WorldWideScience

Sample records for physiology molecular biology

  1. Molecular and physiological manifestations and measurement of aging in humans.

    Science.gov (United States)

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. The Molecular Era of Surfactant Biology

    OpenAIRE

    Whitsett, Jeffrey A.

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  3. Molecular biophysics: detection and characterization of damage in molecular, cellular, and physiological systems

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1979-01-01

    This section contains summaries of research on the detection and characterization of damage in molecular, cellular, and physiological systems. Projects under investigation in this section include: chemical synthesis of nucleic acid derivatives; structural and conformational properties of biological molecules in solution; crystallographic and chemical studies of immunoglobulin structure; instrument design and development for x-ray and neutron scattering studies of biological molecules; and chromobiology and circadian regulation

  4. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    Science.gov (United States)

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  5. Knowledge environments representing molecular entities for the virtual physiological human.

    Science.gov (United States)

    Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M

    2008-09-13

    In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.

  6. ‘Integrative Physiology 2.0’: integration of systems biology into physiology and its application to cardiovascular homeostasis

    Science.gov (United States)

    Kuster, Diederik W D; Merkus, Daphne; van der Velden, Jolanda; Verhoeven, Adrie J M; Duncker, Dirk J

    2011-01-01

    Since the completion of the Human Genome Project and the advent of the large scaled unbiased ‘-omics’ techniques, the field of systems biology has emerged. Systems biology aims to move away from the traditional reductionist molecular approach, which focused on understanding the role of single genes or proteins, towards a more holistic approach by studying networks and interactions between individual components of networks. From a conceptual standpoint, systems biology elicits a ‘back to the future’ experience for any integrative physiologist. However, many of the new techniques and modalities employed by systems biologists yield tremendous potential for integrative physiologists to expand their tool arsenal to (quantitatively) study complex biological processes, such as cardiac remodelling and heart failure, in a truly holistic fashion. We therefore advocate that systems biology should not become/stay a separate discipline with ‘-omics’ as its playing field, but should be integrated into physiology to create ‘Integrative Physiology 2.0’. PMID:21224228

  7. Physiology is rocking the foundations of evolutionary biology.

    Science.gov (United States)

    Noble, Denis

    2013-08-01

    The 'Modern Synthesis' (Neo-Darwinism) is a mid-20th century gene-centric view of evolution, based on random mutations accumulating to produce gradual change through natural selection. Any role of physiological function in influencing genetic inheritance was excluded. The organism became a mere carrier of the real objects of selection, its genes. We now know that genetic change is far from random and often not gradual. Molecular genetics and genome sequencing have deconstructed this unnecessarily restrictive view of evolution in a way that reintroduces physiological function and interactions with the environment as factors influencing the speed and nature of inherited change. Acquired characteristics can be inherited, and in a few but growing number of cases that inheritance has now been shown to be robust for many generations. The 21st century can look forward to a new synthesis that will reintegrate physiology with evolutionary biology.

  8. Biological properties of extracellular vesicles and their physiological functions

    Directory of Open Access Journals (Sweden)

    María Yáñez-Mó

    2015-05-01

    Full Text Available In the past decade, extracellular vesicles (EVs have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  9. Biological properties of extracellular vesicles and their physiological functions

    Science.gov (United States)

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  10. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  11. tRNA--the golden standard in molecular biology.

    Science.gov (United States)

    Barciszewska, Mirosława Z; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology.

  12. Bone biology and physiology: Part I. The fundamentals.

    Science.gov (United States)

    Buck, Donald W; Dumanian, Gregory A

    2012-06-01

    The principles of bone biology and physiology permeate all subspecialty practices in plastic and reconstructive surgery from hand surgery to aesthetic surgery. Despite its importance in our practices, the biology of bone healing and bone physiology rarely surfaces within textbooks, literature reviews, or residency curricula. In this article, the authors present the first of a two-part series reviewing the important concepts of bone biology and bone physiology relevant to plastic surgery in an effort to ameliorate this educational gap.

  13. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  14. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  15. Using a Molecular-Genetic Approach to Investigate Bacterial Physiology in a Continuous, Research-Based, Semester-Long Laboratory for Undergraduates

    Directory of Open Access Journals (Sweden)

    Jeremiah Foster Ault

    2011-09-01

    Full Text Available Designing investigative laboratory exercises that encourage critical thinking, problem solving, and independent thought for upper-division biology courses is a difficult but worthwhile task. In an effort to do so, we developed a semester-long, continuous, research-based investigative laboratory that integrates numerous genetic and molecular biology methods into the investigation of a bacterial physiological process. In this lab, students use random Tn5 transposon mutagenesis to create prodigiosin pigment mutants in the bacterium, Serratia marcescens. This is followed by phenotypic characterization, cloning, and sequencing the Tn insertion site to identify genes involved in pigment biosynthesis. During this lab, students gain ample experience performing basic lab techniques while learning about — and applying — methods for elucidating gene function. The approach to the laboratory and the outcomes are intimately integrated into the teaching of many fundamental physiological processes underlying prodigiosin production in bacteria. The result is a cohesive course that integrates the theory and application of molecular genetic techniques with the study of bacterial physiology. Assessments of student learning objectives demonstrated that students greatly improved their understanding of both physiological processes and the genetic techniques used to investigate them. In addition, students felt that this semester-long exercise provided the necessary laboratory experience they needed and desired in preparation for careers in molecular biology, microbiology, and biochemistry.

  16. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  17. Physiology and molecular biology of petal senescence

    NARCIS (Netherlands)

    Doorn, van W.G.; Woltering, E.J.

    2008-01-01

    Petal senescence is reviewed, with the main emphasis on gene expression in relation to physiological functions. Autophagy seems to be the major mechanism for large-scale degradation of macromolecules, but it is still unclear if it contributes to cell death. Depending on the species, petal senescence

  18. Network-based integration of molecular and physiological data elucidates regulatory mechanisms underlying adaptation to high-fat diet

    NARCIS (Netherlands)

    Derous, D.; Kelder, T.; Schothorst, E.M. van; Erk, M. van; Voigt, A.; Klaus, S.; Keijer, J.; Radonjic, M.

    2015-01-01

    Health is influenced by interplay of molecular, physiological and environmental factors. To effectively maintain health and prevent disease, health-relevant relations need to be understood at multiple levels of biological complexity. Network-based methods provide a powerful platform for integration

  19. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  20. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D.

    2006-01-01

    Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen causing disease in a wide range of plants. This review summarizes current knowledge of mechanisms employed by the fungus to parasitize its host with emphasis on biology, physiology and molecular aspects of pathogenicity. In

  1. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    Science.gov (United States)

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  2. Günter Blobel: Pioneer of molecular cell biology (1936-2018).

    Science.gov (United States)

    2018-04-02

    Günter Blobel was a scientific colossus who dedicated his career to understanding the mechanisms for protein sorting to membrane organelles. His monumental contributions established research paradigms for major arenas of molecular cell biology. For this work, he received many accolades, including the Nobel Prize in Medicine or Physiology in 1999. He was a scientist of extreme passion and a nurturing mentor for generations of researchers, imbuing them with his deep love of cell biology and galvanizing them to continue his scientific legacy. Günter passed away on February 18, 2018, at the age of 81. © 2018 Rockefeller University Press.

  3. Structural Molecular Biology 2017 | SSRL

    Science.gov (United States)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating experimental driver for structural biology research, serving the needs of a large number of academic and — Our Mission The SSRL Structural Molecular Biology program operates as an integrated resource and has

  4. Matters of taste: bridging molecular physiology and the humanities.

    Science.gov (United States)

    Rangachari, P K; Rangachari, Usha

    2015-12-01

    Taste perception was the focus of an undergraduate course in the health sciences that bridged the sciences and humanities. A problem-based learning approach was used to study the biological issues, whereas the cultural transmutations of these molecular mechanisms were explored using a variety of resources (novels, cookbooks, and films). Multiple evaluation procedures were used: problem summaries and problem-solving exercises (tripartite problem-solving exercise) for the problem-based learning component and group tasks and individual exercises for the cultural issues. Self-selected groups chose specific tasks from a prescribed list of options (setting up a journal in molecular gastronomy, developing an electronic tongue, designing a restaurant for synesthetes, organizing a farmers' market, marketing a culinary tour, framing hedonic scales, exploring changing tastes through works of art or recipe books, and crafting beers for space travel). Individual tasks were selected from a menu of options (book reviews, film reviews, conversations, creative writing, and oral exams). A few guest lecturers (wine making, cultural anthropology, film analysis, and nutritional epidemiology) added more flavor. The course was rated highly for its learning value (8.5 ± 1.2, n = 62) and helped students relate biological mechanisms to cultural issues (9.0 ± 0.9, n = 62). Copyright © 2015 The American Physiological Society.

  5. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  6. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology.

    Science.gov (United States)

    Seebacher, Frank; Franklin, Craig E

    2012-06-19

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.

  7. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    Science.gov (United States)

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  9. Data warehousing in molecular biology.

    Science.gov (United States)

    Schönbach, C; Kowalski-Saunders, P; Brusic, V

    2000-05-01

    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  10. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1997-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. McKenna and Dritschilo. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  11. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1996-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part 'series' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  12. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  13. Human papillomavirus molecular biology.

    Science.gov (United States)

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    Science.gov (United States)

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  15. Molecular and cellular biology of cerebral arteriovenous malformations: a review of current concepts and future trends in treatment.

    Science.gov (United States)

    Rangel-Castilla, Leonardo; Russin, Jonathan J; Martinez-Del-Campo, Eduardo; Soriano-Baron, Hector; Spetzler, Robert F; Nakaji, Peter

    2014-09-01

    Arteriovenous malformations (AVMs) are classically described as congenital static lesions. However, in addition to rupturing, AVMs can undergo growth, remodeling, and regression. These phenomena are directly related to cellular, molecular, and physiological processes. Understanding these relationships is essential to direct future diagnostic and therapeutic strategies. The authors performed a search of the contemporary literature to review current information regarding the molecular and cellular biology of AVMs and how this biology will impact their potential future management. A PubMed search was performed using the key words "genetic," "molecular," "brain," "cerebral," "arteriovenous," "malformation," "rupture," "management," "embolization," and "radiosurgery." Only English-language papers were considered. The reference lists of all papers selected for full-text assessment were reviewed. Current concepts in genetic polymorphisms, growth factors, angiopoietins, apoptosis, endothelial cells, pathophysiology, clinical syndromes, medical treatment (including tetracycline and microRNA-18a), radiation therapy, endovascular embolization, and surgical treatment as they apply to AVMs are discussed. Understanding the complex cellular biology, physiology, hemodynamics, and flow-related phenomena of AVMs is critical for defining and predicting their behavior, developing novel drug treatments, and improving endovascular and surgical therapies.

  16. Molecular ferroelectrics: where electronics meet biology.

    Science.gov (United States)

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  17. Physiological and molecular insights into drought tolerance ...

    African Journals Online (AJOL)

    Physiological and molecular insights into drought tolerance. Sagadevan G Mundree, Bienyameen Baker, Shaheen Mowla, Shaun Peters, Saberi Marais, Clare Vander Willigen, Kershini Govender, Alice Maredza, Samson Muyanga, Jill M Farrant, Jennifer A Thomson ...

  18. Monod and the spirit of molecular biology

    OpenAIRE

    Morange , Michel

    2015-01-01

    International audience; The founders of molecular biology shared views on the place of biology within science, as well as on the relations of molecular biology to Darwinism. Jacques Monod was no exception, but the study of his writings is particularly interesting because he expressed his point of view very clearly and pushed the implications of some of his choices further than most of his contemporaries. The spirit of molecular biology is no longer the same as in the 1960s but, interestingly,...

  19. Yeast genetics and molecular biology

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book covers subjects and the following titles: cell biology; RNA processing and translation; organelle biogenesis; cell division cycle; mating physiology; recombination and repair; retro-transposition; and metabolic regulating mechanisms

  20. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria.

    Science.gov (United States)

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I

    2017-07-08

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):313-317, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  1. [Advance in molecular biology of Dendrobium (Orchidaceae)].

    Science.gov (United States)

    Li, Qing; Li, Biao; Guo, Shun-Xing

    2016-08-01

    With the development of molecular biology, the process in molecular biology research of Dendrobium is going fast. Not only did it provide new ways to identify Dendrobium quickly, reveal the genetic diversity and relationship of Dendrobium, but also lay the vital foundation for explaining the mechanism of Dendrobium growth and metabolism. The present paper reviews the recent process in molecular biology research of Dendrobium from three aspects, including molecular identification, genetic diversity and functional genes. And this review will facilitate the development of this research area and Dendrobium. Copyright© by the Chinese Pharmaceutical Association.

  2. History of the molecular biology of cytomegaloviruses.

    Science.gov (United States)

    Stinski, Mark F

    2014-01-01

    The history of the molecular biology of cytomegaloviruses from the purification of the virus and the viral DNA to the cloning and expression of the viral genes is reviewed. A key genetic element of cytomegalovirus (the CMV promoter) contributed to our understanding of eukaryotic cell molecular biology and to the development of lifesaving therapeutic proteins. The study of the molecular biology of cytomegaloviruses also contributed to the development of antivirals to control the viral infection.

  3. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  4. Monod and the spirit of molecular biology.

    Science.gov (United States)

    Morange, Michel

    2015-06-01

    The founders of molecular biology shared views on the place of biology within science, as well as on the relations of molecular biology to Darwinism. Jacques Monod was no exception, but the study of his writings is particularly interesting because he expressed his point of view very clearly and pushed the implications of some of his choices further than most of his contemporaries. The spirit of molecular biology is no longer the same as in the 1960s but, interestingly, Monod anticipated some recent evolutions of this discipline. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    Science.gov (United States)

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Cell and molecular biology of the spiny dogfish Squalus acanthias and little skate Leucoraja erinacea: insights from in vitro cultured cells.

    Science.gov (United States)

    Barnes, D W

    2012-04-01

    Two of the most commonly used elasmobranch experimental model species are the spiny dogfish Squalus acanthias and the little skate Leucoraja erinacea. Comparative biology and genomics with these species have provided useful information in physiology, pharmacology, toxicology, immunology, evolutionary developmental biology and genetics. A wealth of information has been obtained using in vitro approaches to study isolated cells and tissues from these organisms under circumstances in which the extracellular environment can be controlled. In addition to classical work with primary cell cultures, continuously proliferating cell lines have been derived recently, representing the first cell lines from cartilaginous fishes. These lines have proved to be valuable tools with which to explore functional genomic and biological questions and to test hypotheses at the molecular level. In genomic experiments, complementary (c)DNA libraries have been constructed, and c. 8000 unique transcripts identified, with over 3000 representing previously unknown gene sequences. A sub-set of messenger (m)RNAs has been detected for which the 3' untranslated regions show elements that are remarkably well conserved evolutionarily, representing novel, potentially regulatory gene sequences. The cell culture systems provide physiologically valid tools to study functional roles of these sequences and other aspects of elasmobranch molecular cell biology and physiology. Information derived from the use of in vitro cell cultures is valuable in revealing gene diversity and information for genomic sequence assembly, as well as for identification of new genes and molecular markers, construction of gene-array probes and acquisition of full-length cDNA sequences. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  7. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.

    Science.gov (United States)

    Tang, Xiaoli; Mu, Xingmin; Shao, Hongbo; Wang, Hongyan; Brestic, Marian

    2015-01-01

    The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.

  8. The Molecular Biology of Pestiviruses.

    Science.gov (United States)

    Tautz, Norbert; Tews, Birke Andrea; Meyers, Gregor

    2015-01-01

    Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter. © 2015 Elsevier Inc. All rights reserved.

  9. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  10. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  11. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    Science.gov (United States)

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  12. Measurement Frontiers in Molecular Biology

    Science.gov (United States)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  13. Teaching Molecular Biology with Microcomputers.

    Science.gov (United States)

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  14. Harnessing the Power of Integrated Mitochondrial Biology and Physiology: A Special Report on the NHLBI Mitochondria in Heart Diseases Initiative.

    Science.gov (United States)

    Ping, Peipei; Gustafsson, Åsa B; Bers, Don M; Blatter, Lothar A; Cai, Hua; Jahangir, Arshad; Kelly, Daniel; Muoio, Deborah; O'Rourke, Brian; Rabinovitch, Peter; Trayanova, Natalia; Van Eyk, Jennifer; Weiss, James N; Wong, Renee; Schwartz Longacre, Lisa

    2015-07-17

    Mitochondrial biology is the sum of diverse phenomena from molecular profiles to physiological functions. A mechanistic understanding of mitochondria in disease development, and hence the future prospect of clinical translations, relies on a systems-level integration of expertise from multiple fields of investigation. Upon the successful conclusion of a recent National Institutes of Health, National Heart, Lung, and Blood Institute initiative on integrative mitochondrial biology in cardiovascular diseases, we reflect on the accomplishments made possible by this unique interdisciplinary collaboration effort and exciting new fronts on the study of these remarkable organelles. © 2015 American Heart Association, Inc.

  15. The progress of molecular biology in radiation research

    International Nuclear Information System (INIS)

    Wei Kang

    1989-01-01

    The recent progress in application of molecular biology techniques in the study of radiation biology is reviewed. The three sections are as follows: (1) the study of DNA damage on molecular level, (2) the molecular mechanism of radiation cell genetics, including chromosome abberation and cell mutation, (3) the study on DNA repair gene with DNA mediated gene transfer techniques

  16. Physiological response, molecular analysis and water use efficiency ...

    African Journals Online (AJOL)

    With a view to study the effects of irrigation scheduling on the water use efficiency and physiological response and molecular basis of maize hybrids of different maturity groups, a field experiment was conducted at Water Management Research Center (WMRC), Belvatagi, University of Agricultural Sciences, Dharwad, India ...

  17. The molecular biology in wound healing & non-healing wound.

    Science.gov (United States)

    Qing, Chun

    2017-08-01

    The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  18. The molecular biology of WHO grade I astrocytomas.

    Science.gov (United States)

    Marko, Nicholas F; Weil, Robert J

    2012-12-01

    World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.

  19. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  20. From Molecular Biology to Biomedicine

    International Nuclear Information System (INIS)

    Salas, M.

    2009-01-01

    From Molecular Biology to Biomedicine. The well known molecular biologist Margarita Salas offered an informative conference at the CSN on progress in these areas since the discovery, more than half a century ago, of the structure of the molecule carrying genetic information, DNA, work that is having an enormous impact in areas such as biomedicine and foodstuff production. (Author)

  1. Isotopes in molecular biology

    International Nuclear Information System (INIS)

    Goldfarb, P.S.G.

    1988-01-01

    The use of radioisotopes in molecular biology, with particular reference to the structure and functions of DNA, RNA and the cellular synthesis of proteins, is discussed. The use of labelled DNA and RNA in diagnostic techniques is presented. (U.K.)

  2. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  3. Assessment of Knowledge of Participants on Basic Molecular Biology Techniques after 5-Day Intensive Molecular Biology Training Workshops in Nigeria

    Science.gov (United States)

    Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.

    2017-01-01

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…

  4. Proteomics Improves the New Understanding of Honeybee Biology.

    Science.gov (United States)

    Hora, Zewdu Ararso; Altaye, Solomon Zewdu; Wubie, Abebe Jemberie; Li, Jianke

    2018-04-11

    The honeybee is one of the most valuable insect pollinators, playing a key role in pollinating wild vegetation and agricultural crops, with significant contribution to the world's food production. Although honeybees have long been studied as model for social evolution, honeybee biology at the molecular level remained poorly understood until the year 2006. With the availability of the honeybee genome sequence and technological advancements in protein separation, mass spectrometry, and bioinformatics, aspects of honeybee biology such as developmental biology, physiology, behavior, neurobiology, and immunology have been explored to new depths at molecular and biochemical levels. This Review comprehensively summarizes the recent progress in honeybee biology using proteomics to study developmental physiology, task transition, and physiological changes in some of the organs, tissues, and cells based on achievements from the authors' laboratory in this field. The research advances of honeybee proteomics provide new insights for understanding of honeybee biology and future research directions.

  5. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  6. Molecular cell biology and physiology of solute transport

    Science.gov (United States)

    Caplan, Michael J.; Seo-Mayer, Patricia; Zhang, Li

    2010-01-01

    Purpose of review An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell–cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. Recent findings Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories, suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. Summary Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications. PMID:18695392

  7. Agent-Based Modeling in Molecular Systems Biology.

    Science.gov (United States)

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-06-08

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  8. 'Integrative Physiology 2.0': Integration of systems biology into physiology and its application to cardiovascular homeostasis

    NARCIS (Netherlands)

    D.W.D. Kuster (Diederik); D. Merkus (Daphne); J. van der Velden (Jolanda); A.J.M. Verhoeven (Adrie); D.J.G.M. Duncker (Dirk)

    2011-01-01

    textabstractSince the completion of the Human Genome Project and the advent of the large scaled unbiased '-omics' techniques, the field of systems biology has emerged. Systems biology aims to move away from the traditional reductionist molecular approach, which focused on understanding the role of

  9. Molecular eyes: proteins that transform light into biological information

    NARCIS (Netherlands)

    Kennis, J.T.M.; Mathes, T.

    2013-01-01

    Most biological photoreceptors are protein/cofactor complexes that induce a physiological reaction upon absorption of a photon. Therefore, these proteins represent signal converters that translate light into biological information. Researchers use this property to stimulate and study various

  10. Biomarkers of Aging: From Function to Molecular Biology

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Wagner

    2016-06-01

    Full Text Available Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products.

  11. A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks

    Directory of Open Access Journals (Sweden)

    Thomas eEissing

    2011-02-01

    Full Text Available Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multi-scale by nature, project work and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug-drug or drug-metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach.

  12. Biological causal links on physiological and evolutionary time scales.

    Science.gov (United States)

    Karmon, Amit; Pilpel, Yitzhak

    2016-04-26

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning.

  13. Evolution of egg coats: linking molecular biology and ecology.

    Science.gov (United States)

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  14. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  15. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    NARCIS (Netherlands)

    Knoers, N.V.A.M.; Monnens, L.A.H.

    2006-01-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide

  16. Chemoradiotherapy and molecular biology

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Mitsuhashi, Norio; Niibe, Hideo

    2000-01-01

    The current status of chemoradiotherapy was reviewed from the standpoint of molecular biology. Chemoradiotherapy was conducted to achieve systemic tumor control, to intensify the response to irradiation, and to reduce adverse reactions. The mechanisms of the efficacy of chemoradiotherapy were: modification of dose-response relationships, inhibition of tumor cell recovery from sublethal damage or potential lethal damage, effects on cell dynamics and the cell cycle, improvement of blood flow or reoxygenation, recruitment, improvement of drug uptake, increased cell damage. Cell death (necrosis and apoptosis) and cancer-related genes were described, as the essential points, because they are involved in the response to chemoradiotherapy. Cisplatin (platinum compound), 5-fluorouracil, etoposide, and taxoid (paclitaxel, docetaxel) were the principal anticancer agents used for chemoradiotherapy, and they enhanced the effects of irradiation. However, even when good responses or synergism between anticancer drug and radiotherapy was observed in in vitro studies, there was little therapeutic advantage clinically. Data from in vitro and in vivo studies should be collected and systemized, and ''molecular biology in chemotherapy'' that can be applied clinically may become established. (K.H.)

  17. Molecular biology of hyperthermophilic Archaea.

    Science.gov (United States)

    van der Oost, J; Ciaramella, M; Moracci, M; Pisani, F M; Rossi, M; de Vos, W M

    1998-01-01

    The sequences of a number of archaeal genomes have recently been completed, and many more are expected shortly. Consequently, the research of Archaea in general and hyperthermophiles in particular has entered a new phase, with many exciting discoveries to be expected. The wealth of sequence information has already led, and will continue to lead to the identification of many enzymes with unique properties, some of which have potential for industrial applications. Subsequent functional genomics will help reveal fundamental matters such as details concerning the genetic, biochemical and physiological adaptation of extremophiles, and hence give insight into their genomic evolution, polypeptide structure-function relations, and metabolic regulation. In order to optimally exploit many unique features that are now emerging, the development of genetic systems for hyperthermophilic Archaea is an absolute requirement. Such systems would allow the application of this class of Archaea as so-called "cell factories": (i) expression of certain archaeal enzymes for which no suitable conventional (mesophilic bacterial or eukaryal) systems are available, (ii) selection for thermostable variants of potentially interesting enzymes from mesophilic origin, and (iii) the development of in vivo production systems by metabolic engineering. An overview is given of recent insight in the molecular biology of hyperthermophilic Archaea, as well as of a number of promising developments that should result in the generation of suitable genetic systems in the near future.

  18. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  19. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  20. Physiology Flies with Time.

    Science.gov (United States)

    Sehgal, Amita

    2017-11-30

    The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    Science.gov (United States)

    Baskin, Igor I.; Palyulin, Vladimir A.; Zefirov, Nikolai S.

    2009-06-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  2. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    International Nuclear Information System (INIS)

    Baskin, Igor I; Palyulin, Vladimir A; Zefirov, Nikolai S

    2009-01-01

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  3. Molecular simulation of receptors of physiologically active compounds for purposes of medical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Baskin, Igor I; Palyulin, Vladimir A; Zefirov, Nikolai S [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-06-30

    The general strategy of the molecular simulation of biological receptors and their interaction with ligands is considered. The procedures for construction of 3D protein models, molecular docking, evaluation of model quality, determination of the free energy of protein binding with ligands are discussed. The methods of molecular design of new medicaments based on molecular models of biological targets: virtual screening and de novo design, are presented. Examples of the above-listed approaches for the simulation of a number of pharmacologically significant receptors, analysis of receptor-ligand interactions and design of new biologically active organic compounds are given.

  4. [Molecular Biology on the Mechanisms of Autism Spectrum Disorder for Clinical Psychiatrists].

    Science.gov (United States)

    Makinodan, Manabu

    2015-01-01

    While, in general, a certain number of clinical psychiatrists might not be familiar with molecular biology, the mechanisms of mental illnesses have been uncovered by molecular biology for decades. Among mental illnesses, even biological psychiatrists and neuroscientists have paid less attention to the biological treatment of autism spectrum disorder (ASD) than Alzheimer's disease and schizophrenia since ASD has been regarded as a developmental disorder that was seemingly untreatable. However, multifaceted methods of molecular biology have revealed the mechanisms that would lead to the medication of ASD. In this article, how molecular biology dissects the pathobiology of ASD is described in order to announce the possibilities of biological treatment for clinical psychiatrists.

  5. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  6. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  7. Synthetic biology: engineering molecular computers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  8. Molecular infection biology : interactions between microorganisms and cells

    National Research Council Canada - National Science Library

    Hacker, Jörg (Jörg Hinrich); Heesemann, Jurgen

    2002-01-01

    ... and epidemiology of infectious diseases. Investigators, specialists, clinicians, and graduate students in biology, pharmacy, and medicine will find Molecular Infection Biology an invaluable addition to their professional libraries...

  9. Kinetic Behaviour of Nanoparticles Across the Biological Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Emond, Claude, E-mail: claude.emond@biosmc.com [BioSimulation Consulting Inc., 220E. Delaware Avenue 1182, Newark, DE, 19711 (United States)

    2011-07-06

    Nanotoxicokinetics is a subsection of the toxicology field that involves the study of kinetic displacement of nanoparticles (NPs) in an organism. Four different steps, namely absorption, distribution, metabolism and elimination (ADME), are involved in nanotoxicokinetics. However, only ADE will be covert in this mini review. Because of their size, NPs react differently than particulate matter larger than the nanometre unit in diameter. In the organism, a closer interaction between NPs and biological matrices, called nanotoxicodynamics, might increase the health effects. (Animals are usually in studies to evaluate the global interaction of NPs and biological matrices and to control and reduce the bias.) Understanding the different steps of kinetics is very important to increase the confidence of the amount of NP delivery in the target organ and to assess the level of risk. The objective of this work was to review the behaviour of the NPs interacting with the biological kinetic steps of the ADME and their limitations and constraints. Specifically, it was reviewed the impact of each of the four steps of nanotoxicokinetics, from exposure to elimination in the organism. Recent publications have provided some information on this issue, allowing for a better understanding on how the NPs behave across physiology; however, information is still lacking. We also systematically reviewed the ADME process, and supported our review with examples from the literature. We reviewed the two major factors that influence the absorption of NPs: enumerated biotransformation and elimination limitations. One of the focuses of this study was the interaction between NPs and biological matrices because the morphology and chemical properties may drive the potential for exposure. This paper present different examples of interactions find from literature. To study these interactions, we used a classical pharmacokinetic approach employed in the pharmaceutical industry and compared it to a dynamic

  10. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    Science.gov (United States)

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  11. Molecular biology applications to infectious diseases diagnostic

    International Nuclear Information System (INIS)

    2001-01-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus

  12. Molecular biology of Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Siemens, Johannes; Bulman, Simon; Rehn, Frank

    2009-01-01

    of several genes have been revealed, and the expression of those genes has been linked to development of clubroot to some extent. In addition, the sequence data have reinforced the inclusion of the plasmodiophorids within the Cercozoa. The recent successes in molecular biology have produced new approaches...

  13. Molecular biology of pancreatic cancer: how useful is it in clinical practice?

    Science.gov (United States)

    Sakorafas, George H; Smyrniotis, Vasileios

    2012-07-10

    During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years). Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active) etc. Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology in pancreatic cancer will expand in the future, improving the

  14. Molecular biology - Part I: Techniques, terminology, and concepts

    International Nuclear Information System (INIS)

    Brown, J. Martin

    1996-01-01

    Purpose/Objective: One of the barriers to understanding modern molecular biology is the lack of a clear understanding of the relevant terminology, techniques, and concepts. This refresher course is intended to address these deficiencies starting from a basic level. The lecture will cover many of the common uses of recombinant DNA, including gene cloning and manipulation. The goal is to enable the nonspecialist to increase his or her understanding of molecular biology in order to more fully enjoy reading current publications and/or listening seminars. Radiation biologists trying to understand a little more molecular biology should also benefit. The following concepts will be among those explained and illustrated: restriction endonucleases, gel electrophoresis, gene cloning, use of vectors such as plasmids, bacteriophage, cosmids and viruses, cDNA and genomic libraries, Southern, Northern, and Western blotting, fluorescent in situ hybridization, polymerase chain reaction (PCR), gel retardation, and reporter gene assays

  15. Systems Biology of Saccharomyces cerevisiae Physiology and its DNA Damage Response

    DEFF Research Database (Denmark)

    Fazio, Alessandro

    The yeast Saccharomyces cerevisiae is a model organism in biology, being widely used in fundamental research, the first eukaryotic organism to be fully sequenced and the platform for the development of many genomics techniques. Therefore, it is not surprising that S. cerevisiae has also been widely...... used in the field of systems biology during the last decade. This thesis investigates S. cerevisiae growth physiology and DNA damage response by using a systems biology approach. Elucidation of the relationship between growth rate and gene expression is important to understand the mechanisms regulating...... set of growth dependent genes by using a multi-factorial experimental design. Moreover, new insights into the metabolic response and transcriptional regulation of these genes have been provided by using systems biology tools (Chapter 3). One of the prerequisite of systems biology should...

  16. Biología molecular y cáncer de tiroides Molecular biology and thyroid cancer

    Directory of Open Access Journals (Sweden)

    Juan Cassola Santana

    2010-12-01

    Full Text Available Se realiza una revisión actualizada sobre aspectos de biología molecular que servirán de base al cirujano actuante para un mejor conocimiento del cáncer tiroideo. El objetivo radica en alertar a los cirujanos sobre las nuevas evaluaciones a las que podrán someterse los tumores de la tiroides, que implicarán cambios en toda la gama de conductas actuales en estos casos. Se señalan aspectos que sin duda cambiarán los conceptos que se manejan hoy día.A updating review is carry out on the features of molecular biology as a basis for acting surgeon to a better knowledge of thyroid cancer. The objective is to alert surgeons on the new assessments for this type of cancer, implicating changes in all the range of current behaviors in these cases. The features that will change the nowadays concepts in this respect.

  17. 2012 Gordon Research Conference, Plant molecular biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael R. [Univ. of Wisconsin, Madison, WI (United States)

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  18. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    Science.gov (United States)

    Knoers, Nine V A M; Monnens, Leo A H

    2006-02-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide (protein). In addition, several basic and frequently used general molecular tools, such as restriction enzymes, Southern blotting, DNA amplification and sequencing are discussed, in order to lay the foundations for the forthcoming chapters.

  19. Beneficial liaisons: radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1995-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology and molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  20. pGLO Mutagenesis: A Laboratory Procedure in Molecular Biology for Biology Students

    Science.gov (United States)

    Bassiri, Eby A.

    2011-01-01

    A five-session laboratory project was designed to familiarize or increase the laboratory proficiency of biology students and others with techniques and instruments commonly used in molecular biology research laboratories and industries. In this project, the EZ-Tn5 transposon is used to generate and screen a large number of cells transformed with…

  1. The role and future of in-vitro isotopic techniques in molecular biology

    International Nuclear Information System (INIS)

    Dar, L.; Khan, B.K.

    2004-01-01

    In this review we discuss isotopic in-vitro molecular biology techniques, and their advantages and applications. Isotopic methods have helped to shape molecular biology since its early days. Despite the availability of non-isotopic alternatives, isotopic methods continue to be used in molecular biology due to certain advantages, especially related to sensitivity and cost-effectiveness. Numerous techniques involving the use of isotopes help in the characterization of genes, including the detection of single nucleotide polymorphisms (SNPs) or mutations. Other isotopic molecular methods are utilized to study the phenotypic expression of gene sequences and their mutation. Emerging branches of molecular biology like functional genomics and proteomics are extremely important for exploiting the rapidly growing data derived from whole genomic sequencing of human and microbial genomes. Recent molecular biology applications like the high-throughput array techniques are relevant in the context of both structural and functional genomics. In proteomics, stable isotope based technology has found applications in the analysis of protein structure and interactions. (author)

  2. Introduction to the cellular and molecular biology of cancer

    National Research Council Canada - National Science Library

    Selby, P. (Peter); Knowles, Margaret A

    2005-01-01

    ... A. Prigent 186xii CONTENTS 12 Apoptosis: molecular physiology and significance for cancer therapeutics Dean A. Fennell 210 13 Mechanisms of viral carcinogenesis Paul Farrell 229 14 Cytokines and canc...

