WorldWideScience

Sample records for physiologically-patterned weak magnetic

  1. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    F. Valdés-Bango

    2017-05-01

    Full Text Available Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  2. Magnetic stripes and holes: Complex domain patterns in perforated films with weak perpendicular anisotropy

    Science.gov (United States)

    Valdés-Bango, F.; Vélez, M.; Alvarez-Prado, L. M.; Alameda, J. M.; Martín, J. I.

    2017-05-01

    Hexagonal antidot arrays have been patterned on weak perpendicular magnetic anisotropy NdCo films by e-beam lithography and lift off. Domain structure has been characterized by Magnetic Force Microscopy at remanence. On a local length scale, of the order of stripe pattern period, domain configuration is controlled by edge effects within the stripe pattern: stripe domains meet the hole boundary at either perpendicular or parallel orientation. On a longer length scale, in-plane magnetostatic effects dominate the system: clear superdomains are observed in the patterned film with average in-plane magnetization along the easy directions of the antidot array, correlated over several antidot array cells.

  3. Magnetization reversal in weak ferrimagnets and canted antiferromagnets

    International Nuclear Information System (INIS)

    Kageyama, H.; Khomskii, D.I.; Levitin, R.Z.; Markina, M.M.; Okuyama, T.; Uchimoto, T.; Vasil'ev, A.N.

    2003-01-01

    In some ferrimagnets the total magnetization vanishes at a certain compensation temperature T*. In weak magnetic fields, the magnetization can change sign at T* (the magnetization reversal). Much rarer is observation of ferrimagnetic-like response in canted antiferromagnets, where the weak ferromagnetic moment is due to the tilting of the sublattice magnetizations. The latter phenomenon was observed in nickel (II) formate dihydrate Ni(HCOO) 2 ·2H 2 O. The observed weak magnetic moment increases initially below T N =15.5 K, equals zero at T*=8.5 K and increases again at lowering temperature. The sign of the low-field magnetization at any given temperature is determined by the sample's magnetic prehistory and the signs are opposite to each other at T N

  4. A weak magnetic field inhibits hippocampal neurogenesis in SD rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Pan, Y.

    2017-12-01

    Geomagnetic field is an important barrier that protects life forms on Earth from solar wind and radiation. Paleomagnetic data have well demonstrated that the strength of ancient geomagnetic field was dramatically weakened during a polarity transition. Accumulating evidence has shown that weak magnetic field exposures has serious adverse effects on the metabolism and behaviors in organisms. Hippocampal neurogenesis occurs throughout life in mammals' brains which plays a key role in brain function, and can be influenced by animals' age as well as environmental factors, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we have investigated the weak magnetic field effects on hippocampal neurogenesis of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, a weak magnetic field (≤1.3 μT) and the geomagnetic fields (51 μT).The latter is treated as a control condition. SD rats were exposure to the weak magnetic field up to 6 weeks. We measured the changes of newborn nerve cells' proliferation and survival, immature neurons, neurons and apoptosis in the dentate gyrus (DG) of hippocampus in SD rats. Results showed that, the weak magnetic field (≤1.3 μT) inhibited their neural stem cells proliferation and significantly reduced the survival of newborn nerve cells, immature neurons and neurons after 2 or 4 weeks continuous treatment (i.e. exposure to weak magnetic field). Moreover, apoptosis tests indicated the weak magnetic field can promote apoptosis of nerve cells in the hippocampus after 4 weeks treatment. Together, our new data indicate that weak magnetic field decrease adult hippocampal neurogenesis through inhibiting neural stem cells proliferation and promoting apoptosis, which provides useful experimental constraints on better understanding the mechanism of linkage between life and geomagnetic field.

  5. Advances in the measurement of weak magnetic fields

    International Nuclear Information System (INIS)

    Li Damin; Huang Minzhe.

    1992-01-01

    The state-of-art and general features of instruments for measuring weak magnetic fields (such as the non-directional magnetometer, induced coil magnetometer, proton magnetometer, optical pumping magnetometer, flux-gate magnetometer and superconducting quantum magnetometer) are briefly described. Emphasis is laid on the development of a novel technique used in the flux-gate magnetometer and the liquid nitrogen SQUID. Typical applications of the measuring techniques for weak magnetic fields are given

  6. Effect of Weak Magnetic Field on Bacterial Growth

    Science.gov (United States)

    Masood, Samina

    Effects of weak magnetic fields are observed on the growth of various bacterial strains. Different sources of a constant magnetic field are used to demonstrate that ion transport in the nutrient broth and bacterial cellular dynamics is perturbed in the presence of weak magnetic field which affects the mobility and absorption of nutrients in cells and hence their doubling rate. The change is obvious after a few hours of exposure and keeps on increasing with time for all the observed species. The growth rate depends on the field strength and the nature of the magnetic field. The field effect varies with the shape and the structure of the bacterial cell wall as well as the concentration of nutrient broth. We closely study the growth of three species Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis with the same initial concentrations at the same temperature in the same laboratory environment. Our results indicate that the weak static field of a few gauss after a few hours gives a measurable change in the growth rates of all bacterial species. This shows that the same magnetic field has different effects on different species in the same environment.

  7. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    International Nuclear Information System (INIS)

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-01-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase

  8. Method and apparatus for measuring weak magnetic fields

    DEFF Research Database (Denmark)

    1995-01-01

    When measuring weak magnetic fields, a container containing a medium, such as a solution containing a stable radical, is placed in a polarising magnetic field, which is essentially at right angles to the field to be measured. The polarising field is interrupted rapidly, the interruption being...

  9. Identification of a Group's Physiological Synchronization with Earth's Magnetic Field.

    Science.gov (United States)

    Timofejeva, Inga; McCraty, Rollin; Atkinson, Mike; Joffe, Roza; Vainoras, Alfonsas; Alabdulgader, Abdullah A; Ragulskis, Minvydas

    2017-09-01

    A new analysis technique for the evaluation of the degree of synchronization between the physiological state of a group of people and changes in the Earth's magnetic field based on their cardiac inter-beat intervals was developed and validated. The new analysis method was then used to identify clusters of similar synchronization patterns in a group of 20 individuals over a two-week period. The algorithm for the identification of slow wave dynamics for every person was constructed in order to determine meaningful interrelationships between the participants and the local magnetic field data. The results support the hypothesis that the slow wave rhythms in heart rate variability can synchronize with changes in local magnetic field data, and that the degree of synchronization is affected by the quality of interpersonal relationships.

  10. Weakly and strongly coupled Belousov-Zhabotinsky patterns

    Science.gov (United States)

    Weiss, Stephan; Deegan, Robert D.

    2017-02-01

    We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.

  11. Exploration of the validity of weak magnets as a suitable placebo in trials of magnetic therapy.

    Science.gov (United States)

    Greaves, C J; Harlow, T N

    2008-06-01

    To investigate whether 50 mT magnetic bracelets would be suitable as a placebo control condition for studying the pain relieving effects of higher strength magnetic bracelets in arthritis. Randomised controlled comparison between groups given either a weak 50 mT or a higher strength 180 mT magnetic bracelets to test. Four arthritis support groups in Devon, UK. One hundred sixteen people with osteoarthritis and rheumatoid arthritis. Beliefs about group allocation and expectation of benefit. There was no significant difference between groups in beliefs about allocation to the 'active magnet' group. Participants were however more likely to have an expectation of benefit (pain relief) with the higher strength magnetic bracelets. Asking about perceived group allocation is not sufficient to rule out placebo effects in trials of magnetic bracelets which use weak magnets as a control condition. There are differences in expectation of benefit between different magnet strengths.

  12. Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli.

    Science.gov (United States)

    Gartzke, Joachim; Lange, Klaus

    2002-11-01

    The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals

  13. Extremely weak magnetic field exposure may inhibit hippocampal neurogenesis of Sprague Dawley rats

    Science.gov (United States)

    Zhang, B.; Tian, L.; Cai, Y.; Xu, H.; Pan, Y.

    2016-12-01

    Hippocampal neurogenesis occurs throughout life in mammals brains and can be influenced by animals' age as well as environmental factors. Lines of evidences have shown that the magnetic field is an important physics environmental factor influencing many animals' growth and development, and extremely weak magnetic field exposures have been proved having serious adverse effects on the metabolism and behaviors in some animals, but few studies have examined the response of hippocampal neurogenesis to it. In the present study, we experimentally examined the extremely weak magnetic field effects on neurogenesis of the dentate gyrus (DG) of hippocampus of adult Sprague Dawley (SD) rats. Two types of magnetic fields were used, an extremely weak magnetic field (≤ 0.5μT) and the geomagnetic fields (strength 31-58μT) as controls. Thirty-two SD rats (3-weeks old) were used in this study. New cell survival in hippocampus was assessed at 0, 14, 28, and 42 days after a 7-day intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Meanwhile, the amounts of immature neurons and mature neurons which are both related to hippocampal neurogenesis, as documented by labeling with doublecortin (DCX) and neuron (NeuN), respectively, were also analyzed at 0, 14, 28, and 42 days. Compared with geomagnetic field exposure groups, numbers of BrdU-, DCX-positive cells of DG of hippocampus in tested rats reduces monotonously and more rapidly after 14 days, and NeuN-positive cells significantly decreases after 28days when exposed in the extremely weak magnetic field condition. Our data suggest that the exposure to an extremely weak magnetic field may suppress the neurogenesis in DG of SD rats.

  14. Properties of a magnetic superconductor with weak magnetization-application to ErNi2B2C

    International Nuclear Information System (INIS)

    Ng, T.K.; Leung, W.T.

    2001-01-01

    Using a Ginsburg-Landau free-energy functional, we study the H-T phase diagram of a weak magnetic superconductor, where the magnetization from the magnetic component is marginal in supporting a spontaneous vortex phase. In particular, the competition between the spiral state and spontaneous vortex phase is analysed. Our theory is applied to understand the magnetic properties of ErNi 2 B 2 C. (orig.)

  15. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Pengpeng; Zheng, Xiaojing, E-mail: xjzheng@xidian.edu.cn [School of Mechano-Electronic Engineering, Xidian University, Xi' an 710071, Shaanxi (China); Jin, Ke [School of Aerospace Science and Technology, Xidian University, Xi' an 710071, Shaanxi (China)

    2016-04-14

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress–strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress–magnetization curve, especially in the compression case. Based on the thermodynamic relations and the approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.

  16. Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance

    Science.gov (United States)

    Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.

    2018-05-01

    A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.

  17. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    Science.gov (United States)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  18. Deflection of weakly magnetic materials by superconducting OGMS

    International Nuclear Information System (INIS)

    Boehm, J.; Gerber, R.; Fletcher, D.; Parker, M.R.

    1988-01-01

    Applications of a superconducting Open Gradient Magnetic Separator to fractional separation in air of weakly magnetic materials are presented. The dependence of particle deflection of these materials on the magnetic field strength, release location, magnetic susceptibility, particle density and other properties is investigated. The aim is to maximise the deflection of the magnetically stronger component of the feed to facilitate its separation from the particle stream round the magnet. Materials (e.g. CuSO/sub 4/, MnO/sub 2/) with chi/rho- ratios of the order of 7 x 10/sup -8/ m/sup 3//kg have been deflected. The applicability of dry magnetic separation has thus been considerably extended since up to now the separation of such materials has been restricted to High Gradient Magnetic Separation. The dependence of the separation efficiency upon the method of feeding and the influence of the residence time are studied in order to establish the optimum parameters for the recovery of the desired fraction. The experimental results are compared with predictions of a theory that is based upon novel approximative calculations of magnetic fields in which the use of elliptic integrals is avoided

  19. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Lee R. [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States); Williams, P. Stephen [Cambrian Technologies, Inc., Cleveland, OH (United States); Chalmers, Jeffrey J. [William G. Lowrie Department of Chemical and Biomedical Engineering, The Ohio State University, Columbus 151 W. Woodruff Avenue, OH 43210 (United States); Zborowski, Maciej, E-mail: zborowm@ccf.org [Department of Biomedical Engineering, Cleveland Clinic, 9500 Euclid Ave., Cleveland OH 44195 (United States)

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  20. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    International Nuclear Information System (INIS)

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-01-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. - Highlights: • Simple geometry of commercial, off-the-shelf NdFeB magnet blocks is amenable to generate high fields and open gradients. • Periodic pattern of permanent magnet blocks (tessellation) reduces the number of blocks per separation channel and improves the efficiency of separator design. • Split-flow lateral transport thin (SPLITT) fractionation model predicts 100-fold reduction of red blood cells from 1 mL whole blood sample in 1 h, suitable for laboratory medicine applications.

  1. PHYSIOLOGIC PATTERNS OF SLEEP ON EEG, MASKING OF EPILEPTIFORM ACTIVITY

    Directory of Open Access Journals (Sweden)

    L. Yu. Glukhova

    2013-01-01

    Full Text Available Physiologic patterns of sleep on EEG can sometimes be similar to epileptiform activity and even to the EEG pattern of epileptic seizures, but they have no connection to epilepsy and their incorrect interpretation may lead to overdiagnosis of epilepsy. These sleep patterns include vertex transients, K-complexes, hypnagogic hypersynchrony, 14 and 6 Hz positive bursts, wicket-potentials, etc. The main distinctive features of acute physiological phenomena of sleep unlike epileptiform activity are stereotyped, monomorphic morphology of waves, which frequently has rhythmic, arcuate pattern, often with change of lateralization, mainly dominated in the first stages of sleep (N1-N2, with their reduction in the deeper stages and transition to delta sleep (N3. The correct interpretation of physiological sharp-wave phenomena of sleep on EEG requires considerable training and experience of the physician. Our review includes a variety of physiological sleep patterns, which can mimic epileptiform activity on EEG, their criteria of diagnostic with demonstration of own illustrations of EEG.

  2. A neutron depolarization study of magnetic inhomogeneities in weak-link superconductors

    International Nuclear Information System (INIS)

    Zhuchenko, N.K.; Yagud, R.Z.

    1993-01-01

    Neutron depolarization measurements in the mixed state of both high-T c and low-T c weak-link superconductors have been carried out. Samples of YBCO, BSCCO, SnMo 6 S 8 and 0.5 Nb-0.5 Ti of different magnetic prehistory were analyzed at temperatures T 4.2 K under applied magnetic fields II <= 16.5 kOe. We ascribe the appearance of magnetic inhomogeneities and their hysteresis behaviour to the interaction between dipole magnetic fields (diamagnetic and paramagnetic ones) and applied magnetic fields

  3. Dynamical mass generation in QED with weak magnetic fields

    International Nuclear Information System (INIS)

    Ayala, A.; Rojas, E.; Bashir, A.; Raya, A.

    2006-01-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2

  4. Stochastic control of living systems: Normalization of physiological functions by magnetic field with 1/f power spectrum

    Science.gov (United States)

    Muzalevskaya, N. I.; Uritsky, V. M.; Korolyov, E. V.; Reschikov, A. M.; Timoshinov, G. P.

    1993-08-01

    For the first time correcting stochastic control of physiological status of living systems by weak low-frequency fluctuating magnetic field with 1/f spectrum (1/f MF) is demonstrated experimentally. The correction was observed in all main systems, including cardiovascular, central nervous, immunity systems of experimental animals. Pronounced prophylactic and therapeutic influence of 1/f MF on malignant growth and radiation disease was discovered. Theoretical interpretation of the results obtained is based upon the notion of fundamental role of 1/f fluctuations in homeostasis of living systems.

  5. Application of magnetic resonance techniques for imaging tumour physiology

    International Nuclear Information System (INIS)

    Stubbs, M.

    1999-01-01

    Magnetic resonance (MR) techniques have the unique ability to measure in vivo the biochemical content of living tissue in the body in a dynamic, non-invasive and non-destructive manner. MR also permits serial investigations of steady-state tumour physiology and biochemistry, as well as the response of a tumour to treatment. Magnetic resonance imaging (MRI), Magnetic resonance spectroscopy (MRS) and a mixture of the two techniques (spectroscopic imaging) allow some physiological parameters, for example pH, to be 'imaged'. Using these methods, information on tissue bioenergetics and phospolipid membrane turnover, pH, hypoxia, oxygenation, and various aspects of vascularity including blood flow, angiogenesis, permeability and vascular volume can be obtained. In addition, MRS methods can be used for monitoring anticancer drugs (e.g. 5FU, ifosfamide) and their metabolites at their sites of action. The role of these state-of-the-art MR methods in imaging tumour physiology and their potential role in the clinic are discussed. (orig.)

  6. Weak magnetism of Aurivillius-type multiferroic thin films probed by polarized neutron reflectivity

    Science.gov (United States)

    Zhai, Xiaofang; Grutter, Alexander J.; Yun, Yu; Cui, Zhangzhang; Lu, Yalin

    2018-04-01

    Unambiguous magnetic characterization of room-temperature multiferroic materials remains challenging due in part to the difficulty of distinguishing their very weak ferromagnetism from magnetic impurity phases and other contaminants. In this study, we used polarized neutron reflectivity to probe the magnetization of B i6FeCoT i3O18 and LaB i5FeCoT i3O18 in their epitaxial thin films while eliminating a variety of impurity contributions. Our results show that LaB i5FeCoT i3O18 exhibits a magnetization of about 0.016 ±0.027 μB/Fe -Co pair at room temperature, while the B i6FeCoT i3O18 thin film only exhibits a weak magnetic moment below room temperature, with a saturation magnetization of 0.049 ±0.015 μB/Fe -Co pair at 50 K. This polarized-neutron-reflectivity study places an upper magnetization limit on the matrix material of the magnetically doped Aurivillius oxides and helps to clarify the true mechanism behind the room-temperature magnetic performance.

  7. Writing magnetic patterns with surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  8. Directional Solidification Microstructure of a Ni-Based Superalloy: Influence of a Weak Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Xu Li

    2015-06-01

    Full Text Available A Ni-based superalloy CMSX-6 was directionally solidified at various drawing speeds (5–20 μm·s−1 and diameters (4 mm, 12 mm under a 0.5 T weak transverse magnetic field. The results show that the application of a weak transverse magnetic field significantly modified the solidification microstructure. It was found that if the drawing speed was lower than 10 μm·s−1, the magnetic field caused extensive macro-segregation in the mushy zone, and a change in the mushy zone length. The magnetic field significantly decreases the size of γ’ and the content of γ-γ’ eutectic. The formation of macro-segregation under a weak magnetic field was attributed to the interdendritic solute transport driven by the thermoelectric magnetic convection (TEMC. The γ’ phase refinement could be attributed to a decrease in nucleation activation energy owing to the magnetic field during solid phase transformation. The change of element segregation is responsible for the content decrease of γ-γ’ eutectic.

  9. Acute ischaemic stroke prediction from physiological time series patterns

    Directory of Open Access Journals (Sweden)

    Qing Zhang,

    2013-05-01

    Full Text Available BackgroundStroke is one of the major diseases with human mortality. Recent clinical research has indicated that early changes in common physiological variables represent a potential therapeutic target, thus the manipulation of these variables may eventually yield an effective way to optimise stroke recovery.AimsWe examined correlations between physiological parameters of patients during the first 48 hours after a stroke, and their stroke outcomes after 3 months. We wanted to discover physiological determinants that could be used to improve health outcomes by supporting the medical decisions that need to be made early on a patient’s stroke experience.Method We applied regression-based machine learning techniques to build a prediction algorithm that can forecast 3-month outcomes from initial physiological time series data during the first 48 hours after stroke. In our method, not only did we use statistical characteristics as traditional prediction features, but also we adopted trend patterns of time series data as new key features.ResultsWe tested our prediction method on a real physiological data set of stroke patients. The experiment results revealed an average high precision rate: 90%. We also tested prediction methods only considering statistical characteristics of physiological data, and concluded an average precision rate: 71%.ConclusionWe demonstrated that using trend pattern features in prediction methods improved the accuracy of stroke outcome prediction. Therefore, trend patterns of physiological time series data have an important role in the early treatment of patients with acute ischaemic stroke.

  10. Magnus force and inertia properties of magnetic vortices in weak ferromagnets

    International Nuclear Information System (INIS)

    Zvezdin, A.K.; Zvezdin, K.A.

    2010-01-01

    The question of the Magnus force in weak ferromagnets acting on magnetic vortices (Bloch lines), within domain boundary has been investigated and the general formula of the Magnus force has been derived. It is shown that the Magnus force is non-zero in most types domain boundaries and determined by the average sublattice magnetization, Dzyaloshinskii coupling constants and exchange interaction between the sublattices. Generalized expressions have been obtained for the effective Langrangian and Rayleigh functions in weak ferromagnets allowing for their vortex structure. The mass of a vortex was considered and the value m * ∼ 10 -14 g/cm was obtained for YFeO 3 . The dynamic bending of the domain boundary in the presence of a moving vortex has been analyzed. A formula has been obtained, which describes the dependence of the vortex velocity in a motionless domain boundary upon the magnetic-field.

  11. Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence.

    Science.gov (United States)

    Salhi, A; Baklouti, F S; Godeferd, F; Lehner, T; Cambon, C

    2017-02-01

    Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k^{-1}, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, V_{A}k,N, and f. By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)PLEEE81539-375510.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001)AJLEEY0004-637X10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S_{κ}(k,t), magnetic, S_{m}(k,t), and potential, S_{p}(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V_{A}k/f≪1, the Alfvén ratio S_{κ}(k,t)/S_{m}(k,t) behaves like k^{-2} if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k^{-1} if the rotation axis is perpendicular to the magnetic field. At small scales, such that V_{A}k/f≫1, there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V_{A}k/N≪1), there is an equipartition of energy between magnetic and potential components

  12. Tearing mode growth in a regime of weak magnetic shear

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Hazeltine, R.D.

    1987-06-01

    The nonlinear growth for the m/n ≥ 2 resistive tearing mode is studied in case when the rational surface q(r 0 ) = m/n falls in a regime of weak magnetic shear, q'(r 0 ) ≅ 0. The island width is determined self-consistently from the nonlinear, zero-helicity component of the perturbed magnetic flux that provides the local shear. It is found that the magnetic perturbation keeps growing exponentially in the nonlinear regime on a hybrid resistive-Alfvenic time scale, while the island width and the vorticity grow on a much slower time scale. Accordingly, much faster release of magnetic energy results for modes growing near minima of hollow q profiles

  13. Detection of a weak ring current in a nonaromatic porphyrin nanoring using magnetic circular dichroism.

    Science.gov (United States)

    Kowalska, Patrycja; Peeks, Martin D; Roliński, Tomasz; Anderson, Harry L; Waluk, Jacek

    2017-12-13

    We compare the absorption and magnetic circular dichroism (MCD) spectra of a series of porphyrin oligomers - dimer, tetramer, and hexamer - bound in a linear or cyclic fashion. The MCD signal is extremely weak for low energy transitions in the linear oligomers, but it is amplified when the cyclic porphyrin hexamer binds a template, restricting rotational freedom. The appearance of Faraday A terms in the MCD spectra demonstrates the presence of a magnetic moment, and thus, uncompensated electronic current. The value of the excited state magnetic moment estimated from the A term is very low compared with those of monomeric porphyrins, which confirms the nonaromatic character of the cyclic array and the lack of a global ring current in the ground state of the neutral nanoring. DFT calculations predict the absorption and MCD patterns reasonably well, but fail to reproduce the MCD sign inversion observed in substituted monomeric zinc porphyrins ("soft" chromophores). Interestingly, a correct sign pattern is predicted by INDO/S calculations. Analysis of the MCD spectra of the monomeric porphyrin unit allowed us to distinguish between two close-lying lowest energy transitions, which some previous assignments placed further apart. The present results prove the usefulness of MCD not only for deconvolution and assignment of electronic transitions, but also as a sensitive tool for detecting electronic ring currents.

  14. Low energy constituent quark and pion effective couplings in a weak external magnetic field

    Science.gov (United States)

    Braghin, Fábio L.

    2018-03-01

    An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.

  15. Magnetic-field-dependent microwave absorption in HgSe in weak magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Veinger, A. I., E-mail: Anatoly.Veinger@mail.ioffe.ru; Tisnek, T. V.; Kochman, I. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Okulov, V. I. [Russian Academy of Sciences, Ural Branch, Mikheev Institute of Metal Physics (Russian Federation)

    2017-02-15

    The low-temperature magnetoresistive effect in the semiconductor HgSe:Fe in weak magnetic fields at microwave frequencies is examined. The negative and positive components of magnetoabsorption based on the magnetoresistive effect in the degenerate conduction band are analyzed. The special features of experiments carried out in the investigated frequency range are noted. The momentum and electron-energy relaxation times are determined from the experimental field and temperature dependences.

  16. Do weak stationary magnetic fields affect the perceived astringency of red wine?

    Directory of Open Access Journals (Sweden)

    Stephen Wesley Rowcliffe

    2018-03-01

    Full Text Available To investigate claims that products containing weak stationary magnets can reduce the astringency of tannic red wine, a double- blind randomized trial was carried out, in which 96 paired tastings were conducted of magnetized and non-magnetized samples of a young Nebbiolo. The data showed no association between reported differences in astringency and actual difference in the magnetic treatments given to the wine (χ2=0.135, degrees of freedom=1, P=0.71. This study confirms an earlier work that magnets have no observable effect on red wine.

  17. Do weak stationary magnetic fields affect the perceived astringency of red wine?

    OpenAIRE

    Stephen Wesley Rowcliffe

    2018-01-01

    To investigate claims that products containing weak stationary magnets can reduce the astringency of tannic red wine, a double- blind randomized trial was carried out, in which 96 paired tastings were conducted of magnetized and non-magnetized samples of a young Nebbiolo. The data showed no association between reported differences in astringency and actual difference in the magnetic treatments given to the wine (χ2=0.135, degrees of freedom=1, P=0.71). This study confirms an earlier work that...

  18. The influence of low frequency magnetic field upon cultivable plant physiology

    International Nuclear Information System (INIS)

    Rochalska, M.

    2008-01-01

    The 16 Hz frequency and 5 mT magnetic flux density as well as alternating magnetic field influence the field germination physiological yield-forming features and the yield of sugar have been investigated. The profitable influence of the investigated factor at physiological yield-forming features, causing an increase in sugar beet root and leaf yield, was shown. The beneficial influence on the yield is especially clear in unfavourable weather conditions. (author)

  19. What is the magnetic Weak Gravity Conjecture for axions

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Henkenjohann, Philipp [Institute for Theoretical Physics, University of Heidelberg (Germany); Witkowski, Lukas T. [APC, Universite Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cite, Paris (France)

    2017-03-15

    The electric Weak Gravity Conjecture demands that axions with large decay constant f couple to light instantons. The resulting large instantonic corrections pose problems for natural inflation. We explore an alternative argument based on the magnetic Weak Gravity Conjecture for axions, which we try to make more precise. Roughly speaking, it demands that the minimally charged string coupled to the dual 2-form-field exists in the effective theory. Most naively, such large-f strings curve space too much to exist as static solutions, thus ruling out large-f axions. More conservatively, one might allow non-static string solutions to play the role of the required charged objects. In this case, topological inflation would save the superplanckian axion. Furthermore, a large-f axion may appear in the low-energy effective theory based on two subplanckian axions in the UV. The resulting effective string is a composite object built from several elementary strings and domain walls. It may or may not satisfy the magnetic Weak Gravity Conjecture depending on how strictly the latter is interpreted and on the cosmological dynamics of this composite object, which remain to be fully understood. Finally, we recall that large-field brane inflation is naively possible in the codimension-one case. We show how string-theoretic back-reaction closes this apparent loophole of large-f (non-periodic) pseudo-axions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Coronal rain in magnetic bipolar weak fields

    Science.gov (United States)

    Xia, C.; Keppens, R.; Fang, X.

    2017-07-01

    Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org

  1. Weak correction to the muon magnetic moment in a gauge model

    International Nuclear Information System (INIS)

    Darby, D.; Grammer, G. Jr.

    1976-01-01

    The weak correction, asub(μ)sup(W), to the anomalous magnetic moment of the muon is calculated in an SU(2) x U(1) x U(1) gauge model of weak and electromagnetic interactions. The Rsub(xi) gauge is used and Ward-Takahashi identities are utilized in eliminating all xi-dependence before the loop integration is performed. asub(μ)sup(W,expt) places no constraint on the mass of one of the neutral vector mesons, which may be arbitrarily small. (Auth.)

  2. Weak ferrimagnetism, compensation point and magnetization reversal in Ni(HCOO)2x2H2O

    International Nuclear Information System (INIS)

    Kageyama, H.; Khomskii, D.I.; Levitin, R.Z.; Vasiliev, A.N.

    2003-01-01

    Nickel (II) format dihydrate Ni(HCOO) 2 x2H 2 O shows peculiar magnetic response at T N =15.5 K. The magnitude of weak magnetic moment increases initially below T N , equals zero at T*=8.5 K and increases again at lowering temperature. The sign of low field magnetization at any given temperature is determined by the sample's magnetic prehistory and the signs are opposite to each other at T N . This behavior suggests that Ni(HCOO) 2 x2H 2 O is a weak ferrimagnet and T* is a compensation point

  3. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  4. Magnetoresistance and ion bombardment induced magnetic patterning

    International Nuclear Information System (INIS)

    Hoeink, V.

