitochondrial DNA loci. However, phylogenies for taxa that have undergone recent, rapid radiation events often remain unresolved. Alternative methodologies for discerning evolutionary relationships under these conditions are desirable. The dolphin subfamily Delphininae is a group that has likely resulted from a recent and rapid radiation. Despite several efforts, the evolutionary relationships among the species in the subfamily remain unclear. Results Here, we compare a phylogeny estimated using mitochondrial DNA (mtDNA control region sequences to a multi-locus phylogeny inferred from 418 polymorphic genomic markers obtained from amplified fragment length polymorphism (AFLP analysis. The two sets of phylogenies are largely incongruent, primarily because the mtDNA tree provides very poor resolving power; very few species' nodes in the tree are supported by bootstrap resampling. The AFLP phylogeny is considerably better resolved and more congruent with relationships inferred from morphological data. Both phylogenies support paraphyly for the genera Stenella and Tursiops. The AFLP data indicate a close relationship between the two spotted dolphin species and recent ancestry between Stenella clymene and S. longirostris. The placement of the Lagenodelphis hosei lineage is ambiguous: phenetic analysis of the AFLP data is consistent with morphological expectations but the phylogenetic analysis is not. Conclusion For closely related, recently diverged taxa, a multi-locus genome-wide survey is likely the most comprehensive approach currently available for phylogenetic inference.

  13. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA

    Directory of Open Access Journals (Sweden)

    HANIF KHADEMI

    2016-04-01

    Full Text Available Abstract. Khademi H, Mehregan I, Assadi M, Nejadsatari T, Zarre S. 2015. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA. Biodiversitas 17: 16-23. This study was carried out on the Acer monspessulanum complex growing wild in Iran. Internal transcribed spacer (ITS sequences for 75 samples representing five different subspecies of Acer monspessulanum were analyzed. Beside this, 86 previously published ITS sequences from GenBank were used to test the monophyly of the complex worldwide. Phylogenetic analyses were conducted using Bayesian inference and maximum parsimony. The results indicate that most samples of A. monspessulanum species from Iran were part of a monophyletic clade with 8 samples of A. ibericum from Georgia, A. hyrcanum from Iran and one of A. sempervirens from Greece (PP= 1; BS= 79%. Our results indicate that use of morphological characteristics coupled with molecular data will be most effective.

  14. Complex phylogenetic placement of ilex species (aquifoliaceae): a case study of molecular phylogeny

    International Nuclear Information System (INIS)

    Yi, F.; Sun, L.; Xiao, P.G.; Hao, D.C.

    2017-01-01

    To investigate the phylogenetic relationships among Ilex species distributed in China, we analyzed two alignments including 4,698 characters corresponding to six plastid sequences (matK, rbcL, atpB-rbcL, trnL-F, psbA-trnH, and rpl32-trnL) and 1,748 characters corresponding to two nuclear sequences (ITS and nepGS). Using different partitioning strategies and approaches (i.e., Bayesian inference, maximum likelihood, and maximum parsimony) for phylogeny reconstruction, different topologies and clade supports were determined. A total of 18 Ilex species was divided into two major groups (group I and II) in both plastid and nuclear phylogenies with some incongruences. Potential hybridization events may account, in part, for those phylogenetic uncertainties. The analyses, together with previously identified sequences, indicated that all 18 species were recovered within Eurasia or Asia/North America groups based on plastid data. Meanwhile, the species in group II in the nuclear phylogeny were placed in the Aquifolium clade, as inferred from traditional classification, whereas the species in group I belonged to several other clades. The divergence time of most of the 18 Ilex species was estimated to be not more than 10 million years ago. Based on the results of this study, we concluded that paleogeographical events and past climate changes during the same period might have played important roles in these diversifications. (author)

  15. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa.

    Science.gov (United States)

    Wiens, John J; Kuczynski, Caitlin A; Townsend, Ted; Reeder, Tod W; Mulcahy, Daniel G; Sites, Jack W

    2010-12-01

    Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.

  16. Molecular Phylogeny and Dating of Forsythieae (Oleaceae) Provide Insight into the Miocene History of Eurasian Temperate Shrubs.

    Science.gov (United States)

    Ha, Young-Ho; Kim, Changkyun; Choi, Kyung; Kim, Joo-Hwan

    2018-01-01

    Tribe Forsythieae (Oleaceae), containing two genera ( Abeliophyllum and Forsythia ) and 13 species, is economically important plants used as ornamentals and in traditional medicine. This tribe species occur primarily in mountainous regions of Eurasia with the highest species diversity in East Asia. Here, we examine 11 complete chloroplast genome and nuclear cycloidea2 ( cyc2 ) DNA sequences of 10 Forsythia species and Abeliophyllum distichum using Illumina platform to provide the phylogeny and biogeographic history of the tribe. The chloroplast genomes of the 11 Forsythieae species are highly conserved, except for a deletion of about 400 bp in the accD - psaI region detected only in Abeliophyllum . Within Forsythieae species, analysis of repetitive sequences revealed a total of 51 repeats comprising 26 forward repeats, 22 palindromic repeats, and 3 reverse repeats. Of those, 19 repeats were common and 32 were unique to one or more Forsythieae species. Our phylogenetic analyses supported the monophyly of Forsythia and its sister group is Abeliophyllum using the concatenated dataset of 78 chloroplast genes. Within Forsythia , Forsythia likiangensis and F. giraldiana were basal lineages followed by F. europaea ; the three species are characterized by minutely serrate or entire leaf margins. The remaining species, which are distributed in East Asia, formed two major clades. One clade included F. ovata , F. velutina , and F. japonica ; they are morphologically supported by broadly ovate leaves. Another clade of F. suspensa , F. saxatilis , F. viridissima , and F. koreana characterized by lanceolate leaves (except F. suspensa which have broad ovate leaves). Although cyc2 phylogeny is largely congruent to chloroplast genome phylogeny, we find the discordance between two phylogenies in the position of F. ovata suggesting that introgression of the chloroplast genome from one species into the nuclear background of another by interspecific hybridization in East Asian

  17. Molecular Phylogeny and Dating of Forsythieae (Oleaceae Provide Insight into the Miocene History of Eurasian Temperate Shrubs

    Directory of Open Access Journals (Sweden)

    Young-Ho Ha

    2018-02-01

    Full Text Available Tribe Forsythieae (Oleaceae, containing two genera (Abeliophyllum and Forsythia and 13 species, is economically important plants used as ornamentals and in traditional medicine. This tribe species occur primarily in mountainous regions of Eurasia with the highest species diversity in East Asia. Here, we examine 11 complete chloroplast genome and nuclear cycloidea2 (cyc2 DNA sequences of 10 Forsythia species and Abeliophyllum distichum using Illumina platform to provide the phylogeny and biogeographic history of the tribe. The chloroplast genomes of the 11 Forsythieae species are highly conserved, except for a deletion of about 400 bp in the accD–psaI region detected only in Abeliophyllum. Within Forsythieae species, analysis of repetitive sequences revealed a total of 51 repeats comprising 26 forward repeats, 22 palindromic repeats, and 3 reverse repeats. Of those, 19 repeats were common and 32 were unique to one or more Forsythieae species. Our phylogenetic analyses supported the monophyly of Forsythia and its sister group is Abeliophyllum using the concatenated dataset of 78 chloroplast genes. Within Forsythia, Forsythia likiangensis and F. giraldiana were basal lineages followed by F. europaea; the three species are characterized by minutely serrate or entire leaf margins. The remaining species, which are distributed in East Asia, formed two major clades. One clade included F. ovata, F. velutina, and F. japonica; they are morphologically supported by broadly ovate leaves. Another clade of F. suspensa, F. saxatilis, F. viridissima, and F. koreana characterized by lanceolate leaves (except F. suspensa which have broad ovate leaves. Although cyc2 phylogeny is largely congruent to chloroplast genome phylogeny, we find the discordance between two phylogenies in the position of F. ovata suggesting that introgression of the chloroplast genome from one species into the nuclear background of another by interspecific hybridization in East Asian

  18. Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny.

    Science.gov (United States)

    Shibusawa, M; Nishibori, M; Nishida-Umehara, C; Tsudzuki, M; Masabanda, J; Griffin, D K; Matsuda, Y

    2004-01-01

    To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented. Copyright 2004 S. Karger AG, Basel

  19. Are characiform fishes Gondwanan in origin? Insights from a time-scaled molecular phylogeny of the Citharinoidei (Ostariophysi: Characiformes.

    Directory of Open Access Journals (Sweden)

    Jairo Arroyave

    Full Text Available Fishes of the order Characiformes are a diverse and economically important teleost clade whose extant members are found exclusively in African and Neotropical freshwaters. Although their transatlantic distribution has been primarily attributed to the Early Cretaceous fragmentation of western Gondwana, vicariance has not been tested with temporal information beyond that contained in their fragmentary fossil record and a recent time-scaled phylogeny focused on the African family Alestidae. Because members of the suborder Citharinoidei constitute the sister lineage to the entire remaining Afro-Neotropical characiform radiation, we inferred a time-calibrated molecular phylogeny of citharinoids using a popular Bayesian approach to molecular dating in order to assess the adequacy of current vicariance hypotheses and shed light on the early biogeographic history of characiform fishes. Given that the only comprehensive phylogenetic treatment of the Citharinoidei has been a morphology-based analysis published over three decades ago, the present study also provided an opportunity to further investigate citharinoid relationships and update the evolutionary framework that has laid the foundations for the current classification of the group. The inferred chronogram is robust to changes in calibration priors and suggests that the origins of citharinoids date back to the Turonian (ca 90 Ma of the Late Cretaceous. Most modern citharinoid genera, however, appear to have originated and diversified much more recently, mainly during the Miocene. By reconciling molecular-clock- with fossil-based estimates for the origins of the Characiformes, our results provide further support for the hypothesis that attributes the disjunct distribution of the order to the opening of the South Atlantic Ocean. The striking overlap in tempo of diversification and biogeographic patterns between citharinoids and the African-endemic family Alestidae suggests that their evolutionary

  20. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats

    KAUST Repository

    Hundt, Peter J.

    2014-01-01

    The combtooth blennies (f. Blenniidae) is a diverse family of primarily marine fishes with approximately 387 species that inhabit subtidal, intertidal, supralittoral habitats in tropical and warm temperate regions throughout the world. The Blenniidae has typically been divided into six groups based on morphological characters: Blenniini, Nemophini, Omobranchini, Phenablenniini, Parablenniini, and Salariini. There is, however, considerable debate over the validity of these groups and their relationships. Since little is known about the relationships in this group, other aspects of their evolutionary history, such as habitat evolution and remain unexplored. Herein, we use Bayesian and maximum likelihood analyses of four nuclear loci (ENC1, myh6, ptr, and tbr1) from 102 species, representing 41 genera, to resolve the phylogeny of the Blenniidae, determine the validity of the previously recognized groupings, and explore the evolution of habitat association using ancestral state reconstruction. Bayesian and maximum likelihood analyses of the resulting 3100. bp of DNA sequence produced nearly identical topologies, and identified many well-supported clades. Of these clades, Nemophini was the only traditionally recognized group strongly supported as monophyletic. This highly resolved and thoroughly sampled blenniid phylogeny provides strong evidence that the traditional rank-based classification does not adequately delimit monophyletic groups with the Blenniidae. This phylogeny redefines the taxonomy of the group and supports the use of 13 unranked clades for the classification of blenniids. Ancestral state reconstructions identified four independent invasions of intertidal habitats within the Blenniidae, and subsequent invasions into supralittoral and freshwater habitats from these groups. The independent invasions of intertidal habitats are likely to have played an important role in the evolutionary history of blennies. © 2013 Elsevier Inc.

  1. Molecular phylogeny of Systellognatha (Plecoptera: Arctoperlaria) inferred from mitochondrial genome sequences.

    Science.gov (United States)

    Chen, Zhi-Teng; Zhao, Meng-Yuan; Xu, Cheng; Du, Yu-Zhou

    2018-05-01

    The infraorder Systellognatha is the most species-rich clade in the insect order Plecoptera and includes six families in two superfamilies: Pteronarcyoidea (Pteronarcyidae, Peltoperlidae, and Styloperlidae) and Perloidea (Perlidae, Perlodidae, and Chloroperlidae). To resolve the debatable phylogeny of Systellognatha, we carried out the first mitochondrial phylogenetic analysis covering all the six families, including three newly sequenced mitogenomes from two families (Perlodidae and Peltoperlidae) and 15 published mitogenomes. The three newly reported mitogenomes share conserved mitogenomic features with other sequenced stoneflies. For phylogenetic analyses, we assembled five datasets with two inference methods to assess their influence on topology and nodal support within Systellognatha. The results indicated that inclusion of the third codon positions of PCGs, exclusion of rRNA genes, the use of nucleotide datasets and Bayesian inference could improve the phylogenetic reconstruction of Systellognatha. The monophyly of Perloidea was supported in the mitochondrial phylogeny, but Pteronarcyoidea was recovered as paraphyletic and remained controversial. In this mitochondrial phylogenetic study, the relationships within Systellognatha were recovered as (((Perlidae + (Perlodidae + Chloroperlidae)) + (Pteronarcyidae + Styloperlidae)) + Peltoperlidae). Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A Molecular Phylogeny of the Lichen Genus Lecidella Focusing on Species from Mainland China.

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    Full Text Available The phylogeny of Lecidella species is studied, based on a 7-locus data set using ML and Bayesian analyses. Phylogenetic relationships among 43 individuals representing 11 Lecidella species, mainly from mainland China, were included in the analyses and phenotypical characters studied and mapped onto the phylogeny. The Lecidella species fall into three major clades, which are proposed here as three informal groups-Lecidella stigmatea group, L. elaeochroma group and L. enteroleucella group, each of them strongly supported. Our phylogenetic analyses support traditional species delimitation based on morphological and chemical traits in most but not all cases. Individuals considered as belonging to the same species based on phenotypic characters were found to be paraphyletic, indicating that cryptic species might be hidden under these names (e.g. L. carpathica and L. effugiens. Potentially undescribed species were found within the phenotypically circumscribed species L. elaeochroma and L. stigmatea. Additional sampling across a broader taxonomic and geographic scale will be crucial to fully resolving the taxonomy in this cosmopolitan genus.

  3. A molecular phylogeny of Amazona: implications for Neotropical parrot biogeography, taxonomy, and conservation.

    Science.gov (United States)

    Russello, Michael A; Amato, George

    2004-02-01

    Amazon parrots (Genus Amazona) are among the most recognizable and imperiled of all birds. Several hypotheses regarding the evolutionary history of Amazona are investigated using a combined phylogenetic analysis of DNA sequence data from six partitions including mitochondrial (COI, 12S, and 16S) and nuclear (beta-fibint7, RP40, and TROP) regions. The results demonstrate that Amazona is not monophyletic with respect to the placement of the Yellow-faced parrot (Amazona xanthops), as first implied by. In addition, the analysis corroborates previous studies suggesting a Neotropical short-tailed parrot genus as sister to Amazona. At a finer level, the phylogeny resolves the Greater Antillean endemic species as constituting a monophyletic group, including the Central American Amazona albifrons, while further revealing a paraphyletic history for the extant Amazon species of the Lesser Antilles. The reconstructed phylogeny provides further insights into the mainland sources of the Antillean Amazona, reveals areas of taxonomic uncertainty within the genus, and presents historical information that may be included in conservation priority-setting for Amazon parrots.

  4. Molecular phylogeny of Indo-Pacific carpenter ants (Hymenoptera: Formicidae, Camponotus) reveals waves of dispersal and colonization from diverse source areas

    Czech Academy of Sciences Publication Activity Database

    Clouse, R. M.; Janda, Milan; Blanchard, B.; Sharma, P.; Hoffmann, B. D.; Andersen, A. N.; Czekanski-Moir, J. E.; Krushelnycky, P.; Rabeling, C.; Wilson, E. O.; Economo, E. P.; Sarnat, E. M.; General, D. M.; Alpert, G. D.; Wheeler, W. C.

    2015-01-01

    Roč. 31, č. 4 (2015), s. 424-437 ISSN 0748-3007 R&D Projects: GA ČR GAP505/12/2467 Grant - others:Marie Curie Felloswhip(CZ) PIOFGA2009-25448 Institutional support: RVO:60077344 Keywords : Hymenoptera * Camponotus * molecular phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.952, year: 2015 http://onlinelibrary.wiley.com/doi/10.1111/cla.12099/epdf

  5. Molecular phylogeny and character evolution of the chthamaloid barnacles (Cirripedia:Thoracica)

    DEFF Research Database (Denmark)

    Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A.

    2012-01-01

    surrounded by whorls of small imbricating plates; but this hypothesis has never been subjected to a rigorous phylogenetic test. Here we used multilocus sequence data and extensive taxon sampling to build a comprehensive phylogeny of the Chthamaloidea as a basis for understanding their morphological evolution......The Chthamaloidea (Balanomorpha) present the most plesiomorphic characters in shell plates and cirri, mouthparts, and oral cone within the acorn barnacles (Thoracica: Sessilia). Due to their importance in understanding both the origin and diversification of the Balanomorpha, the evolution...... of the Chthamaloidea has been debated since Darwin's seminal monographs. Theories of morphological and ontogenetic evolution suggest that the group could have evolved multiple times from pedunculated relatives and that shell plate number diminished gradually (8¿6¿4) from an ancestral state with eight wall plates...

  6. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    DEFF Research Database (Denmark)

    Kronauer, Daniel J C; Schöning, Caspar; Vilhelmsen, Lars

    2007-01-01

    in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants). Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions...... in foraging niche and associated morphological adaptations. RESULTS: Underground foraging is basal and gave rise to leaf-litter foraging. Leaf-litter foraging in turn gave rise to two derived conditions: true surface foraging (the driver ants) and a reversal to subterranean foraging (a clade with most......BACKGROUND: Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma) forage...

  7. Diversification rates, host plant shifts and an updated molecular phylogeny of Andean Eois moths (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Patrick Strutzenberger

    Full Text Available Eois is one of the best-investigated genera of tropical moths. Its close association with Piper plants has inspired numerous studies on life histories, phylogeny and evolutionary biology. This study provides an updated view on phylogeny, host plant use and temporal patterns of speciation in Eois. Using sequence data (2776 bp from one mitochondrial (COI and one nuclear gene (Ef1-alpha for 221 Eois species, we confirm and reinforce previous findings regarding temporal patterns of diversification. Deep diversification within Andean Eois took place in the Miocene followed by a sustained high rate of diversification until the Pleistocene when a pronounced slowdown of speciation is evident. In South America, Eois diversification is very likely to be primarily driven by the Andean uplift which occurred concurrently with the entire evolutionary history of Eois. A massively expanded dataset enabled an in-depth look into the phylogenetic signal contained in host plant usage. This revealed several independent shifts from Piper to other host plant genera and families. Seven shifts to Peperomia, the sister genus of Piper were detected, indicating that the shift to Peperomia was an easy one compared to the singular shifts to the Chloranthaceae, Siparunaceae and the Piperacean genus Manekia. The potential for close co-evolution of Eois with Piper host plants is therefore bound to be limited to smaller subsets within Neotropical Eois instead of a frequently proposed genus-wide co-evolutionary scenario. In regards to Eois systematics we confirm the monophyly of Neotropical Eois in relation to their Old World counterparts. A tentative biogeographical hypothesis is presented suggesting that Eois originated in tropical Asia and subsequently colonized the Neotropics and Africa. Within Neotropical Eois we were able to identify the existence of six clades not recognized in previous studies and confirm and reinforce the monophyly of all 9 previously delimited

  8. Molecular Phylogeny of the Small Ermine Moth Genus Yponomeuta (Lepidoptera, Yponomeutidae) in the Palaearctic

    Science.gov (United States)

    Turner, Hubert; Lieshout, Niek; Van Ginkel, Wil E.; Menken, Steph B. J.

    2010-01-01

    Background The small ermine moth genus Yponomeuta (Lepidoptera, Yponomeutidae) contains 76 species that are specialist feeders on hosts from Celastraceae, Rosaceae, Salicaceae, and several other plant families. The genus is a model for studies in the evolution of phytophagous insects and their host-plant associations. Here, we reconstruct the phylogeny to provide a solid framework for these studies, and to obtain insight into the history of host-plant use and the biogeography of the genus. Methodology/Principal Findings DNA sequences from an internal transcribed spacer region (ITS-1) and from the 16S rDNA (16S) and cytochrome oxidase (COII) mitochondrial genes were collected from 20–23 (depending on gene) species and two outgroup taxa to reconstruct the phylogeny of the Palaearctic members of this genus. Sequences were analysed using three different phylogenetic methods (parsimony, likelihood, and Bayesian inference). Conclusions/Significance Roughly the same patterns are retrieved irrespective of the method used, and they are similar among the three genes. Monophyly is well supported for a clade consisting of the Japanese (but not the Dutch) population of Yponomeuta sedellus and Y. yanagawanus, a Y. kanaiellus–polystictus clade, and a Rosaceae-feeding, western Palaearctic clade (Y. cagnagellus–irrorellus clade). Within these clades, relationships are less well supported, and the patterns between the different gene trees are not so similar. The position of the remaining taxa is also variable among the gene trees and rather weakly supported. The phylogenetic information was used to elucidate patterns of biogeography and resource use. In the Palaearctic, the genus most likely originated in the Far East, feeding on Celastraceae, dispersing to the West concomitant with a shift to Rosaceae and further to Salicaceae. The association of Y. cagnagellus with Euonymus europaeus (Celastraceae), however, is a reversal. The only oligophagous species, Y. padellus, belongs

  9. Cellular and molecular specificity of pituitary gland physiology.

    Science.gov (United States)

    Perez-Castro, Carolina; Renner, Ulrich; Haedo, Mariana R; Stalla, Gunter K; Arzt, Eduardo

    2012-01-01

    The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.

  10. Lignin biodegradation: experimental evidence, molecular, biochemical and physiological mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Monties, B

    1985-01-01

    A critical review is presented of English, French and some German language literature, mainly from 1983 onwards. It examines experimental evidence on the behaviour as barriers to biodegradation of lignins and phenolic polymers such as tannins and suberins. The different molecular mechanisms of lignolysis by fungi (mainly), actinomycetes and bacteria are examined. A new biochemical approach to the physiological mechanism of regulation of lignolytic activities is suggested based on the discoveries of ligniolytic enzymes: effects of nitrogen, oxygen and substrate are discussed. It is concluded that a better knowledge of the structure and reactivity of phenolic barriers is needed in order to control the process of lignolysis.

  11. Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae).

    Science.gov (United States)

    Hedin, M C

    2001-02-01

    The spider genus Hypochilus is currently restricted to cool, moist microhabitats in three widely separated montane regions of North America, providing an opportunity to study both deep (i.e., continental level) and shallow (within montane region) biogeographic history. Members of the genus also retain many plesiomorphic morphological characteristics, inviting the study of comparative rates of morphological evolution. In this paper, Hypochilus phylogeny and associated evolutionary problems are addressed using both new molecular (28S nDNA and CO1 mtDNA) and previously published (K. M. Catley, 1994, Am. Mus. Nov. 3088, 1-27) morphological data. Although the molecular data provide limited resolution of root placement within Hypochilus, most analyses are at least consistent with morphology-supported montane relationships of (Rockies (California, Appalachian)). The monophyly of Hypochilus species distributed in the California mountains is ambiguous, with several analyses indicating that this fauna may be paraphyletic with respect to a monophyletic Appalachian lineage. The montane regions differ in consistent ways in depths of both mitochondrial and nuclear phylogenetic divergence. Molecular clock analyses, in combination with arthropod-based mtDNA rate calibrations, suggest that the regional faunas are of different ages and that speciation in all faunas likely occurred prior to the Pleistocene. Limited intraspecific sampling reveals extraordinarily high levels of mtDNA cytochrome oxidase sequence divergence. These extreme divergences are most consistent with morphological stasis at the species level, despite preliminary evidence that Hypochilus taxa are characterized by fragmented population structures. Copyright 2001 Academic Press.

  12. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphyllidae; clade V

    Directory of Open Access Journals (Sweden)

    Katrina S. Luzon

    2017-12-01

    Full Text Available Background The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups that await phylogenetic resolution. Multiple genetic markers were used to construct the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E. glabrescens, E. paraancora, E. paradivisa, and E. yaeyamaensis. The phylogeny guided the inferences on the contributions of the colony structure, polyp morphology, and life history traits to the systematics of the largest genus in Euphyllidae (clade V and, by extension, to the rest of clade V. Results Analyses of cytochrome oxidase 1 (cox1, cytochrome b (cytb, and β-tubulin genes of 36 colonies representing Euphyllia and a confamilial species, Galaxea fascicularis, reveal two distinct groups in the Euphyllia that originated from different ancestors. Euphyllia glabrescens formed a separate group. Euphyllia ancora, E. divisa, E. paraancora, E. paradivisa, and E. yaeyamaensis clustered together and diverged from the same ancestor as G. fascicularis. The 3′-end of the cox1 gene of Euphyllia was able to distinguish morphospecies. Discussion Species of Euphyllia were traditionally classified into two subgenera, Euphyllia and Fimbriaphyllia, which represented a dichotomy on colony structure. The paraphyletic groups retained the original members of the subgenera providing a strong basis for recognizing Fimbriaphyllia as a genus. However, colony structure was found to be a convergent trait between Euphyllia and Fimbriaphyllia, while polyp shape and length, sexuality, and reproductive mode defined the

  14. Molecular phylogeny and taxonomic revision of the genus Wittrockiella (Pithophoraceae, Cladophorales), including the descriptions of W. australis sp. nov. and W. zosterae sp. nov.

    Science.gov (United States)

    Boedeker, Christian; O'Kelly, Charles J; West, John A; Hanyuda, Takeaki; Neale, Adele; Wakana, Isamu; Wilcox, Mike D; Karsten, Ulf; Zuccarello, Giuseppe C

    2017-06-01

    Wittrockiella is a small genus of filamentous green algae that occurs in habitats with reduced or fluctuating salinities. Many aspects of the basic biology of these algae are still unknown and the phylogenetic relationships within the genus have not been fully explored. We provide a phylogeny based on three ribosomal markers (ITS, LSU, and SSU rDNA) of the genus, including broad intraspecific sampling for W. lyallii and W. salina, recommendations for the use of existing names are made, and highlight aspects of their physiology and life cycle. Molecular data indicate that there are five species of Wittrockiella. Two new species, W. australis and W. zosterae, are described, both are endophytes. Although W. lyallii and W. salina can be identified morphologically, there are no diagnostic morphological characters to distinguish between W. amphibia, W. australis, and W. zosterae. A range of low molecular weight carbohydrates were analyzed but proved to not be taxonomically informative. The distribution range of W. salina is extended to the Northern Hemisphere as this species has been found in brackish lakes in Japan. Furthermore, it is shown that there are no grounds to recognize W. salina var. kraftii, which was described as an endemic variety from a freshwater habitat on Lord Howe Island, Australia. Culture experiments indicate that W. australis has a preference for growth in lower salinities over full seawater. For W. amphibia and W. zosterae, sexual reproduction is documented, and the split of these species is possibly attributable to polyploidization. © 2017 Phycological Society of America.

  15. Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci.

    Directory of Open Access Journals (Sweden)

    Nancai Pei

    Full Text Available Elucidating the ecological mechanisms underlying community assembly in subtropical forests remains a central challenge for ecologists. The assembly of species into communities can be due to interspecific differences in habitat associations, and there is increasing evidence that these associations may have an underlying phylogenetic structure in contemporary terrestrial communities. In other words, by examining the degree to which closely related species prefer similar habitats and the degree to which they co-occur, ecologists are able to infer the mechanisms underlying community assembly. Here we implement this approach in a diverse subtropical tree community in China using a long-term forest dynamics plot and a molecular phylogeny generated from three DNA barcode loci. We find that there is phylogenetic signal in plant-habitat associations (i.e. closely related species tend to prefer similar habitats and that patterns of co-occurrence within habitats are typically non-random with respect to phylogeny. In particular, we found phylogenetic clustering in valley and low-slope habitats in this forest, indicating a filtering of lineages plays a dominant role in structuring communities in these habitats and we found evidence of phylogenetic overdispersion in high-slope, ridge-top and high-gully habitats, indicating that distantly related species tended to co-occur in these high elevation habitats and that lineage filtering is less important in structuring these communities. Thus we infer that non-neutral niche-based processes acting upon evolutionarily conserved habitat preferences explain the assembly of local scale communities in the forest studied.

  16. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  17. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits

    Directory of Open Access Journals (Sweden)

    Kiontke Karin C

    2011-11-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans is a major laboratory model in biology. Only ten Caenorhabditis species were available in culture at the onset of this study. Many of them, like C. elegans, were mostly isolated from artificial compost heaps, and their more natural habitat was unknown. Results Caenorhabditis nematodes were found to be proliferating in rotten fruits, flowers and stems. By collecting a large worldwide set of such samples, 16 new Caenorhabditis species were discovered. We performed mating tests to establish biological species status and found some instances of semi-fertile or sterile hybrid progeny. We established barcodes for all species using ITS2 rDNA sequences. By obtaining sequence data for two rRNA and nine protein-coding genes, we determined the likely phylogenetic relationships among the 26 species in culture. The new species are part of two well-resolved sister clades that we call the Elegans super-group and the Drosophilae super-group. We further scored phenotypic characters such as reproductive mode, mating behavior and male tail morphology, and discuss their congruence with the phylogeny. A small space between rays 2 and 3 evolved once in the stem species of the Elegans super-group; a narrow fan and spiral copulation evolved once in the stem species of C. angaria, C. sp. 8 and C. sp. 12. Several other character changes occurred convergently. For example, hermaphroditism evolved three times independently in C. elegans, C. briggsae and C. sp. 11. Several species can co-occur in the same location or even the same fruit. At the global level, some species have a cosmopolitan distribution: C. briggsae is particularly widespread, while C. elegans and C. remanei are found mostly or exclusively in temperate regions, and C. brenneri and C. sp. 11 exclusively in tropical zones. Other species have limited distributions, for example C. sp. 5 appears to be restricted to China, C. sp. 7 to West Africa and C. sp

  18. Characterization of Gladiolus Germplasm Using Morphological, Physiological, and Molecular Markers.

    Science.gov (United States)

    Singh, Niraj; Pal, Ashish K; Roy, R K; Tewari, S K; Tamta, Sushma; Rana, T S

    2018-04-01

    Estimation of variability and genetic relationships among breeding materials is one of the important strategies in crop improvement programs. Morphological (plant height, spike length, a number of florets/spike), physiological (chlorophyll content, chlorophyll fluorescence, and rapid light curve parameters) and Directed amplification of minisatellite DNA (DAMD) markers were used to investigate the relationships among 50 Gladiolus cultivars. Cluster analysis based on morphological data, physiological characteristics, molecular markers, and cumulative data discriminated all cultivars into seven, five, seven, and six clusters in the unweighted pair-group method using arithmetic mean (UPGMA) dendrogram, respectively. The results of the principal coordinate analysis (PCoA) also supported UPGMA clustering. Variations among the Gladiolus cultivars at phenotypic level could be due to the changes in physiology, environmental conditions, and genetic variability. DAMD analysis using 10 primers produced 120 polymorphic bands with 80% polymorphism showing polymorphic information content (PIC = 0.28), Marker index (MI = 3.37), Nei's gene diversity (h = 0.267), and Shannon's information index (I = 0.407). Plant height showed a positive significant correlation with Spike length and Number of florets/spike (r = 0.729, p < 0.001 and r = 0.448, p = 0.001 respectively). Whereas, Spike length showed positive significant correlation with Number of florets/spike (r = 0.688, p < 0.001) and Chlorophyll content showed positive significant correlation with Electron transport rate (r = 0.863, p < 0.001). Based on significant morphological variations, high physiological performance, high genetic variability, and genetic distances between cultivars, we have been able to identify diverse cultivars of Gladiolus that could be the potential source as breeding material for further genetic improvement in this ornamental crop.

  19. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  20. Galatheoidea are not monophyletic - molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily.

    Science.gov (United States)

    Schnabel, K E; Ahyong, S T; Maas, E W

    2011-02-01

    The monophyletic status of the squat lobster superfamily Galatheoidea has come under increasing doubt by studies using evidence as diverse as larval and adult somatic morphology, sperm ultrastructure, and molecular data. Here we synthesize phylogenetic data from these diverse strands, with the addition of new molecular and morphological data to examine the phylogeny of the squat lobsters and assess the status of the Galatheoidea. A total of 64 species from 16 of the 17 currently recognised anomuran families are included. Results support previous work pointing towards polyphyly in the superfamily Galatheoidea and Paguroidea, specifically, suggesting independent origins of the Galatheidae+Porcellanidae and the Chirostylidae+Kiwaidae. Morphological characters are selected that support clades resolved in the combined analysis and the taxonomic status of Galatheoidea sensu lato is revised. Results indicate that Chirostylidae are more closely related to an assemblage including Aegloidea, Lomisoidea and Paguroidea than to the remaining Galatheoidea and are referred to the superfamily Chirostyloidea to include the Chirostylidae and Kiwaidae. A considerable amount of research highlighting morphological differences supporting this split is discussed. The Galatheoidea sensu stricto is restricted to the families Galatheidae and Porcellanidae, and diagnoses for both Chirostyloidea and Galatheoidea are provided. Present results highlight the need for a detailed revision of a number of taxa, challenge some currently used morphological synapomorphies, and emphasise the need for integrated studies with wide taxon sampling and multiple data sources to resolve complex phylogenetic questions. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Molecular phylogeny of Atractus (Serpentes, Dipsadidae), with emphasis on Ecuadorian species and the description of three new taxa

    Science.gov (United States)

    Arteaga, Alejandro; Mebert, Konrad; Valencia, Jorge H.; Cisneros-Heredia, Diego F.; Peñafiel, Nicolás; Reyes-Puig, Carolina; Vieira-Fernandes, José L.; Guayasamin, Juan M.

    2017-01-01

    Abstract We present a molecular phylogeny of snake genus Atractus, with an improved taxon sampling that includes 30 of the 140 species currently recognized. The phylogenetic tree supports the existence of at least three new species in the Pacific lowlands and adjacent Andean slopes of the Ecuadorian Andes, which we describe here. A unique combination of molecular, meristic and color pattern characters support the validity of the new species. With the newly acquired data, we propose and define the Atractus iridescens species group, as well as redefine the Atractus roulei species group. The species Atractus iridescens is reported for the first time in Ecuador, whereas Atractus bocourti and Atractus medusa are removed from the herpetofauna of this country. We provide the first photographic vouchers of live specimens for Atractus multicinctus, Atractus paucidens and Atractus touzeti, along with photographs of 19 other Ecuadorian Atractus species. The current status of Atractus occidentalis and Atractus paucidens is maintained based on the discovery of new material referable to these species. With these changes, the species number reported in Ecuador increases to 27, a number that is likely to increase as material not examined in this work becomes available and included in systematic studies. PMID:28769604

  2. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  3. A molecular phylogeny of the bladed Bangiales (Rhodophyta) in China provides insights into biodiversity and biogeography of the genus Pyropia.

    Science.gov (United States)

    Yang, Li-En; Zhou, Wei; Hu, Chuan-Ming; Deng, Yin-Yin; Xu, Guang-Ping; Zhang, Tao; Russell, Stephen; Zhu, Jian-Yi; Lu, Qin-Qin; Brodie, Juliet

    2018-03-01

    A molecular taxonomic study was undertaken for the first time of the bladed Bangiales of the mainland coast of China (Northwest Pacific) based on sequence data of 201 plastid rbcL and 148 nuclear 18S sequences of historical and contemporary specimens. The results revealed that only one genus of bladed Bangiales, Pyropia, was present along Chinese coast. Species delimitation was determined using two empirical methods: the Automatic Barcode Gap Discovery (ABGD) and General Mixed Yule Coalescence (GMYC) coupled with detection of monophyly in tree reconstruction. At least fourteen species of Pyropia were recovered. Six species were confirmed that had been recorded previously based on morphology (Py. suborbiculata, Py. yezoensis, Py. haitanensis, Py. katadae, Py. tenera and Py. acanthophora), three species were recorded from China for the first time (Py. kinositae, Py. pseudolinearis and Py. tanegashimensis), and five cryptic species that did not match any molecular sequences were also discovered. The phylogeny of the concatenated rbcL and 18S dataset resolved three singletons and four clades. Each clades has a strong trend towards occupying a biogeographic region, but they are not confined to them. A transoceanic and antitropical pattern of distribution was found for Pyropia at both the subgeneric and species level. This together with high biodiversity (ca. 30% of all known Pyropia species) indicates that the Northwest Pacific might act as a centre of origin for modern distribution of Pyropia since the early Cenozoic. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The molecular phylogeny of Matthiola R. Br. (Brassicaceae) inferred from ITS sequences, with special emphasis on the Macaronesian endemics.

    Science.gov (United States)

    Jaén-Molina, Ruth; Caujapé-Castells, Juli; Reyes-Betancort, Jorge Alfredo; Akhani, Hossein; Fernández-Palacios, Olga; de Paz, Julia Pérez; Febles-Hernández, Rosa; Marrero-Rodríguez, Aguedo

    2009-12-01

    Matthiola (Brassicaceae) is a genus that is widespread in the Mediterranean and Irano-Turanian regions and includes two species that are endemic to the archipelagos of Madeira and the Canaries in Macaronesia, which is an insular oceanic hotspot of biodiversity harboring many radiating endemic plant lineages. Sequence analyses of the nuclear ITS-1 and ITS-2 regions in a comprehensive geographical sample of Matthiola, encompassing all the endemic Macaronesian populations known to date, suggest independent Mediterranean and NW African origins of the taxa in Madeira and the Canaries, respectively. These molecular data reveal a complex evolutionary landscape that converges with morphological analyses in the recognition of two new Madeiran species. The data also suggest that the Canarian infra-specific endemic taxa described thus far have high (but non-diagnostic) levels of morphological and genetic diversity, and should be included in the single endemic Matthiola bolleana. In agreement with earlier investigations that revealed a high genetic differentiation between the populations of Matthiola in Fuerteventura and Lanzarote, our phylogeny supports independent founder events from the same mainland congener to either island. The consistently derived position of the Moroccan populations within a mostly Canarian clade suggests a further back-colonization of the continent. Notably, the ITS sequence resolution offered by Matthiola is higher than that found in many of the radiating Canarian endemic lineages for which molecular phylogenetic studies abound. Hence, our research discovers largely unexplored pathways to understand plant diversification in this oceanic insular hotspot through the investigation of non-speciose endemics.

  5. A preliminary molecular phylogeny of planthoppers (Hemiptera: Fulgoroidea based on nuclear and mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available The planthopper superfamily Fulgoroidea (Insecta: Hemiptera is one of the most dominant groups of phytophagous insects. It comprises about 20 families, containing a total of 9000 species worldwide. Despite several recent studies, the phylogeny of Fulgoroidea is not yet satisfactorily resolved and the phylogenetic positions of several key families, especially Cixiidae, Delphacidae, Tettigometridae, Nogodinidae, Acanaloniidae and Issidae, are contentious. Here, we expand upon recent phylogenetic work using additional nuclear (18S and 28S and novel mitochondrial (16S and cytb markers. Maximum likelihood and Bayesian analyses yielded robust phylogenetic trees. In these topologies, a group containing Cixiidae and Delphacidae is recovered as the sister group to the remaining taxa. Tettigometridae is placed in a more nested position and is grouped with Caliscelidae. Sister relationships are found between Flatidae and Ricaniidae, and between Dictyopharidae and Fulgoridae. Nogodinidae and Issidae are confirmed to be non-monophyletic families. For major nodes of interest, divergence date estimates are generally older than those from the fossil record.

  6. Molecular phylogeny of tribe Theeae (Theaceae s.s. and its implications for generic delimitation.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Tribe Theeae, which includes some economically important and widely grown plants, such as beverage tea and a number of woody ornamentals, is the largest member of the Theaceae family. Using five genomic regions (chloroplast: atpI-H, matK, psbA5'R-ALS-11F, rbcL; nuclear: LEAFY and 30 species representing four of the five genera in this tribe (Apterosperma, Camellia, Polyspora, and Pyrenaria s.l., we investigated the phylogeny of Theeae and assessed the delimitation of genera in the tribe. Our results showed that Polyspora was monophyletic and the sister of the three other genera of Theeae investigated, Camellia was paraphyletic and Pyrenaria was polyphyletic. The inconsistent phylogenetic placement of some species of Theeae between the nuclear and chloroplast trees suggested widespread hybridization between Camellia and Pyrenaria, Polyspora and Parapyrenaria. These results indicate that hybridization, rather than morphological homoplasy, has confused the current classification of Theeae. In addition, the phylogenetic placement and possible allies of Laplacea are also discussed.

  7. Teaching the Process of Molecular Phylogeny and Systematics: A Multi-Part Inquiry-Based Exercise

    Science.gov (United States)

    Lents, Nathan H.; Cifuentes, Oscar E.; Carpi, Anthony

    2010-01-01

    Three approaches to molecular phylogenetics are demonstrated to biology students as they explore molecular data from "Homo sapiens" and four related primates. By analyzing DNA sequences, protein sequences, and chromosomal maps, students are repeatedly challenged to develop hypotheses regarding the ancestry of the five species. Although…

  8. A molecular phylogeny of the orange subfamily(Rutaceae: Aurantioideae) using nine cpDNA sequences.

    Science.gov (United States)

    Bayer, Randall J; Mabberley, David J; Morton, Cynthia; Miller, Cathy H; Sharma, Ish K; Pfeil, Bernard E; Rich, Sarah; Hitchcock, Roberta; Sykes, Steve

    2009-03-01

    The breeding of new, high-quality citrus cultivars depends on dependable information about the relationships of taxa within the tribe Citreae; therefore, it is important to have a well-supported phylogeny of the relationships between species not only to advance breeding strategies, but also to advance conservation strategies for the wild taxa. The recent history of the systematics of Citrus (Rutaceae: Aurantioideae) and its allies, in the context of Rutaceae taxonomy as a whole, is reviewed. The most recent classification is tested using nine cpDNA sequence regions in representatives of all genera of the subfam. Aurantioideae (save Limnocitrus) and numerous species and hybrids referred to Citrus s.l. Aurantioideae are confirmed as monophyletic. Within Aurantioideae, tribe Clauseneae are not monophyletic unless Murraya s.s. and Merrillia are removed to Aurantieae. Within tribe Aurantieae, the three traditionally recognized subtribes are not monophyletic. Triphasiinae is not monophyletic unless Oxanthera is returned to Citrus (Citrinae). Balsamocitrinae is polyphyletic. Feroniella, traditionally considered allied closely to Limonia (=Feronia), is shown to be nested in Citrus. The proposed congenericity of Severinia and Atalantia is confirmed. The most recent circumscription of Citrus is strongly supported by this analysis, with hybrids appearing with their putative maternal parents. The genus was resolved into two clades, one comprising wild species from New Guinea, Australia, and New Caledonia (formerly Clymenia, Eremocitrus, Microcitrus, Oxanthera), but surprisingly also Citrus medica, traditionally believed to be native in India. The second clade is largely from the Asian mainland (including species formerly referred to Fortunella and Poncirus).

  9. A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche

    Directory of Open Access Journals (Sweden)

    Vilhelmsen Lars B

    2007-04-01

    Full Text Available Abstract Background Army ants are the prime arthropod predators in tropical forests, with huge colonies and an evolutionary derived nomadic life style. Five of the six recognized subgenera of Old World Dorylus army ants forage in the soil, whereas some species of the sixth subgenus (Anomma forage in the leaf-litter and some as conspicuous swarm raiders on the forest floor and in the lower vegetation (the infamous driver ants. Here we use a combination of nuclear and mitochondrial DNA sequences to reconstruct the phylogeny of the Dorylus s.l. army ants and to infer the evolutionary transitions in foraging niche and associated morphological adaptations. Results Underground foraging is basal and gave rise to leaf-litter foraging. Leaf-litter foraging in turn gave rise to two derived conditions: true surface foraging (the driver ants and a reversal to subterranean foraging (a clade with most of the extant Dorylus s.s. species. This means that neither the subgenus Anomma nor Dorylus s.s. is monophyletic, and that one of the Dorylus s.s. lineages adopted subterranean foraging secondarily. We show that this latter group evolved a series of morphological adaptations to underground foraging that are remarkably convergent to the basal state. Conclusion The evolutionary transitions in foraging niche were more complex than previously thought, but our comparative analysis of worker morphology lends strong support to the contention that particular foraging niches have selected for very specific worker morphologies. The surprising reversal to underground foraging is therefore a striking example of convergent morphological evolution.

  10. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Scott Keogh, J; Avise, John C

    2012-01-01

    Evolutionary and biogeographic studies increasingly rely on calibrated molecular clocks to date key events. Although there has been significant recent progress in development of the techniques used for molecular dating, many issues remain. In particular, controversies abound over the appropriate use and placement of fossils for calibrating molecular clocks. Several methods have been proposed for evaluating candidate fossils; however, few studies have compared the results obtained by different approaches. Moreover, no previous study has incorporated the effects of nucleotide saturation from different data types in the evaluation of candidate fossils. In order to address these issues, we compared three approaches for evaluating fossil calibrations: the single-fossil cross-validation method of Near, Meylan, and Shaffer (2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165:137-146), the empirical fossil coverage method of Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171:726-742), and the Bayesian multicalibration method of Sanders and Lee (2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3:275-279) and explicitly incorporate the effects of data type (nuclear vs. mitochondrial DNA) for identifying the most reliable or congruent fossil calibrations. We used advanced (Caenophidian) snakes as a case study; however, our results are applicable to any taxonomic group with multiple candidate fossils, provided appropriate taxon sampling and sufficient molecular sequence data are available. We found that data type strongly influenced which fossil calibrations were identified as outliers, regardless of which method was used. Despite the use of complex partitioned models of sequence evolution and multiple calibrations throughout the tree, saturation

  11. Molecular and physiological responses of trees to waterlogging stress.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees. © 2014 John Wiley & Sons Ltd.