  3. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  4. European Conference on Molecular Biology EMBO

    CERN Multimedia

    1967-01-01

    European Conference on Molecular Biology, which eventually led to the setting up of EMBO, was held at CERN in April. Olivier Reverdin is adressing the delegates. Bernard Gregory is on the left and Willy Spuhler in the centre.

  5. The biology of human sexuality: evolution, ecology and physiology

    Directory of Open Access Journals (Sweden)

    PW Bateman

    2006-09-01

    Full Text Available Many evolutionary biologists argue that human sexual behaviour can be studied in exactly the same way as that of other species. Many sociologists argue that social influences effectively obscure, and are more important than, a reductionist biological approach to human sexual behaviour. Here,we authors attempt to provide a broad introduction to human sexual behaviour from a biological standpoint and to indicate where the ambiguous areas are. We outline the evolutionary selective pressures that are likely to have influenced human behaviour and mate choice in the past and in the present; ecological features that influence such things as degree of parental care and polygamy; and the associated physiology of human sexuality. Then they end with a discussion of �abnormal� sexuality.

  6. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George L

    2006-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive (OC) therapy. 1...

  7. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George

    2003-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive therapy. Methods: 1...

  8. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George L

    2004-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive therapy. Methods: 1...

  9. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  10. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  11. A New Model of Master of Philosophy in Physiological Sciences.

    Science.gov (United States)

    Ahmad, H R; Arain, F M; Khan, N A

    2016-01-01

    The objectives of Master of Philosophy (MPhil) in Physiological Sciences are: 1) to describe the new ways in which anatomy, biochemistry and physiology on one hand, and microbiology, pathology and pharmacology on other hand meet their functional requirements through multidisciplinary integrated concepts; 2) to elucidate relationships between cell biology, molecular biology and molecular genetics by connecting dots of how cell functions are driven by molecules and being controlled by genes. This forms the basis of cell, molecular and genetics [CMG] module upon which 7 multidisciplinary modules of Physiological Sciences follow; 3) these 24 credit hours provide the physiological basis for PhD studies as well as faculty development to enhance learning abilities of medical student; 4) the modules constitute Cardio- Respiratory Physiological Sciences, GI and Renal Physiological Sciences, Neurosciences, Endo-Reproductive Physiological Sciences.; 5) it has integrated microbiology, pathology and pharmacology in a unique way through CMG of microbes leading to associated pathology and mechanisms of prescribed drugs; 6) it has additional synopsis and thesis friendly course work leading to comprehensive examinations; 7) the year two deals with research work of 6 credit hours leading to defense of thesis; 8) The MPhil in Physiological Sciences is fundamentally different from what is being offered elsewhere. It prepares and offers a good spring board to dovetail PhD studies as well as faculty and institutional development. This is the first study that deals with innovative programmes in research, learning and education in the field of physiological sciences. This broad-based MPhil would make its recipients competent, critical, confident and productive learner. This is a completely unique design of a curriculum that has no comparable examples elsewhere. Our mission is to educate graduate students in the field of Physiological Sciences such that they have a complete grasp over the

  12. Simple Calculation Programs for Biology Methods in Molecular ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Methods in Molecular Biology. GMAP: A program for mapping potential restriction sites. RE sites in ambiguous and non-ambiguous DNA sequence; Minimum number of silent mutations required for introducing a RE sites; Set ...

  13. Ninth International Workshop on Plant Membrane Biology

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  14. Apple biological and physiological disorders in the orchard and in postharvest according to production system

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Martins

    2013-03-01

    Full Text Available The study aimed to evaluate the incidence of biological and physiological disorders in the field and postharvested apples cvs. Gala, Fuji and Catarina grown in four production systems: conventional, organic transition, integrated and organic. Apples were evaluated for damages related to biological and physiological disorders in the orchard and after harvest. The greatest damages were attributed to pests, especially Anastrepha fraterculus in the organic system and Grapholita molesta in the organic transition. Apples produced in organic orchards had higher damage levels caused by postharvest physiological disorders than those grown in other production systems. For apples becoming from organic orchards most of the damage was due to lenticels breakdown and degeneration ('Gala', and bitter pit ('Fuji' and 'Catarina'. The incidence of postharvest rot was not influenced by apple production system.

  15. The Central Dogma of Molecular Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 3. The Central Dogma of Molecular Biology - A Retrospective after Fifty Years. Michel Morange. General Article Volume 14 Issue 3 March 2009 pp 236-247. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap.

    Science.gov (United States)

    Brown, Jeffrey W; Bullitt, Esther; Sriswasdi, Sira; Harper, Sandra; Speicher, David W; McKnight, C James

    2015-06-01

    The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin's physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin's quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use.

  17. The Physiological Molecular Shape of Spectrin: A Compact Supercoil Resembling a Chinese Finger Trap.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Brown

    2015-06-01

    Full Text Available The primary, secondary, and tertiary structures of spectrin are reasonably well defined, but the structural basis for the known dramatic molecular shape change, whereby the molecular length can increase three-fold, is not understood. In this study, we combine previously reported biochemical and high-resolution crystallographic data with structural mass spectroscopy and electron microscopic data to derive a detailed, experimentally-supported quaternary structure of the spectrin heterotetramer. In addition to explaining spectrin's physiological resting length of ~55-65 nm, our model provides a mechanism by which spectrin is able to undergo a seamless three-fold extension while remaining a linear filament, an experimentally observed property. According to the proposed model, spectrin's quaternary structure and mechanism of extension is similar to a Chinese Finger Trap: at shorter molecular lengths spectrin is a hollow cylinder that extends by increasing the pitch of each spectrin repeat, which decreases the internal diameter. We validated our model with electron microscopy, which demonstrated that, as predicted, spectrin is hollow at its biological resting length of ~55-65 nm. The model is further supported by zero-length chemical crosslink data indicative of an approximately 90 degree bend between adjacent spectrin repeats. The domain-domain interactions in our model are entirely consistent with those present in the prototypical linear antiparallel heterotetramer as well as recently reported inter-strand chemical crosslinks. The model is consistent with all known physical properties of spectrin, and upon full extension our Chinese Finger Trap Model reduces to the ~180-200 nm molecular model currently in common use.

  18. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    Science.gov (United States)

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application.

  19. Towards molecular medicine: a case for a biological periodic table.

    Science.gov (United States)

    Gawad, Charles

    2005-01-01

    The recently amplified pace of development in the technologies to study both normal and aberrant cellular physiology has allowed for a transition from the traditional reductionist approaches to global interrogations of human biology. This transformation has created the anticipation that we will soon more effectively treat or contain most types of diseases through a 'systems-based' approach to understanding and correcting the underlying etiology of these processes. However, to accomplish these goals, we must first have a more comprehensive understanding of all the elements involved in human cellular physiology, as well as why and how they interact. With the vast number of biological components that have and are being discovered, creating methods with modern computational techniques to better organize biological elements is the next requisite step in this process. This article aims to articulate the importance of the organization of chemical elements into a periodic table had on the conversion of chemistry into a quantitative, translatable science, as well as how we can apply the lessons learned in that transition to the current transformation taking place in biology.

  20. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  1. Cellular and molecular specificity of pituitary gland physiology.

    Science.gov (United States)

    Perez-Castro, Carolina; Renner, Ulrich; Haedo, Mariana R; Stalla, Gunter K; Arzt, Eduardo

    2012-01-01

    The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.

  2. On the structural affinity of macromolecules with different biological properties: Molecular dynamics simulations of a series of TEM-1 mutants

    Energy Technology Data Exchange (ETDEWEB)

    Giampaolo, Alessia Di [Dipartimento di Scienze Fisiche e Chimiche, Universita’ degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy); Mazza, Fernando [Department of Health Sciences, Univ. of L’Aquila, 67010 L’Aquila (Italy); Daidone, Isabella [Dipartimento di Scienze Fisiche e Chimiche, Universita’ degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy); Amicosante, Gianfranco; Perilli, Mariagrazia [Dipartimento di Scienze Cliniche Applicate e Biotecnologiche, Università degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy); Aschi, Massimiliano, E-mail: massimiliano.aschi@univaq.it [Dipartimento di Scienze Fisiche e Chimiche, Universita’ degli Studi di l’Aquila, Via Vetoio snc, 67100 Coppito (AQ) (Italy)

    2013-07-12

    Highlights: •We have performed molecular dynamics simulations of TEM-1 mutants. •Mutations effects on the mechanical properties are considered. •Mutants do not significantly alter the average enzymes structure. •Mutants produce sharp alterations in enzyme conformational repertoire. •Mutants also produce changes in the active site volume. -- Abstract: Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical–biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment.

  3. On the structural affinity of macromolecules with different biological properties: Molecular dynamics simulations of a series of TEM-1 mutants

    International Nuclear Information System (INIS)

    Giampaolo, Alessia Di; Mazza, Fernando; Daidone, Isabella; Amicosante, Gianfranco; Perilli, Mariagrazia; Aschi, Massimiliano

    2013-01-01

    Highlights: •We have performed molecular dynamics simulations of TEM-1 mutants. •Mutations effects on the mechanical properties are considered. •Mutants do not significantly alter the average enzymes structure. •Mutants produce sharp alterations in enzyme conformational repertoire. •Mutants also produce changes in the active site volume. -- Abstract: Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical–biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment

  4. Barrett's esophagus: cancer and molecular biology

    NARCIS (Netherlands)

    Gibson, Michael K.; Dhaliwal, Arashinder S.; Clemons, Nicholas J.; Phillips, Wayne A.; Dvorak, Katerina; Tong, Daniel; Law, Simon; Pirchi, E. Daniel; Räsänen, Jari; Krasna, Mark J.; Parikh, Kaushal; Krishnadath, Kausilia K.; Chen, Yu; Griffiths, Leonard; Colleypriest, Benjamin J.; Farrant, J. Mark; Tosh, David; Das, Kiron M.; Bajpai, Manisha

    2013-01-01

    The following paper on the molecular biology of Barrett's esophagus (BE) includes commentaries on signaling pathways central to the development of BE including Hh, NF-κB, and IL-6/STAT3; surgical approaches for esophagectomy and classification of lesions by appropriate therapy; the debate over the

  5. Bioenergetics molecular biology, biochemistry, and pathology

    CERN Document Server

    Ozawa, Takayuki

    1990-01-01

    The emergence of the Biochemical Sciences is underlined by the FAOB symposium in Seoul and highlighted by this Satellite meeting on the "New Bioenergetics. " Classical mitochondrial electron transfer and energy coupling is now complemented by the emerging molecular biology of the respiratory chain which is studied hand in hand with the recognition of mitochondrial disease as a major and emerging study in the basic and clinical medical sciences. Thus, this symposium has achieved an important balance of the fundamental and applied aspects of bioenergetics in the modern setting of molecular biology and mitochondrial disease. At the same time, the symposium takes note not only of the emerging excellence of Biochemical Studies in the Orient and indeed in Korea itself, but also retrospectively enjoys the history of electron transport and energy conservation as represented by the triumvirate ofYagi, King and Slater. Many thanks are due Drs. Kim and Ozawa for their elegant organization of this meeting and its juxtapo...

  6. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  7. [The molecular biology of epithelial ovarian cancer].

    Science.gov (United States)

    Leary, Alexandra; Pautier, Patricia; Tazi, Youssef; Morice, Philippe; Duvillard, Pierre; Gouy, Sébastien; Uzan, Catherine; Gauthier, Hélène; Balleyguier, Corinne; Lhommé, Catherine

    2012-12-01

    Epithelial ovarian cancer frequently presents at an advanced stage where the cornerstone of management remains surgery and platinum-based chemotherapy. Unfortunately, despite sometimes dramatic initial responses, advanced ovarian cancer almost invariably relapses. Little progress has been made in the identification of effective targeted-therapies for ovarian cancer. The majority of clinical trials investigating novel agents have been negative and the only approved targeted-therapy is bevacizumab, for which reliable predictive biomarkers still elude us. Ovarian cancer is treated as a uniform disease. Yet, biological studies have highlighted the heterogeneity of this malignancy with marked differences in histology, oncogenesis, prognosis, chemo-responsiveness, and molecular profile. Recent high throughput molecular analyses have identified a huge number of genomic/phenotypic alterations. Broadly speaking, high grade serous carcinomas (type II) display significant genomic instability and numerous amplifications and losses; low grade (type I) tumors are genomically stable but display frequent mutations. Importantly, many of these genomic alterations relate to known oncogenes for which targeted-therapies are available or in development. There is today a real potential for personalized medicine in ovarian cancer. We will review the current literature regarding the molecular characterization of epithelial ovarian cancer and discuss the biological rationale for a number of targeted strategies. In order to translate these biological advances into meaningful clinical improvements for our patients, it is imperative to incorporate translational research in ovarian cancer trials, a number of strategies will be proposed such as the acquisition of quality tumor samples, including sequential pre- and post-treatment biopsies, the potential of liquid biopsies, and novel trial designs more adapted to the molecular era of ovarian cancer research.

  8. The molecular biology of ilarviruses.

    Science.gov (United States)

    Pallas, Vicente; Aparicio, Frederic; Herranz, Mari C; Sanchez-Navarro, Jesus A; Scott, Simon W

    2013-01-01

    Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Current research in Radiation Biology and Biochemistry Division

    International Nuclear Information System (INIS)

    Tarachand, U.; Singh, B.B.

    1995-01-01

    The Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Bombay has been engaged in research in the frontier areas of (i) radiation biology related to tumour therapy and injury caused by free radicals; (ii) molecular basis of diseases of physiological origin; (iii) molecular aspects of chemical carcinogenesis and (iv) structure of genome and genome related functions. The gist of research and development activities carried out in the Division during the last two years are documented

  10. Current research in Radiation Biology and Biochemistry Division

    Energy Technology Data Exchange (ETDEWEB)

    Tarachand, U; Singh, B B [eds.; Bhabha Atomic Research Centre, Bombay (India). Radiation Biology and Biochemistry Div.

    1996-12-31

    The Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Bombay has been engaged in research in the frontier areas of (i) radiation biology related to tumour therapy and injury caused by free radicals; (ii) molecular basis of diseases of physiological origin; (iii) molecular aspects of chemical carcinogenesis and (iv) structure of genome and genome related functions. The gist of research and development activities carried out in the Division during the last two years are documented.

  11. The Contributions - and Collapse - of Lamarckian Heredity in Pasteurian Molecular Biology: 1. Lysogeny, 1900-1960.

    Science.gov (United States)

    Loison, Laurent; Gayon, Jean; Burian, Richard M

    2017-02-01

    This article shows how Lamarckism was essential in the birth of the French school of molecular biology. We argue that the concept of inheritance of acquired characters positively shaped debates surrounding bacteriophagy and lysogeny in the Pasteurian tradition during the interwar period. During this period the typical Lamarckian account of heredity treated it as the continuation of protoplasmic physiology in daughter cells. Félix d'Hérelle applied this conception to argue that there was only one species of bacteriophage and Jules Bordet applied it to develop an account of bacteriophagy as a transmissible form of autolysis and to analyze the new phenomenon of lysogeny. In a long-standing controversy with Bordet, Eugène Wollman deployed a more morphological understanding of the inheritance of acquired characters, yielding a particulate, but still Lamarckian, account of lysogeny. We then turn to André Lwoff who, with several colleagues, completed Wollman's research program from 1949 to 1953. We examine how he gradually set aside the Lamarckian background, finally removing inheritance of acquired characters from the resulting account of bacteriophagy and lysogeny. In the conclusion, we emphasize the complex dual role of Lamarckism as it moved from an assumed explanatory framework to a challenge that the nascent molecular biology had to overcome.

  12. A Brief History of Bacterial Growth Physiology

    Directory of Open Access Journals (Sweden)

    Moselio eSchaechter

    2015-04-01

    Full Text Available Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid 19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism.Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the Copenhagen School. During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell.Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.

  13. Molecular Elucidation of Disease Biomarkers at the Interface of Chemistry and Biology.

    Science.gov (United States)

    Zhang, Liqin; Wan, Shuo; Jiang, Ying; Wang, Yanyue; Fu, Ting; Liu, Qiaoling; Cao, Zhijuan; Qiu, Liping; Tan, Weihong

    2017-02-22

    Disease-related biomarkers are objectively measurable molecular signatures of physiological status that can serve as disease indicators or drug targets in clinical diagnosis and therapy, thus acting as a tool in support of personalized medicine. For example, the prostate-specific antigen (PSA) biomarker is now widely used to screen patients for prostate cancer. However, few such biomarkers are currently available, and the process of biomarker identification and validation is prolonged and complicated by inefficient methods of discovery and few reliable analytical platforms. Therefore, in this Perspective, we look at the advanced chemistry of aptamer molecules and their significant role as molecular probes in biomarker studies. As a special class of functional nucleic acids evolved from an iterative technology termed Systematic Evolution of Ligands by Exponential Enrichment (SELEX), these single-stranded oligonucleotides can recognize their respective targets with selectivity and affinity comparable to those of protein antibodies. Because of their fast turnaround time and exceptional chemical properties, aptamer probes can serve as novel molecular tools for biomarker investigations, particularly in assisting identification of new disease-related biomarkers. More importantly, aptamers are able to recognize biomarkers from complex biological environments such as blood serum and cell surfaces, which can provide direct evidence for further clinical applications. This Perspective highlights several major advancements of aptamer-based biomarker discovery strategies and their potential contribution to the practice of precision medicine.

  14. [Progress in molecular biology of a semi-mangrove, Millettia pinnata].

    Science.gov (United States)

    Huang, Jianzi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2015-04-01

    Millettia pinnata L. is a leguminous tree with great potential in biodiesel applications and also a typical semi-mangrove. In this review, we presented several aspects about the recent research progress in molecular biology of M. pinnata. We descrived several types of molecular markers used to assess the genetic diversity and phylogeny of this species, genome and transcriptome analyses based on high-throughput sequencing platform accomplished for this species, and several gene and genomic sequences of this species isolated for further research. Finally, based on the current research progress, we proposed some orientations for future molecular biology research on M. pinnata.

  15. Systematic Representation of Molecular Biology Knowledge.

    Science.gov (United States)

    Fisher, Kathleen M.

    A small set of relationships has been identified which appears to be sufficient for describing all molecular and cellular reactions and structures discussed in an introductory biology course. A precise definition has been developed for each relationship. These 20 relationships are of four types: (1) analytical; (2) spatial; (3) temporal; and (4)…

  16. Molecular biology of potyviruses.

    Science.gov (United States)

    Revers, Frédéric; García, Juan Antonio

    2015-01-01

    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.

  17. A decade of molecular cell biology: achievements and challenges.

    Science.gov (United States)

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2011-09-23

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.

  18. Molecular clocks and the human condition: approaching their characterization in human physiology and disease.

    Science.gov (United States)

    Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C

    2015-09-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.

  19. Grete Kellenberger-Gujer: Molecular biology research pioneer.

    Science.gov (United States)

    Citi, Sandra; Berg, Douglas E

    2016-01-01

    Grete Kellenberger-Gujer was a Swiss molecular biologist who pioneered fundamental studies of bacteriophage in the mid-20(th) century at the University of Geneva. Her life and career stories are reviewed here, focusing on her fundamental contributions to our early understanding of phage biology via her insightful analyses of phenomena such as the lysogenic state of a temperate phage (λ), genetic recombination, radiation's in vivo consequences, and DNA restriction-modification; on her creative personality and interactions with peers; and how her academic advancement was affected by gender, societal conditions and cultural attitudes of the time. Her story is important scientifically, putting into perspective features of the scientific community from just before the molecular biology era started through its early years, and also sociologically, in illustrating the numerous "glass ceilings" that, especially then, often hampered the advancement of creative women.

  20. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we

  1. Information theory in molecular biology

    OpenAIRE

    Adami, Christoph

    2004-01-01

    This article introduces the physics of information in the context of molecular biology and genomics. Entropy and information, the two central concepts of Shannon's theory of information and communication, are often confused with each other but play transparent roles when applied to statistical ensembles (i.e., identically prepared sets) of symbolic sequences. Such an approach can distinguish between entropy and information in genes, predict the secondary structure of ribozymes, and detect the...

  2. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  3. Systems Biology — the Broader Perspective

    Directory of Open Access Journals (Sweden)

    Jonathan Bard

    2013-06-01

    Full Text Available Systems biology has two general aims: a narrow one, which is to discover how complex networks of proteins work, and a broader one, which is to integrate the molecular and network data with the generation and function of organism phenotypes. Doing all this involves complex methodologies, but underpinning the subject are more general conceptual problems about upwards and downwards causality, complexity and information storage, and their solutions provide the constraints within which these methodologies can be used. This essay considers these general aspects and the particular role of protein networks; their functional outputs are often the processes driving phenotypic change and physiological function—networks are, in a sense, the units of systems biology much as proteins are for molecular biology. It goes on to argue that the natural language for systems-biological descriptions of biological phenomena is the mathematical graph (a set of connected facts of the general form [process] (e.g., [activates] . Such graphs not only integrate events at different levels but emphasize the distributed nature of control as well as displaying a great deal of data. The implications and successes of these ideas for physiology, pharmacology, development and evolution are briefly considered. The paper concludes with some challenges for the future.

  4. Molecular Biology and Prevention of Endometrial Cancer. Addendum

    National Research Council Canada - National Science Library

    Maxwell, George L

    2008-01-01

    Objective: To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive (OC) therapy. Methods: 1...

  5. Connecting Biology to Electronics: Molecular Communication via Redox Modality.

    Science.gov (United States)

    Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-01

    Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Recommendations for accreditation of laboratories in molecular biology of hematologic malignancies.

    Science.gov (United States)

    Flandrin-Gresta, Pascale; Cornillet, Pascale; Hayette, Sandrine; Gachard, Nathalie; Tondeur, Sylvie; Mauté, Carole; Cayuela, Jean-Michel

    2015-01-01

    Over recent years, the development of molecular biology techniques has improved the hematological diseases diagnostic and follow-up. Consequently, these techniques are largely used in the biological screening of these diseases; therefore the Hemato-oncology molecular diagnostics laboratories must be actively involved in the accreditation process according the ISO 15189 standard. The French group of molecular biologists (GBMHM) provides requirements for the implementation of quality assurance for the medical molecular laboratories. This guideline states the recommendations for the pre-analytical, analytical (methods validation procedures, quality controls, reagents), and post-analytical conditions. In addition, herein we state a strategy for the internal quality control management. These recommendations will be regularly updated.

  8. Molecular knots in biology and chemistry

    International Nuclear Information System (INIS)

    Lim, Nicole C H; Jackson, Sophie E

    2015-01-01

    Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. (paper)

  9. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    OpenAIRE

    George H Sakorafas; Vasileios Smyrniotis

    2012-01-01

    Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular bio...

  10. Using the biological literature a practical guide

    CERN Document Server

    Schmidt, Diane

    2014-01-01

    IntroductionSearching the Biological LiteratureGeneral SourcesAssociationsBibliographiesClassification, Nomenclature, and SystematicsDictionaries and EncyclopediasDirectoriesField GuidesSeriesFull-Text SourcesGeneral WorksGuides for young ScientistsGuides to the LiteratureHandbooksHistoriesMathematics and StatisticsMethods and TechniquesTextbooks and TreatisesWriting GuidesPeriodicalsReviews of the LiteratureAbstracts and IndexesBiochemistry and BiophysicsMolecular and Cellular BiologyGenetics, Biotechnology, and Developmental BiologyMicrobiology and ImmunologyEcology, Evolution, and Animal BehaviorPlant BiologyAnatomy and PhysiologyEntomologyZoologyIndex.

  11. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    Science.gov (United States)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  12. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  13. Molecular and biological interactions in colorectal cancer

    NARCIS (Netherlands)

    Heer, Pieter de

    2007-01-01

    The current thesis discusses the use of molecular and biological tumor markers to predict clinical outcome. By studying several key processes in the develepment of cancer as regulation of cell motility (non-receptor protein tyrosin adesion kinases, FAK, Src and paxillin, Apoptosis (caspase-3

  14. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  15. Genetic approaches in comparative and evolutionary physiology

    Science.gov (United States)

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  16. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gumí-Audenis, B. [ESRF, The European Synchrotron, Grenoble (France); Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Carlà, F. [ESRF, The European Synchrotron, Grenoble (France); Vitorino, M. V. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Panzarella, A. [ESRF, The European Synchrotron, Grenoble (France); Porcar, L. [Institut Laue-Langevin, Grenoble (France); Boilot, M. [ORTEC, Marseille (France); Guerber, S. [CEA, LETI Grenoble (France); Bernard, P. [ESRF, The European Synchrotron, Grenoble (France); Rodrigues, M. S. [University of Lisboa, Falculty of Science, Biosystems and Integrative Sciences Institute - BIOISI, Lisbon (Portugal); Sanz, F.; Giannotti, M. I. [Institute for Bioengineering of Catalonia (IBEC), Barcelona (Spain); Physical Chemistry Department, Universitat de Barcelona, Barcelona (Spain); Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain); Costa, L., E-mail: luca.costa@esrf.fr [ESRF, The European Synchrotron, Grenoble (France)

    2015-09-30

    The performance of a custom atomic force microscope for grazing-incidence X-ray experiments on hydrated soft and biological samples is presented. A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

  17. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  18. Molecular Physiology of Root System Architecture in Model Grasses

    Science.gov (United States)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  19. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  20. Applications of neutron scattering in molecular biological research

    International Nuclear Information System (INIS)

    Nierhaus, K.H.

    1984-01-01

    The study of the molecular structure of biological materials by neutron scattering is described. As example the results of the study of the components of a ribosome of Escherichia coli are presented. (HSI) [de

  1. Time scale of diffusion in molecular and cellular biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2014-01-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)

  2. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  3. The early years of molecular biology: personal recollections.

    Science.gov (United States)

    Holliday, Robin

    2003-05-01

    The early years of molecular biology were characterized by a strong interaction between theory and experiment. This included the elucidation of the structure of DNA itself; genetic fine structure, recombination and repair; DNA replication; template-directed protein synthesis; the universality of the triplet genetic code, and the co-linearity of the DNA sequence of structural genes and the sequence of amino acids in proteins. The principle of co-linearity was later modified when split genes were discovered. It is suggested that accurate splicing of gene transcripts might also be template directed. In 1958 Crick proposed a 'central dogma' of molecular biology stating that information could not be transmitted from proteins to DNA. Nevertheless, proteins can chemically modify DNA, and this is now known to have strong effects on gene expression.

  4. A comparative cellular and molecular biology of longevity database.

    Science.gov (United States)

    Stuart, Jeffrey A; Liang, Ping; Luo, Xuemei; Page, Melissa M; Gallagher, Emily J; Christoff, Casey A; Robb, Ellen L

    2013-10-01

    Discovering key cellular and molecular traits that promote longevity is a major goal of aging and longevity research. One experimental strategy is to determine which traits have been selected during the evolution of longevity in naturally long-lived animal species. This comparative approach has been applied to lifespan research for nearly four decades, yielding hundreds of datasets describing aspects of cell and molecular biology hypothesized to relate to animal longevity. Here, we introduce a Comparative Cellular and Molecular Biology of Longevity Database, available at ( http://genomics.brocku.ca/ccmbl/ ), as a compendium of comparative cell and molecular data presented in the context of longevity. This open access database will facilitate the meta-analysis of amalgamated datasets using standardized maximum lifespan (MLSP) data (from AnAge). The first edition contains over 800 data records describing experimental measurements of cellular stress resistance, reactive oxygen species metabolism, membrane composition, protein homeostasis, and genome homeostasis as they relate to vertebrate species MLSP. The purpose of this review is to introduce the database and briefly demonstrate its use in the meta-analysis of combined datasets.

  5. Cold Spring Harbor symposia on quantitative biology: Volume 51, Molecular biology of /ital Homo sapiens/

    International Nuclear Information System (INIS)

    1986-01-01

    This volume is the second part of a collection of papers submitted by the participants to the 1986 Cold Spring Harbor Symposium on Quantitative Biology entitled Molecular Biology of /ital Homo sapiens/. The 49 papers included in this volume are grouped by subject into receptors, human cancer genes, and gene therapy. (DT)

  6. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Judith [Univ. of Minnesota, Minneapolis, MN (United States)

    2012-06-22

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  7. Integrated physiological, biochemical and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature

    Directory of Open Access Journals (Sweden)

    Boghireddy eSailaja

    2015-11-01

    Full Text Available In changing climate, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical and molecular level is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in eleven popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS, antioxidants, and photosynthesis were studied at vegetative and reproductive phases which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified which will be important resource to develop high temperature tolerant rice cultivars. Interestingly, Nagina22 emerged as best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activity, lesser reduction in net photosynthetic rate (PN, high transpiration rate (E and other photosynthetic/ fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Further, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant and Vandana (susceptible at flowering phase, strengthening the fact that N22 performs better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes which are needed to be characterized to address the challenges of future climate extreme conditions.

  8. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  9. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  10. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  11. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption.

    Science.gov (United States)

    Pfannes, Eva K B; Weiss, Lina; Hadam, Sabrina; Gonnet, Jessica; Combardière, Béhazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2018-01-01

    The success of topically applied treatments on skin relies on the efficacy of skin penetration. In order to increase particle or product penetration, mild skin barrier disruption methods can be used. We previously described cyanoacrylate skin surface stripping as an efficient method to open hair follicles, enhance particle penetration, and activate Langerhans cells. We conducted ex vivo and in vivo measurements on human skin to characterize the biological effect and quantify barrier disruption-related inflammation on a molecular level. Despite the known immunostimulatory effects, this barrier disruption and hair follicle opening method was well accepted and did not result in lasting changes of skin physiological parameters, cytokine production, or clinical side effects. Only in ex vivo human skin did we find a discrete increase in IP-10, TGF-β, IL-8, and GM-CSF mRNA. The data underline the safety profile of this method and demonstrate that the procedure per se does not cause substantial inflammation or skin damage, which is also of interest when applied to non-invasive sampling of biomarkers in clinical trials. © 2018 S. Karger AG, Basel.

  12. Molecular and biological hallmarks of ageing.

    Science.gov (United States)

    Aunan, J R; Watson, M M; Hagland, H R; Søreide, K

    2016-01-01

    Ageing is the inevitable time-dependent decline in physiological organ function that eventually leads to death. Age is a major risk factor for many of the most common medical conditions, such as cardiovascular disease, cancer, diabetes and Alzheimer's disease. This study reviews currently known hallmarks of ageing and their clinical implications. A literature search of PubMed/MEDLINE was conducted covering the last decade. Average life expectancy has increased dramatically over the past century and is estimated to increase even further. Maximum longevity, however, appears unchanged, suggesting a universal limitation to the human organism. Understanding the underlying molecular processes of ageing and health decline may suggest interventions that, if used at an early age, can prevent, delay, alleviate or even reverse age-related diseases. Hallmarks of ageing can be grouped into three main categories. The primary hallmarks cause damage to cellular functions: genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis. These are followed by antagonistic responses to such damage: deregulated nutrient sensing, altered mitochondrial function and cellular senescence. Finally, integrative hallmarks are possible culprits of the clinical phenotype (stem cell exhaustion and altered intercellular communication), which ultimately contribute to the clinical effects of ageing as seen in physiological loss of reserve, organ decline and reduced function. The sum of these molecular hallmarks produces the clinical picture of the elderly surgical patient: frailty, sarcopenia, anaemia, poor nutrition and a blunted immune response system. Improved understanding of the ageing processes may give rise to new biomarkers of risk or prognosis, novel treatment targets and translational approaches across disciplines that may improve outcomes. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  13. Integration of metabolomics and proteomics in molecular plant physiology--coping with the complexity by data-dimensionality reduction.

    Science.gov (United States)

    Weckwerth, Wolfram

    2008-02-01

    In recent years, genomics has been extended to functional genomics. Toward the characterization of organisms or species on the genome level, changes on the metabolite and protein level have been shown to be essential to assign functions to genes and to describe the dynamic molecular phenotype. Gas chromatography (GC) and liquid chromatography coupled to mass spectrometry (GC- and LC-MS) are well suited for the fast and comprehensive analysis of ultracomplex metabolite samples. For the integration of metabolite profiles with quantitative protein profiles, a high throughput (HTP) shotgun proteomics approach using LC-MS and label-free quantification of unique proteins in a complex protein digest is described. Multivariate statistics are applied to examine sample pattern recognition based on data-dimensionality reduction and biomarker identification in plant systems biology. The integration of the data reveal multiple correlative biomarkers providing evidence for an increase of information in such holistic approaches. With computational simulation of metabolic networks and experimental measurements, it can be shown that biochemical regulation is reflected by metabolite network dynamics measured in a metabolomics approach. Examples in molecular plant physiology are presented to substantiate the integrative approach.