    2008-01-01

    In this thesis the combination of the magnetic patterning of the unidirectional anisotropy and the tunnel magnetoresistance effect is investigated. In my diploma thesis, it has been shown that it is in principle possible to use the magnetic patterning by ion bombardment to magnetically structure the pinned layer in magnetic tunnel junctions (MTJs) with alumina barrier. Furthermore, it has been shown that the side effects which have been observed after this treatment can be at least reduced by an additional heating step. Starting from this point, the applicability of ion bombardment induced magnetic patterning (IBMP) in general and the combination of IBMP and MTJs in particular is investigated and new applications are developed. (orig.)

  5. Physiological pattern of lumbar disc height

    International Nuclear Information System (INIS)

    Biggemann, M.; Frobin, W.; Brinckmann, P.

    1997-01-01

    Purpose of this study is to present a new method of quantifying objectively the height of all discs in lateral radiographs of the lumbar spine and of analysing the normal craniocaudal sequence pattern of lumbar disc heights. Methods: The new parameter is the ventrally measured disc height corrected for the dependence on the angle of lordosis by normalisation to mean angles observed in the erect posture of healthy persons. To eliminate radiographic magnification, the corrected ventral height is related to the mean depth of the cranially adjoining vertebra. In this manner lumbar disc heights were objectively measured in young, mature and healthy persons (146 males and 65 females). The craniocaudal sequence pattern was analysed by mean values from all persons and by height differences of adjoining discs in each individual lumbar spine. Results: Mean normative values demonstrated an increase in disc height between L1/L2 and L4/L5 and a constant or decreasing disc height between L4/L5 and L5/S1. However, this 'physiological sequence of disc height in the statistical mean' was observed in only 36% of normal males and 55% of normal females. Conclusion: The radiological pattern of the 'physiological sequence of lumbar disc height' leads to a relevant portion of false positive pathological results especially at L4/L5. An increase of disc height from L4/L5 to L5/S1 may be normal. The recognition of decreased disc height should be based on an abrupt change in the heights of adjoining discs and not on a deviation from a craniocaudal sequence pattern. (orig.) [de

  6. Physiological stress response patterns during a blood donation.

    Science.gov (United States)

    Hoogerwerf, M D; Veldhuizen, I J T; Tarvainen, M P; Merz, E-M; Huis In 't Veld, E M J; de Kort, W L A M; Sluiter, J K; Frings-Dresen, M H W

    2018-03-24

    Donating blood is associated with increased psychological stress. This study investigates whether a blood donation induces physiological stress and if response patterns differ by gender, donation experience and non-acute stress. In 372 donors, physiological stress [blood pressure, pulse rate, pulse rate variability (PRV)] was measured at seven moments during routine donation. PRV was assessed using time domain [root mean square of successive differences (RMSSD)] and frequency domain [high frequency (HF) and low frequency (LF) power] parameters. Non-acute stress was assessed by questionnaire. Shape and significance of time course patterns were assessed by fitting multilevel models for each stress measure and comparing men and women, first-time and experienced donors, and donors with high and low levels of non-acute stress. Significant response patterns were found for all stress measures, where levels of systolic blood pressure (F(1,1315) = 24·2, P blood pressure (F(1,1326) = 50·9, P blood pressure/pulse rate in women; higher pulse rate in first-time donors; higher RMSSD at arrival and from screening until leaving in first-time donors; and higher LF and HF in first-time donors. This study shows an increase in physiological stress related to needle insertion, followed by a decrease when leaving the donation centre. Some group effects were also found. © 2018 International Society of Blood Transfusion.

  7. Helical patterns of magnetization and magnetic charge density in iron whiskers

    Science.gov (United States)

    Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.

    2018-05-01

    Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.

  8. Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear

    Science.gov (United States)

    Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.

    2018-05-01

    Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.

  9. Vertical Gradient Freezing Using Submerged Heater Growth With Rotation and With Weak Magnetic and Electric Fields

    National Research Council Canada - National Science Library

    Bliss, D. F; Holmes, A. M; Wang, X; Ma, N; Iseler, G. W

    2005-01-01

    ...) method utilizing a submerged heater. Electromagnetic stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by applying a weak radial electric current in the melt together with a weak axial magnetic field...

  10. Localization Using Magnetic Patterns for Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Won Suk You

    2014-03-01

    Full Text Available In this paper, we present a method of localization using magnetic landmarks. With this method, it is possible to compensate the pose error (xe, ye, θe of a mobile robot correctly and localize its current position on a global coordinate system on the surface of a structured environment with magnetic landmarks. A set of four magnetic bars forms total six different patterns of landmarks and these patterns can be read by the mobile robot with magnetic hall sensors. A sequential motion strategy for a mobile robot is proposed to find the geometric center of magnetic landmarks by reading the nonlinear magnetic field. The mobile robot first moves into the center region of the landmark where it can read the magnetic pattern, after which tracking and global localization can be easily achieved by recognizing the patterns of neighboring landmarks. Experimental results show the effectiveness of the sequential motion strategy for estimating the center of the first encountered landmark as well as the performance of tracking and global localization of the proposed system.

  11. THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kondić, Todor; Hughes, David W.; Tobias, Steven M., E-mail: t.kondic@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2016-06-01

    We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.

  12. Weak nonlinear analysis of magneto–convection under magnetic field modulation

    International Nuclear Information System (INIS)

    Bhadauria, B S; Kiran, Palle

    2014-01-01

    An analytic study of heat transport in an electrically conducting fluid layer is performed under a non-uniform time-dependent magnetic field. The applied vertical magnetic field consists of two parts: a constant part and a time-dependent periodic part, which varies sinusoidally with time. A weakly nonlinear theory has been considered to investigate heat transfer in the fluid layer. The heat transfer coefficient is obtained by deriving the non-autonomous Ginzburg–Landau equation for an amplitude of convection. This amplitude of convection is derived by using NDSolve Mathematica 8, and the results are verified using Runge–Kutta–Fehlberg method. The Nusselt number is obtained in terms of various system parameters and the effect of each parameter on heat transport is reported in detail. The effect of magnetic Prandtl number Pm, amplitude of modulation δ is to enhance the heat transfer. The Chandrasekhar number Q, modulation frequency ω is to stabilize the system. Further, it is found that magnetic modulation can be used effectively in either enhancing the heat transfer or diminishing it. (paper)

  13. Magnetic patterning by means of ion irradiation and implantation

    International Nuclear Information System (INIS)

    Fassbender, J.; McCord, J.

    2008-01-01

    A pure magnetic patterning by means of ion irradiation which relies on a local modification of the magnetic anisotropy of a magnetic multilayer structure has been first demonstrated in 1998. Since then also other magnetic properties like the interlayer exchange coupling, the exchange bias effect, the magnetic damping behavior and the saturation magnetization to name a few have also been demonstrated to be affected by ion irradiation or ion implantation. Consequently, all these effects can be used if combined with a masking technique or employing direct focused ion beam writing for a magnetic patterning and thus an imprinting of an artificial magnetic domain structure, which subsequently modifies the integral magnetization reversal behavior or the magnetization dynamics of the film investigated. The present review will summarize how ion irradiation and implantation can affect the magnetic properties by means of structural modifications. The main part will cover the present status with respect to the pure magnetic patterning of micro- and nano structures

  14. Ion-collecting sphere in a stationary, weakly magnetized plasma with finite shielding length

    International Nuclear Information System (INIS)

    Patacchini, Leonardo; Hutchinson, Ian H

    2007-01-01

    Collisionless ion collection by a negatively biased stationary spherical probe in a finite shielding length plasma is investigated using the Particle in Cell code SCEPTIC, in the presence of a weak magnetic field B. The overall effect of the magnetic field is to reduce the ion current, linearly in |B| for weak enough fields, with a slope steepness increasing with the electron Debye length. The angular current distribution and space-charge buildup strongly depend on the focusing properties of the probe, hence on its potential and the plasma shielding length. In particular, it is found that the concavity of the ion collection flux distribution can reverse sign when the electron Debye length is comparable to or larger than the probe radius (λ De ∼> r p ), provided the ion temperature is much lower than the probe bias (T i p )

  15. Helical magnetic axis configuration combined with l = 1 and weak l = -1 torsatron fields

    International Nuclear Information System (INIS)

    Kikuchi, Hitoshi; Saito, Katsunori; Gesso, Hirokazu; Shiina, Shoichi

    1989-01-01

    The superposition of a relatively weak l = -1 torsatron field on a main l = 1 torsatron field leads to the improvement of the confinement properties due to the formation of a local magnetic well, which results from the local curvature of the helical magnetic axis with a larger excursion in the major radius direction. This l±1 helical magnetic axis system has a comparatively simple, compact coil structure. Here the vacuum configuration properties of l = ±1 system are described. (author)

  16. Current bistability in a weakly coupled multi-quantum well structure: a magnetic field induced 'memory effect'

    International Nuclear Information System (INIS)

    Feu, W H M; Villas-Boas, J M; Cury, L A; Guimaraes, P S S; Vieira, G S; Tanaka, R Y; Passaro, A; Pires, M P; Landi, S M; Souza, P L

    2009-01-01

    A study of magnetotunnelling in weakly coupled multi-quantum wells reveals a new phenomenon which constitutes a kind of memory effect in the sense that the electrical resistance of the sample after application of the magnetic field is different from before and contains the information that a magnetic field was applied previously. The change in the electric field domain configuration triggered by the magnetic field was compared for two samples, one strictly periodic and another with a thicker quantum well inserted into the periodic structure. For applied biases at which two electric field domains are present in the sample, as the magnetic field is increased a succession of discontinuous reductions in the electrical resistance is observed due to the magnetic field-induced rearrangement of the electric field domains, i.e. the domain boundary jumps from well to well as the magnetic field is changed. The memory effect is revealed for the aperiodic structure as the electric field domain configuration triggered by the magnetic field remains stable after the field is reduced back to zero. This effect is related to the multi-stability in the current-voltage characteristics observed in some weakly coupled multi-quantum well structures.

  17. Surface magnetization and the role of pattern defects in various types of ripple patterned films

    International Nuclear Information System (INIS)

    Colino, Jose M; Arranz, Miguel A; Barbero, Antonio J; Bollero, A; Camarero, J

    2016-01-01

    We present a detailed study of the magnetic properties of cobalt films with wide-area nanoscale ripple patterns, either on their surface only, or on both the film surface and substrate interface. Angular dependence vectorial-resolved magnetometry measurements and magnetic force microscopy with in situ magnetic field have been used to determine the magnetization reversal processes to correlate them to the different patterned nanostructures. All the samples show well-defined uniaxial magnetic anisotropy with the anisotropy axis lying along the ripple direction. Atomic force microscopy of the different types of pattern reveals various pattern defects: height corrugation and breaks of continuity along the ripple direction, and overlapping ripples and Y-shaped defects (pattern dislocation) across the pattern. In spite of the existence of such customary defects of erosive-regime patterns, the type of low-amplitude, surface-patterned films remarkably behave as a macrospin over almost the whole in-plane angular range (340°), with negligible spread of anisotropy axis or energy. In turn, it is found that high-amplitude surface-patterned films develop an angular distribution of anisotropy axes, probably related to the large distribution of amplitudes in a pattern of short ripples, and a significant distribution of anisotropy fields ΔH k /H k up to 15%. On the other hand, films grow on pre-patterned silicon with a significantly longer mean ripple length, and develop a larger anisotropy energy with H k up to 110 mT, probably because of the double interface effect. The switching fields close to the magnetization easy axis of all types of ripple pattern are not well reproduced by the macrospin approximation, but the observed pattern defects seem to be not responsible for the domain wall pinning that occurs with the field applied along the ripple direction. (paper)

  18. Chiral-model of weak-interaction form factors and magnetic moments of octet baryons

    International Nuclear Information System (INIS)

    Kubodera, K.; Kohyama, Y.; Tsushima, K.; Yamaguchi, T.

    1989-01-01

    For baryon spectroscopy, magnetic moments and weak interaction form factors provide valuable information, and the impressive amount of available experimental data on these quantities for the octet baryons invites detailed investigations. The authors of this paper have made extensive studies of the weak-interaction form factors and magnetic moments of the octet baryons within the framework of the volume-type cloudy-bag model (v-type CBM). The clouds of all octet mesons have been included. Furthermore, we have taken into account in a unified framework various effects that were so far only individually discussed in the literature. Thus, the gluonic effects, center-of-mass (CM0 corrections, and recoil corrections have been included). In this talk, after giving a brief summary of some salient features of the results, we discuss a very interesting application of our model to the problem of the spin content of nucleons

  19. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  20. Recording performances in perpendicular magnetic patterned media

    International Nuclear Information System (INIS)

    Asbahi, M; Moritz, J; Dieny, B; Gourgon, C; Perret, C; Van de Veerdonk, R J M

    2010-01-01

    We report on the recording performances and signal-to-noise ratio (SNR) analyses of perpendicular magnetic bit-patterned media. Two different types of magnetic samples are investigated. They differ by the way that they were patterned (nano-imprint versus e-beam lithography) as well as their magnetic properties (Co/Pt multilayers and CoCrPt alloy are the recording layers).Using a contact read/write quasi-static tester, we were able to characterize the write windows, the bit error rates and measure the SNR. The influence of magnetic properties and media microstructure on the writing processes is studied. We show also that the lithographical method used to replicate the media induces more or less noise due to structural distributions.

  1. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    Science.gov (United States)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  2. Extinction of photoemission of Mn-Doped ZnS nanofluid in weak magnetic field

    Science.gov (United States)

    Vu, Anh-Tuan; Bui, Hong-Van; Pham, Van-Ben; Le, Van-Hong; Hoang, Nam-Nhat

    2016-08-01

    The observation of extinction of photoluminescence of Mn-doped ZnS nanofluid under applying of weak magnetic field is reported. At a constant field of 270 Gauss and above, the exponential decays of photoluminescent intensity was observed in disregard of field direction. About 50% extinction was achieved after 30 minute magnetization and a total extinction after 1 hour. The memory effect preserved for more than 2 hours at room temperature. This extinction was observed in a system with no clear ferromagnetic behavior.

  3. Weak-field precession of nano-pillar spin-torque oscillators using MgO-based perpendicular magnetic tunnel junction

    Science.gov (United States)

    Zhang, Changxin; Fang, Bin; Wang, Bochong; Zeng, Zhongming

    2018-04-01

    This paper presents a steady auto-oscillation in a spin-torque oscillator using MgO-based magnetic tunnel junction (MTJ) with a perpendicular polarizer and a perpendicular free layer. As the injected d.c. current varied from 1.5 to 3.0 mA under a weak magnetic field of 290 Oe, the oscillation frequency decreased from 1.85 to 1.3 GHz, and the integrated power increased from 0.1 to 74 pW. A narrow linewidth down to 7 MHz corresponding to a high Q factor of 220 was achieved at 2.7 mA, which was ascribed to the spatial coherent procession of the free layer magnetization. Moreover, the oscillation frequency was quite sensitive to the applied field, about 3.07 MHz/Oe, indicating the potential applications as a weak magnetic field detector. These results suggested that the MgO-based MTJ with perpendicular magnetic easy axis could be helpful for developing spin-torque oscillators with narrow-linewidth and high sensitive.

  4. On the study of the magnetic domain pattern via the initial magnetization curve

    International Nuclear Information System (INIS)

    Wu, T.

    1997-01-01

    This study inquires into the relationships between the initial magnetization curve and the magnetic domain pattern in the demagnetized states for amorphous TbFeCo as well as multilayered Co/Pd thin film samples. This was done specifically through an investigation of different demagnetized states of samples demagnetized by a variety of methods. The magnetic domain pattern for the sample demagnetized by an in-plane magnetic field and for the sample demagnetized by a perpendicular magnetic field was found to be quite different even though both states have zero magnetization. The former state has denser and finer domains than the latter. In addition, both states were studied in light of the initial magnetization curves obtained by measurements of the magneto-optic Kerr effect and the extraordinary Hall effect. Moreover, the initial magnetization for the fine domains increases with an increase in magnetic field, while for the coarse domains, the initial magnetization remains at zero for magnetic field below coercivity H c , then rises sharply to saturated magnetization when magnetic field is nearly equal to H c . copyright 1997 American Institute of Physics

  5. Theoretical modelling of physiologically stretched vessel in magnetisable stent assisted magnetic drug targeting application

    International Nuclear Information System (INIS)

    Mardinoglu, Adil; Cregg, P.J.; Murphy, Kieran; Curtin, Maurice; Prina-Mello, Adriele

    2011-01-01

    The magnetisable stent assisted magnetic targeted drug delivery system in a physiologically stretched vessel is considered theoretically. The changes in the mechanical behaviour of the vessel are analysed under the influence of mechanical forces generated by blood pressure. In this 2D mathematical model a ferromagnetic, coiled wire stent is implanted to aid collection of magnetic drug carrier particles in an elastic tube, which has similar mechanical properties to the blood vessel. A cyclic mechanical force is applied to the elastic tube to mimic the mechanical stress and strain of both the stent and vessel while in the body due to pulsatile blood circulation. The magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included and agglomeration of particles is also modelled. The resulting collection efficiency of the mathematical model shows that the system performance can decrease by as much as 10% due to the effects of the pulsatile blood circulation. - Research highlights: →Theoretical modelling of magnetic drug targeting on a physiologically stretched stent-vessel system. →Cyclic mechanical force applied to mimic the mechanical stress and strain of both stent and vessel. →The magnetic dipole-dipole and hydrodynamic interactions for multiple particles is modelled. →Collection efficiency of the mathematical model is calculated for different physiological blood flow and magnetic field strength.

  6. Parallel Simulation of HGMS of Weakly Magnetic Nanoparticles in Irrotational Flow of Inviscid Fluid

    Directory of Open Access Journals (Sweden)

    Kanok Hournkumnuard

    2014-01-01

    Full Text Available The process of high gradient magnetic separation (HGMS using a microferromagnetic wire for capturing weakly magnetic nanoparticles in the irrotational flow of inviscid fluid is simulated by using parallel algorithm developed based on openMP. The two-dimensional problem of particle transport under the influences of magnetic force and fluid flow is considered in an annular domain surrounding the wire with inner radius equal to that of the wire and outer radius equal to various multiples of wire radius. The differential equations governing particle transport are solved numerically as an initial and boundary values problem by using the finite-difference method. Concentration distribution of the particles around the wire is investigated and compared with some previously reported results and shows the good agreement between them. The results show the feasibility of accumulating weakly magnetic nanoparticles in specific regions on the wire surface which is useful for applications in biomedical and environmental works. The speedup of parallel simulation ranges from 1.8 to 21 depending on the number of threads and the domain problem size as well as the number of iterations. With the nature of computing in the application and current multicore technology, it is observed that 4–8 threads are sufficient to obtain the optimized speedup.

  7. [Modulating effect of weak combined magnetic fields on duration of mealworm beetle Tenebrio molitor metamorphosis stage].

    Science.gov (United States)

    Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E

    2014-01-01

    It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.

  8. Pressure dependence of the magnetic properties of various weakly ferromagnetic transition metal alloys

    International Nuclear Information System (INIS)

    Buis, N.

    1979-01-01

    A large number of experimental results are summarized obtained in an apparatus designed for the measurement of magnetization under high pressures (up to 5k bar gas pressure), at temperatures from 4.2K to room temperature and in magnetic fields up to 5.1 T. Two alloy systems studied were Zr (Fesub(1-x)Cosub(x)) 2 and Y(Fesub(x)Cosub(1-x)) 2 and no consistent picture could be deduced from the large pressure effects on the magnetization. Apparently, one cannot apply the model for weak itinerant ferromagnetism on Zr(Fesub(1-x)Cosub(x)) 2 or a simple giant moment model on Y(Fesub(x)Cosub(1-x)) 2 with small iron content, because the magnetic behaviour of both systems is too complicated. (C.F.)

  9. Weak electric and magnetic dipole moments of the τ lepton from azimuthal asymmetries

    International Nuclear Information System (INIS)

    Sanchez Alvaro, E.

    1997-01-01

    Measurements of the weak electric dipole moment d τ w and, for the first time, the weak magnetic dipole moment a τ w of the τ lepton using L3 detector at LEP are presented. Azimuthal asymmetries for τ→πν and τ→ρν are used to obtain these measurements. Observed asymmetries are consistent with zero, and the limits set on d τ w and a τ w are vertical stroke d τ w vertical stroke -17 e.cm and vertical stroke a τ w vertical stroke <0.014 at 95% C.L. (orig.)

  10. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria

    2016-12-17

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  11. Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field

    KAUST Repository

    Ratushnaya, Valeria; Samtaney, Ravi

    2016-01-01

    We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.

  12. Self excitation of second harmonic ion-acoustic waves in a weakly magnetized plasma

    International Nuclear Information System (INIS)

    Tsukabayashi, I.; Yagishita, T.; Nakamura, Y.

    1994-01-01

    Electrostatic ion-acoustic waves in a weakly magnetized plasma are investigated experimentally. It is observed that finite amplitudes ion acoustic waves excite a new second harmonic wave train behind the initial ion waves excite a new second harmonic wave train behind the initial ion waves in a parallel magnetic field. The excitation of higher harmonic waves can be explained by non-linearity of finite amplitude ion-acoustic waves. The newly excited second harmonics waves satisfy a dispersion relation of the ion-acoustic waves. (author). 3 refs, 5 figs

  13. Possible disruption of remote viewing by complex weak magnetic fields around the stimulus site and the possibility of accessing real phase space: a pilot study.

    Science.gov (United States)

    Koren, S A; Persinger, M A

    2002-12-01

    In 2002 Persinger, Roll, Tiller, Koren, and Cook considered whether there are physical processes by which recondite information exists within the space and time of objects or events. The stimuli that compose this information might be directly detected within the whole brain without being processed by the typical sensory modalities. We tested the artist Ingo Swann who can reliably draw and describe randomly selected photographs sealed in envelopes in another room. In the present experiment the photographs were immersed continuously in repeated presentations (5 times per sec.) of one of two types of computer-generated complex magnetic field patterns whose intensities were less than 20 nT over most of the area. WINDOWS-generated but not DOS-generated patterns were associated with a marked decrease in Mr. Swann's accuracy. Whereas the DOS software generated exactly the same pattern, WINDOWS software phase-modulated the actual wave form resulting in an infinite bandwidth and complexity. We suggest that information obtained by processes attributed to "paranormal" phenomena have physical correlates that can be masked by weak, infinitely variable magnetic fields.

  14. Superconducting Film Flux Transformer for a Sensor of a Weak Magnetic Field

    International Nuclear Information System (INIS)

    Ichkitidze, L; Mironyuk, A

    2012-01-01

    The object of study is a superconducting film flux transformer in the form of a square shaped loop with the tapering operative strip used in a sensor of a weak magnetic field. The magnetosensitive film element based on the giant magnetoresistance effect is overlapped with the tapering operative strip of the flux transformer; it is separated from the latter by the insulator film. It is shown that the topological nanostructuring of the operative strip of the flux transformer increases its gain factor by one or more orders of magnitude, i.e. increases its efficiency, which leads to a significant improvement of important parameters of a magnetic-field sensor.

  15. Applications of Magnetic Resonance in Model Systems: Tumor Biology and Physiology

    Directory of Open Access Journals (Sweden)

    Robert J. Gillies

    2000-01-01

    Full Text Available A solid tumor presents a unique challenge as a system in which the dynamics of the relationship between vascularization, the physiological environment and metabolism are continually changing with growth and following treatment. Magnetic resonance imaging (MRI and magnetic resonance spectroscopy (MRS studies have demonstrated quantifiable linkages between the physiological environment, angiogenesis, vascularization and metabolism of tumors. The dynamics between these parameters continually change with tumor aggressiveness, tumor growth and during therapy and each of these can be monitored longitudinally, quantitatively and non-invasively with MRI and MRS. An important aspect of MRI and MRS studies is that techniques and findings are easily translated between systems. Hence, pre-clinical studies using cultured cells or experimental animals have a high connectivity to potential clinical utility. In the following review, leaders in the field of MR studies of basic tumor physiology using pre-clinical models have contributed individual sections according to their expertise and outlook. The following review is a cogent and timely overview of the current capabilities and state-of-the-art of MRI and MRS as applied to experimental cancers. A companion review deals with the application of MR methods to anticancer therapy.

  16. Anomalous magnetic and weak magnetic dipole moments of the τ lepton in the simplest little Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo-Urena, M.A.; Tavares-Velasco, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Hernandez-Tome, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, PUE (Mexico); Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Departamento de Fisica, Mexico City (Mexico)

    2017-04-15

    We obtain analytical expressions, both in terms of parametric integrals and Passarino-Veltman scalar functions, for the one-loop contributions to the anomalous weak magnetic dipole moment (AWMDM) of a charged lepton in the framework of the simplest little Higgs model (SLHM). Our results are general and can be useful to compute the weak properties of a charged lepton in other extensions of the standard model (SM). As a by-product we obtain generic contributions to the anomalous magnetic dipole moment (AMDM), which agree with previous results. We then study numerically the potential contributions from this model to the τ lepton AMDM and AWMDM for values of the parameter space consistent with current experimental data. It is found that they depend mainly on the energy scale f at which the global symmetry is broken and the t{sub β} parameter, whereas there is little sensitivity to a mild change in the values of other parameters of the model. While the τ AMDM is of the order of 10{sup -9}, the real (imaginary) part of its AWMDM is of the order of 10{sup -9} (10{sup -10}). These values seem to be out of the reach of the expected experimental sensitivity of future experiments. (orig.)

  17. Effect of weak magnetic field on the grain size of electrodeposited nickel

    International Nuclear Information System (INIS)

    Ansari, M.S.; Gul, N.

    2007-01-01

    Effect of weak magnetic field on the electro-deposition of nickel onto copper electrode has been investigated. The working conditions were optimized through adjustment of cathodic current density (CCD), deposition time, bath temperature and pH of the medium. For electro-deposition in the absence of magnetic field, the optimum conditions comprised of pH = 4.0+- 0.5, average CCD = 22.5 +- 0.5 mA cm/sup -2/ and bath temperature in the range from 25 to 30 degree C. The same conditions were maintained for the electrodeposition while applying magnetic field of 0.75 kG. The morphological features of the Ni-deposits on copper cathode were compared for the two cases. The applied magnetic field not only enhanced the amount of nickel deposition but also improved the quality of the deposit. Surface morphology of the electro-deposited nickel has been monitored using scanning electron microscopy (SEM); the preliminary investigation has shown that the grain size decreased with the applied magnetic field case. One possible explanation to this behavior is the convection flow of cations close to the electrode surface induced by the Lorentz force which also influences the ion-migration. (author)

  18. Nuclear magnetic resonance spectroscopy of living systems : Applications in comparative physiology

    NARCIS (Netherlands)

    VanDenThillart, G; VanWaarde, A

    The most attractive feature of nuclear magnetic resonance spectroscopy (MRS) is the noninvasive and nondestructive measurement of chemical compounds in intact tissues. MRS already has many applications in comparative physiology, usually based on observation of P-31, since the levels of phosphorus

  19. Multi-critical points in weakly anisotropic magnetic systems

    International Nuclear Information System (INIS)

    Basten, J.A.J.

    1979-02-01

    This report starts with a rather extensive presentation of the concepts and ideas which constitute the basis of the modern theory of static critical phenomena. It is shown how at a critical point the semi-phenomenological concepts of universality and scaling are directly related to the divergence of the correlation length and how they are extended to a calculational method for critical behaviour in Wilson's Renormalization-Group (RG) approach. Subsequently the predictions of the molecular-field and RG-theories on the phase transitions and critical behaviour in weakly anisotropic antiferromagnets are treated. In a magnetic field applied along the easy axis, these materials can display an (H,T) phase diagram which contains either a bicritical point or a tetracritical point. Especially the behaviour close to these multi-critical points, as predicted by the extended-scaling theory, is discussed. (Auth.)

  20. Pattern of mathematic representation ability in magnetic electricity problem

    Science.gov (United States)

    Hau, R. R. H.; Marwoto, P.; Putra, N. M. D.

    2018-03-01

    The mathematic representation ability in solving magnetic electricity problem gives information about the way students understand magnetic electricity. Students have varied mathematic representation pattern ability in solving magnetic electricity problem. This study aims to determine the pattern of students' mathematic representation ability in solving magnet electrical problems.The research method used is qualitative. The subject of this study is the fourth semester students of UNNES Physics Education Study Program. The data collection is done by giving a description test that refers to the test of mathematical representation ability and interview about field line topic and Gauss law. The result of data analysis of student's mathematical representation ability in solving magnet electric problem is categorized into high, medium and low category. The ability of mathematical representations in the high category tends to use a pattern of making known and asked symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representation in the medium category tends to use several patterns of writing the known symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representations in the low category tends to use several patterns of making known symbols, writing equations, substituting quantities into equations, performing calculations and final answer.