  12. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: Molecular phylogeny of Arsenophonus triatominarum

    Czech Academy of Sciences Publication Activity Database

    Šorfová, Pavlína; Škeříková, Andrea; Hypša, Václav

    2008-01-01

    Roč. 31, č. 2 (2008), s. 88-100 ISSN 0723-2020 R&D Projects: GA ČR GA206/04/0520; GA AV ČR IAA601410708 Institutional research plan: CEZ:AV0Z60220518 Keywords : intragenomic heterogeneity * 16S rRNA * coevolution * insect symbionts * molecular phylogeny Subject RIV: EE - Microbiology, Virology Impact factor: 2.582, year: 2008

  13. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching

    Science.gov (United States)

    2012-01-01

    Background Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA) and a nuclear (histone H3) and mitochondrial (cytochrome oxidase subunit I) protein-coding genes. Results Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Conclusions Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in which they maintain filter

  14. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida reveals dynamic evolution of symbiotic lifestyle and interphylum host switching

    Directory of Open Access Journals (Sweden)

    Goto Ryutaro

    2012-09-01

    Full Text Available Abstract Background Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA and a nuclear (histone H3 and mitochondrial (cytochrome oxidase subunit I protein-coding genes. Results Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Conclusions Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in

  15. Molecular Physiology of Root System Architecture in Model Grasses

    Science.gov (United States)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  16. Matters of taste: bridging molecular physiology and the humanities.

    Science.gov (United States)

    Rangachari, P K; Rangachari, Usha

    2015-12-01

    Taste perception was the focus of an undergraduate course in the health sciences that bridged the sciences and humanities. A problem-based learning approach was used to study the biological issues, whereas the cultural transmutations of these molecular mechanisms were explored using a variety of resources (novels, cookbooks, and films). Multiple evaluation procedures were used: problem summaries and problem-solving exercises (tripartite problem-solving exercise) for the problem-based learning component and group tasks and individual exercises for the cultural issues. Self-selected groups chose specific tasks from a prescribed list of options (setting up a journal in molecular gastronomy, developing an electronic tongue, designing a restaurant for synesthetes, organizing a farmers' market, marketing a culinary tour, framing hedonic scales, exploring changing tastes through works of art or recipe books, and crafting beers for space travel). Individual tasks were selected from a menu of options (book reviews, film reviews, conversations, creative writing, and oral exams). A few guest lecturers (wine making, cultural anthropology, film analysis, and nutritional epidemiology) added more flavor. The course was rated highly for its learning value (8.5 ± 1.2, n = 62) and helped students relate biological mechanisms to cultural issues (9.0 ± 0.9, n = 62). Copyright © 2015 The American Physiological Society.

  17. Reconstruction of molecular phylogeny of closely related Amorphophallus species of India using plastid DNA marker and fingerprinting approaches.

    Science.gov (United States)

    Gholave, Avinash R; Pawar, Kiran D; Yadav, Shrirang R; Bapat, Vishwas A; Jadhav, Jyoti P

    2017-01-01

    Plastid DNA markers sequencing and DNA fingerprinting approaches were used and compared for resolving molecular phylogeny of closely related, previously unexplored Amorphophallus species of India. The utility of individual plastid markers namely rbcL , matK , trnH - psbA , trnLC - trnLD , their combined dataset and two fingerprinting techniques viz. RAPD and ISSR were tested for their efficacy to resolves Amorphophallus species into three sections specific clades namely Rhaphiophallus , Conophallus and Amorphophallus . In the present study, sequences of these four plastid DNA regions as well as RAPD and ISSR profiles of 16 Amorphophallus species together with six varieties of two species were generated and analyzed. Maximum likelihood and Bayesian Inference based construction of phylogenetic trees indicated that among the four plastid DNA regions tested individually and their combined dataset, rbcL was found best suited for resolving closely related Amorphophallus species into section specific clades. When analyzed individually, rbcL exhibited better discrimination ability than matK , trnH - psbA , trnLC - trnLD and combination of all four tested plastid markers. Among two fingerprinting techniques used, the resolution of Amorphophallus species using RAPD was better than ISSR and combination of RAPD +ISSR and in congruence with resolution based on rbcL .

  18. Genome Size, Molecular Phylogeny, and Evolutionary History of the Tribe Aquilarieae (Thymelaeaceae, the Natural Source of Agarwood

    Directory of Open Access Journals (Sweden)

    Azman H. Farah

    2018-05-01

    Full Text Available The tribe Aquilarieae of the family Thymelaeaceae consists of two genera, Aquilaria and Gyrinops, with a total of 30 species, distributed from northeast India, through southeast Asia and the south of China, to Papua New Guinea. They are an important botanical resource for fragrant agarwood, a prized product derived from injured or infected stems of these species. The aim of this study was to estimate the genome size of selected Aquilaria species and comprehend the evolutionary history of Aquilarieae speciation through molecular phylogeny. Five non-coding chloroplast DNA regions and a nuclear region were sequenced from 12 Aquilaria and three Gyrinops species. Phylogenetic trees constructed using combined chloroplast DNA sequences revealed relationships of the studied 15 members in Aquilarieae, while nuclear ribosomal DNA internal transcribed spacer (ITS sequences showed a paraphyletic relationship between Aquilaria species from Indochina and Malesian. We exposed, for the first time, the estimated divergence time for Aquilarieae speciation, which was speculated to happen during the Miocene Epoch. The ancestral split and biogeographic pattern of studied species were discussed. Results showed no large variation in the 2C-values for the five Aquilaria species (1.35–2.23 pg. Further investigation into the genome size may provide additional information regarding ancestral traits and its evolution history.

  19. Diversity and Phylogeny of Gymnodiniales (Dinophyceae) from the NW Mediterranean Sea Revealed by a Morphological and Molecular Approach.

    Science.gov (United States)

    Reñé, Albert; Camp, Jordi; Garcés, Esther

    2015-05-01

    The diversity and phylogeny of dinoflagellates belonging to the Gymnodiniales were studied during a 3-year period at several coastal stations along the Catalan coast (NW Mediterranean) by combining analyses of their morphological features with rDNA sequencing. This approach resulted in the detection of 59 different morphospecies, 13 of which were observed for the first time in the Mediterranean Sea. Fifteen of the detected species were HAB producers; four represented novel detections on the Catalan coast and two in the Mediterranean Sea. Partial rDNA sequences were obtained for 50 different morphospecies, including novel LSU rDNA sequences for 27 species, highlighting the current scarcity of molecular information for this group of dinoflagellates. The combination of morphology and genetics allowed the first determinations of the phylogenetic position of several genera, i.e., Torodinium and many Gyrodinium and Warnowiacean species. The results also suggested that among the specimens belonging to the genera Gymnodinium, Apicoporus, and Cochlodinium were those representing as yet undescribed species. Furthermore, the phylogenetic data suggested taxonomic incongruences for some species, i.e., Gyrodinium undulans and Gymnodinium agaricoides. Although a species complex related to G. spirale was detected, the partial LSU rDNA sequences lacked sufficient resolution to discriminate between various other Gyrodinium morphospecies. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. New Eocene Coleoid (Cephalopoda Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies.

    Directory of Open Access Journals (Sweden)

    Pascal Neige

    Full Text Available New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov., Loliginidae (Loligo clarkei sp. nov., and Ommastrephidae (genus indet. families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a "knowledge bias" and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades.

  1. New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies.

    Science.gov (United States)

    Neige, Pascal; Lapierre, Hervé; Merle, Didier

    2016-01-01

    New coleoid cephalopods are described from statolith remains from the Middle Eocene (Middle Lutetian) of the Paris Basin. Fifteen fossil statoliths are identified and assigned to the Sepiidae (Sepia boletzkyi sp. nov.,? Sepia pira sp. nov.), Loliginidae (Loligo clarkei sp. nov.), and Ommastrephidae (genus indet.) families. The sediments containing these fossils indicate permanent aquatic settings in the infralittoral domain. These sediments range in age from 46 Mya to 43 Mya. Analysis of the fossil record of statoliths (from findings described here, together with a review of previously published data) indicates marked biases in our knowledge. Fossil statoliths are known from as far back as the Early Jurassic (199.3 to 190.8 Mya) but surprisingly, to the best of our knowledge, no record occurs in the Cretaceous. This is a "knowledge bias" and clearly calls for further studies. Finally, we attempt to compare findings described here with fossils previously used to constrain divergence and/or diversification ages of some coleoid subclades in molecular phylogenies. This comparison clearly indicates that the new records detailed here will challenge some estimated divergence times of coleoid cephalopod subclades.

  2. Molecular biophysics: detection and characterization of damage in molecular, cellular, and physiological systems

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1979-01-01

    This section contains summaries of research on the detection and characterization of damage in molecular, cellular, and physiological systems. Projects under investigation in this section include: chemical synthesis of nucleic acid derivatives; structural and conformational properties of biological molecules in solution; crystallographic and chemical studies of immunoglobulin structure; instrument design and development for x-ray and neutron scattering studies of biological molecules; and chromobiology and circadian regulation

  3. Molecular phylogeny of the Haplosplanchnata Olson, Cribb, Tkach, Bray and Littlewood, 2003, with a description of Schikhobalotrema huffmani n. sp.

    Science.gov (United States)

    Huston, Daniel C; Cutmore, Scott C; Cribb, Thomas H

    2017-09-26

    We describe Schikhobalotrema huffmani n. sp. from Tylosurus crocodilus (Péron and Leseur) (Belonidae) collected off Lizard Island, Great Barrier Reef, Queensland, Australia and Tylosurus gavialoides (Castelnau) collected from Moreton Bay, Queensland. Schikhobalotrema huffmani n. sp., along with Schikhobalotrema ablennis (Abdul-Salam and Khalil, 1987) Madhavi, 2005, Schikhobalotrema acutum (Linton, 1910) Skrjabin and Guschanskaja, 1955 and Schikhobalotrema adacutum (Manter, 1937) Skrjabin and Guschanskaja, 1955 are distinguished from all other species of Schikhobalotrema Skrjabin and Guschanskaja, 1955 in having ventral suckers which bear lateral lobes and have longitudinal apertures. Schikhobalotrema huffmani n. sp. differs from S. ablennis in having an obvious post-vitelline region and a longer forebody. From S. acutum, S. huffmani n. sp. differs in having a prostatic bulb smaller than the pharynx and more anterior testis. From S. adacutum, S. huffmani n. sp. differs in having more prominent ventral sucker lobes, a conspicuous prostatic bulb and a longer forebody. We also report the first Australian record of Haplosplanchnus pachysomus (Eysenhardt, 1829) Looss, 1902, from Mugil cephalus Linnaeus (Mugilidae) collected in Moreton Bay. Molecular sequence data (ITS2, 18S and 28S rDNA) were generated for Schikhobalotrema huffmani n. sp., H. pachysomus and archived specimens of Hymenocotta mulli Manter, 1961. The new 18S and 28S molecular data were combined with published data of five other haplosplanchnid taxa to expand the phylogeny for the Haplosplanchnata. Bayesian inference and Maximum Likelihood analyses recovered identical tree topology and demonstrated the Haplosplanchnata as a well-supported monophyletic group. However, relationships at and below the subfamily level remain poorly resolved.

  4. A New Morphological Phylogeny of the Ophiuroidea (Echinodermata Accords with Molecular Evidence and Renders Microfossils Accessible for Cladistics.

    Directory of Open Access Journals (Sweden)

    Ben Thuy

    Full Text Available Ophiuroid systematics is currently in a state of upheaval, with recent molecular estimates fundamentally clashing with traditional, morphology-based classifications. Here, we attempt a long overdue recast of a morphological phylogeny estimate of the Ophiuroidea taking into account latest insights on microstructural features of the arm skeleton. Our final estimate is based on a total of 45 ingroup taxa, including 41 recent species covering the full range of extant ophiuroid higher taxon diversity and 4 fossil species known from exceptionally preserved material, and the Lower Carboniferous Aganaster gregarius as the outgroup. A total of 130 characters were scored directly on specimens. The tree resulting from the Bayesian inference analysis of the full data matrix is reasonably well resolved and well supported, and refutes all previous classifications, with most traditional families discredited as poly- or paraphyletic. In contrast, our tree agrees remarkably well with the latest molecular estimate, thus paving the way towards an integrated new classification of the Ophiuroidea. Among the characters which were qualitatively found to accord best with our tree topology, we selected a list of potential synapomorphies for future formal clade definitions. Furthermore, an analysis with 13 of the ingroup taxa reduced to the lateral arm plate characters produced a tree which was essentially similar to the full dataset tree. This suggests that dissociated lateral arm plates can be analysed in combination with fully known taxa and thus effectively unlocks the extensive record of fossil lateral arm plates for phylogenetic estimates. Finally, the age and position within our tree implies that the ophiuroid crown-group had started to diversify by the Early Triassic.

  5. New molecular data shed light on the global phylogeny and species limits of the Rhipicephalus sanguineus complex.

    Science.gov (United States)

    Hekimoğlu, Olcay; Sağlam, İsmail K; Özer, Nurdan; Estrada-Peña, Agustin

    2016-07-01

    The Rhipicephalus sanguineus complex is a group of closely related tick species distributed all around the world. In this study, using mitochondrial 16S ribosomal DNA, new specimens of R sanguineus sensu lato from Turkey and Rhipicephalus camicasi from Kenya, were evaluated together with available sequences of this complex in GenBank. Our objectives were to delimit the complex, re-evaluate its global phylogeny and develop a reconstruction of its biogeographic history. Given Turkey's geographical location and its neighboring status within Africa, Asia and Europe, molecular information of R. sanguineus s.l. species from this region could have important implications both on a regional and global scale. Phylogenetic trees obtained with three methods (Bayesian, Maximum Likelihood and Maximum Parsimony) were highly similar and consensus trees gave the same branching patterns and similar node support values. A total of four different clades with up to 9 Operational Taxonomic Units formed strong monophyletic groups. Biogeographic reconstructions demonstrated the importance of populations in Middle East (Turkey) in the spread of the group from Europe to Africa and Asia. Data supported previous conclusions on the existence of two species of R. sanguineus s.l. in South America and the strong molecular similarity between R. camicasi and the so-called tropical lineage of R. sanguineus s.l. These results point to the need of a re-evaluation of most specimens designated as R. sanguineus s.l. in East Europe, Middle East, Africa and Asia after an adequate re-description of this taxon. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Molecular systematics of Barbatosphaeria (Sordariomycetes): multigene phylogeny and secondary ITS structure

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina; Réblová, K.; Štěpánek, Václav

    2015-01-01

    Roč. 35, December 2015 (2015), s. 21-38 ISSN 0031-5850 R&D Projects: GA ČR GAP506/12/0038 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : Barbatosphaeria * molecular systematic * ITS secondary structures Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 5.725, year: 2015

  7. Molecular phylogeny of species of Ligophorus (Monogenea: Dactylogyridae) and their affinities within the Dactylogyridae

    Czech Academy of Sciences Publication Activity Database

    Blasco-Costa, Maria Isabel; Míguez-Lozano, R.; Sarabeev, V.; Balbuena, J. A.

    2012-01-01

    Roč. 61, č. 4 (2012), s. 619-627 ISSN 1383-5769 Institutional support: RVO:60077344 Keywords : 28S ribosomal DNA region * Internal transcribed spacer 1 * Morphology * Molecular systematics * Diversification processes * Mediterranean basin * Ergenstrema * Mugilidae Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.302, year: 2012 http://www.sciencedirect.com/science/article/pii/S138357691200089X

  8. Molecular phylogeny of Babesia poelea from brown boobies (Sula leucogaster) from Johnston Atoll, Central Pacific

    Science.gov (United States)

    Yabsley, Michael J.; Work, Thierry M.; Rameyer, Robert A.

    2006-01-01

    The phylogenetic relationship of avian Babesia with other piroplasms remains unclear, mainly because of a lack of objective criteria such as molecular phylogenetics. In this study, our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and partial ß-tubulin gene of B. poelea, first described from brown boobies (Sula leucogaster) from the central Pacific, and compare them to those of other piroplasms. Phylogenetic analyses of the entire 18S rRNA gene sequence revealed that B. poelea belonged to the clade of piroplasms previously detected in humans, domestic dogs, and wild ungulates in the western United States. The entire ITS-1, 5.8S, ITS-2, and partial ß-tubulin gene sequence shared conserved regions with previously described Babesia and Theileria species. The intron of the ß-tubulin gene was 45 bp. This is the first molecular characterization of an avian piroplasm.

  9. Molecular phylogeny of pearl oysters and their relatives (Mollusca, Bivalvia, Pterioidea

    Directory of Open Access Journals (Sweden)

    Tëmkin Ilya

    2010-11-01

    Full Text Available Abstract Background The superfamily Pterioidea is a morphologically and ecologically diverse lineage of epifaunal marine bivalves distributed throughout the tropical and subtropical continental shelf regions. This group includes commercially important pearl culture species and model organisms used for medical studies of biomineralization. Recent morphological treatment of selected pterioideans and molecular phylogenetic analyses of higher-level relationships in Bivalvia have challenged the traditional view that pterioidean families are monophyletic. This issue is examined here in light of molecular data sets composed of DNA sequences for nuclear and mitochondrial loci, and a published character data set of anatomical and shell morphological characters. Results The present study is the first comprehensive species-level analysis of the Pterioidea to produce a well-resolved, robust phylogenetic hypothesis for nearly all extant taxa. The data were analyzed for potential biases due to taxon and character sampling, and idiosyncracies of different molecular evolutionary processes. The congruence and contribution of different partitions were quantified, and the sensitivity of clade stability to alignment parameters was explored. Conclusions Four primary conclusions were reached: (1 the results strongly supported the monophyly of the Pterioidea; (2 none of the previously defined families (except for the monotypic Pulvinitidae were monophyletic; (3 the arrangement of the genera was novel and unanticipated, however strongly supported and robust to changes in alignment parameters; and (4 optimizing key morphological characters onto topologies derived from the analysis of molecular data revealed many instances of homoplasy and uncovered synapomorphies for major nodes. Additionally, a complete species-level sampling of the genus Pinctada provided further insights into the on-going controversy regarding the taxonomic identity of major pearl culture species.

  10. Molecular phylogeny of pearl oysters and their relatives (Mollusca, Bivalvia, Pterioidea)

    Science.gov (United States)

    2010-01-01

    Background The superfamily Pterioidea is a morphologically and ecologically diverse lineage of epifaunal marine bivalves distributed throughout the tropical and subtropical continental shelf regions. This group includes commercially important pearl culture species and model organisms used for medical studies of biomineralization. Recent morphological treatment of selected pterioideans and molecular phylogenetic analyses of higher-level relationships in Bivalvia have challenged the traditional view that pterioidean families are monophyletic. This issue is examined here in light of molecular data sets composed of DNA sequences for nuclear and mitochondrial loci, and a published character data set of anatomical and shell morphological characters. Results The present study is the first comprehensive species-level analysis of the Pterioidea to produce a well-resolved, robust phylogenetic hypothesis for nearly all extant taxa. The data were analyzed for potential biases due to taxon and character sampling, and idiosyncracies of different molecular evolutionary processes. The congruence and contribution of different partitions were quantified, and the sensitivity of clade stability to alignment parameters was explored. Conclusions Four primary conclusions were reached: (1) the results strongly supported the monophyly of the Pterioidea; (2) none of the previously defined families (except for the monotypic Pulvinitidae) were monophyletic; (3) the arrangement of the genera was novel and unanticipated, however strongly supported and robust to changes in alignment parameters; and (4) optimizing key morphological characters onto topologies derived from the analysis of molecular data revealed many instances of homoplasy and uncovered synapomorphies for major nodes. Additionally, a complete species-level sampling of the genus Pinctada provided further insights into the on-going controversy regarding the taxonomic identity of major pearl culture species. PMID:21059254

  11. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici

    Science.gov (United States)

    Nirmaladevi, D.; Venkataramana, M.; Srivastava, Rakesh K.; Uppalapati, S. R.; Gupta, Vijai Kumar; Yli-Mattila, T.; Clement Tsui, K. M.; Srinivas, C.; Niranjana, S. R.; Chandra, Nayaka S.

    2016-01-01

    The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin. PMID:26883288

  12. Molecular phylogeny and biogeographic history of the Neotropical tribe Glandulocaudini (Characiformes: Characidae: Stevardiinae

    Directory of Open Access Journals (Sweden)

    Priscila Camelier

    2018-03-01

    Full Text Available ABSTRACT Although former studies on systematics and biogeography represent a progress on the knowledge of the tribe Glandulocaudini, none was grounded on molecular evidence. Thus, the first hypothesis of relationships for the tribe based on a multilocus analysis is presented, including all genera and most of the valid species. DNA sequences of Glandulocauda caerulea and Mimagoniates sylvicola were analyzed for the first time. A molecular clock analysis was used to estimate the origin of the Glandulocaudini and the approximate timing of cladogenetic events within the group. Glandulocaudini was recovered as monophyletic. No hypothesis recovered Glandulocauda as monophyletic, since G. melanopleura is sister to Lophiobrycon weitzmani while G. caerulea is closely related to Mimagoniates. The relationships within the latter genus were resolved. The molecular clock results indicate the origin of the Glandulocaudini during the Miocene with diversification in the group occurring from Neogene to Pleistocene. These results corroborated the hypothesis that its origin took place on the Brazilian crystalline shield with the subsequent occupation of the Atlantic Coastal drainages. Apparently, Pleistocene sea-level fluctuations might have shaped the distribution pattern of some species in Glandulocaudini.

  13. Molecular phylogeny and radiation time of erysiphales inferred from the nuclear ribosomal DNA sequences

    International Nuclear Information System (INIS)

    Mori, Y.; Sato, Y.; Takamatsu, S.

    2000-01-01

    Phylogenetic relationships of Erysiphales within Ascomycota were inferred from the newly determined sequences of the 18S rDNA and partial sequences of the 28S rDNA including the D1 and D2 regions of 10 Erysiphales taxa. Phylogenetic analyses revealed that the Erysiphales form a distinct clade among ascomycetous fungi suggesting that the Erysiphales diverged from a single ancestral taxon. The Myxotrichaceae of the Onygenales was distantly related to the other onygenalean families and was the sister group to the Erysiphales calde, with which it combined to form a clade. The Erysiphales/Myxotrichaceae clade was also closely related to some discomycetous fungi (Leotiales, Cyttariales and Thelebolaceae) including taxa that form cleistothecial ascomata. The present molecular analyses as well as previously reported morphological observations suggest the possible existence of a novel evolutionary pathway from cleistothecial discomycetous fungi to Erysiphales and Myxotrichaceae. However, since most of these fungi, except for the Erysiphales, are saprophytic on dung and/or plant materials, the questions of how and why an obligate biotroph like the Erysiphales radiated from the saprophytic fungi remain to be addressed. We also estimated the radiation time of the Erysiphales using the 18S rDNA sequences and the two molecular clockes that have been previously reported. The calculation showed that the Erysiphales split from the Myxotrichaceae 190–127 myr ago. Since the radiation time of the Erysiphales does not exceed 230 myr ago, even when allowance is made for the uncertainty of the molecular clocks, it is possible to consider that the Erysiphales evolved after the radiation of angiosperms. The results of our calculation also showed that the first radiation within the Erysiphales (138–92 myr ago) coincided with the date of a major diversification of angiosperms (130–90 myr ago). These results may support our early assumption that the radiation of the Erysiphales

  14. Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies

    Science.gov (United States)

    Stach, Thomas

    2013-12-01

    Pterobranchs have been interpreted as "missing links" combining primitive invertebrate features with advanced vertebrate-like characteristics. The first detailed morphological description of an ontogenetic stage of a pterobranch, based on digital 3D-reconstruction at electron microscopic resolution, reveals a triploblastic animal with monociliated epithelia, an extensive coelomic cavity, a through gut with an asymmetrically developed gill slit but no signs of planktonic specializations, such as ciliated bands. Therefore, this crawling larva supports the hypothesis proposed in previous molecular phylogenetic studies that pterobranchs could be derived within enteropneusts rather than being "missing links".

  15. Data supporting a molecular phylogeny of the hyper-diverse genus Brueelia

    Directory of Open Access Journals (Sweden)

    Sarah E. Bush

    2015-12-01

    Full Text Available Data is presented in support of a phylogenetic reconstruction of one of the largest, and most poorly understood, groups of lice: the Brueelia-complex (Bush et al., 2015 [1]. Presented data include the voucher information and molecular data (GenBank accession numbers of 333 ingroup taxa within the Brueelia-complex and 30 outgroup taxa selected from across the order Phthiraptera. Also included are phylogenetic reconstructions based on Bayesian inference analyses of combined COI and EF-1α sequences for Brueelia-complex species and outgroup taxa.

  16. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant's recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  17. A molecular phylogeny of the stingless bee genus Melipona (Hymenoptera: Apidae).

    Science.gov (United States)

    Ramírez, Santiago R; Nieh, James C; Quental, Tiago B; Roubik, David W; Imperatriz-Fonseca, Vera L; Pierce, Naomi E

    2010-08-01

    Stingless bees (Meliponini) constitute a diverse group of highly eusocial insects that occur throughout tropical regions around the world. The meliponine genus Melipona is restricted to the New World tropics and has over 50 described species. Melipona, like Apis, possesses the remarkable ability to use representational communication to indicate the location of foraging patches. Although Melipona has been the subject of numerous behavioral, ecological, and genetic studies, the evolutionary history of this genus remains largely unexplored. Here, we implement a multigene phylogenetic approach based on nuclear, mitochondrial, and ribosomal loci, coupled with molecular clock methods, to elucidate the phylogenetic relationships and antiquity of subgenera and species of Melipona. Our phylogenetic analysis resolves the relationship among subgenera and tends to agree with morphology-based classification hypotheses. Our molecular clock analysis indicates that the genus Melipona shared a most recent common ancestor at least approximately 14-17 million years (My) ago. These results provide the groundwork for future comparative analyses aimed at understanding the evolution of complex communication mechanisms in eusocial Apidae. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Phylogeny and molecular signatures for the phylum Thermotogae and its subgroups.

    Science.gov (United States)

    Gupta, Radhey S; Bhandari, Vaibhav

    2011-06-01

    Thermotogae species are currently identified mainly on the basis of their unique toga and distinct branching in the rRNA and other phylogenetic trees. No biochemical or molecular markers are known that clearly distinguish the species from this phylum from all other bacteria. The taxonomic/evolutionary relationships within this phylum, which consists of a single family, are also unclear. We report detailed phylogenetic analyses on Thermotogae species based on concatenated sequences for many ribosomal as well as other conserved proteins that identify a number of distinct clades within this phylum. Additionally, comprehensive analyses of protein sequences from Thermotogae genomes have identified >60 Conserved Signature Indels (CSI) that are specific for the Thermotogae phylum or its different subgroups. Eighteen CSIs in important proteins such as PolI, RecA, TrpRS and ribosomal proteins L4, L7/L12, S8, S9, etc. are uniquely present in various Thermotogae species and provide molecular markers for the phylum. Many CSIs were specific for a number of Thermotogae subgroups. Twelve of these CSIs were specific for a clade consisting of various Thermotoga species except Tt. lettingae, which was separated from other Thermotoga species by a long branch in phylogenetic trees; Fourteen CSIs were specific for a clade consisting of the Fervidobacterium and Thermosipho genera and eight additional CSIs were specific for the genus Thermosipho. In addition, the existence of a clade consisting of the deep branching species Petrotoga mobilis, Kosmotoga olearia and Thermotogales bacterium mesG1 was supported by seven CSIs. The deep branching of this clade was also supported by a number of CSIs that were present in various Thermotogae species, but absent in this clade and all other bacteria. Most of these clades were strongly supported by phylogenetic analyses based on two datasets of protein sequences and they identify potential higher taxonomic grouping (viz. families) within this phylum

  19. Molecular Phylogeny and Phylogeography of the Australian Freshwater Fish Genus Galaxiella, with an Emphasis on Dwarf Galaxias (G. pusilla)

    Science.gov (United States)

    Unmack, Peter J.; Bagley, Justin C.; Adams, Mark; Hammer, Michael P.; Johnson, Jerald B.

    2012-01-01

    The freshwater fauna of Southern Australia is primarily restricted to the southwestern and southeastern corners of the continent, and is separated by a large, arid region that is inhospitable to this biota. This geographic phenomenon has attracted considerable interest from biogeographers looking to explain evolutionary diversification in this region. Here, we employed phylogenetic and phylogeographic approaches to evaluate the effect of this barrier on a group of four galaxiid fish species (Galaxiella) endemic to temperate Southern Australia. We also tested if continental shelf width has influenced connectivity among populations during low sea levels when rivers, now isolated, could have been connected. We addressed these questions by sampling each species across its range using multiple molecular markers (mitochondrial cytochrome b sequences, nuclear S7 intron sequences, and 49 allozyme loci). These data also allowed us to assess species boundaries, to refine phylogenetic affinities, and to estimate species ages. Interestingly, we found compelling evidence for cryptic species in G. pusilla, manifesting as allopatric eastern and western taxa. Our combined phylogeny and dating analysis point to an origin for the genus dating to the early Cenozoic, with three of the four species originating during the Oligocene-Miocene. Each Galaxiella species showed high levels of genetic divergences between all but the most proximate populations. Despite extensive drainage connections during recent low sea levels in southeastern Australia, populations of both species within G. pusilla maintained high levels of genetic structure. All populations experienced Late Pleistocene-Holocene population growth, possibly in response to the relaxation of arid conditions after the last glacial maximum. High levels of genetic divergence and the discovery of new cryptic species have important implications for the conservation of this already threatened group of freshwater species. PMID:22693638

  20. Molecular phylogenies of figs and fig-pollinating wasps in the Ryukyu and Bonin (Ogasawara) islands, Japan.

    Science.gov (United States)

    Azuma, Hiroshi; Harrison, Rhett D; Nakamura, Keiko; Su, Zhi-Hui

    2010-01-01

    The interaction between figs (Ficus, Moraceae) and fig-pollinating wasps (Chalcidoidea, Agaonidae) is one of the most specific mutualisms, and thus is a model system for studying coevolution and cospeciation. In this study we focused on figs and their associated fig-wasps found in the Ryukyu and Bonin (Ogasawara) Islands, Japan, because it has been suggested that breakdown in the specificity may occur in islands or at edge of a species' distribution. We collected 136 samples of 15 native fig species and 95 samples of 13 associated fig-wasps from all major islands in the Ryukyu Islands, including two fig species and one fig-wasp species endemic to the Bonin Islands. We performed molecular phylogenetic analyses using plastid DNA and nuclear ITS sequences for the figs and nuclear 28S rRNA and mitochondrial COI genes for the fig-wasps to investigate the interspecific phylogenies and intraspecific variation within the mutualism. Our phylogenetic analyses using multiple samples per species show the single clade of each fig (except the Bonin endemic species) and fig-pollinating wasp species. Fig species belonging to the same subgenera formed well-supported clades in both plastid and ITS trees, except for the subgenus Urostigma. Likewise, fig wasps emerging from host fig species belonging to the same subgenera formed mostly well supported clades in both 28S and COI trees. Host specificity between the figs and fig-wasps functions strictly in these islands. There was very little sequence variation within species, and that no major geographic structure was found. The two Bonin endemic species (F. boninsimae and F. nishimurae) or their common ancestor and the associated fig-wasps (Blastophaga sp.) are apparently derived from F. erecta and its associated fig-wasps (B. nipponica), respectively, and probably migrated from the Ryukyu Islands.

  1. Molecular phylogeny of Candidula (Geomitridae) land snails inferred from mitochondrial and nuclear markers reveals the polyphyly of the genus.

    Science.gov (United States)

    Chueca, Luis J; Gómez-Moliner, Benjamín J; Madeira, María José; Pfenninger, Markus

    2018-01-01

    The genus Candidula (Geomitridae), consisting of 28 species in Western Europe as currently described, has a disjunct distribution in the Iberian Peninsula, Italy, the Balkans, the Aegean Islands, and one species on the Canary Islands. Although the genus is seemingly well defined by characters of the reproductive system, the relationships within the genus are still unclear and some authors have indicated a possible subgeneric division based on the internal morphology of the dart sac. Despite substantial phylogenetic incongruence, we present a well-resolved molecular phylogeny of Candidula based on two mitochondrial genes (COI and 16S rRNA), the nuclear rDNA region (5.8S rNRA + ITS2 + 28S rRNA) and seven additional nuclear DNA regions developed specifically for this genus (60SL13, 60SL17, 60SL7, RPL14, 40SS6, 60SL9, 60SL13a), in total 5595 bp. Six reciprocally monophyletic entities including Candidula species were recovered, grouping into two major clades. The incorporation of additional geomitrid genera allowed us to unequivocally demonstrate the polyphyly of the genus Candidula. One major clade grouped species from southern France and Italy with the widely distributed species C. unifasciata. The second major clade grouped all the species from the Iberian Peninsula, including C. intersecta and C. gigaxii. Candidula ultima from the Canary Islands was recovered as separated lineage within the latter clade and related to African taxa. The six monophyla were defined as six new genera belonging to different tribes within the Helicellinae. Thus, we could show that similar structures of the stimulatory apparatus of the genital system in different taxa do not necessarily indicate a close phylogenetic relationship in the Geomitridae. More genera of the family are needed to clarify their evolutionary relationships, and to fully understand the evolution of the stimulatory apparatus of the genital system within the Geomitridae. Copyright © 2017 Elsevier Inc. All rights

  2. Molecular phylogeny and phylogeography of the Australian freshwater fish genus Galaxiella, with an emphasis on dwarf galaxias (G. pusilla.

    Directory of Open Access Journals (Sweden)

    Peter J Unmack

    Full Text Available The freshwater fauna of Southern Australia is primarily restricted to the southwestern and southeastern corners of the continent, and is separated by a large, arid region that is inhospitable to this biota. This geographic phenomenon has attracted considerable interest from biogeographers looking to explain evolutionary diversification in this region. Here, we employed phylogenetic and phylogeographic approaches to evaluate the effect of this barrier on a group of four galaxiid fish species (Galaxiella endemic to temperate Southern Australia. We also tested if continental shelf width has influenced connectivity among populations during low sea levels when rivers, now isolated, could have been connected. We addressed these questions by sampling each species across its range using multiple molecular markers (mitochondrial cytochrome b sequences, nuclear S7 intron sequences, and 49 allozyme loci. These data also allowed us to assess species boundaries, to refine phylogenetic affinities, and to estimate species ages. Interestingly, we found compelling evidence for cryptic species in G. pusilla, manifesting as allopatric eastern and western taxa. Our combined phylogeny and dating analysis point to an origin for the genus dating to the early Cenozoic, with three of the four species originating during the Oligocene-Miocene. Each Galaxiella species showed high levels of genetic divergences between all but the most proximate populations. Despite extensive drainage connections during recent low sea levels in southeastern Australia, populations of both species within G. pusilla maintained high levels of genetic structure. All populations experienced Late Pleistocene-Holocene population growth, possibly in response to the relaxation of arid conditions after the last glacial maximum. High levels of genetic divergence and the discovery of new cryptic species have important implications for the conservation of this already threatened group of freshwater

  3. Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae

    Directory of Open Access Journals (Sweden)

    Glaw Frank

    2011-04-01

    Full Text Available Abstract Background Evolutionary novelties often appear by conferring completely new functions to pre-existing structures or by innovating the mechanism through which a particular function is performed. Sound production plays a central role in the behavior of frogs, which use their calls to delimit territories and attract mates. Therefore, frogs have evolved complex vocal structures capable of producing a wide variety of advertising sounds. It is generally acknowledged that most frogs call by moving an air column from the lungs through the glottis with the remarkable exception of the family Pipidae, whose members share a highly specialized sound production mechanism independent of air movement. Results Here, we performed behavioral observations in the poorly known African pipid genus Pseudhymenochirus and document that the sound production in this aquatic frog is almost certainly air-driven. However, morphological comparisons revealed an indisputable pipid nature of Pseudhymenochirus larynx. To place this paradoxical pattern into an evolutionary framework, we reconstructed robust molecular phylogenies of pipids based on complete mitochondrial genomes and nine nuclear protein-coding genes that coincided in placing Pseudhymenochirus nested among other pipids. Conclusions We conclude that although Pseudhymenochirus probably has evolved a reversal to the ancestral non-pipid condition of air-driven sound production, the mechanism through which it occurs is an evolutionary innovation based on the derived larynx of pipids. This strengthens the idea that evolutionary solutions to functional problems often emerge based on previous structures, and for this reason, innovations largely depend on possibilities and constraints predefined by the particular history of each lineage.

  4. Molecular phylogeny of the Thyropygus allevatus group of giant millipedes and some closely related groups

    DEFF Research Database (Denmark)

    Pimvichai, Piyatida; Enghoff, Henrik; Panha, Somsak

    2014-01-01

    from six genera in the subfamilies Harpagophorinae and Rhynchoproctinae, as well as nine new morphotypes (regarded as new species), were performed with the DNA sequences from two mitochondrial gene fragments (16S rRNA and COI). The genus Thyropygus (Harpagophorinae) was recovered as monophyletic under......Giant cylindrical millipedes of the family Harpagophoridae, especially species of the genus Thyropygus, are broadly distributed in Thailand and nearby countries. They show a great deal of variation in body size, color patterns and gonopodal characters. Phylogenetic analyses of 26 nominate species...... the usefulness of, gonopodal characters for the classification and identification of harpagophorid millipedes, and additionally supported previous studies on the delimitation of species and subgroups. This is the first molecular study inside the family Harpagophoridae and provides the basis for further studies...

  5. Prevalence of Haemoproteus spp. (Apicomplexa: Haemoproteidae) in tortoises in Brazil and its molecular phylogeny.

    Science.gov (United States)

    Martinele, Isabel; Tostes, Raquel; Castro, Rômulo; D'Agosto, Marta

    2016-01-01

    Captive terrestrial tortoises of the species Chelonoidis carbonaria (n = 17) and Chelonoidis denticulata (n = 37) in the state of Minas Gerais, southeastern Brazil, were examined for hematozoans by using a combination of microscopic and molecular methods. Microscopic examination revealed young intra-erythrocytic forms in blood smears from both species of tortoises. The results of PCR, sequencing, and phylogenetic analysis indicated that these parasites belonged to the Haemoproteus spp., whose observed prevalence was 17.6 % in C. carbonaria and 13.5 % in C. denticulata. Phylogenetic analysis indicated that these sequences formed a clade that was grouped with other sequences of Haemoproteus spp. parasites in birds, separate from the clade formed by Haemoproteus spp. of reptiles. This study expands the information regarding the occurrence and distribution of hemosporidia in turtles and is the first study of blood parasites in C. carbonaria.

  6. Molecular phylogeny of the neotropical genus Christensonella (Orchidaceae, Maxillariinae): species delimitation and insights into chromosome evolution.

    Science.gov (United States)

    Koehler, Samantha; Cabral, Juliano S; Whitten, W Mark; Williams, Norris H; Singer, Rodrigo B; Neubig, Kurt M; Guerra, Marcelo; Souza, Anete P; Amaral, Maria do Carmo E

    2008-10-01

    Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Six of 21 currently accepted species were recovered. The results also support recognition of the 'C. pumila' clade as a single species. Molecular phylogenetic relationships within the 'C. acicularis-C. madida' and 'C. ferdinandiana-C. neowiedii' species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent dysploidy. Patterns of heterochromatin distribution and other karyotypic

  7. Molecular Phylogeny of the Neotropical Genus Christensonella (Orchidaceae, Maxillariinae): Species Delimitation and Insights into Chromosome Evolution

    Science.gov (United States)

    Koehler, Samantha; Cabral, Juliano S.; Whitten, W. Mark; Williams, Norris H.; Singer, Rodrigo B.; Neubig, Kurt M.; Guerra, Marcelo; Souza, Anete P.; Amaral, Maria do Carmo E.

    2008-01-01

    Background and Aims Species' boundaries applied within Christensonella have varied due to the continuous pattern of variation and mosaic distribution of diagnostic characters. The main goals of this study were to revise the species' delimitation and propose a more stable classification for this genus. In order to achieve these aims phylogenetic relationships were inferred using DNA sequence data and cytological diversity within Christensonella was examined based on chromosome counts and heterochromatin patterns. The results presented describe sets of diagnostic morphological characters that can be used for species' identification. Methods Phylogenetic studies were based on sequence data of nuclear and plastid regions, analysed using maximum parsimony and maximum likelihood criteria. Cytogenetic observations of mitotic cells were conducted using CMA and DAPI fluorochromes. Key Results Six of 21 currently accepted species were recovered. The results also support recognition of the ‘C. pumila’ clade as a single species. Molecular phylogenetic relationships within the ‘C. acicularis–C. madida’ and ‘C. ferdinandiana–C. neowiedii’ species' complexes were not resolved and require further study. Deeper relationships were incongruent between plastid and nuclear trees, but with no strong bootstrap support for either, except for the position of C. vernicosa. Cytogenetic data indicated chromosome numbers of 2n = 36, 38 and 76, and with substantial variation in the presence and location of CMA/DAPI heterochromatin bands. Conclusions The recognition of ten species of Christensonella is proposed according to the molecular and cytogenetic patterns observed. In addition, diagnostic morphological characters are presented for each recognized species. Banding patterns and chromosome counts suggest the occurrence of centric fusion/fission events, especially for C. ferdinandiana. The results suggest that 2n = 36 karyotypes evolved from 2n = 38 through descendent

  8. Molecular Phylogeny of Gueldenstaedtia and Tibetia (Fabaceae) and Their Biogeographic Differentiation within Eastern Asia.

    Science.gov (United States)

    Xie, Yan-Ping; Meng, Ying; Sun, Hang; Nie, Ze-Long

    2016-01-01

    Tibetia and Gueldenstaedtia are two morphologically similar and small genera in Fabaceae, with distributions largely corresponding to the Sino-Himalayan and Sino-Japanese subkingdoms in eastern Asia, respectively. These two genera have confusing relationships based on morphology; therefore, we aimed to provide a clear understanding of their phylogenetic and biogeographic evolution within eastern Asia. In our investigations we included 88 samples representing five Gueldenstaedtia species, five Tibetia species, and outgroup species were sequenced using five markers (nuclear: ITS; chloroplast: matK, trnL-F, psbA-trnH and rbcL). Our phylogenetic results support (1) the monophyly of Tibetia and of Gueldenstaedtia, respectively; and (2) that Tibetia and Gueldenstaedtia are sister genera. Additionally, our data identified that Tibetia species had much higher sequence variation than Gueldenstaedtia species. Our results suggest that the two genera were separated from each other about 17.23 million years ago, which is congruent with the Himalayan orogeny and the uplift of the Tibetan Plateau in the mid Miocene. The divergence of Tibetia and Gueldenstaedtia is strongly supported by the separation of the Sino-Himalayan and Sino-Japanese region within eastern Asia. In addition, the habitat heterogeneity may accelerate the molecular divergence of Tibetia in the Sino-Himalayan region.

  9. Molecular phylogeny of some avian species using Cytochrome b gene sequence analysis

    Science.gov (United States)

    Awad, A; Khalil, S. R; Abd-Elhakim, Y. M

    2015-01-01

    Veritable identification and differentiation of avian species is a vital step in conservative, taxonomic, forensic, legal and other ornithological interventions. Therefore, this study involved the application of molecular approach to identify some avian species i.e. Chicken (Gallus gallus), Muskovy duck (Cairina moschata), Japanese quail (Coturnix japonica), Laughing dove (Streptopelia senegalensis), and Rock pigeon (Columba livia). Genomic DNA was extracted from blood samples and partial sequence of the mitochondrial cytochrome b gene (358 bp) was amplified and sequenced using universal primers. Sequences alignment and phylogenetic analyses were performed by CLC main workbench program. The obtained five sequences were deposited in GenBank and compared with those previously registered in GenBank. The similarity percentage was 88.60% between Gallus gallus and Coturnix japonica and 80.46% between Gallus gallus and Columba livia. The percentage of identity between the studied species and GenBank species ranged from 77.20% (Columba oenas and Anas platyrhynchos) to 100% (Gallus gallus and Gallus sonneratii, Coturnix coturnix and Coturnix japonica, Meleagris gallopavo and Columba livia). Amplification of the partial sequence of mitochondrial cytochrome b gene proved to be practical for identification of an avian species unambiguously. PMID:27175180

  10. Molecular phylogeny of Glossodoris (Ehrenberg, 1831) nudibranchs and related genera reveals cryptic and pseudocryptic species complexes

    KAUST Repository

    Matsuda, Shayle B.; Gosliner, Terrence M.