  14. Systems theoretic analysis of the central dogma of molecular biology: some recent results.

    Science.gov (United States)

    Gao, Rui; Yu, Juanyi; Zhang, Mingjun; Tarn, Tzyh-Jong; Li, Jr-Shin

    2010-03-01

    This paper extends our early study on a mathematical formulation of the central dogma of molecular biology, and focuses discussions on recent insights obtained by employing advanced systems theoretic analysis. The goal of this paper is to mathematically represent and interpret the genetic information flow at the molecular level, and explore the fundamental principle of molecular biology at the system level. Specifically, group theory was employed to interpret concepts and properties of gene mutation, and predict backbone torsion angle along the peptide chain. Finite state machine theory was extensively applied to interpret key concepts and analyze the processes related to DNA hybridization. Using the proposed model, we have transferred the character-based model in molecular biology to a sophisticated mathematical model for calculation and interpretation.

  15. Gregory Bateson's relevance to current molecular biology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    in a developmental pathway. Being a central figure in the development of cybernetic theory he collaborated with a range of researchers from the life sciences who were innovating their own disciplines by introducing cybernetic concepts in their particular fields and disciplines. In the light of this, it should...... not come as a surprise today to realize how the general ideas that he was postulating for the study of communication systems in biology fit so well with the astonishing findings of current molecular biology, for example in the field of cellular signal transduction networks. I guess this is the case due...

  16. Bacteriophages: The viruses for all seasons of molecular biology

    Directory of Open Access Journals (Sweden)

    Karam Jim D

    2005-03-01

    Full Text Available Abstract Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of bacteriophages in nature and the diversity of their genomes are two reasons why phage research brims with excitement. The pages of Virology Journal will reflect the excitement of the "New Phage Biology."

  17. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  18. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  19. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  20. The pharmacology of the human female orgasm - its biological and physiological backgrounds.

    Science.gov (United States)

    Levin, Roy J

    2014-06-01

    The female orgasm has been examined over the years by numerous scientific disciplines yet it still has many secrets to be disclosed. Because its physiology, especially its neurophysiology, is sparingly understood its pharmacology is necessarily limited based mainly on the side effects of drugs. Few published studies have used a placebo group as controls. The paucity of focussed studies is well illustrated by the fact that there still is no approved medication to treat female orgasmic dysfunction. The present brief overview examines the most important aspects of its biology and especially its physiology highlighting the many questions that need answering if we are to have a comprehensive pharmacology of the female orgasm. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  2. Molecular radiation biology: Future aspects

    International Nuclear Information System (INIS)

    Hagen, U.

    1990-01-01

    Future aspects of molecular radiation biology may be envisaged by looking for unsolved problems and ways to analyse them. Considering the endpoints of cellular radiation effects as cell inactivation, chromosome aberrations, mutation and transformation, the type of DNA damage in the irradiated cell and the mechanisms of DNA repair as excision repair, recombination repair and mutagenic repair are essential topics. At present, great efforts are made to identify, to clone and to sequence genes involved in the control of repair of DNA damage and to study their regulation. There are close relationships between DNA repair genes isolated from various organisms, which promises fast progress for the molecular analysis of repair processes in mammalian cells. More knowledge is necessary regarding the function of the gene products, i.e. enzymes and proteins involved in DNA repair. Effort should be made to analyse the enzymatic reactions, leading to an altered nucleotide sequence, encountered as a point mutation. Mislead mismatch repair and modulation of DNA polymerase might be possible mechanisms. (orig.)

  3. Molecular biology of gastric cancer.

    Science.gov (United States)

    Cervantes, A; Rodríguez Braun, E; Pérez Fidalgo, A; Chirivella González, I

    2007-04-01

    Despite its decreasing incidence overall, gastric cancer is still a challenging disease. Therapy is based mainly upon surgical resection when the tumour remains localised in the stomach. Conventional chemotherapy may play a role in treating micrometastatic disease and is effective as palliative therapy for recurrent or advanced disease. However, the knowledge of molecular pathways implicated in gastric cancer pathogenesis is still in its infancy and the contribution of molecular biology to the development of new targeted therapies in gastric cancer is far behind other more common cancers such as breast, colon or lung. This review will focus first on the difference of two well defined types of gastric cancer: intestinal and diffuse. A discussion of the cell of origin of gastric cancer with some intriguing data implicating bone marrow derived cells will follow, and a comprehensive review of different genetic alterations detected in gastric cancer, underlining those that may have clinical, therapeutic or prognostic implications.

  4. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea

    DEFF Research Database (Denmark)

    Lange, M.; Ahring, Birgitte Kiær

    2001-01-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict ...... procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology....

  5. The diversification of developmental biology.

    Science.gov (United States)

    Crowe, Nathan; Dietrich, Michael R; Alomepe, Beverly S; Antrim, Amelia F; ByrneSim, Bay Lauris; He, Yi

    2015-10-01

    In the 1960s, "developmental biology" became the dominant term to describe some of the research that had previously been included under the rubrics of embryology, growth, morphology, and physiology. As scientific societies formed under this new label, a new discipline took shape. Historians, however, have a number of different perspectives on what changes led to this new field of developmental biology and how the field itself was constituted during this period. Using the General Embryological Information Service, a global index of post-World War II development-related research, we have documented and visualized significant changes in the kinds of research that occurred as this new field formed. In particular, our analysis supports the claim that the transition toward developmental biology was marked by a growth in new topics and forms of research. Although many historians privilege the role of molecular biology and/or the molecularization of biology in general during this formative period, we have found that the influence of molecular biology is not sufficient to account for the wide range of new research that constituted developmental biology at the time. Overall, our work creates a robust characterization of the changes that occurred with regard to research on growth and development in the decades following World War II and provides a context for future work on the specific drivers of those changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Physiological and Molecular Characterization of Cephaleuros virescens Occurring in Mango Trees.

    Science.gov (United States)

    Vasconcelos, Camila Vilela; Pereira, Fabíola Teodoro; Duarte, Elizabeth Amélia Alves; de Oliveira, Thiago Alves Santos; Peixoto, Nei; Carvalho, Daniel Diego Costa

    2018-06-01

    The objective of this work was to accomplish the isolation, molecular identification and characterizing the physiology of the causal agent of the algal spot in mango trees. For this purpose, the pathogen growth was assessed in different culture media, with subsequent observation and measurements of the filamentous cells. The molecular identification was made using mycelium obtained from leaf lesions and pure algae colonies grown in culture medium. Descriptions based on DNA sequencing indicated that the algae is Cephaleuros virescens . The algae must be isolated primarily in liquid medium for further pricking into agar medium. The highest mycelial growth average in Petri dishes occurred when the algae were grown in Trebouxia and BBM. Trebouxia enabled larger cells in the filamentous cells when compared to other culture media.

  7. Current state of molecular imaging research

    International Nuclear Information System (INIS)

    Grimm, J.; Wunder, A.

    2005-01-01

    The recent years have seen significant advances in both molecular biology, allowing the identification of genes and pathways related to disease, and imaging technologies that allow for improved spatial and temporal resolution, enhanced sensitivity, better depth penetration, improved image processing, and beneficial combinations of different imaging modalities. These advances have led to a paradigm shift in the scope of diagnostic imaging. The traditional role of radiological diagnostic imaging is to define gross anatomy and structure in order to detect pathological abnormalities. Available contrast agents are mostly non-specific and can be used to image physiological processes such as changes in blood volume, flow, and perfusion but not to demonstrate pathological alterations at molecular levels. However, alterations at the anatomical-morphological level are relatively late manifestations of underlying molecular changes. Using molecular probes or markers that bind specifically to molecular targets allows for the non-invasive visualization and quantitation of biological processes such as gene expression, apoptosis, or angiogenesis at the molecular level within intact living organisms. This rapidly evolving, multidisciplinary approach, referred to as molecular imaging, promises to enable early diagnosis, can provide improved classification of stage and severity of disease, an objective assessment of treatment efficacy, and a reliable prognosis. Furthermore, molecular imaging is an important tool for the evaluation of physiological and pathophysiological processes, and for the development of new therapies. This article comprises a review of current technologies of molecular imaging, describes the development of contrast agents and various imaging modalities, new applications in specific disease models, and potential future developments. (orig.)

  8. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  9. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology.

    Science.gov (United States)

    Kiang, J G; Tsokos, G C

    1998-11-01

    Heat shock proteins (HSPs) are detected in all cells, prokaryotic and eukaryotic. In vivo and in vitro studies have shown that various stressors transiently increase production of HSPs as protection against harmful insults. Increased levels of HSPs occur after environmental stresses, infection, normal physiological processes, and gene transfer. Although the mechanisms by which HSPs protect cells are not clearly understood, their expression can be modulated by cell signal transducers, such as changes in intracellular pH, cyclic AMP, Ca2+, Na+, inositol trisphosphate, protein kinase C, and protein phosphatases. Most of the HSPs interact with other proteins in cells and alter their function. These and other protein-protein interactions may mediate the little understood effects of HSPs on various cell functions. In this review, we focus on the structure of the HSP-70 family (HSP-70s), regulation of HSP-70 gene expression, their cytoprotective effects, and the possibility of regulating HSP-70 expression through modulation of signal transduction pathways. The clinical importance and therapeutic potential of HSPs are discussed.

  10. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  11. Lignin biodegradation: experimental evidence, molecular, biochemical and physiological mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Monties, B

    1985-01-01

    A critical review is presented of English, French and some German language literature, mainly from 1983 onwards. It examines experimental evidence on the behaviour as barriers to biodegradation of lignins and phenolic polymers such as tannins and suberins. The different molecular mechanisms of lignolysis by fungi (mainly), actinomycetes and bacteria are examined. A new biochemical approach to the physiological mechanism of regulation of lignolytic activities is suggested based on the discoveries of ligniolytic enzymes: effects of nitrogen, oxygen and substrate are discussed. It is concluded that a better knowledge of the structure and reactivity of phenolic barriers is needed in order to control the process of lignolysis.

  12. A national comparison of biochemistry and molecular biology capstone experiences.

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the American Society for Biochemistry and Molecular Biology (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end, ASBMB conducted a series of regional workshops to build a BMB Concept Inventory containing validated assessment tools, based on foundational and discipline-specific knowledge and essential skills, for the community to use. A culminating activity, which integrates the educational experience, is often part of undergraduate molecular life science programs. These "capstone" experiences are commonly defined as an attempt to measure student ability to synthesize and integrate acquired knowledge. However, the format, implementation, and approach to outcome assessment of these experiences are quite varied across the nation. Here we report the results of a nation-wide survey on BMB capstone experiences and discuss this in the context of published reports about capstones and the findings of the workshops driving the development of the BMB Concept Inventory. Both the survey results and the published reports reveal that, although capstone practices do vary, certain formats for the experience are used more frequently and similarities in learning objectives were identified. The use of rubrics to measure student learning is also regularly reported, but details about these assessment instruments are sparse in the literature and were not a focus of our survey. Finally, we outline commonalities in the current practice of capstones and suggest the next steps needed to elucidate best practices. © 2015 The International Union of Biochemistry and Molecular Biology.

  13. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis.

    Science.gov (United States)

    Wang, Liying; Cao, Chunwei; Wang, Fang; Zhao, Jianguo; Li, Wei

    2017-09-03

    RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.

  14. Using a Computer Animation to Teach High School Molecular Biology

    Science.gov (United States)

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  15. Perspectives of Physiology as a Discipline from Senior-Level Millennial-Generation Students

    Science.gov (United States)

    Steury, Michael D.; Poteracki, James M.; Kelly, Kevin L.; Wehrwein, Erica A.

    2015-01-01

    In the last several decades, there has been a shift in the mindset of research structure from classical "systems or integrative biology" to more molecular focused "-omics" study. A recent topic of debate in physiological societies has been whether or not the "-omic" revolution has delivered in its promises in both…

  16. Editorial: Molecular Organization of Membranes: Where Biology Meets Biophysics

    Czech Academy of Sciences Publication Activity Database

    Cebecauer, Marek; Holowka, D.

    2017-01-01

    Roč. 5, č. 113 (2017), s. 1-3 ISSN 2296-634X Institutional support: RVO:61388955 Keywords : nanodomains * membrane properties * cell membrane Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  17. Cell physiology at the Mount Desert Island Biological Laboratory: a brief look back and forward

    Science.gov (United States)

    2011-01-01

    The Mount Desert Island Biological Laboratory (MDIBL) has played important roles in the development of modern physiological concepts and tools, particularly in the fields of kidney and epithelial cell physiology. Over the last decade, MDIBL has undergone remarkable growth and evolution. This article will briefly review MDIBL's past and outline its future directions. It is hoped that this overview will renew and stimulate interest in MDIBL and, in particular, will encourage an even wider community of physiologists to participate in its ongoing growth and development. PMID:21068363

  18. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm.

    Science.gov (United States)

    Vargas, Hebert Alberto; Grimm, Jan; F Donati, Olivio; Sala, Evis; Hricak, Hedvig

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. • Advanced imaging techniques allow direct visualisation of molecular interactions in prostate cancer. • MRI/PET, optical and Cerenkov imaging facilitate the translation of molecular biology. • Multiple compounds targeting PSMA expression are currently undergoing clinical translation. • Other targets (e.g., PSA, prostate-stem cell antigen, GRPR) are in development.

  19. Proceedings of the symposium on molecular biology and radiation protection

    International Nuclear Information System (INIS)

    Marko, A.M.

    1996-02-01

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually

  20. Proceedings of the symposium on molecular biology and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Marko, A M [Atomic Energy Control Board, Ottawa, ON (Canada). Advisory Committee on Radiological Protection; Myers, D K; Atchison, R J [Atomic Energy Control Board, Ottawa, ON (Canada). Advisory Committee on Radiological Protection. Secretariat; Gentner, N E [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-02-01

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually.

  1. [Molecular Biology for Surgical Treatment of Lung Cancer].

    Science.gov (United States)

    Suda, Kenichi; Mitsudomi, Tetsuya

    2017-01-01

    Progress in lung cancer research achieved during the last 10 years was summarized. These include identification of novel driver mutations and application of targeted therapies, resistance mechanisms to targeted therapies, and immunotherapy with immune checkpoint inhibitors. Molecular biology also affects the field of surgical treatment. Several molecular markers have been reported to predict benign/ malignant or stable/growing tumors, although far from clinical application. In perioperative period, there is a possibility of atrial natriuretic peptide to prevent cancer metastasis. As adjuvant settings, although biomarker-based cytotoxic therapies failed to show clinical efficacy, several trials are ongoing employing molecular targeted agents (EGFR-TKI or ALK-TKI) or immune checkpoint inhibitors. In clinical practice, mutational information is sometimes used to distinguish 2nd primary tumors from pulmonary metastases of previous cancers. Surgery also has important role for oligo-progressive disease during molecular targeted therapies.

  2. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell.

    Science.gov (United States)

    Cordova, Caio M M; Hoeltgebaum, Daniela L; Machado, Laís D P N; Santos, Larissa Dos

    2016-01-01

    Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  3. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids

    International Nuclear Information System (INIS)

    Tang, Qian; Li, Zai-yong; Wei, Yu-bo; Yang, Xia; Liu, Lan-tao; Gong, Cheng-bin; Ma, Xue-bing; Lam, Michael Hon-wah; Chow, Cheuk-fai

    2016-01-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22 × 10"−"5 M in aqueous NaH_2PO_4 buffer at pH = 7.0 and a maximal adsorption capacity of 1.45 μmol g"−"1. Upon alternate irradiation at 365 and 440 nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. - Highlights: • Novel surface molecularly imprinted polymer on ZnO nanorods was synthesized. • ZnO-SMIP showed good selectivity toward uric acid in physiological fluids. • ZnO-SMIP displayed good photoresponsive properties.

  4. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qian [The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Department of Science and Environmental Studies, The Hong Kong Institute of Education (Hong Kong); Li, Zai-yong; Wei, Yu-bo; Yang, Xia; Liu, Lan-tao [The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Gong, Cheng-bin, E-mail: gongcbtq@swu.edu.cn [The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Ma, Xue-bing [The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lam, Michael Hon-wah [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Chow, Cheuk-fai, E-mail: cfchow@ied.edu.hk [Department of Science and Environmental Studies, The Hong Kong Institute of Education (Hong Kong)

    2016-09-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22 × 10{sup −5} M in aqueous NaH{sub 2}PO{sub 4} buffer at pH = 7.0 and a maximal adsorption capacity of 1.45 μmol g{sup −1}. Upon alternate irradiation at 365 and 440 nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. - Highlights: • Novel surface molecularly imprinted polymer on ZnO nanorods was synthesized. • ZnO-SMIP showed good selectivity toward uric acid in physiological fluids. • ZnO-SMIP displayed good photoresponsive properties.

  5. Molecular biology applications to infectious diseases diagnostic; Aplicaciones de la Biologica Molecular al diagnostico de enfermedades infecciosas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus.

  6. Delivery of Biologics Across the Blood-Brain Barrier with Molecular Trojan Horse Technology.

    Science.gov (United States)

    Pardridge, William M

    2017-12-01

    Biologics are potential new therapeutics for many diseases of the central nervous system. Biologics include recombinant lysosomal enzymes, neurotrophins, decoy receptors, and therapeutic antibodies. These are large molecule drugs that do not cross the blood-brain barrier (BBB). All classes of biologics have been tested, without success, in clinical trials of brain disease over the last 25 years. In none of these past clinical trials was the biologic re-engineered to enable transport across the BBB. If the biologic does not cross the BBB, the drug cannot reach the target site in brain, and success in a clinical trial is not expected. Biologics can be re-engineered for BBB transport with the use of molecular Trojan horse technology. A BBB molecular Trojan horse is a monoclonal antibody (MAb) against an endogenous BBB receptor transporter, such as the insulin receptor or transferrin receptor. The receptor-specific MAb penetrates the brain via transport on the endogenous BBB receptor. The MAb acts as a molecular Trojan horse to deliver across the BBB the biologic pharmaceutical that is genetically fused to the MAb. The lead Trojan horse is a MAb against the human insulin receptor (HIR), and HIRMAb-derived fusion proteins have entered clinical trials for the treatment of brain disease.

  7. International Conference on Intelligent Systems for Molecular Biology (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Debra; Hibbs, Matthew; Kall, Lukas; Komandurglayavilli, Ravikumar; Mahony, Shaun; Marinescu, Voichita; Mayrose, Itay; Minin, Vladimir; Neeman, Yossef; Nimrod, Guy; Novotny, Marian; Opiyo, Stephen; Portugaly, Elon; Sadka, Tali; Sakabe, Noboru; Sarkar, Indra; Schaub, Marc; Shafer, Paul; Shmygelska, Olena; Singer, Gregory; Song, Yun; Soumyaroop, Bhattacharya; Stadler, Michael; Strope, Pooja; Su, Rong; Tabach, Yuval; Tae, Hongseok; Taylor, Todd; Terribilini, Michael; Thomas, Asha; Tran, Nam; Tseng, Tsai-Tien; Vashist, Akshay; Vijaya, Parthiban; Wang, Kai; Wang, Ting; Wei, Lai; Woo, Yong; Wu, Chunlei; Yamanishi, Yoshihiro; Yan, Changhui; Yang, Jack; Yang, Mary; Ye, Ping; Zhang, Miao

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on "intelligent systems" and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  8. Just Working with the Cellular Machine: A High School Game for Teaching Molecular Biology

    Science.gov (United States)

    Cardoso, Fernanda Serpa; Dumpel, Renata; Gomes da Silva, Luisa B.; Rodrigues, Carlos R.; Santos, Dilvani O.; Cabral, Lucio Mendes; Castro, Helena C.

    2008-01-01

    Molecular biology is a difficult comprehension subject due to its high complexity, thus requiring new teaching approaches. Herein, we developed an interdisciplinary board game involving the human immune system response against a bacterial infection for teaching molecular biology at high school. Initially, we created a database with several…

  9. Synthesis, biological evaluation and molecular docking studies of ...

    African Journals Online (AJOL)

    Synthesis, biological evaluation and molecular docking studies of Mannich bases derived from 1, 3, 4-oxadiazole- 2-thiones as potential urease inhibitors. ... Mannich bases (5-17) were subjected to in silico screening as urease inhibitors, using crystal structure of urease (Protein Data Bank ID: 5FSE) as a model enzyme.

  10. DAISY: a new software tool to test global identifiability of biological and physiological systems.

    Science.gov (United States)

    Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina

    2007-10-01

    A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.

  11. Chronobiology --2017 Nobel Prize in Physiology or Medicine.

    Science.gov (United States)

    Yuan, Li; Li, Yi-Rou; Xu, Xiao-Dong

    2018-01-20

    Chronobiology is a field of biology that examines the generation of biological rhythms in various creatures and in many parts of body, and their adaptive fitness to solar- and lunar-related periodic phenomena. The synchronization of internal circadian clocks with external timing signals confers accurate phase response and tissue homeostasis. Herein we state a series of studies on circadian rhythms and introduce the brief history of chronobiology. We also present a detailed timeline of the discoveries on molecular mechanisms controlling circadian rhythm in Drosophila, which was awarded the 2017 Nobel Prize in Physiology or Medicine. The latest findings and new perspectives are further summarized to indicate the significance of circadian research.

  12. Conservation Physiology and Conservation Pathogens: White-Nose Syndrome and Integrative Biology for Host-Pathogen Systems.

    Science.gov (United States)

    Willis, Craig K R

    2015-10-01

    Conservation physiology aims to apply an understanding of physiological mechanisms to management of imperiled species, populations, or ecosystems. One challenge for physiologists hoping to apply their expertise to conservation is connecting the mechanisms we study, often in the laboratory, with the vital rates of populations in the wild. There is growing appreciation that infectious pathogens can threaten populations and species, and represent an important issue for conservation. Conservation physiology has much to offer in terms of addressing the threat posed to some host species by infectious pathogens. At the same time, the well-developed theoretical framework of disease ecology could provide a model to help advance the application of physiology to a range of other conservation issues. Here, I use white-nose syndrome (WNS) in hibernating North American bats as an example of a conservation problem for which integrative physiological research has been a critical part of research and management. The response to WNS highlights the importance of a well-developed theoretical framework for the application of conservation physiology to a particular threat. I review what is known about physiological mechanisms associated with mortality from WNS and emphasize the value of combining a strong theoretical background with integrative physiological studies in order to connect physiological mechanisms with population processes and thereby maximize the potential benefits of conservation physiology. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  13. Effect of a care plan based on Roy adaptation model biological dimension on stroke patients' physiologic adaptation level.

    Science.gov (United States)

    Alimohammadi, Nasrollah; Maleki, Bibi; Shahriari, Mohsen; Chitsaz, Ahmad

    2015-01-01

    Stroke is a stressful event with several functional, physical, psychological, social, and economic problems that affect individuals' different living balances. With coping strategies, patients try to control these problems and return to their natural life. The aim of this study is to investigate the effect of a care plan based on Roy adaptation model biological dimension on stroke patients' physiologic adaptation level. This study is a clinical trial in which 50 patients, affected by brain stroke and being admitted in the neurology ward of Kashani and Alzahra hospitals, were randomly assigned to control and study groups in Isfahan in 2013. Roy adaptation model care plan was administered in biological dimension in the form of four sessions and phone call follow-ups for 1 month. The forms related to Roy adaptation model were completed before and after intervention in the two groups. Chi-square test and t-test were used to analyze the data through SPSS 18. There was a significant difference in mean score of adaptation in physiological dimension in the study group after intervention (P adaptation in the patients affected by brain stroke in the study and control groups showed a significant increase in physiological dimension in the study group by 47.30 after intervention (P adaptation model biological dimension care plan can result in an increase in adaptation in patients with stroke in physiological dimension. Nurses can use this model for increasing patients' adaptation.

  14. Importancia de la biología molecular para la Fisioterapia moderna Importance of molecular biology for the modern Physical Therapy

    Directory of Open Access Journals (Sweden)

    Carolina Ramírez Ramírez

    2011-12-01

    Full Text Available Para que el cuerpo de conocimiento de una profesión crezca y se fortalezca debe estar al día con los avances científicos y tecnológicos que surgen continuamente para incluirlos en el repertorio de recursos que usa para la investigación de problemas específicos de su saber. Recientemente el desciframiento del código genético y la secuenciación del genoma humano creó la base para el surgimiento de metodologías y técnicas en el área de la biología molecular, las cuales permitieron profundizar en el conocimiento de la estructura y función de los tejidos humanos y también mejoraron el entendimiento de los mecanismos por los cuales actúan formas de intervención usadas cotidianamente por profesionales en salud. La Fisioterapia utiliza modalidades físicas que interactúan con los tejidos corporales, por ello la biología molecular permite un mejor entendimiento de los efectos que las dichas modalidades generan en el tejido sobre el cual son aplicadas. Por tanto el objetivo de este artículo es reflexionar sobre la necesidad de que el Fisioterapeuta se apropie del conocimiento en ésta área de las ciencias básicas, usarlo como herramienta para la solución de preguntas relevantes de su quehacer clínico y así contribuir de manera efectiva con la generación de nuevo conocimiento que promueva la práctica basada en la evidencia y fomente el crecimiento de la profesión. Salud UIS 2011; 43 (3: 317-320A profession can be improved through the development and application of scientific and technological advances around the issues relating to their expertise. Recently, the deciphering of the genetic code and human genome sequencing creates the basis for the development of methodologies and techniques of molecular biology. These resources have allowed a deeper understanding of the human tissue structure and function, and intervention mechanisms used by health professionals. Physiotherapy uses physical modalities affecting the tissues of the

  15. A discussion of molecular biology methods for protein engineering

    CSIR Research Space (South Africa)

    Zawaira, A

    2011-09-01

    Full Text Available A number of molecular biology techniques are available to generate variants from a particular start gene for eventual protein expression. The authors discuss the basic principles of these methods in a repertoire that may be used to achieve...

  16. Proceedings of the 13. Annual meeting of the Federation of Societies on Experimental Biology; 23. Brazilian congress on biophysics; 30. Brazilian congress on pharmacology and experimental therapeutics; 33. Brazilian congress on physiology; 14. Brazilian congress on clinical research; 22. Brazilian congress on neuroscience and behaviour. Abstracts

    International Nuclear Information System (INIS)

    1998-01-01

    Several aspects concerning neuroscience and behavior, compared physiology, endocrinology, pharmacology, molecular immunology and immuno diagnosis, biochemistry, genetic and toxicology of either animals, plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions, blood pressure regulation are focused. The use of radiolabelled compounds, e.g. radioassay, radioimmunoassay, radioreceptor assay, are the most applied techniques

  17. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  18. Biodiversity: molecular biological domains, symbiosis and kingdom origins

    Science.gov (United States)

    Margulis, L.

    1992-01-01

    The number of extant species of organisms is estimated to be from fewer than 3 to more than 30 x 10(6) (May, 1992). Molecular biology, comparative genetics and ultrastructural analyses provide new insights into evolutionary relationships between these species, including increasingly precise ideas of how species and higher taxa have evolved from common ancestors. Accumulation of random mutations and large macromolecular sequence change in all organisms since the Proterozoic Eon has been importantly supplemented by acquisition of inherited genomes ('symbiogenesis'). Karyotypic alterations (polyploidization and karyotypic fissioning) have been added to these other mechanisms of species origin in plants and animals during the Phanerozoic Eon. The new evolution concepts (coupled with current rapid rates of species extinction and ignorance of the extent of biodiversity) prompted this analysis of the field of systematic biology and its role in the reorganization of extant species into higher taxa. Two superkingdoms (= Domains: Prokaryotae and Eukaryotae) and five kingdoms (Monera = Procaryotae or Bacteria; Protoctista: algae, amoebae, ciliates, foraminifera, oomycetes, slime molds, etc.; Mychota: 'true' fungi; Plantae: one phylum (division) of bryophytes and nine phyla of tracheophytes; and Animalia) are recognized. Two subkingdoms comprise the monera: the great diverse lineages are Archaebacteria and Eubacteria. The criteria for classification using molecular, ultrastructural and genetic data for this scheme are mentioned. For the first time since the nineteenth century, logical, technical definitions for each group are given with their time of appearance as inferred from the fossil record in the primary scientific literature. This classification scheme, which most closely reflects the evolutionary history, molecular biology, genetics and ultrastructure of extant life, requires changes in social organization of biologists, many of whom as botanists and zoologists, still

  19. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Furlow, Julie Maupin- [Univ. of Florida, Gainesville, FL (United States)

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  20. Nutritional education from Molecular and Cellular Biology

    Directory of Open Access Journals (Sweden)

    Zaida Ramona Betancourt Betancourt

    2014-12-01

    Full Text Available The nutritional education is current topic, constituting a necessity in the contemporary world, given mainly by the contribution that it makes in maintaining the human health under good conditions. Starting from this problem, it is presented this article whose objective is: to show the potential ities that the discipline Cellular and Molecular Biology offers, for the treatment of these contents, since this discipline is worked in the second semester of first year and first semester of in the formation of professors of the Biology - Geography and Bio logy - C hemistry careers which can contribute to the development of knowledge, habits and abilities that allows them to appropriate of responsible behaviours for the achievement of correct nutritional habits.

  1. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    2006-12-01

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  2. Molecular and physiological responses of trees to waterlogging stress.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Rennenberg, Heinz

    2014-10-01

    One major effect of global climate change will be altered precipitation patterns in many regions of the world. This will cause a higher probability of long-term waterlogging in winter/spring and flash floods in summer because of extreme rainfall events. Particularly, trees not adapted at their natural site to such waterlogging stress can be impaired. Despite the enormous economic, ecological and social importance of forest ecosystems, the effect of waterlogging on trees is far less understood than the effect on many crops or the model plant Arabidopsis. There is only a handful of studies available investigating the transcriptome and metabolome of waterlogged trees. Main physiological responses of trees to waterlogging include the stimulation of fermentative pathways and an accelerated glycolytic flux. Many energy-consuming, anabolic processes are slowed down to overcome the energy crisis mediated by waterlogging. A crucial feature of waterlogging tolerance is the steady supply of glycolysis with carbohydrates, particularly in the roots; stress-sensitive trees fail to maintain sufficient carbohydrate availability resulting in the dieback of the stressed tissues. The present review summarizes physiological and molecular features of waterlogging tolerance of trees; the focus is on carbon metabolism in both, leaves and roots of trees. © 2014 John Wiley & Sons Ltd.

  3. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods.

    Science.gov (United States)

    Feyereisen, René; Dermauw, Wannes; Van Leeuwen, Thomas

    2015-06-01

    The recent accumulation of molecular studies on mutations in insects, ticks and mites conferring resistance to insecticides, acaricides and biopesticides is reviewed. Resistance is traditionally classified by physiological and biochemical criteria, such as target-site insensitivity and metabolic resistance. However, mutations are discrete molecular changes that differ in their intrinsic frequency, effects on gene dosage and fitness consequences. These attributes in turn impact the population genetics of resistance and resistance management strategies, thus calling for a molecular genetic classification. Mutations in structural genes remain the most abundantly described, mostly in genes coding for target proteins. These provide the most compelling examples of parallel mutations in response to selection. Mutations causing upregulation and downregulation of genes, both in cis (in the gene itself) and in trans (in regulatory processes) remain difficult to characterize precisely. Gene duplications and gene disruption are increasingly reported. Gene disruption appears prevalent in the case of multiple, hetero-oligomeric or redundant targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Tangible Models and Haptic Representations Aid Learning of Molecular Biology Concepts

    Science.gov (United States)

    Johannes, Kristen; Powers, Jacklyn; Couper, Lisa; Silberglitt, Matt; Davenport, Jodi

    2016-01-01

    Can novel 3D models help students develop a deeper understanding of core concepts in molecular biology? We adapted 3D molecular models, developed by scientists, for use in high school science classrooms. The models accurately represent the structural and functional properties of complex DNA and Virus molecules, and provide visual and haptic…

  5. Practices and Exploration on Competition of Molecular Biological Detection Technology among Students in Food Quality and Safety Major

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-01-01

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula…

  6. Molecular biology and its applications in orthodontics and oral and maxillofacial surgery

    NARCIS (Netherlands)

    Ren, Yjin

    2005-01-01

    : Molecular biology is an exciting, rapidly expanding field, which has enabled enormously greater understanding of the biology of diseases and malfunctions in many fields. It chiefly concerns itself with understanding the interactions between the various systems of a cell, including the

  7. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  8. Characterization of Gladiolus Germplasm Using Morphological, Physiological, and Molecular Markers.

    Science.gov (United States)

    Singh, Niraj; Pal, Ashish K; Roy, R K; Tewari, S K; Tamta, Sushma; Rana, T S

    2018-04-01

    Estimation of variability and genetic relationships among breeding materials is one of the important strategies in crop improvement programs. Morphological (plant height, spike length, a number of florets/spike), physiological (chlorophyll content, chlorophyll fluorescence, and rapid light curve parameters) and Directed amplification of minisatellite DNA (DAMD) markers were used to investigate the relationships among 50 Gladiolus cultivars. Cluster analysis based on morphological data, physiological characteristics, molecular markers, and cumulative data discriminated all cultivars into seven, five, seven, and six clusters in the unweighted pair-group method using arithmetic mean (UPGMA) dendrogram, respectively. The results of the principal coordinate analysis (PCoA) also supported UPGMA clustering. Variations among the Gladiolus cultivars at phenotypic level could be due to the changes in physiology, environmental conditions, and genetic variability. DAMD analysis using 10 primers produced 120 polymorphic bands with 80% polymorphism showing polymorphic information content (PIC = 0.28), Marker index (MI = 3.37), Nei's gene diversity (h = 0.267), and Shannon's information index (I = 0.407). Plant height showed a positive significant correlation with Spike length and Number of florets/spike (r = 0.729, p < 0.001 and r = 0.448, p = 0.001 respectively). Whereas, Spike length showed positive significant correlation with Number of florets/spike (r = 0.688, p < 0.001) and Chlorophyll content showed positive significant correlation with Electron transport rate (r = 0.863, p < 0.001). Based on significant morphological variations, high physiological performance, high genetic variability, and genetic distances between cultivars, we have been able to identify diverse cultivars of Gladiolus that could be the potential source as breeding material for further genetic improvement in this ornamental crop.