  1. Emergent rotational symmetries in disordered magnetic domain patterns.

    Science.gov (United States)

    Su, Run; Seu, Keoki A; Parks, Daniel; Kan, Jimmy J; Fullerton, Eric E; Roy, Sujoy; Kevan, Stephen D

    2011-12-16

    Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition. © 2011 American Physical Society

  2. Toward a measurement of weak magnetism in {sup 6}He decay

    Energy Technology Data Exchange (ETDEWEB)

    Huyan, X.; Naviliat-Cuncic, O., E-mail: naviliat@nscl.msu.edu; Bazin, D.; Gade, A.; Hughes, M.; Liddick, S.; Minamisono, K.; Noji, S.; Paulauskas, S. V.; Simon, A. [Michigan State University, National Superconducting Cyclotron Laboratory (United States); Voytas, P. [Wittenberg University, Department of Physics (United States); Weisshaar, D. [Michigan State University, National Superconducting Cyclotron Laboratory (United States)

    2016-12-15

    Sensitive searches for exotic scalar and tensor couplings in nuclear and neutron decays involve precision measurements of the shape of the β-energy spectrum. We have performed a high statistics measurement of the β-energy spectrum in the allowed Gamow-Teller decay of {sup 6}He with the aim to first find evidence of the contribution due to the weak magnetism form factor. We review here the motivation, describe the principle of the measurement, summarize the theoretical corrections to the allowed phase space, and anticipate the expected statistical precision.

  3. Magnetization dynamics of weak stripe domains in Fe-N thin films: a multi-technique complementary approach.

    Science.gov (United States)

    Camara, Ibrahima; Tacchi, Silvia; Garnier, Louis-Charles; Eddrief, Mahmoud; Fortuna, Franck; Carlotti, Giovanni; Marangolo, Massimiliano

    2017-09-26

    The resonant eigenmodes of a nitrogen-implanted iron α'-FeN characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized mag-netic excitations generally found in nanostructures. © 2017 IOP Publishing Ltd.

  4. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    International Nuclear Information System (INIS)

    Sosenko, P.; Pierre, Th.; Zagorodny, A.

    2004-01-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  5. Effects of the weak magnetic field and electron diffusion on the spatial potential and negative ion transport in the negative ion source

    International Nuclear Information System (INIS)

    Sakurabayashi, T.; Hatayama, A.; Bacal, M.

    2004-01-01

    The effects of the weak magnetic field on the negative ion (H - ) extraction in a negative ion source have been studied by means of a two-dimensional electrostatic particle simulation. A particle-in-cell model is used which simulates the motion of the charged particles in their self-consistent electric field. In addition, the effect of the electron diffusion across the weak magnetic field is taken into account by a simple random-walk model with a step length Δx per time step Δt; Δx=√(2D perpendicular )Δt)·ξ x , where D perpendicular ) and ξ x are the perpendicular diffusion coefficient and normal random numbers. Under this simple diffusion model, the electron diffusion has no significant effects on the H - transport. Most electrons are magnetized by the weak magnetic field and lost along the field line. As a result, more H - ions arrive instead of electrons in the region close to the plasma grid in order to ensure the plasma neutrality

  6. Separation of magnetic from non-magnetic information in the Bitter pattern method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2001-01-01

    The paper deals with the problem of separating magnetic and non-magnetic contributions to the image contrast in the Bitter pattern method. With the help of the digital image difference procedure, it is demonstrated for the first time for the Bitter method that the separation is easy to achieve for relatively soft magnetic specimens, when an external field can be applied to simply produce the non-magnetic reference image of the specimen area under study. It is also shown that obtaining satisfactory results is principally impossible when removing the colloid from the specimen surface is used for the purpose of recording the non-magnetic image

  7. Potentially large contributions to the muon anomalous magnetic moment from weak-isosinglet squarks in E6 superstring models

    International Nuclear Information System (INIS)

    Morris, D.A.

    1988-01-01

    We examine contributions to the anomalous magnetic moment of the muon from weak-isosinglet squarks found in E 6 superstring models. We find that such contributions are up to 2 orders of magnitude larger than those previously calculated and correspondingly require smaller Yukawa couplings in order to maintain agreement with the measured muon anomalous magnetic moment

  8. Magnetic static and scaling properties of the weak random-axis magnet (DyxY1-x)Al2

    International Nuclear Information System (INIS)

    Gehring, P.M.; Salamon, M.B.; del Moral, A.; Arnaudas, J.I.

    1990-01-01

    The effects of a random component of the magnetocrystalline anisotropy on the magnetic properties and critical behavior of polycrystalline DyAl 2 have been investigated using dc magnetic measurements. Random magnetic anisotropy (RMA) is produced by site-diluting ferromagnetic DyAl 2 with the nonmagnetic, isomorphic intermetallic YAl 2 . Dilution distorts the cubic Laves-phase unit cell because of a slight lattice mismatch thereby lowering the local crystal symmetry in a random fashion. Additional contributions to the RMA come from spin-orbit scattering by the conduction electrons. Hysteresis loops display little remanence and very small coercive fields, suggesting a weak RMA. This is consistent with estimates of the RMA strength D obtained using an approach of Chudnovsky et al. The magnetization at high temperatures (T>4T c ) is well described by a Curie-Weiss law. The paramagnetic Curie temperatures are positive, implying an average ferromagnetic exchange coupling between Dy ions, and increase with x. The paramagnetic moment shows no evidence of quenching across the series, thus confirming the well-localized nature of the 4f electronic orbitals. Low-field thermal scans of the bulk dc magnetization show no sign of a spontaneous moment for Dy concentrations 0.10≤x≤0.90, yet a sharp increase in the magnetization occurs at a temperature T c that increases with x. A ferromagnetic scaling analysis applied to the line of transitions at T c results in a surprisingly good collapse of the magnetization data. By extension of prior theoretical work of Aharony and Pytte, a direct connection can be made between pure and RMA exponents, which gives remarkable agreement with the experimental values

  9. Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

    Science.gov (United States)

    Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele

    2018-04-01

    We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.

  10. Origin of magnetic switching field distribution in bit patterned media based on pre-patterned substrates

    OpenAIRE

    Pfau , B; Günther , C.M.; Guehrs , E; Hauet , Thomas; Yang , H; Vinh , L.; Xu , X; Yaney , D; Rick , R; Eisebitt , S; Hellwig , O

    2011-01-01

    International audience; Using a combination of synchrotron radiation based magnetic imaging and high-resolution transmission electron microscopy we reveal systematic correlations between the magnetic switching field and the internal nanoscale structure of individual islands in bit patterned media fabricated by Co/Pd-multilayer deposition onto pre-patterned substrates. We find that misaligned grains at the island periphery are a common feature independent of the island switching field, while i...

  11. Periodic flow patterns of the magnetic fluid in microchannel

    International Nuclear Information System (INIS)

    Chang, C.-W.; Cheng, Y.-T.; Tsai, C.-Y.; Chien, J.-H.; Wang, P.-Y.; Chen, P.-H.

    2007-01-01

    In this study, of interests are the periodic flow patterns of the oil-based magnetic fluid in microchannels. A microfluidic chip is made of poly-dimethylsiloxane (PDMS) and contains cross-shape microchannels. The microchannels are 1000 μm in width and 200 μm in depth. A syringe pump was used to drive the fluids. Periodic flow patterns were seen and the slugs of magnetic fluid and DI water were generated. The operating factors discussed in the present work are the flow rates and the magnetic field. The frequency of generation of the slugs increases with increase in the flow rates. Besides, by settling the permanent magnet around the microchannel, the periods of the slug generation are changed. Different positions of the magnet lead to different periods for generating the slugs. By adjusting operating conditions, to control the frequency and the volume of the slugs is practical

  12. Method for Transformation of Weakly Magnetic Minerals (Hematite, Goethite into Strongly Magnetic Mineral (Magnetite to Improve the Efficiency of Technologies for Oxidized Iron Ores Benefication

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.

    2015-03-01

    Full Text Available A new method for relatively simple transformation of weakly magnetic minerals (goethite (α-FeOOH and hematite (α-Fe2O3 into strongly magnetic mineral (magnetite (Fe3O4 was developed. It was shown, that transformation of structure and magnetic characteristics of go ethite and hematite are realized in the presence of starch at relatively low temperatures (in the range of 300—600 °С. Obtained results open up new possibilities for development of effective technologies for oxidized iron ore beneficiation.

  13. Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points

    Science.gov (United States)

    Jia, Bing; Gu, Huaguang

    2017-06-01

    Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.

  14. Calculation of effective impedance of polycrystals in weak magnetic fields

    International Nuclear Information System (INIS)

    Kaganova, I.M.

    2006-01-01

    We present results for the effective surface impedance tensor (EIT) of polycrystals of metals in a weak uniform magnetic field H. The frequency region corresponds to the region in which the local impedance boundary conditions are applicable. We suppose that the resistivity tensor ρ ik (H) of the single crystal grains out of which the polycrystal is composed, is known up to the terms of O(H 2 ). For polycrystals of metals of arbitrary symmetry, the elements of the EIT can be calculated to the same order in H, even if the tensor ρ ik (H) is strongly anisotropic. As examples, we write down the EIT of polycrystals of (i) cubic metals (ii) metals with ellipsoidal Fermi surfaces, and (iii) metals of tetragonal symmetry whose tensor ρ ik (0) is strongly anisotropic. Although polycrystals are metals that are isotropic on average, in the presence of a uniform magnetic field the structure of the EIT is not the same as the structure of the impedance tensor of an isotropic metal with a spherical Fermi surface. The results cannot be improved either by taking into account higher powers of H, or with respect to the anisotropy of the single crystal grains

  15. Method to manufacture bit patterned magnetic recording media

    Science.gov (United States)

    Raeymaekers, Bart; Sinha, Dipen N

    2014-05-13

    A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic "cross-talk" between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.

  16. Phonons and magnetic excitation correlations in weak ferromagnetic YCrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Yogesh; Sahoo, Satyaprakash, E-mail: satya504@gmail.com, E-mail: guptaraj@iitk.ac.in, E-mail: rkatiyar@hpcf.upr.edu; Perez, William; Katiyar, Ram S., E-mail: satya504@gmail.com, E-mail: guptaraj@iitk.ac.in, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics, University of Puerto Rico, Puerto Rico 00936-8377 (United States); Mukherjee, Somdutta [Department of Physics, Indian Institute of Technology, Kanpur (India); Gupta, Rajeev, E-mail: satya504@gmail.com, E-mail: guptaraj@iitk.ac.in, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics, Indian Institute of Technology, Kanpur (India); Department of Materials Science Programme, Indian Institute of Technology, Kanpur (India); Garg, Ashish [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur (India); Chatterjee, Ratnamala [Department of Physics, Indian Institute of Technology, Delhi (India)

    2014-05-14

    Here, we report the temperature dependent Raman spectroscopic studies on orthorhombically distorted perovskite YCrO{sub 3} over a temperature range of 20–300 K. Temperature dependence of DC-magnetization measurements under field cooled and zero field cooled protocols confirmed a Néel transition at T{sub N} ∼ 142 K. Magnetization isotherms recorded at 125 K show a clear loop opening without any magnetization saturation up to 20 kOe, indicating a coexistence of antiferromagnetic (AFM) and weak ferromagnetic (WFM) phases. Estimation of exchange constants using mean-field approximation further confirm the presence of a complex magnetic phase below T{sub N}. Temperature evolution of Raman line-shape parameters of the selected modes (associated with the octahedral rotation and A(Y)-shift in the unit-cell) reveal an anomalous phonon shift near T{sub N}. An additional phonon anomaly was identified at T{sup *} ∼ 60 K, which could possibly be attributed to the change in the spin dynamics. Moreover, the positive and negative shifts in Raman frequencies between T{sub N} and T{sup *} suggest competing WFM and AFM interactions. A close match between the phonon frequency of B{sub 3g} (3)-octahedral rotation mode with the square of sublattice magnetization between T{sub N} and T{sup *} is indicative of the presence of spin-phonon coupling in multiferroic YCrO{sub 3}.

  17. Sensed presence and mystical experiences are predicted by suggestibility, not by the application of transcranial weak complex magnetic fields.

    Science.gov (United States)

    Granqvist, Pehr; Fredrikson, Mats; Unge, Patrik; Hagenfeldt, Andrea; Valind, Sven; Larhammar, Dan; Larsson, Marcus

    2005-04-29

    Transcranial magnetic stimulation (TMS) with weak (micro Tesla) complex waveform fields have been claimed to evoke the sensed presence of a sentient being in up to 80% in the general population. These findings have had a questionable neurophysiological foundation as the fields are approximately six orders of magnitude weaker than ordinary TMS fields. Also, no independent replication has been reported. To replicate and extend previous findings, we performed a double-blind experiment (N=89), with a sham-field control group. Personality characteristics indicating suggestibility (absorption, signs of abnormal temporal lobe activity, and a "new age"-lifestyle orientation) were used as predictors. Sensed presence, mystical, and other somatosensory experiences previously reported from the magnetic field stimulation were outcome measures. We found no evidence for any effects of the magnetic fields, neither in the entire group, nor in individuals high in suggestibility. Because the personality characteristics significantly predicted outcomes, suggestibility may account for previously reported effects. Our results strongly question the earlier claims of experiential effects of weak magnetic fields.

  18. Tailoring the bandgap and magnetic properties by bismuth ...

    Indian Academy of Sciences (India)

    2017-11-30

    Nov 30, 2017 ... interaction between magnetic rare-earth ion and weak ferro- magnetic Cr3+ ions .... (colour online) XRD patterns at RT for compositions x = 0, 0.1 and ..... CrO6 as observed in B1g(3) and B3g(3), which shifts in blue frequency ...

  19. [Computer modelling of electroconvulsive treatment and transcranial magnetic stimulation--an explanation of poor efficacy of the magnetic method].

    Science.gov (United States)

    Zyss, Tomasz; Krawczyk, Andrzej; Zieba, Andrzej; Dudek, Dominika; Hese, Robert T; Drzymała, Paweł; Wiak, Sławomir; Sawicki, Bartosz; Starzyński, Jacek; Szmurło, Robert; Wincenciak, Stanisław

    2010-01-01

    With help of informatics technology it is possible to simulate various physiological processes in virtual models of biological structures. In a created realistic model of the human head we made some comparative investigations over physical phenomena accompanying the electroconvulsive treatment ECT and transcranial magnetic stimulation TMS--two methods with confirmed (ECT) or presumable (TMS) antidepressant efficacy. The present investigations are a continuation of the earlier conducted study in the simple spherical model of the head. Investigations confirmed, that magnetic stimulation TMS generates a considerably weaker current flow in the brain than it is present in electroconvulsive technique. Applying of such weak stimulation in modus,,at haphazard", i.e. on the brain area which does not need to be metabolically disturbed in this patient--cannot cause an antidepressant effect at all. The results of the investigations explain not only the safety of the magnetic method, but the weak effectiveness of this method. The authors propose some methods for improvement of TMS efficacy.

  20. Nonlinear localized excitations in magnets with a weak exchange interaction as a soliton problem

    International Nuclear Information System (INIS)

    Gvozdikova, M.V.; Kovalev, A.S.

    1998-01-01

    The spin dynamics of soliton-like localized excitations in a discrete ferromagnet chain with an easy axis anisotropy and a weak exchange interaction is studied. The connection of these excitations with longwave magnetic solitons is discussed. The localized excitation frequency dependence on exchange interaction is found for a fixed number of spin deviation. It is shown that this dependence modifies essentially when the exchange interaction becomes comparable with an anisotropy value

  1. Influence of magnetostatic interactions on the magnetization reversal of patterned magnetic elements

    International Nuclear Information System (INIS)

    Yin Xioalu; Liou, S. H.; Adeyeye, A. O.; Jain, S.; Han Baoshan

    2011-01-01

    The magnetization reversal in patterned thin-film arrays of elliptical submicron permalloy elements has been investigated by magnetic-force microscopy and micro-magneto-optic Kerr effect. Three different spatial arrangements of chains are considered, namely chains aligned parallel to the long axis of the ellipse, chains aligned parallel to the short axis of the ellipse, and arrays with roughly equal element-to-element spacings in both directions. Comparison of the hysteresis loops in an in-plane field perpendicular to the ellipses' long axes shows that the magnetization reversibility is highest for chains along the long axis. This is due to the nearly coherent magnetization rotation in the applied magnetic field and to the formation of a head-to-tail domain arrangement. Other arrangements, such as chains of ellipses aligned parallel to short axis, yield flux-closure domains as the applied magnetic field is changed.

  2. Localized magnetic fields in arbitrary directions using patterned nanomagnets

    DEFF Research Database (Denmark)

    McNeil, Robert P G; Schneble, Jeff; Kataoka, Masaya

    2010-01-01

    Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one held orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (...

  3. A non-local-thermodynamic equilibrium formulation of the transport equation for polarized light in the presence of weak magnetic fields. Doctoral thesis

    International Nuclear Information System (INIS)

    McNamara, D.J.

    1977-01-01

    The present work is motivated by the desire to better understand solar magnetism. Just as stellar astrophysics and radiative transfer have been coupled in the history of research in physics, so too has the study of radiative transfer of polarized light in magnetic fields and solar magnetism been a history of mutual growth. The Stokes parameters characterize the state of polarization of a beam of radiation. The author considers the changes in polarization, and therefore in the Stokes parameters, due to the transport of a beam through an optically thick medium in a weak magnetic field. The transport equation is derived from a general density matrix equation of motion. This allows the possibility of interference effects arising from the mixing of atomic sublevels in a weak magnetic field to be taken into account. The statistical equilibrium equations are similarly derived. Finally, the coupled system of equations is presented, and the order of magnitude of the interference effects, shown. Collisional effects are not considered. The magnitude of the interference effects in magnetic field measurements of the sun may be evaluated

  4. Vortex patterns in a mesoscopic superconducting rod with a magnetic dot

    Energy Technology Data Exchange (ETDEWEB)

    Romaguera, Antonio R. de C. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Fisica; Doria, Mauro M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Fisica dos Solidos; Peeters, F.M. [Universiteit Antwerpen (Belgium). Dept. Fysica

    2009-07-01

    Full text follows. Magnetism and superconductivity are competing orders and its coexistence has been the subject of intense investigation both in nano fabricated materials also in natural compounds. Together they bring new phenomena such as in case of magnetic dots on top of a superconducting film which are a source of ratchet potential.Recently we have investigated vortex patterns that originate from a magnetic domain internal to the superconductor. There vortex lines are curved in space, as their only source and sinkhole are inside the superconductor. We found that when the magnetic domain has a small magnetic moment, the vortex pattern is made of just three vortex loops, instead of one, two or any higher number of vortex loops. The presence of a magnetic moment near thin mesoscopic disks and films has been theoretically and experimentally investigated. New vortex patterns arise there due to the inhomogeneity of the applied magnetic field, although they do not display curved vortices because of the thin limit which turns the vortices into flat two-dimensional objects. In this work we report a theoretical investigation of vortex patterns into a mesoscopic superconducting rod with an external magnetic dot on top. We call it rod to characterize that its height is finite and comparable to the radius, thus larger than a disk and smaller than a wire. Inside the rod, a cylinder with height larger than the coherence length, {xi}, truly three-dimensional curved vortices are formed. We find reentrant behavior which means that the entrance and exit of a vortex is achieved by simply increasing (or decreasing) the intensity of the magnetic field generated by the dot. Thus the present system qualifies for technological applications as a logic gate to perform logical operation in digital circuits.

  5. Vortex patterns in a mesoscopic superconducting rod with a magnetic dot

    International Nuclear Information System (INIS)

    Romaguera, Antonio R. de C.; Doria, Mauro M.; Peeters, F.M.

    2009-01-01

    Full text follows. Magnetism and superconductivity are competing orders and its coexistence has been the subject of intense investigation both in nano fabricated materials also in natural compounds. Together they bring new phenomena such as in case of magnetic dots on top of a superconducting film which are a source of ratchet potential.Recently we have investigated vortex patterns that originate from a magnetic domain internal to the superconductor. There vortex lines are curved in space, as their only source and sinkhole are inside the superconductor. We found that when the magnetic domain has a small magnetic moment, the vortex pattern is made of just three vortex loops, instead of one, two or any higher number of vortex loops. The presence of a magnetic moment near thin mesoscopic disks and films has been theoretically and experimentally investigated. New vortex patterns arise there due to the inhomogeneity of the applied magnetic field, although they do not display curved vortices because of the thin limit which turns the vortices into flat two-dimensional objects. In this work we report a theoretical investigation of vortex patterns into a mesoscopic superconducting rod with an external magnetic dot on top. We call it rod to characterize that its height is finite and comparable to the radius, thus larger than a disk and smaller than a wire. Inside the rod, a cylinder with height larger than the coherence length, ξ, truly three-dimensional curved vortices are formed. We find reentrant behavior which means that the entrance and exit of a vortex is achieved by simply increasing (or decreasing) the intensity of the magnetic field generated by the dot. Thus the present system qualifies for technological applications as a logic gate to perform logical operation in digital circuits.

  6. Ageing and memory effects in the weak random anisotropy magnets amorphous NdGdFe and HoGdFe

    International Nuclear Information System (INIS)

    Saito, Toshiaki; Emura, Ai; Hanashima, Koji

    2007-01-01

    We experimentally examined the ageing phenomena in typical weak random anisotropy magnets (weak RAMs), amorphous NdGdFe and HoGdFe, with a small ratio of the random anisotropy (D) to the ferromagnetic exchange (J) (D/J). These weak RAMs have very long average relaxation time, two or three orders longer than that of spin glasses (SGs) around the transition temperature, and also have a very large ac excitation field (h 0 ) dependence of the ac susceptibility. Measuring the imaginary part of the ac susceptibility at frequency of 0.5 Hz and h 0 of 0.3 Oe by using two temperature-change protocols, we observed the memory and rejuvenation effects as reported in SGs, but the effects are weaker in the present weak RAMs, suggesting that the picture of the hierarchical structure of the free energy space is also effective in weak RAMs as in SGs, but it may have smaller barrier heights than those of SGs

  7. Confinement and Isotropization of Galactic Cosmic Rays by Molecular-Cloud Magnetic Mirrors When Turbulent Scattering Is Weak

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.

    2000-01-01

    Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it

  8. Optical Orientation of Mn2+ Ions in GaAs in Weak Longitudinal Magnetic Fields

    Science.gov (United States)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2011-04-01

    We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.

  9. Parametrically induced low-frequency waves in weakly inhomogeneous magnetized plasmas

    International Nuclear Information System (INIS)

    Pesic, S.

    1981-01-01

    The linear dispersion relation governing the parametric interaction of a lower hybrid pump wave with a weakly-inhomogeneous current carrying hot plasma confined by a helical magnetic field is derived and solved numerically. The stability boundaries are delineated over a wide range in the k-space. The frequency and growth rate of decay instabilities are calculated for plasma parameters relevant to lower hybrid plasma heating experiments. The parametric excitation of drift waves and ion cyclotron current instabilities is discussed. In the low-density plasma region low minimum thresholds and high growth rates are obtained for the pump decay into ion cyclotron and nonresonant quasimodes. The spatial amplification of hot ion Bernstein waves and nonresonant quasimodes dominate in the plasma core (ω 0 /ωsub(LH) < 2). The presented theoretical results are in qualitative agreement with current LH plasma heating experiments. (author)

  10. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    International Nuclear Information System (INIS)

    Sudo, Seiichi; Yamamoto, Kazuki; Ishimoto, Yukitaka; Nix, Stephanie

    2017-01-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  11. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.jp [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Yamamoto, Kazuki [Graduate School of Engineering, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Ishimoto, Yukitaka; Nix, Stephanie [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan)

    2017-06-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  12. Physiologically induced color-pattern changes in butterfly wings: mechanistic and evolutionary implications.

    Science.gov (United States)

    Otaki, Joji M

    2008-07-01

    A mechanistic understanding of the butterfly wing color-pattern determination can be facilitated by experimental pattern changes. Here I review physiologically induced color-pattern changes in nymphalid butterflies and their mechanistic and evolutionary implications. A type of color-pattern change can be elicited by elemental changes in size and position throughout the wing, as suggested by the nymphalid groundplan. These changes of pattern elements are bi-directional and bi-sided dislocation toward or away from eyespot foci and in both proximal and distal sides of the foci. The peripheral elements are dislocated even in the eyespot-less compartments. Anterior spots are more severely modified, suggesting the existence of an anterior-posterior gradient. In one species, eyespots are transformed into white spots with remnant-like orange scales, and such patterns emerge even at the eyespot-less "imaginary" foci. A series of these color-pattern modifications probably reveal "snap-shots" of a dynamic morphogenic signal due to heterochronic uncoupling between the signaling and reception steps. The conventional gradient model can be revised to account for these observed color-pattern changes.

  13. Threshold Research on Highway Length under Typical Landscape Patterns Based on Drivers’ Physiological Performance

    Directory of Open Access Journals (Sweden)

    Xia Zhao

    2015-01-01

    Full Text Available The appropriately landscaped highway scenes may not only help improve road safety and comfort but also help protect ecological environment. Yet there is very little research data on highway length threshold with consideration of distinctive landscape patterns. Against this backdrop, the paper aims to quantitatively analyze highway landscape’s effect on driving behavior based on drivers’ physiological performance and quantify highway length thresholds under three typical landscape patterns, namely, “open,” “semiopen,” and “vertical” ones. The statistical analysis was based on data collected in a driving simulator and electrocardiograph. Specifically, vehicle-related data, ECG data, and supplemental subjective stress perception were collected. The study extracted two characteristic indices, lane deviation and LF/HF, and extrapolated the drivers’ U-shaped physiological response to landscape patterns. Models on highway length were built based on LF/HF’s variation trend with highway length. The results revealed that the theoretical highway length threshold tended to increase when the landscape pattern was switched to open, semiopen, and vertical ones. And the reliability and accuracy of the results were validated by questionnaires and field operational tests. Findings from this research will assist practitioners in taking active environmental countermeasures pertaining to different roadside landscape patterns.

  14. Self-organized patterns of macroscopic quantum tunneling in molecular magnets.

    Science.gov (United States)

    Garanin, D A; Chudnovsky, E M

    2009-03-06

    We study low temperature resonant spin tunneling in molecular magnets induced by a field sweep with account of dipole-dipole interactions. Numerical simulations uncovered formation of self-organized patterns of the magnetization and of the ensuing dipolar field that provide resonant conditions inside a finite volume of the crystal. This effect is robust with respect to disorder and should be relevant to the dynamics of the magnetization steps observed in molecular magnets.

  15. Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields

    International Nuclear Information System (INIS)

    Sadooghi, N.; Anaraki, K. Sohrabi

    2008-01-01

    Using the general structure of the vacuum polarization tensor Π μν (k 0 ,k) in the infrared (IR) limit, k 0 →0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k 0 →0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T 4 α 5/2 , in addition to the expected T 4 α 3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li 2 (-(2α/π)(eB/m 2 )). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.

  16. Development of the Facility for Transformation of Magnetic Characteristics of Weakly Magnetic Oxidized Iron Ores Related to Improvement of Technologies for Iron Ore Concentrate Production

    Directory of Open Access Journals (Sweden)

    Ponomarenko, O.M.

    2016-01-01

    Full Text Available New facility for continuous registration of iron ore magnetization depending on temperature by heating of iron ores upon reducing conditions was created. Facility allows to register the processes of transformation of weakly magnetic minerals into strongly magnetic ones under the influence of reducing agents and temperature, as well as to determine the Curie temperature of the minerals. Using created facility it was shown, that heating of goethite and hematite in the presence of 4 % of starch in the temperature range of 300—650 °С leads to significant increase of magnetization of the samples. X-Ray diffraction confirmed that under indicated conditions the structure of hematite and goethite is transformed into magnetite structure. Obtained results open up new possibilities for the development of effective technologies for oxidized iron ore beneficiation.

  17. Patterns induced by magnetic impurities in d-wave superconductors

    International Nuclear Information System (INIS)

    Zuo Xianjun; Gong Changde; Zhou Yuan

    2010-01-01

    We investigate the modulated patterns induced by magnetic impurities in d-wave superconductors (DSCs) near optimal doping based on the t-t ' -U-V model. Modulated checkerboard patterns with periodicity of eight or four lattice constants (8a or 4a) in the spin-, charge- and DSC orders are observed. Moreover, the checkerboard modulation in the spin order appear to be robust against parameter changes, which is consistent with neutron-scattering experiments. For the two-impurity case, a modulated stripe-like spin order with periodicity 8a is induced, which coexists with the DSC order. Further experiments of magnetic impurity substitution in DSCs are expected to check these results.

  18. Patterns induced by magnetic impurities in d-wave superconductors

    Science.gov (United States)

    Zuo, Xian-Jun; Gong, Chang-De; Zhou, Yuan

    2010-07-01

    We investigate the modulated patterns induced by magnetic impurities in d-wave superconductors (DSCs) near optimal doping based on the t-t-U-V model. Modulated checkerboard patterns with periodicity of eight or four lattice constants (8 a or 4 a) in the spin-, charge- and DSC orders are observed. Moreover, the checkerboard modulation in the spin order appear to be robust against parameter changes, which is consistent with neutron-scattering experiments. For the two-impurity case, a modulated stripe-like spin order with periodicity 8 a is induced, which coexists with the DSC order. Further experiments of magnetic impurity substitution in DSCs are expected to check these results.

  19. A D-Shaped Bileaflet Bioprosthesis which Replicates Physiological Left Ventricular Flow Patterns.

    Directory of Open Access Journals (Sweden)

    Sean Guo-Dong Tan

    Full Text Available Prior studies have shown that in a healthy heart, there exist a large asymmetric vortex structure that aids in establishing a steady flow field in the left ventricle. However, the implantation of existing artificial heart valves at the mitral position is found to have a negative effect on this physiological flow pattern. In light of this, a novel D-shaped bileaflet porcine bioprosthesis (GD valve has been designed based on the native geometry mitral valve, with the hypothesis that biomimicry in valve design can restore physiological left ventricle flow patterns after valve implantation. An in-vitro experiment using two dimensional particle velocimetry imaging was carried out to determine the hemodynamic performance of the new bileaflet design and then compared to that of the well-established St. Jude Epic valve which functioned as a control in the experiment. Although both valves were found to have similar Reynolds shear stress and Turbulent Kinetic Energy levels, the novel D-shape valve was found to have lower turbulence intensity and greater mean kinetic energy conservation.