    2017-01-01

    Chromodorid nudibranchs (Chromodorididae) are brightly coloured sea slugs that live in some of the most biodiverse and threatened coral reefs on the planet. However, the evolutionary relationships within this family have not been well understood, especially in the genus Glossodoris. Members of Glossodoris have experienced large-scale taxonomic instability over the last century and have been the subject of repeated taxonomic changes, in part due to morphological characters being the sole traditional taxonomic sources of data. Changing concepts of traditional generic boundaries based on morphology also have contributed to this instability. Despite recent advances in molecular systematics, many aspects of chromodorid taxonomy remain poorly understood, particularly at the traditional species and generic levels. In this study, 77 individuals comprising 32 previously defined species were used to build the most robust phylogenetic tree of Glossodoris and related genera using mitochondrial genes cytochrome c oxidase subunit I and 16S, and the nuclear gene 28S. Bayesian inference, maximum likelihood, and maximum parsimony analyses verify the most recent hypothesized evolutionary relationships within Glossodoris. Additionally, a pseudocryptic and cryptic species complex within Glossodoris cincta and a pseudocryptic complex within Glossodoris pallida emerged, and three new species of Doriprismatica are identified.

  11. Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea

    Directory of Open Access Journals (Sweden)

    Aline Grasielle Costa de Melo

    2010-01-01

    Full Text Available Oysters (Ostreidae manifest a high degree of phenotypic plasticity, whereby morphology is of limited value for species identification and taxonomy. By using molecular data, the aim was to genetically characterize the species of Crassostrea occurring along the Brazilian coast, and phylogenetically relate these to other Crassostrea from different parts of the world. Sequencing of the partial cytochrome oxidase c subunit I gene (COI, revealed a total of three species of Crassostrea at 16 locations along the Brazilian coast. C. gasar was found from Curuçá (Pará state to Santos (São Paulo state, and C. rhizophorae from Fortim (Ceará state to Florianópolis (Santa Catarina state, although small individuals of the latter species were also found at Ajuruteua beach (municipality of Bragança, Pará state. An unidentified Crassostrea species was found only on Canela Island, Bragança. Crassostrea gasar and C. rhizophorae grouped with C. virginica, thereby forming a monophyletic Atlantic group, whereas Crassostrea sp. from Canela Island was shown to be more similar to Indo-Pacific oysters, and either arrived in the Atlantic Ocean before the convergence of the Isthmus of Panama or was accidentally brought to Brazil by ship.

  12. Molecular identification, phylogeny and geographic distribution of Brazilian mangrove oysters (Crassostrea)

    Science.gov (United States)

    2010-01-01

    Oysters (Ostreidae) manifest a high degree of phenotypic plasticity, whereby morphology is of limited value for species identification and taxonomy. By using molecular data, the aim was to genetically characterize the species of Crassostrea occurring along the Brazilian coast, and phylogenetically relate these to other Crassostrea from different parts of the world. Sequencing of the partial cytochrome oxidase c subunit I gene (COI), revealed a total of three species of Crassostrea at 16 locations along the Brazilian coast. C. gasar was found from Curuçá (Pará state) to Santos (São Paulo state), and C. rhizophorae from Fortim (Ceará state) to Florianópolis (Santa Catarina state), although small individuals of the latter species were also found at Ajuruteua beach (municipality of Bragança, Pará state). An unidentified Crassostrea species was found only on Canela Island, Bragança. Crassostrea gasar and C. rhizophorae grouped with C. virginica, thereby forming a monophyletic Atlantic group, whereas Crassostrea sp. from Canela Island was shown to be more similar to Indo-Pacific oysters, and either arrived in the Atlantic Ocean before the convergence of the Isthmus of Panama or was accidentally brought to Brazil by ship. PMID:21637433

  13. Molecular Phylogeny of Gueldenstaedtia and Tibetia (Fabaceae) and Their Biogeographic Differentiation within Eastern Asia

    Science.gov (United States)

    Xie, Yan-Ping; Meng, Ying; Sun, Hang; Nie, Ze-Long

    2016-01-01

    Tibetia and Gueldenstaedtia are two morphologically similar and small genera in Fabaceae, with distributions largely corresponding to the Sino-Himalayan and Sino-Japanese subkingdoms in eastern Asia, respectively. These two genera have confusing relationships based on morphology; therefore, we aimed to provide a clear understanding of their phylogenetic and biogeographic evolution within eastern Asia. In our investigations we included 88 samples representing five Gueldenstaedtia species, five Tibetia species, and outgroup species were sequenced using five markers (nuclear: ITS; chloroplast: matK, trnL-F, psbA-trnH and rbcL). Our phylogenetic results support (1) the monophyly of Tibetia and of Gueldenstaedtia, respectively; and (2) that Tibetia and Gueldenstaedtia are sister genera. Additionally, our data identified that Tibetia species had much higher sequence variation than Gueldenstaedtia species. Our results suggest that the two genera were separated from each other about 17.23 million years ago, which is congruent with the Himalayan orogeny and the uplift of the Tibetan Plateau in the mid Miocene. The divergence of Tibetia and Gueldenstaedtia is strongly supported by the separation of the Sino-Himalayan and Sino-Japanese region within eastern Asia. In addition, the habitat heterogeneity may accelerate the molecular divergence of Tibetia in the Sino-Himalayan region. PMID:27632535

  14. A recent shark radiation: molecular phylogeny, biogeography and speciation of wobbegong sharks (family: Orectolobidae).

    Science.gov (United States)

    Corrigan, Shannon; Beheregaray, Luciano B

    2009-07-01

    The elasmobranch fish are an ancient, evolutionarily successful, but under-researched vertebrate group, particularly in regard to their recent evolutionary history. Their lineage has survived four mass extinction events and most present day taxa are thought to be derived from Mesozoic forms. Here we present a molecular phylogenetic analysis of the family Orectolobidae that provides evidence for recent events of diversification in this shark group. Species interrelationships in Orectolobidae were reconstructed based on four mitochondrial and nuclear genes. In line with previous morphological work, our results do not support current taxonomic arrangements in Orectolobidae and indicate that a taxonomic revision of the family is warranted. We propose that the onset of diversification of orectolobid sharks is of Miocene age and occurred within the Indo-Australian region. Surprisingly, we also find evidence for a recent ( approximately last 2 million years) and rapid radiation of wobbegong sharks. Allopatric speciation followed by range expansion seems like the general most likely explanation to account for wobbegong relationships and distributions. We suggest that the evolution of this shark group was mostly influenced by two temporal scenarios of diversification. The oldest relates to major geological changes in the Indo-West Pacific associated with the Miocene collision of the Indo-Australian and Eurasian plates. The most recent scenario was influenced by changes in oceanography and the emergence of biogeographic barriers related to Pleistocene glacial cycles in Australian waters.

  15. Molecular phylogeny of Glossodoris (Ehrenberg, 1831) nudibranchs and related genera reveals cryptic and pseudocryptic species complexes

    KAUST Repository

    Matsuda, Shayle B.

    2017-03-01

    Chromodorid nudibranchs (Chromodorididae) are brightly coloured sea slugs that live in some of the most biodiverse and threatened coral reefs on the planet. However, the evolutionary relationships within this family have not been well understood, especially in the genus Glossodoris. Members of Glossodoris have experienced large-scale taxonomic instability over the last century and have been the subject of repeated taxonomic changes, in part due to morphological characters being the sole traditional taxonomic sources of data. Changing concepts of traditional generic boundaries based on morphology also have contributed to this instability. Despite recent advances in molecular systematics, many aspects of chromodorid taxonomy remain poorly understood, particularly at the traditional species and generic levels. In this study, 77 individuals comprising 32 previously defined species were used to build the most robust phylogenetic tree of Glossodoris and related genera using mitochondrial genes cytochrome c oxidase subunit I and 16S, and the nuclear gene 28S. Bayesian inference, maximum likelihood, and maximum parsimony analyses verify the most recent hypothesized evolutionary relationships within Glossodoris. Additionally, a pseudocryptic and cryptic species complex within Glossodoris cincta and a pseudocryptic complex within Glossodoris pallida emerged, and three new species of Doriprismatica are identified.

  16. Molecular phylogeny of anoplocephalid tapeworms (Cestoda: Anoplocephalidae) infecting humans and non-human primates.

    Science.gov (United States)

    Doležalová, Jana; Vallo, Peter; Petrželková, Klára J; Foitová, Ivona; Nurcahyo, Wisnu; Mudakikwa, Antoine; Hashimoto, Chie; Jirků, Milan; Lukeš, Julius; Scholz, Tomáš; Modrý, David

    2015-09-01

    Anoplocephalid tapeworms of the genus Bertiella Stiles and Hassall, 1902 and Anoplocephala Blanchard, 1848, found in the Asian, African and American non-human primates are presumed to sporadic ape-to-man transmissions. Variable nuclear (5.8S-ITS2; 28S rRNA) and mitochondrial genes (cox1; nad1) of isolates of anoplocephalids originating from different primates (Callicebus oenanthe, Gorilla beringei, Gorilla gorilla, Pan troglodytes and Pongo abelii) and humans from various regions (South America, Africa, South-East Asia) were sequenced. In most analyses, Bertiella formed a monophyletic group within the subfamily Anoplocephalinae, however, the 28S rRNA sequence-based analysis indicated paraphyletic relationship between Bertiella from primates and Australian marsupials and rodents, which should thus be regarded as different taxa. Moreover, isolate determined as Anoplocephala cf. gorillae from mountain gorilla clustered within the Bertiella clade from primates. This either indicates that A. gorillae deserves to be included into the genus Bertiella, or, that an unknown Bertiella species infects also mountain gorillas. The analyses allowed the genetic differentiation of the isolates, albeit with no obvious geographical or host-related patterns. The unexpected genetic diversity of the isolates studied suggests the existence of several Bertiella species in primates and human and calls for revision of the whole group, based both on molecular and morphological data.

  17. Molecular phylogeny of Burkholderia pseudomallei from a remote region of Papua New Guinea.

    Directory of Open Access Journals (Sweden)

    Anthony Baker

    Full Text Available BACKGROUND: The island of New Guinea is located midway between the world's two major melioidosis endemic regions of Australia and Southeast Asia. Previous studies in Papua New Guinea have demonstrated autochthonous melioidosis in Balimo, Western province. In contrast to other regions of endemicity, isolates recovered from both environmental and clinical sources demonstrate narrow genetic diversity over large spatial and temporal scales. METHODOLOGY/PRINCIPAL FINDINGS: We employed molecular typing techniques to determine the phylogenetic relationships of these isolates to each other and to others worldwide to aid in understanding the origins of the Papua New Guinean isolates. Multi-locus sequence typing of the 39 isolates resolved three unique sequence types. Phylogenetic reconstruction and Structure analysis determined that all isolates were genetically closer to those from Australia than those from Southeast Asia. Gene cluster analysis however, identified a Yersinia-like fimbrial gene cluster predominantly found among Burkholderia pseudomallei derived from Southeast Asia. Higher resolution VNTR typing and phylogenetic reconstruction of the Balimo isolates resolved 24 genotypes with long branch lengths. These findings are congruent with long term persistence in the region and a high level of environmental stability. CONCLUSIONS/SIGNIFICANCE: Given that anthropogenic influence has been hypothesized as a mechanism for the dispersal of B. pseudomallei, these findings correlate with limited movement of the indigenous people in the region. The palaeogeographical and anthropogenic history of Australasia and the results from this study indicate that New Guinea is an important region for the further study of B. pseudomallei origins and dissemination.

  18. Molecular phylogeny and divergence times of Malagasy tenrecs: Influence of data partitioning and taxon sampling on dating analyses

    Directory of Open Access Journals (Sweden)

    Glos Julian

    2008-03-01

    Full Text Available Abstract Background Malagasy tenrecs belong to the Afrotherian clade of placental mammals and comprise three subfamilies divided in eight genera (Tenrecinae: Tenrec, Echinops, Setifer and Hemicentetes; Oryzorictinae: Oryzorictes, Limnogale and Microgale; Geogalinae:Geogale. The diversity of their morphology and incomplete taxon sampling made it difficult until now to resolve phylogenies based on either morphology or molecular data for this group. Therefore, in order to delineate the evolutionary history of this family, phylogenetic and dating analyses were performed on a four nuclear genes dataset (ADRA2B, AR, GHR and vWF including all Malagasy tenrec genera. Moreover, the influence of both taxon sampling and data partitioning on the accuracy of the estimated ages were assessed. Results Within Afrotheria the vast majority of the nodes received a high support, including the grouping of hyrax with sea cow and the monophyly of both Afroinsectivora (Macroscelidea + Afrosoricida and Afroinsectiphillia (Tubulidentata + Afroinsectivora. Strongly supported relationships were also recovered among all tenrec genera, allowing us to firmly establish the grouping of Geogale with Oryzorictinae, and to confirm the previously hypothesized nesting of Limnogale within the genus Microgale. The timeline of Malagasy tenrec diversification does not reflect a fast adaptive radiation after the arrival on Madagascar, indicating that morphological specializations have appeared over the whole evolutionary history of the family, and not just in a short period after colonization. In our analysis, age estimates at the root of a clade became older with increased taxon sampling of that clade. Moreover an augmentation of data partitions resulted in older age estimates as well, whereas standard deviations increased when more extreme partition schemes were used. Conclusion Our results provide as yet the best resolved gene tree comprising all Malagasy tenrec genera, and may lead

  19. An evaluation of phylogenetic informativeness profiles and the molecular phylogeny of diplazontinae (Hymenoptera, Ichneumonidae).

    Science.gov (United States)

    Klopfstein, Seraina; Kropf, Christian; Quicke, Donald L J

    2010-03-01

    How to quantify the phylogenetic information content of a data set is a longstanding question in phylogenetics, influencing both the assessment of data quality in completed studies and the planning of future phylogenetic projects. Recently, a method has been developed that profiles the phylogenetic informativeness (PI) of a data set through time by linking its site-specific rates of change to its power to resolve relationships at different timescales. Here, we evaluate the performance of this method in the case of 2 standard genetic markers for phylogenetic reconstruction, 28S ribosomal RNA and cytochrome oxidase subunit 1 (CO1) mitochondrial DNA, with maximum parsimony, maximum likelihood, and Bayesian analyses of relationships within a group of parasitoid wasps (Hymenoptera: Ichneumonidae, Diplazontinae). Retrieving PI profiles of the 2 genes from our own and from 3 additional data sets, we find that the method repeatedly overestimates the performance of the more quickly evolving CO1 compared with 28S. We explore possible reasons for this bias, including phylogenetic uncertainty, violation of the molecular clock assumption, model misspecification, and nonstationary nucleotide composition. As none of these provides a sufficient explanation of the observed discrepancy, we use simulated data sets, based on an idealized setting, to show that the optimum evolutionary rate decreases with increasing number of taxa. We suggest that this relationship could explain why the formula derived from the 4-taxon case overrates the performance of higher versus lower rates of evolution in our case and that caution should be taken when the method is applied to data sets including more than 4 taxa.

  20. Phylogeny, evolutionary trends and classification of the Spathelia-Ptaeroxylon clade: morphological and molecular insights.

    Science.gov (United States)

    Appelhans, M S; Smets, E; Razafimandimbison, S G; Haevermans, T; van Marle, E J; Couloux, A; Rabarison, H; Randrianarivelojosia, M; Kessler, P J A

    2011-06-01

    The Spathelia-Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia-Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. A species-level phylogenetic analysis of the Spathelia-Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL-trnF, rps16 and psbA-trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. With the exception of Spathelia, all genera of the Spathelila-Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. The Spathelia-Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities and oil cells, haplostemonous flowers with appendaged staminal

  1. Phylogeny, evolutionary trends and classification of the Spathelia–Ptaeroxylon clade: morphological and molecular insights

    Science.gov (United States)

    Appelhans, M. S.; Smets, E.; Razafimandimbison, S. G.; Haevermans, T.; van Marle, E. J.; Couloux, A.; Rabarison, H.; Randrianarivelojosia, M.; Keßler, P. J. A.

    2011-01-01

    Background and Aims The Spathelia–Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia–Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. Methods A species-level phylogenetic analysis of the Spathelia–Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL–trnF, rps16 and psbA–trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. Key Results With the exception of Spathelia, all genera of the Spathelila–Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. Conclusions The Spathelia–Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities

  2. Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae.

    Science.gov (United States)

    Lujan, Nathan K; Armbruster, Jonathan W; Lovejoy, Nathan R; López-Fernández, Hernán

    2015-01-01

    The Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and ecomorphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reappraisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two mitochondrial and three nuclear loci (4293bp total). Our most striking large-scale systematic discovery was that the tribe Hypostomini, which has traditionally been recognized as sister to tribe Ancistrini based on morphological data, was nested within Ancistrini. This required recognition of seven additional tribe-level clades: the Chaetostoma Clade, the Pseudancistrus Clade, the Lithoxus Clade, the 'Pseudancistrus' Clade, the Acanthicus Clade, the Hemiancistrus Clade, and the Peckoltia Clade. Results of our analysis, which included type- and non-type species for every valid genus in Hypostominae, support the reevaluation and restriction of several historically problematic genera, including Baryancistrus, Cordylancistrus, Hemiancistrus, and Peckoltia. Much of the deep lineage diversity in Hypostominae is restricted to Guiana Shield and northern Andean drainages, with three tribe-level clades still largely restricted to the Guiana Shield. Of the six geographically widespread clades, a paraphyletic assemblage of three contain lineages restricted to drainages west of the Andes Mountains, suggesting that early diversification of the Hypostominae predated the late Miocene surge in Andean uplift. Our results also highlight examples of trophic ecological diversification and convergence in the Loricariidae, including support for three independent origins of highly similar and globally unique morphological specializations for eating wood. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Molecular Phylogeny and Zoogeography of the Capoeta damascina Species Complex (Pisces: Teleostei: Cyprinidae.

    Directory of Open Access Journals (Sweden)

    Nisreen Alwan

    Full Text Available Capoeta damascina was earlier considered by many authors as one of the most common freshwater fish species found throughout the Levant, Mesopotamia, Turkey, and Iran. However, owing to a high variation in morphological characters among and within its various populations, 17 nominal species were described, several of which were regarded as valid by subsequent revising authors. Capoeta damascina proved to be a complex of closely related species, which had been poorly studied. The current study aims at defining C. damascina and the C. damascina species complex. It investigates phylogenetic relationships among the various members of the C. damascina complex, based on mitochondrial and nuclear DNA sequences. Phylogenetic relationships were projected against paleogeographical events to interpret the geographic distribution of the taxa under consideration in relation to the area's geological history. Samples were obtained from throughout the geographic range and were subjected to genetic analyses, using two molecular markers targeting the mitochondrial cytochrome oxidase I (n = 103 and the two adjacent divergence regions (D1-D2 of the nuclear 28S rRNA genes (n = 65. Six closely related species were recognized within the C. damascina complex, constituting two main lineages: A western lineage represented by C. caelestis, C. damascina, and C. umbla and an eastern lineage represented by C. buhsei, C. coadi, and C. saadii. The results indicate that speciation of these taxa is rather a recent event. Dispersal occurred during the Pleistocene, resulting in present-day distribution patterns. A coherent picture of the phylogenetic relationships and evolutionary history of the C. damascina species complex is drawn, explaining the current patterns of distribution as a result of paleogeographic events and ecological adaptations.

  4. Molecular Phylogeny and Zoogeography of the Capoeta damascina Species Complex (Pisces: Teleostei: Cyprinidae).

    Science.gov (United States)

    Alwan, Nisreen; Esmaeili, Hamid-Reza; Krupp, Friedhelm

    2016-01-01

    Capoeta damascina was earlier considered by many authors as one of the most common freshwater fish species found throughout the Levant, Mesopotamia, Turkey, and Iran. However, owing to a high variation in morphological characters among and within its various populations, 17 nominal species were described, several of which were regarded as valid by subsequent revising authors. Capoeta damascina proved to be a complex of closely related species, which had been poorly studied. The current study aims at defining C. damascina and the C. damascina species complex. It investigates phylogenetic relationships among the various members of the C. damascina complex, based on mitochondrial and nuclear DNA sequences. Phylogenetic relationships were projected against paleogeographical events to interpret the geographic distribution of the taxa under consideration in relation to the area's geological history. Samples were obtained from throughout the geographic range and were subjected to genetic analyses, using two molecular markers targeting the mitochondrial cytochrome oxidase I (n = 103) and the two adjacent divergence regions (D1-D2) of the nuclear 28S rRNA genes (n = 65). Six closely related species were recognized within the C. damascina complex, constituting two main lineages: A western lineage represented by C. caelestis, C. damascina, and C. umbla and an eastern lineage represented by C. buhsei, C. coadi, and C. saadii. The results indicate that speciation of these taxa is rather a recent event. Dispersal occurred during the Pleistocene, resulting in present-day distribution patterns. A coherent picture of the phylogenetic relationships and evolutionary history of the C. damascina species complex is drawn, explaining the current patterns of distribution as a result of paleogeographic events and ecological adaptations.

  5. Serine protease isoforms in Gloydius intermedius venom: Full sequences, molecular phylogeny and evolutionary implications.

    Science.gov (United States)

    Yang, Zhang-Min; Yu, Hui; Liu, Zhen-Zhen; Pei, Jian-Zhu; Yang, Yu-E; Yan, Su-Xian; Zhang, Cui; Zhao, Wen-Long; Wang, Zhe-Zhi; Wang, Ying-Ming; Tsai, Inn-Ho

    2017-07-05

    Nine distinct venom serine proteases (vSPs) of Gloydius intermedius were studied by transcriptomic, sub-proteomic and phylogenetic analyses. Their complete amino acid sequences were deduced after Expression Sequence Tag (EST) analyses followed by cDNA cloning and sequencing. These vSPs appear to be paralogs and contain the catalytic triads and 1-4 potential N-glycosylation sites. Their relative expression levels evaluated by qPCR were grossly consistent with their EST hit-numbers. The major vSPs were purified by HPLC and their N-terminal sequences matched well to the deduced sequences, while fragments of the minor vSPs were detected by LC-MS/MS identification. Specific amidolytic activities of the fractions from HPLC and anion exchange separation were assayed using four chromogenic substrates, respectively. Molecular phylogenetic tree based on the sequences of these vSPs and their orthologs revealed six major clusters, one of them covered four lineages of plasminogen activator like vSPs. N-glycosylation patterns and variations for the vSPs are discussed. The high sequence similarities between G. intermedius vSPs and their respective orthologs from American pitvipers suggest that most of the isoforms evolved before Asian pitvipers migrated to the New World. Our results also indicate that the neurotoxic venoms contain more kallikrein-like vSPs and hypotensive components than the hemorrhagic venoms. Full sequences and expression levels of nine paralogous serine proteases (designated as GiSPs) of Gloydius intermedius venom have been studied. A kallikrein-like enzyme is most abundant and four isoforms homologous to venom plasminogen-activators are also expressed in this venom. Taken together, the present and previous data demonstrate that the neurotoxic G. intermedius venoms contain more hypotensive vSPs relative to other hemorrhagic pitviper venoms and the pitviper vSPs are highly versatile and diverse. Their structure-function relationships remain to be explored and

  6. A framework for assessing the concordance of molecular typing methods and the true strain phylogeny of Campylobacter jejuni and C. coli using draft genome sequence data

    Directory of Open Access Journals (Sweden)

    Catherine Dianna Carrillo

    2012-05-01

    Full Text Available Tracking of sources of sporadic cases of campylobacteriosis remains challenging, as commonly used molecular typing methods have limited ability to unambiguously link genetically related strains. Genomics has become increasingly prominent in the public health response to enteric pathogens as methods enable characterization of pathogens at an unprecedented level of resolution. However, the cost of sequencing and expertise required for bioinformatic analyses remains prohibitive, and these comprehensive analyses are limited to a few priority strains. Although several molecular typing methods are currently widely used for epidemiological analysis of campylobacters, it is not clear how accurately these methods reflect true strain relationships. To address this, we analyzed 104 publically available whole genome sequences (WGS of C. jejuni and C. coli. In addition to in silico determination of multi-locus sequence (MLST, fla and porA type, as well as comparative genomic fingerprint (CGF, we inferred a reference phylogeny based on conserved core genome elements. Molecular typing data were compared to the reference phylogeny for concordance using the Adjusted Wallace Coefficient (AWC with confidence intervals. Although MLST targets the sequence variability in core genes and CGF targets insertions/deletions of accessory genes, both methods are based on multilocus analysis and provided better estimates of true phylogeny than methods based on single loci (porA, fla. A more comprehensive WGS dataset including additional genetically related strains, both epidemiologically linked and unlinked, will be necessary to assess performance of methods for outbreak investigations and surveillance activities. Analyses of the strengths and weaknesses of widely used typing methodologies in inferring true strain relationships will provide guidance in the interpretation of this data for epidemiological purposes.

  7. Microsporidian genus Berwaldia (Opisthosporidia, Microsporidia), infecting daphnids (Crustacea, Branchiopoda): Biology, structure, molecular phylogeny and description of two new species

    Czech Academy of Sciences Publication Activity Database

    Vávra, Jiří; Hyliš, M.; Fiala, Ivan; Sacherová, V.; Vossbrinck, C. R.

    2017-01-01

    Roč. 61, October (2017), s. 1-12 ISSN 0932-4739 R&D Projects: GA ČR(CZ) GBP505/12/G112 Institutional support: RVO:60077344 Keywords : Daphnia * fungi * Microsporidia * parasite * SSU rDNA phylogeny * transmission Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.581, year: 2016

  8. Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes

    Directory of Open Access Journals (Sweden)

    Tellier Laurent C

    2010-03-01

    Full Text Available Abstract Background Mitochondria are a valuable resource for studying the evolutionary process and deducing phylogeny. A few mitochondria genomes have been sequenced, but a comprehensive picture of the domestication event for silkworm mitochondria remains to be established. In this study, we integrate the extant data, and perform a whole genome resequencing of Japanese wild silkworm to obtain breakthrough results in silkworm mitochondrial (mt population, and finally use these to deduce a more comprehensive phylogeny of the Bombycidae. Results We identified 347 single nucleotide polymorphisms (SNPs in the mt genome, but found no past recombination event to have occurred in the silkworm progenitor. A phylogeny inferred from these whole genome SNPs resulted in a well-classified tree, confirming that the domesticated silkworm, Bombyx mori, most recently diverged from the Chinese wild silkworm, rather than from the Japanese wild silkworm. We showed that the population sizes of the domesticated and Chinese wild silkworms both experience neither expansion nor contraction. We also discovered that one mt gene, named cytochrome b, shows a strong signal of positive selection in the domesticated clade. This gene is related to energy metabolism, and may have played an important role during silkworm domestication. Conclusions We present a comparative analysis on 41 mt genomes of B. mori and B. mandarina from China and Japan. With these, we obtain a much clearer picture of the evolution history of the silkworm. The data and analyses presented here aid our understanding of the silkworm in general, and provide a crucial insight into silkworm phylogeny.

  9. An Antarctic hypotrichous ciliate, Parasterkiella thompsoni (Foissner) nov. gen., nov. comb., recorded in Argentinean peat-bogs: morphology, morphogenesis, and molecular phylogeny.

    Science.gov (United States)

    Küppers, Gabriela Cristina; Paiva, Thiago da Silva; Borges, Bárbara do Nascimento; Harada, Maria Lúcia; Garraza, Gabriela González; Mataloni, Gabriela

    2011-05-01

    The ciliate Parasterkiella thompsoni (Foissner, 1996) nov. gen., nov. comb. was originally described from Antarctica. In the present study, we report the morphology, morphogenesis during cell division, and molecular phylogeny inferred from the 18S-rDNA sequence of a population isolated from the Rancho Hambre peat bog, Tierra del Fuego Province (Argentina). The study is based on live and protargol-impregnated specimens. Molecular phylogeny was inferred from trees constructed by means of the maximum parsimony, neighbor joining, and Bayesian analyses. The interphase morphology matches the original description of the species. During the cell division, stomatogenesis begins with the de novo proliferation of two fields of basal bodies, each one left of the postoral ventral cirri and of transverse cirri, which later unify. Primordia IV-VI of the proter develop from disaggregation of cirrus IV/3, while primordium IV of the opisthe develops from cirrus IV/2 and primordia V and VI from cirrus V/4. Dorsal morphogenesis occurs in the Urosomoida pattern-that is, the fragmentation of kinety 3 is lacking. Three macronuclear nodules are generated before cytokinesis. Phylogenetic analyses consistently placed P. thompsoni within the stylonychines. New data on the morphogenesis of the dorsal ciliature justifies the transference of Sterkiella thompsoni to a new genus Parasterkiella. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa.

    Science.gov (United States)

    Li, Lin-Feng; Häkkinen, Markku; Yuan, Yong-Ming; Hao, Gang; Ge, Xue-Jun

    2010-10-01

    Musaceae is a small paleotropical family. Three genera have been recognised within this family although the generic delimitations remain controversial. Most species of the family (around 65 species) have been placed under the genus Musa and its infrageneric classification has long been disputed. In this study, we obtained nuclear ribosomal ITS and chloroplast (atpB-rbcL, rps16, and trnL-F) DNA sequences of 36 species (42 accessions of ingroups representing three genera) together with 10 accessions of ingroups retrieved from GenBank database and 4 accessions of outgroups, to construct the phylogeny of the family, with a special reference to the infrageneric classification of the genus Musa. Our phylogenetic analyses elaborated previous results in supporting the monophyly of the family and suggested that Musella and Ensete may be congeneric or at least closely related, but refuted the previous infrageneric classification of Musa. None of the five sections of Musa previously defined based on morphology was recovered as monophyletic group in the molecular phylogeny. Two infrageneric clades were identified, which corresponded well to the basic chromosome numbers of x=11 and 10/9/7, respectively: the former clade comprises species from the sections Musa and Rhodochlamys while the latter contains sections of Callimusa, Australimusa, and Ingentimusa. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Molecular phylogeny of 21 tropical bamboo species reconstructed by integrating non-coding internal transcribed spacer (ITS1 and 2) sequences and their consensus secondary structure.

    Science.gov (United States)

    Ghosh, Jayadri Sekhar; Bhattacharya, Samik; Pal, Amita

    2017-06-01

    The unavailability of the reproductive structure and unpredictability of vegetative characters for the identification and phylogenetic study of bamboo prompted the application of molecular techniques for greater resolution and consensus. We first employed internal transcribed spacer (ITS1, 5.8S rRNA and ITS2) sequences to construct the phylogenetic tree of 21 tropical bamboo species. While the sequence alone could grossly reconstruct the traditional phylogeny amongst the 21-tropical species studied, some anomalies were encountered that prompted a further refinement of the phylogenetic analyses. Therefore, we integrated the secondary structure of the ITS sequences to derive individual sequence-structure matrix to gain more resolution on the phylogenetic reconstruction. The results showed that ITS sequence-structure is the reliable alternative to the conventional phenotypic method for the identification of bamboo species. The best-fit topology obtained by the sequence-structure based phylogeny over the sole sequence based one underscores closer clustering of all the studied Bambusa species (Sub-tribe Bambusinae), while Melocanna baccifera, which belongs to Sub-Tribe Melocanneae, disjointedly clustered as an out-group within the consensus phylogenetic tree. In this study, we demonstrated the dependability of the combined (ITS sequence+structure-based) approach over the only sequence-based analysis for phylogenetic relationship assessment of bamboo.

  12. Genomic organization and molecular phylogenies of the beta (β keratin multigene family in the chicken (Gallus gallus and zebra finch (Taeniopygia guttata: implications for feather evolution

    Directory of Open Access Journals (Sweden)

    Sawyer Roger H

    2010-05-01

    Full Text Available Abstract Background The epidermal appendages of reptiles and birds are constructed of beta (β keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians. Results The subfamilies (claw, feather, feather-like, and scale of β-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather β-keratin clades are expressed. Conclusions Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, novel β-keratin genes were selected for novel functions within appendages such as feathers.

  13. Further studies on Boreonectes Angus, 2010, with a molecular phylogeny of the Palaearctic species of the genus.

    Science.gov (United States)

    Angus, Robert B; Ribera, Ignacio; Jia, Fenglong

    2017-01-01

    Karyotypes are given for Boreonectes emmerichi (Falkenström, 1936) from its type locality at Kangding, China, and for B. alpestris (Dutton & Angus, 2007) from the St Gotthard and San Bernardino passes in the Swiss Alps. A phylogeny based on sequence data from a combination of mitochondrial and nuclear genes recovered western Palaearctic species of Boreonectes as monophyletic with strong support. Boreonectes emmerichi was placed as sister to the north American forms of B. griseostriatus (De Geer, 1774), although with low support. The diversity of Palaearctic species of the B. griseostriatus species group is discussed.

  14. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene.

    Science.gov (United States)

    Ragan, M A; Bird, C J; Rice, E L; Gutell, R R; Murphy, C A; Singh, R K

    1994-01-01

    A phylogeny of marine Rhodophyta has been inferred by a number of methods from nucleotide sequences of nuclear genes encoding small subunit rRNA from 39 species in 15 orders. Sequence divergences are relatively large, especially among bangiophytes and even among congeners in this group. Subclass Bangiophycidae appears polyphyletic, encompassing at least three lineages, with Porphyridiales distributed between two of these. Subclass Florideophycidae is monophyletic, with Hildenbrandiales, Corallinales, Ahnfeltiales, and a close association of Nemaliales, Acrochaetiales, and Palmariales forming the four deepest branches. Cermiales may represent a convergence of vegetative and reproductive morphologies, as family Ceramiaceae is at best weakly related to the rest of the order, and one of its members appears to be allied to Gelidiales. Except for Gigartinales, for which more data are required, the other florideophyte orders appear distinct and taxonomically justified. A good correlation was observed with taxonomy based on pit-plug ultrastructure. Tests under maximum-likelihood and parsimony of alternative phylogenies based on structure and chemistry refuted suggestions that Acrochaetiales is the most primitive florideophyte order and that Gelidiales and Hildenbrandiales are sister groups. PMID:8041780

  15. A comprehensive molecular phylogeny of dalytyphloplanida (platyhelminthes: rhabdocoela reveals multiple escapes from the marine environment and origins of symbiotic relationships.

    Directory of Open Access Journals (Sweden)

    Niels Van Steenkiste

    Full Text Available In this study we elaborate the phylogeny of Dalytyphloplanida based on complete 18S rDNA (156 sequences and partial 28S rDNA (125 sequences, using a Maximum Likelihood and a Bayesian Inference approach, in order to investigate the origin of a limnic or limnoterrestrial and of a symbiotic lifestyle in this large group of rhabditophoran flatworms. The results of our phylogenetic analyses and ancestral state reconstructions indicate that dalytyphloplanids have their origin in the marine environment and that there was one highly successful invasion of the freshwater environment, leading to a large radiation of limnic and limnoterrestrial dalytyphloplanids. This monophyletic freshwater clade, Limnotyphloplanida, comprises the taxa Dalyelliidae, Temnocephalida, and most Typhloplanidae. Temnocephalida can be considered ectosymbiotic Dalyelliidae as they are embedded within this group. Secondary returns to brackish water and marine environments occurred relatively frequently in several dalyeliid and typhloplanid taxa. Our phylogenies also show that, apart from the Limnotyphloplanida, there have been only few independent invasions of the limnic environment, and apparently these were not followed by spectacular speciation events. The distinct phylogenetic positions of the symbiotic taxa also suggest multiple origins of commensal and parasitic life strategies within Dalytyphloplanida. The previously established higher-level dalytyphloplanid clades are confirmed in our topologies, but many of the traditional families are not monophyletic. Alternative hypothesis testing constraining the monophyly of these families in the topologies and using the approximately unbiased test, also statistically rejects their monophyly.

  16. Phylogeny and molecular signatures (conserved proteins and indels that are specific for the Bacteroidetes and Chlorobi species

    Directory of Open Access Journals (Sweden)

    Lorenzini Emily

    2007-05-01

    reported based on concatenated sequences for 12 conserved proteins by different methods including the character compatibility (or clique approach. The placement of Salinibacter ruber with other Bacteroidetes species was not resolved by other phylogenetic methods, but this affiliation was strongly supported by the character compatibility approach. Conclusion The molecular signatures described here provide novel tools for identifying and circumscribing species from the Bacteroidetes and Chlorobi phyla as well as some of their main groups in clear terms. These results also provide strong evidence that species from these two phyla (and also possibly Fibrobacteres are specifically related to each other and they form a single superphylum. Functional studies on these proteins and indels should aid in the discovery of novel biochemical and physiological characteristics that are unique to these groups of bacteria.

  17. Molecular cell biology and physiology of solute transport

    Science.gov (United States)

    Caplan, Michael J.; Seo-Mayer, Patricia; Zhang, Li

    2010-01-01

    Purpose of review An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell–cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. Recent findings Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories, suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. Summary Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications. PMID:18695392

  18. Chemical Composition of the Essential Oil from Aerial Parts of Javanian Pimpinella pruatjan Molk. and Its Molecular Phylogeny

    Directory of Open Access Journals (Sweden)

    Agustina D. R. Nurcahyanti

    2016-07-01

    Full Text Available The species-rich and diverse genus Pimpinella is mainly distributed in Europe and Asia; a few species occur in Africa. Yet, the Javanian Pimpinella, P. pruatjan, which has been used as an aphrodisiac in Indonesian traditional medicine, was studied for the first time in the context of chemical composition, as well as phylogeny analysis and antimicrobial activity. We examined the chemical composition of the essential oil (EO from aerial parts of P. pruatjan by gas liquid chromatography-mass spectrometry (GLC-MS. The main component of EO was (Z-γ-bisabolene. Several oxygenated monoterpenes, oxygenated sesquiterpenes, and sesquiterpenes were also detected. The genetic relationship of Pimpinella pruatjan Molk. to other Pimpinella species was reconstructed using nucleotide sequences of the nuclear DNA marker ITS (Internal Transcribed Spacer. P. pruatjan clusters as a sister group to the African Pimpinella species. The EO did not exhibit an apparent antimicrobial activity.

  19. Molecular phylogeny of the tribe Torini Karaman, 1971 (Actinopterygii: Cypriniformes) from the Middle East and North Africa.

    Science.gov (United States)

    Borkenhagen, Kai

    2017-02-22

    Freshwater fishes of the cyprinid tribe Torini are widespread in Africa the Middle East and Indomalaya. The relationships of Middle-Eastern Torini are analysed based on mitochondrial markers (Cyt b, ND4) of the majority of relevant species. I present a larely well resolved phylogeny, which confirms the validity of the morphologically defined genera Arabibarbus, Carasobarbus, Mesopotamichthys and Pterocapoeta. The Torini originated in Indomalaya and colonised Africa via the Middle East. Morocco was colonised two times independently, first from sub-Saharan Africa and secondly along the southern margin of the Mediterranean Sea. The Tigris-Euphrates system is an important crossroad for the colonisation of the Jordan River, the Orontes River and the watercourses of the Arabian Peninsula by freshwater fishes. The Jordan lost its connection to the Euphrates earlier than the Orontes. The Arabian Peninsula was colonised from the Tigris-Euphrates system in at least two independent events.

  20. Molecular phylogeny of Cyclophyllidea (Cestoda: Eucestoda): an in-silico analysis based on mtCOI gene.

    Science.gov (United States)

    Sharma, Sunil; Lyngdoh, Damanbha; Roy, Bishnupada; Tandon, Veena

    2016-09-01

    Order Cyclophyllidea (of cestode platyhelminths) has a rich diversity of parasites and includes many families and species that are known to cause serious medical condition in humans and domestic and wild animals. Despite various attempts to resolve phylogenetic relationships at the inter-family level, uncertainty remains. In order to add resolution to the existing phylogeny of the order, we generated partial mtCO1 sequences for some commonly occurring cyclophyllidean cestodes and combined them with available sequences from GenBank. Phylogeny was inferred taking a total 83 representative species spanning 8 families using Bayesian analysis. The phylogenetic tree revealed Dilepididae as the most basal taxon and showed early divergence in the phylogenetic tree. Paruterinidae, Taeniidae and Anoplocephalidae showed non-monophyletic assemblage; our result suggests that the family Paruterinidae may represent a polyphyletic group. The diverse family Taeniidae appeared in two separate clades; while one of them included all the members of the genus Echinococcus and also Versteria, the representatives of the genera Taenia and Hydatigera clubbed in the other clade. A close affinity of Dipylidiidae with Taenia and Hydatigera was seen, whereas existence of a close relationship between Mesocestoididae and Echinococcus (of Taeniidae) is also demonstrated. The crown group comprised the families Anoplocephalidae, Davaineidae, Hymenolepididae and Mesocestoididae, and also all species of the genus Echinococcus and Versteria mustelae; monophyly of these families (excepting Anolplocephalidae) and the genus Echinococcus as well as its sister-taxon relation with V. mustelae is also confirmed. Furthermore, non-monophyly of Anoplocephalidae is suggested to be correlated with divergence in the host selection.

  1. Molecular physiology of seeds. Author-review of the Thesis

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present author-review of the Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  2. Targeted Enrichment of Large Gene Families for Phylogenetic Inference: Phylogeny and Molecular Evolution of Photosynthesis Genes in the Portullugo Clade (Caryophyllales).

    Science.gov (United States)

    Moore, Abigail J; Vos, Jurriaan M De; Hancock, Lillian P; Goolsby, Eric; Edwards, Erika J

    2018-05-01

    Hybrid enrichment is an increasingly popular approach for obtaining hundreds of loci for phylogenetic analysis across many taxa quickly and cheaply. The genes targeted for sequencing are typically single-copy loci, which facilitate a more straightforward sequence assembly and homology assignment process. However, this approach limits the inclusion of most genes of functional interest, which often belong to multi-gene families. Here, we demonstrate the feasibility of including large gene families in hybrid enrichment protocols for phylogeny reconstruction and subsequent analyses of molecular evolution, using a new set of bait sequences designed for the "portullugo" (Caryophyllales), a moderately sized lineage of flowering plants (~ 2200 species) that includes the cacti and harbors many evolutionary transitions to C$_{\\mathrm{4}}$ and CAM photosynthesis. Including multi-gene families allowed us to simultaneously infer a robust phylogeny and construct a dense sampling of sequences for a major enzyme of C$_{\\mathrm{4}}$ and CAM photosynthesis, which revealed the accumulation of adaptive amino acid substitutions associated with C$_{\\mathrm{4}}$ and CAM origins in particular paralogs. Our final set of matrices for phylogenetic analyses included 75-218 loci across 74 taxa, with ~ 50% matrix completeness across data sets. Phylogenetic resolution was greatly improved across the tree, at both shallow and deep levels. Concatenation and coalescent-based approaches both resolve the sister lineage of the cacti with strong support: Anacampserotaceae $+$ Portulacaceae, two lineages of mostly diminutive succulent herbs of warm, arid regions. In spite of this congruence, BUCKy concordance analyses demonstrated strong and conflicting signals across gene trees. Our results add to the growing number of examples illustrating the complexity of phylogenetic signals in genomic-scale data.

  3. A new molecular phylogeny of the Laurencia complex (Rhodophyta, Rhodomelaceae) and a review of key morphological characters result in a new genus, Coronaphycus, and a description of C. novus.

    Science.gov (United States)

    Metti, Yola; Millar, Alan J K; Steinberg, Peter

    2015-10-01

    Within the Laurencia complex (Rhodophyta, Rhodomelaceae), six genera have been recognized based on both molecular analyses and morphology: Laurencia, Osmundea, Chondrophycus, Palisada, Yuzurua, and Laurenciella. Recently, new material from Australia has been collected and included in the current molecular phylogeny, resulting in a new clade. This study examined the generic delineations using a combination of morphological comparisons and phylogenetic analysis of chloroplast (rbcL) nucleotide sequence. The molecular phylogeny recovered eight (rather than six) clades; Yuzurua, Laurenciella, Palisada, and Chondrophycus showed as monophyletic clades each with strong support. However, the genera Osmundea and Laurencia were polyphyletic. Consequently, the new genus Coronaphycus is proposed, resulting in the new combination Coronaphycus elatus and a description of the new species C. novus. © 2015 Phycological Society of America.

  4. First molecular identification and phylogeny of a Babesia sp. from a symptomatic sow (Sus scrofa Linnaeus 1758).

    Science.gov (United States)

    Zobba, Rosanna; Parpaglia, Maria Luisa Pinna; Spezzigu, Antonio; Pittau, Marco; Alberti, Alberto

    2011-06-01

    Porcine babesiosis is a widespread yet overlooked disease causing economic losses in many regions of the world. To date, the etiological agent of porcine babesiosis has not been molecularly characterized. Here, we provide the first molecular characterization of a piroplasm detected in a symptomatic sow, phylogenetically closely related to the Ungulibabesids. Results pave the way for future molecular epidemiology studies.

  5. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14α-demethylase (ERG11 gene of Moniliophthora perniciosa

    Directory of Open Access Journals (Sweden)

    Geruza de Oliveira Ceita

    2014-12-01

    Full Text Available The phytopathogenic fungus Moniliophthora perniciosa (Stahel Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11 that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR. Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.

  6. [Molecular phylogeny of Turbellaria, based on data from comparing the nucleotide sequences of 18S ribosomal RNA genes].

    Science.gov (United States)

    Kuznedelov, K D; Timoshkin, O A

    1995-01-01

    Polymerase chain reaction and direct sequencing of the 5'-end region of the 18S ribosomal RNA gene were used to infer phylogenetic relationship among turbellarian flatworms from Lake Baikal. Representatives of 5 orders (Tricladida--10 spp., Lecithoepitheliata--5 spp., Prolecithophora--3 spp., Proseriata and Kalyptorhynchia one for each) were studied; nucleotide sequence of more than 340 nucleotides was determined for each species. Consensus sequence for each order having more than one representative species was determined. Distance matrix and maximum parsimony approaches were applied to infer phylogenies. Bootstrap procedure was used to estimate confidence limits, at the 100% level by bootstrapping, the group of three orders: Kalyptorhynchia, Proseriata and Lecithoepitheliata was found to be monophyletic. However, subsets inside the group had no significant support to be preferred or rejected. Our data do not support traditional systematics which joins two suborders Tricladida and Proseriata into the single order Seriata, and also do not support comparative anatomical data which show close relationship of Lecithoepitheliata and lower Prolecithophora.