  9. The emerging molecular biology toolbox for the study of long noncoding RNA biology.

    Science.gov (United States)

    Fok, Ezio T; Scholefield, Janine; Fanucchi, Stephanie; Mhlanga, Musa M

    2017-10-01

    Long noncoding RNAs (lncRNAs) have been implicated in many biological processes. However, due to the unique nature of lncRNAs and the consequential difficulties associated with their characterization, there is a growing disparity between the rate at which lncRNAs are being discovered and the assignment of biological function to these transcripts. Here we present a molecular biology toolbox equipped to help dissect aspects of lncRNA biology and reveal functionality. We outline an approach that begins with a broad survey of genome-wide, high-throughput datasets to identify potential lncRNA candidates and then narrow the focus on specific methods that are well suited to interrogate the transcripts of interest more closely. This involves the use of imaging-based strategies to validate these candidates and observe the behaviors of these transcripts at single molecule resolution in individual cells. We also describe the use of gene editing tools and interactome capture techniques to interrogate functionality and infer mechanism, respectively. With the emergence of lncRNAs as important molecules in healthy and diseased cellular function, it remains crucial to deepen our understanding of their biology.

  10. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  11. Egyptian Journal of Biochemistry and Molecular Biology - Vol 32, No ...

    African Journals Online (AJOL)

    The Egyptian Journal of Biochemistry and Molecular Biology. ... Therapeutic Impacts of Almond Oil and Olive Oil on Cholesterol Dynamics and ... Multidrug Resistance Proteins in Pancreatic Carcinoma · EMAIL FULL TEXT EMAIL FULL TEXT

  12. Using Osteoclast Differentiation as a Model for Gene Discovery in an Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Birnbaum, Mark J.; Picco, Jenna; Clements, Meghan; Witwicka, Hanna; Yang, Meiheng; Hoey, Margaret T.; Odgren, Paul R.

    2010-01-01

    A key goal of molecular/cell biology/biotechnology is to identify essential genes in virtually every physiological process to uncover basic mechanisms of cell function and to establish potential targets of drug therapy combating human disease. This article describes a semester-long, project-oriented molecular/cellular/biotechnology laboratory…

  13. Oligo-Alginate with Low Molecular Mass Improves Growth and Physiological Activity of Eucomis autumnalis under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Piotr Salachna

    2018-04-01

    Full Text Available Biopolymers have become increasingly popular as biostimulators of plant growth. One of them, oligo-alginate, is a molecule that regulates plant biological processes and may be used in horticultural practice as a plant growth regulator. Biostimulators are mainly used to improve plant tolerance to abiotic stresses, including salinity. The aim of the study was to assess the effects of salinity and oligo-alginate of various molecular masses on the growth and physiological activity of Eucomis autumnalis. The species is an ornamental and medicinal plant that has been used for a long time in the traditional medicine of South Africa. The bulbs of E. autumnalis were coated using depolymerized sodium alginate of molecular mass 32,000; 42,000, and 64,000 g mol−1. All of these oligo-alginates fractions stimulated plant growth, and the effect was the strongest for the fraction of 32,000 g mol−1. This fraction was then selected for the second stage of the study, when plants were exposed to salt stress evoked by the presence of 100 mM NaCl. We found that the oligo-alginate coating mitigated the negative effects of salinity. Plants treated with the oligomer and watered with NaCl showed smaller reduction in the weight of the above-ground parts and bulbs, pigment content and antioxidant activity as compared with those not treated with the oligo-alginate. The study demonstrated for the first time that low molecular mass oligo-alginate may be used as plant biostimulator that limits negative effects of salinity in E. autumnalis.

  14. Molecular and Physiological Factors of Neuroprotection in Hypoxia-tolerant Models: Pharmacological Clues for the Treatment of Stroke

    Directory of Open Access Journals (Sweden)

    Thomas I. Nathaniel

    2015-01-01

    Full Text Available The naked mole-rat possesses several unique physiological and molecular features that underlie their remarkably and exceptional resistance to tissue hypoxia. Elevated pattern of Epo, an erythropoietin (Epo factor; c-fos; vascular endothelial growth factor (VEGF; and hypoxia-inducible factors (HIF-1α contribute to the adaptive strategy to cope with hypoxic stress. Moreover, the naked mole-rat has a lower metabolic rate than any other eutherian mammal of comparable size that has been studied. The ability to actively reduce metabolic rate represents a strategy widely used in the face of decreased tissue oxygen availability. Understanding the different molecular and physiological factors that induce metabolic suppression could guide the development of pharmacological agents for the clinical management of stroke patient.

  15. Script, code, information: how to differentiate analogies in the "prehistory" of molecular biology.

    Science.gov (United States)

    Kogge, Werner

    2012-01-01

    The remarkable fact that twentieth-century molecular biology developed its conceptual system on the basis of sign-like terms has been the object of numerous studies and debates. Throughout these, the assumption is made that this vocabulary's emergence should be seen in the historical context of mathematical communication theory and cybernetics. This paper, in contrast, sets out the need for a more differentiated view: whereas the success of the terms "code" and "information" would probably be unthinkable outside that historical context, general semiotic and especially scriptural concepts arose far earlier in the "prehistory" of molecular biology, and in close association with biological research and phenomena. This distinction, established through a reconstruction of conceptual developments between 1870 and 1950, makes it possible to separate off a critique of the reductive implications of particular information-based concepts from the use of semiotic and scriptural concepts, which is fundamental to molecular biology. Gene-centrism and determinism are not implications of semiotic and scriptural analogies, but arose only when the vocabulary of information was superimposed upon them.

  16. The contribution of neutron scattering to molecular biology

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.

    1983-01-01

    About half of the atoms of living cells are hydrogens, and nearly all biological applications of neutron scattering rely on the well-known difference in the scattering lengths of the proton and the deuteron. This introduces us to a wide variety of biological problems, which are related with hydrogen in water, proteins, nucleic acids and lipids. Neutron scattering gives an answer to both structural and dynamical aspects of the system in question. With deuterium labelled samples unambiguous information about molecular structure and motion becomes accessible. The architecture of viruses, cell membranes and gene expressing molecules has become a lot clearer with neutron scattering. (author)

  17. Physics and the molecular revolution in plant biology: union needed for managing the future

    Directory of Open Access Journals (Sweden)

    Ulrich Lüttge

    2016-10-01

    Full Text Available The question was asked if there is still a prominent role of biophysics in plant biology in an age when molecular biology appears to be dominating. Mathematical formation of theory is essential in systems biology, and mathematics is more inherent in biophysics than in molecular biology. A survey is made identifying and briefly characterizing fields of plant biology where approaches of biophysics remain essential. In transport at membranes electrophysiology and thermodynamics are biophysical topics. Water is a special molecule. Its transport follows the physical laws of osmosis and gradients of water potential on the background of physics of hydraulic architecture. Photobiology needs understanding of the physics of electro-magnetic radiation of quantitative nature in photosynthesis and of qualitative nature in perception by the photo-sensors cryptochromes, phototropins and phytochrome in environmental responses and development. Biophysical oscillators can play a role in biological timing by the circadian clock. Integration in the self-organization of modules, such as roots, stems and leaves, for the emergence of whole plants as unitary organisms needs storage and transport of information where physical modes of signaling are essential with cross talks between electrical and hydraulic signals and with chemical signals. Examples are gravitropism and root-shoot interactions in water relations. All of these facets of plant biophysics overlie plant molecular biology and exchange with it. It is advocated that a union of approaches of plant molecular biology and biophysics needs to be cultivated. In many cases it is already operative. In bionics biophysics is producing output for practical applications linking biology with technology. Biomimetic engineering intrinsically uses physical approaches. An extreme biophysical perspective is looking out for life in space. Sustained and increased practice of biophysics with teaching and research deserves strong

  18. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Directory of Open Access Journals (Sweden)

    Jose A. Santiago

    2017-05-01

    Full Text Available Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD, Parkinson’s (PD and Huntington’s diseases (HD. We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  19. Naumovozyma castellii: an alternative model for budding yeast molecular biology.

    Science.gov (United States)

    Karademir Andersson, Ahu; Cohn, Marita

    2017-03-01

    Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Future directions for radiological physics: An interface with molecular biology

    International Nuclear Information System (INIS)

    Braby, L.A.

    1987-01-01

    Recent experiments with low energy x-rays and fast molecular ions have shown that the products of the interaction of several ionizations within a few nanometers dominate radiation effects. However, the authors still can only make assumptions about the physical and chemical nature of this initial damage. Enzymatic repair of DNA damage is another key factor, but they have little idea of what governs the success or failure (misrepair) of these processes. Unresolved problems like these dictate the future direction of radiological physics. Molecular biology techniques are being applied to determine molecular alterations which result in observed damage. Interpretation of these experiments will require new data on the physics of energy transfer to macromolecules and the stochastics of energy deposition in time. Future studies will attempt to identify the initial damage, before biological processes have amplified it. This will require a detailed understanding of the role of chromatin structure in governing gene expression, the transport of energy within macromolecules, the transport of ions and radicals in the semiordered environment near DNA strands, and many other physical characteristics within the living cell

  1. How phenotypic plasticity made its way into molecular biology

    Indian Academy of Sciences (India)

    2009-08-03

    Aug 3, 2009 ... Phenotypic plasticity has been fashionable in recent years. It has never been absent from the studies of evolutionary biologists, although the availability of stable animal models has limited its role. Although opposed by the reductionist and deterministic approach of molecular biology, phenotypic plasticity ...

  2. Implications of molecular heterogeneity for the cooperativity of biological macromolecules.

    Science.gov (United States)

    Solomatin, Sergey V; Greenfeld, Max; Herschlag, Daniel

    2011-06-01

    Cooperativity, a universal property of biological macromolecules, is typically characterized by a Hill slope, which can provide fundamental information about binding sites and interactions. We demonstrate, through simulations and single-molecule FRET (smFRET) experiments, that molecular heterogeneity lowers bulk cooperativity from the intrinsic value for the individual molecules. As heterogeneity is common in smFRET experiments, appreciation of its influence on fundamental measures of cooperativity is critical for deriving accurate molecular models.

  3. proceedings of the 11. Annual meeting of the Federation of Societies on Experimental Biology

    International Nuclear Information System (INIS)

    1996-01-01

    The proceedings of the 11. Annual meeting of the Federation of Societies on Experimental Biology contains 1850 abstracts, which include the following topics: neuroscience and behaviour; biophysics; pharmacology; comparative physiology; nervous regulation; endocrinology; nefrology; vascular biology; toxicity; molecular biophysics; radiobiology and others. Among these, 169 abstracts have been indexed separately for the INIS database

  4. Development of Animal Physiology Practical Guidance Oriented Guided Inquiry for Student of Biology Department

    Science.gov (United States)

    Putra, Z. A. Z.; Sumarmin, R.; Violita, V.

    2018-04-01

    The guides used for practicing animal physiology need to be revised and adapted to the lecture material. This is because in the subject of Animal Physiology. The guidance of animal physiology practitioners is still conventional with prescription model instructions and is so simple that it is necessary to develop a practical guide that can lead to the development of scientific work. One of which is through practice guided inquiry guided practicum guide. This study aims to describe the process development of the practical guidance and reveal the validity, practicality, and effectiveness Guidance Physiology Animals guided inquiry inferior to the subject of Animal Physiology for students Biology Department State University of Padang. This type of research is development research. This development research uses the Plomp model. Stages performed are problem identification and analysis stage, prototype development and prototyping stage, and assessment phase. Data analysis using descriptive analysis. The instrument of data collection using validation and practical questionnaires, competence and affective field of competence observation and psychomotor and cognitive domain competence test. The result of this research shows that guidance of Inquiry Guided Initiative Guided Physiology with 3.23 valid category, practicality by lecturer with value 3.30 practical category, student with value 3.37 practical criterion. Affective effectiveness test with 93,00% criterion is very effective, psychomotor aspect 89,50% with very effective criteria and cognitive domain with value of 67, pass criterion. The conclusion of this research is Guided Inquiry Student Guided Protoxial Guidance For Students stated valid, practical and effective.

  5. Epidemiology and Molecular Biology of Head and Neck Cancer.

    Science.gov (United States)

    Jou, Adriana; Hess, Jochen

    2017-01-01

    Head and neck cancer is a common and aggressive malignancy with a high morbidity and mortality profile. Although the large majority of cases resemble head and neck squamous cell carcinoma (HNSCC), the current classification based on anatomic site and tumor stage fails to capture the high level of biologic heterogeneity, and appropriate clinical management remains a major challenge. Hence, a better understanding of the molecular biology of HNSCC is urgently needed to support biomarker development and personalized care for patients. This review focuses on recent findings based on integrative genomics analysis and multi-scale modeling approaches and how they are beginning to provide more sophisticated clues as to the biological and clinical diversity of HNSCC. © 2017 S. Karger GmbH, Freiburg.

  6. In vitro studies. Contribution of radioactive marking to molecular biology development

    International Nuclear Information System (INIS)

    Sentenac, A.

    1997-01-01

    The spectacular and rapid development of molecular biology is essentially related to the utilization of marked molecules which leads to quantitative and qualitative information; the use of radioactive tracers allowed for the observation of the biosynthesis of biological polymers, and thus, for example, the formation of DNA, RNA or proteins. A historical review of the great discoveries in this field, is presented

  7. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  8. Molecular fossils in modern genomes provide physiological and geochemical insights to the ancient earth (Invited)

    Science.gov (United States)

    Dupont, C.; Caetano-Anolles, G.

    2010-12-01

    The genomes of extant organisms are ultimately derived from ancient life, thus theoretically contain insight to ancient physiology, ecology, and environments. In particular, metalloenzymes may be particularly insightful. The fundamental chemistry of trace elements dictates the molecular speciation and reactivity both within cells and the environment at large. Using protein structure and comparative genomics, we elucidate several major influences this chemistry has had upon biology. All of life exhibits the same proteome size-dependent scaling for the number of metal-binding proteins within a proteome. This fundamental evolutionary constant shows that the selection of one element occurs at the exclusion of another, with the eschewal of Fe for Zn and Ca being a defining feature of eukaryotic pro- teomes. Early life lacked both the structures required to control intracellular metal concentrations and the metal-binding proteins that catalyze electron transport and redox transformations. The development of protein structures for metal homeostasis coincided with the emergence of metal-specific structures, which predomi- nantly bound metals abundant in the Archean ocean. Potentially, this promoted the diversification of emerging lineages of Archaea and Bacteria through the establishment of biogeochemical cycles. In contrast, structures binding Cu and Zn evolved much later, pro- viding further evidence that environmental availability influenced the selection of the elements. The late evolving Zn-binding proteins are fundamental to eukaryotic cellular biology, and Zn bioavailabil- ity may have been a limiting factor in eukaryotic evolution. The results presented here provide an evolutionary timeline based on genomic characteristics, and key hypotheses can be tested by alternative geochemical methods.

  9. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    Science.gov (United States)

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  10. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  11. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  12. Molecular biology of the lung cancer

    International Nuclear Information System (INIS)

    Panov, S.Z.

    2005-01-01

    Background. Lung cancer is one of the most common malignant diseases and leading cause of cancer death worldwide. The advances in molecular biology and genetics, including the modern microarray technology and rapid sequencing techniques, have enabled a remarkable progress into elucidating the lung cancer ethiopathogenesis. Numerous studies suggest that more than 20 different genetic and epigenetic alterations are accumulating during the pathogenesis of clinically evident pulmonary cancers as a clonal, multistep process. Thus far, the most investigated alterations are the inactivational mutations and losses of tumour suppressor genes and the overexpression of growth-promoting oncogenes. More recently, the acquired epigenetic inactivation of tumour suppressor genes by promoter hypermethylation has been recognized. The early clonal genetic abnormalities that occur in preneoplastic bronchial epithelium damaged by smoking or other carcinogenes are being identified. The molecular distinctions between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), as well as between tumors with different clinical outcomes have been described. These investigations lead to the h allmarks of lung cancer . Conclusions. It is realistic to expect that the molecular and cell culture-based investigations will lead to discoveries of new clinical applications with the potential to provide new avenues for early diagnosis, risk assessment, prevention, and most important, new more effective treatment approaches for the lung cancer patients. (author)

  13. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  14. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China.

    Science.gov (United States)

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.

  15. Understanding the Biological Roles of Pectins in Plants through Physiological and Functional Characterizations of Plant and Fungal Mutants

    DEFF Research Database (Denmark)

    Stranne, Maria

    The plant cell wall is a dynamic structure and it is involved in regulating a number of physiological features of plants such as physical strength, growth, cell differentiation, intercellular communication, water movement and defense responses. Pectins constitute a major class of plant cell wall...... polysaccharides and consist of backbones rich in galacturonic acids, which are decorated with a range of functional groups including acetyl esters and arabinan sidechains. Although much effort has been made to uncover biological functions of pectins in plants and remarkable progresses have taken place, many...... aspects remain elusive. Studies described in this thesis aimed at gaining new insights into the biological roles of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana. The thesis consists of four chapters: physiological characterization of cell wall mutants affected in cell...

  16. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  17. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-07-08

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):299-304, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  18. The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms.

    Science.gov (United States)

    Kawai, Fusako

    2010-01-01

    Research on microbial degradation of xenobiotic polymers has been underway for more than 40 years. It has exploited a new field not only in applied microbiology but also in environmental microbiology, and has greatly contributed to polymer science by initiating the design of biodegradable polymers. Owing to the development of analytical tools and technology, molecular biological and biochemical advances have made it possible to prospect for degrading microorganisms in the environment and to determine the mechanisms involved in biodegradation when xenobiotic polymers are introduced into the environment and are exposed to microbial attack. In this review, the molecular biological and biochemical aspects of the microbial degradation of xenobiotic polymers are summarized, and possible applications of potent microorganisms, enzymes, and genes in environmental biotechnology are suggested.

  19. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    Science.gov (United States)

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Hybridization improved bacteria resistance in abalone: Evidence from physiological and molecular responses.

    Science.gov (United States)

    Liang, Shuang; Luo, Xuan; You, Weiwei; Ke, Caihuan

    2018-01-01

    Hybridization is an effective way of improving germplasm in abalone, as it often generates benign traits in the hybrids. The hybrids of Haliotis discus hannai and H. gigantea have shown heterosis in terms of disease resistance than one or both parental species. In the present study, to elucidate the physiological and molecular mechanism of this heterosis, we analyzed the dynamic changes of several immune indexes including survival rate, total circulating haemocyte count (THC), phagocytic activity, reactive oxygen species level (ROS) and phenoloxidase activity (PO) in two parental species, H. discus hannai (DD) and H. gigantea (GG), and their reciprocal hybrids H. discus hannai ♀ × H. gigantea ♂ (DG), H. gigantea ♀ × H. discus hannai ♂ (GD) challenged with a mixture of Vibrio harveyi, V. alginolyticus and V. parahaemolyticus (which have been demonstrated to be pathogenic to abalone). Besides, we cloned and analyzed three important immune genes: heat shock protein 70 (hsp70), ferritin and cold shock domain protein (csdp) in H. discus hannai and H. gigantea, then further investigated their mRNA level changes in the four abalone genotypes after bacterial challenge. Results showed that these physiological and molecular parameters were significantly induced by bacterial exposure, and their changing patterns were obviously different between the four genotypes: (1) Survival rates of the two hybrids were higher than both parental species after bacterial exposure; (2) DG had higher THC than the other three genotypes; (3) Phagocytosis responded slower in the hybrids than in the parental species; (4) DD's ROS level was lower than the other three genotypes at 48 h post infection; (5) Phenoloxidase activity was lower in DD during the infection compared to the other genotypes; (6) mRNA levels of hsp70 and csdp, were always lower in at least one parental species (DD) than in the hybrids after the bacterial exposure. Results from this study indicate that the hybrids

  1. Barrett's esophagus: cancer and molecular biology.

    Science.gov (United States)

    Gibson, Michael K; Dhaliwal, Arashinder S; Clemons, Nicholas J; Phillips, Wayne A; Dvorak, Katerina; Tong, Daniel; Law, Simon; Pirchi, E Daniel; Räsänen, Jari; Krasna, Mark J; Parikh, Kaushal; Krishnadath, Kausilia K; Chen, Yu; Griffiths, Leonard; Colleypriest, Benjamin J; Farrant, J Mark; Tosh, David; Das, Kiron M; Bajpai, Manisha

    2013-10-01

    The following paper on the molecular biology of Barrett's esophagus (BE) includes commentaries on signaling pathways central to the development of BE including Hh, NF-κB, and IL-6/STAT3; surgical approaches for esophagectomy and classification of lesions by appropriate therapy; the debate over the merits of minimally invasive esophagectomy versus open surgery; outcomes for patients with pharyngolaryngoesophagectomy; the applications of neoadjuvant chemotherapy and chemoradiotherapy; animal models examining the surgical models of BE and esophageal adenocarcinoma; the roles of various morphogens and Cdx2 in BE; and the use of in vitro BE models for chemoprevention studies. © 2013 New York Academy of Sciences.

  2. Genetics and molecular biology of hypotension

    Science.gov (United States)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  3. Using Whole Mount in situ Hybridization to Link Molecular and Organismal Biology

    OpenAIRE

    Jacobs, Nicole L.; Albertson, R. Craig; Wiles, Jason R.

    2011-01-01

    Whole mount in situ hybridization (WISH) is a common technique in molecular biology laboratories used to study gene expression through the localization of specific mRNA transcripts within whole mount specimen. This technique (adapted from Albertson and Yelick, 2005) was used in an upper level undergraduate Comparative Vertebrate Biology laboratory classroom at Syracuse University. The first two thirds of the Comparative Vertebrate Biology lab course gave students the opportunity to study the ...

  4. Cells from icons to symbols: molecularizing cell biology in the 1980s.

    Science.gov (United States)

    Serpente, Norberto

    2011-12-01

    Over centuries cells have been the target of optical and electronic microscopes as well as others technologies, with distinctive types of visual output. Whilst optical technologies produce images 'evident to the eye', the electronic and especially the molecular create images that are more elusive to conceptualization and assessment. My study applies the semiotic approach to the production of images in cell biology to capture the shift from microscopic images to non-traditional visual technologies around 1980. Here I argue that the visual shift that coincides with the growing dominance of molecular biology involves a change from iconic to symbolic forms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Camels, Cormorants, and Kangaroo Rats: Integration and Synthesis in Organismal Biology After World War II.

    Science.gov (United States)

    Hagen, Joel B

    2015-01-01

    During the decades following World War II diverse groups of American biologists established a variety of distinctive approaches to organismal biology. Rhetorically, organismal biology could be used defensively to distinguish established research traditions from perceived threats from newly emerging fields such as molecular biology. But, organismal biologists were also interested in integrating biological disciplines and using a focus on organisms to synthesize levels of organization from molecules and cells to populations and communities. Part of this broad movement was the development of an area of research variously referred to as physiological ecology, environmental physiology, or ecophysiology. This area of research was distinctive in its self-conscious blend of field and laboratory practices and its explicit integration with other areas of biology such as ecology, animal behavior, and evolution in order to study adaptation. Comparing the intersecting careers of Knut Schmidt-Nielsen and George Bartholomew highlights two strikingly different approaches to physiological ecology. These alternative approaches to studying the interactions of organisms and environments also differed in important ways from the organismal biology championed by leading figures in the modern synthesis.

  6. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  7. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  8. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  9. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  10. Semester-long inquiry-based molecular biology laboratory: Transcriptional regulation in yeast.

    Science.gov (United States)

    Oelkers, Peter M

    2017-03-04

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in Saccharomyces cerevisiae. Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a cell process and how three genes that encode for proteins involved in that process are transcriptionally regulated in response to changing environmental conditions. Planning includes designing oligonucleotides to amplify the putative promoters of the three genes of interest. After the PCR, each product is cloned proximal to β-galactosidase in a yeast reporter plasmid. Techniques used include agarose electrophoresis, extraction of DNA from agarose, plasmid purification from bacteria, restriction digestion, ligation, and bacterial transformation. This promoter/reporter plasmid is then transformed into yeast. Transformed yeast are cultured in conditions prescribed in the experimental design, lysed and β-galactosidase activity is measured. The course provides an independent research experience in a group setting. Notebooks are maintained on-line with regular feedback. Projects culminate with the presentation of a poster worth 60% of the grade. Over the last three years, about 65% of students met expectations for experimental design, data acquisition, and analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):145-151, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  11. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  12. Molecular biological aspects of acquired bullous diseases

    DEFF Research Database (Denmark)

    Dabelsteen, Erik

    1998-01-01

    Bullous diseases of the oral mucosa and skin were originally classified on the basis of clinical and histological criteria. The discovery of autoantibodies in some of these patients and the introduction of molecular biology have resulted in a new understanding of the pathological mechanisms of many...... of the bullous lesions. In this article, updated topics of the immune-mediated bullous lesions which involve oral mucosa and skin are reviewed. Pemphigus antigens, which are desmosomal-associated proteins and belong to the cadherin superfamily of cell adhesion proteins, have been isolated, and their genes have...

  13. Isolation, purification and studies on radiation induced biochemical and physiological changes of bovine growth hormone in animal

    International Nuclear Information System (INIS)

    Abdel-Salam, H.M.S.

    1997-01-01

    Growth hormone has a great importance in the field of animal physiology. Bovine growth hormone was extracted by alteration of the hydrogen ion concentration of phosphate buffer extract of frozen pituitary glands. The extracted bovine growth hormone has similar absorption peaks at UV and infrared spectra, bands of the same location on polyacrylamide gel electrophoresis plate and had a molecular weight exactly as the standard bovine growth hormone and equal to 20.9 KD. Labelling of bovine growth hormone with 131 I was carried out with fast and least expensive method. The biological and physiological effects of labelled and non labelled bovine growth hormone were studied on rabbits. The labelled bovine growth hormone decreased the biological and physiological effects of the hormone. Bovine growth hormone (unlabelled) and different effects on growth performance traits, body chemical composition (water, fat,protein and ash), and also on the serum biochemical parameters. We conclude that the bovine growth hormone affects on the biological and physiological properties but this depends on the dose, type of delivery of hormone, time of treatment, and the diet content of the animal. 6 tabs., 13.2 figs., 110 refs

  14. Archaea: evolution, physiology, and molecular biology

    National Research Council Canada - National Science Library

    Garrett, Roger A; Klenk, Hans-Peter

    2007-01-01

    ...: mechanisms of rearrangement and change Kim Brügger, Xu Peng and Roger A. Garrett vii xi 1 17 29 39 51 59 75 95 9 Specialist Article Plasmids Georg Lipps 10 Specialist Article Integration mech...

  15. Archaea: Evolution, Physiology, and Molecular Biology

    DEFF Research Database (Denmark)

    field, including an account by Carl Woese of his original discovery of the Archaea (until 1990 termed archaebacteria) and the initially mixed reactions of the scientific community. The review chapters and specialized articles address the emerging significance of the Archaea within a broader scientific......Introduced by Crafoord Prize winner Carl Woese, this volume combines reviews of the major developments in archaeal research over the past 10-15 years with more specialized articles dealing with important recent breakthroughs. Drawing on major themes presented at the June 2005 meeting held in Munich...

  16. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    Science.gov (United States)

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.

  17. High molecular weight DNA assembly in vivo for synthetic biology applications.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  18. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  19. Identification and characterization of contrasting sunflower genotypes to early leaf senescence process combining molecular and physiological studies (Helianthus annuus L.).

    Science.gov (United States)

    López Gialdi, A I; Moschen, S; Villán, C S; López Fernández, M P; Maldonado, S; Paniego, N; Heinz, R A; Fernandez, P

    2016-09-01

    Leaf senescence is a complex mechanism ruled by multiple genetic and environmental variables that affect crop yields. It is the last stage in leaf development, is characterized by an active decline in photosynthetic rate, nutrients recycling and cell death. The aim of this work was to identify contrasting sunflower inbred lines differing in leaf senescence and to deepen the study of this process in sunflower. Ten sunflower genotypes, previously selected by physiological analysis from 150 inbred genotypes, were evaluated under field conditions through physiological, cytological and molecular analysis. The physiological measurement allowed the identification of two contrasting senescence inbred lines, R453 and B481-6, with an increase in yield in the senescence delayed genotype. These findings were confirmed by cytological and molecular analysis using TUNEL, genomic DNA gel electrophoresis, flow sorting and gene expression analysis by qPCR. These results allowed the selection of the two most promising contrasting genotypes, which enables future studies and the identification of new biomarkers associated to early senescence in sunflower. In addition, they allowed the tuning of cytological techniques for a non-model species and its integration with molecular variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. [Molecular biology, darwinism and nomogenesis].

    Science.gov (United States)

    Vol'kenshteĭn, M V

    1987-01-01

    The theory of nomogenesis put forward by L. S. Berg in 1922 is discussed. It is shown that side by side with some erroneous anti-darwinian ideas the theory contains a series of important suggestions which anticipate the further development of the synthetic theory of evolution. Berg has foreseen the development of molecular biology. Thus he was the fore-teller of our branch of science. The theory of nomogenesis emphasized the limitations of natural selection which determine the directionality of evolution. Berg treated the speciation as a kind of phase transition. Even the most conscientious critics of Berg have misrepresented the real sense of his works. It is totally groundless to treat nomogenesis as an idealistic of Lamarkian theory. Berg was superior to his critics. However the enthusiasm about nomogenesis in our time shows the inability to separate "the grains from weeds".

  1. molecular biology approach to the search for novel hiv proteases ...

    African Journals Online (AJOL)

    ... which could be tested in the animal models of HIV infection before subjection to clinical trials. Optimistically, the magic HIV therapeutics may be hidden in such insects and may require the application of molecular biology techniques to unravel. KEY WORDS: Antiretroviral drugs, malaria, proteases, restriction enzymes, ...

  2. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    International Nuclear Information System (INIS)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  3. Abstracts of the 27. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1998-01-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology

  4. Abstracts of the 26. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1997-01-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology

  5. Parallel computing and molecular dynamics of biological membranes

    International Nuclear Information System (INIS)

    La Penna, G.; Letardi, S.; Minicozzi, V.; Morante, S.; Rossi, G.C.; Salina, G.

    1998-01-01

    In this talk I discuss the general question of the portability of molecular dynamics codes for diffusive systems on parallel computers of the APE family. The intrinsic single precision of the today available platforms does not seem to affect the numerical accuracy of the simulations, while the absence of integer addressing from CPU to individual nodes puts strong constraints on possible programming strategies. Liquids can be satisfactorily simulated using the ''systolic'' method. For more complex systems, like the biological ones at which we are ultimately interested in, the ''domain decomposition'' approach is best suited to beat the quadratic growth of the inter-molecular computational time with the number of atoms of the system. The promising perspectives of using this strategy for extensive simulations of lipid bilayers are briefly reviewed. (orig.)

  6. The molecular biology and diagnostics of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend

    1992-01-01

    The rapid development of biotechnological methods provides the potential of dissecting the molecular structure of microorganisms. In this review the molecular biology of chlamydia is described. The genus Chlamydia contains three species C. trachomatis, C. psittaci, and C. pneumonia which all...... are important human pathogens. Chlamydia is obligate intracellular bacteria with a unique biphasic life cycle. The extracellularly chlamydial elementary bodies (EB) are small, metabolic inactive, infectious particles with a tight outer cell membrane. After internalization into host cells the chlamydial...... of chlamydia have not yet been found. The adhesin(s) is unknown, and no factor of importance for the inhibition of fusion between phagosome and host cell lysosomes has been described. A protein similar to the mip gene product of Legionella pneumofila may be a possible candidate for a pathogenicity factor...

  7. Combining Radiation Epidemiology With Molecular Biology-Changing From Health Risk Estimates to Therapeutic Intervention.

    Science.gov (United States)

    Abend, Michael; Port, Matthias

    2016-08-01

    The authors herein summarize six presentations dedicated to the key session "molecular radiation epidemiology" of the ConRad meeting 2015. These presentations were chosen in order to highlight the promise when combining conventional radiation epidemiology with molecular biology. Conventional radiation epidemiology uses dose estimates for risk predictions on health. However, combined with molecular biology, dose-dependent bioindicators of effect hold the promise to improve clinical diagnostics and to provide target molecules for potential therapeutic intervention. One out of the six presentations exemplified the use of radiation-induced molecular changes as biomarkers of exposure by measuring stabile chromosomal translocations. The remaining five presentations focused on molecular changes used as bioindicators of the effect. These bioindicators of the effect could be used for diagnostic purposes on colon cancers (genomic instability), thyroid cancer (CLIP2), or head and neck squamous cell cancers. Therapeutic implications of gene expression changes were examined in Chernobyl thyroid cancer victims and Mayak workers.

  8. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  9. Haemoprotozoa: Making biological sense of molecular phylogenies

    Directory of Open Access Journals (Sweden)

    Peter O'Donoghue

    2017-12-01

    Full Text Available A range of protistan parasites occur in the blood of vertebrates and are transmitted by haematophagous invertebrate vectors. Some 48 genera are recognized in bood primarily on the basis of parasite morphology and host specificity; including extracellular kinetoplastids (trypanosomatids and intracellular apicomplexa (haemogregarines, haemococcidia, haemosporidia and piroplasms. Gene sequences are available for a growing number of species and molecular phylogenies often link parasite and host or vector evolution. This review endeavours to reconcile molecular clades with biological characters. Four major trypanosomatid clades have been associated with site of development in the vector: salivarian or stercorarian for Trypanosoma, and supra- or peri-pylorian for Leishmania. Four haemogregarine clades have been associated with acarine vectors (Hepatozoon A and B, Karyolysus, Hemolivia and another two with leeches (Dactylosoma, Haemogregarina sensu stricto. Two haemococcidian clades (Lankesterella, Schellackia using leeches and mosquitoes (as paratenic hosts! were paraphyletic with monoxenous enteric coccidia. Two major haemosporidian clades have been associated with mosquito vectors (Plasmodium from mammals, Plasmodium from birds and lizards, two with midges (Hepatocystis from bats, Parahaemoproteus from birds and two with louse-flies and black-flies (Haemoproteus and Leucocytozoon from birds. Three major piroplasm clades were recognized: one associated with transovarian transmission in ticks (Babesia sensu stricto; one with pre-erythrocytic schizogony in vertebrates (Theileria/Cytauxzoon; and one with neither (Babesia sensu lato. Broad comparative studies with allied groups suggest that trypanosomatids and haemogregarines evolved first in aquatic and then terrestrial environments, as evidenced by extant lineages in invertebrates and their radiation in vertebrates. In contrast, haemosporidia and haemococcidia are thought to have evolved first in

  10. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  11. Biology of Healthy Aging and Longevity.