  20. A D-Shaped Bileaflet Bioprosthesis which Replicates Physiological Left Ventricular Flow Patterns

    Science.gov (United States)

    Tan, Sean Guo-Dong; Kim, Sangho; Hon, Jimmy Kim Fatt; Leo, Hwa Liang

    2016-01-01

    Prior studies have shown that in a healthy heart, there exist a large asymmetric vortex structure that aids in establishing a steady flow field in the left ventricle. However, the implantation of existing artificial heart valves at the mitral position is found to have a negative effect on this physiological flow pattern. In light of this, a novel D-shaped bileaflet porcine bioprosthesis (GD valve) has been designed based on the native geometry mitral valve, with the hypothesis that biomimicry in valve design can restore physiological left ventricle flow patterns after valve implantation. An in-vitro experiment using two dimensional particle velocimetry imaging was carried out to determine the hemodynamic performance of the new bileaflet design and then compared to that of the well-established St. Jude Epic valve which functioned as a control in the experiment. Although both valves were found to have similar Reynolds shear stress and Turbulent Kinetic Energy levels, the novel D-shape valve was found to have lower turbulence intensity and greater mean kinetic energy conservation. PMID:27258099

  1. Electro-weak theory

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1980-01-01

    By electro-weak theory is meant the unified field theory that describes both weak and electro-magnetic interactions. The development of a unified electro-weak theory is certainly the most dramatic achievement in theoretical physics to occur in the second half of this century. It puts weak interactions on the same sound theoretical footing as quantum elecrodynamics. Many theorists have contributed to this development, which culminated in the works of Glashow, Weinberg and Salam, who were jointly awarded the 1979 Nobel Prize in physics. Some of the important ideas that contributed to this development are the theory of beta decay formulated by Fermi, Parity violation suggested by Lee and Yang, and incorporated into immensely successful V-A theory of weak interactions by Sudarshan and Marshak. At the same time ideas of gauge invariance were applied to weak interaction by Schwinger, Bludman and Glashow. Weinberg and Salam then went one step further and wrote a theory that is renormalizable, i.e., all higher order corrections are finite, no mean feat for a quantum field theory. The theory had to await the development of the quark model of hadrons for its completion. A description of the electro-weak theory is given

  2. A neutron depolarization study of magnetic inhomogeneities in weak-link superconductors. Issledovanie magnitnykh neodnorodnostej v sverkhprovodnikakh so slabymi svyazyami metodom depolyarizatsii nejtronov

    Energy Technology Data Exchange (ETDEWEB)

    Zhuchenko, N K; Yagud, R Z [AN SSSR, Leningrad (Russian Federation). Inst. Yadernoj Fiziki

    1993-09-01

    Neutron depolarization measurements in the mixed state of both high-T[sub c] and low-T[sub c] weak-link superconductors have been carried out. Samples of YBCO, BSCCO, SnMo[sub 6]S[sub 8] and 0.5 Nb-0.5 Ti of different magnetic prehistory were analyzed at temperatures T 4.2 K under applied magnetic fields II <= 16.5 kOe. We ascribe the appearance of magnetic inhomogeneities and their hysteresis behaviour to the interaction between dipole magnetic fields (diamagnetic and paramagnetic ones) and applied magnetic fields.

  3. Magnetization behavior of nanomagnets for patterned media application

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, S.; Kikuchi, N.; Kato, T.; Kitakami, O. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Mitsuzuka, K.; Shimatsu, T.; Muraoka, H.; Aoi, H. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Lodder, J.C. [Information Storage Group, MESA, University of Twente, Enschede 7500 AE (Netherlands)], E-mail: j.c.lodder@el.utwente.nl

    2008-11-15

    Bit patterned media (BPM) which utilize each magnetic nanostructured dot as one recorded bit has attracted much interest as a promising candidate for future high-density magnetic recording. In this study, the magnetization reversal behaviors of nanostructured L1{sub 0}-FePt, Co/Pt multilayer (ML), and CoPt/Ru dots are investigated. For Co/Pt and CoPt/Ru nanodots, the bi-stable state is maintained in a very wide size range up to several hundred nm, and the magnetization reversal is dominated by the nucleation of a small reversed nucleus with the dimension of domain wall width. On the other hand, the critical size for the bi-stability of L1{sub 0}-FePt is about 60 nm, and its magnetization reversal proceeds via domain wall displacement even for such a small dot size. These reversal behaviors, depending on the magnetic materials, might be attributed to the difference in structural inhomogeneity, such as defects. In addition to the magnetic properties, the structural uniformity of the material could be crucial for the BPM application.

  4. Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials

    Science.gov (United States)

    Gogola, D.; Krafčík, A.; Štrbák, O.; Frollo, I.

    2013-08-01

    Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).

  5. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  6. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A.

    2012-01-01

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B ∼ 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  7. The Problem of Weak Governments and Weak Societies in Eastern Europe

    Directory of Open Access Journals (Sweden)

    Marko Grdešić

    2008-01-01

    Full Text Available This paper argues that, for Eastern Europe, the simultaneous presence of weak governments and weak societies is a crucial obstacle which must be faced by analysts and reformers. The understanding of other normatively significant processes will be deficient without a consciousness-raising deliberation on this problem and its implications. This paper seeks to articulate the “relational” approach to state and society. In addition, the paper lays out a typology of possible patterns of relationship between state and society, dependent on whether the state is weak or strong and whether society is weak or strong. Comparative data are presented in order to provide an empirical support for the theses. Finally, the paper outlines two reform approaches which could enable breaking the vicious circle emerging in the context of weak governments and weak societies.

  8. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings.

    Science.gov (United States)

    Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.

  9. Bats respond to very weak magnetic fields.

    Directory of Open Access Journals (Sweden)

    Lan-Xiang Tian

    Full Text Available How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here, the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT, despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05. Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  10. Magnetic field pattern synthesis and its application in targeted drug delivery: Design and implementation.

    Science.gov (United States)

    Hajiaghajani, Amirhossein; Abdolali, Ali

    2018-05-01

    In cancer therapy, magnetic drug targeting is considered as an effective treatment to reduce chemotherapy's side effects. The accurate design and shaping of magnetic fields are crucial for healthy cells to be immune from chemotherapeutics. In this paper, arbitrary 2-dimensional spatial patterns of magnetic fields from DC to megahertz are represented in terms of spatial Fourier spectra with sinusoidal eigenfunctions. Realization of each spatial frequency was investigated by a set of elliptical coils. Therefore, it is shown that the desired pattern was synthesized by simultaneous use of coil sets. Currents running on each set were obtained via fast and straightforward analytical Fourier series calculation. Experimentally scanned sample patterns were in close agreement with full wave analysis. Discussions include the evaluation of the Fourier series approximation error and cross-polarization of produced magnetic fields. It was observed that by employing the controlled magnetic field produced by the proposed setup, we were able to steer therapeutic particles toward the right or left half-spheres of the breast, with an efficiency of 90%. Such a pattern synthesizer may be employed in numerous human arteries as well as other bioelectromagnetic patterning applications, e.g., wireless power transfer, magnetic innervation, and tomography. Bioelectromagnetics. 39:325-338, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  11. Micro-patterned graphene-based sensing skins for human physiological monitoring

    Science.gov (United States)

    Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik

    2018-03-01

    Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.

  12. Fermi and the Theory of Weak Interactions

    Indian Academy of Sciences (India)

    IAS Admin

    Quantum Field Theory created by Dirac and used by Fermi to describe weak ... of classical electrodynamics (from which the electric field and magnetic field can be obtained .... Universe. However, thanks to weak interactions, this can be done.

  13. Monitoring and modelling of white dwarfs with extremely weak magnetic fields. WD 2047+372 and WD 2359-434

    Science.gov (United States)

    Landstreet, J. D.; Bagnulo, S.; Valyavin, G.; Valeev, A. F.

    2017-11-01

    Magnetic fields are detected in a few percent of white dwarfs. The number of such magnetic white dwarfs known is now some hundreds. Fields range in strength from a few kG to several hundred MG. Almost all the known magnetic white dwarfs have a mean field modulus ≥1 MG. We are trying to fill a major gap in observational knowledge at the low field limit (≤200 kG) using circular spectro-polarimetry. In this paper we report the discovery and monitoring of strong, periodic magnetic variability in two previously discovered "super-weak field" magnetic white dwarfs, WD 2047+372 and WD 2359-434. WD 2047+372 has a mean longitudinal field that reverses between about -12 and + 15 kG, with a period of 0.243 d, while its mean field modulus appears nearly constant at 60 kG. The observations can be interpreted in terms of a dipolar field tilted with respect to the stellar rotation axis. WD 2359-434 always shows a weak positive longitudinal field with values between about 0 and + 12 kG, varying only weakly with stellar rotation, while the mean field modulus varies between about 50 and 100 kG. The rotation period is found to be 0.112 d using the variable shape of the Hα line core, consistent with available photometry. The field of this star appears to be much more complex than a dipole, and is probably not axisymmetric. Available photometry shows that WD 2359-434 is a light variable with an amplitude of only 0.005 mag; our own photometry shows that if WD 2047+372 is photometrically variable, the amplitude is below about 0.01 mag. These are the first models for magnetic white dwarfs with fields below about 100 kG based on magnetic measurements through the full stellar rotation. They reveal two very different magnetic surface configurations, and that, contrary to simple ohmic decay theory, WD 2359-434 has a much more complex surface field than the much younger WD 2047+372. Based, in part, on observations collected at the European Organisation for Astronomical Research in the

  14. Escape patterns due to ergodic magnetic limiters in tokamaks with reversed magnetic shear

    International Nuclear Information System (INIS)

    Roberto, M.; Da Silva, E.C.; Caldas, I.L.; Viana, R.L.

    2004-01-01

    In this work we study the ergodic magnetic limiters (EML) action on field lines from the point of view of a chaotic scattering process, considering the so-called exit basins, or sets of points in the chaotic region which originate field lines hitting the wall in some specified region. We divide the tokamak wall into three areas of equal poloidal angular length, corresponding to different exits for a chaotic field line. In order to obtain the exit basins we used a grid chosen inside a small rectangle which comprises a representative part of the chaotic region near the wall. Thus, exit basins were obtained for a tokamak wall with reversed magnetic shear. The no-twist mapping describes the perturbed magnetic field lines with two chains of magnetic islands and chaotic field lines in their vicinity. For a perturbing resonant magnetic field with a fixed helicity, the observed escape pattern changes with the perturbation intensity. (authors)

  15. Biomedical imaging and therapy with physically and physiologically tailored magnetic nanoparticles

    Science.gov (United States)

    Khandhar, Amit Praful

    Magnetic particle imaging (MPI) and magnetic fluid hyperthermia (MFH) are emerging imaging and therapy approaches that have the potential to improve diagnostic safety and disease management of heart disease and cancer - the number 1 and 2 leading causes of deaths in the United States. MPI promises real-time, tomographic and quantitative imaging of superparamagnetic iron oxide nanoparticle (SPION) tracers distributed in vivo, and is targeted to offer a safer angiography alternative for its first clinical application. MFH uses ac-fields to dissipate heat from SPIONs that can be delivered locally to promote hyperthermia therapy (~42°C) in cancer cells. Both technologies use safe radiofrequency magnetic fields to exploit the fundamental magnetic relaxation properties of superparamagnetic iron oxide nanoparticles (SPIONs), which must be tailored for optimal imaging in the case of MPI, and maximum hyperthermia potency in the case of MFH. Furthermore, the magnetic core and shell of SPIONs are both central to the optimization process; the shell, in particular, bridges the translational gap between the optimized core and its safe and effective use in the physiological environment. Unfortunately, existing SPIONs that were originally designed as MRI contrast agents lack the basic physical properties that enable the clinical translation of MPI and MFH. In this work, the core and shell of monodisperse SPIONs were optimized in concert to accomplish two equally important objectives: (1) biocompatibility, and (2) MPI and MFH efficacy of SPIONs in physiological environments. Critically, it was found that the physical and physiological responses of SPIONs are coupled, and impacting one can have consequences on the other. It was shown that the poly(ethylene glycol) (PEG)-based shell when properly optimized reduced protein adsorption to SPION surface and phagocytic uptake in macrophages - both prerequisites for designing long-circulating SPIONs. In MPI, tailoring the surface coating

  16. Effect of patterned micro-magnets on superparamagnetic beads in microchannels

    International Nuclear Information System (INIS)

    Guo, S S; Deng, Y L; Zhao, L B; Zhao, X-Z; Chan, H L W

    2008-01-01

    The trapping response of patterned micro-magnets (PMMs) was studied based on the parameters affecting superparamagnetic beads in microfluidic channels. Using replica moulding and electroplating technologies, the PMMs were fabricated on the microchannel bottom, which generated sufficient magnetic forces to bias the moments of magnetic particles in a flowing stream. A simplified physical principle was used to analyse the relative velocity of the magnetic particle in the confined space of a microchannel. The results revealed that the magnetic force contributed to the fluidic flow rate as well as to the hydrodynamic drag force. The relative velocity of magnetic particles was dependent on the frequency under an external magnetic field driven by an alternate current (ac) source. It showed that the magnetic gradient induced hysteresis characteristics of the transmission spectrum, associated with the interaction of superparamagnetic beads and magnetic field

  17. Tuning bacterial hydrodynamics with magnetic fields

    Science.gov (United States)

    Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.

    2017-06-01

    Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.

  18. The Weakly Nonlinear Magnetorotational Instability in a Local Geometry

    Science.gov (United States)

    Clark, S. E.; Oishi, Jeffrey S.

    2017-05-01

    The magnetorotational instability (MRI) is a fundamental process of accretion disk physics, but its saturation mechanism remains poorly understood despite considerable theoretical and computational effort. We present a multiple-scales analysis of the non-ideal MRI in the weakly nonlinear regime—that is, when the most unstable MRI mode has a growth rate asymptotically approaching zero from above. Here, we develop our theory in a local, Cartesian channel. Our results confirm the finding by Umurhan et al. that the perturbation amplitude follows a Ginzburg-Landau equation. We further find that the Ginzburg-Landau equation will arise for the local MRI system with shear-periodic boundary conditions, when the effects of ambipolar diffusion are considered. A detailed force balance for the saturated azimuthal velocity and vertical magnetic field demonstrates that, even when diffusive effects are important, the bulk flow saturates via the combined processes of reducing the background shear and rearranging and strengthening the background vertical magnetic field. We directly simulate the Ginzburg-Landau amplitude evolution for our system, and demonstrate the pattern formation our model predicts on long scales of length- and timescales. We compare the weakly nonlinear theory results to a direct numerical simulation of the MRI in a thin-gap Taylor Couette flow.

  19. The Weakly Nonlinear Magnetorotational Instability in a Local Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S. E. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu [Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 (United States)

    2017-05-20

    The magnetorotational instability (MRI) is a fundamental process of accretion disk physics, but its saturation mechanism remains poorly understood despite considerable theoretical and computational effort. We present a multiple-scales analysis of the non-ideal MRI in the weakly nonlinear regime—that is, when the most unstable MRI mode has a growth rate asymptotically approaching zero from above. Here, we develop our theory in a local, Cartesian channel. Our results confirm the finding by Umurhan et al. that the perturbation amplitude follows a Ginzburg–Landau equation. We further find that the Ginzburg–Landau equation will arise for the local MRI system with shear-periodic boundary conditions, when the effects of ambipolar diffusion are considered. A detailed force balance for the saturated azimuthal velocity and vertical magnetic field demonstrates that, even when diffusive effects are important, the bulk flow saturates via the combined processes of reducing the background shear and rearranging and strengthening the background vertical magnetic field. We directly simulate the Ginzburg–Landau amplitude evolution for our system, and demonstrate the pattern formation our model predicts on long scales of length- and timescales. We compare the weakly nonlinear theory results to a direct numerical simulation of the MRI in a thin-gap Taylor Couette flow.

  20. Physiological limitation at alpine treeline: relationships of threshold responses of conifers to their establishment patterns

    Science.gov (United States)

    Germino, M. J.; Lazarus, B.; Castanha, C.; Moyes, A. B.; Kueppers, L. M.

    2014-12-01

    An understanding of physiological limitations to tree establishment at alpine treeline form the basis for predicting how this climate-driven boundary will respond to climate shifts. Most research on this topic has focused on limitations related to carbon balance and growth of trees. Carbon balance could limit survival and establishment primarily through slow-acting, chronic means. We asked whether tree survival and thus establishment patterns reflect control by chronic effects in comparison to acute, threshold responses, such as survival of frost events. Seedling survivorship patterns were compared to thresholds in freezing (temperature causing leaf freezing, or freezing point, FP; and physiological response to freezing) and water status (turgor loss point, TLP; and related physiological adjustments). Subject seedlings were from forest, treeline, and alpine sites in the Alpine Treeline Warming Experiment in Colorado, and included limber and lodgepole pine (a low-elevation species), and Engelmann Spruce. Preliminary results show survival increases with seedling age, but the only corresponding increase in stress acclimation was photosynthetic resistance to freezing and TLP, not FP. Differences in survivorship among the species were not consistent with variation in FP but they generally agreed with variation in photosynthetic resistance to deep freezing and to early-season drought avoidance. Mortality of limber pine increased 35% when minimum temperatures decreased below -9C, which compares with FPs of >-8.6C, and about 1/3 of its mortality occurred during cold/wet events, particularly in the alpine. The other major correlate of mortality is midsummer drying events, as previously reported. Also in limber pine, the TLP for year-old seedlings (-2.5 MPa) corresponded with seasonal-drought mortality. In summary, we show several examples of correspondence in physiological thresholds to mortality events within a species, although the relationships are not strong. Across

  1. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.

    Science.gov (United States)

    Li, Junli; Chang, Peter R; Huang, Jin; Wang, Yunqiang; Yuan, Hong; Ren, Hongxuan

    2013-08-01

    Nanoparticles (NPs) have been exploited in a diverse range of products in the past decade or so. However, the biosafety/environmental impact or legislation pertaining to this newly created, highly functional composites containing NPs (otherwise called nanomaterials) is generally lagging behind their technological innovation. To advance the agenda in this area, our current primary interest is focused on using crops as model systems as they have very close relationship with us. Thus, the objective of the present study was to evaluate the biological effects of magnetic iron oxide nanoparticles towards watermelon seedlings. We have systematically studied the physiological effects of Fe2O3 nanoparticles (nano-Fe2O3) on watermelon, and present the first evidence that a significant amount of Fe2O3 nanoparticles suspended in a liquid medium can be taken up by watermelon plants and translocated throughout the plant tissues. Changes in important physiological indicators, such as root activity, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), chlorophyll and malondialdehyde (MDA) contents, ferric reductase activity, root apoplastic iron content were clearly presented. Different concentrations of nano-Fe2O3 all increased seed germination, seedling growth, and enhanced physiological function to some degree; and the positive effects increased quickly and then slowed with an increase in the treatment concentrations. Changes in CAT, SOD and POD activities due to nano-Fe2O3 were significantly larger than that of the control. The 20 mg/L treatment had the most obvious effect on the increase of root activity. Ferric reductase activity, root apoplastic iron content, and watermelon biomass were significantly affected by exposure to nano-Fe2O3. Results of statistical analysis showed that there were significant differences in all the above indexes between the treatment at optimal concentration and the control. This proved that the proper concentration of nano

  2. Aging and magnetism: Presenting a possible new holistic paradigm for ameliorating the aging process and the effects thereof, through externally applied physiologic PicoTesla magnetic fields.

    Science.gov (United States)

    Jacobson, Jerry; Sherlag, Benjamin

    2015-09-01

    A new holistic paradigm is proposed for slowing our genomic-based biological clocks (e.g. regulation of telomere length), and decreasing heat energy exigencies for maintenance of physiologic homeostasis. Aging is considered the result of a progressive slow burn in small volumes of tissues with increase in the quantum entropic states; producing desiccation, microscopic scarring, and disruption of cooperative coherent states. Based upon piezoelectricity, i.e. photon-phonon transductions, physiologic PicoTesla range magnetic fields may decrease the production of excessive heat energy through target specific, bio molecular resonant interactions, renormalization of intrinsic electromagnetic tissue profiles, and autonomic modulation. Prospectively, we hypothesize that deleterious effects of physical trauma, immunogenic microbiological agents, stress, and anxiety may be ameliorated. A particle-wave equation is cited to ascertain magnetic field parameters for application to the whole organism thereby achieving desired homeostasis; secondary to restoration of structure and function on quantum levels. We hypothesize that it is at the atomic level that physical events shape the flow of signals and the transmission of energy in bio molecular systems. References are made to experimental data indicating the aspecific efficacy of non-ionizing physiologic magnetic field profiles for treatment of various pathologic states. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Pressure-induced weak ferromagnetism in uranium dioxide, UO2

    International Nuclear Information System (INIS)

    Sakai, H; Kato, H; Tokunaga, Y; Kambe, S; Walstedt, R E; Nakamura, A; Tateiwa, N; Kobayashi, T C

    2003-01-01

    The dc magnetization of insulating UO 2 under high pressure up to ∼1 GPa has been measured using a piston-cylinder cell. Pressure-induced weak ferromagnetism appeared at low pressure (∼0.2 GPa). Both the remanent magnetization and the coercive force increase as pressure increases. This weak ferromagnetism may come from spin canting or from uncompensated moments around grain boundaries

  4. Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn4 single-molecule magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Vinslava, A.; Christou, G.

    2005-12-01

    A Mn4 single-molecule magnet (SMM), with a well-isolated spin ground state of S=9/2 , is used as a model system to study Landau-Zener (LZ) tunneling in the presence of weak intermolecular dipolar and exchange interactions. The anisotropy constants D and B are measured with minor hysteresis loops. A transverse field is used to tune the tunnel splitting over a large range. Using the LZ and inverse LZ method, it is shown that these interactions play an important role in the tunnel rates. Three regions are identified: (i) at small transverse fields, tunneling is dominated by single tunnel transitions, (ii) at intermediate transverse fields, the measured tunnel rates are governed by reshuffling of internal fields, and (iii) at larger transverse fields, the magnetization reversal starts to be influenced by the direct relaxation process, and many-body tunnel events may occur. The hole digging method is used to study the next-nearest-neighbor interactions. At small external fields, it is shown that magnetic ordering occurs which does not quench tunneling. An applied transverse field can increase the ordering rate. Spin-spin cross-relaxations, mediated by dipolar and weak exchange interactions, are proposed to explain additional quantum steps.

  5. Pattern formation in diffusive excitable systems under magnetic flow effects

    Science.gov (United States)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

  6. Weak Localisation in Clean and Highly Disordered Graphene

    International Nuclear Information System (INIS)

    Hilke, Michael; Massicotte, Mathieu; Whiteway, Eric; Yu, Victor

    2013-01-01

    We look at the magnetic field induced weak localisation peak of graphene samples with different mobilities. At very low temperatures, low mobility samples exhibit a very broad peak as a function of the magnetic field, in contrast to higher mobility samples, where the weak localisation peak is very sharp. We analyze the experimental data in the context of the localisation length, which allows us to extract, both the localisation length and the phase coherence length of the samples, regardless of their mobilities. This analysis is made possible by the observation that the localisation length undergoes a generic weak localisation dependence with striking universal properties

  7. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moral, A. del, E-mail: delmoral@unizar.es [Laboratorio de Magnetismo, Departamento de Física de Materia Condensada and Instituto de Ciencia de Materiales, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain); Azanza, María J., E-mail: mjazanza@unizar.es [Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain)

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca{sup 2+} Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B{sub 0}≅0.2–15 mT) AC-MF of frequency f{sub M}=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca{sup 2+} Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons.

  8. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    International Nuclear Information System (INIS)

    Moral, A. del; Azanza, María J.

    2015-01-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca 2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B 0 ≅0.2–15 mT) AC-MF of frequency f M =50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca 2+ Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons

  9. The Creation and Physiological Relevance of Divergent Hydroxylation Patterns in the Flavonoid Pathway

    Directory of Open Access Journals (Sweden)

    Heidi Halbwirth

    2010-02-01

    Full Text Available Flavonoids and biochemically-related chalcones are important secondary metabolites, which are ubiquitously present in plants and therefore also in human food. They fulfill a broad range of physiological functions in planta and there are numerous reports about their physiological relevance for humans. Flavonoids have in common a basic C6-C3-C6 skeleton structure consisting of two aromatic rings (A and B and a heterocyclic ring (C containing one oxygen atom, whereas chalcones, as the intermediates in the formation of flavonoids, have not yet established the heterocyclic C-ring. Flavonoids are grouped into eight different classes, according to the oxidative status of the C-ring. The large number of divergent chalcones and flavonoid structures is from the extensive modification of the basic molecules. The hydroxylation pattern influences physiological properties such as light absorption and antioxidative activity, which is the base for many beneficial health effects of flavonoids. In some cases antiinfective properties are also effected.

  10. Patterns of Weakness, Classification of Motor Neuron Disease, and Clinical Diagnosis of Sporadic Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Statland, Jeffrey M; Barohn, Richard J; McVey, April L; Katz, Jonathan S; Dimachkie, Mazen M

    2015-11-01

    When approaching a patient with suspected motor neuron disease (MND), the pattern of weakness on examination helps distinguish MND from other diseases of peripheral nerves, the neuromuscular junction, or muscle. MND is a clinical diagnosis supported by findings on electrodiagnostic testing. MNDs exist on a spectrum, from a pure lower motor neuron to mixed upper and lower motor neuron to a pure upper motor neuron variant. Amyotrophic lateral sclerosis (ALS) is a progressive mixed upper and lower motor neuron disorder, most commonly sporadic, which is invariably fatal. This article describes a pattern approach to identifying MND and clinical features of sporadic ALS. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Bats Respond to Very Weak Magnetic Fields

    Science.gov (United States)

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (Preversed tens of times over the past fifty million years. PMID:25922944

  12. Effects Of Hydrothermal Alteration On Magnetic Properties And Magnetic Signatures - Implications For Predictive Magnetic Exploration Models

    Science.gov (United States)

    Clark, D.

    2012-12-01

    Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer

  13. Magnetic vortex state and multi-domain pattern in electrodeposited hemispherical nanogranular nickel films

    International Nuclear Information System (INIS)

    Samardak, Alexander; Sukovatitsina, Ekaterina; Ognev, Alexey; Stebliy, Maksim; Davydenko, Alexander; Chebotkevich, Ludmila; Keun Kim, Young; Nasirpouri, Forough; Janjan, Seyed-Mehdi; Nasirpouri, Farzad

    2014-01-01

    Magnetic states of nickel nanogranular films were studied in two distinct structures of individual and agglomerated granules electrodeposited on n-type Si(1 1 1) surface from a modified Watts bath at a low pH of 2. Magnetic force microscopy and micromagnetic simulations revealed three-dimensional out-of-plane magnetic vortex states in stand-alone hemispherical granules and their arrays, and multi-domain patterns in large agglomerates and integrated films. Once the granules coalesce into small chains or clusters, the coercivity values increased due to the reduction of inter-granular spacing and strengthening of the magnetostatic interaction. Further growth leads to the formation of a continuous granulated film which strongly affected the coercivity and remanence. This was characterized by the domain wall nucleation and propagation leading to a stripe domain pattern. Magnetoresistance measurements as a function of external magnetic field are indicative of anisotropic magnetoresistance (AMR) for the continuous films electrodeposited on Si substrate. - Highlights: • Magnetic states of electrodeposited nickel in isolated spherical and agglomerated nanogranules, and a continuous film. • Preferential magnetization reversal mechanism in isolated granules is vortex state. • Micromagnetic simulations confirm the three-dimensional vortex. • Transition between the vortex state and multi-domain magnetic pattern causes a significant decrease in the coercive force. • Continuous nickel films electrodeposited on silicon substrate exhibit AMR whose magnitude increases with the film thickness

  14. Switching field distribution and magnetization reversal process of FePt dot patterns

    Energy Technology Data Exchange (ETDEWEB)

    Ishio, S., E-mail: ishio@gipc.akita-u.ac.jp [Department of Materials Science and Engineering, Akita University, Akita 010-8502 (Japan); Takahashi, S.; Hasegawa, T.; Arakawa, A.; Sasaki, H. [Department of Materials Science and Engineering, Akita University, Akita 010-8502 (Japan); Yan, Z.; Liu, X. [Venture Business Laboratory, Akita University, Tegata Gakuen-machi, Akita 010-8502 (Japan); Kondo, Y.; Yamane, H.; Ariake, J. [Akita Prefectural R and D Center, 4-21 Sanuki, Akita 010-1623 (Japan); Suzuki, M.; Kawamura, N.; Mizumaki, M. [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2014-06-01

    The fabrication of FePt nanodots with a high structural quality and the control of their switching fields are key issues in realizing high density bit pattern recording. We have prepared FePt dot patterns for dots with 15–300 nm diameters by electron beam lithography and re-annealing, and studied the relation between magnetization reversal process and structure of FePt nanodots. The switching field (H{sub sw}) of dot patterns re-annealed at 710 °C for 240 min showed a bimodal distribution, where a higher peak was found at 5–6 T, and a lower peak was found at ∼2 T. It was revealed by cross-sectional TEM analysis that the structure of dots in the pattern can be classified into two groups. One group has a high degree of order with well-defined [0 0 1] crystalline growth, and the other group includes structurally-disturbed dots like [1 1 1] growth and twin crystals. This structural inhomogeneity causes the magnetic switching field distribution observed. - Highlights: • FePt dot patterns with 15–100 nm dot diameters were prepared by EB lithography. • Maximum coercivity of 30 kOe was found in the dot pattern with 30 nm in diameter. • Magnetization reversal was studied on the base of TEM analysis and LLG simulation.