  7. Molecular characterization, phylogeny analysis and pathogenicity of a Muscovy duck adenovirus strain isolated in China in 2014

    International Nuclear Information System (INIS)

    Zhang, Xinheng; Zhong, Yangjin; Zhou, Zhenhai; Liu, Yang; Zhang, Huanmin; Chen, Feng; Chen, Weiguo; Xie, Qingmei

    2016-01-01

    This study aimed to characterize a novel adenovirus (AdV) isolated from diseased Muscovy ducks in China. After the AdV was successfully propagated in duck embryo fibroblasts, the morphological and physicochemical properties of the virions were studied by electron microscopy and different tests. The results of the analyses were in conformity with AdV properties. The full genome sequence was determined and analyzed. The new isolate (named CH-GD-12-2014) shared over 91% sequence identity with duck AdV-2 representing the species Duck aviadenovirus B. The most important distinguishing feature between the two DAdV strains was the presence of a second fiber gene in the Chinese isolate. Phylogeny reconstruction confirmed the affiliation of the virus with goose and duck AdVs in the genus Aviadenovirus. Experimental infection resulted in embryo death, and intramuscular inoculation provoked morbidity and mortality among ducks and chickens. - Highlights: • A duck adenovirus type 3 was isolated and the complete genome of DAdV-3 was obtained. • Physicochemical properties and electron microscopy were researched. • Pathogenicity of duck adenovirus type 3 was researched.

  8. Molecular characterization, phylogeny analysis and pathogenicity of a Muscovy duck adenovirus strain isolated in China in 2014

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinheng [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642 (China); Zhong, Yangjin; Zhou, Zhenhai; Liu, Yang [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); Zhang, Huanmin [USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823 (United States); Chen, Feng [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); Chen, Weiguo [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642 (China); Xie, Qingmei, E-mail: qmx@scau.edu.cn [College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642 (China); Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong 510642 (China); South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642 (China)

    2016-06-15

    This study aimed to characterize a novel adenovirus (AdV) isolated from diseased Muscovy ducks in China. After the AdV was successfully propagated in duck embryo fibroblasts, the morphological and physicochemical properties of the virions were studied by electron microscopy and different tests. The results of the analyses were in conformity with AdV properties. The full genome sequence was determined and analyzed. The new isolate (named CH-GD-12-2014) shared over 91% sequence identity with duck AdV-2 representing the species Duck aviadenovirus B. The most important distinguishing feature between the two DAdV strains was the presence of a second fiber gene in the Chinese isolate. Phylogeny reconstruction confirmed the affiliation of the virus with goose and duck AdVs in the genus Aviadenovirus. Experimental infection resulted in embryo death, and intramuscular inoculation provoked morbidity and mortality among ducks and chickens. - Highlights: • A duck adenovirus type 3 was isolated and the complete genome of DAdV-3 was obtained. • Physicochemical properties and electron microscopy were researched. • Pathogenicity of duck adenovirus type 3 was researched.

  9. Ultrastructure and molecular phylogeny of Calkinsia aureus: cellular identity of a novel clade of deep-sea euglenozoans with epibiotic bacteria

    Directory of Open Access Journals (Sweden)

    Leander Brian S

    2009-01-01

    Full Text Available Abstract Background The Euglenozoa is a large group of eukaryotic flagellates with diverse modes of nutrition. The group consists of three main subclades – euglenids, kinetoplastids and diplonemids – that have been confirmed with both molecular phylogenetic analyses and a combination of shared ultrastructural characteristics. Several poorly understood lineages of putative euglenozoans live in anoxic environments, such as Calkinsia aureus, and have yet to be characterized at the molecular and ultrastructural levels. Improved understanding of these lineages is expected to shed considerable light onto the ultrastructure of prokaryote-eukaryote symbioses and the associated cellular innovations found within the Euglenozoa and beyond. Results We collected Calkinsia aureus from core samples taken from the low-oxygen seafloor of the Santa Barbara Basin (580 – 592 m depth, California. These biflagellates were distinctively orange in color and covered with a dense array of elongated epibiotic bacteria. Serial TEM sections through individually prepared cells demonstrated that C. aureus shares derived ultrastructural features with other members of the Euglenozoa (e.g. the same paraxonemal rods, microtubular root system and extrusomes. However, C. aureus also possessed several novel ultrastructural systems, such as modified mitochondria (i.e. hydrogenosome-like, an "extrusomal pocket", a highly organized extracellular matrix beneath epibiotic bacteria and a complex flagellar transition zone. Molecular phylogenies inferred from SSU rDNA sequences demonstrated that C. aureus grouped strongly within the Euglenozoa and with several environmental sequences taken from low-oxygen sediments in various locations around the world. Conclusion Calkinsia aureus possesses all of the synapomorphies for the Euglenozoa, but lacks traits that are specific to any of the three previously recognized euglenozoan subgroups. Molecular phylogenetic analyses of C. aureus

  10. Molecular phylogeny, morphology and bioacoustics reveal five additional species of arboreal microhylid frogs of the genus Anodonthyla from Madagascar

    NARCIS (Netherlands)

    Vences, M.; Glaw, F.; Köhler, J.; Wollenberg, K.C.

    2010-01-01

    We provide a partial revision of the microhylid frogs of the genus Anodonthyla, endemic to Madagascar, based on comprehensive molecular, bioacoustic and morphological data sets that include newly collected specimens from multiple localities. The molecular trees provide strong evidence for the

  11. Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria.

    Science.gov (United States)

    Nakao, Minoru; Lavikainen, Antti; Iwaki, Takashi; Haukisalmi, Voitto; Konyaev, Sergey; Oku, Yuzaburo; Okamoto, Munehiro; Ito, Akira

    2013-05-01

    The cestode family Taeniidae generally consists of two valid genera, Taenia and Echinococcus. The genus Echinococcus is monophyletic due to a remarkable similarity in morphology, features of development and genetic makeup. By contrast, Taenia is a highly diverse group formerly made up of different genera. Recent molecular phylogenetic analyses strongly suggest the paraphyly of Taenia. To clarify the genetic relationships among the representative members of Taenia, molecular phylogenies were constructed using nuclear and mitochondrial genes. The nuclear phylogenetic trees of 18S ribosomal DNA and concatenated exon regions of protein-coding genes (phosphoenolpyruvate carboxykinase and DNA polymerase delta) demonstrated that both Taenia mustelae and a clade formed by Taenia parva, Taenia krepkogorski and Taenia taeniaeformis are only distantly related to the other members of Taenia. Similar topologies were recovered in mitochondrial genomic analyses using 12 complete protein-coding genes. A sister relationship between T. mustelae and Echinococcus spp. was supported, especially in protein-coding gene trees inferred from both nuclear and mitochondrial data sets. Based on these results, we propose the resurrection of Hydatigera Lamarck, 1816 for T. parva, T. krepkogorski and T. taeniaeformis and the creation of a new genus, Versteria, for T. mustelae. Due to obvious morphological and ecological similarities, Taenia brachyacantha is also included in Versteria gen. nov., although molecular evidence is not available. Taenia taeniaeformis has been historically regarded as a single species but the present data clearly demonstrate that it consists of two cryptic species. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  12. Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: ocelot and domestic cat lineages.

    Science.gov (United States)

    Masuda, R; Lopez, J V; Slattery, J P; Yuhki, N; O'Brien, S J

    1996-12-01

    Molecular phylogeny of the cat family Felidae is derived using two mitochondrial genes, cytochrome b and 12S rRNA. Phylogenetic methods of weighted maximum parsimony and minimum evolution estimated by neighbor-joining are employed to reconstruct topologies among 20 extant felid species. Sequence analyses of 363 bp of cytochrome b and 376 bp of the 12S rRNA genes yielded average pair-wise similarity values between felids ranging from 94 to 99% and from 85 to 99%, respectively. Phylogenetic reconstruction supports more recent, intralineage associations but fails to completely resolve interlineage relationships. Both genes produce a monophyletic group of Felis species but vary in the placement of the pallas cat. The ocelot lineage represents an early divergence within the Felidae, with strong associations between ocelot and margay, Geoffroy's cat and kodkod, and pampas cat and tigrina. Implications of the relative recency of felid evolution, presence of ancestral polymorphisms, and influence of outgroups in placement of the topological root are discussed.

  13. Molecular phylogeny of the cosmopolitan aquatic plant genus Limosella (Scrophulariaceae) with a particular focus on the origin of the Australasian L. curdieana.

    Science.gov (United States)

    Ito, Yu; Tanaka, Norio; Albach, Dirk C; Barfod, Anders S; Oxelman, Bengt; Muasya, A Muthama

    2017-01-01

    Limosella is a small aquatic genus of Scrophulariaceae of twelve species, of which one is distributed in northern circumpolar regions, two in southern circumpolar regions, two in the Americas, one endemic to Australia, and six in tropical or southern Africa or both. The Australasian L. curdieana has always been considered distinct but its close phylogenetic relationships have never been inferred. Here, we investigated the following alternative phylogenetic hypotheses based on comparative leaf morphology and habitat preferences or floral morphology: (1) L. curdieana is sister to the African L. grandiflora; or (2) it is closely related to a group of other African species and the northern circumpolar L. aquatica. We tested these hypotheses in a phylogenetic framework using DNA sequence data from four plastid DNA regions and the nuclear ITS region. These were analyzed using maximum parsimony and Bayesian inference. We obtained moderately resolved, partially conflicting phylogenies, supporting that accessions of L. grandiflora form the sister group to the rest of the genus and that L. curdieana groups with the African taxa, L. africana and L. major, and L. aquatica. Thus, the molecular evidence supports the second hypothesis. A biogeographic analysis suggests an out-of-southern Africa scenario and several dispersal events in the Southern Hemisphere. Past dispersal from southern Africa to Australasia is suggested, yet it cannot be excluded that a route via tropical Africa and temperate Asia has existed.

  14. Molecular phylogeny of Gymnocalycium (Cactaceae): assessment of alternative infrageneric systems, a new subgenus, and trends in the evolution of the genus.

    Science.gov (United States)

    Demaio, Pablo H; Barfuss, Michael H J; Kiesling, Roberto; Till, Walter; Chiapella, Jorge O

    2011-11-01

    The South American genus Gymnocalycium (Cactoideae-Trichocereae) demonstrates how the sole use of morphological data in Cactaceae results in conflicts in assessing phylogeny, constructing a taxonomic system, and analyzing trends in the evolution of the genus. Molecular phylogenetic analysis was performed using parsimony and Bayesian methods on a 6195-bp data matrix of plastid DNA sequences (atpI-atpH, petL-psbE, trnK-matK, trnT-trnL-trnF) of 78 samples, including 52 species and infraspecific taxa representing all the subgenera of Gymnocalycium. We assessed morphological character evolution using likelihood methods to optimize characters on a Bayesian tree and to reconstruct possible ancestral states. The results of the phylogenetic study confirm the monophyly of the genus, while supporting overall the available infrageneric classification based on seed morphology. Analysis showed the subgenera Microsemineum and Macrosemineum to be polyphyletic and paraphyletic. Analysis of morphological characters showed a tendency toward reduction of stem size, reduction in quantity and hardiness of spines, increment of seed size, development of napiform roots, and change from juicy and colorful fruits to dry and green fruits. Gymnocalycium saglionis is the only species of Microsemineum and a new name is required to identify the clade including the remaining species of Microsemineum; we propose the name Scabrosemineum in agreement with seed morphology. Identifying morphological trends and environmental features allows for a better understanding of the events that might have influenced the diversification of the genus.

  15. Molecular phylogeny of the neritidae (Gastropoda: Neritimorpha) based on the mitochondrial genes cytochrome oxidase I (COI) and 16S rRNA

    International Nuclear Information System (INIS)

    Quintero Galvis, Julian Fernando; Castro, Lyda Raquel

    2013-01-01

    The family Neritidae has representatives in tropical and subtropical regions that occur in a variety of environments, and its known fossil record dates back to the late Cretaceous. However there have been few studies of molecular phylogeny in this family. We performed a phylogenetic reconstruction of the family Neritidae using the COI (722 bp) and the 16S rRNA (559 bp) regions of the mitochondrial genome. Neighbor-joining, maximum parsimony and Bayesian inference were performed. The best phylogenetic reconstruction was obtained using the COI region, and we consider it an appropriate marker for phylogenetic studies within the group. Consensus analysis (COI +16S rRNA) generally obtained the same tree topologies and confirmed that the genus Nerita is monophyletic. The consensus analysis using parsimony recovered a monophyletic group consisting of the genera Neritina, Septaria, Theodoxus, Puperita, and Clithon, while in the Bayesian analyses Theodoxus is separated from the other genera. The phylogenetic status of the species from the genus Nerita from the Colombian Caribbean generated in this study was consistent with that reported for the genus in previous studies. In the resulting consensus tree obtained using maximum parsimony, we included information on habitat type for each species, to map the evolution by habitat. Species of the family Neritidae possibly have their origin in marine environments, which is consistent with conclusions from previous reports based on anatomical studies.

  16. Molecular phylogeny of the genus Chondracanthus (Rhodophyta), focusing on the resurrection of C. okamurae and the description of C. cincinnus sp. nov.

    Science.gov (United States)

    Yang, Mi Yeon; Kim, Myung Sook

    2016-09-01

    Determining the taxonomic status of the red algal genus Chondracanthus based on morphological characters is challenging due to the similarity and high degree of plasticity of the thallus. Since the taxonomic history of several Chondracanthus species remains unclear, we analyzed the plastid rbcL and mitochondrial COI genes of the specimens from Korea and Japan, in combination with morphological observations, to examine their phylogenetic relationships. Our results confirmed the distinction of C. okamurae, which is separated from C. intermedius, and identified a novel species, C. cincinnus sp. nov. Three species ( C. okamurae, C. intermedius and C. cincinnus) formed a monophyletic clade with C. tenellus. C. okamurae is distinguished by linear, narrow, cylindrical to compressed, slightly recurved axes, and a high-intertidal to subtidal distribution. It was collected from Korea and Japan, while C. intermedius was identified from Japan only. A new species, Chondracanthus cincinnus sp. nov., is characterized by linear, compressed, strongly recurved axes, and a low-intertidal to subtidal distiribution. Based on the molecular phylogeny using rbcL and COI data, we herein resurrect C. okamurae as a distinct species and identify C. cincinnus as a new species.

  17. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers

    OpenAIRE

    Taïbi, Khaled; Campo, Antonio D. del; Vilagrosa Carmona, Alberto; Bellés, José M.; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J.; López-Nicolás, José M.; Mulet, José M.

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of pre...

  18. A molecular phylogeny for Cercocarpus H.B.K. (Rosaceae) using the external transcribed spacer of the nuclear ribosomal repeat

    Science.gov (United States)

    Brian D. Vanden Heuvel; C. Randal Linder

    2001-01-01

    Cercocarpus H.B.K. (Rosaceae) taxa are important members of the plant communities of the western states and Mexico, yet the systematics of this genus are unknown primarily from lack of clear morphological delimitations between taxa. In recent years, molecular data have proven useful for resolving relationships among species and the diversity within species that have...

  19. The effectiveness of 28S and 16S molecular regions in resolving phylogeny of Malaysian microgastrinae (Hymenoptera: Braconidae)

    Science.gov (United States)

    Zuki, Ameyra Aman; Mohammed, Muhamad Azmi; Md-Zain, Badrul Munir; Yaakop, Salmah

    2018-04-01

    The phylogenetic relationships of Microgastrinae remains unclear though some studies have been conducted to resolve it. The function of Microgastrinae as endoparasitoids of Lepidopteran larvae makes this subfamily an ideal and potential species to be applied as biological control agent of infesting crops. In this study, a total of 13 microgastrine samples under 13 genera were collected from nine localities throughout Peninsular Malaysia. Two molecular regions, 28S nuclear marker and 16S mitochondrial marker were utilized in this study to examine the effectiveness of those regions in resolving the relationships within Microgastrinae. Total of 36 sequences were implemented in the analyses of NJ, MP and Bayesian for both markers. Results obtained from this study were supported by morphological and biological characters. Henceforth, the outcome from this study provides a proof of effectiveness of 28S and 16S molecular markers in studying the phylogenetic relationships of Microgastrinae from Malaysia exclusively and Oriental generally.

  20. Protein Based Molecular Markers Provide Reliable Means to Understand Prokaryotic Phylogeny and Support Darwinian Mode of Evolution

    Directory of Open Access Journals (Sweden)

    Vaibhav eBhandari

    2012-07-01

    Full Text Available The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning whether the Darwinian model of evolution is applicable to the prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs and conserved signature proteins (CSPs for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical

  1. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution.

    Science.gov (United States)

    Bhandari, Vaibhav; Naushad, Hafiz S; Gupta, Radhey S

    2012-01-01

    The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs) among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning of whether the Darwinian model of evolution is applicable to prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) and conserved signature proteins (CSPs) for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical studies.

  2. Ecological niche comparison and molecular phylogeny segregate the invasive moss species Campylopus introflexus (Leucobryaceae, Bryophyta) from its closest relatives.

    Science.gov (United States)

    Gama, Renato; Aguirre-Gutiérrez, Jesús; Stech, Michael

    2017-10-01

    The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer , has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus . Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer . Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross-section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer , which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re-analysis of published and newly generated plastid atpB-rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus , C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).

  3. The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny and comprehensive morphological data

    Science.gov (United States)

    Wieczorek, Karina; Lachowska-Cierlik, Dorota; Kajtoch, Łukasz; Kanturski, Mariusz

    2017-01-01

    The Chaitophorinae is a bionomically diverse Holarctic subfamily of Aphididae. The current classification includes two tribes: the Chaitophorini associated with deciduous trees and shrubs, and Siphini that feed on monocotyledonous plants. We present the first phylogenetic hypothesis for the subfamily, based on molecular and morphological datasets. Molecular analyses were based on the mitochondrial gene cytochrome oxidase subunit I (COI) and the nuclear gene elongation factor-1α (EF-1α). Phylogenetic inferences were obtained individually on each of genes and joined alignments using Bayesian inference (BI) and Maximum likelihood (ML). In phylogenetic trees reconstructed on the basis of nuclear and mitochondrial genes as well as a morphological dataset, the monophyly of Siphini and the genus Chaitophorus was supported. Periphyllus forms independent lineages from Chaitophorus and Siphini. Within this genus two clades comprising European and Asiatic species, respectively, were indicated. Concerning relationships within the subfamily, EF-1α and joined COI and EF-1α genes analysis strongly supports the hypothesis that Chaitophorini do not form a monophyletic clade. Periphyllus is a sister group to a clade containing Chaitophorus and Siphini. The Asiatic unit of Periphyllus also includes Trichaitophorus koyaensis. The analysis of morphological dataset under equally weighted parsimony also supports the view that Chaitophorini is an artificial taxon, as Lambersaphis pruinosae and Pseudopterocomma hughi, both traditionally included in the Chaitophorini, formed independent lineages. COI analyses support consistent groups within the subfamily, but relationships between groups are poorly resolved. These analyses were extended to include the species of closely related and phylogenetically unstudied subfamily Drepanosiphinae, which produced congruent results. Genera Drepanosiphum and Depanaphis are monophyletic and sister. The position of Yamatocallis tokyoensis differs in the

  4. Molecular phylogeny supports the paraphyletic nature of the genus Trogoderma (Coleoptera: Dermestidae) collected in the Australasian ecozone.

    Science.gov (United States)

    Castalanelli, M A; Baker, A M; Munyard, K A; Grimm, M; Groth, D M

    2012-02-01

    To date, a molecular phylogenetic approach has not been used to investigate the evolutionary structure of Trogoderma and closely related genera. Using two mitochondrial genes, Cytochrome Oxidase I and Cytochrome B, and the nuclear gene, 18S, the reported polyphyletic positioning of Trogoderma was examined. Paraphyly in Trogoderma was observed, with one Australian Trogoderma species reconciled as sister to all Dermestidae and the Anthrenocerus genus deeply nested within the Australian Trogoderma clade. In addition, time to most recent common ancestor for a number of Dermestidae was calculated. Based on these estimations, the Dermestidae origin exceeded 175 million years, placing the origins of this family in Pangaea.

  5. Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences.

    Science.gov (United States)

    Hoppenrath, Mona; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F; Leander, Brian S

    2009-05-25

    Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid and the warnowiid clade are closely related to each other

  6. Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae as inferred from SSU and LSU rDNA sequences

    Directory of Open Access Journals (Sweden)

    Handy Sara M

    2009-05-01

    Full Text Available Abstract Background Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids. Results Molecular phylogenetic analyses of SSU and LSU rDNA sequences demonstrated that warnowiids form a well-supported clade that falls within the more inclusive Gymnodinium sensu stricto clade. These data also confirmed that polykrikoids are members of the Gymnodinium sensu stricto clade as well; however, a specific sister relationship between the warnowiid clade and the polykrikoid clade was unresolved in all of our analyses. Nonetheless, the new DNA sequences from different isolates of warnowiids provided organismal anchors for several previously unidentified sequences derived from environmental DNA surveys of marine biodiversity. Conclusion Comparative morphological data and molecular phylogenetic data demonstrate that the polykrikoid

  7. A molecular phylogeny of Afromontane dwarf geckos (Lygodactylus) reveals a single radiation and increased species diversity in a South African montane center of endemism.

    Science.gov (United States)

    Travers, Scott L; Jackman, Todd R; Bauer, Aaron M

    2014-11-01

    Afromontane habitats throughout eastern sub-Saharan Africa support remarkable levels of microendemism. However, despite being the subject of decades of research interest, biogeographical patterns of diversification throughout this disjunct montane system still remain largely unknown. We examined the evolutionary relationships of diurnal dwarf geckos (Lygodactylus) from several Afromontane regions throughout southeastern Africa, focusing primarily on two species groups (rex and bonsi groups). Using both mitochondrial and nuclear markers, we generate a molecular phylogeny containing all members of the rex and bonsi groups, to evaluate the monophyly of these groups along with previous biogeographic hypotheses suggesting independent southward invasions into the greater Drakensberg Afromontane center of endemism in northeastern South Africa by each group. Our results provide no support for these taxonomic and biogeographic hypotheses, and instead reveal geographically circumscribed patterns of diversification. One clade is restricted to the highlands of southern Malawi and northern Mozambique and the other to the greater Drakensberg region of northeastern South Africa and Swaziland. Interestingly, L. bernardi from the Nyanga Highlands of eastern Zimbabwe is nested within the primarily savanna-dwelling capensis group. We use Bayesian species delimitation methods to evaluate species limits within the greater Drakensberg clade, which support the elevation of the subspecies of L. ocellatus and L. nigropunctatus, thus bringing the total to eight species within a relatively confined geographic area. These results further highlight the greater Drakensberg Afromontane region as both an important center of endemism, as well as a center of diversification contributing to the accumulation of southern Africa's rich species diversity. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Molecular phylogeny and comparative morphology indicate that odontostomatids (Alveolata, Ciliophora) form a distinct class-level taxon related to Armophorea.

    Science.gov (United States)

    Fernandes, Noemi M; Vizzoni, Vinicius F; Borges, Bárbara do N; A G Soares, Carlos; Silva-Neto, Inácio D da; S Paiva, Thiago da

    2018-04-18

    The odontostomatids are among the least studied ciliates, possibly due to their small sizes, restriction to anaerobic environments and difficulty in culturing. Consequently, their phylogenetic affinities to other ciliate taxa are still poorly understood. In the present study, we analyzed newly obtained ribosomal gene sequences of the odontostomatids Discomorphella pedroeneasi and Saprodinium dentatum, together with sequences from the literature, including Epalxella antiquorum and a large assemblage of ciliate sequences representing the major recognized classes. The results show that D. pedroeneasi and S. dentatum form a deep-diverging branch related to metopid and clevelandellid armophoreans, corroborating the old literature. However E. antiquorum clustered with the morphologically discrepant plagiopylids, indicating that either the complex odontostomatid body architecture evolved convergently, or the positioning of E. antiquorum as a plagiopylid is artifactual. A new ciliate class, Odontostomatea n. cl., is proposed based on molecular analyses and comparative morphology of odontostomatids with related taxa. Copyright © 2018. Published by Elsevier Inc.

  9. alpha-Crystallin A sequences of Alligator mississippiensis and the lizard Tupinambis teguixin: molecular evolution and reptilian phylogeny.

    Science.gov (United States)

    de Jong, W W; Zweers, A; Versteeg, M; Dessauer, H C; Goodman, M

    1985-11-01

    The amino acid sequences of the eye lens protein alpha-crystallin A from many mammalian and avian species, two frog species, and a dogfish have provided detailed information about the molecular evolution of this protein and allowed some useful inferences about phylogenetic relationships among these species. We now have isolated and sequenced the alpha-crystallins of the American alligator and the common tegu lizard. The reptilian alpha A chains appear to have evolved as slowly as those of other vertebrates, i.e., at two to three amino acid replacements per 100 residues in 100 Myr. The lack of charged replacements and the general types and distribution of replacements also are similar to those in other vertebrate alpha A chains. Maximum-parsimony analyses of the total data set of 67 vertebrate alpha A sequences support the monophyletic origin of alligator, tegu, and birds and favor the grouping of crocodilians and birds as surviving sister groups in the subclass Archosauria.

  10. Molecular phylogeny of the genus Saguinus (Platyrrhini, Primates based on the ND1 mitochondrial gene and implications for conservation

    Directory of Open Access Journals (Sweden)

    Claudia Helena Tagliaro

    2005-03-01

    Full Text Available The systematics of the subfamily Callitrichinae (Platyrrhini, Primates, a group of small monkeys from South America and Panama, remains an area of considerable discussion despite many investigations, there being continuing controversy over subgeneric taxonomic classifications based on morphological characters. The purpose of our research was to help elucidate the phylogenetic relationships within the monkey genus Saguinus (Callitrichinae using a molecular approach to discover whether or not the two different sections containing hairy-faced and bare-faced species are monophyletic, whether Saguinus midas midas and Saguinus bicolor are more closely related than are S. midas midas and Saguinus midas niger, and if Saguinus fuscicollis melanoleucus and Saguinus fuscicollis weddelli really are different species. We sequenced the 957 bp ND1 mitochondrial gene of 21 Saguinus monkeys (belonging to six species and nine morphotypes and one Cebus monkey (the outgroup and constructed phylogenetic trees using maximum parsimony, neighbor joining, and maximum likelihood methods. The phylogenetic trees obtained divided the genus Saguinus into two groups, one containing the small-bodied species S. fuscicollis and the other, the large-bodied species S. mystax, S. leucopus, S. oedipus, S. midas, S. bicolor. The most derived taxa, S. midas and S. bicolor, grouped together, while S. fuscicollis melanoleucus and S. f. weddelli showed divergence values that did not support the division of these morphotypes into subspecies. On the other hand, S. midas individuals showed divergence compatible with the existence of three subspecies, two of them with the same morphotype as the subspecies S. midas niger. The results of our study suggest that there is at least one Saguinus subspecies that has not yet been described and that the conservation status of Saguinus species and subspecies should be carefully revised using modern molecular approaches.

  11. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.

    Science.gov (United States)

    Tang, Xiaoli; Mu, Xingmin; Shao, Hongbo; Wang, Hongyan; Brestic, Marian

    2015-01-01

    The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.

  12. Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species.

    Science.gov (United States)

    Kubota, Shosei; Konno, Itaru; Kanno, Akira

    2012-02-01

    The genus Asparagus comprises approximately 200 species, some of which are commercially cultivated, such as the garden asparagus (A. officinalis). Many Asparagus species, including A. officinalis, are dioecious and have been grouped into a subgenus distinct from that of hermaphroditic species. Although many interspecific crossings have been attempted to introduce useful traits into A. officinalis, only some of the dioecious species were found to be cross-compatible with A. officinalis. Here, molecular phylogenetic analyses were conducted to determine whether interspecific crossability is proportional to the genetic distance between the crossing pairs and to further clarify the evolutionary history of the Asparagus genus. A clade with all cross-compatible species and no cross-incompatible species was recovered in the phylogenetic tree based on analyses of non-coding cpDNA regions. In addition, a sex-linked marker developed for A. officinalis amplified a male-specific region in all cross-compatible species. The phylogenetic analyses also provided some insights about the evolutionary history of Asparagus; for example, by indicating that the genus had its origin in southern Africa, subsequently spreading throughout the old world through intensive speciation and dispersal. The results also suggest that dioecious species were derived from a single evolutionary transition from hermaphroditism in Asparagus. These findings not only contribute towards the understanding of the evolutionary history of the genus but may also facilitate future interspecific hybridization programs involving Asparagus species.

  13. Molecular phylogeny of mangroves IV. nature and extent of intra-specific genetic variation and species diversity in mangroves

    International Nuclear Information System (INIS)

    Parida, A.; Parani, M.; Lakshmi, M.; Elango, S.; Ram, N.; Anuratha, C.S.

    1998-01-01

    Mangroves occupy estuarine ecosystems in the tropical regions of the world. Despite their highly productive nature and the protective roles they play in the coastal region, the ecosystem as a whole is under severe threat due to various climatic and anthropogenic factors. Therefore, the need for conservation of mangroves is widely emphasised. However, information on existing genetic diversity based on which a strategy for genetic conservation is to be drawn is not available for mangroves. This is primarily because conventional genetic analysis is difficult in these species for various reasons. Therefore, as an aid to our on-going conservation programme, efforts were made to assess the nature and extent of diversity in a number of mangrove species of the Indian coast using molecular markers. The nature and extent of intra-population diversity in sixteen mangrove species and detailed analysis of inter-population genetic polymorphism in four species, Acanthus ilicifolius, Excoecaria agallocha, Avicennia spp and Rhizophora (species and hybrid), is reported in the present communication. (author)

  14. Molecular phylogeny of mangroves IV. nature and extent of intra-specific genetic variation and species diversity in mangroves

    Energy Technology Data Exchange (ETDEWEB)

    Parida, A; Parani, M; Lakshmi, M; Elango, S; Ram, N; Anuratha, C S [M.S. Swaminathan Research Foundation, Taramani, Madras (India)

    1998-10-01

    Mangroves occupy estuarine ecosystems in the tropical regions of the world. Despite their highly productive nature and the protective roles they play in the coastal region, the ecosystem as a whole is under severe threat due to various climatic and anthropogenic factors. Therefore, the need for conservation of mangroves is widely emphasised. However, information on existing genetic diversity based on which a strategy for genetic conservation is to be drawn is not available for mangroves. This is primarily because conventional genetic analysis is difficult in these species for various reasons. Therefore, as an aid to our on-going conservation programme, efforts were made to assess the nature and extent of diversity in a number of mangrove species of the Indian coast using molecular markers. The nature and extent of intra-population diversity in sixteen mangrove species and detailed analysis of inter-population genetic polymorphism in four species, Acanthus ilicifolius, Excoecaria agallocha, Avicennia spp and Rhizophora (species and hybrid), is reported in the present communication. (author) 25 refs, 2 figs, 2 tabs

  15. Molecular diversity and phylogeny of Triticum-Aegilops species possessing D genome revealed by SSR and ISSR markers

    Directory of Open Access Journals (Sweden)

    Moradkhani Hoda

    2015-12-01

    Full Text Available The aim of this study is investigation the applicability of SSR and ISSR markers in evaluating the genetic relationships in twenty accessions of Aegilops and Triticum species with D genome in different ploidy levels. Totally, 119 bands and 46 alleles were detected using ten primers for ISSR and SSR markers, respectively. Polymorphism Information Content values for all primers ranged from 0.345 to 0.375 with an average of 0.367 for SSR, and varied from 0.29 to 0.44 with the average 0.37 for ISSR marker. Analysis of molecular variance (AMOVA revealed that 81% (ISSR and 84% (SSR of variability was partitioned among individuals within populations. Comparing the genetic diversity of Aegilops and Triticum accessions, based on genetic parameters, shows that genetic variation of Ae. crassa and Ae. tauschii species are higher than other species, especially in terms of Nei’s gene diversity. Cluster analysis, based on both markers, separated total accessions in three groups. However, classification based on SSR marker data was not conformed to classification according to ISSR marker data. Principal co-ordinate analysis (PCoA for SSR and ISSR data showed that, the first two components clarified 53.48% and 49.91% of the total variation, respectively. This analysis (PCoA, also, indicated consistent patterns of genetic relationships for ISSR data sets, however, the grouping of accessions was not completely accorded to their own geographical origins. Consequently, a high level of genetic diversity was revealed from the accessions sampled from different eco-geographical regions of Iran.

  16. Acoustic structure of male loud-calls support molecular phylogeny of Sumatran and Javanese leaf monkeys (genus Presbytis

    Directory of Open Access Journals (Sweden)

    Meyer Dirk

    2012-02-01

    Full Text Available Abstract Background The degree to which loud-calls in nonhuman primates can be used as a reliable taxonomic tool is the subject of ongoing debate. A recent study on crested gibbons showed that these species can be well distinguished by their songs; even at the population level the authors found reliable differences. Although there are some further studies on geographic and phylogenetic differences in loud-calls of nonhuman primate species, it is unclear to what extent loud-calls of other species have a similar close relation between acoustic structure, phylogenetic relatedness and geographic distance. We therefore conducted a field survey in 19 locations on Sumatra, Java and the Mentawai islands to record male loud-calls of wild surilis (Presbytis, a genus of Asian leaf monkeys (Colobinae with disputed taxanomy, and compared the structure of their loud-calls with a molecular genetic analysis. Results The acoustic analysis of 100 surili male loud-calls from 68 wild animals confirms the differentiation of P.potenziani, P.comata, P.thomasi and P.melalophos. In a more detailed acoustic analysis of subspecies of P.melalophos, a further separation of the southern P.m.mitrata confirms the proposed paraphyly of this group. In concordance with their geographic distribution we found the highest correlation between call structure and genetic similarity, and lesser significant correlations between call structure and geographic distance, and genetic similarity and geographic distance. Conclusions In this study we show, that as in crested gibbons, the acoustic structure of surili loud-calls is a reliable tool to distinguish between species and to verify phylogenetic relatedness and migration backgrounds of respective taxa. Since vocal production in other nonhuman primates show similar constraints, it is likely that an acoustic analysis of call structure can help to clarify taxonomic and phylogenetic relationships.

  17. Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX.

    Science.gov (United States)

    Kobayashi, Koichi; Masuda, Tatsuru; Tajima, Naoyuki; Wada, Hajime; Sato, Naoki

    2014-08-01

    Tetrapyrroles such as heme and chlorophyll are essential for biological processes, including oxygenation, respiration, and photosynthesis. In the tetrapyrrole biosynthesis pathway, protoporphyrinogen IX oxidase (Protox) catalyzes the formation of protoporphyrin IX, the last common intermediate for the biosynthesis of heme and chlorophyll. Three nonhomologous isofunctional enzymes, HemG, HemJ, and HemY, for Protox have been identified. To reveal the distribution and evolution of the three Protox enzymes, we identified homologs of each along with other heme biosynthetic enzymes by whole-genome clustering across three domains of life. Most organisms possess only one of the three Protox types, with some exceptions. Detailed phylogenetic analysis revealed that HemG is mostly limited to γ-Proteobacteria whereas HemJ may have originated within α-Proteobacteria and transferred to other Proteobacteria and Cyanobacteria. In contrast, HemY is ubiquitous in prokaryotes and is the only Protox in eukaryotes, so this type may be the ancestral Protox. Land plants have a unique HemY homolog that is also shared by Chloroflexus species, in addition to the main HemY homolog originating from Cyanobacteria. Meanwhile, organisms missing any Protox can be classified into two groups; those lacking most heme synthetic genes, which necessarily depend on external heme supply, and those lacking only genes involved in the conversion of uroporphyrinogen III into heme, which would use a precorrin2-dependent alternative pathway. However, hemN encoding coproporphyrinogen IX oxidase was frequently found in organisms lacking Protox enzyme, which suggests a unique role of this gene other than in heme biosynthesis. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Physiological and Molecular Characterization of Cephaleuros virescens Occurring in Mango Trees.

    Science.gov (United States)

    Vasconcelos, Camila Vilela; Pereira, Fabíola Teodoro; Duarte, Elizabeth Amélia Alves; de Oliveira, Thiago Alves Santos; Peixoto, Nei; Carvalho, Daniel Diego Costa

    2018-06-01

    The objective of this work was to accomplish the isolation, molecular identification and characterizing the physiology of the causal agent of the algal spot in mango trees. For this purpose, the pathogen growth was assessed in different culture media, with subsequent observation and measurements of the filamentous cells. The molecular identification was made using mycelium obtained from leaf lesions and pure algae colonies grown in culture medium. Descriptions based on DNA sequencing indicated that the algae is Cephaleuros virescens . The algae must be isolated primarily in liquid medium for further pricking into agar medium. The highest mycelial growth average in Petri dishes occurred when the algae were grown in Trebouxia and BBM. Trebouxia enabled larger cells in the filamentous cells when compared to other culture media.

  19. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta

    DEFF Research Database (Denmark)

    Boardman, Leigh; Sørensen, Jesper Givskov; Terblanche, John S

    2015-01-01

    identified to date. Using larvae of false codling moth Thaumatotibia leucotreta, a pest of southern Africa, we investigated the physiological and molecular responses to hypoxia or temperature stress pre-treatments, followed by a standard low temperature exposure. Survival rates were significantly influenced...... by pretreatment conditions, although T. leucotreta shows relatively high basal resistance to various stressors (4% variation in larval survival across all pre-treatments). Results showed that mild pre-treatments with chilling and hypoxia increased resistance to low temperatures and that these responses were...... correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2 h at 35 C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold...

  20. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    Science.gov (United States)

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.

  1. Molecular characterization and phylogeny of Shiga toxin-producing E. coli (STEC) from imported beef meat in Malaysia.

    Science.gov (United States)

    Abuelhassan, Nawal Nouridaim; Mutalib, Sahilah Abdul; Gimba, Fufa Ido; Yusoff, Wan Mohtar

    2016-09-01

    This study aimed at determining the presence and characterization of Escherichia coli and Shiga toxin-producing E. coli (STEC) from imported frozen beef meats. Seventy-four (74) frozen imported beef meat samples from two countries, India (42 samples) and Australia (32 samples), were collected and tested for E. coli. These samples were purchased from the frozen meat sections of five different supermarkets in different locations in Selangor, Malaysia, from April 2012 to October 2014. A total of 222 E. coli strains were isolated from the meat samples; 126 strains were isolated from country A (India), and 96 E. coli strains were from country of origin B (Australia), respectively. A total of 70 E. coli strains were identified and characterized. All E. coli strains were isolated into Fluorocult medium and identified using API 20E kit. All selected E. coli strains were characterized for Shiga toxin genes (stx1 and stx2). All biochemically identified E. coli in this study were further subjected to molecular detection through polymerase chain reaction (PCR) amplification and characterization using 16S ribosomal RNA (rRNA) gene of Shiga toxin-producing E. coli. Of the 70 E. coli strains, 11 strains were positive for both Shiga toxin genes (stx1 and stx2) and 11 (11/70) strains were positive for stx1 gene, while 25 (25/70) strains were positive for stx2 gene. The analysis of 16S rRNA gene of all the E. coli isolates in this study was successfully sequenced and analyzed, and based on sequence data obtained, a phylogenetic tree of the 16S rRNA gene was performed using Clustal W programme in MEGA 6.06 software. Phylogenetic tree showed that the E. coli isolates in our study cluster with the strain of E. coli isolated in other countries, which further confirm that the isolates of E. coli in this study are similar to those obtained in other studies. As a result, all the strains obtained in this study proved to be a strain of pathogenic E. coli, which may cause a serious outbreak

  2. Molecular identification of badger-associated Babesia sp. DNA in dogs: updated phylogeny of piroplasms infecting Caniformia.

    Science.gov (United States)

    Hornok, Sándor; Horváth, Gábor; Takács, Nóra; Kontschán, Jenő; Szőke, Krisztina; Farkas, Róbert

    2018-04-11

    Piroplasms are unicellular, tick-borne parasites. Among them, during the past decade, an increasing diversity of Babesia spp. has been reported from wild carnivores. On the other hand, despite the known contact of domestic and wild carnivores (e.g. during hunting), and a number of ixodid tick species they share, data on the infection of dogs with babesiae from other families of carnivores are rare. In this study blood samples were collected from 90 dogs and five road-killed badgers. Ticks were also removed from these animals. The DNA was extracted from all blood samples, and from 33 ticks of badgers, followed by molecular analysis for piroplasms with PCR and sequencing, as well as by phylogenetic comparison of detected genotypes with piroplasms infecting carnivores. Eleven of 90 blood DNA extracts from dogs, and all five samples from badgers were PCR-positive for piroplasms. In addition to the presence of B. canis DNA in five dogs, sequencing identified the DNA of badger-associated "Babesia sp. Meles-Hu1" in six dogs and in all five badgers. The DNA of "Babesia sp. Meles-Hu1" occurred significantly more frequently in dogs often taken to forests (i.e. the preferred habitat of badgers in Hungary), than in dogs without this characteristic. Moreover, detection of DNA from this Babesia sp. was significantly associated with hunting dogs in comparison with dogs not used for hunting. Two PCR-positive dogs (in one of which the DNA of the badger-associated Babesia sp. was identified, whereas in the other the DNA of B. canis was present) showed clinical signs of babesiosis. Engorged specimens of both I. canisuga and I. hexagonus were collected from badgers with parasitaemia, but only I. canisuga contained the DNA of "Babesia sp. Meles-Hu1". This means a significant association of the DNA from "Babesia sp. Meles-Hu1" with I. canisuga. Phylogenetically, "Babesia sp. Meles-Hu1" belonged to the "B. microti" group. This is the first detection of the DNA from a badger

  3. Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination

    International Nuclear Information System (INIS)

    Lin Dasong; Zhou Qixing; Xu Yingming; Chen Chun; Li Ye

    2012-01-01

    This study aims to evaluate toxic effects of exposure to chlortetracycline (CTC) in soil on reproductive endpoints (juvenile counts and cocoon counts), biochemical responses, and genotoxic potentials of the earthworm Eisenia fetida. Results showed that juvenile counts and cocoon counts of the tested earthworms were reduced after exposure to CTC. The effective concentrations (EC 50 values) for juvenile and cocoon counts were 96.1 and 120.3 mg/kg, respectively. Treatment of earthworms with CTC significantly changed the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). An increase in malondialdehyde (MDA) indicated that CTC could cause cellular lipid peroxidation in the tested earthworms. The percentage of DNA in the tail of single-cell gel electrophoresis of coelomocytes as an indication of DNA damage increased after treatment with different doses of CTC, and a dose-dependent DNA damage of coelomocytes was found. In conclusion, CTC induces physiological responses and genotoxicity on earthworms. - Highlights: ► Reproductive endpoints were assessed for Eisenia fetida exposed to chlortectracyline (CTC). ► CTC may induce physiological and molecular responses in E. fetida. ► A clear relationship was observed between CTC doses and DNA damage of coelomocytes. - Chlortetracycline in soil could induce physiological responses and genotoxicity on earthworms at realistic environmental concentrations.

  4. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  5. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    Science.gov (United States)

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  6. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Andreas eHolzinger

    2013-08-01

    Full Text Available Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. For example, Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of

  7. Molecular phylogeny of the genus Luzula DC. (Juncaceae, Monocotyledones) based on plastome and nuclear ribosomal regions: A case of incongruence, incomplete lineage sorting and hybridisation

    Czech Academy of Sciences Publication Activity Database

    Záveská Drábková, Lenka; Vlček, Čestmír

    2010-01-01

    Roč. 57, č. 2 (2010), s. 536-551 ISSN 1055-7903 R&D Projects: GA ČR GP206/07/P147 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50520514 Keywords : Luzula * Juncaceae * phylogeny Subject RIV: EF - Botanics Impact factor: 3.889, year: 2010

  8. Goussia Labbé , 1896 (Apicomplexa, Eimeriorina) in Amphibia: Diversity, Biology, Molecular Phylogeny and Comments on theStatus of the Genus

    Czech Academy of Sciences Publication Activity Database

    Jirků, Miloslav; Jirků, Milan; Oborník, Miroslav; Lukeš, Julius; Modrý, David

    2009-01-01

    Roč. 160, č. 1 (2009), s. 123-136 ISSN 1434-4610 R&D Projects: GA ČR(CZ) GA206/03/1544 Institutional research plan: CEZ:AV0Z60220518 Keywords : Anura * coccidia * cryptic species * Goussia * phylogeny * ultrastructure Subject RIV: EG - Zoology Impact factor: 3.853, year: 2009

  9. Phylogeny of Rhus gall aphids (Hemiptera:Pemphigidae) based on combined molecular analysis of nuclear EF1α and mitochondrial COII genes

    Science.gov (United States)

    Zi-xiang Yang; Xiao-ming Chen; Nathan P. Havill; Ying Feng; Hang. Chen

    2010-01-01

    Rhus gall aphids (Fordinae : Melaphidini) have a disjunct distribution in East Asia and North America and have specific host plant relationships. Some of them are of economic importance and all species form sealed galls which show great variation in shape, size, structure, and galling-site. We present a phylogeny incorporating ten species and four...