    Science.gov (United States)

    Carmona, Juan José; Michan, Shaday

    2016-01-01

    As human life expectancy is prolonged, age-related diseases are thriving. Aging is a complex multifactorial process of molecular and cellular decline that affects tissue function over time, rendering organisms frail and susceptible to disease and death. Over the last decades, a growing body of scientific literature across different biological models, ranging from yeast, worms, flies, and mice to primates, humans and other long-lived animals, has contributed greatly towards identifying conserved biological mechanisms that ward off structural and functional deterioration within living systems. Collectively, these data offer powerful insights into healthy aging and longevity. For example, molecular integrity of the genome, telomere length, epigenetic landscape stability, and protein homeostasis are all features linked to "youthful" states. These molecular hallmarks underlie cellular functions associated with aging like mitochondrial fitness, nutrient sensing, efficient intercellular communication, stem cell renewal, and regenerative capacity in tissues. At present, calorie restriction remains the most robust strategy for extending health and lifespan in most biological models tested. Thus, pathways that mediate the beneficial effects of calorie restriction by integrating metabolic signals to aging processes have received major attention, such as insulin/insulin growth factor-1, sirtuins, mammalian target of rapamycin, and 5' adenosine monophosphate-activated protein kinase. Consequently, small-molecule targets of these pathways have emerged in the impetuous search for calorie restriction mimetics, of which resveratrol, metformin, and rapamycin are the most extensively studied. A comprehensive understanding of the molecular and cellular mechanisms that underlie age-related deterioration and repair, and how these pathways interconnect, remains a major challenge for uncovering interventions to slow human aging while extending molecular and physiological youthfulness

  12. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints

    Science.gov (United States)

    Gurr, Geoff M.; You, Minsheng

    2016-01-01

    Biological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR) approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA) and now – in turn – are being overtaken by next generation sequencing (NGS)-based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate plant defense mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles. PMID:26793225

  13. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  14. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    Science.gov (United States)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  15. Doctoral conceptual thresholds in cellular and molecular biology

    Science.gov (United States)

    Feldon, David F.; Rates, Christopher; Sun, Chongning

    2017-12-01

    In the biological sciences, very little is known about the mechanisms by which doctoral students acquire the skills they need to become independent scientists. In the postsecondary biology education literature, identification of specific skills and effective methods for helping students to acquire them are limited to undergraduate education. To establish a foundation from which to investigate the developmental trajectory of biologists' research skills, it is necessary to identify those skills which are integral to doctoral study and distinct from skills acquired earlier in students' educational pathways. In this context, the current study engages the framework of threshold concepts to identify candidate skills that are both obstacles and significant opportunities for developing proficiency in conducting research. Such threshold concepts are typically characterised as transformative, integrative, irreversible, and challenging. The results from interviews and focus groups with current and former doctoral students in cellular and molecular biology suggest two such threshold concepts relevant to their subfield: the first is an ability to effectively engage primary research literature from the biological sciences in a way that is critical without dismissing the value of its contributions. The second is the ability to conceptualise appropriate control conditions necessary to design and interpret the results of experiments in an efficient and effective manner for research in the biological sciences as a discipline. Implications for prioritising and sequencing graduate training experiences are discussed on the basis of the identified thresholds.

  16. The analytical change in plasma creatinine that constitutes a biologic/physiologic change.

    Science.gov (United States)

    Toffaletti, John G; Hammett-Stabler, Catherine A; Gearhart, Margaret; Roy Choudhury, Kingshuk; Handel, Elizabeth A

    2016-08-01

    Accurate and precise measurements of creatinine are necessary to evaluate changes in kidney function related to a decreased glomerular filtration rate (GFR). When serial measurements of creatinine are monitored in an individual, it is useful to know what magnitude of an analytical change in creatinine indicates a true physiologic/biologic change in plasma creatinine that might warrant clinical intervention. We compared results between three different methods for creatinine using large chemistry analyzers, two based on alkaline picrate (AP1 and AP2), and one based on dry-slide enzymatic conversion (ENZ). On each of three different segments or days of the study spaced 1-2months apart, we selected 10 different plasma samples having creatinine concentrations ranging from about 0.5mg/dL to 4.5mg/dL (44 to 400μmol/L). Each sample was analyzed in triplicate on each of two same-model analyzers at each institution, then from this data we determined the precision of each model of analyzer. The within-instrument precision of each analyzer was evaluated from the differences between the triplicate results on each sample by each analyzer (mean and SD of the differences). The between-instrument precision was evaluated as the differences between results on the same sample (1, 2, 3, etc.) analyzed on different analyzers of the same model (A and B). This between-analyzer precision data was used to determine both the range and mean±2SD of the differences that could be used to indicate that greater changes in creatinine concentrations would represent a biologic change. The within-instrument precision was best for the ENZ method in comparison to the two alkaline picrate rate methods. The between-instrument precision of the 90 consecutive measurements (30 samples×triplicate analyses) between the same-model analyzers were (mean and SD of differences in mg/dL): -0.018 and 0.029 (ENZ); 0.016 and 0.11 (AP1), and -0.058 and 0.071 (AP2). While all three of the creatinine methods studied

  17. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  18. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  19. Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination

    International Nuclear Information System (INIS)

    Lin Dasong; Zhou Qixing; Xu Yingming; Chen Chun; Li Ye

    2012-01-01

    This study aims to evaluate toxic effects of exposure to chlortetracycline (CTC) in soil on reproductive endpoints (juvenile counts and cocoon counts), biochemical responses, and genotoxic potentials of the earthworm Eisenia fetida. Results showed that juvenile counts and cocoon counts of the tested earthworms were reduced after exposure to CTC. The effective concentrations (EC 50 values) for juvenile and cocoon counts were 96.1 and 120.3 mg/kg, respectively. Treatment of earthworms with CTC significantly changed the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). An increase in malondialdehyde (MDA) indicated that CTC could cause cellular lipid peroxidation in the tested earthworms. The percentage of DNA in the tail of single-cell gel electrophoresis of coelomocytes as an indication of DNA damage increased after treatment with different doses of CTC, and a dose-dependent DNA damage of coelomocytes was found. In conclusion, CTC induces physiological responses and genotoxicity on earthworms. - Highlights: ► Reproductive endpoints were assessed for Eisenia fetida exposed to chlortectracyline (CTC). ► CTC may induce physiological and molecular responses in E. fetida. ► A clear relationship was observed between CTC doses and DNA damage of coelomocytes. - Chlortetracycline in soil could induce physiological responses and genotoxicity on earthworms at realistic environmental concentrations.

  20. The Role of Pharmacology in Ureteral Physiology and Expulsive Therapy

    Science.gov (United States)

    Jerde, Travis J.; Nakada, Stephen Y.

    2007-04-01

    Research in the field of ureteral physiology and pharmacology has traditionally been directed toward relaxation of ureteral spasm as a mechanism of analgesia during painful ureteral obstruction, most often stone-induced episodes. However, interest in this field has expanded greatly in recent years with the expanded use of alpha-blocker therapy for inducing stone passage, a usage now termed "medical expulsive therapy". While most clinical reports involving expulsive therapy have focused on alpha receptor or calcium channel blockade, there are diverse studies investigating pharmacological ureteral relaxation with novel agents including cyclooxygenase inhibitors, small molecule beta receptor agonists, neurokinin antagonists, and phosphodiesterase inhibitors. In addition, cutting edge molecular biology research is revealing promising potential therapeutic targets aimed at specific molecular changes that occur during the acute obstruction that accompanies stone disease. The purpose of this report is to review the use of pharmacological agents as ureteral smooth muscle relaxants clinically, and to look into the future of expulsive therapy by reviewing the available literature of ureteral physiology and pharmacology research.

  1. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology.

    Science.gov (United States)

    Margaritelis, Nikos V; Cobley, James N; Paschalis, Vassilis; Veskoukis, Aristidis S; Theodorou, Anastasios A; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The equivocal role of reactive species and redox signaling in exercise responses and adaptations is an example clearly showing the inadequacy of current redox biology research to shed light on fundamental biological processes in vivo. Part of the answer probably relies on the extreme complexity of the in vivo redox biology and the limitations of the currently applied methodological and experimental tools. We propose six fundamental principles that should be considered in future studies to mechanistically link reactive species production to exercise responses or adaptations: 1) identify and quantify the reactive species, 2) determine the potential signaling properties of the reactive species, 3) detect the sources of reactive species, 4) locate the domain modified and verify the (ir)reversibility of post-translational modifications, 5) establish causality between redox and physiological measurements, 6) use selective and targeted antioxidants. Fulfilling these principles requires an idealized human experimental setting, which is certainly a utopia. Thus, researchers should choose to satisfy those principles, which, based on scientific evidence, are most critical for their specific research question. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  3. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  4. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    Science.gov (United States)

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  5. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Andreas eHolzinger

    2013-08-01

    Full Text Available Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. For example, Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of

  6. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  7. Abstracts of the 30. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    2001-01-01

    Several aspects concerning biochemistry and molecular biology of either animals, plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques

  8. Semester-Long Inquiry-Based Molecular Biology Laboratory: Transcriptional Regulation in Yeast

    Science.gov (United States)

    Oelkers, Peter M.

    2017-01-01

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in "Saccharomyces cerevisiae." Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a…

  9. Molecular structure descriptors in the computer-aided design of biologically active compounds

    International Nuclear Information System (INIS)

    Raevsky, Oleg A

    1999-01-01

    The current state of description of molecular structure in computer-aided molecular design of biologically active compounds by means of descriptors is analysed. The information contents of descriptors increases in the following sequence: element-level descriptors-structural formulae descriptors-electronic structure descriptors-molecular shape descriptors-intermolecular interaction descriptors. Each subsequent class of descriptors normally covers information contained in the previous-level ones. It is emphasised that it is practically impossible to describe all the features of a molecular structure in terms of any single class of descriptors. It is recommended to optimise the number of descriptors used by means of appropriate statistical procedures and characteristics of structure-property models based on these descriptors. The bibliography includes 371 references.

  10. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Abstracts of the 28. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1999-01-01

    Biochemistry, genetic and molecular biology aspects of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques

  12. From systems biology to photosynthesis and whole-plant physiology: a conceptual model for integrating multi-scale networks.

    Science.gov (United States)

    Weston, David J; Hanson, Paul J; Norby, Richard J; Tuskan, Gerald A; Wullschleger, Stan D

    2012-02-01

    Network analysis is now a common statistical tool for molecular biologists. Network algorithms are readily used to model gene, protein and metabolic correlations providing insight into pathways driving biological phenomenon. One output from such an analysis is a candidate gene list that can be responsible, in part, for the biological process of interest. The question remains, however, as to whether molecular network analysis can be used to inform process models at higher levels of biological organization. In our previous work, transcriptional networks derived from three plant species were constructed, interrogated for orthology and then correlated with photosynthetic inhibition at elevated temperature. One unique aspect of that study was the link from co-expression networks to net photosynthesis. In this addendum, we propose a conceptual model where traditional network analysis can be linked to whole-plant models thereby informing predictions on key processes such as photosynthesis, nutrient uptake and assimilation, and C partitioning.

  13. Analysis of Cell Biomechanics Response to Gravity:A Fluids for Biology Study Utilizing NASA Glenns Zero Gravity Research Facility

    Science.gov (United States)

    Bomani, Bilal M. M.; Kassemi, Mohammad; Neumann, Eric S.

    2016-01-01

    It remains unclear how biological cells sense and respond to gravitational forces. Leading scientists state that a large gap exists in the understanding of physiological and molecular adaptation that occurs as biology enters the spaceflight realm. We are seeking a method to fully understand how cells sense microgravity/gravity and what triggers their response.

  14. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  15. A Self-Assisting Protein Folding Model for Teaching Structural Molecular Biology.

    Science.gov (United States)

    Davenport, Jodi; Pique, Michael; Getzoff, Elizabeth; Huntoon, Jon; Gardner, Adam; Olson, Arthur

    2017-04-04

    Structural molecular biology is now becoming part of high school science curriculum thus posing a challenge for teachers who need to convey three-dimensional (3D) structures with conventional text and pictures. In many cases even interactive computer graphics does not go far enough to address these challenges. We have developed a flexible model of the polypeptide backbone using 3D printing technology. With this model we have produced a polypeptide assembly kit to create an idealized model of the Triosephosphate isomerase mutase enzyme (TIM), which forms a structure known as TIM barrel. This kit has been used in a laboratory practical where students perform a step-by-step investigation into the nature of protein folding, starting with the handedness of amino acids to the formation of secondary and tertiary structure. Based on the classroom evidence we collected, we conclude that these models are valuable and inexpensive resource for teaching structural molecular biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    Directory of Open Access Journals (Sweden)

    Balam Muñoz

    2010-11-01

    Full Text Available Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1 Use of cell cultures; (2 evaluation of gene expression; (3 the “omic” sciences (genomics, transcriptomics, proteomics and metabolomics and (4 bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  17. Building bridges between cellular and molecular structural biology.

    Science.gov (United States)

    Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J

    2017-07-06

    The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.

  18. Molecular biological features of male germ cell differentiation

    Science.gov (United States)

    HIROSE, MIKA; TOKUHIRO, KEIZO; TAINAKA, HITOSHI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE

    2007-01-01

    Somatic cell differentiation is required throughout the life of a multicellular organism to maintain homeostasis. In contrast, germ cells have only one specific function; to preserve the species by conveying the parental genes to the next generation. Recent studies of the development and molecular biology of the male germ cell have identified many genes, or isoforms, that are specifically expressed in the male germ cell. In the present review, we consider the unique features of male germ cell differentiation. (Reprod Med Biol 2007; 6: 1–9) PMID:29699260

  19. Abstracts of the 29. annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    2000-01-01

    Several aspects concerning biochemistry and molecular biology of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay and nuclear magnetic resonance are the most applied techniques

  20. Correlativity study on MRI morphologic features, pathology, and molecular biology of breast cancer

    International Nuclear Information System (INIS)

    Chen Rong; Gong Shuigen; Zhang Weiguo; Chen Jinhua; He Shuangwu; Liu Baohua; Li Zengpeng

    2004-01-01

    Objective: To investigate the correlation among MRI morphologic features, pathology, and molecular biology of breast cancer. Methods: MR scanning was performed in 78 patients with breast cancer before operation and MRI morphologic features of breast cancer were analyzed. The mastectomy specimens of the breast neoplasm were stained with immunohistochemistry, and the expression of estrogen receptor (ER), progesterone receptor (PR), C-erbB-2, p53, and the distribution of microvessel density (MVD) was measured. The pathologic results were compared with MRI features. Results: Among the 80 breast cancers, ER positive expression was positively correlated with the spiculate margin of breast cancer (P 0.05). Among the 41 breast cancers with dynamic MR scans, there was positive correlation between the spatial distribution of contrast agent and MVD (P<0.01). Conclusion: There exists some correlation among MRI morphologic features, pathology, and molecular biology factors in breast cancer to certain extent. The biologic behavior and prognosis of the breast cancer can be assessed according to MRI features

  1. The Physics of Proteins An Introduction to Biological Physics and Molecular Biophysics

    CERN Document Server

    Frauenfelder, Hans; Chan, Winnie S

    2010-01-01

    Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological sys...

  2. Molecular Aspects of Structure, Gating, and Physiology of pH-Sensitive Background K2P and Kir K+-Transport Channels

    Science.gov (United States)

    Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel

    2015-01-01

    K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142

  3. Biochemical, physiological and molecular responses of Ricinus communis seeds and seedlings to different temperatures: a multi-omics approach

    NARCIS (Netherlands)

    Ribeiro de Jesus, P.R.

    2015-01-01

    Biochemical, physiological and molecular responses of Ricinus communis seeds and seedlings to different temperatures: a multi-omics approach

    by Paulo Roberto Ribeiro de Jesus

    The main objective of this thesis was to provide a detailed

  4. Delineation and interpretation of gene networks towards their effect in cellular physiology- a reverse engineering approach for the identification of critical molecular players, through the use of ontologies.

    Science.gov (United States)

    Moutselos, K; Maglogiannis, I; Chatziioannou, A

    2010-01-01

    Exploiting ontologies, provides clues regarding the involvement of certain molecular processes in the cellular phenotypic manifestation. However, identifying individual molecular actors (genes, proteins, etc.) for targeted biological validation in a generic, prioritized, fashion, based in objective measures of their effects in the cellular physiology, remains a challenge. In this work, a new meta-analysis algorithm is proposed for the holistic interpretation of the information captured in -omic experiments, that is showcased in a transcriptomic, dynamic, DNA microarray dataset, which examines the effect of mastic oil treatment in Lewis lung carcinoma cells. Through the use of the Gene Ontology this algorithm relates genes to specific cellular pathways and vice versa in order to further reverse engineer the critical role of specific genes, starting from the results of various statistical enrichment analyses. The algorithm is able to discriminate candidate hub-genes, implying critical biochemical cross-talk. Moreover, performance measures of the algorithm are derived, when evaluated with respect to the differential expression gene list of the dataset.

  5. The Effects Of An Exercise Physiology Program on Physical Fitness Variables, Body Satisfaction, and Physiology Knowledge.

    Science.gov (United States)

    Perry, Arlette C.; Rosenblatt, Evelyn S.; Kempner, Lani; Feldman, Brandon B.; Paolercio, Maria A.; Van Bemden, Angie L.

    2002-01-01

    Examined the effects of an exercise physiology program on high school students' physical fitness, body satisfaction, and physiology knowledge. Intervention students received exercise physiology theory and active aerobic and resistance exercise within their biology course. Data from student surveys and measurements indicated that the integrated…

  6. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers

    OpenAIRE

    Taïbi, Khaled; Campo, Antonio D. del; Vilagrosa Carmona, Alberto; Bellés, José M.; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J.; López-Nicolás, José M.; Mulet, José M.

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of pre...

  7. Key Issues Concerning Biolog Use for Aerobic and Anaerobic Freshwater Bacterial Community-Level Physiological Profiling

    Science.gov (United States)

    Christian, Bradley W.; Lind, Owen T.

    2006-06-01

    Bacterial heterotrophy in aquatic ecosystems is important in the overall carbon cycle. Biolog MicroPlates provide information into the metabolic potential of bacteria involved in carbon cycling. Specifically, Biolog EcoPlatesTM were developed with ecologically relevant carbon substrates to allow investigators to measure carbon substrate utilization patterns and develop community-level physiological profiles from natural bacterial assemblages. However, understanding of the functionality of these plates in freshwater research is limited. We explored several issues of EcoPlate use for freshwater bacterial assemblages including inoculum density, incubation temperature, non-bacterial color development, and substrate selectivity. Each of these has various effects on plate interpretation. We offer suggestions and techniques to resolve these interpretation issues. Lastly we propose a technique to allow EcoPlate use in anaerobic freshwater bacterial studies.

  8. Adrenocortical carcinoma: the dawn of a new era of genomic and molecular biology analysis.

    Science.gov (United States)

    Armignacco, R; Cantini, G; Canu, L; Poli, G; Ercolino, T; Mannelli, M; Luconi, M

    2018-05-01

    Over the last decade, the development of novel and high penetrance genomic approaches to analyze biological samples has provided very new insights in the comprehension of the molecular biology and genetics of tumors. The use of these techniques, consisting of exome sequencing, transcriptome, miRNome, chromosome alteration, genome, and epigenome analysis, has also been successfully applied to adrenocortical carcinoma (ACC). In fact, the analysis of large cohorts of patients allowed the stratification of ACC with different patterns of molecular alterations, associated with different outcomes, thus providing a novel molecular classification of the malignancy to be associated with the classical pathological analysis. Improving our knowledge about ACC molecular features will result not only in a better diagnostic and prognostic accuracy, but also in the identification of more specific therapeutic targets for the development of more effective pharmacological anti-cancer approaches. In particular, the specific molecular alteration profiles identified in ACC may represent targetable events by the use of already developed or newly designed drugs enabling a better and more efficacious management of the ACC patient in the context of new frontiers of personalized precision medicine.

  9. New approaches in mathematical biology: Information theory and molecular machines

    International Nuclear Information System (INIS)

    Schneider, T.

    1995-01-01

    My research uses classical information theory to study genetic systems. Information theory was founded by Claude Shannon in the 1940's and has had an enormous impact on communications engineering and computer sciences. Shannon found a way to measure information. This measure can be used to precisely characterize the sequence conservation at nucleic-acid binding sites. The resulting methods, by completely replacing the use of ''consensus sequences'', provide better models for molecular biologists. An excess of conservation led us to do experimental work on bacteriophage T7 promoters and the F plasmid IncD repeats. The wonderful fidelity of telephone communications and compact disk (CD) music can be traced directly to Shannon's channel capacity theorem. When rederived for molecular biology, this theorem explains the surprising precision of many molecular events. Through connections with the Second Law of Thermodyanmics and Maxwell's Demon, this approach also has implications for the development of technology at the molecular level. Discussions of these topics are held on the internet news group bionet.info-theo. (author). (Abstract only)

  10. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  11. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  12. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Voltage-Gated Proton Channels: Molecular Biology, Physiology, and Pathophysiology of the HV Family

    Science.gov (United States)

    2013-01-01

    Voltage-gated proton channels (HV) are unique, in part because the ion they conduct is unique. HV channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H+ concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The HV channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K+ and Na+ channels. In higher species, HV channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. HV channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, HV functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hHV1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hHV1. PMID:23589829

  14. Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields

    International Nuclear Information System (INIS)

    Binhi, V.N.; Savin, A.V.

    2002-01-01

    Extremely low-frequency magnetic fields are known to affect biological systems. In many cases, biological effects display 'windows' in biologically effective parameters of the magnetic fields: most dramatic is the fact that the relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the order of 10-100 μT do. Linear resonant physical processes do not explain the frequency windows in this case. Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has been proposed recently to explain those 'windows'. It considers the quantum-interference effects on the protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field frequency and amplitude windows within which the biological effects occur. It agrees with a lot of experiments. However, according to the mechanism, the lifetime Γ -1 of ion quantum states within a protein cavity should be of unrealistic value, more than 0.01 s for frequency band 10-100 Hz. In this paper, a biophysical mechanism has been proposed, which (i) retains the attractive features of the ion interference mechanism, i.e., predicts physical characteristics that might be experimentally examined and (ii) uses the principles of gyroscopic motion and removes the necessity to postulate large lifetimes. The mechanism considers the dynamics of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the molecular gyroscopes. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of 28 Aa

  15. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant's recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  16. Plant growth regulator interactions in physiological processes for controlling plant regeneration and in vitro development of Tulbaghia simmleri

    Czech Academy of Sciences Publication Activity Database

    Kumari, A.; Baskaran, P.; Plačková, Lenka; Omámiková, Hana; Nisler, Jaroslav; Doležal, Karel; Van Staden, J.

    2018-01-01

    Roč. 223, APR (2018), s. 65-71 ISSN 0176-1617 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Endogenous hormone * Exogenous hormone application * In vitro regeneration * Ornamental and medicinal plant * Physiological process * Tulbaghia simmleri Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.121, year: 2016

  17. Stochastic narrow escape in molecular and cellular biology analysis and applications

    CERN Document Server

    Holcman, David

    2015-01-01

    This book covers recent developments in the non-standard asymptotics of the mathematical narrow escape problem in stochastic theory, as well as applications of the narrow escape problem in cell biology. The first part of the book concentrates on mathematical methods, including advanced asymptotic methods in partial equations, and is aimed primarily at applied mathematicians and theoretical physicists who are interested in biological applications. The second part of the book is intended for computational biologists, theoretical chemists, biochemists, biophysicists, and physiologists. It includes a summary of output formulas from the mathematical portion of the book and concentrates on their applications in modeling specific problems in theoretical molecular and cellular biology. Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small sp...

  18. On the shoulders of giants: Molecular Biology in Public Health

    Directory of Open Access Journals (Sweden)

    Carmine Melino

    2005-03-01

    Full Text Available

    We accepted with great pleasure the invitation by professor Walter Ricciardi,our friend and colleague, to write an editorial in order to introduce this special issue dedicated to Molecular Biology in Hygiene. We are delighted for two connected reasons.

    First, Carmine,as a former professor of Hygiene,has passed his concepts of Hygiene on to his family and, despite significant difficulties, keeps working on the problems of preventive medicine in the work environment and in geriatrics. Second, Gerry, raised in an environment of hygienists, has dedicated all his professional efforts to Molecular Biology. As these two distinct experiences have constantly mixed within our family over time, we appreciate the promiscuous intermingling of these two disciplines in this thematic issue.

    The result is a useful common effort aiming at understanding the problems of diseases in the work environment and in the human environment in general.

    These problems have a profound social meaning, for which it is necessary to create an essential collaboration with scientific research.

    This is the only way to benefit human society.

  19. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  20. Modeling human risk: Cell & molecular biology in context

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    It is anticipated that early in the next century manned missions into outer space will occur, with a mission to Mars scheduled between 2015 and 2020. However, before such missions can be undertaken, a realistic estimation of the potential risks to the flight crews is required. One of the uncertainties remaining in this risk estimation is that posed by the effects of exposure to the radiation environment of outer space. Although the composition of this environment is fairly well understood, the biological effects arising from exposure to it are not. The reasons for this are three-fold: (1) A small but highly significant component of the radiation spectrum in outer space consists of highly charged, high energy (HZE) particles which are not routinely experienced on earth, and for which there are insufficient data on biological effects; (2) Most studies on the biological effects of radiation to date have been high-dose, high dose-rate, whereas in space, with the exception of solar particle events, radiation exposures will be low-dose, low dose-rate; (3) Although it has been established that the virtual absence of gravity in space has a profound effect on human physiology, it is not clear whether these effects will act synergistically with those of radiation exposure. A select panel will evaluate the utilizing experiments and models to accurately predict the risks associated with exposure to HZE particles. Topics of research include cellular and tissue response, health effects associated with radiation damage, model animal systems, and critical markers of Radiation response.

  1. Physiology of High-Altitude Acclimatization

    Indian Academy of Sciences (India)

    Author Affiliations. Sonam Chawla1 Shweta Saxena2. Defence Institute of Physiology and Allied Sciences, Delhi; Experimental Biology Division Defence Institute of Physiology and Allied Sciences Defence Research and Development Organisation Lucknow Road, Timarpur Delhi 110054 ...

  2. Molecular biological factors in the diagnosis of cervical intraepithelial neoplasias

    Directory of Open Access Journals (Sweden)

    Yu. N. Ponomareva

    2010-01-01

    Full Text Available The authors have made a complex analysis of the molecular biological factors associated with cervical intraepithelial neoplasia. They have revealed that infection by oncogenic human papillomavirus types is associated with suppressed apoptosis and enhanced cellular proliferative activity, which can be effectively used in the diagnosis and prediction of cervical neoplasias to optimize management tac- tics and to improve the results of treatment.

  3. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  4. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  5. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    Science.gov (United States)

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  6. Plant Physiology and Development

    DEFF Research Database (Denmark)

    Taiz, Lincoln; Zeiger, Eduardo; Møller, Ian Max

    Throughout its twenty-two year history, the authors of Plant Physiology have continually updated the book to incorporate the latest advances in plant biology and implement pedagogical improvements requested by adopters. This has made Plant Physiology the most authoritative, comprehensive......, and widely used upper-division plant biology textbook. In the Sixth Edition, the Growth and Development section (Unit III) has been reorganized and expanded to present the complete life cycle of seed plants from germination to senescence. In recognition of this enhancement, the text has been renamed Plant...... Physiology and Development. As before, Unit III begins with updated chapters on Cell Walls and Signals and Signal Transduction. The latter chapter has been expanded to include a discussion of major signaling molecules, such as calcium ions and plant hormones. A new, unified chapter entitled Signals from...

  7. The isolated Leptospira Spp. Identification by molecular biological techniques

    Directory of Open Access Journals (Sweden)

    Duangjai Suwancharoen

    2017-01-01

    Full Text Available Leptospirosis is a zoonotic disease caused by the bacteria of Leptospira spp. Identification of this bacterium relies on serotyping and genotyping. Data base for animal causative serovars in Thailand is limited. As the unknown serovars are found in the laboratory, they need to be sent overseas for referent identification. To reduce the cost, this research intended to develop a leptospiral identification method which is user–friendly and able to classify efficiently. Ten Leptospira isolations were cultured from urine samples. They were identified by three molecular biological techniques, including Pulsed-Field Gel Electrophoresis (PFGE, Variable Number Tandem Repeat (VNTR and Multilocus Sequence Typing (MLST. These methods were developed and compared to find the most suitable one for leptospiral identification. VNTR was found to be inappropriate since it could not identify the agents and it did not show the PCR product. PFGE and MLST gave the same results of the unknown 1 and 2 which were L.weilii sv Samin st Samin. Unknown 4 showed different results by each technique. Unknown 5 to 10 were likely to be L.meyeri sv Ranarum st ICF and Leptonema illini sv Illini st 3055 by PFGE but MLST could not identify the serovar. However, molecular biological technique for Leptospira identification should be done by several methods in order to confirm the result of each other.

  8. Simulations on the Teaching of Molecular Biology: Experience’s Report

    Directory of Open Access Journals (Sweden)

    A.L.S. Silva

    2013-05-01

    Full Text Available INTRODUCTION: The comprehension of techniques used in Molecular Biology neither always is easy.Therefore, the objective of this work was to apply simulations in Molecular Biology for graduating students of a Pharmacy course froma private educational institution, to allow them to practice the apparent difficult protocols. MATERIALS AND METHODS: Three groups of students (50 each were evaluated. Two of them were submitted to different simulatory activities,such as: a visiting the virtual laboratory of Utah University (USA to understand gel electrophoresis and polymerasechain reaction (PCR techniques, b extracting DNA from oral mucosa by means of a homemade protocol, c investigating simulatory paternity tests, d proposing their own microarrays by painting them on paper and then interpreted the results according to the colors, e designing primers (small fragments of DNA to PCR with the free software Primer3 and testing them in silico PCR. The third group of students was only submitted to oral theoretical classes about all these themes. The progress of the understanding was qualitatively evaluated and compared by the analysis of questionnaires. RESULTS AND DISCUSSION: The groups submitted to the virtual classes were responsive during the development of activities and had a better performance in the examinations than the group that had only theoretical classes, showing better comprehension about the themes. Their greatest difficult was the limitation in the English language to interact with the websites (they often asked about an alternative site in Portuguese. CONCLUSION: The didactical sequence involving exercises in websites by using freeware and recreational activities in classroom with graduating students of Pharmacy proved to be an effective tool in the learning of some of the techniques in Molecular Biology, mainly when a lab and some equipment are not available to perform practical activities

  9. The role of non-rainfall water on physiological activation in desert biological soil crusts

    Science.gov (United States)

    Zheng, Jiaoli; Peng, Chengrong; Li, Hua; Li, Shuangshuang; Huang, Shun; Hu, Yao; Zhang, Jinli; Li, Dunhai

    2018-01-01

    Non-rainfall water (NRW, e.g. fog and dew), in addition to rainfall and snowfall, are considered important water inputs to drylands. At the same time, biological soil crusts (BSCs) are important components of drylands. However, little information is available regarding the effect of NRW inputs on BSC activation. In this study, the effects of NRW on physiological activation in three BSC successional stages, including the cyanobacteria crust stage (Crust-C), moss colonization stage (Crust-CM), and moss crust stage (Crust-M), were studied in situ. Results suggest NRW inputs hydrated and activated physiological activity (Fv/Fm, carbon exchange, and nitrogen fixation) in BSCs but led to a negative carbon balance and low rates of nitrogen fixation in BSCs. One effective NRW event could hydrate BSCs for 7 h. Following simulated rainfall, the physiological activities recovered within 3 h, and net carbon gain occurred until 3 h after hydration, whereas NRW-induced physiological recovery processes were slower and exhibited lower activities, leading to a negative carbon balance. There were significant positive correlations between NRW amounts and the recovered values of Fv/Fm in all the three BSC stages (p < .001). The thresholds for Fv/Fm activation decreased with BSC succession, and the annual effective NRW events increased with BSC succession, with values of 29.8, 89.2, and 110.7 in Crust-C, Crust-CM and Crust-M, respectively. The results suggest that moss crust and moss-cyanobacteria crust use NRW to prolong metabolic activity and reduce drought stress more efficiently than cyanobacteria crusts. Therefore, these results suggest that BSCs utilize NRW to sustain life while growth and biomass accumulation require precipitation (rainfall) events over a certain threshold.