  15. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    Science.gov (United States)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  16. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    Science.gov (United States)

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  17. Magnetic anomaly patterns over crustal blocks of the King Edward VII Peninsula, Marie Byrd Land, West Antarctica

    Directory of Open Access Journals (Sweden)

    M. Spano

    2000-06-01

    Full Text Available Within the framework of the GITARA II project an aeromagnetic survey was performed during the GANOVEXVII expedition (1992/1993 over the King Edward VII Peninsula in northwestern Marie Byrd Land (West Antarctica. This region which may represent the eastern flank of the Ross Sea rift system had previously been explored only at reconnaissance level. New total field and upward continued (10 km magnetic anomaly maps are produced and interpreted here to map and discuss the crustal structure of the Edward VII Peninsula. Tworound-shaped, high-amplitude magnetic anomalies are recognised over the Alexandra Mountains block. The anomalies are difficult to interpret since susceptibility data indicate the prevalence of non-magnetic rocks at the surface. A possible interpretation is that the anomalies are due to Cretaceous mafic intrusives distinct from weakly magnetic Byrd Coast Granite of the adjacent Rockefeller Mountains block. Alternatively the anomalies could be related to buried pluton-sized Devonian Ford Granodiorite intruded by dikes. If Cretaceous in age, the former intrusives revealed from the magnetics could also be responsible for contact metamorphism of the adjacent Alexandra Mountains migmatites. Lower amplitude circular anomalies over the Central Plateau and Prestrud Inlet are likely to be caused by unexposed Devonian Ford Granodiorite which crops out in the Ford Ranges. Elongated high-frequency anomalies of the Sulzberger Bay are similar to those recognised over seismically constrained Cenozoic rift-related volcanics of the Ross Sea. A broad magnetic low over the Sulzberger Ice Shelf may be indicative of a fault bounded graben-like basin with sedimentary infill. Overall recognition of magnetic anomaly patterns and trends reveals segmentation of the Edward VII Peninsula and of the adjacent marine areas in distinct crustal blocks. Faults may separate these blocks and they are interpreted to reflect multiple Cretaceous and maybe Cenozoic crustal

  18. Time-resolved imaging of domain pattern destruction and recovery via nonequilibrium magnetization states

    Science.gov (United States)

    Wessels, Philipp; Ewald, Johannes; Wieland, Marek; Nisius, Thomas; Vogel, Andreas; Viefhaus, Jens; Meier, Guido; Wilhein, Thomas; Drescher, Markus

    2014-11-01

    The destruction and formation of equilibrium multidomain patterns in permalloy (Ni80Fe20 ) microsquares has been captured using pump-probe x-ray magnetic circular dichroism (XMCD) spectromicroscopy at a new full-field magnetic transmission soft x-ray microscopy endstation with subnanosecond time resolution. The movie sequences show the dynamic magnetization response to intense Oersted field pulses of approximately 200-ps root mean square (rms) duration and the magnetization reorganization to the ground-state domain configuration. The measurements display how a vortex flux-closure magnetization distribution emerges out of a nonequilibrium uniform single-domain state. During the destruction of the initial vortex pattern, we have traced the motion of the central vortex core that is ejected out of the microsquare at high velocities exceeding 1 km/s. A reproducible recovery into a defined final vortex state with stable chirality and polarity could be achieved. Using an additional external bias field, the transient reversal of the square magnetization direction could be monitored and consistently reproduced by micromagnetic simulations.

  19. Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields

    Science.gov (United States)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2018-05-01

    Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.

  20. Magnetization process and domains in MTJ

    Energy Technology Data Exchange (ETDEWEB)

    Czapkiewicz, M.; Zoladz, M.; Wrona, J.; Wisniowski, P.; Rak, R.; Stobiecki, T. [Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Kim, C.G.; Kim, C.O. [Department of Materials Engineering, Chungnam National University, 305-764 Daejon (Korea); Takahashi, M.; Tsunoda, M. [Department of Electronic Engineering, Tohoku University, 980-8579 Sendai (Japan)

    2004-06-01

    The magnetization process and domain structure of free layers in as deposited and annealed magnetic tunnel junctions (MTJ) of Si/Ta/Cu/Ta/NiFe/Cu/IrMn(10)/CoFe(2.5)/Al-O(1.5)/CoFe(2.5)/NiFe(t)/Ta, where t=10, 30 and 100 nm, were investigated by Kerr microscopy, R-VSM and MOKE magnetometers. Different types of domain patterns observed in free layers (CoFe(2.5)/NiFe(t)) depending on the mutual relation between interlayer coupling energy and free layer magnetostatic energy. For as deposited samples fuzzy domains with fine irregular ''patches'' pattern, typical for weak interlayer coupling, are observed. Annealed MTJs, however, are characterized by large domains superimposed by crossed stripes, which led to the blocking of coherent rotation of magnetization. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log

    Science.gov (United States)

    Li, Shiyong; Yee, Ho-Ung

    2018-03-01

    We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).

  2. Diurnal patterns and relationships between physiological and self-reported stress in patients with epilepsy and psychogenic non-epileptic seizures.

    Science.gov (United States)

    Novakova, Barbora; Harris, Peter R; Reuber, Markus

    2017-05-01

    Patients with epilepsy and those with psychogenic non-epileptic seizures (PNES) experience high levels of stress and stress is one of the most frequently self-identified seizure precipitants. Although stress is a multifaceted phenomenon, few studies have systematically examined its different components in patients with seizures. The aim of this study was therefore to describe diurnal patterns of psychological and physiological measures of stress in patients with epilepsy and patients with PNES, and explore their relationships to each other in order to improve our understanding of the mechanisms underlying stress and seizure occurrence in these patients. A range of stress markers including self-reported stress, salivary cortisol, and heart rate variability (HRV) were explored in adult patients with refractory epilepsy (N=22) and those with PNES (N=23) undergoing three- to five-day video-telemetry. A diurnal pattern was observed in the physiological measures, characterized by higher levels of physiological arousal in the mornings and lower levels at night in both patients with epilepsy and PNES. The physiological measures (cortisol and HRV) were associated with each other in patients with epilepsy; no close relationship was found with self-reported stress in either of the two patient groups. The findings contribute to and expand on previous studies of the patterns of stress in patients with seizures. The results also indicate a discrepancy between patients' physiological responses and their subjective stress perceptions, suggesting that simple self-reports cannot be used as a proxy of physiological arousal in patients with seizures and stress. Stress in these patient groups should be studied using a combination of complementary measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    Science.gov (United States)

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer

    Directory of Open Access Journals (Sweden)

    Chun Dong

    2011-01-01

    Full Text Available Abstract A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe and high magnetization (900–1,000 emu/cm3 characteristic of L10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach.

  5. The effect of an accretion disk on coherent pulsed emission from weakly magnetized neutron stars

    International Nuclear Information System (INIS)

    Asaoka, Ikuko; Hoshi, Reiun.

    1989-01-01

    Using a simple model for hot spots formed on the magnetic polar regions we calculate the X-ray pulse profiles expected from bright low-mass X-ray binaries. We assume that neutron stars in close binary systems are surrounded by accretion disks extending down in the vicinity of their surfaces. Even partial eclipses of a hot spot by the accretion disk change the coherent pulsed fraction and, in some cases, the phase of pulsations by almost 180deg. Coherent pulsations are clearly seen even for sufficiently compact model neutron stars, if the hot spots emit isotropic or fan-beam radiation. In the case of pencil-beam radiation, coherent pulsations are also seen if the cap-opening angle is less than ∼60deg, while the inclination angle is larger than 68deg. Gravitational lensing alone does not smear coherent pulsations in moderately weak magnetized neutron stars in the presence of an absorbing accretion disk. (author)

  6. Negative magnetoresistance in perpendicular of the superlattices axis weak magnetic field at scattering of impurity ions

    International Nuclear Information System (INIS)

    Askerov, B. M.; Figarova, R.; Guseynov, G.I.

    2012-01-01

    Full Text : The transverse magnetoresistance in superlattices with the cosine dispersion law of conduction electrons in a case, when a weak magnetic field in plane of layer at scattering of the charge carriers of impurity ions has been studied. It has been shown that in a quasi-two-dimensional case the magnetoresistance was positive, while in a quasi-three-dimensional case can become negative depending of a degree of mini-band filling. Such behavior of magnetoresistance, apparently, has been related to presence in a mini-band of region with the negative effective mass

  7. Magnetic study of weakly contaminated forest soils

    Czech Academy of Sciences Publication Activity Database

    Kapička, Aleš; Jordanova, Neli; Petrovský, Eduard; Podrázský, V.

    2003-01-01

    Roč. 148, 1/4 (2003), s. 31-44 ISSN 0049-6979 R&D Projects: GA AV ČR IAA3012905 Institutional research plan: CEZ:AV0Z3012916 Keywords : anthropogenic ferrimagnetics * environmental magnetism * soil pollution Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.883, year: 2003

  8. Biological effects due to weak magnetic fields on plants

    Science.gov (United States)

    Belyavskaya, N.

    In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron

  9. Magnetic Excitations in Weakly Coupled Spin Dimers and Chains Material Cu2Fe2Ge4O13

    International Nuclear Information System (INIS)

    Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.; Park, S.

    2005-01-01

    Magnetic excitations in a weakly coupled spin dimers and chains compound Cu 2 Fe 2 Ge 4 O 13 are measured by inelastic neutron scattering. Both structure factors and dipsersion of low-energy excitations up to 10 meV energy transfer are well described by a semiclassical spin wave theory involving interacting Fe 3+ (S=5/2) chains. Additional dispersionsless excitations are observed at higher energies, at ℎω=24 meV, and associated with singlet-triplet transitions within Cu 2+ dimers. Both types of excitations can be understood by treating weak interactions between the Cu 2+ and Fe 3+ subsystems at the level of the mean-field random phase approximation. However, this simple model fails to account for the measured temperature dependence of the 24 meV mode.

  10. Molecular physiology of weak organic acid stress in Bacillus subtilis

    NARCIS (Netherlands)

    van Beilen, J.W.A.

    2013-01-01

    The mechanism by which weak organic acid (WOA) preservatives inhibit growth of microorganisms may differ between different WOAs and these differences are not well understood. The aim of this thesis has been to obtain a better understanding of the mode of action of these preservatives by which they

  11. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors

    Directory of Open Access Journals (Sweden)

    Yali Lin

    2017-11-01

    Full Text Available Cholesteric liquid crystals (CLCs exhibit selective Bragg reflections of circularly polarized (CP light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidics. Water-soluble magnetofluid with Fe3O4 nanoparticles incorporated in the inner aqueous core of CLC shells is responsible for the non-invasive transportable capability. With the aid of an external magnetic field, the reflection interactions between neighboring microshells and microdroplets were identified by varying the mutual distance in a group of magnetically transportable and unmovable spherical CLC structures. The temperature-dependent optical reflection patterns were investigated in close-packed hexagonal arrangements of seven CLC microdroplets and microshells with inverse helicity handedness. Moreover, we demonstrated that the magnetic field-assisted assembly of microshells array into geometric figures of uppercase English letters “L” and “C” was successfully achieved. We hope that these findings can provide good application prospects for security pattern designs.

  12. Magnetic Nanoparticle-Assisted Tunable Optical Patterns from Spherical Cholesteric Liquid Crystal Bragg Reflectors.

    Science.gov (United States)

    Lin, Yali; Yang, Yujie; Shan, Yuwei; Gong, Lingli; Chen, Jingzhi; Li, Sensen; Chen, Lujian

    2017-11-08

    Cholesteric liquid crystals (CLCs) exhibit selective Bragg reflections of circularly polarized (CP) light owing to their spontaneous self-assembly abilities into periodic helical structures. Photonic cross-communication patterns could be generated toward potential security applications by spherical cholesteric liquid crystal (CLC) structures. To endow these optical patterns with tunability, we fabricated spherical CLC Bragg reflectors in the shape of microshells by glass-capillary microfluidics. Water-soluble magnetofluid with Fe₃O₄ nanoparticles incorporated in the inner aqueous core of CLC shells is responsible for the non-invasive transportable capability. With the aid of an external magnetic field, the reflection interactions between neighboring microshells and microdroplets were identified by varying the mutual distance in a group of magnetically transportable and unmovable spherical CLC structures. The temperature-dependent optical reflection patterns were investigated in close-packed hexagonal arrangements of seven CLC microdroplets and microshells with inverse helicity handedness. Moreover, we demonstrated that the magnetic field-assisted assembly of microshells array into geometric figures of uppercase English letters "L" and "C" was successfully achieved. We hope that these findings can provide good application prospects for security pattern designs.

  13. Electron surfing acceleration by the electron two-stream instability in a weak magnetic field

    International Nuclear Information System (INIS)

    Dieckmann, M E; Shukla, P K

    2006-01-01

    The thermalization of relativistically flowing colliding plasmas is not well understood. The transition layer, in which both plasmas interact and thermalize, is wide and highly structured and the instabilities in this layer may yield non-thermal particle distributions and shock-less energy dissipation. The objective in this work is to explore the ability of an electron two-stream instability for thermalizing a plasma beam that moves at the mildly relativistic speed 0.3c through weakly magnetized plasma and to identify the resulting particle distributions. It is demonstrated here with particle-in-cell simulations that the electron two-stream instability leads to waves that propagate within a wide angular range relative to the flow velocity. The waves are thus not planar, as required for efficient electron surfing acceleration (ESA). The short lifetime of the waves implies, however, only weak modifications of the ESA by the oblique modes, since the waves are sufficiently homogeneous. The ion (proton) beams are not modulated, which would be required to extract some of their energy. The instability can thus heat the electrons significantly, but it fails to accelerate them to relativistic energies and it cannot form a shock layer by thermalizing the protons, at least not for the system and the resolved timescales considered here

  14. Electron surfing acceleration by the electron two-stream instability in a weak magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, M E; Shukla, P K [Institut fuer Theoretische Physik IV, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2006-10-15

    The thermalization of relativistically flowing colliding plasmas is not well understood. The transition layer, in which both plasmas interact and thermalize, is wide and highly structured and the instabilities in this layer may yield non-thermal particle distributions and shock-less energy dissipation. The objective in this work is to explore the ability of an electron two-stream instability for thermalizing a plasma beam that moves at the mildly relativistic speed 0.3c through weakly magnetized plasma and to identify the resulting particle distributions. It is demonstrated here with particle-in-cell simulations that the electron two-stream instability leads to waves that propagate within a wide angular range relative to the flow velocity. The waves are thus not planar, as required for efficient electron surfing acceleration (ESA). The short lifetime of the waves implies, however, only weak modifications of the ESA by the oblique modes, since the waves are sufficiently homogeneous. The ion (proton) beams are not modulated, which would be required to extract some of their energy. The instability can thus heat the electrons significantly, but it fails to accelerate them to relativistic energies and it cannot form a shock layer by thermalizing the protons, at least not for the system and the resolved timescales considered here.

  15. Advances in single-molecule magnet surface patterning through microcontact printing.

    Science.gov (United States)

    Mannini, Matteo; Bonacchi, Daniele; Zobbi, Laura; Piras, Federica M; Speets, Emiel A; Caneschi, Andrea; Cornia, Andrea; Magnani, Agnese; Ravoo, Bart Jan; Reinhoudt, David N; Sessoli, Roberta; Gatteschi, Dante

    2005-07-01

    We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing microCP). We describe different approaches of microCP to print stripes of a sulfur-functionalized dodecamanganese (III, IV) cluster on gold surfaces. Comparison by atomic force microscopy profile analysis of the patterned structures confirms the formation of a chemically stable single layer of SMMs. Images based on chemical contrast, obtained by time-of-flight secondary ion mass spectrometry, confirm the patterned structure.

  16. Weak coupling polaron and Landau-Zener scenario: Qubits modeling

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fokou, I. F.; Fai, L. C.; Ateuafack, M. E.

    2017-06-01

    The paper presents a weak coupling polaron in a spherical dot with magnetic impurities and investigates conditions for which the system mimics a qubit. Particularly, the work focuses on the Landau-Zener (LZ) scenario undergone by the polaron and derives transition coefficients (transition probabilities) as well as selection rules for polaron's transitions. It is proven that, the magnetic impurities drive the polaron to a two-state superposition leading to a qubit structure. We also showed that the symmetry deficiency induced by the magnetic impurities (strong magnetic field) yields to the banishment of transition coefficients with non-stacking states. However, the transition coefficients revived for large confinement frequency (or weak magnetic field) with the orbital quantum numbers escorting transitions. The polaron is then shown to map a qubit independently of the number of relevant states with the transition coefficients lifted as LZ probabilities and given as a function of the electron-phonon coupling constant (Fröhlich constant).

  17. Magnetic-flux dynamics of high-Tc superconductors in weak magnetic fields

    DEFF Research Database (Denmark)

    Il’ichev, E. V.; Jacobsen, Claus Schelde

    1994-01-01

    Aspects of magnetic-flux dynamics in different types of samples of the high-temperature superconductor YBa2Cu3Ox have been investigated in magnetic fields below 1 Oe and at 77 K. The experiments were carried out in an arrangement including a field coil, a flat sample perpendicular to the field...

  18. Magnetic Resonance Imaging with a Weak Albumin Binding Contrast Agent can Reveal Additional Endo leaks in Patients with an Enlarging Aneurysm after EVAR

    NARCIS (Netherlands)

    Habets, J.; Zandvoort, H. J. A.; Moll, F. L.; Bartels, L. W.; Vonken, E. P. A.; van Herwaarden, J. A.; Leiner, T.

    WHAT THIS PAPER ADDS In patients with enlarging aneurysms of unknown origin after endovascular aneurysm repair, magnetic resonance imaging (MRI) with a weak albumin binding contrast agent has additional diagnostic value for both the detection and determination of the origin of the endoleak.

  19. Patterns of physiological and affective responses to vehicle pass-by noises

    Directory of Open Access Journals (Sweden)

    Gert Notbohm

    2013-01-01

    Full Text Available Traffic noise is considered causing annoyance and severe health effects like cardiovascular disease (CVD. The present laboratory study examines the importance of individual factors, namely age, gender and personality traits on short term physiological and affective response to vehicle pass-by noises. Four groups of subjects (20-30 vs. 40-55 year-old male or female, n = 66 in total were exposed to a series of vehicle pass-by noises. Physiological responses (finger-pulse amplitude [FPA], skin conductance level [SCL] were registered during the exposure; affective responses and judgements regarding the sounds were assessed by questionnaires. Noise sensitivity and sensation seeking were measured by validated questionnaires. The results show different patterns of response depending on age, gender and personality. The strongest sympathetic stress reaction as measured by SCL was found for the older female group. In regression analysis, the SCL response was predicted by the female gender and low score of sensation seeking only (adjusted R2 = 0.139. The FPA response was strongest among the young men and age was the only significant predictor. For affective responses of pleasantness and activation, regression analysis proved noise sensitivity and sensation seeking to be significant predictors (adjusted R2 = 0.187 respectively 0.154. Age, gender and personality influence physiological and affective reactions to traffic noise, which might affect health conditions. Especially, a potential risk of older women for CVD owing to noise should be investigated further. Individual sensitiveness in terms of noise sensitivity or sensation seeking proves to be important for explaining differences in response to noise.

  20. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    International Nuclear Information System (INIS)

    Snezhko, Alexey

    2011-01-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. (topical review)

  1. Physiological patterns during practice of the Transcendental Meditation technique compared with patterns while reading Sanskrit and a modern language.

    Science.gov (United States)

    Travis, F; Olson, T; Egenes, T; Gupta, H K

    2001-07-01

    This study tested the prediction that reading Vedic Sanskrit texts, without knowledge of their meaning, produces a distinct physiological state. We measured EEG, breath rate, heart rate, and skin conductance during: (1) 15-min Transcendental Meditation (TM) practice; (2) 15-min reading verses of the Bhagavad Gita in Sanskrit; and (3) 15-min reading the same verses translated in German, Spanish, or French. The two reading conditions were randomly counterbalanced, and subjects filled out experience forms between each block to reduce carryover effects. Skin conductance levels significantly decreased during both reading Sanskrit and TM practice, and increased slightly during reading a modern language. Alpha power and coherence were significantly higher when reading Sanskrit and during TM practice, compared to reading modern languages. Similar physiological patterns when reading Sanskrit and during practice of the TM technique suggests that the state gained during TM practice may be integrated with active mental processes by reading Sanskrit.

  2. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems

    International Nuclear Information System (INIS)

    Walther, A.; Marcoux, C.; Desloges, B.; Grechishkin, R.; Givord, D.; Dempsey, N.M.

    2009-01-01

    The integration of high-performance RE-TM (NdFeB and SmCo) hard magnetic films into micro-electro-mechanical-systems (MEMS) requires their patterning at the micron scale. In this paper we report on the applicability of standard micro-fabrication steps (film deposition onto topographically patterned substrates, wet etching and planarization) to the patterning of 5-8 μm thick RE-TM films. While NdFeB comprehensively fills micron-scaled trenches in patterned substrates, SmCo deposits are characterized by poor filling of the trench corners, which poses a problem for further processing by planarization. The magnetic hysteresis loops of both the NdFeB and SmCo patterned films are comparable to those of non-patterned films prepared under the same deposition/annealing conditions. A micron-scaled multipole magnetic field pattern is directly produced by the unidirectional magnetization of the patterned films. NdFeB and SmCo show similar behavior when wet etched in an amorphous state: etch rates of approximately 1.25 μm/min and vertical side walls which may be attributed to a large lateral over-etch of typically 20 μm. Chemical-mechanical-planarization (CMP) produced material removal rates of 0.5-3 μm/min for amorphous NdFeB. Ar ion etching of such films followed by the deposition of a Ta layer prior to film crystallization prevented degradation in magnetic properties compared to non-patterned films

  3. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems

    Energy Technology Data Exchange (ETDEWEB)

    Walther, A. [CEA Leti-MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Institut Neel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble (France); Marcoux, C.; Desloges, B. [CEA Leti-MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Grechishkin, R. [Laboratory of Magnetoelectronics, Tver State University, 170000 Tver (Russian Federation); Givord, D. [Institut Neel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble (France); Dempsey, N.M. [Institut Neel, CNRS-UJF, 25 rue des Martyrs, 38042 Grenoble (France)], E-mail: nora.dempsey@grenoble.cnrs.fr

    2009-03-15

    The integration of high-performance RE-TM (NdFeB and SmCo) hard magnetic films into micro-electro-mechanical-systems (MEMS) requires their patterning at the micron scale. In this paper we report on the applicability of standard micro-fabrication steps (film deposition onto topographically patterned substrates, wet etching and planarization) to the patterning of 5-8 {mu}m thick RE-TM films. While NdFeB comprehensively fills micron-scaled trenches in patterned substrates, SmCo deposits are characterized by poor filling of the trench corners, which poses a problem for further processing by planarization. The magnetic hysteresis loops of both the NdFeB and SmCo patterned films are comparable to those of non-patterned films prepared under the same deposition/annealing conditions. A micron-scaled multipole magnetic field pattern is directly produced by the unidirectional magnetization of the patterned films. NdFeB and SmCo show similar behavior when wet etched in an amorphous state: etch rates of approximately 1.25 {mu}m/min and vertical side walls which may be attributed to a large lateral over-etch of typically 20 {mu}m. Chemical-mechanical-planarization (CMP) produced material removal rates of 0.5-3 {mu}m/min for amorphous NdFeB. Ar ion etching of such films followed by the deposition of a Ta layer prior to film crystallization prevented degradation in magnetic properties compared to non-patterned films.

  4. Patterned Electroplating of Micrometer Scale Magnetic Structures on Glass Substrates

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, Johannes S.; Krenn, Bea E.; van Driel, Roel

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  5. Patterned electroplating of micrometer scale magnetic structures on glass substrates.

    NARCIS (Netherlands)

    de Vries, A.H.B.; Kanger, S.J.; Krenn, G.E.; van Driel, R.

    2004-01-01

    This paper has developed a new method of micro patterned electroplating that enables the fabrication of micrometer scale magnetic structures on glass substrates. In contrast to other methods, the process as developed here leaves the surrounding substrate area untouched: that is there is no seed

  6. Simulation of weak and strong Langmuir collapse regimes

    International Nuclear Information System (INIS)

    Hadzievski, L.R.; Skoric, M.M.; Kono, M.; Sato, T.

    1998-01-01

    In order to check the validity of the self-similar solutions and the existence of weak and strong collapse regimes, direct two dimensional simulation of the time evolution of a Langmuir soliton instability is performed. Simulation is based on the Zakharov model of strong Langmuir turbulence in a weakly magnetized plasma accounting for the full ion dynamics. For parameters considered, agreement with self-similar dynamics of the weak collapse type is found with no evidence of the strong Langmuir collapse. (author)

  7. Dispersion functions for weakly relativistic magnetized plasmas in inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Gaelzer, R.; Schneider, R.S.; Ziebell, L.F.

    1995-01-01

    The study of wave propagation and absorption inhomogeneous plasmas can be made by using a formulation in which the dielectric properties of the plasma are described by an effective dielectric tensor which incorporates inhomogeneity effects, inserted into a dispersion relation which is formally the same as that of an homogeneous plasma. We have recently utilized this formalism in the study of electron cyclotron absorption in inhomogeneous media, both in the case of homogeneous magnetic field and in the case of inhomogeneous magnetic field. In the present paper we resume the study of the case with inhomogeneous magnetic field, in order to introduce a generalized dispersion function useful for the case of a Maxwellian plasma, and discuss some of its properties. (author). 10 refs

  8. Extending the Sensitivity of Paleomagnetic Techniques: Magnetostratigraphy of Weakly- Magnetized, Organic-Rich Black Limestone from the Permian of Japan

    Science.gov (United States)

    Kirschvink, J. L.; Isozaki, Y.

    2007-12-01

    Despite their importance for biostratigraphy, bituminous, organic-rich limestone has rarely yielded reliable paleomagnetic results, principally due to the weak magnetization levels encountered; NRMs for such samples often start with moments below 10-10Am2 (10-7 emu), and they become unmeasurable or unstable rapidly upon demagnetization. Recently, we have developed a fairly simple and inexpensive automation system for standard paleomagnetic and rock magnetic measurements that has the additional benefit of using an extremely low-noise sample holder. A vacuum pick-and-put system holds samples at the end a thin-walled quartz-glass tube, moving them between a measurement queue and the sense region of a vertically-aligned superconducting rock magnetometer. The system minimizes the amount of extraneous material introduced into the magnetometer's sense region. With frequent cleaning in strong acid, the glass holder system is capable of reliably measuring samples with moments below 1 pAm2 (10-9 emu), on a DC-SQuID magnetometer system with stable instrument noise of a few hundred fAm2. Signal averaging and clean-lab handling techniques are often needed to achieve this sensitivity, however. To test this system, we collected a series of densely-spaced samples for magnetostratigraphy from two sections in the Middle-Late Permian limestone at Kamura in Kyushu, Japan, which is the remnant of lagoonal sediments formed on an oceanic island atoll (Isozaki et al., 2007). According to fusulinids, the Saraito section spans Wordian time, which should be near the end of the Kiaman Reversed superchron. Similarly, strata at the Kamura section cover late Capitanian to early Wuchiapingian time, which should display a shift from predominantly Normal to Reversed magnetization. Raman spectroscopy suggests no appreciable heating. NRM intensities of the samples range generally between 10-10 and 10-11 Am2, with little change in the vectors either upon low-temperature cycling or alternating

  9. Study of the magnetic microstructure of high-coercivity sintered SmCo5 permanent magnets with the conventional Bitter pattern technique and the colloid-SEM method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2007-01-01

    The magnetic microstructure of high-coercivity sintered SmCo 5 permanent magnets was studied with the conventional Bitter pattern technique, and also for the first time with the colloid-scanning electron microscopy (colloid-SEM) method. Both techniques were supported by digital image acquisition, enhancement and analysis. Thanks to this, it was possible to obtain high-contrast and clear images of the magnetic microstructure and to analyze them in detail, and consequently also to achieve improvements over earlier results. In the thermally demagnetized state the grains were composed of magnetic domains. On the surface perpendicular to the alignment axis, the main domains forming a maze pattern and surface reverse spikes were observed. Investigations on the surface parallel to the alignment axis, especially by the colloid-SEM technique, provided a detailed insight into the orientation of grains. The alignment of grains was good, but certainly not perfect; there were also strongly misaligned grains, although generally very rare. In most cases the domain structures within grains were independent of their neighbors, but in some cases (not so rare) the domain walls were observed to continue through the grain boundaries, indicating significant magnetostatic interaction between neighboring grains. Studies of the behavior of the magnetic microstructure under the influence of an external magnetic field, performed for the first time on the surface parallel to the alignment axis (with the conventional Bitter pattern method), showed that the domain walls move easily within the grains and that the magnetization reversal mechanism is mainly related to the nucleation and growth of reverse domains, i.e. that sintered SmCo 5 magnets are nucleation-dominated systems. Groupwise magnetization reversal of adjacent magnetically coupled grains was observed, an unfavorable effect for high-coercivity magnets. Images obtained by the colloid-SEM technique and the conventional Bitter pattern

  10. Effects of weak magnetic fields on post-implantation damage in superconducting oxides

    International Nuclear Information System (INIS)

    Khait, Y.L.