  10. Molecular phylogenies confirm the presence of two cryptic Hemimycale species in the Mediterranean and reveal the polyphyly of the genera Crella and Hemimycale (Demospongiae: Poecilosclerida

    Directory of Open Access Journals (Sweden)

    Maria J. Uriz

    2017-03-01

    Full Text Available Background Sponges are particularly prone to hiding cryptic species as their paradigmatic plasticity often favors species phenotypic convergence as a result of adaptation to similar habitat conditions. Hemimycale is a sponge genus (Family Hymedesmiidae, Order Poecilosclerida with four formally described species, from which only Hemimycale columella has been recorded in the Atlanto-Mediterranean basin, on shallow to 80 m deep bottoms. Contrasting biological features between shallow and deep individuals of Hemimycale columella suggested larger genetic differences than those expected between sponge populations. To assess whether shallow and deep populations indeed belong to different species, we performed a phylogenetic study of Hemimycale columella across the Mediterranean. We also included other Hemimycale and Crella species from the Red Sea, with the additional aim of clarifying the relationships of the genus Hemimycale. Methods Hemimycale columella was sampled across the Mediterranean, and Adriatic Seas. Hemimycale arabica and Crella cyathophora were collected from the Red Sea and Pacific. From two to three specimens per species and locality were extracted, amplified for Cytochrome C Oxidase I (COI (M1–M6 partition, 18S rRNA, and 28S (D3–D5 partition and sequenced. Sequences were aligned using Clustal W v.1.81. Phylogenetic trees were constructed under neighbor joining (NJ, Bayesian inference (BI, and maximum likelihood (ML criteria as implemented in Geneious software 9.01. Moreover, spicules of the target species were observed through a Scanning Electron microscope. Results The several phylogenetic reconstructions retrieved both Crella and Hemimycale polyphyletic. Strong differences in COI sequences indicated that C. cyathophora from the Red Sea might belong in a different genus, closer to Hemimycale arabica than to the Atlanto-Mediterranean Crella spp. Molecular and external morphological differences between Hemimycale arabica and the

  11. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes

    Science.gov (United States)

    2011-01-01

    Background Species of the Fusarium genus are important fungi which is associated with health hazards in human and animals. The taxonomy of this genus has been a subject of controversy for many years. Although many researchers have applied molecular phylogenetic analysis to examine the taxonomy of Fusarium species, their phylogenetic relationships remain unclear only few comprehensive phylogenetic analyses of the Fusarium genus and a lack of suitable nucleotides and amino acid substitution rates. A previous stugy with whole genome comparison among Fusairum species revealed the possibility that each gene in Fusarium genomes has a unique evolutionary history, and such gene may bring difficulty to the reconstruction of phylogenetic tree of Fusarium. There is a need not only to check substitution rates of genes but also to perform the exact evaluation of each gene-evolution. Results We performed phylogenetic analyses based on the nucleotide sequences of the rDNA cluster region (rDNA cluster), and the β-tubulin gene (β-tub), the elongation factor 1α gene (EF-1α), and the aminoadipate reductase gene (lys2). Although incongruence of the tree topologies between lys2 and the other genes was detected, all genes supported the classification of Fusarium species into 7 major clades, I to VII. To obtain a reliable phylogeny for Fusarium species, we excluded the lys2 sequences from our dataset, and re-constructed a maximum likelihood (ML) tree based on the combined data of the rDNA cluster, β-tub, and EF-1α. Our ML tree indicated some interesting relationships in the higher and lower taxa of Fusarium species and related genera. Moreover, we observed a novel evolutionary history of lys2. We suggest that the unique tree topologies of lys2 are not due to an analytical artefact, but due to differences in the evolutionary history of genomes caused by positive selection of particular lineages. Conclusion This study showed the reliable species tree of the higher and lower taxonomy

  12. The molecular and physiological impact of bisphenol A in Sesamia nonagrioides (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Kontogiannatos, Dimitris; Swevers, Luc; Zakasis, Giannis; Kourti, Anna

    2015-03-01

    In the present study we investigated the potential relative effects of bisphenol A (BPA) and RH-5992 (tebufenozide) on the development and metamorphosis of the corn stalk borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). A number of morphological and molecular factors were examined in order to identify the toxic and the endocrine-relative action of these two chemicals. We observed that BPA, RH-5992 and the combination of BPA/RH-5992 caused a developmental delay by extending the transition period between larval and pupal instars. These chemicals also reduced adult emergence and caused molting malformations during development and metamorphosis. In the corn stalk borer, BPA exhibits ecdysteroid activities in a fashion similar to that of the ecdysone agonist RH-5992. These results suggest that exposure to environmentally relevant concentrations of BPA during the early stages of the corn borer's life cycle can result in various disorders that may be a consequence of endocrine disruption. The molecular mechanism by which BPA interferes with the physiological processes was also investigated. A significant induction was observed in the expression levels of the ecdysone-induced genes SnEcR and SnUSP, after injection of BPA and RH-5992. Additionally, we found that BPA acts as a very weak agonist of ecdysteroids in Bombyx mori derived Bm5 cell lines. From these cellular and molecular assays, our results brought evidence that BPA, like RH-5992, interferes with the ecdysteroidal pathways of the lepidopteran insect species.

  13. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods.

    Science.gov (United States)

    Feyereisen, René; Dermauw, Wannes; Van Leeuwen, Thomas

    2015-06-01

    The recent accumulation of molecular studies on mutations in insects, ticks and mites conferring resistance to insecticides, acaricides and biopesticides is reviewed. Resistance is traditionally classified by physiological and biochemical criteria, such as target-site insensitivity and metabolic resistance. However, mutations are discrete molecular changes that differ in their intrinsic frequency, effects on gene dosage and fitness consequences. These attributes in turn impact the population genetics of resistance and resistance management strategies, thus calling for a molecular genetic classification. Mutations in structural genes remain the most abundantly described, mostly in genes coding for target proteins. These provide the most compelling examples of parallel mutations in response to selection. Mutations causing upregulation and downregulation of genes, both in cis (in the gene itself) and in trans (in regulatory processes) remain difficult to characterize precisely. Gene duplications and gene disruption are increasingly reported. Gene disruption appears prevalent in the case of multiple, hetero-oligomeric or redundant targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hybridization improved bacteria resistance in abalone: Evidence from physiological and molecular responses.

    Science.gov (United States)

    Liang, Shuang; Luo, Xuan; You, Weiwei; Ke, Caihuan

    2018-01-01

    Hybridization is an effective way of improving germplasm in abalone, as it often generates benign traits in the hybrids. The hybrids of Haliotis discus hannai and H. gigantea have shown heterosis in terms of disease resistance than one or both parental species. In the present study, to elucidate the physiological and molecular mechanism of this heterosis, we analyzed the dynamic changes of several immune indexes including survival rate, total circulating haemocyte count (THC), phagocytic activity, reactive oxygen species level (ROS) and phenoloxidase activity (PO) in two parental species, H. discus hannai (DD) and H. gigantea (GG), and their reciprocal hybrids H. discus hannai ♀ × H. gigantea ♂ (DG), H. gigantea ♀ × H. discus hannai ♂ (GD) challenged with a mixture of Vibrio harveyi, V. alginolyticus and V. parahaemolyticus (which have been demonstrated to be pathogenic to abalone). Besides, we cloned and analyzed three important immune genes: heat shock protein 70 (hsp70), ferritin and cold shock domain protein (csdp) in H. discus hannai and H. gigantea, then further investigated their mRNA level changes in the four abalone genotypes after bacterial challenge. Results showed that these physiological and molecular parameters were significantly induced by bacterial exposure, and their changing patterns were obviously different between the four genotypes: (1) Survival rates of the two hybrids were higher than both parental species after bacterial exposure; (2) DG had higher THC than the other three genotypes; (3) Phagocytosis responded slower in the hybrids than in the parental species; (4) DD's ROS level was lower than the other three genotypes at 48 h post infection; (5) Phenoloxidase activity was lower in DD during the infection compared to the other genotypes; (6) mRNA levels of hsp70 and csdp, were always lower in at least one parental species (DD) than in the hybrids after the bacterial exposure. Results from this study indicate that the hybrids

  15. Bayesian inference of the metazoan phylogeny

    DEFF Research Database (Denmark)

    Glenner, Henrik; Hansen, Anders J; Sørensen, Martin V

    2004-01-01

    Metazoan phylogeny remains one of evolutionary biology's major unsolved problems. Molecular and morphological data, as well as different analytical approaches, have produced highly conflicting results due to homoplasy resulting from more than 570 million years of evolution. To date, parsimony has...

  16. MOLECULAR PHYLOGENY OF THREE SPECIES OF LAND SNAILS (STYLOMMATOPHORA AND ACHATINIDAE, ARCHACHATINA MARGINATA (SWAINSON, 1821, ACHATINA ACHATINA (LINNAEUS, 1758, AND ACHATINA FULICA (BOWDICH, 1822 IN SOME SOUTHERN STATES AND NORTH CENTRAL STATES IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Michael Olufemi AWODIRAN

    2015-12-01

    Full Text Available Partial sequences of mitochondrial gene cytochrome oxidase sub unit 1 (CO1 and ribosomal RNA 18S nuclear encoding gene of 43 individuals belonging to two genera in order Stylommatophora and the family Achatinidae (Archachatina and Achatina were obtained to investigate molecular phylogeny in the family. The CO1 was found to be highly variable while the 18S was found to be highly conserved yielding invariable sequences. Several primers were also tested both for the mitochondrial and nuclear genomes but CO1 produced the best results giving single and clear bands. Four main genetic phylogroups/clades were identified within the Bayesian tree constructed and all the four clades were supported by bootstrap values of 100% and also were supported by bootstrap values above 79% in the NJ. Two unidentified species used in the analysis were found in the basal clade which may mean that they were of ancient origin. This study provides preliminary and novel insights on the molecular phylogeny of the snails’ species, though there is still a need to collect samples of other species in this family to provide a more robust phylogenetic relationship of achatinid snails in Nigeria.

  17. Molecular clocks and the human condition: approaching their characterization in human physiology and disease.

    Science.gov (United States)

    Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C

    2015-09-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.

  18. The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap.

    Science.gov (United States)

    Brown, Jeffrey W; Bullitt, Esther; Sriswasdi, Sira; Harper, Sandra; Speicher, David W; McKnight, C James

    2015-06-01

    The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin's physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin's quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use.

  19. The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Brown

    2015-06-01

    Full Text Available The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin's physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin's quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use.

  20. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers.

    Science.gov (United States)

    Taïbi, Khaled; Del Campo, Antonio D; Vilagrosa, Alberto; Bellés, José M; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J; López-Nicolás, José M; Mulet, José M

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis . Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.

  1. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers

    Directory of Open Access Journals (Sweden)

    Khaled Taïbi

    2017-07-01

    Full Text Available Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis. Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.

  2. Phylogeny mandalas for illustrating the Tree of Life.

    Science.gov (United States)

    Hasegawa, Masami

    2017-12-01

    A circular phylogeny with photos or drawings of species is named a phylogeny mandala. This is one of the ways for illustrating the Tree of Life, and is suitable to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. To demonstrate the recent progress of molecular phylogenetics, six phylogeny mandalas for various taxonomic groups of life were presented; i.e., (1) Eukaryota, (2) Metazoa, (3) Hexapoda, (4) Tetrapoda, (5) Eutheria, and (6) Primates. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Ribosomal RNA: a key to phylogeny

    Science.gov (United States)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  4. Physiological and molecular characterization of Phytophthora infestans isolates from the Central Colombian Andean Region.

    Science.gov (United States)

    Céspedes, María C; Cárdenas, Martha E; Vargas, Angela M; Rojas, Alejandro; Morales, Juan G; Jiménez, Pedro; Bernal, Adriana J; Restrepo, Silvia

    2013-01-01

    Late blight, caused by Phytophthora infestans, is one of the most devastating diseases found in potato and tomato crops worldwide. In Colombia it also attacks other important crops: cape gooseberry and tree tomato. The knowledge of the pathogen population is determinant to effectively design control strategies. To determine the physiological and molecular characteristics of a set of Colombian P. infestans isolates. Strains isolated from Cundinamarca and Boyacá were examined for the level of resistance to mefenoxam and cymoxanil. Virulence was tested for all strains and crosses between A1 mating type, from different hosts, and the Colombian A2 mating type were tested for the production and viability of oospores in different substrates. Additionally, the molecular diversity of the avirulence gene Avr3a, the β-tubulin gene, and two single copy genes showing RxLR motif, was assessed. We found all levels of mefenoxam sensitivity, with 48% of the strains resistant. A high diversity of races was detected and the population was genetically clonal. Colombian strains had the possibility of sexual reproduction. These results will help in optimizing the use of fungicides and deployment of resistance as control strategies and will contribute to broader studies on diversity of this pathogen. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  5. Molecular, physiological and behavioral responses of honey bee (Apis mellifera) drones to infection with microsporidian parasites.

    Science.gov (United States)

    Holt, Holly L; Villar, Gabriel; Cheng, Weiyi; Song, Jun; Grozinger, Christina M

    2018-04-26

    Susceptibility to pathogens and parasites often varies between sexes due to differences in life history traits and selective pressures. Nosema apis and Nosema ceranae are damaging intestinal pathogens of European honey bees (Apis mellifera). Nosema pathology has primarily been characterized in female workers where infection is energetically costly and accelerates worker behavioral maturation. Few studies, however, have examined infection costs in male honey bees (drones) to determine if Nosema similarly affects male energetic status and sexual maturation. We infected newly emerged adult drones with Nosema spores and conducted a series of molecular, physiological, and behavioral assays to characterize Nosema etiology in drones. We found that infected drones starved faster than controls and exhibited altered patterns of flight activity in the field, consistent with energetic distress or altered rates of sexual maturation. Moreover, expression of candidate genes with metabolic and/or hormonal functions, including members of the insulin signaling pathway, differed by infection status. Of note, while drone molecular responses generally tracked predictions based on worker studies, several aspects of infected drone flight behavior contrasted with previous observations of infected workers. While Nosema infection clearly imposed energetic costs in males, infection had no impact on drone sperm numbers and had only limited effects on antennal responsiveness to a major queen sex pheromone component (9-ODA). We compare Nosema pathology in drones with previous studies describing symptoms in workers and discuss ramifications for drone and colony fitness. Copyright © 2018. Published by Elsevier Inc.

  6. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2018-02-01

    Full Text Available Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT, and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

  7. Network-based integration of molecular and physiological data elucidates regulatory mechanisms underlying adaptation to high-fat diet

    NARCIS (Netherlands)

    Derous, D.; Kelder, T.; Schothorst, E.M. van; Erk, M. van; Voigt, A.; Klaus, S.; Keijer, J.; Radonjic, M.

    2015-01-01

    Health is influenced by interplay of molecular, physiological and environmental factors. To effectively maintain health and prevent disease, health-relevant relations need to be understood at multiple levels of biological complexity. Network-based methods provide a powerful platform for integration

  8. Biochemical, physiological and molecular responses of Ricinus communis seeds and seedlings to different temperatures: a multi-omics approach

    NARCIS (Netherlands)

    Ribeiro de Jesus, P.R.

    2015-01-01

    Biochemical, physiological and molecular responses of Ricinus communis seeds and seedlings to different temperatures: a multi-omics approach

    by Paulo Roberto Ribeiro de Jesus

    The main objective of this thesis was to provide a detailed

  9. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis.

    Science.gov (United States)

    Wang, Liying; Cao, Chunwei; Wang, Fang; Zhao, Jianguo; Li, Wei

    2017-09-03

    RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.

  10. Physiological, Biochemical, Epigenetic and Molecular Analyses of Wheat (Triticum aestivum Genotypes with Contrasting Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Abiotic stress exerts significant impact on plant’s growth, development, and productivity. Productivity of crop plants under salt stress is lagging behind because of our limited knowledge about physiological, biochemical, epigenetic, and molecular mechanisms of salt tolerance in plants. This study aimed to investigate physio-biochemical, molecular indices and defense responses of selected wheat cultivars to identify the most contrasting salt-responsive genotypes and the mechanisms associated with their differential responses. Physio-biochemical traits specifically membrane stability index, antioxidant potential, osmoprotectants and chlorophyll contents, measured at vegetative stage, were used for multivariate analysis to identify the most contrasting genotypes. Genetic and epigenetic analyses indicated the possible mechanisms associated with differential response of the wheat genotypes under salt stress. Better antioxidant potential, membrane stability, increased accumulation of osmolytes/phytophenolics, and higher K+/Na+ ratio under 200 mM NaCl stress identified Kharchia-65 to be the most salt-tolerant cultivar. By contrast, increased MDA level, reduced soluble sugar, proline, total chlorophyll, total phenolics contents, and lower antioxidant potential in HD-2329 marked it to be sensitive to the stress. Genetic and bioinformatics analyses of HKT1;4 of contrasting genotypes (Kharchia-65 and HD-2329 revealed deletions, transitions, and transversions resulting into altered structure, loss of conserved motifs (Ser-Gly-Gly-Gly and Gly-Arg and function in salt-sensitive (HD-2329 genotype. Expression analysis of HKTs rationalized the observed responses. Epigenetic variations in cytosine methylation explained tissue- and genotype-specific differential expression of HKT2;1 and HKT2;3.

  11. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms.

    Science.gov (United States)

    Bressuire-Isoard, Christelle; Broussolle, Véronique; Carlin, Frédéric

    2018-05-17

    Bacterial spores are resistant to physical and chemical insults, which make them a major concern for public health and for industry. Spores help bacteria to survive extreme environmental conditions that vegetative cells cannot tolerate. Spore resistance and dormancy are important properties for applications in medicine, veterinary health, food safety, crop protection, and other domains. The resistance of bacterial spores results from a protective multilayered structure and from the unique composition of the spore core. The mechanisms of sporulation and germination, the first stage after breaking of dormancy, and organization of spore structure have been extensively studied in Bacillus species. This review aims to illustrate how far the structure, composition and properties of spores are shaped by the environmental conditions in which spores form. We look at the physiological and molecular mechanisms underpinning how sporulation media and environment deeply affect spore yield, spore properties like resistance to wet heat and physical and chemical agents, germination, and further growth. For example, spore core water content decreases as sporulation temperature increases, and resistance to wet heat increases. Controlling the fate of Bacillus spores is pivotal to controlling bacterial risks and process efficiencies in, for example, the food industry, and better control hinges on better understanding how sporulation conditions influence spore properties.

  12. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic]. Progress report, June 1991--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant`s recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  13. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption.

    Science.gov (United States)

    Pfannes, Eva K B; Weiss, Lina; Hadam, Sabrina; Gonnet, Jessica; Combardière, Béhazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2018-01-01

    The success of topically applied treatments on skin relies on the efficacy of skin penetration. In order to increase particle or product penetration, mild skin barrier disruption methods can be used. We previously described cyanoacrylate skin surface stripping as an efficient method to open hair follicles, enhance particle penetration, and activate Langerhans cells. We conducted ex vivo and in vivo measurements on human skin to characterize the biological effect and quantify barrier disruption-related inflammation on a molecular level. Despite the known immunostimulatory effects, this barrier disruption and hair follicle opening method was well accepted and did not result in lasting changes of skin physiological parameters, cytokine production, or clinical side effects. Only in ex vivo human skin did we find a discrete increase in IP-10, TGF-β, IL-8, and GM-CSF mRNA. The data underline the safety profile of this method and demonstrate that the procedure per se does not cause substantial inflammation or skin damage, which is also of interest when applied to non-invasive sampling of biomarkers in clinical trials. © 2018 S. Karger AG, Basel.

  14. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.

    Science.gov (United States)

    Wagai, Rota; Kishimoto-Mo, Ayaka W; Yonemura, Seiichiro; Shirato, Yasuhito; Hiradate, Syuntaro; Yagasaki, Yasumi

    2013-04-01

    Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for short-term decomposition. Factors

  15. Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of divergence times for brown algal orders.

    Science.gov (United States)

    Kawai, Hiroshi; Hanyuda, Takeaki; Draisma, Stefano G A; Wilce, Robert T; Andersen, Robert A

    2015-10-01

    The molecular phylogeny of brown algae was examined using concatenated DNA sequences of seven chloroplast and mitochondrial genes (atpB, psaA, psaB, psbA, psbC, rbcL, and cox1). The study was carried out mostly from unialgal cultures; we included Phaeostrophion irregulare and Platysiphon glacialis because their ordinal taxonomic positions were unclear. Overall, the molecular phylogeny agreed with previously published studies, however, Platysiphon clustered with Halosiphon and Stschapovia and was paraphyletic with the Tilopteridales. Platysiphon resembled Stschapovia in showing remarkable morphological changes between young and mature thalli. Platysiphon, Halosiphon and Stschapovia also shared parenchymatous, terete, erect thalli with assimilatory filaments in whorls or on the distal end. Based on these results, we proposed a new order Stschapoviales and a new family Platysiphonaceae. We proposed to include Phaeostrophion in the Sphacelariales, and we emended the order to include this foliose member. Finally, using basal taxa not included in earlier studies, the origin and divergence times for brown algae were re-investigated. Results showed that the Phaeophyceae branched from Schizocladiophyceae ~260 Ma during the Permian Period. The early diverging brown algae had isomorphic life histories, whereas the derived taxa with heteromorphic life histories evolved 155-110 Ma when they branched from the basal taxa. Based on these results, we propose that the development of heteromorphic life histories and their success in the temperate and cold-water regions was induced by the development of the remarkable seasonality caused by the breakup of Pangaea. Most brown algal orders had diverged by roughly 60 Ma, around the last mass extinction event during the Cretaceous Period, and therefore a drastic climate change might have triggered the divergence of brown algae. © 2015 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological

  16. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.

    Science.gov (United States)

    Smith, Adam R; Proffitt, Melissa R; Ho, Winnie W; Mullaney, Claire B; Maldonado-Ocampo, Javier A; Lovejoy, Nathan R; Alves-Gomes, José A; Smith, G Troy

    2016-10-01

    The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus+Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus+Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, 'Apteronotus', Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and "big" chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS analyses using the

  17. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    Science.gov (United States)

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  18. Molecular, cellular and physiological evidences for the anorexigenic actions of nesfatin-1 in goldfish.

    Directory of Open Access Journals (Sweden)

    Ronald Gonzalez

    2010-12-01

    Full Text Available Nesfatin-1 is a recently discovered anorexigen encoded in the precursor peptide, nucleobindin-2 (NUCB2 in mammals. To date, nesfatin-1 has not been described in any non-mammalian species, although some information is available in the sequenced genomes of several species. Our objective was to characterize nesfatin-1 in fish.In the present study, we employed molecular, immunohistochemical, and physiological studies to characterize the structure, distribution, and appetite regulatory effects of nesfatin-1 in a non-mammalian vertebrate. A very high conservation in NUCB2 sequences, especially in the nesfatin-1 region was found in lower vertebrates. Abundant expression of NUCB2 mRNA was detected in several tissues including the brain and liver of goldfish. Nesfatin-1-like immunoreactive cells are present in the feeding regulatory nucleus of the hypothalamus and in the gastrointestinal tract of goldfish. Approximately 6-fold increase in NUCB2 mRNA levels was found in the liver after 7-day food-deprivation, and a similar increase was also found after short-term fasting. This points toward a possible liver specific role for NUCB2 in the control of metabolism during food-deprivation. Meanwhile, ∼2-fold increase at 1 and 3 h post-feeding and an ∼3-fold reduction after a 7-day food-deprivation was observed in NUCB2 mRNA in the goldfish hypothalamus. In vivo, a single intraperitoneal injection of the full-length native (goldfish; gf nesfatin-1 at a dose of 50 ng/g body weight induced a 23% reduction of food intake one hour post-injection in goldfish. Furthermore, intracerebroventricular injection of gfnesfatin-1 at a dose of 5 ng/g body weight resulted in ∼50% reduction in food intake.Our results provide molecular, anatomical and functional evidences to support potential anorectic and metabolic roles for endogenous nesfatin-1 in goldfish. Collectively, we provide novel information on NUCB2 in non-mammals and an anorexigenic role for nesfatin-1 in

  19. Molecular fossils in modern genomes provide physiological and geochemical insights to the ancient earth (Invited)

    Science.gov (United States)

    Dupont, C.; Caetano-Anolles, G.

    2010-12-01

    The genomes of extant organisms are ultimately derived from ancient life, thus theoretically contain insight to ancient physiology, ecology, and environments. In particular, metalloenzymes may be particularly insightful. The fundamental chemistry of trace elements dictates the molecular speciation and reactivity both within cells and the environment at large. Using protein structure and comparative genomics, we elucidate several major influences this chemistry has had upon biology. All of life exhibits the same proteome size-dependent scaling for the number of metal-binding proteins within a proteome. This fundamental evolutionary constant shows that the selection of one element occurs at the exclusion of another, with the eschewal of Fe for Zn and Ca being a defining feature of eukaryotic pro- teomes. Early life lacked both the structures required to control intracellular metal concentrations and the metal-binding proteins that catalyze electron transport and redox transformations. The development of protein structures for metal homeostasis coincided with the emergence of metal-specific structures, which predomi- nantly bound metals abundant in the Archean ocean. Potentially, this promoted the diversification of emerging lineages of Archaea and Bacteria through the establishment of biogeochemical cycles. In contrast, structures binding Cu and Zn evolved much later, pro- viding further evidence that environmental availability influenced the selection of the elements. The late evolving Zn-binding proteins are fundamental to eukaryotic cellular biology, and Zn bioavailabil- ity may have been a limiting factor in eukaryotic evolution. The results presented here provide an evolutionary timeline based on genomic characteristics, and key hypotheses can be tested by alternative geochemical methods.

  20. Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida).

    Science.gov (United States)

    Cornils, Astrid; Blanco-Bercial, Leocadio

    2013-12-01

    The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. The phylogeny of Arthrotardigrada

    DEFF Research Database (Denmark)

    Hansen, Jesper Guldberg

    2011-01-01

    The order Arthrotardigrada, or water bears, constitutes a small group of 160 species of marine, microscopical invertebrates, within the phylum Tardigrada. Although the position of tardigrades in the Animal Kingdom has received much attention focusing on the metazoan phylogeny, the phylogenetic...

  2. Fossils and decapod phylogeny

    NARCIS (Netherlands)

    Schram, Frederick R.; Dixon, Christopher

    2003-01-01

    An expanded series of morphological characters developed for a cladistic analysis of extant decapods has yielded a new hypothesis for the phylogeny of the group. Application of this database to selected fossil genera produces some interesting results and demonstrates the feasibility of treating

  3. Building a Twig Phylogeny

    Science.gov (United States)

    Flinn, Kathryn M.

    2015-01-01

    In this classroom activity, students build a phylogeny for woody plant species based on the morphology of their twigs. Using any available twigs, students can practice the process of cladistics to test evolutionary hypotheses for real organisms. They identify homologous characters, determine polarity through outgroup comparison, and construct a…

  4. Plastome phylogeny and early diversification of Brassicaceae.

    Science.gov (United States)

    Guo, Xinyi; Liu, Jianquan; Hao, Guoqian; Zhang, Lei; Mao, Kangshan; Wang, Xiaojuan; Zhang, Dan; Ma, Tao; Hu, Quanjun; Al-Shehbaz, Ihsan A; Koch, Marcus A

    2017-02-16

    The family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies. Bayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family. Plastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.

  5. Primate diversification inferred from phylogenies and fossils.

    Science.gov (United States)

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales.

    NARCIS (Netherlands)

    Vitale, R.G.; Hoog, G.S. de; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; Sande, W.W. van de; Dolatabadi, S.; Meis, J.F.G.M.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  7. Antifungal susceptibility and phylogeny of opportunistic members of the order Mucorales

    NARCIS (Netherlands)

    R.G. Vitale (Roxana); G.S. de Hoog; P. Schwarz (Peter); E. Dannaoui (Eric); S. Deng (Shuwen); M. Machouart (Marie); K. Voigt (Kerstin); W.W.J. van de Sande (Wendy); S. Dolatabadi (Somayeh); J.F. Meis; G. Walther

    2012-01-01

    textabstractThe in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the

  8. Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Order Mucorales

    NARCIS (Netherlands)

    Vitale, R.G.; de Hoog, G.S.; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; de Sande, W.W.J.v.; Dolatabadi, S.; Meis, J.F.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  9. Molecular and Physiological Factors of Neuroprotection in Hypoxia-tolerant Models: Pharmacological Clues for the Treatment of Stroke

    Directory of Open Access Journals (Sweden)

    Thomas I. Nathaniel

    2015-01-01

    Full Text Available The naked mole-rat possesses several unique physiological and molecular features that underlie their remarkably and exceptional resistance to tissue hypoxia. Elevated pattern of Epo, an erythropoietin (Epo factor; c-fos; vascular endothelial growth factor (VEGF; and hypoxia-inducible factors (HIF-1α contribute to the adaptive strategy to cope with hypoxic stress. Moreover, the naked mole-rat has a lower metabolic rate than any other eutherian mammal of comparable size that has been studied. The ability to actively reduce metabolic rate represents a strategy widely used in the face of decreased tissue oxygen availability. Understanding the different molecular and physiological factors that induce metabolic suppression could guide the development of pharmacological agents for the clinical management of stroke patient.

  10. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids

    International Nuclear Information System (INIS)

    Tang, Qian; Li, Zai-yong; Wei, Yu-bo; Yang, Xia; Liu, Lan-tao; Gong, Cheng-bin; Ma, Xue-bing; Lam, Michael Hon-wah; Chow, Cheuk-fai

    2016-01-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22 × 10"−"5 M in aqueous NaH_2PO_4 buffer at pH = 7.0 and a maximal adsorption capacity of 1.45 μmol g"−"1. Upon alternate irradiation at 365 and 440 nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. - Highlights: • Novel surface molecularly imprinted polymer on ZnO nanorods was synthesized. • ZnO-SMIP showed good selectivity toward uric acid in physiological fluids. • ZnO-SMIP displayed good photoresponsive properties.

  11. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qian [The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Department of Science and Environmental Studies, The Hong Kong Institute of Education (Hong Kong); Li, Zai-yong; Wei, Yu-bo; Yang, Xia; Liu, Lan-tao [The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Gong, Cheng-bin, E-mail: gongcbtq@swu.edu.cn [The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Ma, Xue-bing [The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lam, Michael Hon-wah [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Chow, Cheuk-fai, E-mail: cfchow@ied.edu.hk [Department of Science and Environmental Studies, The Hong Kong Institute of Education (Hong Kong)

    2016-09-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22 × 10{sup −5} M in aqueous NaH{sub 2}PO{sub 4} buffer at pH = 7.0 and a maximal adsorption capacity of 1.45 μmol g{sup −1}. Upon alternate irradiation at 365 and 440 nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. - Highlights: • Novel surface molecularly imprinted polymer on ZnO nanorods was synthesized. • ZnO-SMIP showed good selectivity toward uric acid in physiological fluids. • ZnO-SMIP displayed good photoresponsive properties.

  12. Identification and characterization of contrasting sunflower genotypes to early leaf senescence process combining molecular and physiological studies (Helianthus annuus L.).

    Science.gov (United States)

    López Gialdi, A I; Moschen, S; Villán, C S; López Fernández, M P; Maldonado, S; Paniego, N; Heinz, R A; Fernandez, P

    2016-09-01

    Leaf senescence is a complex mechanism ruled by multiple genetic and environmental variables that affect crop yields. It is the last stage in leaf development, is characterized by an active decline in photosynthetic rate, nutrients recycling and cell death. The aim of this work was to identify contrasting sunflower inbred lines differing in leaf senescence and to deepen the study of this process in sunflower. Ten sunflower genotypes, previously selected by physiological analysis from 150 inbred genotypes, were evaluated under field conditions through physiological, cytological and molecular analysis. The physiological measurement allowed the identification of two contrasting senescence inbred lines, R453 and B481-6, with an increase in yield in the senescence delayed genotype. These findings were confirmed by cytological and molecular analysis using TUNEL, genomic DNA gel electrophoresis, flow sorting and gene expression analysis by qPCR. These results allowed the selection of the two most promising contrasting genotypes, which enables future studies and the identification of new biomarkers associated to early senescence in sunflower. In addition, they allowed the tuning of cytological techniques for a non-model species and its integration with molecular variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds.

    Science.gov (United States)

    Schiefner, André; Skerra, Arne

    2015-04-21

    While immunoglobulins are well-known for their characteristic ability to bind macromolecular antigens (i.e., as antibodies during an immune response), the lipocalins constitute a family of proteins whose role is the complexation of small molecules for various physiological processes. In fact, a number of low-molecular-weight substances in multicellular organisms show poor solubility, are prone to chemical decomposition, or play a pathophysiological role and thus require specific binding proteins for transport through body fluids, storage, or sequestration. In many cases, lipocalins are involved in such tasks. Lipocalins are small, usually monomeric proteins with 150-180 residues and diameters of approximately 40 Å, adopting a compact fold that is dominated by a central eight-stranded up-and-down β-barrel. At the amino-terminal end, this core is flanked by a coiled polypeptide segment, while its carboxy-terminal end is followed by an α-helix that leans against the β-barrel as well as an amino acid stretch in a more-or-less extended conformation, which finally is fixed by a disulfide bond. Within the β-barrel, the antiparallel strands (designated A to H) are arranged in a (+1)7 topology and wind around a central axis in a right-handed manner such that part of strand A is hydrogen-bonded to strand H again. Whereas the lower region of the β-barrel is closed by short loops and densely packed hydrophobic side chains, including many aromatic residues, the upper end is usually open to solvent. There, four long loops, each connecting one pair of β-strands, together form the entrance to a cup-shaped cavity. Depending on the individual structure of a lipocalin, and especially on the lengths and amino acid sequences of its four loops, this pocket can accommodate chemical ligands of various sizes and shapes, including lipids, steroids, and other chemical hormones as well as secondary metabolites such as vitamins, cofactors, or odorants. While lipocalins are ubiquitous in

  14. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    Science.gov (United States)

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  15. Molecular phylogeny and species separation of five morphologically similar Holosticha-complex ciliates (Protozoa, Ciliophora) using ARDRA riboprinting and multigene sequence data

    Science.gov (United States)

    Gao, Feng; Yi, Zhenzhen; Gong, Jun; Al-Rasheid Khaled, A. S.; Song, Weibo

    2010-05-01

    To separate and redefine the ambiguous Holosticha-complex, a confusing group of hypotrichous ciliates, six strains belonging to five morphospecies of three genera, Holosticha heterofoissneri, Anteholosticha sp. pop1, Anteholosticha sp. pop2, A. manca, A. gracilis and Nothoholosticha fasciola, were analyzed using 12 restriction enzymes on the basis of amplified ribosomal DNA restriction analysis. Nine of the 12 enzymes could digest the DNA products, four ( Hinf I, Hind III, Msp I, Taq I) yielded species-specific restriction patterns, and Hind III and Taq I produced different patterns for two Anteholosticha sp. populations. Distinctly different restriction digestion haplotypes and similarity indices can be used to separate the species. The secondary structures of the five species were predicted based on the ITS2 transcripts and there were several minor differences among species, while two Anteholosticha sp. populations were identical. In addition, phylogenies based on the SSrRNA gene sequences were reconstructed using multiple algorithms, which grouped them generally into four clades, and exhibited that the genus Anteholosticha should be a convergent assemblage. The fact that Holosticha species clustered with the oligotrichs and choreotrichs, though with very low support values, indicated that the topology may be very divergent and unreliable when the number of sequence data used in the analyses is too low.

  16. Molecular phylogeny of Hemidactylus geckos (Squamata: Gekkonidae) of the Indian subcontinent reveals a unique Indian radiation and an Indian origin of Asian house geckos.

    Science.gov (United States)

    Bansal, Rohini; Karanth, K Praveen

    2010-10-01

    Represented by approximately 85 species, Hemidactylus is one of the most diverse and widely distributed genera of reptiles in the world. In the Indian subcontinent, this genus is represented by 28 species out of which at least 13 are endemic to this region. Here, we report the phylogeny of the Indian Hemidactylus geckos based on mitochondrial and nuclear DNA markers sequenced from multiple individuals of widely distributed as well as endemic congeners of India. Results indicate that a majority of the species distributed in India form a distinct clade whose members are largely confined to the Indian subcontinent thus representing a unique Indian radiation. The remaining Hemidactylus geckos of India belong to two other geographical clades representing the Southeast Asian and West-Asian arid zone species. Additionally, the three widely distributed, commensal species (H. brookii, H. frenatus and H. flaviviridis) are nested within the Indian radiation suggesting their Indian origin. Dispersal-vicariance analysis also supports their Indian origin and subsequent dispersal out-of-India into West-Asian arid zone and Southeast Asia. Thus, Indian subcontinent has served as an important arena for diversification amongst the Hemidactylus geckos and in the evolution and spread of its commensal geckos. Copyright 2010 Elsevier Inc. All rights reserved.

  17. The Emergence of Physiology and Form: Natural Selection Revisited

    Science.gov (United States)

    Torday, John S.

    2016-01-01

    Natural Selection describes how species have evolved differentially, but it is descriptive, non-mechanistic. What mechanisms does Nature use to accomplish this feat? One known way in which ancient natural forces affect development, phylogeny and physiology is through gravitational effects that have evolved as mechanotransduction, seen in the lung, kidney and bone, linking as molecular homologies to skin and brain. Tracing the ontogenetic and phylogenetic changes that have facilitated mechanotransduction identifies specific homologous cell-types and functional molecular markers for lung homeostasis that reveal how and why complex physiologic traits have evolved from the unicellular to the multicellular state. Such data are reinforced by their reverse-evolutionary patterns in chronic degenerative diseases. The physiologic responses of model organisms like Dictyostelium and yeast to gravity provide deep comparative molecular phenotypic homologies, revealing mammalian Target of Rapamycin (mTOR) as the final common pathway for vertical integration of vertebrate physiologic evolution; mTOR integrates calcium/lipid epistatic balance as both the proximate and ultimate positive selection pressure for vertebrate physiologic evolution. The commonality of all vertebrate structure-function relationships can be reduced to calcium/lipid homeostatic regulation as the fractal unit of vertebrate physiology, demonstrating the primacy of the unicellular state as the fundament of physiologic evolution. PMID:27534726

  18. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    Science.gov (United States)

    Baskin, Igor I.; Palyulin, Vladimir A.; Zefirov, Nikolai S.

    2009-06-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  19. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    International Nuclear Information System (INIS)

    Baskin, Igor I; Palyulin, Vladimir A; Zefirov, Nikolai S

    2009-01-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  20. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Igor I; Palyulin, Vladimir A; Zefirov, Nikolai S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-06-30

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  1. Detection, phylogeny and population dynamics of syntrophic propionate - oxidizing bacteria in anaerobic granular sludge

    NARCIS (Netherlands)

    Harmsen, H.J.M.

    1996-01-01


    The research described this thesis concerns the diversity and phylogeny of syntrophic propionate-oxidizing bacteria and their ecology in granular sludge, from which they were obtained. 16S rRNA was used as a molecular marker to study both the phylogeny and the ecology of these bacteria.

  2. The water economy of South American desert rodents: from integrative to molecular physiological ecology.

    Science.gov (United States)

    Bozinovic, Francisco; Gallardo, Pedro

    2006-01-01

    Rodents from arid and semi-arid habitats live under conditions where the spatial and temporal availability of free water is limited, or scarce, thus forcing these rodents to deal with the problem of water conservation. The response of rodents to unproductive desert environments and water deficits has been intensively investigated in many deserts of the world. However, current understanding of the cellular, systemic and organismal physiology of water economy relies heavily on short-term, laboratory-oriented experiments, which usually focus on responses at isolated levels of biological organization. In addition, studies in small South American mammals are scarce. Indeed xeric habitats have existed in South America for a long time and it is intriguing why present day South American desert rodents do not show the wide array of adaptive traits to desert life observed for rodents on other continents. Several authors have pointed out that South American desert rodents lack physiological and energetic specialization for energy and water conservation, hypothesizing that their success is based more on behavioral and ecological strategies. We review phenotypic flexibility and physiological diversity in water flux rate, urine osmolality, and expression of water channels in South American desert-dwelling rodents. As far as we know, this is the first review of integrative studies at cellular, systemic and organismal levels. Our main conclusion is that South American desert rodents possess structural as well as physiological systems for water conservation, which are as remarkable as those found in "classical" rodents inhabiting other desert areas of the world.

  3. Molecular and physiological diversity among Verticillium fungicola var. fungicola and var. aleophilum

    NARCIS (Netherlands)

    Largeteau, M.L.; Baars, J.J.P.; Savoie, J.M.

    2006-01-01

    The genetic and physiological variability of Verticillium fungicola var. aleophilum responsible for Agaricus bisporus dry bubble disease in North America is well documented but little is known about the var. fungicola affecting European crops. Variability was assessed within this variety and

  4. FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Yusuke Murata

    2011-01-01

    Full Text Available The FGF family comprises twenty-two structurally related proteins with functions in development and metabolism. The Fgf21 gene was generated early in vertebrate evolution. FGF21 acts as an endocrine regulator in lipid metabolism. Hepatic Fgf21 expression is markedly induced in mice by fasting or a ketogenic diet. Experiments with Fgf21 transgenic mice and cultured cells indicate that FGF21 exerts pharmacological effects on glucose and lipid metabolism in hepatocytes and adipocytes via cell surface FGF receptors. However, experiments with Fgf21 knockout mice indicate that FGF21 inhibits lipolysis in adipocytes during fasting and attenuates torpor induced by a ketogenic diet but maybe not a physiological regulator for these hepatic functions. These findings suggest the pharmacological effects to be distinct from the physiological roles. Serum FGF21 levels are increased in patients with metabolic diseases having insulin resistance, indicating that FGF21 is a metabolic regulator and a biomarker for these diseases.

  5. High-fertility phenotypes: two outbred mouse models exhibit substantially different molecular and physiological strategies warranting improved fertility.

    Science.gov (United States)

    Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M

    2014-01-01

    Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.

  6. A molecular phylogeny of Asian species of the genus Metagonimus (Digenea)-small intestinal flukes-based on representative Japanese populations

    Czech Academy of Sciences Publication Activity Database

    Pornruseetairatn, S.; Kino, H.; Shimazu, T.; Nawa, Y.; Scholz, Tomáš; Ruangsittichai, J.; Saralamba, N.T.; Thaenkham, U.

    2016-01-01

    Roč. 115, č. 3 (2016), s. 1123-1130 ISSN 0932-0113 Institutional support: RVO:60077344 Keywords : Metagonimus * 28S rDNA * cox1 * ITS2 * interrelations * morphology * incongruence Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.329, year: 2016

  7. First molecular data on the phylum Loricifera: an investigation into the phylogeny of ecdysozoa with emphasis on the positions of Loricifera and Priapulida.

    Science.gov (United States)

    Park, Joong-Ki; Rho, Hyun Soo; Kristensen, Reinhardt Møbjerg; Kim, Won; Giribet, Gonzalo

    2006-11-01

    Recent progress in molecular techniques has generated a wealth of information for phylogenetic analysis. Among metazoans all but a single phylum have been incorporated into some sort of molecular analysis. However, the minute and rare species of the phylum Loricifera have remained elusive to molecular systematists. Here we report the first molecular sequence data (nearly complete 18S rRNA) for a member of the phylum Loricifera, Pliciloricus sp. from Korea. The new sequence data were analyzed together with 52 other ecdysozoan sequences, with all other phyla represented by three or more sequences. The data set was analyzed using parsimony as an optimality criterion under direct optimization as well as using a Bayesian approach. The parsimony analysis was also accompanied by a sensitivity analysis. The results of both analyses are largely congruent, finding monophyly of each ecdysozoan phylum, except for Priapulida, in which the coelomate Meiopriapulus is separate from a clade of pseudocoelomate priapulids. The data also suggest a relationship of the pseudocoelomate priapulids to kinorhynchs, and a relationship of nematodes to tardigrades. The Bayesian analysis placed the arthropods as the sister group to a clade that includes tardigrades and nematodes. However, these results were shown to be parameter dependent in the sensitivity analysis. The position of Loricifera was extremely unstable to parameter variation, and support for a relationship of loriciferans to any particular ecdysozoan phylum was not found in the data.

  8. Life cycles, molecular phylogeny and historical biogeography of the ‘pygmaeus’ microphallids (Digenea: Microphallidae): widespread parasites of marine and coastal birds in the Holarctic

    Czech Academy of Sciences Publication Activity Database

    Galaktionov, K.V.; Blasco-Costa, Maria Isabel; Olson, P. D.

    2012-01-01

    Roč. 139, č. 10 (2012), s. 1346-1360 ISSN 0031-1820 Institutional support: RVO:60077344 Keywords : marine parasites * trematode * Microphallus * parasite speciation * parasite transmission * host-parasite co-evolution * host switching * host-parasite assemblages Subject RIV: EH - Ecology, Behaviour; EB - Genetics ; Molecular Biology (BC-A) Impact factor: 2.355, year: 2012

  9. Physiological and molecular responses of springtails exposed to phenanthrene and drought

    International Nuclear Information System (INIS)

    Holmstrup, Martin; Slotsbo, Stine; Schmidt, Stine N.; Mayer, Philipp; Damgaard, Christian; Sørensen, Jesper G.