  10. MBEToolbox: a Matlab toolbox for sequence data analysis in molecular biology and evolution

    Directory of Open Access Journals (Sweden)

    Xia Xuhua

    2005-03-01

    Full Text Available Abstract Background MATLAB is a high-performance language for technical computing, integrating computation, visualization, and programming in an easy-to-use environment. It has been widely used in many areas, such as mathematics and computation, algorithm development, data acquisition, modeling, simulation, and scientific and engineering graphics. However, few functions are freely available in MATLAB to perform the sequence data analyses specifically required for molecular biology and evolution. Results We have developed a MATLAB toolbox, called MBEToolbox, aimed at filling this gap by offering efficient implementations of the most needed functions in molecular biology and evolution. It can be used to manipulate aligned sequences, calculate evolutionary distances, estimate synonymous and nonsynonymous substitution rates, and infer phylogenetic trees. Moreover, it provides an extensible, functional framework for users with more specialized requirements to explore and analyze aligned nucleotide or protein sequences from an evolutionary perspective. The full functions in the toolbox are accessible through the command-line for seasoned MATLAB users. A graphical user interface, that may be especially useful for non-specialist end users, is also provided. Conclusion MBEToolbox is a useful tool that can aid in the exploration, interpretation and visualization of data in molecular biology and evolution. The software is publicly available at http://web.hku.hk/~jamescai/mbetoolbox/ and http://bioinformatics.org/project/?group_id=454.

  11. Assessing the Soil Physiological Potential Using Pedo-Biological Diagnosis Under Minimum-Tillage System and Mineral Fertilization

    Directory of Open Access Journals (Sweden)

    Lazar Bireescu

    2014-11-01

    Full Text Available The main objective of sustainable agriculture is the protection of environment and natural vegetal and soil resources. Accordingly, the objective of this research was to assess the impact of technological systems by minimum tillage on soil biological activity, using the Pedo-Biological Diagnosis of Soil Resources. Our research was conducted on haplic chernozem from Experimental Station of UASVM of Iasi, Romania, during the seasonal dynamic, to the soybean crop, on unfertilized and fertilized agrofond, using moderate mineral doses (N80P80 as average of 2009–2010 period, under minimum tillage (2x disk, paraplow, chisel compared to conventional (plugging at 20 cm and 30 cm. In the case of soil works with chisel and paraplow without return of furrow, the Pedo-Biological Diagnosis highlights an increase of soil physiological potential, in the both variants (unfertilized and fertilized, unlike the method of alternating the depth of plugging that proved to be ineffective.

  12. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Humm, John; Larson, Steven; Amols, Howard; Fuks, Zvi; Leibel, Steven; Koutcher, Jason A.

    2000-01-01

    Purpose: The goals of this study were to survey and summarize the advances in imaging that have potential applications in radiation oncology, and to explore the concept of integrating physical and biological conformality in multidimensional conformal radiotherapy (MD-CRT). Methods and Materials: The advances in three-dimensional conformal radiotherapy (3D-CRT) have greatly improved the physical conformality of treatment planning and delivery. The development of intensity-modulated radiotherapy (IMRT) has provided the 'dose painting' or 'dose sculpting' ability to further customize the delivered dose distribution. The improved capabilities of nuclear magnetic resonance imaging and spectroscopy, and of positron emission tomography, are beginning to provide physiological and functional information about the tumor and its surroundings. In addition, molecular imaging promises to reveal tumor biology at the genotype and phenotype level. These developments converge to provide significant opportunities for enhancing the success of radiotherapy. Results: The ability of IMRT to deliver nonuniform dose patterns by design brings to fore the question of how to 'dose paint' and 'dose sculpt', leading to the suggestion that 'biological' images may be of assistance. In contrast to the conventional radiological images that primarily provide anatomical information, biological images reveal metabolic, functional, physiological, genotypic, and phenotypic data. Important for radiotherapy, the new and noninvasive imaging methods may yield three-dimensional radiobiological information. Studies are urgently needed to identify genotypes and phenotypes that affect radiosensitivity, and to devise methods to image them noninvasively. Incremental to the concept of gross, clinical, and planning target volumes (GTV, CTV, and PTV), we propose the concept of 'biological target volume' (BTV) and hypothesize that BTV can be derived from biological images and that their use may incrementally improve

  13. A guide on instrument of biochemistry and molecular biology

    International Nuclear Information System (INIS)

    1995-10-01

    This book is about instrument on biochemistry and molecular biology, which consists of six chapters. It deals with introduction of advanced bio-instrument, common utilization and maintain, explanation of each instrument like capillary electrophoresis, interactive laser cytometer, personal computer and software, an electron microscope and DNA/RNS synthesis instrument, large equipment and special system like information system and network, analysis system for genome and large spectro graph, outside donation, examples for common utilization and appendix on data like application form for use.

  14. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    Science.gov (United States)

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  15. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    Science.gov (United States)

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. DAE-BRNS life sciences symposium on molecular biology of stress response and its applications

    International Nuclear Information System (INIS)

    2005-01-01

    The world of living organisms is full of challenges from their surroundings and these organisms learn to adapt themselves to the changes - some transient and some permanent - in these surroundings. The demands on adaptability to stress are very strong for extremophiles that live in harsh conditions such as cold or hot temperatures, salinity and hyperbaric habitats. The stress could be biotic (e.g. infection or parasitism) or abiotic (e.g. temperature, light, salinity, heavy metals etc.) Evolutionarily living organisms have developed different shapes, coloration, habits etc. to survive in their habitats. The molecular mechanisms of these biological adaptations have become clearer only in recent years from the studies on the biological responses of an organism to stresses during its life time. Such responses are characterized by activation of certain genes and synthesis of proteins and metabolites, which facilitate amelioration of the stress. The molecular biology (biochemistry and genetics) of stress response is being constantly unravelled thanks to the availability of highly sensitive and high throughput techniques and a plethora of extremophilic experimental systems such as archaebacteria, radio resistant bacteria and midges, plants surviving in cold etc. An interesting outcome of this voluminous research has been the knowledge that responses to a group of stresses share common mechanisms, at least in part. This reflects the biologically conservationist trend among otherwise diverse organisms and stresses. In this symposium several papers and posters in the area of molecular biology of stress are presented in addition to some very interesting and promising-to-be informative and stimulating plenary lectures and invited talks from highly reputed scientists. The papers relevant to INIS are indexed separately

  17. Using whole mount in situ hybridization to link molecular and organismal biology.

    Science.gov (United States)

    Jacobs, Nicole L; Albertson, R Craig; Wiles, Jason R

    2011-03-31

    Whole mount in situ hybridization (WISH) is a common technique in molecular biology laboratories used to study gene expression through the localization of specific mRNA transcripts within whole mount specimen. This technique (adapted from Albertson and Yelick, 2005) was used in an upper level undergraduate Comparative Vertebrate Biology laboratory classroom at Syracuse University. The first two thirds of the Comparative Vertebrate Biology lab course gave students the opportunity to study the embryology and gross anatomy of several organisms representing various chordate taxa primarily via traditional dissections and the use of models. The final portion of the course involved an innovative approach to teaching anatomy through observation of vertebrate development employing molecular techniques in which WISH was performed on zebrafish embryos. A heterozygous fibroblast growth factor 8 a (fgf8a) mutant line, ace, was used. Due to Mendelian inheritance, ace intercrosses produced wild type, heterozygous, and homozygous ace/fgf8a mutants in a 1:2:1 ratio. RNA probes with known expression patterns in the midline and in developing anatomical structures such as the heart, somites, tailbud, myotome, and brain were used. WISH was performed using zebrafish at the 13 somite and prim-6 stages, with students performing the staining reaction in class. The study of zebrafish embryos at different stages of development gave students the ability to observe how these anatomical structures changed over ontogeny. In addition, some ace/fgf8a mutants displayed improper heart looping, and defects in somite and brain development. The students in this lab observed the normal development of various organ systems using both external anatomy as well as gene expression patterns. They also identified and described embryos displaying improper anatomical development and gene expression (i.e., putative mutants). For instructors at institutions that do not already own the necessary equipment or where

  18. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    Science.gov (United States)

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  19. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  20. Forty Years of Ebolavirus Molecular Biology: Understanding a Novel Disease Agent Through the Development and Application of New Technologies.

    Science.gov (United States)

    Groseth, Allison; Hoenen, Thomas

    2017-01-01

    Molecular biology is a broad discipline that seeks to understand biological phenomena at a molecular level, and achieves this through the study of DNA, RNA, proteins, and/or other macromolecules (e.g., those involved in the modification of these substrates). Consequently, it relies on the availability of a wide variety of methods that deal with the collection, preservation, inactivation, separation, manipulation, imaging, and analysis of these molecules. As such the state of the art in the field of ebolavirus molecular biology research (and that of all other viruses) is largely intertwined with, if not driven by, advancements in the technical methodologies available for these kinds of studies. Here we review of the current state of our knowledge regarding ebolavirus biology and emphasize the associated methods that made these discoveries possible.

  1. The water economy of South American desert rodents: from integrative to molecular physiological ecology.

    Science.gov (United States)

    Bozinovic, Francisco; Gallardo, Pedro

    2006-01-01

    Rodents from arid and semi-arid habitats live under conditions where the spatial and temporal availability of free water is limited, or scarce, thus forcing these rodents to deal with the problem of water conservation. The response of rodents to unproductive desert environments and water deficits has been intensively investigated in many deserts of the world. However, current understanding of the cellular, systemic and organismal physiology of water economy relies heavily on short-term, laboratory-oriented experiments, which usually focus on responses at isolated levels of biological organization. In addition, studies in small South American mammals are scarce. Indeed xeric habitats have existed in South America for a long time and it is intriguing why present day South American desert rodents do not show the wide array of adaptive traits to desert life observed for rodents on other continents. Several authors have pointed out that South American desert rodents lack physiological and energetic specialization for energy and water conservation, hypothesizing that their success is based more on behavioral and ecological strategies. We review phenotypic flexibility and physiological diversity in water flux rate, urine osmolality, and expression of water channels in South American desert-dwelling rodents. As far as we know, this is the first review of integrative studies at cellular, systemic and organismal levels. Our main conclusion is that South American desert rodents possess structural as well as physiological systems for water conservation, which are as remarkable as those found in "classical" rodents inhabiting other desert areas of the world.

  2. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    Science.gov (United States)

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5 + intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  3. Centre for Cellular and Molecular Biology to breed vultures for Parsis

    African Journals Online (AJOL)

    Hyderabad – Parsis worried about the growing pile of bodies in their 'Towers of Silence' can take heart. The Centre for Cellular and Molecular Biology. (CCMB) has decided to take up, on an express basis, the job of breeding vultures, which can later be transported to various parts of the country. Though the problem of ...

  4. Physiology Applied to Everyday: The Practice of Professional Contextualization of Physiology Concepts as a Way of Facilitating Learning

    Science.gov (United States)

    Borges, Sidnei; Mello-Carpes, Pâmela Billig

    2014-01-01

    The teaching of Physiology is indispensable in many biological and health disciplines. Physiology is one of the major components of the curriculum in a number of life science courses, including the study of life, cells, tissues, and organisms as well as their functions. A bigger challenge for physiology teachers is to make physiological concepts…

  5. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Science.gov (United States)

    Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi

    It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  6. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Directory of Open Access Journals (Sweden)

    Mohieddin Jafari

    Full Text Available It is nearly half a century past the age of the introduction of the Central Dogma (CD of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  7. Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome

    Science.gov (United States)

    Deschênes, Georges; Fila, Marc

    2011-01-01

    Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures. PMID:21941653

  8. Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome

    Directory of Open Access Journals (Sweden)

    Georges Deschênes

    2011-01-01

    Full Text Available Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures.

  9. Physiological and Molecular Effects of the Cyclic Nucleotides cAMP and cGMP on Arabidopsis thaliana

    KAUST Repository

    Herrera, Natalia M.

    2012-01-01

    transport in Arabidopsis thaliana leaves and, that these changes at the molecular level can have functional biological consequences. For this reason we tested if CNs modulate the photosynthetic rate, responses to high light and root ion transport. Real time

  10. Alliances in Human Biology: The Harvard Committee on Industrial Physiology, 1929-1939.

    Science.gov (United States)

    Oakes, Jason

    2015-08-01

    In 1929 the newly-reorganized Rockefeller Foundation funded the work of a cross-disciplinary group at Harvard University called the Committee on Industrial Physiology (CIP). The committee's research and pedagogical work was oriented towards different things for different members of the alliance. The CIP program included a research component in the Harvard Fatigue Laboratory and Elton May's interpretation of the Hawthorne Studies; a pedagogical aspect as part of Wallace Donham's curriculum for Harvard Business School; and Lawrence Henderson's work with the Harvard Pareto Circle, his course Sociology 23, and the Harvard Society of Fellows. The key actors within the CIP alliance shared a concern with training men for elite careers in government service, business leadership, and academic prominence. But the first communications between the CIP and the Rockefeller Foundation did not emphasize training in human biology. Instead, the CIP presented itself as a coordinating body that would be able to organize all the varied work going on at Harvard that did not fit easily into one department, and it was on this basis that the CIP became legible to the President of Harvard, A. Lawrence Lowell, and to Rockefeller's Division of Social Sciences. The members of the CIP alliance used the term human biology for this project of research, training and institutional coordination.

  11. Molecular Biology and Physiology of Methanogenic Archaebacteria

    Science.gov (United States)

    1989-06-27

    anaerobic food chains, the methanogens contribute to the mineralization of large amounts of organic matter. The end product of their metabolism...of radiolabelled substrate to product [8; Worrell and Nagle, in preparation]. Strain RT103, a formate auxotroph was isolated from the kanamycin...methylmercaptopurine riboside 0. 16 Bacteriocidald 8-aza-2, 6-diaminopurine 0.0011 6-thioguanine 0.0004 8-azaguanine 0.0004 6- mercaptopurine 0 8

  12. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-09-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing.  However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  13. Molecular Signals and Skeletal Muscle Adaptation to Exercise

    Directory of Open Access Journals (Sweden)

    Mark Wilson

    2013-08-01

    Full Text Available The phenotypic plasticity of skeletal muscle affords a considerable degree of adaptability not seen in other bodily tissues. The mechanical properties of skeletal muscle are highly dependent on loading conditions. The extent of skeletal muscle plasticity is distinctly highlighted by a loss of muscle mass, or atrophy, after a period of reduced weight-bearing activity, for example during periods of extended bed rest, space flight and in spinal cord injury. On the other hand, increased mechanical loading, or resistance training, induces muscle growth, or hypertrophy. Endurance exercise performance is also dependent on the adaptability of skeletal muscle, especially muscles that contribute to posture, locomotion and the mechanics of breathing. However, the molecular pathways governing skeletal muscle adaptations are yet to be satisfactorily delineated and require further investigation. Researchers in the areas of exercise physiology, physiotherapy and sports medicine are endeavoring to translate experimental knowledge into effective, innovative treatments and regimens in order to improve physical performance and health in both elite athletes and the general community. The efficacy of the translation of molecular biological paradigms in experimental exercise physiology has long been underappreciated. Indeed, molecular biology tools can now be used to answer questions regarding skeletal muscle adaptation in response to exercise and provide new frameworks to improve physical performance. Furthermore, transgenic animal models, knockout animal models and in vivo studies provide tools to test questions concerned with how exercise initiates adaptive changes in gene expression. In light of these perceived deficiencies, an attempt is made here to elucidate the molecular mechanisms of skeletal muscle adaptation to exercise. An examination will be made of the functional capacity of skeletal muscle to respond to a variety of exercise conditions, namely

  14. Molecular Biology and Infection of Hepatitis E Virus

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2016-09-01

    Full Text Available Hepatitis E virus (HEV is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotype 3 and 4 are zoonotic, whereas those from genotype 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.

  15. Molecular insights into the biology of Greater Sage-Grouse

    Science.gov (United States)

    Oyler-McCance, Sara J.; Quinn, Thomas W.

    2011-01-01

    Recent research on Greater Sage-Grouse (Centrocercus urophasianus) genetics has revealed some important findings. First, multiple paternity in broods is more prevalent than previously thought, and leks do not comprise kin groups. Second, the Greater Sage-Grouse is genetically distinct from the congeneric Gunnison sage-grouse (C. minimus). Third, the Lyon-Mono population in the Mono Basin, spanning the border between Nevada and California, has unique genetic characteristics. Fourth, the previous delineation of western (C. u. phaios) and eastern Greater Sage-Grouse (C. u. urophasianus) is not supported genetically. Fifth, two isolated populations in Washington show indications that genetic diversity has been lost due to population declines and isolation. This chapter examines the use of molecular genetics to understand the biology of Greater Sage-Grouse for the conservation and management of this species and put it into the context of avian ecology based on selected molecular studies.

  16. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  17. Progress in nucleic acid research and molecular biology

    International Nuclear Information System (INIS)

    Cohn, W.E.; Moldave, K.

    1988-01-01

    Complementary Use of Chemical Modification and Site-Directed Mutagenesis to Probe Structure-Activity Relationships in Enzymes. Mechanisms of the Antiviral Action of Inteferons. Modulation of Cellular Genes by Oncogenes. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. Human Ferritin Gene Expression. Molecular Biology of the Insulin Receptor. Cap-Binding Proteins of Eukaryotic Messenger RNA: Functions in Initiation and Control of Translation. Physical Monitoring of Meiotic and Mitotic Recombination in Yeast. Early Signals Underlying the Induction of the c-fos and c-myc Genes in Quiescent Fibroblasts: Studies with Bombesin and Other Growth Factors. Each chapter includes references

  18. Effect of buffer at nanoscale molecular recognition interfaces - electrostatic binding of biological polyanions.

    Science.gov (United States)

    Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K

    2017-10-19

    We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.

  19. Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level

    NARCIS (Netherlands)

    Richier, S.; Fiorini, S.; Kerros, M.E.; von Dassow, P.; Gattuso, J.P.

    2011-01-01

    The emergence of ocean acidification as a significant threat to calcifying organisms in marine ecosystems creates a pressing need to understand the physiological and molecular mechanisms by which calcification is affected by environmental parameters. We report here, for the first time, changes in

  20. PET-based molecular imaging in neuroscience

    International Nuclear Information System (INIS)

    Jacobs, A.H.; Heiss, W.D.; Li, H.; Knoess, C.; Schaller, B.; Kracht, L.; Monfared, P.; Vollmar, S.; Bauer, B.; Wagner, R.; Graf, R.; Wienhard, K.; Winkeler, A.; Rueger, A.; Klein, M.; Hilker, R.; Galldiks, N.; Herholz, K.; Sobesky, J.

    2003-01-01

    Positron emission tomography (PET) allows non-invasive assessment of physiological, metabolic and molecular processes in humans and animals in vivo. Advances in detector technology have led to a considerable improvement in the spatial resolution of PET (1-2 mm), enabling for the first time investigations in small experimental animals such as mice. With the developments in radiochemistry and tracer technology, a variety of endogenously expressed and exogenously introduced genes can be analysed by PET. This opens up the exciting and rapidly evolving field of molecular imaging, aiming at the non-invasive localisation of a biological process of interest in normal and diseased cells in animal models and humans in vivo. The main and most intriguing advantage of molecular imaging is the kinetic analysis of a given molecular event in the same experimental subject over time. This will allow non-invasive characterisation and ''phenotyping'' of animal models of human disease at various disease stages, under certain pathophysiological stimuli and after therapeutic intervention. The potential broad applications of imaging molecular events in vivo lie in the study of cell biology, biochemistry, gene/protein function and regulation, signal transduction, transcriptional regulation and characterisation of transgenic animals. Most importantly, molecular imaging will have great implications for the identification of potential molecular therapeutic targets, in the development of new treatment strategies, and in their successful implementation into clinical application. Here, the potential impact of molecular imaging by PET in applications in neuroscience research with a special focus on neurodegeneration and neuro-oncology is reviewed. (orig.)

  1. Trade-offs in thermal adaptation: the need for a molecular to ecological integration.

    Science.gov (United States)

    Pörtner, Hans O; Bennett, Albert F; Bozinovic, Francisco; Clarke, Andrew; Lardies, Marco A; Lucassen, Magnus; Pelster, Bernd; Schiemer, Fritz; Stillman, Jonathon H

    2006-01-01

    Through functional analyses, integrative physiology is able to link molecular biology with ecology as well as evolutionary biology and is thereby expected to provide access to the evolution of molecular, cellular, and organismic functions; the genetic basis of adaptability; and the shaping of ecological patterns. This paper compiles several exemplary studies of thermal physiology and ecology, carried out at various levels of biological organization from single genes (proteins) to ecosystems. In each of those examples, trade-offs and constraints in thermal adaptation are addressed; these trade-offs and constraints may limit species' distribution and define their level of fitness. For a more comprehensive understanding, the paper sets out to elaborate the functional and conceptual connections among these independent studies and the various organizational levels addressed. This effort illustrates the need for an overarching concept of thermal adaptation that encompasses molecular, organellar, cellular, and whole-organism information as well as the mechanistic links between fitness, ecological success, and organismal physiology. For this data, the hypothesis of oxygen- and capacity-limited thermal tolerance in animals provides such a conceptual framework and allows interpreting the mechanisms of thermal limitation of animals as relevant at the ecological level. While, ideally, evolutionary studies over multiple generations, illustrated by an example study in bacteria, are necessary to test the validity of such complex concepts and underlying hypotheses, animal physiology frequently is constrained to functional studies within one generation. Comparisons of populations in a latitudinal cline, closely related species from different climates, and ontogenetic stages from riverine clines illustrate how evolutionary information can still be gained. An understanding of temperature-dependent shifts in energy turnover, associated with adjustments in aerobic scope and performance

  2. A beginner's guide to nutritional profiling in physiology and ecology.

    Science.gov (United States)

    Frost, Paul C; Song, Keunyea; Wagner, Nicole D

    2014-11-01

    The nutritional history of an organism is often difficult to ascertain. Nonetheless, this information on past diet can be particularly important when explaining the role of nutrition in physiological responses and ecological dynamics. One approach to infer the past dietary history of an individual is through characterization of its nutritional phenotype, an interrelated set of molecular and physiological properties that are sensitive to dietary stress. Comparisons of nutritional phenotypes between a study organism and reference phenotypes have the potential to provide insight into the type and intensity of past dietary constraints. Here, we describe this process of nutritional profiling for ecophysiological research in which a suite of molecular and physiological responses are cataloged for animals experiencing known types and intensities of dietary stress and are quantitatively compared with those of unknown individuals. We supplement this delineation of the process of nutritional profiling with a first-order analysis of its sensitivity to the number of response variables in the reference database, their responsiveness to diet, and the size of reference populations. In doing so, we demonstrate the considerable promise this approach has to transform future studies of nutrition by its ability to provide more and better information on responses to dietary stress in animals and their populations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  3. Dictionary of microbiology and molecular biology. 2nd ed

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, P.; Sainsbury, D.

    1988-01-01

    A newly revised edition of the standard reference for microbiology and molecular biology. Includes a multitude of new terms and designations which, although widely used in the literature, are seldom defined outside the book or paper in which they first appeared. Also accounts for the changes in the meanings of older terms brought about by advances in knowledge. Definition of all terms reflects their actual usage in current journals and texts, and also given (where appropriate) are former meanings, alternative meanings, and synonyms. Includes terms from such fields as mycology, protozoology, virology, etc.

  4. Endogenous Pyrogen Physiology.

    Science.gov (United States)

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  5. Functional genomics to assess biological responses to marine pollution at physiological and evolutionary timescales: toward a vision of predictive ecotoxicology.

    Science.gov (United States)

    Reid, Noah M; Whitehead, Andrew

    2016-09-01

    Marine pollution is ubiquitous, and is one of the key factors influencing contemporary marine biodiversity worldwide. To protect marine biodiversity, how do we surveil, document and predict the short- and long-term impacts of pollutants on at-risk species? Modern genomics tools offer high-throughput, information-rich and increasingly cost-effective approaches for characterizing biological responses to environmental stress, and are important tools within an increasing sophisticated kit for surveiling and assessing impacts of pollutants on marine species. Through the lens of recent research in marine killifish, we illustrate how genomics tools may be useful for screening chemicals and pollutants for biological activity and to reveal specific mechanisms of action. The high dimensionality of transcriptomic responses enables their usage as highly specific fingerprints of exposure, and these fingerprints can be used to diagnose environmental problems. We also emphasize that molecular pathways recruited to respond at physiological timescales are the same pathways that may be targets for natural selection during chronic exposure to pollutants. Gene complement and sequence variation in those pathways can be related to variation in sensitivity to environmental pollutants within and among species. Furthermore, allelic variation associated with evolved tolerance in those pathways could be tracked to estimate the pace of environmental health decline and recovery. We finish by integrating these paradigms into a vision of how genomics approaches could anchor a modernized framework for advancing the predictive capacity of environmental and ecotoxicological science. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Plant aquaporins: roles in plant physiology.

    Science.gov (United States)

    Li, Guowei; Santoni, Véronique; Maurel, Christophe

    2014-05-01

    Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    Science.gov (United States)

    Mueller, Ryan S.; Denef, Vincent J.; Kalnejais, Linda H.; Suttle, K. Blake; Thomas, Brian C.; Wilmes, Paul; Smith, Richard L.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Shah, Menesh B.; VerBekmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.

  8. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  9. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  10. Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques

    Science.gov (United States)

    Calfon, Marcella A.; Vinegoni, Claudio; Ntziachristos, Vasilis; Jaffer, Farouc A.

    2010-01-01

    New imaging methods are urgently needed to identify high-risk atherosclerotic lesions prior to the onset of myocardial infarction, stroke, and ischemic limbs. Molecular imaging offers a new approach to visualize key biological features that characterize high-risk plaques associated with cardiovascular events. While substantial progress has been realized in clinical molecular imaging of plaques in larger arterial vessels (carotid, aorta, iliac), there remains a compelling, unmet need to develop molecular imaging strategies targeted to high-risk plaques in human coronary arteries. We present recent developments in intravascular near-IR fluorescence catheter-based strategies for in vivo detection of plaque inflammation in coronary-sized arteries. In particular, the biological, light transmission, imaging agent, and engineering principles that underlie a new intravascular near-IR fluorescence sensing method are discussed. Intravascular near-IR fluorescence catheters appear highly translatable to the cardiac catheterization laboratory, and thus may offer a new in vivo method to detect high-risk coronary plaques and to assess novel atherosclerosis biologics.

  11. Abstracts of the 26. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 26. reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology.

  12. Abstracts of the 27. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 27. reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology.

  13. Molecular pathology and prostate cancer therapeutics: from biology to bedside.

    Science.gov (United States)

    Rodrigues, Daniel Nava; Butler, Lisa M; Estelles, David Lorente; de Bono, Johann S

    2014-01-01

    Prostate cancer (PCa) is the second most commonly diagnosed malignancy in men and has an extremely heterogeneous clinical behaviour. The vast majority of PCas are hormonally driven diseases in which androgen signalling plays a central role. The realization that castration-resistant prostate cancer (CRPC) continues to rely on androgen signalling prompted the development of new, effective androgen blocking agents. As the understanding of the molecular biology of PCas evolves, it is hoped that stratification of prostate tumours into distinct molecular entities, each with its own set of vulnerabilities, will be a feasible goal. Around half of PCas harbour rearrangements involving a member of the ETS transcription factor family. Tumours without this rearrangement include SPOP mutant as well as SPINK1-over-expressing subtypes. As the number of targeted therapy agents increases, it is crucial to determine which patients will benefit from these interventions and molecular pathology will be key in this respect. In addition to directly targeting cells, therapies that modify the tumour microenvironment have also been successful in prolonging the lives of PCa patients. Understanding the molecular aspects of PCa therapeutics will allow pathologists to provide core recommendations for patient management. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  15. Beyond a pedagogical tool: 30 years of Molecular biology of the cell.

    Science.gov (United States)

    Serpente, Norberto

    2013-02-01

    In 1983, a bulky and profusely illustrated textbook on molecular and cell biology began to inhabit the shelves of university libraries worldwide. The effect of capturing the eyes and souls of biologists was immediate as the book provided them with a new and invigorating outlook on what cells are and what they do.

  16. An Off-the-Shelf, Authentic, and Versatile Undergraduate Molecular Biology Practical Course

    Science.gov (United States)

    Whitworth, David E.

    2015-01-01

    We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course…

  17. Using measures of single-cell physiology and physiological state to understand organismic aging.

    Science.gov (United States)

    Mendenhall, Alexander; Driscoll, Monica; Brent, Roger

    2016-02-01

    Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and 'epimutations', changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has revealed differences in lifespan- and health-related phenotypes that are not caused by lasting changes in DNA or identified by modifications to DNA or chromatin. This work has demonstrated persistent differences in single-cell and whole-organism physiological states operationally defined by values of reporter gene signals in living cells. While some single-cell states, for example, responses to oxygen deprivation, were defined previously, others, such as a generally heightened ability to make proteins, were, revealed by direct experiment only recently, and are not well understood. Here, we review technical progress that promises to greatly increase the number of these measurable single-cell physiological variables and measureable states. We discuss concepts that facilitate use of single-cell measurements to provide insight into physiological states and state transitions. We assert that researchers will use this information to relate cell level physiological readouts to whole-organism outcomes, to stratify aging populations into groups based on different physiologies, to define biomarkers predictive of outcomes, and to shed light on the molecular processes that bring about different individual physiologies. For these reasons, quantitative study of single-cell physiological variables and state transitions should provide a valuable complement to genetic and molecular explanations of how organisms age. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Applications of molecular replacement to G protein-coupled receptors

    International Nuclear Information System (INIS)

    Kruse, Andrew C.; Manglik, Aashish; Kobilka, Brian K.; Weis, William I.

    2013-01-01

    The use of molecular replacement in solving the structures of G protein-coupled receptors is discussed, with specific examples being described in detail. G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed

  19. Molecular biology and riddle of cancer: the ‘Tom & Jerry’ show

    Directory of Open Access Journals (Sweden)

    Md. Al Mamun

    2011-11-01

    Full Text Available From the conventional Bird’s eye, cancer initiation and metastasis are generally intended to be understood beneath the light of classical clonal genetic, epigenetic and cancer stem cell model. But inspite decades of investigation, molecular biology has shown hard success to give Eagle’s eye in unraveling the riddle of cancer. And it seems, tiring Tom runs in vague behind naughty Jerry.

  20. Modeling human risk: Cell ampersand molecular biology in context

    International Nuclear Information System (INIS)

    1997-06-01

    It is anticipated that early in the next century manned missions into outer space will occur, with a mission to Mars scheduled between 2015 and 2020. However, before such missions can be undertaken, a realistic estimation of the potential risks to the flight crews is required. One of the uncertainties remaining in this risk estimation is that posed by the effects of exposure to the radiation environment of outer space. Although the composition of this environment is fairly well understood, the biological effects arising from exposure to it are not. The reasons for this are three-fold: (1) A small but highly significant component of the radiation spectrum in outer space consists of highly charged, high energy (HZE) particles which are not routinely experienced on earth, and for which there are insufficient data on biological effects; (2) Most studies on the biological effects of radiation to date have been high-dose, high dose-rate, whereas in space, with the exception of solar particle events, radiation exposures will be low-dose, low dose-rate; (3) Although it has been established that the virtual absence of gravity in space has a profound effect on human physiology, it is not clear whether these effects will act synergistically with those of radiation exposure. A select panel will evaluate the utilizing experiments and models to accurately predict the risks associated with exposure to HZE particles. Topics of research include cellular and tissue response, health effects associated with radiation damage, model animal systems, and critical markers of Radiation response

  1. Retracted: Molecular Characterization and Biological Activity of Interferon-α in Indian Peafowl (Pavo cristatus).

    Science.gov (United States)

    Zhao, Hongjing; Wang, Yu; Liu, Juanjuan; Shao, Yizhi; Li, Jinglun; Chai, Hongliang; Xing, Mingwei

    2017-08-07

    DNA and Cell Biology (DNA&CB) is officially retracting the paper by Zhao H, Wang Y, Liu J, Shao Y, Li J, Chai H, Xing M, entitled, "Molecular Characterization and Biological activity of Interferon-α in Indian Peafowl (Pavo cristatus)," [Epub ahead of print]; 2017, DOI: 10.1089/dna.2017.3798. The Editor-in-Chief of DNA&CB, Dr. Carol Shoshkes Reiss, was alerted to a discrepancy between the findings in the article by Zhao et al., and those of others, about the absence of expression of ISG15 in chickens. Dr. Reiss requested from the authors a clarification in their observations and inquired about the failure to include relevant citations in the reference section of the paper. Based on the response from the authors, it appeared that they did not have the confidence in the data as they were not able to repeat the experiments, and were also unsure of the molecular probes that were used in the study. Therefore, the Editor has determined that the paper should be officially retracted from DNA and Cell Biology.

  2. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course.

    Science.gov (United States)

    Klymkowsky, Michael W; Rentsch, Jeremy D; Begovic, Emina; Cooper, Melanie M

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course's design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. © 2016 M. W. Klymkowsky et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta

    DEFF Research Database (Denmark)

    Boardman, Leigh; Sørensen, Jesper Givskov; Terblanche, John S

    2015-01-01

    identified to date. Using larvae of false codling moth Thaumatotibia leucotreta, a pest of southern Africa, we investigated the physiological and molecular responses to hypoxia or temperature stress pre-treatments, followed by a standard low temperature exposure. Survival rates were significantly influenced...... by pretreatment conditions, although T. leucotreta shows relatively high basal resistance to various stressors (4% variation in larval survival across all pre-treatments). Results showed that mild pre-treatments with chilling and hypoxia increased resistance to low temperatures and that these responses were...... correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2 h at 35 C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold...

  4. Investigating Viruses during the Transformation of Molecular Biology.

    Science.gov (United States)

    Moss, Bernard

    2017-03-10

    This Reflections article describes my early work on viral enzymes and the discovery of mRNA capping, how my training in medicine and biochemistry merged as I evolved into a virologist, the development of viruses as vaccine vectors, and how scientific and technological developments during the 1970s and beyond set the stage for the interrogation of nearly every step in the reproductive cycle of vaccinia virus (VACV), a large DNA virus with about 200 genes. The reader may view this article as a work in progress, because I remain actively engaged in research at the National Institutes of Health (NIH) notwithstanding 50 memorable years there. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The molecular genetics of the telomere biology disorders.