    1996-01-01

    Experimentally verifiable effects of weak permanent magnetic fields (PMF's) acting during ion implantation in high-T c superconducting (HTSC) materials at T∼300 K on post-implantation damage (PID) and material parameters are considered. The presence of PMF's of H∼10 3 Oe during ion implantation can enlarge substantially the PID in HTSC materials implanted with ions of moderate energies (e.g. 200-400 keV) and dosage (10 11- 10 12 cm -3 ) at room temperature. The PMF-induced increase in the radiation damage causes the corresponding enhancement in the material resistivity R and reduction in the critical current j cir (measured after the cooling of the HTSC material down to T (L) c after the ion implantation). This is an extension of the PMF effects found experimentally (and explained theoretically) in semiconductors in our previous work. The experimentally verifiable PMF effects on the defect (atomic) migration and radiation damage is a generic consequence of the kinetic electron-related theory of atomic rate processes in solids. The theory links the PMF effects with electron transitions occurring in the nanometer vicinity of atoms overcoming energy barriers which affect exponentially rates of atomic (defect) diffusion. The magnetic field can enhance the number of downward electron transitions that accompany atomic (defect) jumps over energy barriers and synchronize with the jumps. This enhances exponentially the rates of defect migration out of thermal spikes that prevents the defects from fast recombination, and thus, the PMF increases the PID and changes correspondingly R and j cir . (orig.)

  11. Human action pattern monitor for telecare system utilizing magnetic thin film infrared sensor

    International Nuclear Information System (INIS)

    Osada, H.; Chiba, S.; Oka, H.; Seki, K.

    2002-01-01

    The magnetic thin film infrared sensor (MFI) is an infrared sensing device utilizing a temperature-sensitive magnetic thin film with marked temperature dependence in the room temperature range. We propose a human action pattern monitor (HPM) constructed with the MFI, without a monitor camera to save the clients' privacy, as a telecare system

  12. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    International Nuclear Information System (INIS)

    Kim, Sang-Koog

    2010-01-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  13. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements

    Science.gov (United States)

    Kim, Sang-Koog

    2010-07-01

    Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies.

  14. Orbits of two electrons released from rest in a uniform transverse magnetic field

    Science.gov (United States)

    Mungan, Carl E.

    2018-03-01

    Two identical charged particles released from rest repel each other radially. A uniform perpendicular magnetic field will then cause their trajectories to curve into a flower petal pattern. The orbit of each particle is approximately circular with a long period for a strong magnetic field, whereas it becomes a figure-eight for a weak magnetic field with each lobe completed in a cyclotron period. For example, such radially bound motions arise for two-dimensional electron gases. The level of treatment is appropriate for an undergraduate calculus-based electromagnetism course.

  15. SURPRISINGLY WEAK MAGNETISM ON YOUNG ACCRETING BROWN DWARFS

    International Nuclear Information System (INIS)

    Reiners, A.; Basri, G.; Christensen, U. R.

    2009-01-01

    We have measured the surface magnetic flux on four accreting young brown dwarfs and one nonaccreting young very low mass (VLM) star utilizing high-resolution spectra of absorption lines of the FeH molecule. A magnetic field of 1-2 kG had been proposed for one of the brown dwarfs, Two Micron All Sky Survey (2MASS) J1207334-393254, because of its similarities to higher mass T Tauri stars as manifested in accretion and the presence of a jet. We do not find clear evidence for a kilogauss field in any of our young brown dwarfs but do find a 2 kG field on the young VLM star. Our 3σ upper limit for the magnetic flux in 2MASS J1207334-393254 just reaches 1 kG. We estimate the magnetic field required for accretion in young brown dwarfs given the observed rotations, and find that fields of only a few hundred gauss are sufficient for magnetospheric accretion. This predicted value is less than our observed upper limit. We conclude that magnetic fields in young brown dwarfs are a factor of 5 or more lower than in young stars of about one solar mass, and in older stars with spectral types similar to our young brown dwarfs. It is interesting that, during the first few million years, the fields scale down with mass in line with what is needed for magnetospheric accretion, yet no such scaling is observed at later ages within the same effective temperature range. This scaling is opposite to the trend in rotation, with shorter rotation periods for very young accreting brown dwarfs compared with accreting solar-mass objects (and very low Rossby numbers in all cases). We speculate that in young objects a deeper intrinsic connection may exist between magnetospheric accretion and magnetic field strength, or that magnetic field generation in brown dwarfs may be less efficient than in stars. Neither of these currently has an easy physical explanation.

  16. Physiological pattern of lumbar disc height; Physiologisches Muster lumbaler Bandscheibenhoehen

    Energy Technology Data Exchange (ETDEWEB)

    Biggemann, M [Radiologische Klinik des Evangelischen Krankenhauses Bethesda, Duisburg (Germany); Frobin, W; Brinckmann, P [Muenster Univ. (Germany). Inst. fuer Experimentelle Biomechanik

    1997-07-01

    Purpose of this study is to present a new method of quantifying objectively the height of all discs in lateral radiographs of the lumbar spine and of analysing the normal craniocaudal sequence pattern of lumbar disc heights. Methods: The new parameter is the ventrally measured disc height corrected for the dependence on the angle of lordosis by normalisation to mean angles observed in the erect posture of healthy persons. To eliminate radiographic magnification, the corrected ventral height is related to the mean depth of the cranially adjoining vertebra. In this manner lumbar disc heights were objectively measured in young, mature and healthy persons (146 males and 65 females). The craniocaudal sequence pattern was analysed by mean values from all persons and by height differences of adjoining discs in each individual lumbar spine. Results: Mean normative values demonstrated an increase in disc height between L1/L2 and L4/L5 and a constant or decreasing disc height between L4/L5 and L5/S1. However, this `physiological sequence of disc height in the statistical mean` was observed in only 36% of normal males and 55% of normal females. Conclusion: The radiological pattern of the `physiological sequence of lumbar disc height` leads to a relevant portion of false positive pathological results especially at L4/L5. An increase of disc height from L4/L5 to L5/S1 may be normal. The recognition of decreased disc height should be based on an abrupt change in the heights of adjoining discs and not on a deviation from a craniocaudal sequence pattern. (orig.) [Deutsch] Ziel dieser Arbeit ist es, einen neuen Parameter zur objektiven Messung der Hoehen aller auf einer seitlichen Uebersichtsaufnahme der LWS erkennbaren Bandscheiben vorzustellen und die physiologische kraniokaudale Diskushoehensequenz neu zu dokumentieren. Methode: Bei dem neuen Messverfahren wird die Bandscheibenhoehe ventral gemessen, zur Korrektur ihrer Haltungsabhaengigkeit auf Standardwinkel (mittlere Winkel

  17. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    Science.gov (United States)

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  18. Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy

    Science.gov (United States)

    Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.

    2012-04-01

    Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.

  19. Quasiclassical approach to the weak levitation of extended states in the quantum Hall effect

    International Nuclear Information System (INIS)

    Fogler, M.M.

    1998-01-01

    The two-dimensional motion of a charged particle in a random potential and a transverse magnetic field is believed to be delocalized only at discrete energies E N . In strong fields there is a small positive deviation of E N from the center of the Nth Landau level, which is referred to as the open-quotes weak levitationclose quotes of the extended state. I calculate the size of the weak levitation effect for the case of a smooth random potential rederiving earlier results of Haldane and Yang [Phys. Rev. Lett. 78, 298 (1997)] and extending their approach to lower magnetic fields. I find that as the magnetic field decreases, this effect remains weak down to the lowest field B min where such a quasiclassical approach is still justified. Moreover, in the immediate vicinity of B min the weak levitation becomes additionally suppressed. This indicates that the open-quotes strong levitationclose quotes expected at yet even lower magnetic fields must be of a completely different origin. copyright 1998 The American Physical Society

  20. Complex-Spectrum Magnetic Environment enhances and/or modifies Bioeffects of Hypokinetic Stress Condition: an Animal Study

    Science.gov (United States)

    Temuriantz, N. A.; Martinyuk, V. S.; Ptitsyna, N. G.; Villoresi, G.; Iucci, N.; Tyasto, M. I.; Dorman, L. I.

    During last decades it was shown by many authors that ultra-low and extremely low frequency electric and magnetic fields ULF 0-10 Hz ELF 10-1000 Hz may produce biological effects and consequently may be a possible source for health problems Spaceflight electric and magnetic environments are characterized by complex combination of static and time-varying components in ULF-ELF range and by high variability The objective of this study was to investigate the possible influence of such magnetic fields on rats to understand the pathway regarding functional state of cardiovascular system Magnetic field MF pattern with variable complex spectra in 0-150 Hz frequency range was simulated using 3-axial Helmholtz coils and special computer-based equipment The effect of the real world MF exposure on rats was also tested in combination with hypokinetic stress condition which is typical for spaceflights It was revealed that variable complex-spectrum MF acts as a weak or moderate stress-like factor which amplifies and or modifies the functional shifts caused by other stress-factors The value and direction of the functional shifts caused by MF exposure significantly depend on gender individual-typological constitutional features and also on the physiological state norm stress of organism Our results support the idea that variable complex-spectrum MF action involves sympathetic activation overload in cholesterol transport in blood and also secretor activation of tissue basophyls mast cells that can influence the regional haemodynamics These

  1. An order-by-disorder process in the cyclic phase of spin-2 condensate with a weak magnetic field

    International Nuclear Information System (INIS)

    Zheng, Gong-Ping; Xu, Lei-Kuan; Qin, Shuai-Feng; Jian, Wen-Tian; Liang, J.-Q.

    2013-01-01

    We present in this paper a model study on the “order-by-disorder” process in the cyclic phase of spin-2 condensate, which forms a family of incommensurable, spiral degenerate ground states. On the basis of the ordering mechanism of entropic splitting, it is demonstrated that the energy corrections resulting from quantum fluctuations of disorder lift the accidental degeneracy of the cyclic configurations and thus lead to an eventual spiral order called the cyclic order. The order-by-disorder phenomenon is then realized even if the magnetic field exists. Finally, we show that our theoretic observations can be verified experimentally by direct detection of the cyclic order in the 87 Rb condensate of a spin-2 manifold with a weak magnetic field. -- Highlights: •A model for the order-by-disorder process in the cyclic phase of spin-2 condensate is presented. •The second-order quantum fluctuations of the mean-field states are studied. •The energy corrections lift the accidental degeneracy of the cyclic configurations. •The order-by-disorder phenomenon is realized even if a magnetic field exists. •The theoretic observations can be verified experimentally for 87 Rb condensate

  2. Design of biomimetic vascular grafts with magnetic endothelial patterning.

    Science.gov (United States)

    Fayol, Delphine; Le Visage, Catherine; Ino, Julia; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2013-01-01

    The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.

  3. The origin of high eccentricity planets: The dispersed planet formation regime for weakly magnetized disks

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available In the tandem planet formation regime, planets form at two distinct sites where solid particles are densely accumulated due to the on/off state of the magnetorotational instability (MRI. We found that tandem planet formation can reproduce the solid component distribution of the Solar System and tends to produce a smaller number of large planets through continuous pebble flow into the planet formation sites. In the present paper, we investigate the dependence of tandem planet formation on the vertical magnetic field of the protoplanetary disk. We calculated two cases of Bz=3.4×10−3 G and Bz=3.4×10−5 G at 100 AU as well as the canonical case of Bz=3.4×10−4 G. We found that tandem planet formation holds up well in the case of the strong magnetic field (Bz=3.4×10−3 G. On the other hand, in the case of a weak magnetic field (Bz=3.4×10−5 G at 100 AU, a new regime of planetary growth is realized: the planets grow independently at different places in the dispersed area of the MRI-suppressed region of r=8−30 AU at a lower accretion rate of M˙<10−7.4 M⊙yr−1. We call this the “dispersed planet formation” regime. This may lead to a system with a larger number of smaller planets that gain high eccentricity through mutual collisions.

  4. Physiological pattern changes in response to a simulated competition in elite women artistic gymnasts.

    Science.gov (United States)

    Isacco, Laurie; Ennequin, Gaël; Cassirame, Johan; Tordi, Nicolas

    2017-08-04

    The outstanding progress in women's artistic gymnastics in recent decades has led to increased technical and physiological demands. The aim of this study was to investigate i) the physiological demands of elite French gymnasts and ii) the impact of a competitive routine on physiological pattern changes. Fourteen French elite female gymnasts performed anthropometric measurements, physical fitness tests and a simulated four event competition. Heart rate (HR) was continuously recorded throughout the duration of the simulated competition. Blood lactate concentrations were assessed at rest, before the beginning and at 2, 4 and 10 min after completion of the routine on each apparatus. Isometric handgrip strength and anaerobic endurance and power were assessed during the simulated competition. The highest values of HR and blood lactate concentrations were reached during the floor and uneven bar exercises. Blood lactate concentrations and HR kinetics were apparatus dependent and values remained significantly increased at 10 min of recovery compared with resting data. Anaerobic endurance and power decreased significantly as the competition progressed (P <0.001). The present results show specifically cardiorespiratory and anaerobic apparatus- dependent responses throughout a simulated competition. Recovery approaches appear relevant to prevent and/or minimize fatigue and optimize performance in these athletes.

  5. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A. [Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain); Palomares, Francisco J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain)

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative

  6. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans

    Directory of Open Access Journals (Sweden)

    Gorobets O

    2017-06-01

    Full Text Available Oksana Gorobets,1,2 Svitlana Gorobets,1 Marceli Koralewski3 1National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute, 2Institute of Magnetism, National Academy of Sciences, Kiev, Ukraine; 3Faculty of Physics, Adam Mickiewicz University, Poznan, Poland Abstract: The discovery of biogenic magnetic nanoparticles (BMNPs in the human brain gives a strong impulse to study and understand their origin. Although knowledge of the subject is increasing continuously, much remains to be done for further development to help our society fight a number of pathologies related to BMNPs. This review provides an insight into the puzzle of the physiological origin of BMNPs in organisms of all three domains of life: prokaryotes, archaea, and eukaryotes, including humans. Predictions based on comparative genomic studies are presented along with experimental data obtained by physical methods. State-of-the-art understanding of the genetic control of biomineralization of BMNPs and their properties are discussed in detail. We present data on the differences in BMNP levels in health and disease (cancer, neurodegenerative disorders, and atherosclerosis, and discuss the existing hypotheses on the biological functions of BMNPs, with special attention paid to the role of the ferritin core and apoferritin. Keywords: biogenic magnetic nanoparticles, biomineralization, ferritin, magnetoferritin, genetic control, neurodegenerative disorders, cancer

  7. "Chess-board pattern" spatial modulation of magnetization. Assessment of myocardial function

    DEFF Research Database (Denmark)

    Thomsen, C

    1992-01-01

    . Through spatial modulation of the magnetization the entire image can be labeled in different patterns. Two new pulse sequences are presented, giving a chess-board like spatial modulation. These pulse sequences have several advantages compared with the previously published methods, as the modulation time...... is half that required to obtain a 2-dimensional grid, the area in the image with high signal intensity was significantly larger, and the radiofrequency power deposition was substantially decreased. By labeling the heart at diastole the chess-board pattern tagging of the heart wall could be followed...

  8. A Study on Accuracy Improvement of Dual Micro Patterns Using Magnetic Abrasive Deburring

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Dong-Hyun; Kwak, Jae-Seob [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-11-15

    In recent times, the requirement of a micro pattern on the surface of products has been increasing, and high precision in the fabrication of the pattern is required. Hence, in this study, dual micro patterns were fabricated on a cylindrical workpiece, and deburring was performed by magnetic abrasive deburring (MAD) process. A prediction model was developed, and the MAD process was optimized using the response surface method. When the predicted values were compared with the experimental results, the average prediction error was found to be approximately 7%. Experimental verification shows fabrication of high accuracy dual micro pattern and reliability of prediction model.

  9. Ground States of Ultracold Spin-1 Atoms in a Deep Double-Well Optical Superlattice in a Weak Magnetic Field

    International Nuclear Information System (INIS)

    Zheng Gong-Ping; Qin Shuai-Feng; Wang Shou-Yang; Jian Wen-Tian

    2013-01-01

    The ground states of the ultracold spin-1 atoms trapped in a deep one-dimensional double-well optical superlattice in a weak magnetic field are obtained. It is shown that the ground-state diagrams of the reduced double-well model are remarkably different for the antiferromagnetic and ferromagnetic condensates. The transition between the singlet state and nematic state is observed for the antiferromagnetic interaction atoms, which can be realized by modulating the tunneling parameter or the quadratic Zeeman energy. An experiment to distinguish the different spin states is suggested. (general)

  10. Magnetic dynamics of weakly and strongly interacting hematite nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Bender Koch, Christian; Mørup, Steen

    2000-01-01

    The magnetic dynamics of two differently treated samples of hematite nanoparticles from the same batch with a particle size of about 20 nm have been studied by Mossbauer spectroscopy. The dynamics of the first sample, in which the particles are coated and dispersed in water, is in accordance with...... down by interparticle interactions and a magnetically split spectrum is retained at room temperature. The temperature variation or the magnetic hyperfine field, corresponding to different quantiles in the hyperfine field distribution, can be consistently described by a mean field model...... for "superferromagnetism" in which the magnetic anisotropy is included. The coupling between the particles is due to exchange interactions and the interaction strength can be accounted for by just a few exchange bridges between surface atoms in neighboring crystallites....

  11. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    Science.gov (United States)

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  12. Magnetic domain wall motion in notch patterned permalloy nanowire devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting-Chieh; Kuo, Cheng-Yi; Mishra, Amit K.; Das, Bipul; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw

    2015-11-01

    We report a study of magnetization reversal process of notch-patterned permalloy (Py) nanowires (NWs) by using an in-situ magnetic force microscopy (MFM). Three neighboring straight NWs and an individual straight NW with discs connected to the wires ends are fabricated by standard electron beam lithography through a lift-off technique. MFM images are taken in the presence of an in-plane magnetic field applied along the wires length. As a result, the nucleation, pinning and depinning of domain walls (DWs) along the NW are observed. The artificial constraints (notch) in such symmetrical geometry of NWs indeed serve as pinning sites to pin the DWs. The nature of magnetization reversal, pinning field and depinning field for the DWs that are observed in these permalloy NWs, indicate the key roles of notch depth, the terminal connection structure of NW end and the inter-wire interaction among the NWs. The in-situ MFM measurements are examined with the micromagnetic simulations. Consequently, good agreements are obtained for the DW structures and the effect of DWs pining/depinning, however a dissimilarity in experimental and simulation observations for the direction of propagation of DWs in NWs needs further investigation.

  13. Effect of a nighttime magnetic field exposure on sleep patterns in young women.

    Science.gov (United States)

    Tworoger, Shelley S; Davis, Scott; Emerson, Scott S; Mirick, Dana K; Lentz, Martha J; McTiernan, Anne

    2004-08-01

    Since poor sleep quality is associated with multiple health problems, it is important to understand factors that may affect sleep patterns. The purpose of this study was to determine the effect of a continuous, 60-Hz, nighttime magnetic field exposure on sleep outcomes in young women sleeping at home. The study was a randomized crossover trial, comparing intervention (0.5-1.0 micro T above ambient levels) with ambient magnetic field levels, during two 5-night measurement periods. Subjects lived in the Seattle, Washington, area and were 20-40 years of age, had regular menstrual cycles, were not taking oral contraceptives, and had not breastfed or been pregnant during the previous year. The study was conducted between March and September of 2001. Sleep outcomes were measured via actigraphy. The range of magnetic field exposure was 0.001-0.50 micro T during the ambient period and 0.41-1.21 micro T during the intervention period. Sleep outcomes were not significantly different between the intervention and the ambient measurement periods. The intervention magnetic field had no effect on sleep patterns, suggesting that this exposure may not be an important factor in predicting sleep of young women who sleep at home.

  14. Unveiling the Role of the Magnetic Field at the Smallest Scales of Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Hull, Charles L. H.; Mocz, Philip; Burkhart, Blakesley; Goodman, Alyssa A.; Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Girart, Josep M. [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Cortés, Paulo C. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Springel, Volker [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Lai, Shih-Ping, E-mail: chat.hull@cfa.harvard.edu [Institute of Astronomy and Department of Physics, National Tsing Hua University, 101 Section 2 Kuang Fu Road, 30013 Hsinchu, Taiwan (China)

    2017-06-20

    We report Atacama Large Millimeter/submillimeter Array (ALMA) observations of polarized dust emission from the protostellar source Ser-emb 8 at a linear resolution of 140 au. Assuming models of dust-grain alignment hold, the observed polarization pattern gives a projected view of the magnetic field structure in this source. Contrary to expectations based on models of strongly magnetized star formation, the magnetic field in Ser-emb 8 does not exhibit an hourglass morphology. Combining the new ALMA data with previous observational studies, we can connect magnetic field structure from protostellar core (∼80,000 au) to disk (∼100 au) scales. We compare our observations with four magnetohydrodynamic gravo-turbulence simulations made with the AREPO code that have initial conditions ranging from super-Alfvénic (weakly magnetized) to sub-Alfvénic (strongly magnetized). These simulations achieve the spatial dynamic range necessary to resolve the collapse of protostars from the parsec scale of star-forming clouds down to the ∼100 au scale probed by ALMA. Only in the very strongly magnetized simulation do we see both the preservation of the field direction from cloud to disk scales and an hourglass-shaped field at <1000 au scales. We conduct an analysis of the relative orientation of the magnetic field and the density structure in both the Ser-emb 8 ALMA observations and the synthetic observations of the four AREPO simulations. We conclude that the Ser-emb 8 data are most similar to the weakly magnetized simulations, which exhibit random alignment, in contrast to the strongly magnetized simulation, where the magnetic field plays a role in shaping the density structure in the source. In the weak-field case, it is turbulence—not the magnetic field—that shapes the material that forms the protostar, highlighting the dominant role that turbulence can play across many orders of magnitude in spatial scale.

  15. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  16. Neutrino propagation in a weakly magnetized medium

    Indian Academy of Sciences (India)

    Neutrino–photon processes, forbidden in vacuum, can take place in the pres- ence of a thermal ... an external magnetic field, thus, fulfils the dual purpose of inducing an effective. 1241 .... real time formalism of the finite temperature field theory.

  17. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  18. Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials

    Directory of Open Access Journals (Sweden)

    Hao Shen

    2015-05-01

    Full Text Available In contrast to strong plasmonic scattering from metal particles or structures in metal films, we show that patterns of arbitrary shape fabricated out of multilayer hyperbolic metamaterials become invisible within a chosen band of optical frequencies. This is due to anomalously weak scattering when the in-plane permittivity of the multilayer hyperbolic metamaterials is tuned to match with the surrounding medium. This new phenomenon is described theoretically and demonstrated experimentally by optical characterization of various patterns in Au-Si multilayer hyperbolic metamaterials. This anomalously weak scattering is insensitive to pattern sizes, shapes, and incident angles, and has potential applications in scattering cross-section engineering, optical encryption, low-observable conductive probes, and optoelectric devices.

  19. Weak Static and Extremely Low Frequency Magnetic Fields Affect In Vitro Pollen Germination

    Directory of Open Access Journals (Sweden)

    Lucietta Betti

    2011-01-01

    Full Text Available This study concerns the effects of a weak static magnetic field (MF at 10 μT oriented downward, combined with a 16-Hz sinusoidal MF (10 μT, on in vitro pollen germination of kiwifruit (Actinidia deliciosa. Extremely low frequency magnetic field (ELF-MF exposure was carried out by a signal generator unit connected to a copper wire solenoid, inside which samples where placed. Two different kinds of treatment were performed: direct and indirect. In the direct treatment, pollen samples were directly exposed during rehydration, germination, or both. In the indirect treatment, the pollen growth medium was prepared with water aliquots (at standard temperature of 20°C and pH = 6.74 that were exposed before use for 8 or 24 h. The main purpose of our research was to identify a biological marker (in vitro pollen germination in a stressing growth medium without Ca2+ susceptible to the effects of direct or indirect ELF-MF exposure. The working variable was the pollen germination rate, as detected blind after 3 h 30 min by an Axioplan microscope. A directionally consistent recovery of germination percentage was observed both for direct exposure (during germination and both rehydration and germination phases and water-mediated exposure (with water exposed for 24 h and immediately used. Our results suggest that the ELF-MF treatment might partially remove the inhibitory effect caused by the lack of Ca2+ in the culture medium, inducing a release of internal Ca2+ stored in the secretory vesicles of pollen plasma membrane. Although preliminary, findings seem to indicate the in vitro pollen performance as adequate to study the effects of ELF-MFs on living matter.

  20. Weak localization in few-layer black phosphorus

    International Nuclear Information System (INIS)

    Du, Yuchen; Neal, Adam T; Zhou, Hong; Ye, Peide D

    2016-01-01

    We have conducted a comprehensive investigation into the magneto-transport properties of few-layer black phosphorus in terms of phase coherence length, phase coherence time, and mobility via weak localization measurement and Hall-effect measurement. We present magnetoresistance data showing the weak localization effect in bare p-type few-layer black phosphorus and reveal its strong dependence on temperature and carrier concentration. The measured weak localization agrees well with the Hikami–Larkin–Nagaoka model and the extracted phase coherence length of 104 nm at 350 mK, decreasing as ∼T −0.513+−0.053 with increased temperature. Weak localization measurement allows us to qualitatively probe the temperature-dependent phase coherence time τ ϕ , which is in agreement with the theory of carrier interaction in the diffusive regime. We also observe the universal conductance fluctuation phenomenon in few-layer black phosphorus within moderate magnetic field and low temperature regime. (paper)

  1. Metabolic response of Danaüs archippus and Saccharomyces cerevisiae to weak oscillatory magnetic fields

    Science.gov (United States)

    Russell, D. N.; Webb, S. J.

    1981-09-01

    Respiration of the insect larva, Danaüs archippus, and the yeast, Saccharomyces cerevisiae, in log phase has been monitored before and after an oscillatory magnetic insult of 0.005 Gauss rms amplitude and 40 50 min duration. Frequencies used were 10 16 Hz for the insect and 100 200 Hz for the yeast. Depression of as much as 30% in metabolic rate has been found to occur immediately after the field is both imposed and eliminated with a general recovery over the 30-min period thereafter both in and out of the imposed field, although complete recovery to original levels may take much longer. Evidence is given that the response may depend on the frequency pattern used. This data is used to formulate an hypothesis whereby changes in the geomagnetic field variability pattern may act as a biochronometric zeitgeber.

  2. Unusual magnetic excitations in the weakly ordered spin- 12 chain antiferromagnet Sr2CuO3: Possible evidence for Goldstone magnon coupled with the amplitude mode

    International Nuclear Information System (INIS)

    Sergeicheva, E. G.; Sosin, S. S.; Prozorova, L. A.; Gu, G. D.; Zaliznyak, I. A.

    2017-01-01

    We report on an electron spin resonance (ESR) study of a nearly one-dimensional (1D) spin-1/2 chain antiferromagnet, Sr 2 CuO 3 , with extremely weak magnetic ordering. The ESR spectra at T > T N , in the disordered Luttinger-spin-liquid phase, reveal nearly ideal Heisenberg-chain behavior with only a very small, field-independent linewidth, ~1/T. In the ordered state, below T N , we identify field-dependent antiferromagnetic resonance modes, which are well described by pseudo-Goldstone magnons in the model of a collinear biaxial antiferromagnet. Additionally, we observe a major resonant mode with unusual and strongly anisotropic properties, which is not anticipated by the conventional theory of Goldstone spin waves. Lastly, we propose that this unexpected magnetic excitation can be attributed to a field-independent magnon mode renormalized due to its interaction with the high-energy amplitude (Higgs) mode in the regime of weak spontaneous symmetry breaking.

  3. Magnetic properties of a classical XY spin dimer in a “planar” magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ciftja, Orion, E-mail: ogciftja@pvamu.edu [Department of Physics, Prairie View A& M University, Prairie View, TX 77446 (United States); Prenga, Dode [Department of Physics, Faculty of Natural Sciences, University of Tirana, Bul. Zog I, Tirana (Albania)

    2016-10-15

    Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a “planar” external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin–spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks. - Highlights: • Exact magnetic properties of a dimer system of classical XY spins in magnetic field. • Partition function in nonzero magnetic field obtained in closed-form. • Novel exact analytic results are important for spin models in a magnetic field. • Result provides benchmarks to gauge the accuracy of computational techniques.