    2014-01-01

    Interaction between effects of hazardous chemicals in the environment and adverse climatic conditions is a problem that receives increased attention in the light of climate change. We studied interactive effects of phenanthrene and drought using a test system in which springtails (Folsomia candida Willem) were concurrently exposed to a sublethal phenanthrene level via passive dosing from silicone (chemical activity of 0.010), and sublethal drought from aqueous NaCl solutions (water activity of 0.988). Previous studies have shown that the combined effects of high levels of phenanthrene and drought, respectively, interact synergistically when using lethality as an end-point. Here, we hypothesized that phenanthrene interferes with physiological mechanisms involved in drought tolerance, and that drought influences detoxification of phenanthrene. However, this hypothesis was not supported by data since phenanthrene had no effect on drought-protective accumulation of myo-inositol, and normal water conserving mechanisms of F. candida were functioning despite the near-lethal concentrations of the toxicant. Further, detoxifying induction of cytochrome P 450 and glutathione-S-transferase was not impeded by drought. Both phenanthrene and drought induced transcription of heat shock protein (hsp70) and the combined effect of the two stressors on hsp70 transcription was additive, suggesting that the cellular stress and lethality imposed by these levels of phenanthrene and drought were also additive. -- Highlights: • New methods are needed for physiological studies of multiple stressor effects. • Springtails were exposed to combined stress from phenanthrene and drought. • Induction of CYP 450 and glutathione-S-transferase was not impeded by drought. • Drought-protective accumulation of myo-inositol was not challenged by phenanthrene. • The combined effect of phenanthrene and drought on hsp70 transcription was additive. -- Drought does not hamper detoxification of

  10. Glucose-Induced Trophic Shift in an Endosymbiont Dinoflagellate with Physiological and Molecular Consequences1[OPEN

    Science.gov (United States)

    Jinkerson, Robert E.; Clowez, Sophie; Onishi, Masayuki; Cleves, Phillip A.; Pringle, John R.

    2018-01-01

    Interactions between the dinoflagellate endosymbiont Symbiodinium and its cnidarian hosts (e.g. corals, sea anemones) are the foundation of coral-reef ecosystems. Carbon flow between the partners is a hallmark of this mutualism, but the mechanisms governing this flow and its impact on symbiosis remain poorly understood. We showed previously that although Symbiodinium strain SSB01 can grow photoautotrophically, it can grow mixotrophically or heterotrophically when supplied with Glc, a metabolite normally transferred from the alga to its host. Here we show that Glc supplementation of SSB01 cultures causes a loss of pigmentation and photosynthetic activity, disorganization of thylakoid membranes, accumulation of lipid bodies, and alterations of cell-surface morphology. We used global transcriptome analyses to determine if these physiological changes were correlated with changes in gene expression. Glc-supplemented cells exhibited a marked reduction in levels of plastid transcripts encoding photosynthetic proteins, although most nuclear-encoded transcripts (including those for proteins involved in lipid synthesis and formation of the extracellular matrix) exhibited little change in their abundances. However, the altered carbon metabolism in Glc-supplemented cells was correlated with modest alterations (approximately 2x) in the levels of some nuclear-encoded transcripts for sugar transporters. Finally, Glc-bleached SSB01 cells appeared unable to efficiently populate anemone larvae. Together, these results suggest links between energy metabolism and cellular physiology, morphology, and symbiotic interactions. However, the results also show that in contrast to many other organisms, Symbiodinium can undergo dramatic physiological changes that are not reflected by major changes in the abundances of nuclear-encoded transcripts and thus presumably reflect posttranscriptional regulatory processes. PMID:29217594

  11. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Directory of Open Access Journals (Sweden)

    Jose M. Requena

    2015-01-01

    Full Text Available Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges for drug discovery and improving of current treatments against leishmaniasis.

  12. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Science.gov (United States)

    Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482

  13. Molecular Clues to Physiological and Premature Ageing Revealed | Center for Cancer Research

    Science.gov (United States)

    There are many theories about the molecular basis of ageing. One of the most popular ones postulates that organisms age by accumulating damage to their tissues, cells, and molecules. On the cellular level, ageing is associated with progressive changes in chromatin (a combination of DNA and proteins that makes up chromosomes). These changes include loss of chromatin structure,

  14. Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study.

    Science.gov (United States)

    Dattolo, E; Ruocco, M; Brunet, C; Lorenti, M; Lauritano, C; D'Esposito, D; De Luca, P; Sanges, R; Mazzuca, S; Procaccini, G

    2014-10-01

    Here we investigated mechanisms underlying the acclimation to light in the marine angiosperm Posidonia oceanica, along its bathymetric distribution (at -5 m and -25 m), combining molecular and photo-physiological approaches. Analyses were performed during two seasons, summer and autumn, in a meadow located in the Island of Ischia (Gulf of Naples, Italy), where a genetic distinction between plants growing above and below the summer thermocline was previously revealed. At molecular level, analyses carried out using cDNA-microarray and RT-qPCR, revealed the up-regulation of genes involved in photoacclimation (RuBisCO, ferredoxin, chlorophyll binding proteins), and photoprotection (antioxidant enzymes, xanthophyll-cycle related genes, tocopherol biosynthesis) in the upper stand of the meadow, indicating that shallow plants are under stressful light conditions. However, the lack of photo-damage, indicates the successful activation of defense mechanisms. This conclusion is also supported by several responses at physiological level as the lower antenna size, the higher number of reaction centers and the higher xanthophyll cycle pigment pool, which are common plant responses to high-light adaptation/acclimation. Deep plants, despite the lower available light, seem to be not light-limited, thanks to some shade-adaptation strategies (e.g. higher antenna size, lower Ek values). Furthermore, also at the molecular level there were no signs of stress response, indicating that, although the lower energy available, low-light environments are more favorable for P. oceanica growth. Globally, results of whole transcriptome analysis displayed two distinct gene expression signatures related to depth distribution, reflecting the different light-adaptation strategies adopted by P. oceanica along the depth gradient. This observation, also taking into account the genetic disjunction of clones along the bathymetry, might have important implications for micro-evolutionary processes

  15. The ITS1-5.8S-ITS2 Sequence Region in the Musaceae: Structure, Diversity and Use in Molecular Phylogeny

    Czech Academy of Sciences Publication Activity Database

    Hřibová, Eva; Čížková, Jana; Christelová, Pavla; Taudien, S.; De Langhe, E.; Doležel, Jaroslav

    2011-01-01

    Roč. 6, č. 3 (2011), e17863-e17863 E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA600380703; GA AV ČR KJB500380901 Institutional research plan: CEZ:AV0Z50380511 Keywords : INTERNAL TRANSCRIBED SPACER * NUCLEAR RIBOSOMAL DNA * RNA SECONDARY STRUCTURE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  16. Cotransport of water and solutes in plant membranes: The molecular basis, and physiological functions

    Directory of Open Access Journals (Sweden)

    Lars H. Wegner

    2017-03-01

    Full Text Available Current concepts of plant membrane transport are based on the assumption that water and solutes move across membranes via separate pathways. According to this view, coupling between the fluxes is more or less exclusively constituted via the osmotic force that solutes exert on water transport. This view is questioned here, and experimental evidence for a cotransport of water and solutes is reviewed. The overview starts with ion channels that provide pathways for both ion and water transport, as exemplified for maxi K+ channels from cytoplasmic droplets of Chara corallina. Aquaporins are usually considered to be selective for water (just allowing for slippage of some other small, neutral molecules. Recently, however, a “dual function” aquaporin has been characterized from Arabidopsis thaliana (AtPIP2.1 that translocates water and at the same time conducts cations, preferentially Na+. By analogy with mammalian physiology, other candidates for solute-water flux coupling are cation-chloride cotransporters of the CCC type, and transporters of sugars and amino acids. The last part is dedicated to possible physiological functions that could rely on solute-water cotransport. Among these are the generation of root pressure, refilling of embolized xylem vessels, fast turgor-driven movements of leaves, cell elongation (growth, osmoregulation and adjustment of buoyancy in marine algae. This review will hopefully initiate further research in the field.

  17. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses.

    Science.gov (United States)

    Marín-Guirao, Lazaro; Ruiz, Juan M; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-27

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species' ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  18. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses

    Science.gov (United States)

    Marín-Guirao, Lazaro; Ruiz, Juan M.; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-01

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species’ ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  19. United in Diversity : A Physiological and Molecular Characterization of Subpopulations in the Basal Ganglia Circuitry

    OpenAIRE

    Viereckel, Thomas

    2017-01-01

    The Basal Ganglia consist of a number of different nuclei that form a diverse circuitry of GABAergic, dopaminergic and glutamatergic neurons. This complex network is further organized in subcircuits that govern limbic and motor functions in humans and other vertebrates. Due to the interconnection of the individual structures, dysfunction in one area or cell population can affect the entire network, leading to synaptic and molecular alterations in the circuitry as a whole. The studies in this ...

  20. Unravelling the Biodiversity and Molecular Phylogeny of Needle Nematodes of the Genus Longidorus (Nematoda: Longidoridae) in Olive and a Description of Six New Species.

    Science.gov (United States)

    Archidona-Yuste, Antonio; Navas-Cortés, Juan A; Cantalapiedra-Navarrete, Carolina; Palomares-Rius, Juan E; Castillo, Pablo

    2016-01-01

    The genus Longidorus includes a remarkable group of invertebrate animals of the phylum Nematoda comprising polyphagous root-ectoparasites of numerous plants including several agricultural crops and trees. Damage is caused by direct feeding on root cells as well as by transmitting nepoviruses that cause disease on those crops. Thus, correct identification of Longidorus species is essential to establish appropriate control measures. We provide the first detailed information on the diversity and distribution of Longidorus species infesting wild and cultivated olive soils in a wide-region in southern Spain that included 159 locations from which 449 sampling sites were analyzed. The present study doubles the known biodiversity of Longidorus species identified in olives by including six new species (Longidorus indalus sp. nov., Longidorus macrodorus sp. nov., Longidorus onubensis sp. nov., Longidorus silvestris sp. nov., Longidorus vallensis sp. nov., and Longidorus wicuolea sp. nov.), two new records for wild and cultivate olives (L. alvegus and L. vineacola), and two additional new records for wild olive (L. intermedius and L. lusitanicus). We also found evidence of some geographic species associations to western (viz. L. alvegus, L. intermedius, L. lusitanicus, L. onubensis sp. nov., L. vineacola, L. vinearum, L. wicuolea sp. nov.) and eastern distributions (viz. L. indalus sp. nov.), while only L. magnus was detected in both areas. We developed a comparative study by considering morphological and morphometrical features together with molecular data from nuclear ribosomal RNA genes (D2-D3 expansion segments of 28S, ITS1, and partial 18S). Results of molecular and phylogenetic analyses confirmed the morphological hypotheses and allowed the delimitation and discrimination of six new species of the genus described herein and four known species. Phylogenetic analyses of Longidorus spp. based on three molecular markers resulted in a general consensus of these species

  1. Physiological and molecular characterization of Si uptake in wild rice species.

    Science.gov (United States)

    Mitani-Ueno, Namiki; Ogai, Hisao; Yamaji, Naoki; Ma, Jian Feng

    2014-07-01

    Cultivated rice (Oryza sativa) accumulates high concentration of silicon (Si), which is required for its high and sustainable production. High Si accumulation in cultivated rice is achieved by a high expression of both influx (Lsi1) and efflux (Lsi2) Si transporters in roots. Herein, we physiologically investigated Si uptake, isolated and functionally characterized Si transporters in six wild rice species with different genome types. Si uptake by the roots was lower in Oryza rufipogon, Oryza barthii (AA genome), Oryza australiensis (EE genome) and Oryza punctata (BB genome), but similar in Oryza glumaepatula and Oryza meridionalis (AA genome) compared with the cultivated rice (cv. Nipponbare). However, all wild rice species and the cultivated rice showed similar concentration of Si in the shoots when grown in a field. All species with AA genome showed the same amino acid sequence of both Lsi1 and Lsi2 as O. sativa, whereas species with EE and BB genome showed several nucleotide differences in both Lsi1 and Lsi2. However, proteins encoded by these genes also showed transport activity for Si in Xenopus oocyte. The mRNA expression of Lsi1 in all wild rice species was lower than that in the cultivated rice, whereas the expression of Lsi2 was lower in O. rufipogon and O. barthii but similar in other species. Similar cellular localization of Lsi1 and Lsi2 was observed in all wild rice as the cultivated rice. These results indicate that superior Si uptake, the important trait for rice growth, is basically conserved in wild and cultivated rice species. © 2013 Scandinavian Plant Physiology Society.

  2. Searching for the molecular benchmark of physiological intestinal anastomotic healing in rats: an experimental study.

    Science.gov (United States)

    Seifert, Gabriel J; Seifert, Michael; Kulemann, Birte; Holzner, Philipp A; Glatz, Torben; Timme, Sylvia; Sick, Olivia; Höppner, Jens; Hopt, Ulrich T; Marjanovic, Goran

    2014-01-01

    This investigation focuses on the physiological characteristics of gene transcription of intestinal tissue following anastomosis formation. In eight rats, end-to-end ileo-ileal anastomoses were performed (n = 2/group). The healthy intestinal tissue resected for this operation was used as a control. On days 0, 2, 4 and 8, 10-mm perianastomotic segments were resected. Control and perianastomotic segments were examined with an Affymetrix microarray chip to assess changes in gene regulation. Microarray findings were validated using real-time PCR for selected genes. In addition to screening global gene expression, we identified genes intensely regulated during healing and also subjected our data sets to an overrepresentation analysis using the Gene Ontology (GO) and Kyoto Encyclopedia for Genes and Genomes (KEGG). Compared to the control group, we observed that the number of differentially regulated genes peaked on day 2 with a total of 2,238 genes, decreasing by day 4 to 1,687 genes and to 1,407 genes by day 8. PCR validation for matrix metalloproteinases-3 and -13 showed not only identical transcription patterns but also analogous regulation intensity. When setting the cutoff of upregulation at 10-fold to identify genes likely to be relevant, the total gene count was significantly lower with 55, 45 and 37 genes on days 2, 4 and 8, respectively. A total of 947 GO subcategories were significantly overrepresented during anastomotic healing. Furthermore, 23 overrepresented KEGG pathways were identified. This study is the first of its kind that focuses explicitly on gene transcription during intestinal anastomotic healing under standardized conditions. Our work sets a foundation for further studies toward a more profound understanding of the physiology of anastomotic healing.

  3. Phylogeny mandalas of birds using the lithographs of John Gould's folio bird books.

    Science.gov (United States)

    Hasegawa, Masami; Kuroda, Sayako

    2017-12-01

    The phylogeny mandala, which is a circular phylogeny with photos or drawings of species, is a suitable way to show visually how the biodiversity has developed in the course of evolution as clarified by the molecular phylogenetics. In this article, in order to demonstrate the recent progress of avian molecular phylogenetics, six phylogeny mandalas of various taxonomic groups of birds are presented with the lithographs of John Gould's folio bird books; i.e., (1) whole Aves, (2) Passeriformes, (3) Paradisaeidae in Corvoidea (Passeriformes), (4) Meliphagoidea (Passeriformes), (5) Trochili in Apodiformes, and (6) Galliformes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: Implications for the evolutionary history of the double karyomastigont of diplomonads

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2008-07-01

    Full Text Available Abstract Background Fornicata is a relatively recently established group of protists that includes the diplokaryotic diplomonads (which have two similar nuclei per cell, and the monokaryotic enteromonads, retortamonads and Carpediemonas, with the more typical one nucleus per cell. The monophyly of the group was confirmed by molecular phylogenetic studies, but neither the internal phylogeny nor its position on the eukaryotic tree has been clearly resolved. Results Here we have introduced data for three genes (SSU rRNA, α-tubulin and HSP90 with a wide taxonomic sampling of Fornicata, including ten isolates of enteromonads, representing the genera Trimitus and Enteromonas, and a new undescribed enteromonad genus. The diplomonad sequences formed two main clades in individual gene and combined gene analyses, with Giardia (and Octomitus on one side of the basal divergence and Spironucleus, Hexamita and Trepomonas on the other. Contrary to earlier evolutionary scenarios, none of the studied enteromonads appeared basal to diplokaryotic diplomonads. Instead, the enteromonad isolates were all robustly situated within the second of the two diplomonad clades. Furthermore, our analyses suggested that enteromonads do not constitute a monophyletic group, and enteromonad monophyly was statistically rejected in 'approximately unbiased' tests of the combined gene data. Conclusion We suggest that all higher taxa intended to unite multiple enteromonad genera be abandoned, that Trimitus and Enteromonas be considered as part of Hexamitinae, and that the term 'enteromonads' be used in a strictly utilitarian sense. Our result suggests either that the diplokaryotic condition characteristic of diplomonads arose several times independently, or that the monokaryotic cell of enteromonads originated several times independently by secondary reduction from the diplokaryotic state. Both scenarios are evolutionarily complex. More comparative data on the similarity of the

  5. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Simon, Perikles

    2012-07-01

    The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis

  6. A molecular hybrid polyoxometalate-organometallic moieties and its relevance to supercapacitors in physiological electrolytes

    Science.gov (United States)

    Chinnathambi, Selvaraj; Ammam, Malika

    2015-06-01

    Supercapacitors operating in physiological electrolytes are of great relevance for both their environmentally friendly aspect as well as the possibility to be employed for powering implantable microelectronic devices using directly biological fluids as electrolytes. Polyoxometalate (POMs) have been proven to be useful for supercapacitors in acidic media. However, in neutral pH, POMs are usually not stable. One relevant alternative is to stabilize POMs by pairing them with organic moieties to form hybrids. In this study, we combined K6P2Mo18O62·12H2O (P2Mo18) with Ru(bpy)3Cl2.6H2O (Ru(bpy)). The synthesis was carried out with and without the mild reducing agent KI. The hybrids were characterized by CHN analysis, TEM, FT-IR, XRD, TGA and cyclic voltammetry. CHN elemental analysis revealed that one mole [P2Mo18O62]6- is paired with 3 mol [Ru(bpy)3]2+ to form [Ru(bpy)3]3PMo18O62·nH2O. With KI present, [P2Mo18O62]6- is linked to 3.33 mol to yield [Ru(bpy)3]3.33PMo18O62·mH2O. Excess of Ru(bpy) in [Ru(bpy)3]3.33PMo18O62·mH2O was further confirmed by TEM, FT-IR, XRD, TGA and cyclic voltammetry. In turn, hybrid composition is found to strongly influence the supercapacitor behavior. The hybrid rich in Ru(bpy) is found to perform better for supercapacitors in physiological electrolytes. 125 F g-1 and 68 F g-1 are the capacitance values obtained with [Ru(bpy)3]3.33PMo18O62·mH2O and [Ru(bpy)3]3PMo18O62·nH2O, respectively. In terms of specific energy densities, 3.5 Wh kg-1 and 2 Wh kg-1 were obtained for both hybrid simultaneously. The difference in supercapacitor performance between both hybrids is also noticed in impedance spectroscopy which showed that [Ru(bpy)3]3.33PMo18O62·mH2O has lower electron transfer resistance if compared to [Ru(bpy)3]3PMo18O62·nH2O. Finally, if compared of parent K6P2Mo18O62·12H2O, the stability of both hybrids is found to be highly improved.

  7. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  8. Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles.

    Science.gov (United States)

    Hennicke, Florian; Cheikh-Ali, Zakaria; Liebisch, Tim; Maciá-Vicente, Jose G; Bode, Helge B; Piepenbring, Meike

    2016-07-01

    In China and other countries of East Asia, so-called Ling-zhi or Reishi mushrooms are used in traditional medicine since several centuries. Although the common practice to apply the originally European name 'Ganoderma lucidum' to these fungi has been questioned by several taxonomists, this is still generally done in recent publications and with commercially cultivated strains. In the present study, two commercially sold strains of 'G. lucidum', M9720 and M9724 from the company Mycelia bvba (Belgium), are compared for their fruiting body (basidiocarp) morphology combined with molecular phylogenetic analyses, and for their secondary metabolite profile employing an ultra-performance liquid chromatography-electrospray ionization mass spectrometry (UPLC-ESIMS) in combination with a high resolution electrospray ionization mass spectrometry (HR-ESI-MS). According to basidiocarp morphology, the strain M9720 was identified as G. lucidum s.str. whereas M9724 was determined as Ganoderma lingzhi. In molecular phylogenetic analyses, the M9720 ITS and beta-tubulin sequences grouped with sequences of G. lucidum s.str. from Europe whereas those from M9724 clustered with sequences of G. lingzhi from East Asia. We show that an ethanol extract of ground basidiocarps from G. lucidum (M9720) contains much less triterpenic acids than found in the extract of G. lingzhi (M9724). The high amount of triterpenic acids accounts for the bitter taste of the basidiocarps of G. lingzhi (M9724) and of its ethanol extract. Apparently, triterpenic acids of G. lucidum s.str. are analyzed here for the first time. These results demonstrate the importance of taxonomy for commercial use of fungi. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Rebels with a cause: molecular features and physiological consequences of yeast prions.

    Science.gov (United States)

    Garcia, David M; Jarosz, Daniel F

    2014-02-01

    Prions are proteins that convert between structurally and functionally distinct states, at least one of which is self-perpetuating. The prion fold templates the conversion of native protein, altering its structure and function, and thus serves as a protein-based element of inheritance. Molecular chaperones ensure that these prion aggregates are divided and faithfully passed from mother cells to their daughters. Prions were originally identified as the cause of several rare neurodegenerative diseases in mammals, but the last decade has brought great progress in understanding their broad importance in biology and evolution. Most prion proteins regulate information flow in signaling networks, or otherwise affect gene expression. Consequently, switching into and out of prion states creates diverse new traits – heritable changes based on protein structure rather than nucleic acid. Despite intense study of the molecular mechanisms of this paradigm-shifting, epigenetic mode of inheritance, many key questions remain. Recent studies in yeast that support the view that prions are common, often beneficial elements of inheritance that link environmental stress to the appearance of new traits.

  10. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

    Science.gov (United States)

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2014-11-01

    Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Physiological and molecular ontogeny of branchial and extra-branchial urea excretion in posthatch rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Zimmer, Alex M; Wood, Chris M

    2016-02-01

    All teleost fish produce ammonia as a metabolic waste product. In embryos, ammonia excretion is limited by the chorion, and fish must detoxify ammonia by synthesizing urea via the ornithine urea cycle (OUC). Although urea is produced by embryos and larvae, urea excretion (J(urea)) is typically low until yolk sac absorption, increasing thereafter. The aim of this study was to determine the physiological and molecular characteristics of J(urea) by posthatch rainbow trout (Oncorhynchus mykiss). Following hatch, whole body urea concentration decreased over time, while J(urea) increased following yolk sac absorption. From 12 to 40 days posthatch (dph), extra-branchial routes of excretion accounted for the majority of J(urea), while the gills became the dominant site for J(urea) only after 55 dph. This represents the most delayed branchial ontogeny of any process studied to date. Urea transporter (UT) gene expression in the gills and skin increased over development, consistent with increases in branchial and extra-branchial J(urea). Following exposure to 25 mmol/l urea, the accumulation and subsequent elimination of exogenous urea was much greater at 55 dph than 12 dph, consistent with increased UT expression. Notably, UT gene expression in the gills of 55 dph larvae increased in response to high urea. In summary, there is a clear increase in urea transport capacity over posthatch development, despite a decrease in OUC activity. Copyright © 2016 the American Physiological Society.

  12. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats.

    Science.gov (United States)

    Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed. © 2014 John Wiley & Sons Ltd.

  13. Classification of genetic variation for cadmium tolerance in Bermudagrass [Cynodon dactylon (L.) Pers.] using physiological traits and molecular markers.

    Science.gov (United States)

    Xie, Yan; Luo, Hongji; Hu, Longxing; Sun, Xiaoyan; Lou, Yanhong; Fu, Jinmin

    2014-08-01

    Cadmium (Cd) is one of the most toxic pollutants that caused severe threats to animal and human health. Bermudagrass is a dominant species in Cd contaminated soils, which can prevent Cd flow and spread. The objectives of this study were to determine the genetic variations in major physiological traits related to Cd tolerance in six populations of Bermudagrass collected from China, and to examine the genetic diversity and relationships among these accessions that vary in Cd tolerance using molecular markers. Plants of 120 accessions (116 natural accessions and 4 commercial cultivars) were exposed to 0 (i.e. control) or 1.5 mM CdSO4·8/3H2O for 3 weeks in hydroponic culture. Turf quality, transpiration rate, chlorophyll content, leaf water content and growth rate showed wide phenotypic variation. The membership function method was used to comprehensively evaluate Cd-tolerance. According to the average subordinate function value, four accessions were classified as the most tolerant genotypes and four accessions as Cd-sensitive genotypes. The trend of Cd tolerance among the six studied populations was as follows: Hunan > South China > North China > Central China > West South China and Xinjiang population. Phylogenetic analysis revealed that the majority of accessions from the same or adjacent regions were clustered into the same groups or subgroups, and the accessions with similar cadmium tolerance displayed a close phylogenetic relationship. Screening genetically diverse germplasm by combining the physiological traits and molecular markers could prove useful in developing Cd-tolerant Bermudagrass for the remediation of mill tailings and heavy metal polluted soils.

  14. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology.

    Science.gov (United States)

    Kiang, J G; Tsokos, G C

    1998-11-01

    Heat shock proteins (HSPs) are detected in all cells, prokaryotic and eukaryotic. In vivo and in vitro studies have shown that various stressors transiently increase production of HSPs as protection against harmful insults. Increased levels of HSPs occur after environmental stresses, infection, normal physiological processes, and gene transfer. Although the mechanisms by which HSPs protect cells are not clearly understood, their expression can be modulated by cell signal transducers, such as changes in intracellular pH, cyclic AMP, Ca2+, Na+, inositol trisphosphate, protein kinase C, and protein phosphatases. Most of the HSPs interact with other proteins in cells and alter their function. These and other protein-protein interactions may mediate the little understood effects of HSPs on various cell functions. In this review, we focus on the structure of the HSP-70 family (HSP-70s), regulation of HSP-70 gene expression, their cytoprotective effects, and the possibility of regulating HSP-70 expression through modulation of signal transduction pathways. The clinical importance and therapeutic potential of HSPs are discussed.

  15. Physiological and molecular responses in brain of juvenile common carp (Cyprinus carpio) following exposure to tributyltin.

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao

    2016-03-01

    Tributyltin (TBT), as antifouling paints, is widely present in aquatic environment, but little is known regarding the toxicity of TBT on fish brain. In this study, the effects of exposure to TBT on the antioxidant defense system, Na(+) -K(+) -ATPase activity, neurological enzymes activity and Hsp 70 protein level in brain of juvenile common carp (Cyprinus carpio) were studied. Fish were exposed to sublethal concentrations of TBT (5, 10 and 20 μg/L) for 7 days. Based on the results, with increasing concentrations of TBT, oxidative stress was apparent as reflected by the significant higher levels of oxidative indices, as well as the significant inhibition of all antioxidant enzymes activities. Besides, the activities of Acetylcholinesterase (AChE), Monoamine oxidases (MAO) and Na(+) -K(+) -ATPase were significantly inhibited after exposure to TBT with higher concentrations. In addition, the levels of Hsp 70 protein were evaluated under TBT stress with dose-depended manner. These results suggest that selected physiological responses in fish brain could be used as potential biomarkers for monitoring residual organotin compounds present in aquatic environment. © 2014 Wiley Periodicals, Inc.

  16. Physiological, cellular and molecular aspects of the desiccation tolerance in Anadenanthera colubrina seeds during germination

    Directory of Open Access Journals (Sweden)

    L. E. Castro

    2017-05-01

    Full Text Available Abstract During germination, orthodox seeds become gradually intolerant to desiccation, and for this reason, they are a good model for recalcitrance studies. In the present work, physiological, biochemical, and ultrastructural aspects of the desiccation tolerance were characterized during the germination process of Anadenanthera colubrina seeds. The seeds were imbibed during zero (control, 2, 8, 12 (no germinated seeds, and 18 hours (germinated seeds with 1 mm protruded radicle; then they were dried for 72 hours, rehydrated and evaluated for survivorship. Along the imbibition, cytometric and ultrastructural analysis were performed, besides the extraction of the heat-stable proteins. Posteriorly to imbibition and drying, the evaluation of ultrastructural damages was performed. Desiccation tolerance was fully lost after root protrusion. There was no increase in 4C DNA content after the loss of desiccation tolerance. Ultrastructural characteristics of cells from 1mm roots resembled those found in the recalcitrant seeds, in both hydrated and dehydrated states. The loss of desiccation tolerance coincided with the reduction of heat-stable proteins.

  17. Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family

    Science.gov (United States)

    2013-01-01

    Voltage-gated proton channels (HV) are unique, in part because the ion they conduct is unique. HV channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H+ concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The HV channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K+ and Na+ channels. In higher species, HV channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. HV channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, HV functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hHV1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hHV1. PMID:23589829

  18. High throughput techniques to reveal the molecular physiology and evolution of digestion in spiders.

    Science.gov (United States)

    Fuzita, Felipe J; Pinkse, Martijn W H; Patane, José S L; Verhaert, Peter D E M; Lopes, Adriana R

    2016-09-07

    Spiders are known for their predatory efficiency and for their high capacity of digesting relatively large prey. They do this by combining both extracorporeal and intracellular digestion. Whereas many high throughput ("-omics") techniques focus on biomolecules in spider venom, so far this approach has not yet been applied to investigate the protein composition of spider midgut diverticula (MD) and digestive fluid (DF). We here report on our investigations of both MD and DF of the spider Nephilingis (Nephilengys) cruentata through the use of next generation sequencing and shotgun proteomics. This shows that the DF is composed of a variety of hydrolases including peptidases, carbohydrases, lipases and nuclease, as well as of toxins and regulatory proteins. We detect 25 astacins in the DF. Phylogenetic analysis of the corresponding transcript(s) in Arachnida suggests that astacins have acquired an unprecedented role for extracorporeal digestion in Araneae, with different orthologs used by each family. The results of a comparative study of spiders in distinct physiological conditions allow us to propose some digestion mechanisms in this interesting animal taxon. All the high throughput data allowed the demonstration that DF is a secretion originating from the MD. We identified enzymes involved in the extracellular and intracellular phases of digestion. Besides that, data analyses show a large gene duplication event in Araneae digestive process evolution, mainly of astacin genes. We were also able to identify proteins expressed and translated in the digestive system, which until now had been exclusively associated to venom glands.

  19. Genetic Diversity Studies Based on Morphological Variability, Pathogenicity and Molecular Phylogeny of the Sclerotinia sclerotiorum Population From Indian Mustard (Brassica juncea

    Directory of Open Access Journals (Sweden)

    Pankaj Sharma

    2018-06-01

    Full Text Available White mold or stem rot disease are ubiquitously distributed throughout the world and the causal organism of this disease Sclerotinia sclerotiorum (Lib. de Bary, is known to infect over 400 plant species. Sclerotinia stem rot is one of the most devastating fungal diseases and poses a serious threat to the worldwide cultivation of oilseed Brassica including India. S. sclerotiorum pathogen usually infects the stem but in severe cases leaves and pods also affected at different developmental stages that deteriorate not only the oil quality but also causing the seed and oil yield losses up to 90% depending on the severity of the disease infestation. This study investigated the morphological and molecular characterization of pathogenic S. sclerotiorum (Lib de Bary geographical isolates from oilseed Brassica including Brassica juncea (Indian mustard. The aim of this study was to compare isolates of S. sclerotiorum originated from different agro-climatic conditions and to analyse similarity or differences between them as well as to examine the virulence of this pathogen specifically in Brassica for the first time. The collection of S. sclerotiorum isolates from symptomatic Brassica plants was done and analyzed for morphological features, and molecular characterization. The virulence evaluation test of 65 isolates on four Brassica cultivars has shown 5 of them were highly virulent, 46 were virulent and 14 were moderately virulent. Phylogenetic analysis encompassing all the morphological features, SSR polymorphism, and ITS sequencing has shown the existence of high genetic diversity among the isolates that categorized all the isolates in three evolutionary lineages in the derived dendrogram. Further, genetic variability analysis based on sequences variation in ITS region of all the isolates has shown the existence of either insertions or deletions of the nucleotides in the ITS region has led to the interspecies variability and observed the variation were

  20. Molecular Phylogeny and Ecology of Textularia agglutinans d'Orbigny from the Mediterranean Coast of Israel: A Case of a Successful New Incumbent.

    Directory of Open Access Journals (Sweden)

    Gily Merkado

    Full Text Available Textularia agglutinans d'Orbigny is a non-symbiont bearing and comparatively large benthic foraminiferal species with a widespread distribution across all oceans. In recent years, its populations have considerably expanded along the Israeli Mediterranean coast of the eastern Levantine basin. Despite its exceptionally widespread occurrence, no molecular data have yet been obtained. This study provides the first ribosomal DNA sequences of T. agglutinans complemented with morphological and ecological characterization, which are based on material collected during environmental monitoring of the hard bottom habitats along the Israeli Mediterranean coast, and from the Gulf of Elat (northern Red Sea. Our phylogenetic analyses reveal that all specimens from both provinces belong to the same genetic population, regardless their morphological variability. These results indicate that modern population of T. agglutinans found on the Mediterranean coast of Israel is probably Lessepsian. Our study also reveals that T. agglutinans has an epiphytic life mode, which probably enabled its successful colonization of the hard bottom habitats, at the Mediterranean coast of Israel, which consist of a diverse community of macroalgae. Our study further indicates that the species does not tolerate high SST (> 35°C, which will probably prevent its future expansion in the easternmost Mediterranean in light of the expected rise in temperatures.

  1. Morphology and molecular phylogeny of Paragorgia rubra sp. nov. (Cnidaria: Octocorallia), a new bubblegum coral species from a seamount in the tropical Western Pacific

    Science.gov (United States)

    Li, Yang; Zhan, Zifeng; Xu, Kuidong

    2017-07-01

    A new species of bubblegum coral, Paragorgia rubra sp. nov., discovered from a seamount at a water depth of 373 m near the Yap Trench is studied using morphological and molecular approaches. Paragorgia rubra sp. nov. is the fourth species of the genus found in the tropical Western Pacific. The new gorgonian is red-colored, uniplanar, and measures approximately 530 mm high and 440 mm wide, with autozooids distributed only on one side of the colony. Paragorgia rubra sp. nov. is most similar to P. kaupeka Sánchez, 2005, but differs distinctly in the polyp ovals with large and compound protuberances (vs. small and simple conical protuberances) and the medullar spindles possessing simple conical protuberances (vs. compound protuberances). Moreover, P. rubra sp. nov. differs from P. kaupeka in the smaller length/width ratio of surface radiates (1.53 vs. 1.75). The genetic distance of the mtMutS gene between P. rubra sp. nov. and P. kaupeka is 0.66%, while the intraspecific distances within Paragorgia Milne-Edwards & Haime, 1857 except the species P. regalis complex are no more than 0.5%, further supporting the establishment of the new species. Furthermore, the ITS2 secondary structure of P. rubra sp. nov. is also different from those of congeners. Phylogenetic analyses indicate Paragorgia rubra sp. nov. and P. kaupeka form a clade, which branched early within Paragorgia and diversified approximately 15 Mya.

  2. Physiological and Molecular Response of Ostrich to the Seasonal and Diurnal Variations in Egyptian conditions

    International Nuclear Information System (INIS)

    Khalil, M.H.; Khalifa, H.H; Elaroussi, M.A.; Elsayed, M.A.; Basuony, H.A.

    2013-01-01

    Twelve immature ostrich›s birds, 7 months old were used to evaluate the effect of ambient temperature variation and diurnal effect on response changes of some physiological and chemical parameters. All birds were reared out doors and exposed to daily ambient temperatures fluctuations during summer and winter. Blood samples were taken twice, one in the morning at 7 Am and once in the afternoon at 3 Pm during a representative 7 hot days of June (summer) (40±2ºC) and the 7 cold days of January (winter) (18±2ºC). Serum calcium, inorganic phosphorus, sodium, potassium, uric acid concentrations and aldosterone level were determined. The amount of total body water (TBW) and serum heat shock proteins (HSP) were estimated. Serum calcium, phosphorus, sodium and potassium concentrations in ostrich were significantly decreased, while uric acid concentration and aldosterone hormone level were significantly increased in summer as compared in winter during both at morning and at afternoon periods. Concerning the diurnal variation, serum calcium, phosphorus, sodium and potassium concentrations and aldosterone hormone level in ostrich were significantly increased, while uric acid concentration was significantly decreased at morning as compared at afternoon during both summer and winter seasons. TBW was significantly higher in summer season by 15.04% than winter season. It is concluded from the present study that heat or cold stress has a negative effect on most of the parameters studied and we recommend must be supplement diet with some nutrients like vitamins C, and E, sodium bicarbonate or yeast to overcome the negative effect and to better perform under such conditions

  3. Physiological and molecular responses to drought in Petunia: the importance of stress severity

    Science.gov (United States)

    Kim, Jongyun

    2012-01-01

    Plant responses to drought stress vary depending on the severity of stress and the stage of drought progression. To improve the understanding of such responses, the leaf physiology, abscisic acid (ABA) concentration, and expression of genes associated with ABA metabolism and signalling were investigated in Petunia × hybrida. Plants were exposed to different specific substrate water contents (θ = 0.10, 0.20, 0.30, or 0.40 m3·m–3) to induce varying levels of drought stress. Plant responses were investigated both during the drying period (θ decreased to the θ thresholds) and while those threshold θ were maintained. Stomatal conductance (gs) and net photosynthesis (A) decreased with decreasing midday leaf water potential (Ψleaf). Leaf ABA concentration increased with decreasing midday Ψleaf and was negatively correlated with gs (r = –0.92). Despite the increase in leaf ABA concentration under drought, no significant effects on the expression of ABA biosynthesis genes were observed. However, the ABA catabolism-related gene CYP707A2 was downregulated, primarily in plants under severe drought (θ = 0.10 m3∙m–3), suggesting a decrease in ABA catabolism under severe drought. Expression of phospholipase Dα (PLDα), involved in regulating stomatal responses to ABA, was enhanced under drought during the drying phase, but there was no relationship between PLDα expression and midday Ψleaf after the θ thresholds had been reached. The results show that drought response of plants depends on the severity of drought stress and the phase of drought progression. PMID:23077204

  4. Integration of metabolomics and proteomics in molecular plant physiology--coping with the complexity by data-dimensionality reduction.

    Science.gov (United States)

    Weckwerth, Wolfram

    2008-02-01

    In recent years, genomics has been extended to functional genomics. Toward the characterization of organisms or species on the genome level, changes on the metabolite and protein level have been shown to be essential to assign functions to genes and to describe the dynamic molecular phenotype. Gas chromatography (GC) and liquid chromatography coupled to mass spectrometry (GC- and LC-MS) are well suited for the fast and comprehensive analysis of ultracomplex metabolite samples. For the integration of metabolite profiles with quantitative protein profiles, a high throughput (HTP) shotgun proteomics approach using LC-MS and label-free quantification of unique proteins in a complex protein digest is described. Multivariate statistics are applied to examine sample pattern recognition based on data-dimensionality reduction and biomarker identification in plant systems biology. The integration of the data reveal multiple correlative biomarkers providing evidence for an increase of information in such holistic approaches. With computational simulation of metabolic networks and experimental measurements, it can be shown that biochemical regulation is reflected by metabolite network dynamics measured in a metabolomics approach. Examples in molecular plant physiology are presented to substantiate the integrative approach.

  5. Identification of Rice Accessions Associated with K+/Na+ Ratio and Salt Tolerance Based on Physiological and Molecular Responses

    Directory of Open Access Journals (Sweden)

    Inja Naga Bheema Lingeswara Reddy

    2017-11-01

    Full Text Available The key for rice plant survival under NaCl salt stress is maintaining a high K+/Na+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in breeding. Use of molecular markers in tandem with physiological studies will help in better identification of salt tolerant rice accessions. Eight rice accessions along with the check Dongjin were screened using 1/2 Yoshida solution with 50 mmol/L NaCl at the seedling stage. The accessions IT001158, IT246674, IT260533 and IT291341 were classified as salt tolerant based on their K+/Na+ ratios. Seventeen SSR markers reported to be associated with K+/Na+ ratio were used to screen the accessions. Five SSR markers (RM8053, RM345, RM318, RM253 and RM7075 could differentiate accessions classified based on their K+/Na+ ratios. Banding pattern of the accessions was scored compared to the banding pattern of Dongjin. The study differentiated accessions based on their association of K+/Na+ ratio with molecular markers which are very reliable. These markers can play a significant role in screening large set of rice germplasms for salt tolerance and also help in identification of high-yielding varieties with better salt tolerance. The salt tolerant accessions can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  6. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches

    Directory of Open Access Journals (Sweden)

    Beaulieu Jeremy M

    2009-02-01

    Full Text Available Abstract Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Results Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae with 13,533 species and 1,401 sites. Conclusion By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously

  7. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches.

    Science.gov (United States)

    Smith, Stephen A; Beaulieu, Jeremy M; Donoghue, Michael J

    2009-02-11

    Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare. Here we describe and demonstrate a modified supermatrix method termed mega-phylogeny that uses databased sequences as well as taxonomic hierarchies to make extremely large trees with denser matrices than supermatrices. The two major challenges facing large-scale supermatrix phylogenetics are assembling large data matrices from databases and reconstructing trees from those datasets. The mega-phylogeny approach addresses the former as the latter is accomplished by employing recently developed methods that have greatly reduced the run time of large phylogeny construction. We present an algorithm that requires relatively little human intervention. The implemented algorithm is demonstrated with a dataset and phylogeny for Asterales (within Campanulidae) containing 4954 species and 12,033 sites and an rbcL matrix for green plants (Viridiplantae) with 13,533 species and 1,401 sites. By examining much larger phylogenies, patterns emerge that were otherwise unseen. The phylogeny of Viridiplantae successfully reconstructs major relationships of vascular plants that previously required many more genes. These demonstrations

  8. Molecular phylogeny and diversification of a widespread Neotropical rainforest bird group: The Buff-throated Woodcreeper complex, Xiphorhynchus guttatus/susurrans (Aves: Dendrocolaptidae).

    Science.gov (United States)

    Rocha, Tainá C; Sequeira, Fernando; Aleixo, Alexandre; Rêgo, Péricles S; Sampaio, Iracilda; Schneider, Horacio; Vallinoto, Marcelo

    2015-04-01

    The genus Xiphorhynchus is a species rich avian group widely distributed in Neotropical forests of Central and South America. Although recent molecular studies have improved our understanding of the spatial patterns of genetic diversity in some species of this genus, most are still poorly known, including their taxonomy. Here, we address the historical diversification and phylogenetic relationships of the X. guttatus/susurrans complex, using data from two mitochondrial (cyt b and ND2) and one nuclear (β-fibint7) genes. Phylogenetic relationships were inferred with both gene trees and a Bayesian-based species tree under a coalescent framework (∗BEAST). With exception of the nuclear β-fibint7 gene that produced an unresolved tree, both mtDNA and the species tree showed a similar topology and were congruent in recovering five main clades with high statistical support. These clades, however, are not fully concordant with traditional delimitation of some X. guttatus subspecies, since X. g. polystictus, X. g. guttatus, and X. g. connectens are not supported as distinct clades. Interestingly, these three taxa are more closely related to the mostly trans-Andean X. susurrans than the other southern and western Amazonian subspecies of X. guttatus, which constitutes a paraphyletic species. Timing estimates based on the species tree indicated that diversification in X. guttatus occurred between the end of the Pliocene and early Pleistocene, likely associated with the formation of the modern Amazon River and its main southern tributaries (Xingu, Tocantins, and Madeira), in addition to climate-induced changes in the distribution of rainforest biomes. Our study supports with an enlarged dataset a previous proposal for recognizing at least three species level taxa in the X. guttatus/susurrans complex: X. susurrans, X. guttatus, and X. guttatoides. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. MOLECULAR PHYLOGENY OF THE NERITIDAE (GASTROPODA: NERITIMORPHA BASED ON THE MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI AND 16S rRNA

    Directory of Open Access Journals (Sweden)

    Julián Fernando Quintero Galvis

    2013-05-01

    La familia Neritidae cuenta con representantes en regiones tropicales y subtropicales adaptadas a diferentes ambientes, con un registro fósil que data para finales del Cretáceo. Sin embargo no se han realizado estudios de filogenia molecular en la familia. En este estudio se realizó una reconstrucción filogenética de la familia Neritidae utilizando las regiones COI (722 pb y 16S rRNA (559 pb del genoma mitocondrial. Se realizaron análisis de distancias de Neighbor-Joining, Máxima Parsimonia e Inferencia Bayesiana. La mejor reconstrucción filogenética fue mediante la región COI, considerándola un marcador apropiado para realizar estudios filogenéticos dentro del grupo. El consenso de las relaciones filogenéticas (COI+16S rRNA permitió confirmar que el género Nerita es monofilético. El consenso del análisis de parsimonia reveló un grupo monofilético formado por los géneros Neritina, Septaria, Theodoxus, Puperita y Clithon, mientras que en el análisis bayesiano Theodoxus se encuentra separado de los otros géneros. El resultado en las especies del género Nerita del Caribe colombiano fue consistente con lo reportado para el género en estudios previos. En el árbol resultante del análisis de parsimonia se sobrepuso la

  10. Molecular and physiological characterization of AtHIGD1 in Arabidopsis.

    Science.gov (United States)

    Hwang, Soong-Taek; Li, Huiling; Alavilli, Hemasundar; Lee, Byeong-Ha; Choi, Dongsu

    2017-06-10

    Flooding is a principal stress that limits plant productivity. The sensing of low oxygen levels (hypoxia) plays a critical role in the signaling pathway that functions in plants in flooded environments. In this study, to investigate hypoxia response mechanisms in Arabidopsis, we identified three hypoxia-related genes and subjected one of these genes, Arabidopsis thaliana HYPOXIA-INDUCED GENE DOMAIN 1 (AtHIGD1), to molecular characterization including gene expression analysis and intracellular localization of the encoded protein. AtHIGD1 was expressed in various organs but was preferentially expressed in developing siliques. Confocal microscopy of transgenic plants harboring eGFP-tagged AtHIGD1 indicated that AtHIGD1 is localized to mitochondria. Importantly, plants overexpressing AtHIGD1 exhibited increased resistance to hypoxia compared to wild type. Our results represent the first report of a biological function for an HIGD protein in plants and indicate that AtHIGD1 is a mitochondrial protein that plays an active role in mitigating the effects of hypoxia on plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Molecularly imprinted polymer-based bulk optode for the determination of itopride hydrochloride in physiological fluids.