    Science.gov (United States)

    Bertuch, Alison A

    2016-08-02

    The importance of telomere function for human health is exemplified by a collection of Mendelian disorders referred to as the telomere biology disorders (TBDs), telomeropathies, or syndromes of telomere shortening. Collectively, the TBDs cover a spectrum of conditions from multisystem disease presenting in infancy to isolated disease presentations in adulthood, most notably idiopathic pulmonary fibrosis. Eleven genes have been found mutated in the TBDs to date, each of which is linked to some aspect of telomere maintenance. This review summarizes the molecular defects that result from mutations in these genes, highlighting recent advances, including the addition of PARN to the TBD gene family and the discovery of heterozygous mutations in RTEL1 as a cause of familial pulmonary fibrosis.

  6. Diagnosis and management of differentiated thyroid cancer using molecular biology.

    Science.gov (United States)

    Witt, Robert L; Ferris, Robert L; Pribitkin, Edmund A; Sherman, Steven I; Steward, David L; Nikiforov, Yuri E

    2013-04-01

    To define molecular biology in clinical practice for diagnosis, surgical management, and prognostication of differentiated thyroid cancer. Ovid Medline 2006-2012 Manuscripts with clinical correlates. Papillary thyroid carcinomas harbor point mutations of the BRAF and RAS genes or RET/PTC rearrangements, all of which activate the mitogen-activated protein kinase pathway. These mutually exclusive mutations are found in 70% of PTC. BRAF mutation is found in 45% of papillary thyroid cancer and is highly specific. Follicular carcinomas are known to harbor RAS mutation or PAX8/PPARγ rearrangement. These mutations are also mutually exclusive and identified in 70% of follicular carcinomas. Molecular classifiers measure the expression of a large number of genes on a microarray chip providing a substantial negative predictive value pending further validation. 1) 20% to 30% of cytologically classified Follicular Neoplasms and Follicular Lesion of Undetermined Significance collectively are malignant on final pathology. Approximately 70% to 80% of thyroid lobectomies performed solely for diagnostic purposes are benign. Molecular alteration testing may reduce the number of unnecessary thyroid procedures, 2) may reduce the number of completion thyroidectomies, and 3) may lead to more individualized operative and postoperative management. Molecular testing for BRAF, RAS, RET/PTC, and PAX8/PPARγ for follicular lesion of undetermined significance and follicular neoplasm improve specificity, whereas molecular classifiers may add negative predictive value to fine needle aspiration diagnosis. Copyright © 2013 The American Laryngological, Rhinological, and Otological Society, Inc.

  7. [Etiologic diagnosis in meningitis and encephalitis molecular biology techniques].

    Science.gov (United States)

    Conca, Natalia; Santolaya, María Elena; Farfan, Mauricio J; Cofré, Fernanda; Vergara, Alejandra; Salazar, Liliana; Torres, Juan Pablo

    2016-01-01

    The aetiological study of infections of the central nervous system has traditionally been performed using bacterial cultures and, more recently, using polymerase chain reaction (PCR) for herpes simplex virus (HSV). Bacterial cultures may not have good performance, especially in the context of patients who have received antibiotics prior to sampling, and a request for HSV only by PCR reduces the information to only one aetiological agent. The aim of this study is to determine the infectious causes of meningitis and encephalitis, using traditional microbiology and molecular biology to improve the aetiological diagnosis of these diseases. A prospective study was conducted on 19 patients with suspected meningitis, admitted to the Luis Calvo Mackenna Hospital in Santiago, Chile, from March 1, 2011 to March 30, 2012. After obtaining informed consent, the CSF samples underwent cytochemical study, conventional culture, multiplex PCR for the major producing bacterial meningitis (N. meningitidis, S. pneumoniae, H. influenzae), real-time single PCR for HSV-1 and 2, VZV, EBV, CMV, HHV-6 and enterovirus. Clinical and epidemiological data were also collected from the clinical records. Of the 19 patients analysed, 2 were diagnosed by conventional methods and 7 by adding molecular biology (increase to 37%). Three patients had meningitis due to S. pneumoniae, one due to Enterobacter cloacae, 2 patients meningoencephalitis HSV-1, and one VZV meningitis. The addition of PCR to conventional diagnostic methods in CNS infections increases the probability of finding the causal agent. This allows a more adequate, timely and rational management of the disease. Copyright © 2014. Publicado por Elsevier España, S.L.U.

  8. Hidden Markov models and other machine learning approaches in computational molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, P. [California Inst. of Tech., Pasadena, CA (United States)

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In this tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.

  9. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  10. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  11. Intraductal papillary-mucinous neoplasia of the pancreas: Histopathology and molecular biology

    OpenAIRE

    Verbeke, Caroline S

    2010-01-01

    Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas is a clinically and morphologically distinctive precursor lesion of pancreatic cancer, characterized by gradual progression through a sequence of neoplastic changes. Based on the nature of the constituting neoplastic epithelium, degree of dysplasia and location within the pancreatic duct system, IPMNs are divided in several types which differ in their biological properties and clinical outcome. Molecular analysis and recent animal...

  12. Plant biology in the future.

    Science.gov (United States)

    Bazzaz, F A

    2001-05-08

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  13. The molecular and physiological impact of bisphenol A in Sesamia nonagrioides (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Kontogiannatos, Dimitris; Swevers, Luc; Zakasis, Giannis; Kourti, Anna

    2015-03-01

    In the present study we investigated the potential relative effects of bisphenol A (BPA) and RH-5992 (tebufenozide) on the development and metamorphosis of the corn stalk borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). A number of morphological and molecular factors were examined in order to identify the toxic and the endocrine-relative action of these two chemicals. We observed that BPA, RH-5992 and the combination of BPA/RH-5992 caused a developmental delay by extending the transition period between larval and pupal instars. These chemicals also reduced adult emergence and caused molting malformations during development and metamorphosis. In the corn stalk borer, BPA exhibits ecdysteroid activities in a fashion similar to that of the ecdysone agonist RH-5992. These results suggest that exposure to environmentally relevant concentrations of BPA during the early stages of the corn borer's life cycle can result in various disorders that may be a consequence of endocrine disruption. The molecular mechanism by which BPA interferes with the physiological processes was also investigated. A significant induction was observed in the expression levels of the ecdysone-induced genes SnEcR and SnUSP, after injection of BPA and RH-5992. Additionally, we found that BPA acts as a very weak agonist of ecdysteroids in Bombyx mori derived Bm5 cell lines. From these cellular and molecular assays, our results brought evidence that BPA, like RH-5992, interferes with the ecdysteroidal pathways of the lepidopteran insect species.

  14. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education.

    Science.gov (United States)

    Abram, Sean R; Hodnett, Benjamin L; Summers, Richard L; Coleman, Thomas G; Hester, Robert L

    2007-06-01

    We have developed Quantitative Circulatory Physiology (QCP), a mathematical model of integrative human physiology containing over 4,000 variables of biological interactions. This model provides a teaching environment that mimics clinical problems encountered in the practice of medicine. The model structure is based on documented physiological responses within peer-reviewed literature and serves as a dynamic compendium of physiological knowledge. The model is solved using a desktop, Windows-based program, allowing students to calculate time-dependent solutions and interactively alter over 750 parameters that modify physiological function. The model can be used to understand proposed mechanisms of physiological function and the interactions among physiological variables that may not be otherwise intuitively evident. In addition to open-ended or unstructured simulations, we have developed 30 physiological simulations, including heart failure, anemia, diabetes, and hemorrhage. Additional stimulations include 29 patients in which students are challenged to diagnose the pathophysiology based on their understanding of integrative physiology. In summary, QCP allows students to examine, integrate, and understand a host of physiological factors without causing harm to patients. This model is available as a free download for Windows computers at http://physiology.umc.edu/themodelingworkshop.

  15. Philosophical Basis and Some Historical Aspects of Systems Biology: From Hegel to Noble - Applications for Bioenergetic Research

    Science.gov (United States)

    Saks, Valdur; Monge, Claire; Guzun, Rita

    2009-01-01

    We live in times of paradigmatic changes for the biological sciences. Reductionism, that for the last six decades has been the philosophical basis of biochemistry and molecular biology, is being displaced by Systems Biology, which favors the study of integrated systems. Historically, Systems Biology - defined as the higher level analysis of complex biological systems - was pioneered by Claude Bernard in physiology, Norbert Wiener with the development of cybernetics, and Erwin Schrödinger in his thermodynamic approach to the living. Systems Biology applies methods inspired by cybernetics, network analysis, and non-equilibrium dynamics of open systems. These developments follow very precisely the dialectical principles of development from thesis to antithesis to synthesis discovered by Hegel. Systems Biology opens new perspectives for studies of the integrated processes of energy metabolism in different cells. These integrated systems acquire new, system-level properties due to interaction of cellular components, such as metabolic compartmentation, channeling and functional coupling mechanisms, which are central for regulation of the energy fluxes. State of the art of these studies in the new area of Molecular System Bioenergetics is analyzed. PMID:19399243

  16. Biología y regulación molecular de la micorriza arbuscular

    Directory of Open Access Journals (Sweden)

    S. Guzmán-González

    2005-01-01

    Full Text Available Las micorrizas arbusculares son asociaciones simbióticas formadas entre un amplio rango de especies de plantas y hongos del orden Glomales. El hongo coloniza el apoplasto y células corticales de la raíz. El desarrollo de esta asociación, altamente compatible, requiere de la diferenciación celular y molecular coordinada de ambos simbiontes, para formar una interface especializada en la cual ocurre la transferencia bidireccional de nutrimentos. Esta revisión resume los resultados obtenidos con el uso de técnicas de biología molecular en el entendimiento del desarrollo de la simbiosis micorrízica arbuscular.

  17. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers.

    Science.gov (United States)

    Taïbi, Khaled; Del Campo, Antonio D; Vilagrosa, Alberto; Bellés, José M; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J; López-Nicolás, José M; Mulet, José M

    2017-01-01

    Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine) seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis . Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.

  18. Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers

    Directory of Open Access Journals (Sweden)

    Khaled Taïbi

    2017-07-01

    Full Text Available Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and molecular level of different Pinus halepensis (common name Aleppo pine seed sources, previously characterized in field trials as drought-sensitive or drought-tolerant. This approach aims to identify different traits capable of predicting the ability of formerly uncharacterized seedlings to cope with drought stress. Gas-exchange, water potential, photosynthetic pigments, soluble sugars, free amino acids, glutathione and proteomic analyses were carried out on control and drought-stressed seedlings in greenhouse conditions. Gas-exchange determinations were also assessed in field-planted seedlings in order to validate the greenhouse experimental conditions. Drought-tolerant seed sources presented higher values of photosynthetic rates, water use efficiency, photosynthetic pigments and soluble carbohydrates concentrations. We observed the same pattern of variation of photosynthesis rate and maximal efficiency of PSII in field. Interestingly drought-tolerant seed sources exhibited increased levels of glutathione, methionine and cysteine. The proteomic profile of drought tolerant seedlings identified two heat shock proteins and an enzyme related to methionine biosynthesis that were not present in drought sensitive seedlings, pointing to the synthesis of sulfur amino acids as a limiting factor for drought tolerance in Pinus halepensis. Our results established physiological and molecular traits useful as distinctive markers to predict drought tolerance in Pinus halepensis provenances that could be reliably used in reforestation programs in drought prone areas.

  19. Biochemistry and Molecular Biology of Flaviviruses.

    Science.gov (United States)

    Barrows, Nicholas J; Campos, Rafael K; Liao, Kuo-Chieh; Prasanth, K Reddisiva; Soto-Acosta, Ruben; Yeh, Shih-Chia; Schott-Lerner, Geraldine; Pompon, Julien; Sessions, October M; Bradrick, Shelton S; Garcia-Blanco, Mariano A

    2018-04-25

    Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.

  20. Oligometastatic prostate cancer: shaping the definition with molecular imaging and an improved understanding of tumor biology.

    Science.gov (United States)

    Joice, Gregory A; Rowe, Steven P; Pienta, Kenneth J; Gorin, Michael A

    2017-11-01

    The aim of this review is to discuss how novel imaging modalities and molecular markers are shaping the definition of oligometastatic prostate cancer. To effectively classify a patient as having oligometastatic prostate cancer, diagnostic tests must be sensitive enough to detect subtle sites of metastatic disease. Conventional imaging modalities can readily detect widespread polymetastatic disease but do not have the sensitivity necessary to reliably classify patients as oligometastatic. Molecular imaging using both metabolic- and molecularly-targeted radiotracers has demonstrated great promise in aiding in our ability to define the oligometastatic state. Perhaps the most promising data to date have been generated with radiotracers targeting prostate-specific membrane antigen. In addition, early studies are beginning to define biologic markers in the oligometastatic state that may be indicative of disease with minimal metastatic potential. Recent developments in molecular imaging have allowed for improved detection of metastatic prostate cancer allowing for more accurate staging of patients with oligometastatic disease. Future development of biologic markers may assist in defining the oligometastatic state and determining prognosis.

  1. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability.

    Science.gov (United States)

    Boretto, Matteo; Cox, Benoit; Noben, Manuel; Hendriks, Nikolai; Fassbender, Amelie; Roose, Heleen; Amant, Frédéric; Timmerman, Dirk; Tomassetti, Carla; Vanhie, Arne; Meuleman, Christel; Ferrante, Marc; Vankelecom, Hugo

    2017-05-15

    The endometrium, which is of crucial importance for reproduction, undergoes dynamic cyclic tissue remodeling. Knowledge of its molecular and cellular regulation is poor, primarily owing to a lack of study models. Here, we have established a novel and promising organoid model from both mouse and human endometrium. Dissociated endometrial tissue, embedded in Matrigel under WNT-activating conditions, swiftly formed organoid structures that showed long-term expansion capacity, and reproduced the molecular and histological phenotype of the tissue's epithelium. The supplemented WNT level determined the type of mouse endometrial organoids obtained: high WNT yielded cystic organoids displaying a more differentiated phenotype than the dense organoids obtained in low WNT. The organoids phenocopied physiological responses of endometrial epithelium to hormones, including increased cell proliferation under estrogen and maturation upon progesterone. Moreover, the human endometrial organoids replicated the menstrual cycle under hormonal treatment at both the morpho-histological and molecular levels. Together, we established an organoid culture system for endometrium, reproducing tissue epithelium physiology and allowing long-term expansion. This novel model provides a powerful tool for studying mechanisms underlying the biology as well as the pathology of this key reproductive organ. © 2017. Published by The Company of Biologists Ltd.

  2. Integr8: enhanced inter-operability of European molecular biology databases.

    Science.gov (United States)

    Kersey, P J; Morris, L; Hermjakob, H; Apweiler, R

    2003-01-01

    The increasing production of molecular biology data in the post-genomic era, and the proliferation of databases that store it, require the development of an integrative layer in database services to facilitate the synthesis of related information. The solution of this problem is made more difficult by the absence of universal identifiers for biological entities, and the breadth and variety of available data. Integr8 was modelled using UML (Universal Modelling Language). Integr8 is being implemented as an n-tier system using a modern object-oriented programming language (Java). An object-relational mapping tool, OJB, is being used to specify the interface between the upper layers and an underlying relational database. The European Bioinformatics Institute is launching the Integr8 project. Integr8 will be an automatically populated database in which we will maintain stable identifiers for biological entities, describe their relationships with each other (in accordance with the central dogma of biology), and store equivalences between identified entities in the source databases. Only core data will be stored in Integr8, with web links to the source databases providing further information. Integr8 will provide the integrative layer of the next generation of bioinformatics services from the EBI. Web-based interfaces will be developed to offer gene-centric views of the integrated data, presenting (where known) the links between genome, proteome and phenotype.

  3. The Molecular Biology of Soft-Tissue Sarcomas and Current Trends in Therapy

    Directory of Open Access Journals (Sweden)

    Jorge Quesada

    2012-01-01

    Full Text Available Basic research in sarcoma models has been fundamental in the discovery of scientific milestones leading to a better understanding of the molecular biology of cancer. Yet, clinical research in sarcoma has lagged behind other cancers because of the multiple clinical and pathological entities that characterize sarcomas and their rarity. Sarcomas encompass a very heterogeneous group of tumors with diverse pathological and clinical overlapping characteristics. Molecular testing has been fundamental in the identification and better definition of more specific entities among this vast array of malignancies. A group of sarcomas are distinguished by specific molecular aberrations such as somatic mutations, intergene deletions, gene amplifications, reciprocal translocations, and complex karyotypes. These and other discoveries have led to a better understanding of the growth signals and the molecular pathways involved in the development of these tumors. These findings are leading to treatment strategies currently under intense investigation. Disruption of the growth signals is being targeted with antagonistic antibodies, tyrosine kinase inhibitors, and inhibitors of several downstream molecules in diverse molecular pathways. Preliminary clinical trials, supported by solid basic research and strong preclinical evidence, promises a new era in the clinical management of these broad spectrum of malignant tumors.

  4. The Emergence of Physiology and Form: Natural Selection Revisited

    Science.gov (United States)

    Torday, John S.

    2016-01-01

    Natural Selection describes how species have evolved differentially, but it is descriptive, non-mechanistic. What mechanisms does Nature use to accomplish this feat? One known way in which ancient natural forces affect development, phylogeny and physiology is through gravitational effects that have evolved as mechanotransduction, seen in the lung, kidney and bone, linking as molecular homologies to skin and brain. Tracing the ontogenetic and phylogenetic changes that have facilitated mechanotransduction identifies specific homologous cell-types and functional molecular markers for lung homeostasis that reveal how and why complex physiologic traits have evolved from the unicellular to the multicellular state. Such data are reinforced by their reverse-evolutionary patterns in chronic degenerative diseases. The physiologic responses of model organisms like Dictyostelium and yeast to gravity provide deep comparative molecular phenotypic homologies, revealing mammalian Target of Rapamycin (mTOR) as the final common pathway for vertical integration of vertebrate physiologic evolution; mTOR integrates calcium/lipid epistatic balance as both the proximate and ultimate positive selection pressure for vertebrate physiologic evolution. The commonality of all vertebrate structure-function relationships can be reduced to calcium/lipid homeostatic regulation as the fractal unit of vertebrate physiology, demonstrating the primacy of the unicellular state as the fundament of physiologic evolution. PMID:27534726

  5. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  7. Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice.

    Science.gov (United States)

    Antoch, Marina P; Wrobel, Michelle; Kuropatwinski, Karen K; Gitlin, Ilya; Leonova, Katerina I; Toshkov, Ilia; Gleiberman, Anatoli S; Hutson, Alan D; Chernova, Olga B; Gudkov, Andrei V

    2017-03-19

    The development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a frailty index (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters. Here we report a development of a quantitative non-invasive procedure to estimate biological age of an individual animal by creating physiological frailty index (PFI). We demonstrated the dynamics of PFI increase during chronological aging of male and female NIH Swiss mice. We also demonstrated acceleration of growth of PFI in animals placed on a high fat diet, reflecting aging acceleration by obesity and provide a tool for its quantitative assessment. Additionally, we showed that PFI could reveal anti-aging effect of mTOR inhibitor rapatar (bioavailable formulation of rapamycin) prior to registration of its effects on longevity. PFI revealed substantial sex-related differences in normal chronological aging and in the efficacy of detrimental (high fat diet) or beneficial (rapatar) aging modulatory factors. Together, these data introduce PFI as a reliable, non-invasive, quantitative tool suitable for testing potential anti-aging pharmaceuticals in pre-clinical studies.

  8. Biological fundamentals. 2. completely rev. ed

    Energy Technology Data Exchange (ETDEWEB)

    Sahm, H. (ed.) (Forschungszentrum Juelich GmbH (Germany). Inst. fuer Biotechnologie)

    1993-01-01

    This fully revised and expanded Second Edition takes into account all recent developments in biotechnology. It is extraordinarily broad in scope, up-to-date, carefully structured and wellbalanced. 'Biotechnology' considers both basic concepts and widely-differing industrial applications: It is a successful synthesis of theory and practice. Any scientist aiming for success in industrial microbiology, biochemistry, molecular biology and chemical engineering must turn to 'Biotechnology'. Everybody involved in biotechnology will appreciate having this volume at their fingertips. It offers a unique collection of current information on the basic biology (ecology, taxonomy, biochemistry, physiology, and genetics) of industrially important organisms. This book contains the background material indispensable for the development of biotechnological processes. Topics included are: - Cell Structure, - Metabolism, - Growth of Microorganisms, - Metabolic Design, - Immobilized Organisms, - Methylotrophs, - Pseudomonas, - Yeasts, - Filamentous Fungi, - Bacteriophages, - Cell Cultures. (orig.)

  9. Artificial microRNAs and their applications in plant molecular biology

    Directory of Open Access Journals (Sweden)

    Pérez-Quintero Álvaro Luis

    2010-11-01

    Full Text Available

    Artificial microRNAs (amiRNAs are modified endogenous microRNA precursors in which the miRNA:miRNA* duplex is replaced with sequences designed to silence any desired gene. amiRNAs are used as part of new genetic transformation techniques in eukaryotes and have proven to be effective and to excel over other RNA-mediated gene silencing methods in both specificity and stability. amiRNAs can be designed to silence single or multiple genes, it is also possible to construct dimeric amiRNA precursors to silence two non-related genes simultaneously. amiRNA expression is quantitative and allows using constitutive, inducible, or tissue-specific promoters. One main application of amiRNAs is gene functional validation and to this end they have been mostly used in model plants; however, their use can be extended to any species or variety. amiRNA-mediated antiviral defense is another important application with great potential for plant molecular biology and crop improvement, but it still needs to be optimized to prevent the escape of viruses from the silencing mechanism. Furthermore, amiRNAs have propelled research in related areas allowing the development of similar tools like artificial trans-acting small interference RNAs (tasiARNs and artificial target mimicry. In this review, some applications and advantages of amiRNAs in plant molecular biology are analyzed. 

  10. Errant life, molecular biology, and biopower: Canguilhem, Jacob, and Foucault.

    Science.gov (United States)

    Talcott, Samuel

    2014-01-01

    This paper considers the theoretical circumstances that urged Michel Foucault to analyse modern societies in terms of biopower. Georges Canguilhem's account of the relations between science and the living forms an essential starting point for Foucault's own later explorations, though the challenges posed by the molecular revolution in biology and François Jacob's history of it allowed Foucault to extend and transform Canguilhem's philosophy of error. Using archival research into his 1955-1956 course on "Science and Error," I show that, for Canguilhem, it is inauthentic to treat a living being as an error, even if living things are capable of making errors in the domain of knowledge. The emergent molecular biology in the 1960s posed a grave challenge, however, since it suggested that individuals could indeed be errors of genetic reproduction. The paper discusses how Canguilhem and Foucault each responded to this by examining, among other texts, their respective reviews of Jacob's The Logic of the Living. For Canguilhem this was an opportunity to reaffirm the creativity of life in the living individual, which is not a thing to be evaluated, but the source of values. For Foucault, drawing on Jacob's work, this was the opportunity to develop a transformed account of valuation by posing biopower as the DNA of society. Despite their disagreements, the paper examines these three authors as different iterations of a historical epistemology attuned to errancy, error, and experimentation.

  11. Molecular imaging promotes progress in orthopedic research.

    Science.gov (United States)

    Mayer-Kuckuk, Philipp; Boskey, Adele L

    2006-11-01

    Modern orthopedic research is directed towards the understanding of molecular mechanisms that determine development, maintenance and health of musculoskeletal tissues. In recent years, many genetic and proteomic discoveries have been made which necessitate investigation under physiological conditions in intact, living tissues. Molecular imaging can meet this demand and is, in fact, the only strategy currently available for noninvasive, quantitative, real-time biology studies in living subjects. In this review, techniques of molecular imaging are summarized, and applications to bone and joint biology are presented. The imaging modality most frequently used in the past was optical imaging, particularly bioluminescence and near-infrared fluorescence imaging. Alternate technologies including nuclear and magnetic resonance imaging were also employed. Orthopedic researchers have applied molecular imaging to murine models including transgenic mice to monitor gene expression, protein degradation, cell migration and cell death. Within the bone compartment, osteoblasts and their stem cells have been investigated, and the organic and mineral bone phases have been assessed. These studies addressed malignancy and injury as well as repair, including fracture healing and cell/gene therapy for skeletal defects. In the joints, molecular imaging has focused on the inflammatory and tissue destructive processes that cause arthritis. As described in this review, the feasibility of applying molecular imaging to numerous areas of orthopedic research has been demonstrated and will likely result in an increase in research dedicated to this powerful strategy. Molecular imaging holds great promise in the future for preclinical orthopedic research as well as next-generation clinical musculoskeletal diagnostics.

  12. Molecular Sociology: Further Insights from Biological and Environmental Aspects

    Directory of Open Access Journals (Sweden)

    Ahed Jumah Mahmoud Al-Khatib

    2015-11-01

    Full Text Available The present study expanded our previous study in which features of molecular sociology were mentioned. In this study, we added the microbial dimensions in which it is thought that religiosity may be impacted by microbes that manipulate brains to create better conditions for their existence. This hypothesis is called “biomeme hypothesis”. We talked about other environmental impacts on human behaviors through three studies in which exposure to lead caused violent behaviors ending with arresting in prisons. By conclusion, the present study has expanded our horizon about interferences on various levels including biological and environmental impacts with our behaviors. Although we are convinced that behavior is a very diverse and complex phenomenon and cannot be understood within certain frame as either biologically or environmentally, but further new insights are possible to participate in better understanding of human behaviors. Many behaviors have their roots in religion, and we showed how religious rituals may be affected by some microbes that make to form a microenvironment within the host for microbial benefits.

  13. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling.

    Science.gov (United States)

    Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu

    2017-02-01

    Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Right Versus Left Colon Cancer Biology: Integrating the Consensus Molecular Subtypes.

    Science.gov (United States)

    Lee, Michael S; Menter, David G; Kopetz, Scott

    2017-03-01

    Although clinical management of colon cancer generally has not accounted for the primary tumor site, left-sided and right-sided colon cancers harbor different clinical and biologic characteristics. Right-sided colon cancers are more likely to have genome-wide hypermethylation via the CpG island methylator phenotype (CIMP), hypermutated state via microsatellite instability, and BRAF mutation. There are also differential exposures to potential carcinogenic toxins and microbiota in the right and left colon. Gene expression analyses further shed light on distinct biologic subtypes of colorectal cancers (CRCs), with 4 consensus molecular subtypes (CMSs) identified. Importantly, these subtypes are differentially distributed between right- and left-sided CRCs, with greater proportions of the "microsatellite unstable/immune" CMS1 and the "metabolic" CMS3 subtypes found in right-sided colon cancers. This review summarizes important biologic distinctions between right- and left-sided CRCs that likely impact prognosis and may predict for differential responses to biologic therapy. Given the inferior prognosis of stage III-IV right-sided CRCs and emerging data suggesting that anti-epidermal growth factor receptor antibody therapy is associated with worse survival in right-sided stage IV CRCs compared with left-sided cancers, these biologic differences between right- and left-sided CRCs provide critical context and may provide opportunities to personalize therapy. Copyright © 2017 by the National Comprehensive Cancer Network.

  15. Rebels with a cause: molecular features and physiological consequences of yeast prions.

    Science.gov (United States)

    Garcia, David M; Jarosz, Daniel F

    2014-02-01

    Prions are proteins that convert between structurally and functionally distinct states, at least one of which is self-perpetuating. The prion fold templates the conversion of native protein, altering its structure and function, and thus serves as a protein-based element of inheritance. Molecular chaperones ensure that these prion aggregates are divided and faithfully passed from mother cells to their daughters. Prions were originally identified as the cause of several rare neurodegenerative diseases in mammals, but the last decade has brought great progress in understanding their broad importance in biology and evolution. Most prion proteins regulate information flow in signaling networks, or otherwise affect gene expression. Consequently, switching into and out of prion states creates diverse new traits – heritable changes based on protein structure rather than nucleic acid. Despite intense study of the molecular mechanisms of this paradigm-shifting, epigenetic mode of inheritance, many key questions remain. Recent studies in yeast that support the view that prions are common, often beneficial elements of inheritance that link environmental stress to the appearance of new traits.

  16. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  17. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2018-02-01

    Full Text Available Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT, and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

  18. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  19. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes.

    Science.gov (United States)

    Castoe, Todd A; de Koning, A P Jason; Hall, Kathryn T; Card, Daren C; Schield, Drew R; Fujita, Matthew K; Ruggiero, Robert P; Degner, Jack F; Daza, Juan M; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J; Castoe, Jill M; Fox, Samuel E; Poole, Alex W; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W; Li, Qing; Schott, Ryan K; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A; Hoffmann, Federico G; Bogden, Robert; Smith, Eric N; Chang, Belinda S W; Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Richardson, Michael K; Mackessy, Stephen P; Bronikowski, Anne M; Bronikowsi, Anne M; Yandell, Mark; Warren, Wesley C; Secor, Stephen M; Pollock, David D

    2013-12-17

    Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.

  20. Physiology and Emerging Biochemistry of the Glucagon-Like Peptide-1 Receptor

    Directory of Open Access Journals (Sweden)

    Francis S. Willard

    2012-01-01

    Full Text Available The glucagon-like peptide-1 (GLP-1 receptor is one of the best validated therapeutic targets for the treatment of type 2 diabetes mellitus (T2DM. Over several years, the accumulation of basic, translational, and clinical research helped define the physiologic roles of GLP-1 and its receptor in regulating glucose homeostasis and energy metabolism. These efforts provided much of the foundation for pharmaceutical development of the GLP-1 receptor peptide agonists, exenatide and liraglutide, as novel medicines for patients suffering from T2DM. Now, much attention is focused on better understanding the molecular mechanisms involved in ligand induced signaling of the GLP-1 receptor. For example, advancements in biophysical and structural biology techniques are being applied in attempts to more precisely determine ligand binding and receptor occupancy characteristics at the atomic level. These efforts should better inform three-dimensional modeling of the GLP-1 receptor that will help inspire more rational approaches to identify and optimize small molecule agonists or allosteric modulators targeting the GLP-1 receptor. This article reviews GLP-1 receptor physiology with an emphasis on GLP-1 induced signaling mechanisms in order to highlight new molecular strategies that help determine desired pharmacologic characteristics for guiding development of future nonpeptide GLP-1 receptor activators.

  1. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Directory of Open Access Journals (Sweden)

    Jose M. Requena

    2015-01-01

    Full Text Available Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges for drug discovery and improving of current treatments against leishmaniasis.

  2. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Science.gov (United States)

    Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482

  3. 2012 Gordon Research Conference, Single molecule approaches to biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Julio M. [Columbia Univ., New York, NY (United States)

    2012-04-20

    Single molecule techniques are rapidly occupying a central role in biological research at all levels. This transition was made possible by the availability and dissemination of robust techniques that use fluorescence and force probes to track the conformation of molecules one at a time, in vitro as well as in live cells. Single-molecule approaches have changed the way many biological problems are studied. These novel techniques provide previously unobtainable data on fundamental biochemical processes that are essential for all forms of life. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of the molecular systems that underpin the functioning of living cells. Hence, our conference seeks to disseminate the implementation and use of single molecule techniques in the pursuit of new biological knowledge. Topics covered include: Molecular Motors on the Move; Origin And Fate Of Proteins; Physical Principles Of Life; Molecules and Super-resolution Microscopy; Nanoswitches In Action; Active Motion Or Random Diffusion?; Building Blocks Of Living Cells; From Molecular Mechanics To Physiology; Tug-of-war: Force Spectroscopy Of Single Proteins.

  4. Plant Molecular Biology 2008 Gordon Research Conference - July 13-18, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Richard M. Amasino

    2009-08-28

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2008 conference will continue in that tradition. There will be sessions on metabolism; new methods to study genomes, proteomes and metabolomes; plant-microbe interactions; plant hormones; epigenetics. A new topic for the conference this year will be bioenergy. Thus this conference will bring together a range of disciplines to foster the exchange ideas and to permit the participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner.

  5. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  6. Insights into the immuno-molecular biology of Angiostrongylus vasorum through transcriptomics--prospects for new interventions.

    Science.gov (United States)

    Ansell, Brendan R E; Schnyder, Manuela; Deplazes, Peter; Korhonen, Pasi K; Young, Neil D; Hall, Ross S; Mangiola, Stefano; Boag, Peter R; Hofmann, Andreas; Sternberg, Paul W; Jex, Aaron R; Gasser, Robin B

    2013-12-01

    Angiostrongylus vasorum is a metastrongyloid nematode of dogs and other canids of major clinical importance in many countries. In order to gain first insights into the molecular biology of this worm, we conducted the first large-scale exploration of its transcriptome, and predicted essential molecules linked to metabolic and biological processes as well as host immune responses. We also predicted and prioritized drug targets and drug candidates. Following Illumina sequencing (RNA-seq), 52.3 million sequence reads representing adult A. vasorum were assembled and annotated. The assembly yielded 20,033 contigs, which encoded proteins with 11,505 homologues in Caenorhabditis elegans, and additional 2252 homologues in various other parasitic helminths for which curated data sets were publicly available. Functional annotation was achieved for 11,752 (58.6%) proteins predicted for A. vasorum, including peptidases (4.5%) and peptidase inhibitors (1.6%), protein kinases (1.7%), G protein-coupled receptors (GPCRs) (1.5%) and phosphatases (1.2%). Contigs encoding excretory/secretory and immuno-modulatory proteins represented some of the most highly transcribed molecules, and encoded enzymes that digest haemoglobin were conserved between A. vasorum and other blood-feeding nematodes. Using an essentiality-based approach, drug targets, including neurotransmitter receptors, an important chemosensory ion channel and cysteine proteinase-3 were predicted in A. vasorum, as were associated small molecular inhibitors/activators. Future transcriptomic analyses of all developmental stages of A. vasorum should facilitate deep explorations of the molecular biology of this important parasitic nematode and support the sequencing of its genome. These advances will provide a foundation for exploring immuno-molecular aspects of angiostrongylosis and have the potential to underpin the discovery of new methods of intervention. © 2013.