  4. Measurement of the Weak Dipole Moments of the $\\tau$ Lepton

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Braccini, S; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chekanov, S V; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Migani, D; Mihul, A; Van Mil, A J W; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Moulik, T; Mount, R; Muheim, F; Muijs, A J M; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nippe, A; Nisati, A; Oh, Yu D; Opitz, H; Organtini, G; Ostonen, R; Palit, S; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Rind, O; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Sarkar, S; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Vlachos, S; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1998-01-01

    Using the data collected by the L3 experiment at LEP from 1991 to 1995 at energies around the $\\Zo$ mass, a measurement of the weak anomalous magnetic dipole moment, $a^w_{\\tau}$,~ and of the weak electric dipole moment, $d^w_{\\tau}$, of the $\\tau$ lepton is performed. These quantities are obtained from angular distributions in $e^{+}e^{-}\\rightarrow\\tau^{+}\\tau^{-} \\rightarrow h^{+} \\bar{\

  5. Resonance double magnetic bremsstrahlung in a strong magnetic field

    International Nuclear Information System (INIS)

    Fomin, P.I.; Kholodov, R.I.

    2003-01-01

    The possibility of resonance double magnetic bremsstrahlung in the approximation of weakly excited electron states in a strong external magnetic field is analyzed. The differential probability of this process in the Breit-Wigner form is obtained. The probability of double magnetic bremsstrahlung (second-order process of perturbation theory) is compared with the probability of magnetic bremsstrahlung (first-order process of perturbation theory)

  6. Information processing in patterned magnetic nanostructures with edge spin waves.

    Science.gov (United States)

    Lara, Antonio; Robledo Moreno, Javier; Guslienko, Konstantin Y; Aliev, Farkhad G

    2017-07-17

    Low dissipation data processing with spins is one of the promising directions for future information and communication technologies. Despite a significant progress, the available magnonic devices are not broadband yet and have restricted capabilities to redirect spin waves. Here we propose a breakthrough approach to spin wave manipulation in patterned magnetic nanostructures with unmatched characteristics, which exploits a spin wave analogue to edge waves propagating along a water-wall boundary. Using theory, micromagnetic simulations and experiment we investigate spin waves propagating along the edges in magnetic structures, under an in-plane DC magnetic field inclined with respect to the edge. The proposed edge spin waves overcome important challenges faced by previous technologies such as the manipulation of the spin wave propagation direction, and they substantially improve the capability of transmitting information at frequencies exceeding 10 GHz. The concept of the edge spin waves allows to design a broad of logic devices such as splitters, interferometers, or edge spin wave transistors with unprecedented characteristics and a potentially strong impact on information technologies.

  7. Weak antilocalization in Cd3As2 thin films.

    Science.gov (United States)

    Zhao, Bo; Cheng, Peihong; Pan, Haiyang; Zhang, Shuai; Wang, Baigeng; Wang, Guanghou; Xiu, Faxian; Song, Fengqi

    2016-03-03

    Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here, we report on the low-temperature magnetoresistance measurements on a ~50 nm-thick Cd3As2 film. The weak antilocalization under perpendicular magnetic field is discussed based on the two-dimensional Hikami-Larkin-Nagaoka (HLN) theory. The electron-electron interaction is addressed as the source of the dephasing based on the temperature-dependent scaling behavior. The weak antilocalization can be also observed while the magnetic field is parallel to the electric field due to the strong interaction between the different conductance channels in this quasi-two-dimensional film.

  8. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    Science.gov (United States)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  9. Detailed spectra of high-power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy distributed uniformly across a wide frequency band are observed when a relativistic electron beam (REB) penetrates a plasma. Typical measured values are 20 MW total for Δνapprox. =40 GHz with preliminary observations of bandwidths as large as 100 GHz. An intense annular pulsed REB (Iapprox. =128 kA; rapprox. =3 cm; Δrapprox. =1 cm; 50 nsec FWHM; γapprox. =3) is sent through an unmagnetized or weakly magnetized plasma column (n/sub plasma/approx.10 13 cm -3 ). Beam-to-plasma densities of 0.01 >ω/sub p/ and weak harmonic structure is wholly unanticipated from Langmuir scattering or soliton collapse models. A model of Compton-like boosting of ambient plasma waves by the beam electrons, with collateral emission of high-frequency photons, qualitatively explains these spectra. Power emerges largely in an angle approx.1/γ, as required by Compton mechanisms. As n/sub b//n/sub p/ falls, ω/sub p/-2ω/sub p/ structure and harmonic power ratios consistent with soliton collapse theories appear. With further reduction of n/sub b//n/sub p/ only the ω/sub p/ line persists

  10. Weakly nonlinear electron plasma waves in collisional plasmas

    DEFF Research Database (Denmark)

    Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.

    1986-01-01

    The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...

  11. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Tao-Chung; Lai, Shih-Ping [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Zhang, Qizhou; Girart, Josep M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Liu, Hauyu B., E-mail: chingtaochung@gmail.com [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-04-01

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.

  12. Weak electric and magnetic form factors for semileptonic baryon decays in an independent-quark model

    International Nuclear Information System (INIS)

    Barik, N.; Dash, B.K.; Das, M.

    1985-01-01

    Weak electric and magnetic form factors for semileptonic baryon decays are calculated in a relativistic quark model based on the Dirac equation with the independent-quark confining potential of the form (1+γ 0 )V(r). The values obtained for (g 2 /g 1 ), for various decay modes in a model with V(r) = a'r 2 , are roughly of the same order as those predicted in the MIT bag model. However in a similar model with V(r) = (a/sup nu+1/r/sup ν/+V 0 ), the (g 2 /g 1 ) values agree with the nonrelativistic results of Donoghue and Holstein. Incorporating phenomenologically the effect of nonzero g 2 in the ratio (g 1 /f 1 ), we have estimated the values for (f 2 /f 1 ) for various semileptonic transitions. It is observed that SU(3)-symmetry breaking does not generate significant departures in (f 2 /f 1 ) values from the corresponding Cabibbo values

  13. Superhydrophobic/superoleophilic magnetic elastomers by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Milionis, Athanasios, E-mail: am2vy@virginia.edu [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Fragouli, Despina; Brandi, Fernando; Liakos, Ioannis; Barroso, Suset [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy); Athanassiou, Athanassia, E-mail: athanassia.athanassiou@iit.it [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova (Italy)

    2015-10-01

    Highlights: • We report the development of magnetic nanocomposite sheets. • Laser irradiation of the nanocomposites induces chemical and structural changes to the surface. • The laser-patterned surfaces exhibit superhydrophobicity and superoleophilicity. • The particle contribution in altering the surface and bulk properties of the material is studied. - Abstract: We report the development of magnetic nanocomposite sheets with superhydrophobic and supeoleophilic surfaces generated by laser ablation. Polydimethylsiloxane elastomer free-standing films, loaded homogeneously with 2% wt. carbon coated iron nanoparticles, were ablated by UV (248 nm), nanosecond laser pulses. The laser irradiation induces chemical and structural changes (both in micro- and nano-scale) to the surfaces of the nanocomposites rendering them superhydrophobic. The use of nanoparticles increases the UV light absorption efficiency of the nanocomposite samples, and thus facilitates the ablation process, since the number of pulses and the laser fluence required are greatly reduced compared to the bare polymer. Additionally the magnetic nanoparticles enhance significantly the superhydrophobic and oleophilic properties of the PDMS sheets, and provide to PDMS magnetic properties making possible its actuation by a weak external magnetic field. These nanocomposite elastomers can be considered for applications requiring magnetic MEMS for the controlled separation of liquids.

  14. Studies of the magnetic behavior of the spinel system GaxCoCrFe1-xO4 by neutron diffraction

    International Nuclear Information System (INIS)

    Yunus, S.M.; Azad, A.K.; Eriksson, S.-G.; Eriksen, J.; Rundloef, H.; Mathieu, R.

    2003-01-01

    Temperature dependent neutron diffraction studies have been done on the spinel series Ga x CoCrFe 1-x O 4 with x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Magnetic properties of the system have been determined from the analysis of neutron data recorded at a number of temperatures. The sublattice and net magnetizations and the paramagnetic transition temperatures of all the members of the series have been found out. A decreasing ferrimagnetic order with increasing x is apparent from the progressive loss of magnetization and transition temperature. Evidence of magnetic spin clusters has been revealed from the reduced sublattice moments and diffuse signal appearing below the (1 1 1) Bragg peak at low temperature neutron patterns. A weak magnetic ordering has also been revealed from the magnetization measurements on the sample x=1.0. The system has been found to exhibit a complex magnetic phenomenon in which short-range magnetic spin clusters are superimposed on the ferrimagnetic long-range order together with a little extension of the short-range ordering of spin clusters at very low temperatures giving rise to a weak (2 0 0) superlattice reflection

  15. Nonlinear Dynamics of a Magnetically Driven Duffing-Type Spring-Magnet Oscillator in the Static Magnetic Field of a Coil

    Science.gov (United States)

    Donoso, Guillermo; Ladera, Celso L.

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring-magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet-spring system. The second coil, located below the…

  16. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth.

    Science.gov (United States)

    Brown, Alastair; Thatje, Sven

    2014-05-01

    Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal

  17. Magnetic state dependent transient lateral photovoltaic effect in patterned ferromagnetic metal-oxide-semiconductor films

    Directory of Open Access Journals (Sweden)

    Isidoro Martinez

    2015-11-01

    Full Text Available We investigate the influence of an external magnetic field on the magnitude and dephasing of the transient lateral photovoltaic effect (T-LPE in lithographically patterned Co lines of widths of a few microns grown over naturally passivated p-type Si(100. The T-LPE peak-to-peak magnitude and dephasing, measured by lock-in or through the characteristic time of laser OFF exponential relaxation, exhibit a notable influence of the magnetization direction of the ferromagnetic overlayer. We show experimentally and by numerical simulations that the T-LPE magnitude is determined by the Co anisotropic magnetoresistance. On the other hand, the magnetic field dependence of the dephasing could be described by the influence of the Lorentz force acting perpendiculary to both the Co magnetization and the photocarrier drift directions. Our findings could stimulate the development of fast position sensitive detectors with magnetically tuned magnitude and phase responses.

  18. Magnetic Nano- and Micro- Particles in Living Cells: Kinetics and Fluctuations

    Science.gov (United States)

    Pease, C.; Chiang, N.; Pierce, C.; Muthusamy, N.; Sooryakumar, R.

    2015-03-01

    Functional nano and micro materials have recently been used not only as diagnostic tools for extracellular studies but also as intracellular drug delivery vehicles and as internal probes of the cell. To realize proper cellular applications, it is important not only to achieve efficient delivery of these materials to targeted cells, but also to control their movement and activity within the confines of the cell. In this presentation, superparamagnetic nano and micro particles are utilized as probes, with their responses to weak external magnetic fields enabling them to be maneuvered within a cell. In order to generate the required local magnetic fields needed for manipulation, the fields emanating from microscopic domain walls stabilized on patterned surface profiles are used in conjunction with weak external magnetic fields to create mobile traps that can localize and transport the internalized particle. Preliminary findings on creating the mobile traps suitable for applications to probe the interior of cells, and the responses, both Brownian fluctuations and directed motion, of particles ranging in size from 200 nm to 1 micron within HS-5 cells will be presented. Future applications to probe cellular behavior within the framework of emerging biomaterials will be discussed.

  19. Modeling the Developmental Patterns of Auditory Evoked Magnetic Fields in Children

    OpenAIRE

    Kotecha, Rupesh; Pardos, Maria; Wang, Yingying; Wu, Ting; Horn, Paul; Brown, David; Rose, Douglas; deGrauw, Ton; Xiang, Jing

    2009-01-01

    BACKGROUND: As magnetoencephalography (MEG) is of increasing utility in the assessment of deficits and development delays in brain disorders in pediatrics, it becomes imperative to fully understand the functional development of the brain in children. METHODOLOGY: The present study was designed to characterize the developmental patterns of auditory evoked magnetic responses with respect to age and gender. Sixty children and twenty adults were studied with a 275-channel MEG system. CONCLUSIONS:...

  20. Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots

    Science.gov (United States)

    Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus

    2005-01-01

    We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.

  1. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    Science.gov (United States)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  2. Tuning Bacterial Hydrodynamics with Magnetic Fields: A Path to Bacterial Robotics

    Science.gov (United States)

    Pierce, Christopher; Mumper, Eric; Brangham, Jack; Wijesinghe, Hiran; Lower, Stephen; Lower, Brian; Yang, Fengyuan; Sooryakumar, Ratnasingham

    Magnetotactic Bacteria (MTB) are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nano-particles. In this study, the innate magnetism of these flagellated swimmers is exploited to explore their hydrodynamics near confining surfaces, using the magnetic field as a tuning parameter. With weak (Gauss), uniform, external, magnetic ?elds and the field gradients arising from micro-magnetic surface patterns, the relative strength of hydrodynamic, magnetic and ?agellar force components is tuned through magnetic control of the bacteria's orientation and position. In addition to direct measurement of several hydrodynamic quantities related to the motility of individual cells, their tunable dynamics reveal a number of novel, highly controllable swimming behaviors with potential value in micro-robotics applications. Specifically, the experiments permit the MTB cells to be directed along parallel or divergent trajectories, suppress their flagellar forces through magnetic means, and induce transitions between planar, circulating trajectories and drifting, vertically oriented ``top-like'' motion. The implications of the work for fundamental hydrodynamics research as well as bacterially driven robotics applications will be discussed.

  3. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  4. Flexible method for fabricating protein patterns on superhydrophobic platforms controlled by magnetic field.

    Science.gov (United States)

    Wang, Jian; Li, Hao; Zou, Haoyang; Wang, Chenmiao; Zhang, Hao; Mano, João F; Song, Wenlong

    2017-02-28

    Inspired by the rolling of water droplets on lotus leaves, we developed a novel, magnetic field-controlled patterning method for water-soluble proteins and other functional materials on superhydrophobic platforms. This simple method can be used to fabricate biochips and open micro-fluidic devices in a simple way.

  5. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures.

    Science.gov (United States)

    Dias, Eduardo O; Lira, Sérgio A; Miranda, José A

    2015-08-01

    Despite their practical and academic relevance, studies of interfacial pattern formation in confined magnetorheological (MR) fluids have been largely overlooked in the literature. In this work, we present a contribution to this soft matter research topic and investigate the emergence of interfacial instabilities when an inviscid, initially circular bubble of a Newtonian fluid is surrounded by a MR fluid in a Hele-Shaw cell apparatus. An externally applied, in-plane azimuthal magnetic field produced by a current-carrying wire induces interfacial disturbances at the two-fluid interface, and pattern-forming structures arise. Linear stability analysis, weakly nonlinear theory, and a vortex sheet approach are used to access early linear and intermediate nonlinear time regimes, as well as to determine stationary interfacial shapes at fully nonlinear stages.

  6. Parametric decay instabilities in an infinite, homogeneous, weakly anisotropic plasma

    International Nuclear Information System (INIS)

    Grandal, B.

    1976-01-01

    The parametric decay of a transverse electromagnetic (em) wave with a frequency close to, but larger than, the electron plasma frequency is investigated for an infinite, homogeneous, weakly magnetoactive plasma. A two-component fluid description is employed, and the damping of the linear plasma waves is introduced phenomenologically to include both Landau and collisional damping. The transverse em wave will decay into a longitudinal electron plasma wave and an em ion-acoustic wave. Only the latter wave is assumed to be affected by the weak, constant magnetic field. The threshold expression for growth of electron plasma waves is equal to that of the isotropic plasma when the em ion-acoustic wave's direction of propagation lies inside a wide double cone, whose axis is along the constant magnetic field. When the em ion-acoustic wave propagates outside this double cone, an additional factor, which depends directly upon the magnetic field, appears in the threshold expression. This factor can, under certain conditions, reduce the threshold for growth of electron plasma waves below that of the isotropic plasma

  7. Survival and weak chaos.

    Science.gov (United States)

    Nee, Sean

    2018-05-01

    Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as 'infant mortality'. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality- sensu engineering-without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy.

  8. A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879. Constraining the weak-wind problem of massive stars

    Science.gov (United States)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2017-10-01

    Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence

  9. Weak universality in inhomogeneous Ising quantum chains

    International Nuclear Information System (INIS)

    Karevski, Dragi

    2006-01-01

    The Ising quantum chain with arbitrary coupling distribution {λ i } leading to an anisotropic scaling is considered. The smallest gap of the chain is connected to the surface magnetization by the relation Λ 1 = m s ({λ i })m s ({λ -1 i }). For some aperiodic distribution {λ i }, a weak universality of the critical behaviour is found. (letter to the editor)

  10. Head-disk Interface Study for Heat Assisted Magnetic Recording (HAMR) and Plasmonic Nanolithography for Patterned Media

    Science.gov (United States)

    Xiong, Shaomin

    The magnetic storage areal density keeps increasing every year, and magnetic recording-based hard disk drives provide a very cheap and effective solution to the ever increasing demand for data storage. Heat assisted magnetic recording (HAMR) and bit patterned media have been proposed to increase the magnetic storage density beyond 1 Tb/in2. In HAMR systems, high magnetic anisotropy materials are recommended to break the superparamagnetic limit for further scaling down the size of magnetic bits. However, the current magnetic transducers are not able to generate strong enough field to switch the magnetic orientations of the high magnetic anisotropy material so the data writing is not able to be achieved. So thermal heating has to be applied to reduce the coercivity for the magnetic writing. To provide the heating, a laser is focused using a near field transducer (NFT) to locally heat a ~(25 nm)2 spot on the magnetic disk to the Curie temperature, which is ~ 400 C-600°C, to assist in the data writing process. But this high temperature working condition is a great challenge for the traditional head-disk interface (HDI). The disk lubricant can be depleted by evaporation or decomposition. The protective carbon overcoat can be graphitized or oxidized. The surface quality, such as its roughness, can be changed as well. The NFT structure is also vulnerable to degradation under the large number of thermal load cycles. The changes of the HDI under the thermal conditions could significantly reduce the robustness and reliability of the HAMR products. In bit patterned media systems, instead of using the continuous magnetic granular material, physically isolated magnetic islands are used to store data. The size of the magnetic islands should be about or less than 25 nm in order to achieve the storage areal density beyond 1 Tb/in2. However, the manufacture of the patterned media disks is a great challenge for the current optical lithography technology. Alternative lithography

  11. Magnetic Reconnection in the Solar Chromosphere

    Science.gov (United States)

    Lukin, Vyacheslav S.; Ni, Lei; Murphy, Nicholas Arnold

    2017-08-01

    We report on the most recent efforts to accurately and self-consistently model magnetic reconnection processes in the context of the solar chromosphere. The solar chromosphere is a notoriously complex and highly dynamic boundary layer of the solar atmosphere where local variations in the plasma parameters can be of the order of the mean values. At the same time, the interdependence of the physical processes such as magnetic field evolution, local and global energy transfer between internal and electromagnetic plasma energy, radiation transport, plasma reactivity, and dissipation mechanisms make it a particularly difficult system to self-consistently model and understand. Several recent studies have focused on the micro-physics of multi-fluid magnetic reconnection at magnetic nulls in the weakly ionized plasma environment of the lower chromosphere[1-3]. Here, we extend the previous work by considering a range of spatial scales and magnetic field strengths in a configuration with component magnetic reconnection, i.e., for magnetic reconnection with a guide field. We show that in all cases the non-equilibrium reactivity of the plasma and the dynamic interaction among the plasma processes play important roles in determining the structure of the reconnection region. We also speculate as to the possible observables of chromospheric magnetic reconnection and the likely plasma conditions required for generation of Ellerman and IRIS bombs.[1] Leake, Lukin, Linton, and Meier, “Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma,” ApJ 760 (2012).[2] Leake, Lukin, and Linton, “Magnetic reconnection in a weakly ionized plasma,” PoP 20 (2013).[3] Murphy and Lukin, “Asymmetric magnetic reconnection in weakly ionized chromospheric plasmas,” ApJ 805 (2015).[*Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

  12. Novel method for detecting weak magnetic fields at low frequencies

    Science.gov (United States)

    González-Martínez, S.; Castillo-Torres, J.; Mendoza-Santos, J. C.; Zamorano-Ulloa, R.

    2005-06-01

    A low-level-intensity magnetic field detection system has been designed and developed based on the amplification-selection process of signals. This configuration is also very sensitive to magnetic field changes produced by harmonic-like electrical currents transported in finite-length wires. Experimental and theoretical results of magnetic fields detection as low as 10-9T at 120Hz are also presented with an accuracy of around 13%. The assembled equipment is designed to measure an electromotive force induced in a free-magnetic-core coil in order to recover signals which are previously selected, despite the fact that their intensities are much lower than the environment electromagnetic radiation. The prototype has a signal-to-noise ratio of 60dB. This system also presents the advantage for using it as a portable unit of measurement. The concept and prototype may be applied, for example, as a nondestructive method to analyze any corrosion formation in metallic oil pipelines which are subjected to cathodic protection.

  13. Acute Metabolic Alkalosis Enhances Response of C3H Mouse Mammary Tumors to the Weak Base Mitoxantrone

    Directory of Open Access Journals (Sweden)

    Natarajan Raghunand

    2001-01-01

    Full Text Available Uptake of weak acid and weak base chemotherapeutic drugs by tumors is greatly influenced by the tumor extracellular/interstitial pH (pHe, the intracellular pH (pHi maintained by the tumor cells, and by the ionization properties of the drug itself. The acid-outside plasmalemmal pH gradient in tumors acts to exclude weak base drugs like the anthracyclines, anthraquinones, and vinca alkaloids from the cells, leading to a substantial degree of “physiological drug resistance” in tumors. We have induced acute metabolic alkalosis in C3H tumor-bearing C3H/hen mice, by gavage and by intraperitoneal (i.p. administration of NaHCO3. 31P magnetic resonance spectroscopic measurements of 3-aminopropylphosphonate show increases of up to 0.6 pH units in tumor pHe, and 0.2 to 0.3 pH units in hind leg tissue pHe, within 2 hours of i.p. administration of NaHCO3. Theoretical calculations of mitoxantrone uptake into tumor and normal (hind leg tissue at the measured pH, and pHI values indicate that a gain in therapeutic index of up to 3.3-fold is possible with NaHCO3 pretreatment. Treatment of C3H tumor-bearing mice with 12 mg/kg mitoxantrone resulted in a tumor growth delay of 9 days, whereas combined NaHCO3mitoxantrone therapy resulted in an enhancement of the TGD to 16 days.

  14. Josephson Junction as a Magnetic Switch

    Science.gov (United States)

    Cai, Liufei; Chudnovsky, Eugene

    2011-03-01

    We study electromagnetic interaction of a nanomagnet with a weak superconducting link. Equations that govern coupled dynamics of the two systems are derived and investigated numerically. We show that despite very weak magnetic field generated by the weak link, a time-dependent bias voltage applied to the link can initiate a non-linear dynamics of the nanomagnet that leads to the reversal of its magnetic moment. We also consider quantum problem in which a nanomagnet interacting with a weak link is treated as a two-state spin system due to quantum tunneling between spin-up and spin-down states. L. Cai and E. M. Chudnovsky, Phys. Rev B 82, 104429 (2010).

  15. Nano-patterning of perpendicular magnetic recording media by low-energy implantation of chemically reactive ions

    International Nuclear Information System (INIS)

    Martin-Gonzalez, M.S.; Briones, F.; Garcia-Martin, J.M.; Montserrat, J.; Vila, L.; Faini, G.; Testa, A.M.; Fiorani, D.; Rohrmann, H.

    2010-01-01

    Magnetic nano-patterning of perpendicular hard disk media with perpendicular anisotropy, but preserving disk surface planarity, is presented here. Reactive ion implantation is used to locally modify the chemical composition (hence the magnetization and magnetic anisotropy) of the Co/Pd multilayer in irradiated areas. The procedure involves low energy, chemically reactive ion irradiation through a resist mask. Among N, P and As ions, P are shown to be most adequate to obtain optimum bit density and topography flatness for industrial Co/Pd multilayer media. The effect of this ion contributes to isolate perpendicular bits by destroying both anisotropy and magnetic exchange in the irradiated areas. Low ion fluences are effective due to the stabilization of atomic displacement levels by the chemical effect of covalent impurities.

  16. InGaAs Quantum Dots on Cross-Hatch Patterns as a Host for Diluted Magnetic Semiconductor Medium

    Directory of Open Access Journals (Sweden)

    Teeravat Limwongse

    2013-01-01

    Full Text Available Storage density on magnetic medium is increasing at an exponential rate. The magnetic region that stores one bit of information is correspondingly decreasing in size and will ultimately reach quantum dimensions. Magnetic quantum dots (QDs can be grown using semiconductor as a host and magnetic constituents added to give them magnetic properties. Our results show how molecular beam epitaxy and, particularly, lattice-mismatched heteroepitaxy can be used to form laterally aligned, high-density semiconducting host in a single growth run without any use of lithography or etching. Representative results of how semiconductor QD hosts arrange themselves on various stripes and cross-hatch patterns are reported.

  17. Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.

    Science.gov (United States)

    Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo

    2016-12-01

    We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La 0.7 Sr 0.3 MnO 3 (LSMO) and Nd 0.5 Sr 0.5 MnO 3 , in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Radio-frequency surface resistance of tunmgsten in weak magnetic fields

    International Nuclear Information System (INIS)

    Bojko, V.V.; Toniya, V.A.

    1988-01-01

    The surface impedance of single crystal tungsten specimens under anomalous skin effect in a magnetic field H is investigated experimentally. It is found that in magnetic fields ranging from 0 to 1 kOe the surface resistance R of tungsten varies in a nonmonotonous manner and experiences several extrema. The position of the latter with respect to magnetic field strength depends on the conduction electron mean free path l, on the roughness of the specimen surface and frequency of the irradiating electromagnetic wave. It is found that such behavior of R(H) is due to variation of the nature of the conduction electron scattering at the metal-external medium interface with increasing H. The geometrical dimensions of the surface roughnesses are determined at which diffuse scattering of the current occurs. The results are compared with the theoretical calculations, and a number of contradictions between the theory and experiments are noted. The effect of the magnetic field of the electromagnetic wave H ∼ on the conductivity of tungsten in the absence of H is studied

  19. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  20. Reconstructing weak values without weak measurements

    International Nuclear Information System (INIS)

    Johansen, Lars M.

    2007-01-01

    I propose a scheme for reconstructing the weak value of an observable without the need for weak measurements. The post-selection in weak measurements is replaced by an initial projector measurement. The observable can be measured using any form of interaction, including projective measurements. The reconstruction is effected by measuring the change in the expectation value of the observable due to the projector measurement. The weak value may take nonclassical values if the projector measurement disturbs the expectation value of the observable

  1. Magnetic Actuation of Biological Systems

    Science.gov (United States)

    Lauback, Stephanie D.

    Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the

  2. Patterning nanostructures to study magnetization processes

    International Nuclear Information System (INIS)

    Atkinson, D

    2005-01-01

    Lithography techniques such as electron-beam lithography and focused-ion-beam milling are widely used to fabricate structures with dimensions well below 1 μm. These techniques have been used to produce planar magnetic structures with sub-micrometer dimensions and well controlled geometry. This has allowed the study of basic magnetic behaviour and the development of structures with potential for applications in magnetic recording and magnetic logic devices. The techniques of electron beam lithography and focused-ion-beam milling for the fabrication of magnetic nanostructures are outlined here. These techniques have been used to fabricate ribbon-like planar nanowires to study the behaviour of the individual magnetic domain walls which mediate the reversal process in such elongated structures. These methods allow the production of structures in which the location of domain wall formation and position can be controlled, allowing separation and study of the domain wall nucleation and propagation processes. Domain wall injection and domain wall propagation behaviour are investigated and shown to be stochastic processes

  3. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. [Ege Univ. Hospital, Bornova, Izmir (Turkey). Dept. of Radiology

    2004-08-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm{sup 2} images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm{sup 2} images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated

  4. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    International Nuclear Information System (INIS)

    Sener, R.N.

    2004-01-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm 2 images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm 2 images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated diffusion pattern

  5. Weak positive cloud-to-ground flashes in Northeastern Colorado

    Science.gov (United States)

    Lopez, Raul E.; Maier, Michael W.; Garcia-Miguel, Juan A.; Holle, Ronald L.

    1991-01-01

    The frequency distributions of the peak magnetic field associated with the first detected return stroke of positive and negative cloud-to-ground (CG) flashes were studied using lightning data from northeastern Colorado. These data were obtained during 1985 with a medium-to-high gain network of three direction finders (DF's). The median signal strength of positive flashes was almost two times that of the negatives for flashes within 300 km of the DF's, which have an inherent detection-threshold bias that tends to discriminate against weak signals. This bias increases with range, and affects the detection of positive and negative flashes in different ways, because of the differing character of their distributions. Positive flashes appear to have a large percentage of signals clustered around very weak values that are lost to the medium-to-high gain Colorado Detection System very quickly with increasing range. The resulting median for positive signals could thus appear to be much larger than the median for negative signals, which are more clustered around intermediate values. When only flashes very close to the DF's are considered, however, the two distributions have almost identical medians. The large percentage of weak positive signals detected close to the DF's has not been explored previously. They have been suggested to come from intracloud discharges and thus are improperly classified as CG flashes. Evidence in hand, points to their being real positive, albeit weak CG flashes. Whether or not they are real positive ground flashes, it is important to be aware of their presence in data from magnetic DF networks.