    Science.gov (United States)

    Abdel-Haleem, F M; Madbouly, Adel; El Nashar, R M; Abdel-Ghani, N T

    2016-11-15

    We report here for the first time on the use of Molecularly Imprinted Polymers as modifiers in bulk optodes, Miptode, for the determination of a pharmaceutical compound, itopride hydrochloride as an example in a concentration range of 1×10(-1)-1×10(-4)molL(-1). In comparison to the optode containing the ion exchanger only (Miptode 3), the optode containing the ion exchanger and the MIP particles (Miptode 2) showed improved selectivity over the most lipophilic species, Na(+) and K(+), by more than two orders of magnitude. For instance, the optical selectivity coefficients using Miptode 2, [Formula: see text] , were as follow: NH4(+)˂-6; Na(+)=-4.0, which were greatly enhanced in comparison with that obtained by Miptode 3. This work opens a new avenue for using miptodes for the determination of all the pharmaceutical preparations without the need for the development of new ionophores. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Oligo-Alginate with Low Molecular Mass Improves Growth and Physiological Activity of Eucomis autumnalis under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2018-04-01

    Full Text Available Biopolymers have become increasingly popular as biostimulators of plant growth. One of them, oligo-alginate, is a molecule that regulates plant biological processes and may be used in horticultural practice as a plant growth regulator. Biostimulators are mainly used to improve plant tolerance to abiotic stresses, including salinity. The aim of the study was to assess the effects of salinity and oligo-alginate of various molecular masses on the growth and physiological activity of Eucomis autumnalis. The species is an ornamental and medicinal plant that has been used for a long time in the traditional medicine of South Africa. The bulbs of E. autumnalis were coated using depolymerized sodium alginate of molecular mass 32,000; 42,000, and 64,000 g mol−1. All of these oligo-alginates fractions stimulated plant growth, and the effect was the strongest for the fraction of 32,000 g mol−1. This fraction was then selected for the second stage of the study, when plants were exposed to salt stress evoked by the presence of 100 mM NaCl. We found that the oligo-alginate coating mitigated the negative effects of salinity. Plants treated with the oligomer and watered with NaCl showed smaller reduction in the weight of the above-ground parts and bulbs, pigment content and antioxidant activity as compared with those not treated with the oligo-alginate. The study demonstrated for the first time that low molecular mass oligo-alginate may be used as plant biostimulator that limits negative effects of salinity in E. autumnalis.

  13. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability.

    Science.gov (United States)

    Marchetti, Adrian; Schruth, David M; Durkin, Colleen A; Parker, Micaela S; Kodner, Robin B; Berthiaume, Chris T; Morales, Rhonda; Allen, Andrew E; Armbrust, E Virginia

    2012-02-07

    In vast expanses of the oceans, growth of large phytoplankton such as diatoms is limited by iron availability. Diatoms respond almost immediately to the delivery of iron and rapidly compose the majority of phytoplankton biomass. The molecular bases underlying the subsistence of diatoms in iron-poor waters and the plankton community dynamics that follow iron resupply remain largely unknown. Here we use comparative metatranscriptomics to identify changes in gene expression associated with iron-stimulated growth of diatoms and other eukaryotic plankton. A microcosm iron-enrichment experiment using mixed-layer waters from the northeastern Pacific Ocean resulted in increased proportions of diatom transcripts and reduced proportions of transcripts from most other taxa within 98 h after iron addition. Hundreds of diatom genes were differentially expressed in the iron-enriched community compared with the iron-limited community; transcripts of diatom genes required for synthesis of photosynthesis and chlorophyll components, nitrate assimilation and the urea cycle, and synthesis of carbohydrate storage compounds were significantly overrepresented. Transcripts of genes encoding rhodopsins in eukaryotic phytoplankton were significantly underrepresented following iron enrichment, suggesting rhodopsins help cells cope with low-iron conditions. Oceanic diatoms appear to display a distinctive transcriptional response to iron enrichment that allows chemical reduction of available nitrogen and carbon sources along with a continued dependence on iron-free photosynthetic proteins rather than substituting for iron-containing functional equivalents present within their gene repertoire. This ability of diatoms to divert their newly acquired iron toward nitrate assimilation may underlie why diatoms consistently dominate iron enrichments in high-nitrate, low-chlorophyll regions.

  14. A time-calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history.

    Science.gov (United States)

    Ardila, Néstor E; Giribet, Gonzalo; Sánchez, Juan A

    2012-12-18

    with the general mixed Yule-coalescent (GMYC) model. A multilocus species-tree approach also identified the same two well-supported clades, being Clade I-B more recent in the species tree (18.0-15.9 mya) than in the gene tree (35.2-15.9 mya). In contrast, the diversification times for Clade II were more ancient in the species tree (136.4-41.7 mya) than in the gene tree (66.3-16.9 mya). Our results provide no support for the taxonomic status of the two currently recognized genera in the family Coralliidae. Given that Paracorallium species were all nested within Corallium, we recognize the coralliid genus Corallium, which includes the type species of the family, and thus consider Paracorallium a junior synonym of Corallium. We propose the use of the genus Hemicorallium Gray for clade I-B (species with long rod sclerites, cylindrical autozooids and smooth axis). Species delimitation in clade I-B remains unclear and the molecular resolution for Coralliidae species is inconsistent in the two main clades. Some species have wide distributions, recent diversification times and low mtDNA divergence whereas other species exhibit narrower allopatric distributions, older diversification times and greater levels of mtDNA resolution.

  15. A time-calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history

    Directory of Open Access Journals (Sweden)

    Ardila Néstor E

    2012-12-01

    delineated 11 morphospecies that were congruent with the general mixed Yule-coalescent (GMYC model. A multilocus species-tree approach also identified the same two well-supported clades, being Clade I-B more recent in the species tree (18.0-15.9 mya than in the gene tree (35.2-15.9 mya. In contrast, the diversification times for Clade II were more ancient in the species tree (136.4-41.7 mya than in the gene tree (66.3-16.9 mya. Conclusions Our results provide no support for the taxonomic status of the two currently recognized genera in the family Coralliidae. Given that Paracorallium species were all nested within Corallium, we recognize the coralliid genus Corallium, which includes the type species of the family, and thus consider Paracorallium a junior synonym of Corallium. We propose the use of the genus Hemicorallium Gray for clade I-B (species with long rod sclerites, cylindrical autozooids and smooth axis. Species delimitation in clade I-B remains unclear and the molecular resolution for Coralliidae species is inconsistent in the two main clades. Some species have wide distributions, recent diversification times and low mtDNA divergence whereas other species exhibit narrower allopatric distributions, older diversification times and greater levels of mtDNA resolution.

  16. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    Science.gov (United States)

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.

  17. Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level

    NARCIS (Netherlands)

    Richier, S.; Fiorini, S.; Kerros, M.E.; von Dassow, P.; Gattuso, J.P.

    2011-01-01

    The emergence of ocean acidification as a significant threat to calcifying organisms in marine ecosystems creates a pressing need to understand the physiological and molecular mechanisms by which calcification is affected by environmental parameters. We report here, for the first time, changes in

  18. Elucidation of molecular mechanisms of physiological variations between bovine subcutaneous and visceral fat depots under different nutritional regimes.

    Directory of Open Access Journals (Sweden)

    Josue Moura Romao

    Full Text Available Adipose tissue plays a critical role in energy homeostasis and metabolism. There is sparse understanding of the molecular regulation at the protein level of bovine adipose tissues, especially within different fat depots under different nutritional regimes. The objective of this study was to analyze the differences in protein expression between bovine subcutaneous and visceral fat depots in steers fed different diets and to identify the potential regulatory molecular mechanisms of protein expression. Subcutaneous and visceral fat tissues were collected from 16 British-continental steers (15.5 month old fed a high-fat diet (7.1% fat, n=8 or a control diet (2.7% fat, n=8. Protein expression was profiled using label free quantification LC-MS/MS and expression of selected transcripts was evaluated using qRT-PCR. A total of 682 proteins were characterized and quantified with fat depot having more impact on protein expression, altering the level of 51.0% of the detected proteins, whereas diet affected only 5.3%. Functional analysis revealed that energy production and lipid metabolism were among the main functions associated with differentially expressed proteins between fat depots, with visceral fat being more metabolically active than subcutaneous fat as proteins associated with lipid and energy metabolism were upregulated. The expression of several proteins was significantly correlated to subcutaneous fat thickness and adipocyte size, indicating their potential as adiposity markers. A poor correlation (r=0.245 was observed between mRNA and protein levels for 9 genes, indicating that many proteins may be subjected to post-transcriptional regulation. A total of 8 miRNAs were predicted to regulate more than 20% of lipid metabolism proteins differentially expressed between fat depots, suggesting that miRNAs play a role in adipose tissue regulation. Our results show that proteomic changes support the distinct metabolic and physiological characteristics

  19. Elucidation of molecular mechanisms of physiological variations between bovine subcutaneous and visceral fat depots under different nutritional regimes.

    Science.gov (United States)

    Romao, Josue Moura; Jin, Weiwu; He, Maolong; McAllister, Tim; Guan, Le Luo

    2013-01-01

    Adipose tissue plays a critical role in energy homeostasis and metabolism. There is sparse understanding of the molecular regulation at the protein level of bovine adipose tissues, especially within different fat depots under different nutritional regimes. The objective of this study was to analyze the differences in protein expression between bovine subcutaneous and visceral fat depots in steers fed different diets and to identify the potential regulatory molecular mechanisms of protein expression. Subcutaneous and visceral fat tissues were collected from 16 British-continental steers (15.5 month old) fed a high-fat diet (7.1% fat, n=8) or a control diet (2.7% fat, n=8). Protein expression was profiled using label free quantification LC-MS/MS and expression of selected transcripts was evaluated using qRT-PCR. A total of 682 proteins were characterized and quantified with fat depot having more impact on protein expression, altering the level of 51.0% of the detected proteins, whereas diet affected only 5.3%. Functional analysis revealed that energy production and lipid metabolism were among the main functions associated with differentially expressed proteins between fat depots, with visceral fat being more metabolically active than subcutaneous fat as proteins associated with lipid and energy metabolism were upregulated. The expression of several proteins was significantly correlated to subcutaneous fat thickness and adipocyte size, indicating their potential as adiposity markers. A poor correlation (r=0.245) was observed between mRNA and protein levels for 9 genes, indicating that many proteins may be subjected to post-transcriptional regulation. A total of 8 miRNAs were predicted to regulate more than 20% of lipid metabolism proteins differentially expressed between fat depots, suggesting that miRNAs play a role in adipose tissue regulation. Our results show that proteomic changes support the distinct metabolic and physiological characteristics observed between

  20. The mitogenomic phylogeny of the Elasmobranchii (Chondrichthyes).

    Science.gov (United States)

    Amaral, Cesar R L; Pereira, Filipe; Silva, Dayse A; Amorim, António; de Carvalho, Elizeu F

    2017-09-20

    Here we present a mitogenomic perspective on the evolution of sharks and rays, being a first glance on the complete mitochondrial history of such an old and diversified group of vertebrates. The Elasmobranchii is a diverse subclass of Chondrichthyes, or cartilaginous fish, with about 1200 species of ocean- and freshwater-dwelling fishes spread all over the world's seas, including some of the ocean's largest fishes. The group dates back about 400 million years near the Devonian-Silurian boundary, being nowadays represented by several derivative lineages, mainly related to Mesozoic forms. Although considered of ecological, commercial and conservation importance, the phylogeny of this old group is poorly studied and still under debate. Here we apply a molecular systematic approach on 82 complete mitochondrial genomes to investigate the phylogeny of the Elasmobranchii. By using maximum likelihood (ML) and Bayesian analyses, we found a clear separation within the shark clade between the Galeomorphii and the Squalomorphii, as well as sister taxa relationships between the Carcharhiniformes and the Lamniformes. Moreover, we found that Pristoidei clusters within the Rhinobatoidei, having been recovered as the sister taxon of the Rhinobatos genus in a clade which also includes the basal Zapteryx. Our results also reject the Hypnosqualea hypothesis, which proposes that the Batoidea should be placed within the Selachii.

  1. A supertree approach to shorebird phylogeny

    Directory of Open Access Journals (Sweden)

    Thomas Gavin H

    2004-08-01

    Full Text Available Abstract Background Order Charadriiformes (shorebirds is an ideal model group in which to study a wide range of behavioural, ecological and macroevolutionary processes across species. However, comparative studies depend on phylogeny to control for the effects of shared evolutionary history. Although numerous hypotheses have been presented for subsets of the Charadriiformes none to date include all recognised species. Here we use the matrix representation with parsimony method to produce the first fully inclusive supertree of Charadriiformes. We also provide preliminary estimates of ages for all nodes in the tree. Results Three main lineages are revealed: i the plovers and allies; ii the gulls and allies; and iii the sandpipers and allies. The relative position of these clades is unresolved in the strict consensus tree but a 50% majority-rule consensus tree indicates that the sandpiper clade is sister group to the gulls and allies whilst the plover group is placed at the base of the tree. The overall topology is highly consistent with recent molecular hypotheses of shorebird phylogeny. Conclusion The supertree hypothesis presented herein is (to our knowledge the only complete phylogenetic hypothesis of all extant shorebirds. Despite concerns over the robustness of supertrees (see Discussion, we believe that it provides a valuable framework for testing numerous evolutionary hypotheses relating to the diversity of behaviour, ecology and life-history of the Charadriiformes.

  2. Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology.

    Directory of Open Access Journals (Sweden)

    Alexei Vazquez

    2011-04-01

    Full Text Available Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions.

  3. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine.

    Science.gov (United States)

    Huang, Rong-Chi

    2018-02-01

    Circadian clocks evolved to allow plants and animals to adapt their behaviors to the 24-hr change in the external environment due to the Earth's rotation. While the first scientific observation of circadian rhythm in the plant leaf movement may be dated back to the early 18th century, it took 200 years to realize that the leaf movement is controlled by an endogenous circadian clock. The cloning and characterization of the first Drosophila clock gene period in the early 1980s, independently by Jeffery C. Hall and Michael Rosbash at Brandeis University and Michael Young at Rockefeller University, paved the way for their further discoveries of additional genes and proteins, culminating in establishing the so-called transcriptional translational feedback loop (TTFL) model for the generation of autonomous oscillator with a period of ∼24 h. The 2017 Nobel Prize in Physiology or Medicine was awarded to honor their discoveries of molecular mechanisms controlling the circadian rhythm. Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  4. Molecular Analysis of Atypical Family 18 Chitinase from Fujian Oyster Crassostrea angulata and Its Physiological Role in the Digestive System.

    Science.gov (United States)

    Yang, Bingye; Zhang, Mingming; Li, Lingling; Pu, Fei; You, Weiwei; Ke, Caihuan

    2015-01-01

    Chitinolytic enzymes have an important physiological significance in immune and digestive systems in plants and animals, but chitinase has not been identified as having a role in the digestive system in molluscan. In our study, a novel chitinase homologue, named Ca-Chit, has been cloned and characterized as the oyster Crassostrea angulate. The 3998bp full-length cDNA of Ca-Chit consisted of 23bp 5-UTR, 3288 ORF and 688bp 3-UTR. The deduced amino acids sequence shares homologue with the chitinase of family 18. The molecular weight of the protein was predicted to be 119.389 kDa, with a pI of 6.74. The Ca-Chit protein was a modular enzyme composed of a glycosyl hydrolase family 18 domain, threonine-rich region profile and a putative membrane anchor domain. Gene expression profiles monitored by quantitative RT-PCR in different adult tissues showed that the mRNA of Ca-Chit expressed markedly higher visceral mass than any other tissues. The results of the whole mount in-situ hybridization displayed that Ca-Chit starts to express the visceral mass of D-veliger larvae and then the digestive gland forms a crystalline structure during larval development. Furthermore, the adult oysters challenged by starvation indicated that the Ca-Chit expression would be regulated by feed. All the observations made suggest that Ca-Chit plays an important role in the digestive system of the oyster, Crassostrea angulate.

  5. Molecular Phylogeny of the Animal Kingdom.

    Science.gov (United States)

    Field, Katharine G.; And Others

    1988-01-01

    A rapid sequencing method for ribosomal RNA was applied to the resolution of evolutionary relationships among Metazoa. Describes the four groups (chordates, echinoderms, arthropods, and eucoelomate protostomes) that radiated from the coelomates. (TW)

  6. Molecular phylogeny of Miltogramminae (Diptera Sarcophagidae)

    DEFF Research Database (Denmark)

    Piwczyński, Marcin; Pape, Thomas; Deja-Sikora, Edyta

    2017-01-01

    Miltogramminae is one of the phylogenetically most poorly studied taxa of the species-rich family Sarcophagidae (Diptera). Most species are kleptoparasites in nests of solitary aculeate wasps and bees, although parasitoids and saprophagous species are also known, and the ancestral miltogrammine l...

  7. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches

    OpenAIRE

    Smith, Stephen A; Beaulieu, Jeremy M; Donoghue, Michael J

    2009-01-01

    Abstract Background Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylog...

  8. Using a Molecular-Genetic Approach to Investigate Bacterial Physiology in a Continuous, Research-Based, Semester-Long Laboratory for Undergraduates

    Directory of Open Access Journals (Sweden)

    Jeremiah Foster Ault

    2011-09-01

    Full Text Available Designing investigative laboratory exercises that encourage critical thinking, problem solving, and independent thought for upper-division biology courses is a difficult but worthwhile task. In an effort to do so, we developed a semester-long, continuous, research-based investigative laboratory that integrates numerous genetic and molecular biology methods into the investigation of a bacterial physiological process. In this lab, students use random Tn5 transposon mutagenesis to create prodigiosin pigment mutants in the bacterium, Serratia marcescens. This is followed by phenotypic characterization, cloning, and sequencing the Tn insertion site to identify genes involved in pigment biosynthesis. During this lab, students gain ample experience performing basic lab techniques while learning about — and applying — methods for elucidating gene function. The approach to the laboratory and the outcomes are intimately integrated into the teaching of many fundamental physiological processes underlying prodigiosin production in bacteria. The result is a cohesive course that integrates the theory and application of molecular genetic techniques with the study of bacterial physiology. Assessments of student learning objectives demonstrated that students greatly improved their understanding of both physiological processes and the genetic techniques used to investigate them. In addition, students felt that this semester-long exercise provided the necessary laboratory experience they needed and desired in preparation for careers in molecular biology, microbiology, and biochemistry.

  9. The shape of mammalian phylogeny

    DEFF Research Database (Denmark)

    Purvis, Andy; Fritz, Susanne A; Rodríguez, Jesús

    2011-01-01

    an assemblage, ecoregion or larger area always tends to be more unbalanced than expected from the phylogeny of species at the next more inclusive spatial scale. We conclude with a verbal model of mammalian macroevolution, which emphasizes the importance to diversification of accessing new regions...

  10. Phylogeny of species and cytotypes of mole rats (Spalacidae) in Turkey inferred from mitochondrial cytochrome b gene sequencees

    Czech Academy of Sciences Publication Activity Database

    Kandemir, I.; Sozen, M.; Matur, F.; Kankilic, T.; Martínková, Natália; Colak, F.; Ozkurt, S. O.; Colak, E.

    2012-01-01

    Roč. 61, č. 1 (2012), s. 25-33 ISSN 0139-7893 Institutional support: RVO:68081766 Keywords : Nannospalax * molecular phylogeny * chromosomal form * Anatolia * Thrace Subject RIV: EG - Zoology Impact factor: 0.494, year: 2012

  11. A multi gene sequence-based phylogeny of the Musaceae (banana) family

    Czech Academy of Sciences Publication Activity Database

    Christelová, Pavla; Valárik, Miroslav; Hřibová, Eva; De Langhe, E.; Doležel, Jaroslav

    2011-01-01

    Roč. 11, č. 103 (2011), s. 1-13 ISSN 1471-2148 R&D Projects: GA AV ČR IAA600380703 Institutional research plan: CEZ:AV0Z50380511 Keywords : MOLECULAR PHYLOGENY * FLOWERING PLANTS * RIBOSOMAL DNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.521, year: 2011

  12. Molecular Aspects of Structure, Gating, and Physiology of pH-Sensitive Background K2P and Kir K+-Transport Channels

    Science.gov (United States)

    Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel

    2015-01-01

    K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142

  13. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  14. High-Performance Phylogeny Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Tiffani L. Williams

    2004-11-10

    Under the Alfred P. Sloan Fellowship in Computational Biology, I have been afforded the opportunity to study phylogenetics--one of the most important and exciting disciplines in computational biology. A phylogeny depicts an evolutionary relationship among a set of organisms (or taxa). Typically, a phylogeny is represented by a binary tree, where modern organisms are placed at the leaves and ancestral organisms occupy internal nodes, with the edges of the tree denoting evolutionary relationships. The task of phylogenetics is to infer this tree from observations upon present-day organisms. Reconstructing phylogenies is a major component of modern research programs in many areas of biology and medicine, but it is enormously expensive. The most commonly used techniques attempt to solve NP-hard problems such as maximum likelihood and maximum parsimony, typically by bounded searches through an exponentially-sized tree-space. For example, there are over 13 billion possible trees for 13 organisms. Phylogenetic heuristics that quickly analyze large amounts of data accurately will revolutionize the biological field. This final report highlights my activities in phylogenetics during the two-year postdoctoral period at the University of New Mexico under Prof. Bernard Moret. Specifically, this report reports my scientific, community and professional activities as an Alfred P. Sloan Postdoctoral Fellow in Computational Biology.

  15. Phylogeny of Echinoderm Hemoglobins.

    Directory of Open Access Journals (Sweden)

    Ana B Christensen

    Full Text Available Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates.

  16. Adipokinetic hormones provide inference for the phylogeny of Odonata

    Czech Academy of Sciences Publication Activity Database

    Gäde, G.; Šimek, Petr; Fescemyer, H. W.

    2011-01-01

    Roč. 57, č. 1 (2011), s. 174-178 ISSN 0022-1910 R&D Projects: GA ČR GA203/09/2014 Grant - others:University of Cape Town for a Block grant(ZA) IFR 2008071500048; National Research Foundation, Pretoria(ZA) FA 2007021300002; USDA, ARS Specific Cooperative Agreement(US) 58-6402-5-066; US National Science Foundation(US) EF-0412651 Institutional research plan: CEZ:AV0Z50070508 Keywords : phylogeny of Odonata * Libellulidae * Corduliidae Subject RIV: ED - Physiology Impact factor: 2.236, year: 2011

  17. Integrated physiological, biochemical and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature

    Directory of Open Access Journals (Sweden)

    Boghireddy eSailaja

    2015-11-01

    Full Text Available In changing climate, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical and molecular level is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in eleven popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS, antioxidants, and photosynthesis were studied at vegetative and reproductive phases which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified which will be important resource to develop high temperature tolerant rice cultivars. Interestingly, Nagina22 emerged as best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activity, lesser reduction in net photosynthetic rate (PN, high transpiration rate (E and other photosynthetic/ fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Further, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant and Vandana (susceptible at flowering phase, strengthening the fact that N22 performs better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes which are needed to be characterized to address the challenges of future climate extreme conditions.

  18. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    Science.gov (United States)

    Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  19. Phylogeny and subgeneric taxonomy of Aspergillus

    DEFF Research Database (Denmark)

    Peterson, S.W.; Varga, Janos; Frisvad, Jens Christian

    2008-01-01

    The phylogeny of the genus Aspergillus and its teleomorphs is discussed based on multilocus sequence data. DNA sequence analysis was used to formulate a nucleotide sequence framework of the genus and to analyze character changes in relationship to the phylogeny hypothesized from the DNA sequence...

  20. Bacterial diversity in Adélie penguin, Pygoscelis adeliae, guano: molecular and morpho-physiological approaches.

    Science.gov (United States)

    Zdanowski, Marek K; Weglenski, Piotr; Golik, Pawel; Sasin, Joanna M; Borsuk, Piotr; Zmuda, Magdalena J; Stankovic, Anna

    2004-11-01

    The total number of bacteria and culturable bacteria in Adélie penguin (Pygoscelis adeliae) guano was determined during 42 days of decomposition in a location adjacent to the rookery in Admiralty Bay, King George Island, Antarctica. Of the culturable bacteria, 72 randomly selected colonies were described using 49 morpho-physiological tests, 27 of which were subsequently considered significant in characterizing and differentiating the isolates. On the basis of the nucleotide sequence of a fragment of the 16S rRNA gene in each of 72 pure isolates, three major phylogenetic groups were identified, namely the Moraxellaceae/Pseudomonadaceae (29 isolates), the Flavobacteriaceae (14), and the Micrococcaceae (29). Grouping of the isolates on the basis of morpho-physiological tests (whether 49 or 27 parameters) showed similar results to those based on 16S rRNA gene sequences. Clusters were characterized by considerable intra-cluster variation in both 16S rRNA gene sequences and morpho-physiological responses. High diversity in abundance and morphometry of total bacterial communities during penguin guano decomposition was supported by image analysis of epifluorescence micrographs. The results indicate that the bacterial community in penguin guano is not only one of the richest in Antarctica, but is extremely diverse, both phylogenetically and morpho-physiologically.

  1. A putative low-molecular-mass penicillin-binding protein (PBP) of Mycobacterium smegmatis exhibits prominent physiological characteristics of DD-carboxypeptidase and beta-lactamase.

    Science.gov (United States)

    Bansal, Ankita; Kar, Debasish; Murugan, Rajagopal A; Mallick, Sathi; Dutta, Mouparna; Pandey, Satya Deo; Chowdhury, Chiranjit; Ghosh, Anindya S

    2015-05-01

    DD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin). Interestingly, in vivo expression of MSMEG_2433 could restore the cell shape oddities of the septuple PBP mutant of E. coli, which was a prominent physiological characteristic of DD-CPases. Moreover, expression of MSMEG_2433 in trans elevated beta-lactam resistance in PBP deletion mutants (ΔdacAdacC) of E. coli, strengthening its physiology as a dd-CPase. To confirm the biochemical reason behind such physiological behaviours, a soluble form of MSMEG_2433 (sMSMEG_2433) was created, expressed and purified. In agreement with the observed physiological phenomena, sMSMEG_2433 exhibited DD-CPase activity against artificial and peptidoglycan-mimetic DD-CPase substrates. To our surprise, enzymic analyses of MSMEG_2433 revealed efficient deacylation for beta-lactam substrates at physiological pH, which is a unique characteristic of beta-lactamases. In addition to the MSMEG_2433 active site that favours dd-CPase activity, in silico analyses also predicted the presence of an omega-loop-like region in MSMEG_2433, which is an important determinant of its beta-lactamase activity. Based on the in vitro, in vivo and in silico studies, we conclude that MSMEG_2433 is a dual enzyme, possessing both DD-CPase and beta-lactamase activities. © 2015 The Authors.

  2. Physiological and Molecular Effects of the Cyclic Nucleotides cAMP and cGMP on Arabidopsis thaliana

    KAUST Repository

    Herrera, Natalia M.

    2012-01-01

    transport in Arabidopsis thaliana leaves and, that these changes at the molecular level can have functional biological consequences. For this reason we tested if CNs modulate the photosynthetic rate, responses to high light and root ion transport. Real time

  3. Molecular Regulation of the Mitochondrial F1Fo-ATPsynthase: Physiological and Pathological Significance of the Inhibitory Factor 1 (IF 1

    Directory of Open Access Journals (Sweden)

    Danilo Faccenda

    2012-01-01

    Full Text Available In mammals, the mitochondrial F1Fo-ATPsynthase sets out the energy homeostasis by producing the bulk of cellular ATP. As for every enzyme, the laws of thermodynamics command it; however, it is privileged to have a dedicated molecular regulator that controls its rotation. This is the so-called ATPase Inhibitory Factor 1 (IF1 that blocks its reversal to avoid the consumption of cellular ATP when the enzyme acts as an ATP hydrolase. Recent evidence has also demonstrated that IF1 may control the alignment of the enzyme along the mitochondrial inner membrane, thus increasing the interest for the molecule. We conceived this review to outline the fundamental knowledge of the F1Fo-ATPsynthase and link it to the molecular mechanisms by which IF1 regulates its way of function, with the ultimate goal to highlight this as an important and possibly unique means to control this indispensable enzyme in both physiological and pathological settings.

  4. The phylogeny of amphibian metamorphosis.

    Science.gov (United States)

    Reiss, John O

    2002-01-01

    Frogs have one of the most extreme metamorphoses among vertebrates. How did this metamorphosis evolve? By combining the methods previously proposed by Mabee and Humphries (1993) and Velhagen (1997), I develop a phylogenetic method suited for rigorous analysis of this question. In a preliminary analysis using 12 transformation sequence characters and 36 associated event sequence characters, all drawn from the osteology of the skull, the evolution of metamorphosis is traced on an assumed phylogeny. This phylogeny has lissamphibians (frogs, salamanders, and caecilians) monophyletic, with frogs the sister group of salamanders. Successive outgroups used are temnospondyls and discosauriscids, both of which are fossil groups for which ontogenetic data are available. In the reconstruction of character evolution, an unambiguous change (synapomorphy) along the branch leading to lissamphibians is a delay in the lengthening of the maxilla until metamorphosis, in accordance with my previous suggestion (Reiss, 1996). However, widening of the interpterygoid vacuity does not appear as a synapomophy of lissamphibians, due to variation in the character states in the outgroups. From a more theoretical perspective, the reconstructed evolution of amphibian metamorphosis involves examples of heterochrony, through the shift of ancestral premetamorphic events to the metamorphic period, caenogenesis, through the origin of new larval features, and terminal addition, through the origin of new adult features. Other changes don't readily fit these categories. This preliminary study provides evidence that metamorphic changes in frogs arose as further modifications of changes unique to lissamphibians, as well as a new method by which such questions can be examined.

  5. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence.

    Science.gov (United States)

    Kropáčková, Lucie; Těšický, Martin; Albrecht, Tomáš; Kubovčiak, Jan; Čížková, Dagmar; Tomášek, Oldřich; Martin, Jean-François; Bobek, Lukáš; Králová, Tereza; Procházka, Petr; Kreisinger, Jakub

    2017-10-01

    Vertebrate gut microbiota (GM) is comprised of a taxonomically diverse consortium of symbiotic and commensal microorganisms that have a pronounced effect on host physiology, immune system function and health status. Despite much research on interactions between hosts and their GM, the factors affecting inter- and intraspecific GM variation in wild populations are still poorly known. We analysed data on faecal microbiota composition in 51 passerine species (319 individuals) using Illumina MiSeq sequencing of bacterial 16S rRNA (V3-V4 variable region). Despite pronounced interindividual variation, GM composition exhibited significant differences at the interspecific level, accounting for approximately 20%-30% of total GM variation. We also observed a significant correlation between GM composition divergence and host's phylogenetic divergence, with strength of correlation higher than that of GM vs. ecological or life history traits and geographic variation. The effect of host's phylogeny on GM composition was significant, even after statistical control for these confounding factors. Hence, our data do not support codiversification of GM and passerine phylogeny solely as a by-product of their ecological divergence. Furthermore, our findings do not support that GM vs. host's phylogeny codiversification is driven primarily through trans-generational GM transfer as the GM vs. phylogeny correlation does not increase with higher sequence similarity used when delimiting operational taxonomic units. Instead, we hypothesize that the GM vs. phylogeny correlation may arise as a consequence of interspecific divergence of genes that directly or indirectly modulate composition of GM. © 2017 John Wiley & Sons Ltd.

  6. Phylogeny and evolutionary history of the silkworm.

    Science.gov (United States)

    Sun, Wei; Yu, Hongsong; Shen, Yihong; Banno, Yutaka; Xiang, Zhonghuai; Zhang, Ze

    2012-06-01

    The silkworm, Bombyx mori, played an important role in the old Silk Road that connected ancient Asia and Europe. However, to date, there have been few studies of the origins and domestication of this species using molecular methods. In this study, DNA sequences of mitochondrial and nuclear loci were used to infer the phylogeny and evolutionary history of the domesticated silkworm and its relatives. All of the phylogenetic analyses indicated a close relationship between the domesticated silkworm and the Chinese wild silkworm. Domestication was estimated to have occurred about 4100 years ago (ya), and the radiation of the different geographic strains of B. mori about 2000 ya. The Chinese wild silkworm and the Japanese wild silkworm split about 23600 ya. These estimates are in good agreement with the fossil evidence and historical records. In addition, we show that the domesticated silkworm experienced a population expansion around 1000 ya. The divergence times and the population dynamics of silkworms presented in this study will be useful for studies of lepidopteran phylogenetics, in the genetic analysis of domestic animals, and for understanding the spread of human civilizations.

  7. The co phylogeny reconstruction problem is NP-complete.

    Science.gov (United States)

    Ovadia, Y; Fielder, D; Conow, C; Libeskind-Hadas, R

    2011-01-01

    The co phylogeny reconstruction problem is that of finding minimum cost explanations of differences between historical associations. The problem arises in parasitology, molecular systematics, and biogeography. Existing software tools for this problem either have worst-case exponential time or use heuristics that do not guarantee optimal solutions. To date, no polynomial time optimal algorithms have been found for this problem. In this article, we prove that the problem is NP-complete, suggesting that future research on algorithms for this problem should seek better polynomial-time approximation algorithms and heuristics rather than optimal solutions.

  8. Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding

    NARCIS (Netherlands)

    Ros, V.I.D.; Breeuwer, J.A.J.

    2007-01-01

    The past 15 years have witnessed a number of molecular studies that aimed to resolve issues of species delineation and phylogeny of mites in the family Tetranychidae. The central part of the mitochondrial COI region has frequently been used for investigating intra- and interspecific variation. All

  9. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae)

    Czech Academy of Sciences Publication Activity Database

    Fehrer, Judith; Gemeinholzer, B.; Chrtek, Jindřich; Bräutigam, S.

    2007-01-01

    Roč. 42, - (2007), s. 347-361 ISSN 1055-7903 R&D Projects: GA MŽP SE/610/3/00 Institutional research plan: CEZ:AV0Z60050516 Keywords : molecular phylogeny * Hieracium * chloroplast capture Subject RIV: EF - Botanics Impact factor: 3.994, year: 2007

  10. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed

    Czech Academy of Sciences Publication Activity Database

    Maslov, D. A.; Votýpka, Jan; Yurchenko, V.; Lukeš, Julius

    2013-01-01

    Roč. 29, č. 1 (2013), s. 43-52 ISSN 1471-4922 R&D Projects: GA ČR GA204/09/1667 Institutional support: RVO:60077344 Keywords : biodiversity * Kinetoplastea * insect trypanosomatids * monoxenous parasites * phylogeny * taxonomy * Trypanosomatidae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.217, year: 2013

  11. Genetic diversity and phylogeny of the Christmas Island flying fox (Pteropus melanotus natalis)

    Czech Academy of Sciences Publication Activity Database

    Phalen, D. N.; Hall, J.; Ganesh, G.; Hartigan, Ashlie; Smith, C.; De Jong, C.; Field, H.; Rose, K.

    2017-01-01

    Roč. 98, č. 2 (2017), s. 428-437 ISSN 0022-2372 Institutional support: RVO:60077344 Keywords : diversity * flying fox * mitochondrial DNA * phylogeny * Pteropus melanotus natalis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 1.630, year: 2016

  12. Anchored hybrid enrichment provides new insights into the phylogeny and evolution of longhorned beetles (Cerambycidae)

    Czech Academy of Sciences Publication Activity Database

    Haddad, S.; Shin, S.; Lemmon, A. R.; Lemmon, E. M.; Švácha, Petr; Farrell, B.; Ślipiński, A.; Windsor, D.; McKenna, D. D.

    2018-01-01

    Roč. 43, č. 1 (2018), s. 68-89 ISSN 0307-6970 Institutional support: RVO:60077344 Keywords : Chrysomeloidea * Cerambycidae * molecular phylogeny Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 4.474, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/syen.12257/abstract

  13. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Hypša, Václav; Klein, J.; Foottit, R. G.; von Dohlen, C.D.; Moran, N. A.

    2013-01-01

    Roč. 68, č. 1 (2013), s. 42-54 ISSN 1055-7903 R&D Projects: GA ČR GD206/09/H026 Institutional support: RVO:60077344 Keywords : Aphid * Evolution * Buchnera * Phylogeny * Informative markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.018, year: 2013

  14. Revisiting the phylogeny of Ocellularieae, the second largest tribe within Graphidaceae (lichenized Ascomycota: Ostropales)

    Science.gov (United States)

    Ekaphan Kraichak; Sittiporn Parnmen; Robert Lücking; Eimy Rivas Plata; Andre Aptroot; Marcela E.S. Caceres; Damien Ertz; Armin Mangold; Joel A. Mercado-Diaz; Khwanruan Papong; Dries Van der Broeck; Gothamie Weerakoon; H. Thorsten. Lumbsch; NO-VALUE

    2014-01-01

    We present an updated 3-locus molecular phylogeny of tribe Ocellularieae, the second largest tribe within subfamily Graphidoideae in the Graphidaceae. Adding 165 newly generated sequences from the mitochondrial small subunit rDNA (mtSSU), the nuclear large subunit rDNA (nuLSU), and the second largest subunit of the DNA-directed RNA polymerase II (RPB2), we currently...

  15. Phylogeny of the 'orchid-like' bladderworts (gen. Utricularia sect. Orchidioides and Iperua: Lentibulariaceae) with remarks on the stolon-tuber system

    Czech Academy of Sciences Publication Activity Database

    Rodrigues, F. G.; Marulanda, N. F.; Silva, S. R.; Płachno, B.J.; Adamec, Lubomír; Miranda, V.F.O.

    2017-01-01

    Roč. 120, č. 5 (2017), s. 709-723 ISSN 0305-7364 Institutional support: RVO:67985939 Keywords : molecular phylogeny * anatomy * tubers Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 4.041, year: 2016

  16. Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences.

    Science.gov (United States)

    García, Miguel A; Costea, Mihai; Kuzmina, Maria; Stefanović, Saša

    2014-04-01

    The parasitic genus Cuscuta, containing some 200 species circumscribed traditionally in three subgenera, is nearly cosmopolitan, occurring in a wide range of habitats and hosts. Previous molecular studies, on subgenera Grammica and Cuscuta, delimited major clades within these groups. However, the sequences used were unalignable among subgenera, preventing the phylogenetic comparison across the genus. We conducted a broad phylogenetic study using rbcL and nrLSU sequences covering the morphological, physiological, and geographical diversity of Cuscuta. We used parsimony methods to reconstruct ancestral states for taxonomically important characters. Biogeographical inferences were obtained using statistical and Bayesian approaches. Four well-supported major clades are resolved. Two of them correspond to subgenera Monogynella and Grammica. Subgenus Cuscuta is paraphyletic, with section Pachystigma sister to subgenus Grammica. Previously described cases of strongly supported discordance between plastid and nuclear phylogenies, interpreted as reticulation events, are confirmed here and three new cases are detected. Dehiscent fruits and globose stigmas are inferred as ancestral character states, whereas the ancestral style number is ambiguous. Biogeographical reconstructions suggest an Old World origin for the genus and subsequent spread to the Americas as a consequence of one long-distance dispersal. Hybridization may play an important yet underestimated role in the evolution of Cuscuta. Our results disagree with scenarios of evolution (polarity) previously proposed for several taxonomically important morphological characters, and with their usage and significance. While several cases of long-distance dispersal are inferred, vicariance or dispersal to adjacent areas emerges as the dominant biogeographical pattern.

  17. Endogenous Pyrogen Physiology.

    Science.gov (United States)

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  18. The reticulating phylogeny of island biogeography theory.

    Science.gov (United States)

    Lomolino, Mark V; Brown, James H

    2009-12-01

    Biogeographers study all patterns in the geographic variation of life, from the spatial variation in genetic and physiological characteristics of cells and individuals, to the diversity and dynamics of biological communities among continental biotas or across oceanic archipelagoes. The field of island biogeography, in particular, has provided some genuinely transformative insights for the biological sciences, especially ecology and evolutionary biology. Our purpose here is to review the historical development of island biogeography theory during the 20th century by identifying the common threads that run through four sets of contributions made during this period, including those by Eugene Gordon Munroe (1948, 1953), Edward O. Wilson (1959, 1961), Frank W. Preston (1962a,b), and the seminal collaborations between Wilson and Robert H. MacArthur (1963, 1967), which revolutionized the field and served as its paradigm for nearly four decades. This epistemological account not only reviews the intriguing history of island theory, but it also includes fundamental lessons for advancing science through transformative integrations. Indeed, as is likely the case with many disciplines, island theory advanced not as a simple accumulation of facts and an orderly succession of theories and paradigms, but rather in fits and starts through a reticulating phylogeny of ideas and alternating periods of specialization and reintegration. We conclude this review with a summary of the salient features of this scientific revolution in the contest of Kuhn's structure, which strongly influenced theoretical advances during this period, and we then describe some of the fundamental assumptions and tenets of an emerging reintegration of island biogeography theory.

  19. Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024

    DEFF Research Database (Denmark)

    Gallo, Giuseppe; Renzone, Giovanni; Palazzotto, Emilia

    2016-01-01

    by a complex regulatory and metabolic network that may be elucidated by the integration of genomic, proteomic and bioinformatic tools. Accordingly, an extensive evaluation of the proteomic changes associated with NAI-107 production was performed on Microbispora ATCC-PTA-5024 by combining two......; ii) during three time-points (117, 140, and 162 h) at D stage characterized by different profiles of NAI-107 yield accumulation (117 and 140 h) and decrement (162 h). Regulatory, metabolic and unknown-function proteins, were identified and functionally clustered, revealing that nutritional signals......, regulatory cascades and primary metabolism shift-down trigger the accumulation of protein components involved in nitrogen and phosphate metabolism, cell wall biosynthesis/maturation, lipid metabolism, osmotic stress response, multi-drug resistance, and NAI-107 transport. The stimulating role on physiological...

  20. Comparative Physiological and Molecular Analyses of Two Contrasting Flue-Cured Tobacco Genotypes under Progressive Drought Stress

    Directory of Open Access Journals (Sweden)

    Xinhong Su

    2017-05-01

    Full Text Available Drought is a major environmental factor that limits crop growth and productivity. Flue-cured tobacco (Nicotiana tabacum is one of the most important commercial crops worldwide and its productivity is vulnerable to drought. However, comparative analyses of physiological, biochemical and gene expression changes in flue-cured tobacco varieties differing in drought tolerance under long-term drought stress are scarce. In this study, drought stress responses of two flue-cured tobacco varieties, LJ851 and JX6007, were comparatively studied at the physiological and transcriptional levels. After exposing to progressive drought stress, the drought-tolerant LJ851 showed less growth inhibition and chlorophyll reduction than the drought-sensitive JX6007. Moreover, higher antioxidant enzyme activities and lower levels of H2O2, Malondialdehyde (MDA, and electrolyte leakage after drought stress were found in LJ851 when compared with JX6007. Further analysis showed that LJ851 plants had much less reductions than the JX6007 in the net photosynthesis rate and stomatal conductance during drought stress; indicating that LJ851 had better photosynthetic performance than JX6007 during drought. In addition, transcriptional expression analysis revealed that LJ851 exhibited significantly increased transcripts of several categories of drought-responsive genes in leaves and roots under drought conditions. Together, these results indicated that LJ851 was more drought-tolerant than JX6007 as evidenced by better photosynthetic performance, more powerful antioxidant system, and higher expression of stress defense genes during drought stress. This study will be valuable for the development of novel flue-cured tobacco varieties with improved drought tolerance by exploitation of natural genetic variations in the future.

  1. Revisiting the mitogenomic phylogeny of Salmoninae: new insights thanks to recent sequencing advances

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2017-09-01

    Full Text Available The phylogeny of the Salmonidae family, the only living one of the Order Salmoniformes, remains still unclear because of several reasons. Such reasons include insufficient taxon sampling and/or DNA information. The use of complete mitochondrial genomes (mitogenomics could provide some light on it, but despite the high number of mitogenomes of species belonging to this family published during last years, an integrative work containing all this information has not been done. In this work, the phylogeny of 46 Salmonidae species was inferred from their mitogenomic sequences. Results include a Bayesian molecular-dated phylogenetic tree with very high statistical support showing Coregoninae and Salmoninae as sister subfamilies, as well as several new phylogenetic relationships among species and genus of the family. All these findings contribute to improve our understanding of the Salmonidae systematics and could have consequences on related evolutionary studies, as well as highlight the importance of revisiting phylogenies with integrative studies.