  7. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  8. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday.

    Science.gov (United States)

    Cramer, Patrick

    2017-08-18

    Here, I discuss the development and future of structural molecular biology, concentrating on the eukaryotic transcription machinery and reflecting on John Kendrew's legacy from a personal perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. On the existence of physiological age based on functional hierarchy: a formal definition related to time irreversibility.

    Science.gov (United States)

    Chauvet, Gilbert A

    2006-09-01

    The present approach of aging and time irreversibility is a consequence of the theory of functional organization that I have developed and presented over recent years (see e.g., Ref. 11). It is based on the effect of physically small and numerous perturbations known as fluctuations, of structural units on the dynamics of the biological system during its adult life. Being a highly regulated biological system, a simple realistic hypothesis, the time-optimum regulation between the levels of organization, leads to the existence of an internal age for the biological system, and time-irreversibility associated with aging. Thus, although specific genes are controlling aging, time-irreversibility of the system may be shown to be due to the degradation of physiological functions. In other words, I suggest that for a biological system, the nature of time is specific and is an expression of the highly regulated integration. An internal physiological age reflects the irreversible course of a living organism towards death because of the irreversible course of physiological functions towards dysfunction, due to the irreversible changes in the regulatory processes. Following the works of Prigogine and his colleagues in physics, and more generally in the field of non-integrable dynamical systems (theorem of Poincaré-Misra), I have stated this problem in terms of the relationship between the macroscopic irreversibility of the functional organization and the basic mechanisms of regulation at the lowest "microscopic" level, i.e., the molecular, lowest level of organization. The neuron-neuron elementary functional interaction is proposed as an illustration of the method to define aging in the nervous system.

  10. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    Science.gov (United States)

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P  0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  11. Characterization of microbial communities in pest colonized books by molecular biology tools

    OpenAIRE

    Franco Palla

    2011-01-01

    This work presents the identification of bacteria and fungi colonies in insect infesting books, by cultural-independent methodologies based on molecular biology techniques. Microbial genomic DNA extraction, in vitro amplification of specific target sequences by polymerase chain reactions (PCR), sequencing and sequence analysis were performed. These procedures minimized the samples amount, optimized the diagnostic studies on bacteria and fungi colonization and allowed the identification of man...

  12. Molecular and Biological Analysis of Potato virus M (PVM) Isolates from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Plchová, Helena; Vaculík, Petr; Čeřovská, Noemi; Moravec, Tomáš; Dědič, P.

    2015-01-01

    Roč. 163, 11-12 (2015), s. 1031-1035 ISSN 0931-1785 R&D Projects: GA MŠk 1M06030 Institutional support: RVO:61389030 Keywords : Czech Republic * phylogeny * Potato virus M Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.945, year: 2015

  13. Proceedings of the 3. international symposium on applied microbiology and molecular biology in oil systems: ISMOS 3

    Energy Technology Data Exchange (ETDEWEB)

    Rooijen, Gijs van; Caffrey, Sean M. [Genome Alberta (Canada); Lund Skovhus, Torben [DTI Oil and Gas (Denmark); Whitby, Corinne [University of Essex (United Kingdom)

    2011-07-01

    The 3rd international symposium on applied microbiology and molecular biology in oil systems was held in Calgary, Alberta, Canada, from June 13th to June 15th, 2011. This conference, organized by ISMOS TSC, gathered experts to discuss the application of microbial and molecular biology in the hydrocarbon sector. The conference was attended by key players from the oil and gas industry and provided them with the opportunity to learn about some of the latest technologies in areas such as the application of molecular microbiological methods for oil field systems, biodegradation of hydrocarbons in oil production, biofuels and downstream petroleum microbiology and challenges in biofuels and oil sands developments, and to network with their peers and share their expertise. 17 of the 31 papers presented during this conference have been catalogued separately for inclusion in this database.

  14. Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2007-04-01

    Full Text Available The aim of this work was to investigate the possibility of employing Molecularly Imprinted Polymers (MIPs as a controlled release device for 5-fluorouracil (5-FU in biological fluids, especially gastrointestinal ones, compared to Non Imprinted Polymers (NIPs. MIPs were synthesized using methacrylic acid (MAA as functional monomer and ethylene glycol dimethacrylate (EGDMA as crosslinking agent. The capacity of the polymer to recognize and to bind the template selectively in both organic and aqueous media was evaluated. An in vitro release study was performed both in gastrointestinal and in plasma simulating fluids. The imprinted polymers bound much more 5-Fu than the corresponding non-imprinted ones and showed a controlled/sustained drug release, with MIPs release rate being indeed much more sustained than that obtained from NIPs. These polymers represent a potential valid system for drug delivery and this study indicates that the selective binding characteristic of molecularly imprinted polymers is promising for the preparation of novel controlled release drug dosage form.

  15. The importance of physiological ecology in conservation biology

    Science.gov (United States)

    Tracy, C.R.; Nussear, K.E.; Esque, T.C.; Dean-Bradley, K.; DeFalco, L.A.; Castle, K.T.; Zimmerman, L.C.; Espinoza, R.E.; Barber, A.M.

    2006-01-01

    Many of the threats to the persistence of populations of sensitive species have physiological or pathological mechanisms, and those mechanisms are best understood through the inherently integrative discipline of physiological ecology. The desert tortoise was listed under the Endangered Species Act largely due to a newly recognized upper respiratory disease thought to cause mortality in individuals and severe declines in populations. Numerous hypotheses about the threats to the persistence of desert tortoise populations involve acquisition of nutrients, and its connection to stress and disease. The nutritional wisdom hypothesis posits that animals should forage not for particular food items, but instead, for particular nutrients such as calcium and phosphorus used in building bones. The optimal foraging hypothesis suggests that, in circumstances of resource abundance, tortoises should forage as dietary specialists as a means of maximizing intake of resources. The optimal digestion hypothesis suggests that tortoises should process ingesta in ways that regulate assimilation rate. Finally, the cost-of-switching hypothesis suggests that herbivores, like the desert tortoise, should avoid switching food types to avoid negatively affecting the microbe community responsible for fermenting plants into energy and nutrients. Combining hypotheses into a resource acquisition theory leads to novel predictions that are generally supported by data presented here. Testing hypotheses, and synthesizing test results into a theory, provides a robust scientific alternative to the popular use of untested hypotheses and unanalyzed data to assert the needs of species. The scientific approach should focus on hypotheses concerning anthropogenic modifications of the environment that impact physiological processes ultimately important to population phenomena. We show how measurements of such impacts as nutrient starvation, can cause physiological stress, and that the endocrine mechanisms

  16. Physiological and molecular characterization of cowpea [Vigna ...

    African Journals Online (AJOL)

    Diaga Diouf

    Cowpea, Vigna unguiculata (L.) Walp. presents phenotypical variabilities and in order to study the genetic diversity of cultivated Senegalese varieties, two experimental approaches were used. First, a physiological characterization based on nitrogen fixation was used to assess cowpea breeding lines. Inoculation with two ...

  17. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    Science.gov (United States)

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Review and application of group theory to molecular systems biology.

    Science.gov (United States)

    Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A

    2011-06-22

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  19. Biophysics and cell physiology

    International Nuclear Information System (INIS)

    Mazur, P.

    1975-01-01

    Progress is reported on research activities in the fields of physiology and low-temperature biology of mammalian embryos; effects of sub-zero temperatures on eggs and embryos of sea urchins; survival of frozen-thawed human red cells; effects of radiation on physiology of Escherichia coli; transfer of triplet electronic energy in dinucleotides; effects of x radiation on DNA degradation; energy deposition by neutrons; photosynthesis; excision repair of uv-induced pyrimidine dimers in DNA of plant cells

  20. New concepts in white adipose tissue physiology

    International Nuclear Information System (INIS)

    Proença, A.R.G.; Sertié, R.A.L.; Oliveira, A.C.; Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B.

    2014-01-01

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT

  1. New concepts in white adipose tissue physiology

    Energy Technology Data Exchange (ETDEWEB)

    Proença, A.R.G. [Universidade Estadual de Campinas, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Limeira, SP, Brasil, Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Sertié, R.A.L. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Oliveira, A.C. [Universidade Estadual do Ceará, Instituto Superior de Ciências Biomédicas, Fortaleza, CE, Brasil, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE (Brazil); Campaãa, A.B.; Caminhotto, R.O.; Chimin, P.; Lima, F.B. [Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, Brasil, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-03-03

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.

  2. The Design of a Molecular Assembly Line Based on Biological Molecules

    Science.gov (United States)

    2003-06-01

    parenthesis in figure 1.8 is a bi-stable toggle switch. Introduction: Molecular assembly lines O=P-O- O O HOH H0P-0- O -O- 4 Polymerase HO H--- O HHO ...sample. Therefore, the samples are self-consistent. From here on, the calculated temperature based on FAM emission MNSowmm" RF Biology: Results and...irradiation for one hour. Figure 2.11 shows the fluorescence spectra of FAM emission (4 scans averaged over 200 seconds) in a 300MHz field. The increased

  3. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  4. Embryology meets molecular biology: Deciphering the apical ectodermal ridge.

    Science.gov (United States)

    Verheyden, Jamie M; Sun, Xin

    2017-09-15

    More than sixty years ago, while studying feather tracks on the shoulder of the chick embryo, Dr. John Saunders used Nile Blue dye to stain the tissue. There, he noticed a darkly stained line of cells that neatly rims the tip of the growing limb bud. Rather than ignoring this observation, he followed it up by removing this tissue and found that it led to a striking truncation of the limb skeletons. This landmark experiment marks the serendipitous discovery of the apical ectodermal ridge (AER), the quintessential embryonic structure that drives the outgrowth of the limb. Dr. Saunders continued to lead the limb field for the next fifty years, not just through his own work, but also by inspiring the next generation of researchers through his infectious love of science. Together, he and those who followed ushered in the discovery of fibroblast growth factor (FGF) as the AER molecule. The seamless marriage of embryology and molecular biology that led to the decoding of the AER serves as a shining example of how discoveries are made for the rest of the developmental biology field. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Philosophical Basis and Some Historical Aspects of Systems Biology: From Hegel to Noble - Applications for Bioenergetic Research

    Directory of Open Access Journals (Sweden)

    Valdur Saks

    2009-03-01

    Full Text Available We live in times of paradigmatic changes for the biological sciences. Reductionism, that for the last six decades has been the philosophical basis of biochemistry and molecular biology, is being displaced by Systems Biology, which favors the study of integrated systems. Historically, Systems Biology - defined as the higher level analysis of complex biological systems - was pioneered by Claude Bernard in physiology, Norbert Wiener with the development of cybernetics, and Erwin Schrödinger in his thermodynamic approach to the living. Systems Biology applies methods inspired by cybernetics, network analysis, and non-equilibrium dynamics of open systems. These developments follow very precisely the dialectical principles of development from thesis to antithesis to synthesis discovered by Hegel. Systems Biology opens new perspectives for studies of the integrated processes of energy metabolism in different cells. These integrated systems acquire new, system-level properties due to interaction of cellular components, such as metabolic compartmentation, channeling and functional coupling mechanisms, which are central for regulation of the energy fluxes. State of the art of these studies in the new area of Molecular System Bioenergetics is analyzed.

  6. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  7. Nacimiento y evolución de la bioquímica y la biología molecular en la Comunidad Valenciana (1963-2013)

    OpenAIRE

    CARBONELL GISBERT, JUAN

    2013-01-01

    Carbonell Gisbert, J. (2013). Nacimiento y evolución de la bioquímica y la biología molecular en la Comunidad Valenciana (1963-2013). SEBBM. Revista de la Sociedad Española de Bioquímica y Biología Molecular. 178:36-38. http://hdl.handle.net/10251/98796 S 36 38 178

  8. Structure-Function Relations in Physiology Education: Where's the Mechanism?

    Science.gov (United States)

    Lira, Matthew E.; Gardner, Stephanie M.

    2017-01-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such…

  9. High-fertility phenotypes: two outbred mouse models exhibit substantially different molecular and physiological strategies warranting improved fertility.

    Science.gov (United States)

    Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M

    2014-01-01

    Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.

  10. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?

    Science.gov (United States)

    Gizak, Agnieszka; Rakus, Dariusz

    2016-01-11

    Molecular and cellular biology methodology is traditionally based on the reasoning called "the mechanistic explanation". In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems' complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites), and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.

  11. Will Quantitative Proteomics Redefine Some of the Key Concepts in Skeletal Muscle Physiology?

    Directory of Open Access Journals (Sweden)

    Agnieszka Gizak

    2016-01-01

    Full Text Available Molecular and cellular biology methodology is traditionally based on the reasoning called “the mechanistic explanation”. In practice, this means identifying and selecting correlations between biological processes which result from our manipulation of a biological system. In theory, a successful application of this approach requires precise knowledge about all parameters of a studied system. However, in practice, due to the systems’ complexity, this requirement is rarely, if ever, accomplished. Typically, it is limited to a quantitative or semi-quantitative measurements of selected parameters (e.g., concentrations of some metabolites, and a qualitative or semi-quantitative description of expression/post-translational modifications changes within selected proteins. A quantitative proteomics approach gives a possibility of quantitative characterization of the entire proteome of a biological system, in the context of the titer of proteins as well as their post-translational modifications. This enables not only more accurate testing of novel hypotheses but also provides tools that can be used to verify some of the most fundamental dogmas of modern biology. In this short review, we discuss some of the consequences of using quantitative proteomics to verify several key concepts in skeletal muscle physiology.

  12. Disaggregases, molecular chaperones that resolubilize protein aggregates

    Directory of Open Access Journals (Sweden)

    David Z. Mokry

    2015-08-01

    Full Text Available The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.

  13. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have upon Graduation?

    Science.gov (United States)

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2013-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of…

  14. Computer support for physiological cell modelling using an ontology on cell physiology.

    Science.gov (United States)

    Takao, Shimayoshi; Kazuhiro, Komurasaki; Akira, Amano; Takeshi, Iwashita; Masanori, Kanazawa; Tetsuya, Matsuda

    2006-01-01

    The development of electrophysiological whole cell models to support the understanding of biological mechanisms is increasing rapidly. Due to the complexity of biological systems, comprehensive cell models, which are composed of many imported sub-models of functional elements, can get quite complicated as well, making computer modification difficult. Here, we propose a computer support to enhance structural changes of cell models, employing the markup languages CellML and our original PMSML (physiological model structure markup language), in addition to a new ontology for cell physiological modelling. In particular, a method to make references from CellML files to the ontology and a method to assist manipulation of model structures using markup languages together with the ontology are reported. Using these methods three software utilities, including a graphical model editor, are implemented. Experimental results proved that these methods are effective for the modification of electrophysiological models.

  15. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  16. Program and abstracts of the 25. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1996-01-01

    The meeting was about biochemistry and molecular biology.In this meeting it was also discussed the following subjects: biotechnology, metabolism, enzymes, proteins, immunology, drugs and others related topics

  17. Structural and Conformational Chemistry from Electrochemical Molecular Machines. Replicating Biological Functions. A Review.

    Science.gov (United States)

    Otero, Toribio F

    2017-12-14

    Each constitutive chain of a conducting polymer electrode acts as a reversible multi-step electrochemical molecular motor: reversible reactions drive reversible conformational movements of the chain. The reaction-driven cooperative actuation of those molecular machines generates, or destroys, inside the film the free volume required to lodge/expel balancing counterions and solvent: reactions drive reversible film volume variations, which basic structural components are here identified and quantified from electrochemical responses. The content of the reactive dense gel (chemical molecular machines, ions and water) mimics that of the intracellular matrix in living functional cells. Reaction-driven properties (composition-dependent properties) and devices replicate biological functions and organs. An emerging technological world of soft, wet, reaction-driven, multifunctional and biomimetic devices and the concomitant zoomorphic or anthropomorphic robots is presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular building blocks and their architecture in biologically/environmentally compatible soft matter chemical machinery.

    Science.gov (United States)

    Toyota, Taro; Banno, Taisuke; Nitta, Sachiko; Takinoue, Masahiro; Nomoto, Tomonori; Natsume, Yuno; Matsumura, Shuichi; Fujinami, Masanori

    2014-01-01

    This review briefly summarizes recent developments in the construction of biologically/environmentally compatible chemical machinery composed of soft matter. Since environmental and living systems are open systems, chemical machinery must continuously fulfill its functions not only through the influx and generation of molecules but also via the degradation and dissipation of molecules. If the degradation or dissipation of soft matter molecular building blocks and biomaterial molecules/polymers can be achieved, soft matter particles composed of them can be used to realize chemical machinery such as selfpropelled droplets, drug delivery carriers, tissue regeneration scaffolds, protocell models, cell-/tissuemarkers, and molecular computing systems.

  19. Third Jesús Culebras Lecture: Molecular Biology and Clinical Nutrition; ¿where do we stand and where do we go?

    OpenAIRE

    Gil, Ángel

    2013-01-01

    Nutrition plays a fundamental role in the maintenance of health and the treatment of disease, and serves as the crossroads for many disciplines. Biochemistry and Molecular Biology represents a key brand of science to ascertain the mechanism of action of nutrients and other food bioactive compounds in health and disease. The aim of the present Jesús M. Culebras lecture is to consider the future of the relationships between Molecular Biology and Clinical Nutrition and to discuss the use of mole...

  20. Factors involved in cardiac physiological and pathological remodeling

    NARCIS (Netherlands)

    Demkes, C.J.

    2018-01-01

    During life, the heart is exposed to different types of stresses. In response to changing demands or stimuli the heart can cope by growing in size. In this thesis, molecular changes underlying cardiac physiological and pathological adaptations are investigated. First, we validated physiological

  1. On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context.

    Science.gov (United States)

    McClusky, Leon Mendel

    2012-01-01

    The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 'DRF-G - Grenoble Department of Fundamental Research. Activity report 1985, Nr 20. Volume II: 'Chemical Physics' 'Biology'

    International Nuclear Information System (INIS)

    1983-01-01

    This volume contains synthetic reports of researches performed in chemistry, in the field of biological and medical applications of nuclear magnetic resonance, and in biology during the 1981-1983 period or only during 1983. As far as chemistry is concerned, the following topics have been addressed: conducting organic polymers, organic and analytic electrochemistry, coordination chemistry, molecular dynamics, vegetal macromolecules, nucleic acids. As far as biology is concerned, the following topics have been addressed: systems associated with membranes, metalloproteins, cell biology and differentiation, immuno-chemistry, haematology, vegetal physiology, structural studies of proteins. Staff lists of researchers are provided for chemistry laboratories and biology laboratories, as well a list of publications

  3. Characterization of microbial communities in pest colonized books by molecular biology tools

    Directory of Open Access Journals (Sweden)

    Franco Palla

    2011-08-01

    Full Text Available This work presents the identification of bacteria and fungi colonies in insect infesting books, by cultural-independent methodologies based on molecular biology techniques. Microbial genomic DNA extraction, in vitro amplification of specific target sequences by polymerase chain reactions (PCR, sequencing and sequence analysis were performed. These procedures minimized the samples amount, optimized the diagnostic studies on bacteria and fungi colonization and allowed the identification of many species also in complex microbial consortia. The molecular techniques for sure accomplish and integrate the microbiological standard methods (in vitro culture and morphological analyses (OM, SEM, CLSM, in order to understand the role of microorganisms in bio-deterioration of cultural assets. This monitoring is also indispensable to shed light on the risk for visitors and/or professionals to contract potential illnesses within indoor environments.

  4. Intraductal papillary-mucinous neoplasia of the pancreas: Histopathology and molecular biology.

    Science.gov (United States)

    Verbeke, Caroline S

    2010-10-27

    Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas is a clinically and morphologically distinctive precursor lesion of pancreatic cancer, characterized by gradual progression through a sequence of neoplastic changes. Based on the nature of the constituting neoplastic epithelium, degree of dysplasia and location within the pancreatic duct system, IPMNs are divided in several types which differ in their biological properties and clinical outcome. Molecular analysis and recent animal studies suggest that IPMNs develop in the context of a field-defect and reveal their possible relationship with other neoplastic precursor lesions of pancreatic cancer.

  5. Applications of NMR in biological metabolic research

    International Nuclear Information System (INIS)

    Nie Jiarui; Li Xiuqin; He Chunjian

    1989-01-01

    The nuclear magnetic resonance has become a powerful means of studying biological metabolism in non-invasive and non-destructive way. Being used to study the metabolic processes of living system in normal physiological conditions as well as in molecular level, the method is better than other conventional approaches. Using important parameters such as NMR-chemical shifts, longitudinal relaxation time and transverse relaxation time, it is possible to probe the metabolic processes as well as conformation, concentration, transportation and distribution of reacting and resulting substances. The NMR spectroscopy of 1 H, 31 P and 13 C nuclei has already been widely used in metabolic researches

  6. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    International Nuclear Information System (INIS)

    Eisenberg, David S.

    2008-01-01

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  7. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) ...

    Science.gov (United States)

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. Adverse outcome pathways (AOPs), in this case endocrine disruption during development, provide a biologically-based framework for linking molecular initiating events triggered by chemical exposures to key events leading to adverse outcomes. The application of AOPs to human health risk assessment requires extrapolation of in vitro HTS toxicity data to in vivo exposures (IVIVE) in humans, which can be achieved through the use of a PBPK/PD model. Exposure scenarios for chemicals in the PBPK/PD model will consider both placental and lactational transfer of chemicals, with a focus on age dependent dosimetry during fetal development and after birth for a nursing infant. This talk proposes a universal life-stage computational model that incorporates changing physiological parameters to link environmental exposures to in vitro levels of HTS assays related to a developmental toxicological AOP for vascular disruption. In vitro toxicity endpoints discussed are based on two mechanisms: 1) Fetal vascular disruption, and 2) Neurodevelopmental toxicity induced by altering thyroid hormone levels in neonates via inhibition of thyroperoxidase in the thyroid gland. Application of our Life-stage computati

  8. Molecular genetics of glioblastomas: defining subtypes and understanding the biology.

    Science.gov (United States)

    Renault, Ilana Zalcberg; Golgher, Denise

    2015-02-01

    Despite comprehensive therapy, which includes surgery, radiotherapy, and chemotherapy, the prognosis of glioblastoma multiforme is very poor. Diagnosed individuals present an average of 12 to 18 months of life. This article provides an overview of the molecular genetics of these tumors. Despite the overwhelming amount of data available, so far little has been translated into real benefits for the patient. Because this is such a complex topic, the goal is to point out the main alterations in the biological pathways that lead to tumor formation, and how this can contribute to the development of better therapies and clinical care. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Analysis of heterogeneity and epistasis in physiological mixed populations by combined structural equation modelling and latent class analysis

    DEFF Research Database (Denmark)

    Fenger, Mogens; Linneberg, A.; Werge, Thomas Mears

    2008-01-01

    and genetic variations of such networks. METHODS: In this study on type 2 diabetes mellitus, heterogeneity was resolved in a latent class framework combined with structural equation modelling using phenotypic indicators of distinct physiological processes. We modelled the clinical condition "the metabolic......BACKGROUND: Biological systems are interacting, molecular networks in which genetic variation contributes to phenotypic heterogeneity. This heterogeneity is traditionally modelled as a dichotomous trait (e.g. affected vs. non-affected). This is far too simplistic considering the complexity...

  10. La Investigación Básica. La Investigación en Ciencias Fisiológicas: Bioquímica, Biología Molecular y Fisiología. Cuestiones Previas Basic Research. Research in Physiological Sciences: Biochemistry, Biophysics, Molecular Biology and Physiology. Some prior considerations

    Directory of Open Access Journals (Sweden)

    Constancio González Martínez

    2004-03-01

    conjugate some general ideas on scientific research with known facts on the socioeconomic reality of Latin American countries. In the initial part of the talk I put forward a definition of research, emphasizing the great value of considering the teleology of biological phenomena for the advance of biological sciences. A succinct consideration of the importance of Good Laboratory Practices, especially if there is not a tradition of research, drove my talk to the presentation of some basic data on the socioeconomic situation of the Latin American countries. In the second half of the conference my efforts were directed to incite our Latin American colleagues to demand from their politicians, and to justify in front of their fellow citizens, the necessity of implementing a program on scientific research as a national priority. Such demand should be justified on the basis of the recognition that research represents a way to correctly use the intellectual capital of the citizens of every country and a mean to profit from free international resources, that research is a source of culture, contributing to the national identity of any given country, and finally, on the fact that research is an activity that generates wealth. I concluded my talk pointing out that basic research, and therefore research in physiological sciences, is assembled so tight with basic research that they conform a unique reality.

  11. Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: implications on seed technology traits.

    Science.gov (United States)

    Macovei, Anca; Pagano, Andrea; Leonetti, Paola; Carbonera, Daniela; Balestrazzi, Alma; Araújo, Susana S

    2017-05-01

    The pre-germinative metabolism is among the most fascinating aspects of seed biology. The early seed germination phase, or pre-germination, is characterized by rapid water uptake (imbibition), which directs a series of dynamic biochemical events. Among those are enzyme activation, DNA damage and repair, and use of reserve storage compounds, such as lipids, carbohydrates and proteins. Industrial seedling production and intensive agricultural production systems require seed stocks with high rate of synchronized germination and low dormancy. Consequently, seed dormancy, a quantitative trait related to the activation of the pre-germinative metabolism, is probably the most studied seed trait in model species and crops. Single omics, systems biology, QTLs and GWAS mapping approaches have unveiled a list of molecules and regulatory mechanisms acting at transcriptional, post-transcriptional and post-translational levels. Most of the identified candidate genes encode for regulatory proteins targeting ROS, phytohormone and primary metabolisms, corroborating the data obtained from simple molecular biology approaches. Emerging evidences show that epigenetic regulation plays a crucial role in the regulation of these mentioned processes, constituting a still unexploited strategy to modulate seed traits. The present review will provide an up-date of the current knowledge on seed pre-germinative metabolism, gathering the most relevant results from physiological, genetics, and omics studies conducted in model and crop plants. The effects exerted by the biotic and abiotic stresses and priming are also addressed. The possible implications derived from the modulation of pre-germinative metabolism will be discussed from the point of view of seed quality and technology.

  12. Stages in the development of a model organism as a platform for mechanistic models in developmental biology: Zebrafish, 1970-2000.

    Science.gov (United States)

    Meunier, Robert

    2012-06-01

    Model organisms became an indispensable part of experimental systems in molecular developmental and cell biology, constructed to investigate physiological and pathological processes. They are thought to play a crucial role for the elucidation of gene function, complementing the sequencing of the genomes of humans and other organisms. Accordingly, historians and philosophers paid considerable attention to various issues concerning this aspect of experimental biology. With respect to the representational features of model organisms, that is, their status as models, the main focus was on generalization of phenomena investigated in such experimental systems. Model organisms have been said to be models for other organisms or a higher taxon. This, however, presupposes a representation of the phenomenon in question. I will argue that prior to generalization, model organisms allow researchers to built generative material models of phenomena - structures, processes or the mechanisms that explain them - through their integration in experimental set-ups that carve out the phenomena from the whole organism and thus represent them. I will use the history of zebrafish biology to show how model organism systems, from around 1970 on, were developed to construct material models of molecular mechanisms explaining developmental or physiological processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Chapter 24: the coming of molecular biology and its impact on clinical neurology.

    Science.gov (United States)

    Smith, Christopher U M

    2010-01-01

    Although the chemical study of the nervous system dates back well into the 19th century, molecular biology and especially molecular neurobiology only began to be established in the second half of the 20th century. This chapter reviews their impact on clinical neuroscience during the 50 years since Watson and Crick published their seminal paper. After a short review of the part played by F.O. Schmitt in establishing molecular neuroscience the chapter outlines work that led to a detailed understanding of the biochemical structure and function of nerve cell membranes and their embedded channel proteins, receptors, and other molecules. The chapter then turns to the numerous pathologies that result from disorders of these elements: the various channel and gap-junction pathologies. The chapter continues with a discussion of some of the diseases caused by defective DNA, especially the trinucleotide repeat expansion diseases (TREDs) and ends with a short account of the development of molecular approaches to prion diseases, myasthenia gravis, and the neurodegenerative diseases of old age. Francis Bacon said long ago that "knowledge is power." The hope is that increasing molecular knowledge will help cure some of the human suffering seen in the neurological ward and clinic.

  14. Molecular medicine: a path towards a personalized medicine.

    Science.gov (United States)

    Miranda, Debora Marques de; Mamede, Marcelo; Souza, Bruno Rezende de; Almeida Barros, Alexandre Guimarães de; Magno, Luiz Alexandre; Alvim-Soares, Antônio; Rosa, Daniela Valadão; Castro, Célio José de; Malloy-Diniz, Leandro; Gomez, Marcus Vinícius; Marco, Luiz Armando De; Correa, Humberto; Romano-Silva, Marco Aurélio

    2012-03-01

    Psychiatric disorders are among the most common human illnesses; still, the molecular and cellular mechanisms underlying their complex pathophysiology remain to be fully elucidated. Over the past 10 years, our group has been investigating the molecular abnormalities in major signaling pathways involved in psychiatric disorders. Recent evidences obtained by the Instituto Nacional de Ciência e Tecnologia de Medicina Molecular (National Institute of Science and Technology - Molecular Medicine, INCT-MM) and others using behavioral analysis of animal models provided valuable insights into the underlying molecular alterations responsible for many complex neuropsychiatric disorders, suggesting that "defects" in critical intracellular signaling pathways have an important role in regulating neurodevelopment, as well as in pathophysiology and treatment efficacy. Resources from the INCT have allowed us to start doing research in the field of molecular imaging. Molecular imaging is a research discipline that visualizes, characterizes, and quantifies the biologic processes taking place at cellular and molecular levels in humans and other living systems through the results of image within the reality of the physiological environment. In order to recognize targets, molecular imaging applies specific instruments (e.g., PET) that enable visualization and quantification in space and in real-time of signals from molecular imaging agents. The objective of molecular medicine is to individualize treatment and improve patient care. Thus, molecular imaging is an additional tool to achieve our ultimate goal.

  15. West-Life, Tools for Integrative Structural Biology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Structural biology is part of molecular biology focusing on determining structure of macromolecules inside living cells and cell membranes. As macromolecules determines most of the functions of cells the structural knowledge is very useful for further research in metabolism, physiology to application in pharmacology etc. As macromolecules are too small to be observed directly by light microscope, there are other methods used to determine the structure including nuclear magnetic resonance (NMR), X-Ray crystalography, cryo electron microscopy and others. Each method has it's advantages and disadvantages in the terms of availability, sample preparation, resolution. West-Life project has ambition to facilitate integrative approach using multiple techniques mentioned above. As there are already lot of software tools to process data produced by the techniques above, the challenge is to integrate them together in a way they can be used by experts in one technique but not experts in other techniques. One product ...

  16. A bio-inspired glucose controller based on pancreatic β-cell physiology.

    Science.gov (United States)

    Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer

    2012-05-01

    Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. © 2012 Diabetes Technology Society.

  17. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  18. Systems physiology in dairy cattle: nutritional genomics and beyond.

    Science.gov (United States)

    Loor, Juan J; Bionaz, Massimo; Drackley, James K

    2013-01-01

    Microarray development changed the way biologists approach the holistic study of cells and tissues. In dairy cattle biosciences, the application of omics technology, from spotted microarrays to next-generation sequencing and proteomics, has grown steadily during the past 10 years. Omics has found application in fields such as dairy cattle nutritional physiology, reproduction, and immunology. Generating biologically meaningful data from omics studies relies on bioinformatics tools. Both are key components of the systems physiology toolbox, which allows study of the interactions between a condition (e.g., nutrition, physiological state) with tissue gene/protein expression and the associated changes in biological functions. The nature of physiologic and metabolic adaptations in dairy cattle at any stage of the life cycle is multifaceted, involves multiple tissues, and is dynamic, e.g., the transition from late-pregnancy to lactation. Application of integrative systems physiology in periparturient dairy cattle has already advanced knowledge of the simultaneous functional adaptations in liver, adipose, and mammary tissue.

  19. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.

    Science.gov (United States)

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A

    2016-07-01

    A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that link different POPs to common metabolic diseases. Environ

  20. Intracellular antibody capture: A molecular biology approach to inhibitors of protein-protein interactions.

    Science.gov (United States)

    Zhang, Jing; Rabbitts, Terence H

    2014-11-01

    Many proteins of interest in basic biology, translational research studies and for clinical targeting in diseases reside inside the cell and function by interacting with other macromolecules. Protein complexes control basic processes such as development and cell division but also abnormal cell growth when mutations occur such as found in cancer. Interfering with protein-protein interactions is an important aspiration in both basic and disease biology but small molecule inhibitors have been difficult and expensive to isolate. Recently, we have adapted molecular biology techniques to develop a simple set of protocols for isolation of high affinity antibody fragments (in the form of single VH domains) that function within the reducing environment of higher organism cells and can bind to their target molecules. The method called Intracellular Antibody Capture (IAC) has been used to develop inhibitory anti-RAS and anti-LMO2 single domains that have been used for target validation of these antigens in pre-clinical cancer models and illustrate the efficacy of the IAC approach to generation of drug surrogates. Future use of inhibitory VH antibody fragments as drugs in their own right (we term these macrodrugs to distinguish them from small molecule drugs) requires their delivery to target cells in vivo but they can also be templates for small molecule drug development that emulate the binding sites of the antibody fragments. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. Copyright © 2014 Elsevier B.V. All rights reserved.