  2. RAD-seq derived genome-wide nuclear markers resolve the phylogeny of tunas

    KAUST Repository

    Díaz-Arce, Natalia

    2016-06-07

    Although species from the genus Thunnus include some of the most commercially important and most severely overexploited fishes, the phylogeny of this genus is still unresolved, hampering evolutionary and traceability studies that could help improve conservation and management strategies for these species. Previous attempts based on mitochondrial and nuclear markers were unsuccessful in inferring a congruent and reliable phylogeny, probably due to mitochondrial introgression events and lack of enough phylogenetically informative markers. Here we infer the first genome-wide nuclear marker-based phylogeny of tunas using restriction site associated DNA sequencing (RAD-seq) data. Our results, derived from phylogenomic inferences obtained from 128 nucleotide matrices constructed using alternative data assembly procedures, support a single Thunnus evolutionary history that challenges previous assumptions based on morphological and molecular data.

  3. Eumalacostracan phylogeny and total evidence: limitations of the usual suspects

    Directory of Open Access Journals (Sweden)

    Ferla Matteo P

    2009-01-01

    Full Text Available Abstract Background The phylogeny of Eumalacostraca (Crustacea remains elusive, despite over a century of interest. Recent morphological and molecular phylogenies appear highly incongruent, but this has not been assessed quantitatively. Moreover, 18S rRNA trees show striking branch length differences between species, accompanied by a conspicuous clustering of taxa with similar branch lengths. Surprisingly, previous research found no rate heterogeneity. Hitherto, no phylogenetic analysis of all major eumalacostracan taxa (orders has either combined evidence from multiple loci, or combined molecular and morphological evidence. Results We combined evidence from four nuclear ribosomal and mitochondrial loci (18S rRNA, 28S rRNA, 16S rRNA, and cytochrome c oxidase subunit I with a newly synthesized morphological dataset. We tested the homogeneity of data partitions, both in terms of character congruence and the topological congruence of inferred trees. We also performed Bayesian and parsimony analyses on separate and combined partitions, and tested the contribution of each partition. We tested for potential long-branch attraction (LBA using taxon deletion experiments, and with relative rate tests. Additionally we searched for molecular polytomies (spurious clades. Lastly, we investigated the phylogenetic stability of taxa, and assessed their impact on inferred relationships over the whole tree. We detected significant conflict between data partitions, especially between morphology and molecules. We found significant rate heterogeneity between species for both the 18S rRNA and combined datasets, introducing the possibility of LBA. As a test case, we showed that LBA probably affected the position of Spelaeogriphacea in the combined molecular evidence analysis. We also demonstrated that several clades, including the previously reported and surprising clade of Amphipoda plus Spelaeogriphacea, are 'supported' by zero length branches. Furthermore we showed

  4. Mitochondrial phylogeny of the Chrysisignita (Hymenoptera: Chrysididae) species group based on simultaneous Bayesian alignment and phylogeny reconstruction.

    Science.gov (United States)

    Soon, Villu; Saarma, Urmas

    2011-07-01

    The ignita species group within the genus Chrysis includes over 100 cuckoo wasp species, which all lead a parasitic lifestyle and exhibit very similar morphology. The lack of robust, diagnostic morphological characters has hindered phylogenetic reconstructions and contributed to frequent misidentification and inconsistent interpretations of species in this group. Therefore, molecular phylogenetic analysis is the most suitable approach for resolving the phylogeny and taxonomy of this group. We present a well-resolved phylogeny of the Chrysis ignita species group based on mitochondrial sequence data from 41 ingroup and six outgroup taxa. Although our emphasis was on European taxa, we included samples from most of the distribution range of the C. ignita species group to test for monophyly. We used a continuous mitochondrial DNA sequence consisting of 16S rRNA, tRNA(Val), 12S rRNA and ND4. The location of the ND4 gene at the 3' end of this continuous sequence, following 12S rRNA, represents a novel mitochondrial gene arrangement for insects. Due to difficulties in aligning rRNA genes, two different Bayesian approaches were employed to reconstruct phylogeny: (1) using a reduced data matrix including only those positions that could be aligned with confidence; or (2) using the full sequence dataset while estimating alignment and phylogeny simultaneously. In addition maximum-parsimony and maximum-likelihood analyses were performed to test the robustness of the Bayesian approaches. Although all approaches yielded trees with similar topology, considerably more nodes were resolved with analyses using the full data matrix. Phylogenetic analysis supported the monophyly of the C. ignita species group and divided its species into well-supported clades. The resultant phylogeny was only partly in accordance with published subgroupings based on morphology. Our results suggest that several taxa currently treated as subspecies or names treated as synonyms may in fact constitute

  5. Molecular and physiological properties associated with zebra complex disease in potatoes and its relation with Candidatus Liberibacter contents in psyllid vectors.

    Directory of Open Access Journals (Sweden)

    Veria Y Alvarado

    Full Text Available Zebra complex (ZC disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs, an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc. The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin and tuber storage proteins (e.g., patatins, indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants.

  6. Molecular and Physiological Properties Associated with Zebra Complex Disease in Potatoes and Its Relation with Candidatus Liberibacter Contents in Psyllid Vectors

    Science.gov (United States)

    Alvarado, Veria Y.; Odokonyero, Denis; Duncan, Olivia; Mirkov, T. Erik; Scholthof, Herman B.

    2012-01-01

    Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants. PMID:22615987

  7. Phylogeny and Systematics of Leptomyxid Amoebae (Amoebozoa, Tubulinea, Leptomyxida).

    Science.gov (United States)

    Smirnov, Alexey; Nassonova, Elena; Geisen, Stefan; Bonkowski, Michael; Kudryavtsev, Alexander; Berney, Cedric; Glotova, Anna; Bondarenko, Natalya; Dyková, Iva; Mrva, Martin; Fahrni, Jose; Pawlowski, Jan

    2017-04-01

    We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Nasal Physiology

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Physiology Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy ...

  9. Morphology, physiology, molecular phylogeny and sexual compatibility of the cryptic Pseudo-nitzschia delicatissima complex (Bacillariophyta), including the description of P. arenysensis sp. nov

    DEFF Research Database (Denmark)

    Quijano-Scheggia, Sonia; Garces, Esther; Lundholm, Nina

    2009-01-01

    Several strains of Pseudo-nitzschia delicatissima were isolated from the northwestern Mediterranean Sea and compared using light and electron microscopy, phylogenetic analyses of internal transcribed spacer rDNA, together with studies of their mating system, estimations of growth rates and reduct...

  10. Physiological, molecular and ultrastructural analyses during ripening and over-ripening of banana (Musa spp., AAA group, Cavendish sub-group) fruit suggest characteristics of programmed cell death.

    Science.gov (United States)

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, C Eduardo; Kelley, Karen

    2018-01-01

    Programmed cell death (PCD) is a part of plant development that has been studied for petal senescence and vegetative tissue but has not been thoroughly investigated for fleshy fruits. The purpose of this research was to examine ripening and over-ripening in banana fruit to determine if there were processes in common to previously described PCD. Loss of cellular integrity (over 40%) and development of senescence related dark spot (SRDS) occurred after day 8 in banana peel. Nuclease and protease activity in the peel increased during ripening starting from day 2, and decreased during over-ripening. The highest activity was for proteases and nucleases with apparent molecular weights of 86 kDa and 27 kDa, respectively. Images of SRDS showed shrinkage of the upper layers of cells, visually suggesting cell death. Decrease of electron dense areas was evident in TEM micrographs of nuclei. This study shows for the first time that ripening and over-ripening of banana peel share physiological and molecular processes previously described in plant PCD. SRDS could represent a morphotype of PCD that characterizes a structural and biochemical failure in the upper layers of the peel, thereafter spreading to lower and adjacent layers of cells. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Delineation and interpretation of gene networks towards their effect in cellular physiology- a reverse engineering approach for the identification of critical molecular players, through the use of ontologies.

    Science.gov (United States)

    Moutselos, K; Maglogiannis, I; Chatziioannou, A

    2010-01-01

    Exploiting ontologies, provides clues regarding the involvement of certain molecular processes in the cellular phenotypic manifestation. However, identifying individual molecular actors (genes, proteins, etc.) for targeted biological validation in a generic, prioritized, fashion, based in objective measures of their effects in the cellular physiology, remains a challenge. In this work, a new meta-analysis algorithm is proposed for the holistic interpretation of the information captured in -omic experiments, that is showcased in a transcriptomic, dynamic, DNA microarray dataset, which examines the effect of mastic oil treatment in Lewis lung carcinoma cells. Through the use of the Gene Ontology this algorithm relates genes to specific cellular pathways and vice versa in order to further reverse engineer the critical role of specific genes, starting from the results of various statistical enrichment analyses. The algorithm is able to discriminate candidate hub-genes, implying critical biochemical cross-talk. Moreover, performance measures of the algorithm are derived, when evaluated with respect to the differential expression gene list of the dataset.

  12. A Mitogenomic Phylogeny of Living Primates

    Science.gov (United States)

    Finstermeier, Knut; Zinner, Dietmar; Brameier, Markus; Meyer, Matthias; Kreuz, Eva; Hofreiter, Michael; Roos, Christian

    2013-01-01

    Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels. PMID:23874967

  13. Future trypanosomatid phylogenies: refined homologies, supertrees and networks

    Directory of Open Access Journals (Sweden)

    Stothard JR

    2000-01-01

    Full Text Available There has been good progress in inferring the evolutionary relationships within trypanosomes from DNA data as until relatively recently, many relationships have remained rather speculative. Ongoing molecular studies have provided data that have adequately shown Trypanosoma to be monophyletic and, rather surprisingly, that there are sharply contrasting levels of genetic variation within and between the major trypanosomatid groups. There are still, however, areas of research that could benefit from further development and resolution that broadly fall upon three questions. Are the current statements of evolutionary homology within ribosomal small sub-unit genes in need of refinement? Can the published phylograms be expanded upon to form `supertrees' depicting further relationships? Does a bifurcating tree structure impose an untenable dogma upon trypanosomatid phylogeny where hybridisation or reticulate evolutionary steps have played a part? This article briefly addresses these three questions and, in so doing, hopes to stimulate further interest in the molecular evolution of the group.

  14. Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales

    Directory of Open Access Journals (Sweden)

    Zhou Kaiya

    2009-01-01

    Full Text Available Abstract Background The phylogeny of Cetacea (whales is not fully resolved with substantial support. The ambiguous and conflicting results of multiple phylogenetic studies may be the result of the use of too little data, phylogenetic methods that do not adequately capture the complex nature of DNA evolution, or both. In addition, there is also evidence that the generic taxonomy of Delphinidae (dolphins underestimates its diversity. To remedy these problems, we sequenced the complete mitochondrial genomes of seven dolphins and analyzed these data with partitioned Bayesian analyses. Moreover, we incorporate a newly-developed "relaxed" molecular clock to model heterogenous rates of evolution among cetacean lineages. Results The "deep" phylogenetic relationships are well supported including the monophyly of Cetacea and Odontoceti. However, there is ambiguity in the phylogenetic affinities of two of the river dolphin clades Platanistidae (Indian River dolphins and Lipotidae (Yangtze River dolphins. The phylogenetic analyses support a sister relationship between Delphinidae and Monodontidae + Phocoenidae. Additionally, there is statistically significant support for the paraphyly of Tursiops (bottlenose dolphins and Stenella (spotted dolphins. Conclusion Our phylogenetic analysis of complete mitochondrial genomes using recently developed models of rate autocorrelation resolved the phylogenetic relationships of the major Cetacean lineages with a high degree of confidence. Our results indicate that a rapid radiation of lineages explains the lack of support the placement of Platanistidae and Lipotidae. Moreover, our estimation of molecular divergence dates indicates that these radiations occurred in the Middle to Late Oligocene and Middle Miocene, respectively. Furthermore, by collecting and analyzing seven new mitochondrial genomes, we provide strong evidence that the delphinid genera Tursiops and Stenella are not monophyletic, and the current taxonomy

  15. Phylogeny of Gobioidei and the origin of European gobies

    Directory of Open Access Journals (Sweden)

    Ainhoa Agorreta

    2015-11-01

    Full Text Available The percomorph order Gobioidei comprises over 2200 species worldwide distributed that occupy most freshwater, brackish and marine environments, and show a spectacular variety in morphology, ecology, and behaviour. However, phylogenetic relationships among many gobioid groups still remain poorly understood. Such is the case of Gobiidae, a rapidly radiating lineage that encompass an unusually high diversity of species (nearly 2000, including the largely endemic European species whose origin and ancestry remain uncertain. The resolution and accuracy of previous molecular phylogenetic studies has been limited due to the use of only a few (generally mitochondrial molecular markers and/or the absence of representatives of several key lineages. Our study (built on Agorreta et al. 2013 is the first to include multiple nuclear and mitochondrial genes for nearly 300 terminal taxa representing the vast diversity of gobioid lineages. We have used this information to reconstruct a robust phylogeny of Gobioidei, and we are now investigating the historical biogeography and diversification times of European gobies with a time-calibrated molecular phylogeny. Robustness of the inferred phylogenetic trees is significantly higher than that of previous studies, hence providing the most compelling molecular phylogenetic hypotheses for Gobioidei thus far. The family Eleotrididae branches off the gobioid tree after the Rhyacichthyidae + Odontobutidae clade followed by the Butidae as the sister-group of the Gobiidae. Several monophyletic groups are identified within the two major Gobiidae subclades, the gobionelline-like and the gobiine-like gobiids. The European gobies cluster in three distinct lineages (Pomatoschistus-, Aphia-, and Gobius-lineages, each with different affinities with gobiids from the Indo-Pacific and perhaps the New World. Our ongoing more-detailed study on European gobies will reveal whether their origin is related to vicariant events linked to the

  16. Recapitulating phylogenies using k-mers: from trees to networks.

    Science.gov (United States)

    Bernard, Guillaume; Ragan, Mark A; Chan, Cheong Xin

    2016-01-01

    Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k -mers (subsequences at fixed length k ). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel's idea of ontogeny, we argue that genome phylogenies can be inferred using k -mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner.

  17. Physiological and Molecular Effects of the Cyclic Nucleotides cAMP and cGMP on Arabidopsis thaliana

    KAUST Repository

    Herrera, Natalia M.

    2012-12-01

    The cyclic nucleotide monophosphates (CNs), cAMP and cGMP, are second messengers that participate in the regulation of development, metabolism and adaptive responses. In plants, CNs are associated with the control of pathogen responses, pollen tube orientation, abiotic stress response, membrane transport regulation, stomatal movement and light perception. In this study, we hypothesize that cAMP and cGMP promote changes in the transcription level of genes related to photosynthesis, high light and membrane transport in Arabidopsis thaliana leaves and, that these changes at the molecular level can have functional biological consequences. For this reason we tested if CNs modulate the photosynthetic rate, responses to high light and root ion transport. Real time quantitative PCR was used to assess transcription levels of selected genes and infrared gas analyzers coupled to fluorescence sensors were used to measure the photosynthetic parameters. We present evidence that both cAMP and cGMP modulate foliar mRNA levels early after stimulation. The two CNs trigger different responses indicating that the signals have specificity. A comparison of proteomic and transcriptional changes suggest that both transcriptional and post-transcriptional mechanisms are modulated by CNs. cGMP up-regulates the mRNA levels of components of the photosynthesis and carbon metabolism. However, neither cAMP nor cGMP trigger differences in the rate of carbon assimilation, maximum efficiency of the photosystem II (PSII), or PSII operating efficiency. It was also demonstrated that CN regulate the expression of its own targets, the cyclic nucleotide gated channels - CNGC. Further studies are needed to identify the components of the signaling transduction pathway that mediate cellular changes and their respective regulatory and/or signaling roles.

  18. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2010-07-01

    Full Text Available Abstract Background The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an experimental model of cancer cachexia. As part of the search for novel clinical and basic research applications for this experimental model, we characterized novel cellular and molecular features of C26-bearing mice. Methods A fragment of C26 tumor was subcutaneously grafted in isogenic BALB/c mice. The mass growth and proliferation rate of the tumor were analyzed. Histological and cytofluorometric analyses were used to assess cell death, ploidy and differentiation of the tumor cells. The main features of skeletal muscle atrophy, which were highlighted by immunohistochemical and electron microscopy analyses, correlated with biochemical alterations. Muscle force and resistance to fatigue were measured and analyzed as major functional deficits of the cachectic musculature. Results We found that the C26 tumor, ectopically implanted in mice, is an undifferentiated carcinoma, which should be referred to as such and not as adenocarcinoma, a common misconception. The C26 tumor displays aneuploidy and histological features typical of transformed cells, incorporates BrdU and induces severe weight loss in the host, which is largely caused by muscle wasting. The latter appears to be due to proteasome-mediated protein degradation, which disrupts the sarcomeric structure and muscle fiber-extracellular matrix interactions. A pivotal functional deficit of cachectic muscle consists in increased fatigability, while the reported loss of tetanic force is not statistically significant following normalization for decreased muscle fiber size. Conclusions We conclude, on the basis of the definition of

  19. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse

    Energy Technology Data Exchange (ETDEWEB)

    Aulino, Paola [Department of Histology and Medical Embryology, Sapienza University of Rome, Via Scarpa 16, 00161 Rome, Italy and Interuniversity Institute of Myology (Italy); Faiola, Fabio [DVM Veterinarian chief, Health Status and Animal Welfare, Sapienza University of Rome, Via Scarpa 16, 00161 Rome (Italy); Adamo, Sergio; Coletti, Dario; Berardi, Emanuele; Cardillo, Veronica M; Rizzuto, Emanuele; Perniconi, Barbara; Ramina, Carla; Padula, Fabrizio [Department of Histology and Medical Embryology, Sapienza University of Rome, Via Scarpa 16, 00161 Rome, Italy and Interuniversity Institute of Myology (Italy); Spugnini, Enrico P [SAFU Department, Regina Elena Cancer Institute, Via delle Messi d' Oro 156, 00158 Rome (Italy); Baldi, Alfonso [Department Biochemistry, Section of Pathology, Second University of Naples, Via L. Armanni 5, 80138 Naples (Italy)

    2010-07-08

    The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an experimental model of cancer cachexia. As part of the search for novel clinical and basic research applications for this experimental model, we characterized novel cellular and molecular features of C26-bearing mice. A fragment of C26 tumor was subcutaneously grafted in isogenic BALB/c mice. The mass growth and proliferation rate of the tumor were analyzed. Histological and cytofluorometric analyses were used to assess cell death, ploidy and differentiation of the tumor cells. The main features of skeletal muscle atrophy, which were highlighted by immunohistochemical and electron microscopy analyses, correlated with biochemical alterations. Muscle force and resistance to fatigue were measured and analyzed as major functional deficits of the cachectic musculature. We found that the C26 tumor, ectopically implanted in mice, is an undifferentiated carcinoma, which should be referred to as such and not as adenocarcinoma, a common misconception. The C26 tumor displays aneuploidy and histological features typical of transformed cells, incorporates BrdU and induces severe weight loss in the host, which is largely caused by muscle wasting. The latter appears to be due to proteasome-mediated protein degradation, which disrupts the sarcomeric structure and muscle fiber-extracellular matrix interactions. A pivotal functional deficit of cachectic muscle consists in increased fatigability, while the reported loss of tetanic force is not statistically significant following normalization for decreased muscle fiber size. We conclude, on the basis of the definition of cachexia, that ectopically-implanted C26 carcinoma represents a

  20. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse

    International Nuclear Information System (INIS)

    Aulino, Paola; Faiola, Fabio; Adamo, Sergio; Coletti, Dario; Berardi, Emanuele; Cardillo, Veronica M; Rizzuto, Emanuele; Perniconi, Barbara; Ramina, Carla; Padula, Fabrizio; Spugnini, Enrico P; Baldi, Alfonso

    2010-01-01

    The majority of cancer patients experience dramatic weight loss, due to cachexia and consisting of skeletal muscle and fat tissue wasting. Cachexia is a negative prognostic factor, interferes with therapy and worsens the patients' quality of life by affecting muscle function. Mice bearing ectopically-implanted C26 colon carcinoma are widely used as an experimental model of cancer cachexia. As part of the search for novel clinical and basic research applications for this experimental model, we characterized novel cellular and molecular features of C26-bearing mice. A fragment of C26 tumor was subcutaneously grafted in isogenic BALB/c mice. The mass growth and proliferation rate of the tumor were analyzed. Histological and cytofluorometric analyses were used to assess cell death, ploidy and differentiation of the tumor cells. The main features of skeletal muscle atrophy, which were highlighted by immunohistochemical and electron microscopy analyses, correlated with biochemical alterations. Muscle force and resistance to fatigue were measured and analyzed as major functional deficits of the cachectic musculature. We found that the C26 tumor, ectopically implanted in mice, is an undifferentiated carcinoma, which should be referred to as such and not as adenocarcinoma, a common misconception. The C26 tumor displays aneuploidy and histological features typical of transformed cells, incorporates BrdU and induces severe weight loss in the host, which is largely caused by muscle wasting. The latter appears to be due to proteasome-mediated protein degradation, which disrupts the sarcomeric structure and muscle fiber-extracellular matrix interactions. A pivotal functional deficit of cachectic muscle consists in increased fatigability, while the reported loss of tetanic force is not statistically significant following normalization for decreased muscle fiber size. We conclude, on the basis of the definition of cachexia, that ectopically-implanted C26 carcinoma represents

  1. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.

    Science.gov (United States)

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2015-05-01

    The plant growth-promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum-colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root-inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post-inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up-regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H₂O₂ depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Juvenile morphology in baleen whale phylogeny.

    Science.gov (United States)

    Tsai, Cheng-Hsiu; Fordyce, R Ewan

    2014-09-01

    Phylogenetic reconstructions are sensitive to the influence of ontogeny on morphology. Here, we use foetal/neonatal specimens of known species of living baleen whales (Cetacea: Mysticeti) to show how juvenile morphology of extant species affects phylogenetic placement of the species. In one clade (sei whale, Balaenopteridae), the juvenile is distant from the usual phylogenetic position of adults, but in the other clade (pygmy right whale, Cetotheriidae), the juvenile is close to the adult. Different heterochronic processes at work in the studied species have different influences on juvenile morphology and on phylogenetic placement. This study helps to understand the relationship between evolutionary processes and phylogenetic patterns in baleen whale evolution and, more in general, between phylogeny and ontogeny; likewise, this study provides a proxy how to interpret the phylogeny when fossils that are immature individuals are included. Juvenile individuals in the peramorphic acceleration clades would produce misleading phylogenies, whereas juvenile individuals in the paedomorphic neoteny clades should still provide reliable phylogenetic signals.

  3. Phylogeny and Evolution of Bracts and Bracteoles in Tacca (Dioscoreaceae)

    Institute of Scientific and Technical Information of China (English)

    Ling Zhang; Hong-Tao Li; Lian-Ming Gao; Jun-Bo Yang; De-Zhu Li; Charles H. Cannon; Jin Chen; Qing-Jun Li

    2011-01-01

    Most species in the genus Tacca (Dioscoreaceae) feature green to black purple,conspicuous inflorescence involucral bracts with variable shapes,motile filiform appendages (bracteoles),and diverse types of inflorescence morphology.To infer the evolution of these inflorescence traits,we reconstructed the molecular phylogeny of the genus,using DNA sequences from one nuclear,one mitochondrial,and three plastid loci (Internal Transcribed Spacer (ITS),atpA,rbcL,trnL-F,and trnH-psbA).Involucres and bracteoles characters were mapped onto the phylogeny to analyze the sequence of inflorescence trait evolution.In all analyses,species with showy involucres and bracteoles formed the most derived clade,while ancestral Tacca had small and plain involucres and short bracteoles,namely less conspicuous inflorescence structures.Two of the species with the most elaborate inflorescence morphologies (T.chantrieri in southeast China and T.integrifolia in Tibet),are predominantly self-pollinated,indicating that these conspicuous floral displays have other functions rather than pollinator attraction.We hypothesize that the motile bracteoles and involucres may facilitate selfing; display photosynthesis in the dim understory,and protect flowers from herbivory.

  4. A synthetic phylogeny of freshwater crayfish: insights for conservation

    Science.gov (United States)

    Owen, Christopher L.; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A.

    2015-01-01

    Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. PMID:25561670

  5. The phylogeny of Orussidae (Insecta: Hymenoptera) revisited

    DEFF Research Database (Denmark)

    Vilhelmsen, Lars

    2007-01-01

    The phylogeny of the parasitic wasp family Orussidae is analyzed with a slightly expanded version of a previously published data set. The basal splitting events in the family between two fossil taxa and the extant members are not unambiguously resolved. Intergeneric relationships in general...... are poorly supported and change under different analytical conditions. This corroborates earlier fi ndings regarding the phylogeny of the family. A resumé of the evolutionary history of the Orussidae is provided. Leptorussus madagascarensis sp.n. is described. Udgivelsesdato: 7/12...

  6. A reassessment of the phylogeny and circumscription of Zaluzianskya (Scrophulariaceae).

    Science.gov (United States)

    Archibald, Jenny K; Cook, Jacqueline; Anderson, Bruce; Johnson, Steven D; Mort, Mark E

    2017-07-01

    The genus Zaluzianskya (Scrophulariaceae s.s.) encompasses a diversity of floral and ecological traits. However, this diversity, as described by the current taxonomic circumscription of Zaluzianskya, is an underestimate. We present molecular data suggesting that this genus requires expansion via incorporation of species from other genera and recognition of unnamed cryptic species. This study advances prior molecular phylogenies of the southern African genus through the addition of DNA regions and 51 populations that had not previously been sampled in a published phylogeny. A total of 82 species of Zaluzianskya and related genera are included, adding 48 to those previously sampled. Results are presented from analyses of five DNA regions, including nuclear ITS and four rapidly evolving chloroplast regions (trnL-trnF, rpl16, rps16, and trnS-trnfM). Our primary finding is that the genus Phyllopodium is polyphyletic as currently circumscribed, with some species placed within Zaluzianskya and others grouping with Polycarena, indicating the need for further phylogenetic work on these genera. Preliminary support for the incorporation of Reyemia into Zaluzianskya is reinforced here by the first molecular analysis to include both species of Reyemia and a strong sampling of species across Zaluzianskya and major clades of tribe Limoselleae. The two disjunct, tropical African species of Zaluzianskya are also confirmed as members of this genus. Finally, a broad sampling of 21 populations of Z. microsiphon establishes their phylogenetic division into two to five separate lineages. Hybridization, coevolution, and cryptic speciation may each play a role in the evolution of Z. microsiphon. Further resolution within a clade comprising sections Nycterinia and Macrocalyx is needed to better understand their relationships. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The Secret Life of Collagen: Temporal Changes in Nanoscale Fibrillar Pre-Strain and Molecular Organization during Physiological Loading of Cartilage.

    Science.gov (United States)

    Inamdar, Sheetal R; Knight, David P; Terrill, Nicholas J; Karunaratne, Angelo; Cacho-Nerin, Fernando; Knight, Martin M; Gupta, Himadri S

    2017-10-24

    Articular cartilage is a natural biomaterial whose structure at the micro- and nanoscale is critical for healthy joint function and where degeneration is associated with widespread disorders such as osteoarthritis. At the nanoscale, cartilage mechanical functionality is dependent on the collagen fibrils and hydrated proteoglycans that form the extracellular matrix. The dynamic response of these ultrastructural building blocks at the nanoscale, however, remains unclear. Here we measure time-resolved changes in collagen fibril strain, using small-angle X-ray diffraction during compression of bovine and human cartilage explants. We demonstrate the existence of a collagen fibril tensile pre-strain, estimated from the D-period at approximately 1-2%, due to osmotic swelling pressure from the proteoglycan. We reveal a rapid reduction and recovery of this pre-strain which occurs during stress relaxation, approximately 60 s after the onset of peak load. Furthermore, we show that this reduction in pre-strain is linked to disordering in the intrafibrillar molecular packing, alongside changes in the axial overlapping of tropocollagen molecules within the fibril. Tissue degradation in the form of selective proteoglycan removal disrupts both the collagen fibril pre-strain and the transient response during stress relaxation. This study bridges a fundamental gap in the knowledge describing time-dependent changes in collagen pre-strain and molecular organization that occur during physiological loading of articular cartilage. The ultrastructural details of this transient response are likely to transform our understanding of the role of collagen fibril nanomechanics in the biomechanics of cartilage and other hydrated soft tissues.

  8. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    Science.gov (United States)

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  9. Book review: Insect morphology and phylogeny

    Directory of Open Access Journals (Sweden)

    Susanne Randolf

    2014-05-01

    Full Text Available Beutel RG, Friedrich F, Ge S-Q, Yang X-K (2014 Insect Morphology and Phylogeny: A textbook for students of entomology. De Gruyter, Berlin/Boston, 516 pp., softcover. ISBN 978-3-11-026263-6.

  10. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-01-01

    Abstract Background Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. PMID:29186447

  11. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns.

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-02-01

    Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. © The Authors 2017. Published by Oxford University Press.

  12. Resolution of ray-finned fish phylogeny and timing of diversification.

    Science.gov (United States)

    Near, Thomas J; Eytan, Ron I; Dornburg, Alex; Kuhn, Kristen L; Moore, Jon A; Davis, Matthew P; Wainwright, Peter C; Friedman, Matt; Smith, W Leo

    2012-08-21

    Ray-finned fishes make up half of all living vertebrate species. Nearly all ray-finned fishes are teleosts, which include most commercially important fish species, several model organisms for genomics and developmental biology, and the dominant component of marine and freshwater vertebrate faunas. Despite the economic and scientific importance of ray-finned fishes, the lack of a single comprehensive phylogeny with corresponding divergence-time estimates has limited our understanding of the evolution and diversification of this radiation. Our analyses, which use multiple nuclear gene sequences in conjunction with 36 fossil age constraints, result in a well-supported phylogeny of all major ray-finned fish lineages and molecular age estimates that are generally consistent with the fossil record. This phylogeny informs three long-standing problems: specifically identifying elopomorphs (eels and tarpons) as the sister lineage of all other teleosts, providing a unique hypothesis on the radiation of early euteleosts, and offering a promising strategy for resolution of the "bush at the top of the tree" that includes percomorphs and other spiny-finned teleosts. Contrasting our divergence time estimates with studies using a single nuclear gene or whole mitochondrial genomes, we find that the former underestimates ages of the oldest ray-finned fish divergences, but the latter dramatically overestimates ages for derived teleost lineages. Our time-calibrated phylogeny reveals that much of the diversification leading to extant groups of teleosts occurred between the late Mesozoic and early Cenozoic, identifying this period as the "Second Age of Fishes."

  13. A six-gene phylogeny provides new insights into choanoflagellate evolution.

    Science.gov (United States)

    Carr, Martin; Richter, Daniel J; Fozouni, Parinaz; Smith, Timothy J; Jeuck, Alexandra; Leadbeater, Barry S C; Nitsche, Frank

    2017-02-01

    Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea) are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological and ecological evolution of the group is more complex than has previously been recognized. Here we address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera. The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe ten species that have been shown to be either misidentified or require taxonomic revision. Our revised phylogeny, including 18 new species and sequence data for two additional genes, provides insights into the morphological and ecological evolution of the choanoflagellates. We examine the distribution within choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which are required for protein synthesis. Mapping the presence and absence of these genes onto the phylogeny highlights multiple events of gene loss within the choanoflagellates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis

    Czech Academy of Sciences Publication Activity Database

    Fiala, Ivan

    2006-01-01

    Roč. 36, č. 14 (2006), s. 1521-1534 ISSN 0020-7519 R&D Projects: GA MŠk LC522 Grant - others:Grantová agentura Jihočeské univerzity(CZ) 58/2002//P-BF Institutional research plan: CEZ:AV0Z60220518 Keywords : Myxosporea * SSU rDNA * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.337, year: 2006

  15. Phylogeny of the Southeast Asian freshwater fish genus Pangio (Cypriniformes, Cobitidae)

    Czech Academy of Sciences Publication Activity Database

    Bohlen, Jörg; Šlechtová, Vendula; Tan, H. H.; Britz, R.

    2011-01-01

    Roč. 61, č. 3 (2011), s. 854-865 ISSN 1055-7903 R&D Projects: GA ČR GA206/05/2556; GA ČR GA206/08/0637; GA AV ČR IAA600450508; GA MŠk LC06073 Institutional research plan: CEZ:AV0Z50450515 Keywords : pangio * eel loaches * phylogeny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.609, year: 2011

  16. Rice Physiology

    Science.gov (United States)

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  17. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa

    Czech Academy of Sciences Publication Activity Database

    Bryja, Josef; Mikula, Ondřej; Šumbera, R.; Meheretu, Y.; Aghová, Tatiana; Lavrenchenko, L. A.; Mazoch, Vladimír; Oguge, N.; Mbau, J. S.; Welegerima, K.; Amundala, N.; Colyn, M.; Leirs, H.; Verheyen, E.

    2014-01-01

    Roč. 14, č. 256 (2014), s. 256 ISSN 1471-2148 R&D Projects: GA ČR GAP506/10/0983 Institutional support: RVO:68081766 Keywords : Biogeography * Tropical Africa * Molecular phylogeny * Pygmy mice * Plio-Pleistocene climatic fluctuations * Divergence timing * Muridae (Murinae) * Mus minutoides * Phylogeography * DNA barcoding Subject RIV: EG - Zoology Impact factor: 3.368, year: 2014

  18. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa

    Czech Academy of Sciences Publication Activity Database

    Bryja, J.; Mikula, Ondřej; Šumbera, R.; Meheretu, Y.; Aghová, T.; Lavrenchenko, L. A.; Mazoch, V.; Oguge, N.; Mbau, J. S.; Welegerima, K.; Amundala, N.; Colyn, M.; Leirs, H.; Verheyen, E.

    2014-01-01

    Roč. 14, č. 256 (2014) ISSN 1471-2148 R&D Projects: GA ČR GAP506/10/0983 Institutional support: RVO:67985904 Keywords : biogeography * tropical Africa * molecular phylogeny Subject RIV: EG - Zoology Impact factor: 3.368, year: 2014

  19. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    Science.gov (United States)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  20. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).

    Science.gov (United States)

    Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A

    2011-10-01

    Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of

  1. Dissecting molecular and physiological response mechanisms to high solar radiation in cyanic and acyanic leaves: a case study on red and green basil.

    Science.gov (United States)

    Tattini, Massimiliano; Sebastiani, Federico; Brunetti, Cecilia; Fini, Alessio; Torre, Sara; Gori, Antonella; Centritto, Mauro; Ferrini, Francesco; Landi, Marco; Guidi, Lucia

    2017-04-01

    Photosynthetic performance and the expression of genes involved in light signaling and the biosynthesis of isoprenoids and phenylpropanoids were analysed in green ('Tigullio', TIG) and red ('Red Rubin', RR) basil. The aim was to detect the physiological and molecular response mechanisms to high sunlight. The attenuation of blue-green light by epidermal anthocyanins was shown to evoke shade-avoidance responses with consequential effects on leaf morpho-anatomical traits and gas exchange performance. Red basil had a lower mesophyll conductance, partially compensated by the less effective control of stomatal movements, in comparison with TIG. Photosynthesis decreased more in TIG than in RR in high sunlight, because of larger stomatal limitations and the transient impairment of PSII photochemistry. The methylerythritol 4-phosphate pathway promoted above all the synthesis and de-epoxidation of violaxanthin-cycle pigments in TIG and of neoxanthin and lutein in RR. This enabled the green leaves to process the excess radiant energy effectively, and the red leaves to optimize light harvesting and photoprotection. The greater stomatal closure observed in TIG than in RR was due to enhanced abscisic acid (ABA) glucose ester deglucosylation and reduced ABA oxidation, rather than to superior de novo ABA synthesis. This study shows a strong competition between anthocyanin and flavonol biosynthesis, which occurs at the level of genes regulating the oxidation of the C2-C3 bond in the dihydro-flavonoid skeleton. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products.

    Science.gov (United States)

    Kang, Hahk-Soo

    2017-02-01

    Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.

  3. The unique deep sea—land connection: interactive 3D visualization and molecular phylogeny of Bathyhedyle boucheti n. sp. (Bathyhedylidae n. fam.—the first panpulmonate slug from bathyal zones

    Directory of Open Access Journals (Sweden)

    Timea P. Neusser

    2016-12-01

    Full Text Available The deep sea comprises vast unexplored areas and is expected to conceal significant undescribed invertebrate species diversity. Deep waters may act as a refuge for many relictual groups, including elusive and enigmatic higher taxa, but the evolutionary pathways by which colonization of the deep sea has occurred have scarcely been investigated. Sister group relationships between shallow water and deep sea taxa have been documented in several invertebrate groups, but are unknown between amphibious/terrestrial and deep-sea species. Here we describe in full and interactive 3D morphoanatomical detail the new sea slug species Bathyhedyle boucheti n. sp., dredged from the continental slope off Mozambique. Molecular and morphological analyses reveal that it represents a novel heterobranch gastropod lineage which we establish as the new family Bathyhedylidae. The family is robustly supported as sister to the recently discovered panpulmonate acochlidian family Aitengidae, which comprises amphibious species living along the sea shore as well as fully terrestrial species. This is the first marine-epibenthic representative among hedylopsacean Acochlidiida, the first record of an acochlidian from deep waters and the first documented panpulmonate deep-sea slug. Considering a marine mesopsammic ancestor, the external morphological features of Bathyhedyle n. gen. may be interpreted as independent adaptations to a benthic life style in the deep sea, including the large body size, broad foot and propodial tentacles. Alternatively, the common ancestor of Bathyhedylidae and Aitengidae may have been a macroscopic amphibious or even terrestrial species. We hypothesize that oophagy in the common ancestor of Aitengidae and Bathyhedylidae might explain the impressive ecological and evolutionary flexibility in habitat choice in the Acochlidiida.

  4. Physiology Flies with Time.

    Science.gov (United States)

    Sehgal, Amita

    2017-11-30

    The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Chromosome phylogenies of man, great apes, and Old World monkeys.

    Science.gov (United States)

    De Grouchy, J

    1987-08-31

    The karyotypes of man and of the closely related Pongidae--chimpanzee, gorilla, and orangutan--differ by a small number of well known rearrangements, mainly pericentric inversions and one fusion which reduced the chromosome number from 48 in the Pongidae to 46 in man. Dutrillaux et al. (1973, 1975, 1979) reconstructed the chromosomal phylogeny of the entire primate order. More and more distantly related species were compared thus moving backward in evolution to the common ancestors of the Pongidae, of the Cercopithecoidae, the Catarrhini, the Platyrrhini, the Prosimians, and finally the common ancestor of all primates. Descending the pyramid it becomes possible to assign the rearrangements that occurred in each phylum, and the one that led to man in particular. The main conclusions are that this phylogeny is compatible with the occurrence during evolution of simple chromosome rearrangements--inversions, fusions, reciprocal translocation, acquisition or loss of heterochromatin--and that it is entirely consistent with the known primate phylogeny based on physical morphology and molecular evolution. If heterochromatin is not taken into account, man has in common with the other primates practically all of his chromosomal material as determined by chromosome banding. However, it is arranged differently, according to species, on account of chromosome rearrangements. This interpretation has been confirmed by comparative gene mapping, which established that the same chromosome segments, identified by banding, carry the same genes (Finaz et al., 1973; Human Gene Mapping 8, 1985). A remarkable observation made by Dutrillaux is that different primate phyla seem to have adopted different chromosome rearrangements in the course of evolution: inversions for the Pongidae, Robertsonian fusions for the lemurs, etc. This observation may raise many questions, among which is that of an organized evolution. Also, the breakpoints of chromosomal rearrangements observed during evolution

  6. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  7. Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence

    Science.gov (United States)

    Dumbacher, J.P.; Pratt, T.K.; Fleischer, R.C.

    2003-01-01

    The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it difficult to cluster existing specimens unambiguously into hierarchical taxonomic units. Here we sample all extant owlet-nightjar species and all but three currently recognized subspecies. We use DNA extracted primarily from museum specimens to obtain mitochondrial gene sequences and construct a molecular phylogeny. Our phylogeny suggests that most species are reciprocally monophyletic, however A. albertisi appears paraphyletic. Our data also suggest splitting A. bennettii into two species and splitting A. insignis and A. tatei as suggested in another recent paper. ?? 2003 Elsevier Science (USA). All rights reserved.

  8. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    Science.gov (United States)

    Monette, M.Y.; Yada, T.; Matey, V.; McCormick, S.D.

    2010-01-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4??gl-1 Al), acid and low Al (LAl: pH 5.4, 11??gl-1 Al), acid and moderate Al (MAl: pH 5.3, 42??gl-1 Al), and acid and high Al (HAl: pH 5.4, 56??gl-1 Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na+/K+-ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl- channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al exposure. We propose that when smolts are

  9. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    International Nuclear Information System (INIS)

    Monette, Michelle Y.; Yada, Takashi; Matey, Victoria; McCormick, Stephen D.

    2010-01-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4 μg l -1 Al), acid and low Al (LAl: pH 5.4, 11 μg l -1 Al), acid and moderate Al (MAl: pH 5.3, 42 μg l -1 Al), and acid and high Al (HAl: pH 5.4, 56 μg l -1 Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24 h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na + /K + -ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl - channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al exposure. We propose

  10. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes

    Science.gov (United States)

    2013-01-01

    Background The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata. Results The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy. Conclusions We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes. PMID:23627680

  11. Studies in Phylogeny. I. On the relation of Taxonomy, Phylogeny and Biogeography

    NARCIS (Netherlands)

    Lam, H.J.

    1938-01-01

    Taxonomy is static, its symbols are therefore two-dimensional, representing 1. differences or resemblances and 2. diversity (eventually are also area). Phylogeny is dynamic and its symbols are three-dimensional, representing 1. Time, 2. differences or resemblances and 3. diversity (eventually also

  12. Molecular phylogeny of Trametes and related genera based on ...

    African Journals Online (AJOL)

    Some species of Trametes and their related genera are so similar in microstructure characteristics that it is difficult to identify and separate them by traditional taxonomy. In this study, we elucidated relationships among Trametes through comparison of the nuclear internal transcribed spacer (ITS) and the nearly complete ...

  13. A molecular phylogeny of scaly tree ferns (Cyatheaceae).

    Science.gov (United States)

    Korall, Petra; Conant, David S; Metzgar, Jordan S; Schneider, Harald; Pryer, Kathleen M

    2007-05-01

    Tree ferns recently were identified as the closest sister group to the hyperdiverse clade of ferns, the polypods. Although most of the 600 species of tree ferns are arborescent, the group encompasses a wide range of morphological variability, from diminutive members to the giant scaly tree ferns, Cyatheaceae. This well-known family comprises most of the tree fern diversity (∼500 species) and is widespread in tropical, subtropical, and south temperate regions of the world. Here we investigate the phylogenetic relationships of scaly tree ferns based on DNA sequence data from five plastid regions (rbcL, rbcL-accD IGS, rbcL-atpB IGS, trnG-trnR, and trnL-trnF). A basal dichotomy resolves Sphaeropteris as sister to all other taxa and scale features support these two clades: Sphaeropteris has conform scales, whereas all other taxa have marginate scales. The marginate-scaled clade consists of a basal trichotomy, with the three groups here termed (1) Cyathea (including Cnemidaria, Hymenophyllopsis, Trichipteris), (2) Alsophila sensu stricto, and (3) Gymnosphaera (previously recognized as a section within Alsophila) + A. capensis. Scaly tree ferns display a wide range of indusial structures, and although indusium shape is homoplastic it does contain useful phylogenetic information that supports some of the larger clades recognised.

  14. Molecular phylogeny of Trametes and related genera based on ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Some species of Trametes and their related genera are so similar in microstructure characteristics that it is ... We found that both the conserved domains and the variable domains all ..... closely-related species was similar.

  15. Molecular phylogeny of the domesticated silkworm, Bombyx mori ...

    Indian Academy of Sciences (India)

    Unknown

    following conditions: denatured for 3 ~ 5 min at 96°C, ... Europe. AY496251. Chinese B. mandarina light yellow. Zhenjiang, China .... countries around 1500 ~ 2000 years ago, but only a small ... This work was supported by National Natural Science Founda- ... cialis and P. stubbendorfii at various localities in East Asia.

  16. A molecular phylogeny of selected species of genus Prunus L ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... 52 - 56°C with the primers ITS-9 and ITS-6 or Trn-L and Trn-F. Polymerase chain .... The sub-genus Prunus has also relatively good support (81%) including .... Stevens, Michael J, Donoghue (1999). Plant Systematics. A.

  17. Molecular phylogeny of Escherichia coli isolated from clinical ...

    African Journals Online (AJOL)

    lames

    2011-11-09

    Nov 9, 2011 ... urine samples from patients with urinary tract infection, high vaginal strains comprised 10 ... pregnant and non-pregnant women suffering from vaginitis, 10 rectal strains were .... in Highly Diverse Adaptive Paths. PLOS Genet.

  18. Molecular phylogeny of Trametes and related genera based on ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... In this study, we elucidated relationships among Trametes through comparison of the nuclear internal transcribed spacer (ITS) and the nearly complete mitochondrial small subunit ribosomal DNA (mt SSU rDNA) sequences. Finally, phylogenetic trees were built. Phylogenetic analysis of the ITS and mt SSU ...

  19. Molecular phylogeny of the domesticated silkworm, Bombyx mori<