  6. Temporal pattern of feeding activity in the firebug Pyrrhocoris apterus and its relation to sex, wing dimorphism and physiological state of adults

    Czech Academy of Sciences Publication Activity Database

    Socha, Radomír; Zemek, Rostislav

    2007-01-01

    Roč. 32, č. 1 (2007), s. 16-25 ISSN 0307-6962 R&D Projects: GA ČR GA206/03/0016 Institutional research plan: CEZ:AV0Z50070508 Keywords : feeding pattern * females * males Subject RIV: ED - Physiology Impact factor: 1.410, year: 2007

  7. Magnetization Reversal through Soliton in a Site-Dependent Weak Ferromagnet

    International Nuclear Information System (INIS)

    Kavitha, L.; Sathishkumar, P.; Saravanan, M.; Gopi, D.

    2010-06-01

    Switching the magnetization of a magnetic bit through flipping of soliton offers the possibility of developing a new innovative approach for data storage technologies. The spin dynamics of a site-dependent ferromagnet with antisymmetric Dzyaloshinskii-Moriya interaction is governed by a generalized inhomogeneous higher order nonlinear Schroedinger equation. We demonstrate the magnetization reversal through flipping of soliton in the ferromagnetic medium by solving the two coupled evolution equations for the velocity and amplitude of the soliton using the fourth order Runge-Kutta method numerically. We propose a new approach to induce the flipping behaviour of soliton in the presence of inhomogeneity by tuning the parameter associated with Dzyaloshinskii-Moriya interaction which causes the soliton to move with constant velocity and amplitude along the spin lattice. (author)

  8. Magnetic anisotropies in epitaxial Fe3O4/GaAs(100) patterned structures

    International Nuclear Information System (INIS)

    Zhang, W.; Zhang, D.; Yuan, S. J.; Huang, Z. C.; Zhai, Y.; Wong, P. K. J.; Wu, J.; Xu, Y. B.

    2014-01-01

    Previous studies on epitaxial Fe 3 O 4 rings in the context of spin-transfer torque effect have revealed complicated and undesirable domain structures, attributed to the intrinsic fourfold magnetocrystalline anisotropy in the ferrite. In this Letter, we report a viable solution to this problem, utilizing a 6-nm-thick epitaxial Fe 3 O 4 thin film on GaAs(100), where the fourfold magnetocrystalline anisotropy is negligible. We demonstrate that in the Fe 3 O 4 planar wires patterned from our thin film, such a unique magnetic anisotropy system has been preserved, and relatively simple magnetic domain configurations compared to those previous reports can be obtained

  9. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    Science.gov (United States)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  10. Magnetic matrices used in high gradient magnetic separation (HGMS: A review

    Directory of Open Access Journals (Sweden)

    Wei Ge

    Full Text Available HGMS is effective in separating or filtering fine and weakly magnetic particles and widely applied in mineral processing, water treatment, cell and protein purification. The magnetic matrix is a crucial device used in magnetic separator to generate high magnetic field gradient and provide surface sites for capturing magnetic particles. The material, geometry, size and arrangement of the matrix elements can significantly affect the gradient and distribution of the magnetic field, and the separating or filtrating performance. In this paper, the researches and developments of magnetic matrices used in HGMS are reviewed. Keywords: Magnetic matrix, HGMS, Review

  11. Improved methods for the measurement and analysis of stellar magnetic fields

    Science.gov (United States)

    Saar, Steven H.

    1988-01-01

    The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.

  12. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Song, P.; Vasyliūnas, V. M., E-mail: paul_song@uml.edu [Space Science Laboratory and Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854 (United States)

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  13. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    International Nuclear Information System (INIS)

    Song, P.; Vasyliūnas, V. M.

    2014-01-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models

  14. Extended abstract: ergodic magnetic limiter experiments on TEXT with a 7/3 resonance

    International Nuclear Information System (INIS)

    deGrassie, J.S.; Ohyabu, N.; Brooks, N.H.

    1984-05-01

    The ergodic magnetic limiter coils on TEXT have been reconfigured to produce the primary helical perturbation resonance at m = 7 / n = 3. The experiments continue to demonstrate that the weak resonant perturbations modify the edge conditions in keeping with model predictions. We observe a reduction in the intrinsic impurity levels accompanying the helical current pulse, presumably the result of a reduction in the electron temperature in the edge. Heat follows the perturbed field lines to the limiter, generating heat load patterns which reflect the geometry of a magnetic island - limiter intersection. A strong spatial modulation of the electron density in the scrape-off-layer also reflects the helical mode structure

  15. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    International Nuclear Information System (INIS)

    Liao, Zhenyu; Zhang, Ying; Su, Lin; Chang, Jin; Wang, Hanjie

    2017-01-01

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe_3O_4 nanoparticles (Fe_3O_4 NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  16. Particle Dynamics around Weakly Magnetized Reissner-Nordström Black Hole

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Majeed, Bushra; Hussain, Saqib

    2015-01-01

    Considering the geometry of Reissner-Nordström (RN) black hole immersed in magnetic field, we have studied the dynamics of neutral and charged particles. A collision of particles in the inner stable circular orbit is considered and the conditions for the escape of colliding particles from the vicinity of black hole are given. The trajectories of the escaping particle are discussed. Also, the velocity required for this escape is calculated. It is observed that there is more than one stable region if magnetic field is present in the accretion disk of black hole, so the stability of ISCO increases in the presence of magnetic field. Effect of magnetic field on the angular motion of neutral and charged particles is observed graphically.

  17. The switching characteristics of free layer of patterned magnetic tunnel junction device

    International Nuclear Information System (INIS)

    Chen, C.C.; Wang, Y.R.; Kuo, C.Y.; Wu, J.C.; Horng, Lance; Wu, Teho; Yoshimura, S.; Tsunoda, M.; Takahashi, M.

    2006-01-01

    The free layer switching properties of microstructured magnetic tunnel junctions have been investigated. The M-H loop of nonpatterned film shows ferromagnetic coupling with 10 Oe shifting associated with the interlayer roughness coupling. The MR curve of the patterned element shows stepped minor loop, less loop shifting, and larger coercive field due to shape anisotropy and stray field effects. MFM images of the element show nonuniform domain structures during reversal process

  18. Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy.

    Science.gov (United States)

    Passeri, D; Dong, C; Angeloni, L; Pantanella, F; Natalizi, T; Berlutti, F; Marianecci, C; Ciccarello, F; Rossi, M

    2014-01-01

    The need for accurate measurement of the thickness of soft thin films is continuously encouraging the development of techniques suitable for this purpose. We propose a method through which the thickness of the film is deduced from the quantitative measurement of the contrast in the phase images of the sample surface acquired by magnetic force microscopy, provided that the film is deposited on a periodically patterned magnetic substrate. The technique is demonstrated by means of magnetic substrates obtained from standard floppy disks. Colonies of Staphylococcus aureus adherent to such substrates were used to obtain soft layers with limited lateral (a few microns) and vertical (hundreds of nanometers) size. The technique is described and its specific merits, limitations and potentialities in terms of accuracy and measurable thickness range are discussed. These parameters depend on the characteristics of the sensing tip/cantilever as well as of the substrates, the latter in terms of spatial period and homogeneity of the magnetic domains. In particular, with the substrates used in this work we evaluated an uncertainty of about 10%, a limit of detection of 50-100 nm and an upper detection limit (maximum measurable thickness) of 1 μm, all obtained with standard lift height values (50-100 nm). Nonetheless, these parameters can be easily optimized by selecting/realizing substrates with suitable spacing and homogeneity of the magnetic domains. For example, the upper detection limit can be increased up to 25-50 μm while the limit of detection can be reduced to a few tens of nanometers or a few nanometers. © 2013 Elsevier B.V. All rights reserved.

  19. Magnetic properties of hematite nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Hansen, Mikkel Fougt; Bender Koch, Christian

    2000-01-01

    The magnetic properties of hematite (alpha-Fe2O3) particles with sizes of about 16 nm have been studied by use of Mossbauer spectroscopy, magnetization measurements, and neutron diffraction. The nanoparticles are weakly ferromagnetic at temperatures at least down to 5 K with a spontaneous...... magnetization that is only slightly higher than that of weakly ferromagnetic bulk hematite. At T greater than or similar to 100 K the Mossbauer spectra contain a doublet, which is asymmetric due to magnetic relaxation in the presence of an electric field gradient in accordance with the Blume-Tjon model......, Simultaneous fitting of series of Mossbauer spectra obtained at temperatures from 5 K to well above the superparamagnetic blocking temperature allowed the estimation of the pre-exponential factor in Neel's expression for the superparamagnetic relaxation time, tau(0) = (6 +/- 4) X 10(-11) s and the magnetic...

  20. On the kinetic theory of QPEMIC instabilities in weakly ionized plasmas placed in non-parallel fields

    International Nuclear Information System (INIS)

    Milic, B.S.; Gajic, D.Z.

    1994-01-01

    Quasi-perpendicular electromagnetic ion-cyclotron (QPEMIC) modes and instabilities are studied, on the ground of linear theory of perturbations and kinetic equations with BGK collision integrals, in weakly ionized, low-β and moderately non-isothermal plasmas placed in non-parallel electric and magnetic fields. The magnetization is assumed to be sufficiently high to cut off the perpendicular steady-state current. Special attention is given to evaluation of magnitudes of the threshold drifts required for the onset of instabilities. It is found that these drifts are smaller than those for the corresponding quasi-perpendicular electrostatic ion-cyclotron (QPESIC) instabilities studied previously for the same type of plasmas. Both QPEMIC and QPESIC threshold drifts exhibit the same behavioural pattern if the order of harmonic, magnetization, non-isothermality or the angle between the fields are varied. An increase of the angle between the fields lowers the threshold drifts, which means that the presence of u perpendicular to (or E perpendicular to ) facilitates the excitation of both QPEMIC and QPESIC instabilities. The QPEMIC threshold drifts are found to depend on the overall gas pressure, and to decrease as the pressure is lowered, which is a feature not found in the QPESIC case. The discrepancies between the QPEMIC and QPESIC threshold drifts increase if the pressure decreases, or if magnetization, degree of ionization or ion charge number increase. (orig.)

  1. Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator

    Science.gov (United States)

    Tao, Kai; Wu, Jin; Kottapalli, Ajay Giri Prakash; Chen, Di; Yang, Zhuoqing; Ding, Guifu; Lye, Sun Woh; Miao, Jianmin

    2017-12-01

    This paper reports a fully-integrated, batch-fabricated electromagnetic actuator which features micro-patterned NdFeB magnets. The entire actuator is fabricated through MEMS-compatible laminated surface micromachining technology, eliminating the requirement for further component assembly processes. The fabrication strategy allowed the entire volume of the actuator to be reduced to a small size of 2.5 × 2.5 × 2 mm3, which is one of the smallest NdFeB-based electromagnetic actuators demonstrated to date. The magnetic properties of NdFeB thin films are further investigated and optimized using different types of lithographically-defined micromolds. By altering the direction of the input current, actuating displacements of approximately ±10 μm are achieved during both the attraction and the repulsion operations. This work demonstrates the viability and compatibility of using polymer-bonded magnets for magnetic MEMS applications.

  2. Catechol-O-methyltransferase Val(158)Met association with parahippocampal physiology during memory encoding in schizophrenia.

    Science.gov (United States)

    Di Giorgio, A; Caforio, G; Blasi, G; Taurisano, P; Fazio, L; Romano, R; Ursini, G; Gelao, B; Bianco, L Lo; Papazacharias, A; Sinibaldi, L; Popolizio, T; Bellomo, A; Bertolino, A

    2011-08-01

    Catechol-O-methyltransferase (COMT) Val158Met has been associated with activity of the mesial temporal lobe during episodic memory and it may weakly increase risk for schizophrenia. However, how this variant affects parahippocampal and hippocampal physiology when dopamine transmission is perturbed is unclear. The aim of the present study was to compare the effects of the COMT Val158Met genotype on parahippocampal and hippocampal physiology during encoding of recognition memory in patients with schizophrenia and in healthy subjects. Using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we studied 28 patients with schizophrenia and 33 healthy subjects matched for a series of sociodemographic and genetic variables while they performed a recognition memory task. We found that healthy subjects had greater parahippocampal and hippocampal activity during memory encoding compared to patients with schizophrenia. We also found different activity of the parahippocampal region between healthy subjects and patients with schizophrenia as a function of the COMT genotype, in that the predicted COMT Met allele dose effect had an opposite direction in controls and patients. Our results demonstrate a COMT Val158Met genotype by diagnosis interaction in parahippocampal activity during memory encoding and may suggest that modulation of dopamine signaling interacts with other disease-related processes in determining the phenotype of parahippocampal physiology in schizophrenia. © Cambridge University Press 2010

  3. Pattern formation and filamentation in low temperature, magnetized plasmas - a numerical approach

    Science.gov (United States)

    Menati, Mohamad; Konopka, Uwe; Thomas, Edward

    2017-10-01

    In low-temperature discharges under the influence of high magnetic field, pattern and filament formation in the plasma has been reported by different groups. The phenomena present themselves as bright plasma columns (filaments) oriented parallel to the magnetic field lines at high magnetic field regime. The plasma structure can filament into different shapes from single columns to spiral and bright rings when viewed from the top. In spite of the extensive experimental observations, the observed effects lack a detailed theoretical and numerical description. In an attempt to numerically explain the plasma filamentation, we present a simplified model for the plasma discharge and power deposition into the plasma. Based on the model, 2-D and 3-D codes are being developed that solve Poisson's equation along with the fluid equations to obtain a self-consistent description of the plasma. The model and preliminary results applied to the specific plasma conditions will be presented. This work was supported by the US Dept. of Energy and NSF, DE-SC0016330, PHY-1613087.

  4. Weak value amplification via second-order correlated technique

    International Nuclear Information System (INIS)

    Cui Ting; Huang Jing-Zheng; Zeng Gui-Hua; Liu Xiang

    2016-01-01

    We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed. (paper)

  5. Generalized fluid equations for parallel transport in collisional to weakly collisional plasmas

    International Nuclear Information System (INIS)

    Zawaideh, E.S.

    1985-01-01

    A new set of two-fluid equations which are valid from collisional to weakly collisional limits are derived. Starting from gyrokinetic equations in flux coordinates with no zeroth order drifts, a set of moment equations describing plasma transport along the field lines of a space and time dependent magnetic field are derived. No restriction on the anisotropy of the ion distribution function is imposed. In the highly collisional limit, these equations reduce to those of Braginskii while in the weakly collisional limit, they are similar to the double adiabatic or Chew, Goldberger, and Low (CGL) equations. The new transport equations are used to study the effects of collisionality, magnetic field structure, and plasma anisotropy on plasma parallel transport. Numerical examples comparing these equations with conventional transport equations show that the conventional equations may contain large errors near the sound speed (M approx. = 1). It is also found that plasma anisotropy, which is not included in the conventional equations, is a critical parameter in determining plasma transport in varying magnetic field. The new transport equations are also used to study axial confinement in multiple mirror devices from the strongly to weakly collisional regime. A new ion conduction model was worked out to extend the regime of validity of the transport equations to the low density multiple mirror regime

  6. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Zhenyu, E-mail: liaozy08@163.com [Tianjin Product Quality Inspection Technology Research Institute, The National Center of Supervision and Inspection for Quality of Food (China); Zhang, Ying [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China); Su, Lin [Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry and Ophthalmology (China); Chang, Jin; Wang, Hanjie, E-mail: wanghj@tju.edu.cn [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China)

    2017-02-15

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  7. Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology.

    Science.gov (United States)

    Wischmeyer, Paul E; San-Millan, Inigo

    2015-01-01

    Over the last 10 years we have significantly reduced hospital mortality from sepsis and critical illness. However, the evidence reveals that over the same period we have tripled the number of patients being sent to rehabilitation settings. Further, given that as many as half of the deaths in the first year following ICU admission occur post ICU discharge, it is unclear how many of these patients ever returned home. For those who do survive, the latest data indicate that 50-70% of ICU "survivors" will suffer cognitive impairment and 60-80% of "survivors" will suffer functional impairment or ICU-acquired weakness (ICU-AW). These observations demand that we as intensive care providers ask the following questions: "Are we creating survivors ... or are we creating victims?" and "Do we accomplish 'Pyrrhic Victories' in the ICU?" Interventions to address ICU-AW must have a renewed focus on optimal nutrition, anabolic/anticatabolic strategies, and in the future employ the personalized muscle and exercise evaluation techniques utilized by elite athletes to optimize performance. Specifically, strategies must include optimal protein delivery (1.2-2.0 g/kg/day), as an athlete would routinely employ. However, as is clear in elite sports performance, optimal nutrition is fundamental but alone is often not enough. We know burn patients can remain catabolic for 2 years post burn; thus, anticatabolic agents (i.e., beta-blockers) and anabolic agents (i.e., oxandrolone) will probably also be essential. In the near future, evaluation techniques such as assessing lean body mass at the bedside using ultrasound to determine nutritional status and ultrasound-measured muscle glycogen as a marker of muscle injury and recovery could be utilized to help find the transition from the acute phase of critical illness to the recovery phase. Finally, exercise physiology testing that evaluates muscle substrate utilization during exercise can be used to diagnose muscle mitochondrial dysfunction and

  8. Weak localization and electron-electron interaction in modulation doped GaAs/AlGaAs heterostructures

    International Nuclear Information System (INIS)

    Taboryski, R.; Lindelof, P.E.

    1990-01-01

    The first heterostructure wafer only had one electronic subband at the GaAs/AlGaAs interface populated. Weak localization magnetoresistance was interpreted by a theory valid to relatively high magnetic fields and also valid for electrons with a long mean free path. The adjustable parameter in fitting the magnetoresistance was in each case the phasebreaking relaxation time, which could then subsequently be plotted as a function of temperature. The temperature dependence of the phasebreaking rate could be interpreted on the basic of existing theories, but the residual relaxation rate at the lowest temperature remains so far unexplained. Already at low magnetic fields the weak localization magnetoresistance saturates, indicating a complete quench of weak localization. We find that the value of saturation (i.e. the total weak localization at the appropriate temperature) was smaller than predicted by the existing theories. At magnetic fields of the order of the inverse electron mobility, a quadratic magnetoresistance show up in our experiments. This quadratic magnetoresistance corresponds to corrections to the conductivity of the order of e 2 /h. Whereas we find that the temperature dependence of this conductivity correction is well in agreement with predicted effects of electron-electron interaction, the dependence on mobility, which we can measure via our ion implantation, is larger than any existing theory predicts, yet still in the ballpark of the conductance quantum. (orig./BHO)

  9. Critical currents and weak links in melt textured R123

    International Nuclear Information System (INIS)

    Veal, B. W.; Zhang, H.; Claus, H.; Chen, L.; Paulikas, A. P.; Koshelev, A.; Crabtree, G. W.

    2000-01-01

    Weak link behavior is studied, using magnetization and Hall probe measurements of ring samples, in welded melt-textured R123 monoliths and in dual-seeded samples with disoriented domains. Techniques for welding samples yield transport currents across the junction that are in excess of 10 4 A/cm 2

  10. Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation.

    Science.gov (United States)

    Sun, Yuankui; Guan, Xiaohong; Wang, Jianmin; Meng, Xiaoguang; Xu, Chunhua; Zhou, Gongming

    2014-06-17

    In this study, a weak magnetic field (WMF), superimposed with a permanent magnet, was utilized to improve ZVI corrosion and thereby enhance As(V)/As(III) removal by ZVI at pHini 3.0-9.0. The experiment with real arsenic-bearing groundwater revealed that WMF could greatly improve arsenic removal by ZVI even in the presence of various cations and anions. The WMF-induced improvement in As(V)/As(III) removal by ZVI should be primarily associated with accelerated ZVI corrosion, as evidenced by the pH variation, Fe(2+) release, and the formation of corrosion products as characterized with X-ray absorption fine structure spectroscopy. The arsenic species analysis in solution/solid phases at pHini 3.0 revealed that As(III) oxidation to As(V) in aqueous phase preceded its subsequent sequestration by the newly formed iron (hydr)oxides. However, both As(V) adsorption following As(III) oxidation to As(V) in solution and As(III) adsorption preceding its conversion to As(V) in solid phase were observed at pHini 5.0-9.0. The application of WMF accelerated the transformation of As(III) to As(V) in both aqueous and solid phases at pHini 5.0-9.0 and enhanced the oxidation of As(III) to As(V) in solution at pHini 3.0.

  11. Human physiological benefits of viewing nature: EEG responses to exact and statistical fractal patterns.

    Science.gov (United States)

    Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P

    2015-01-01

    Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.

  12. Plate tectonics and the origin of the Juan Fernández Ridge: analysis of bathymetry and magnetic patterns

    Directory of Open Access Journals (Sweden)

    Cristián Rodrigo

    2014-10-01

    Full Text Available Juan Fernández Ridge (JFR is a cα. 800 km long alignment of seamounts and islands which is thought to be fed by a deep mantle plume. JFR includes the Friday and Domingo seamounts in the western active edge close to the active hotspot, and the O'Higgins Seamount and Guyot at the eastern limit just in front of the Chile-Perú trench. Recent bathymetric (Global Topography and magnetic (EMAG-2 datasets were interpreted both qualitatively and quantitatively by means of 3D inverse modeling and 2D direct modeling for geometry and susceptibility, together with an interpretation of the synthetic anomalies related to the classical hypothesis of deep seafloor spreading. Topographic and magnetic patterns are used to understand the tectonic evolution and origin of the JFR, especially in the western segment. Results show a continuous corridor with a base at ~3900 m depth formed by four groups of seamounts/islands with a number of summits. The deep ocean floor is ~22 to ~37 Myr old and is younger to the south of the Challenger Fracture Zone that runs in a SW-NE direction. The magnetic pattern of the western JFR segment, which is different than the eastern one, has no correlation with bathymetry and does not present a common polarity nor fit with magnetic models for isolated bodies. This superposition of magnetic patterns indicates a role of the faults/fractures of the Nazca Plate. Geological evidence supports the hypothesis of a fixed mantle plume for the origin of JFR but our data suggest that tectonic processes play a role, thus fueling the global controversy about these competing processes.

  13. Weak ferromagnetism and temperature dependent dielectric properties of Zn{sub 0.9}Ni{sub 0.1}O diluted magnetic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Raju [Department of Electrical and Electronic Engineering, Shahjalal University of Science and Technology, Sylhet 3114 (Bangladesh); Department of Applied Physics, Electronics and Communication Engineering, University of Dhaka, Dhaka 1000 (Bangladesh); Moslehuddin, A.S.M.; Mahmood, Zahid Hasan [Department of Applied Physics, Electronics and Communication Engineering, University of Dhaka, Dhaka 1000 (Bangladesh); Hossain, A.K.M. Akther, E-mail: akmhossain@phy.buet.ac.bd [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2015-03-15

    Highlights: • Single phase wurtzite structure was confirmed from XRD analysis. • Weak ferromagnetic behaviour at room temperature. • Pure semiconducting properties confirmed from temperature dependent conductivity. • Smaller dielectric properties at higher frequency. • Possible potential application in high frequency spintronic devices. - Abstract: In this study the room temperature ferromagnetic behaviour and dielectric properties of ZnO based diluted magnetic semiconductor (DMS) have been investigated using nominal chemical composition Zn{sub 0.9}Ni{sub 0.1}O. The X-ray diffraction analysis confirmed formation of single phase hexagonal wurtzite structure. An increase in grain size with increasing sintering temperature was observed from scanning electron microscopy. Field dependent DC magnetization values indicated dominant paramagnetic ordering along with a slight ferromagnetic behaviour at room temperature. Frequency dependent complex initial permeability showed some positive values around 12 at room temperature. In dielectric measurement, an increasing trend of complex permittivity, loss tangent and ac conductivity with increasing temperature were observed. The temperature dependent dispersion curves of dielectric properties revealed clear relaxation at higher temperature. Frequency dependent ac conductivity was found to increase with frequency whereas complex permittivity and loss tangent showed an opposite trend.

  14. Weak Satiety Responsiveness Is a Reliable Trait Associated with Hedonic Risk Factors for Overeating among Women.

    Science.gov (United States)

    Dalton, Michelle; Hollingworth, Sophie; Blundell, John; Finlayson, Graham

    2015-09-04

    Some individuals exhibit a weak satiety response to food and may be susceptible to overconsumption. The current study identified women showing consistently low or high satiety responses to standardised servings of food across four separate days and compared them on behavioural, psychological and physiological risk factors for overeating and future weight gain. In a crossover design, 30 female participants (age: 28.0 ± 10.6; body mass index (BMI): 23.1 ± 3.0) recorded sensations of hunger in the post-prandial period following four graded energy level breakfasts. Satiety quotients were calculated to compare individuals on satiety responsiveness across conditions. Body composition, resting metabolic rate (RMR), energy intake, food reward and craving, and eating behaviour traits were assessed under controlled laboratory conditions. A distinct low satiety phenotype (LSP) was identified with good consistency across separate study days. These individuals had a higher RMR, greater levels of disinhibition and reported feeling lower control over food cravings. Further, they consumed more energy and exhibited greater wanting for high-fat food. The inverse pattern of characteristics was observed in those exhibiting a consistently high satiety phenotype (HSP). Weak satiety responsiveness is a reliable trait identifiable using the satiety quotient. The LSP was characterised by distinct behavioural and psychological characteristics indicating a risk for overeating, compared to HSP.

  15. Magnetic resonance imaging patterns of mononeuropathic denervation in muscles with dual innervation

    Energy Technology Data Exchange (ETDEWEB)

    Sneag, Darryl B.; Lee, Susan C.; Melisaratus, Darius P. [Hospital for Special Surgery, Department of Radiology and Imaging, New York, NY (United States); Feinberg, Joseph H. [Physical Medicine and Rehabilitation, Hospital for Special Surgery, New York, NY (United States); Amber, Ian [MedStar Georgetown University Hospital, Department of Radiology, DC, Washington (United States)

    2017-12-15

    Magnetic resonance imaging (MRI) of mononeuropathy in muscles with dual innervation depicts geographic denervation corresponding to the affected nerve. Knowledge of the normal distribution of a muscle's neural supply is clinically relevant as partial muscle denervation represents a potential imaging pitfall that can be confused with other pathology, such as muscle strain. This article reviews the normal innervation pattern of extremity muscles with dual supply, providing illustrative examples of mononeuropathy affecting such muscles. (orig.)

  16. Magnetic resonance imaging patterns of mononeuropathic denervation in muscles with dual innervation

    International Nuclear Information System (INIS)

    Sneag, Darryl B.; Lee, Susan C.; Melisaratus, Darius P.; Feinberg, Joseph H.; Amber, Ian

    2017-01-01

    Magnetic resonance imaging (MRI) of mononeuropathy in muscles with dual innervation depicts geographic denervation corresponding to the affected nerve. Knowledge of the normal distribution of a muscle's neural supply is clinically relevant as partial muscle denervation represents a potential imaging pitfall that can be confused with other pathology, such as muscle strain. This article reviews the normal innervation pattern of extremity muscles with dual supply, providing illustrative examples of mononeuropathy affecting such muscles. (orig.)

  17. Abdominoplasty in prune belly syndrome: Modifications in Monfort technique to address variable patterns of abdominal wall weakness.

    Science.gov (United States)

    Smith, Edwin A; Srinivasan, Arun; Scherz, Hal C; Tracey, Anthony J; Broecker, Bruce; Kirsch, Andrew J

    2017-10-01

    Abdominoplasty is an important component of the management of children with prune belly syndrome (PBS). While there are features of the abdominal defect in PBS which are common to all patients, there will be differences unique to each patient that should be taken into consideration in surgical planning. Specifically, we have come to realize that although the Monfort procedure assumes a symmetric pattern of abdominal wall laxity, this symmetry is rarely present. The aim of this report is to describe our modifications and review our outcomes for the Monfort procedure which more completely address correction of the abdominal wall laxity including both common and uncommon features while positioning the umbilicus to a more anatomically correct position (Figure). Sixteen male patients with PBS and one female pseudoprune belly syndrome patient, aged 2-9 years, were treated at our institution between 2003 and 2014. Modifications incorporated into the abdominoplasty procedure for PBS applied to this study group included: 1) use of diagnostic laparoscopy to define the topography of the abdominal wall defect, 2) initial midline rather than elliptical skin incision to defer retailoring of the skin coverage until the final step of the procedure, 3) varying the width of the central plate to correct side to side asymmetry in redundancy, 4) plication of the central plate to reduce vertical redundancy and reposition the umbilicus, and 5) plication of focal areas of fascial weakness, most often in the flank region. All patients have improved abdominal wall contour with a more uniform correction of areas of weakness at a mean follow-up of 5.5 years (range 18 months-11.5 years). All patients and parents indicate that they are very satisfied with the outcome of their procedures without any revisions being performed. This study is descriptive in nature and retrospective, with the patient population treated in a relatively uniform fashion that does not allow direct comparison with other

  18. Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation.

    Directory of Open Access Journals (Sweden)

    Justin E Brown

    Full Text Available Pain often exists in the absence of observable injury; therefore, the gold standard for pain assessment has long been self-report. Because the inability to verbally communicate can prevent effective pain management, research efforts have focused on the development of a tool that accurately assesses pain without depending on self-report. Those previous efforts have not proven successful at substituting self-report with a clinically valid, physiology-based measure of pain. Recent neuroimaging data suggest that functional magnetic resonance imaging (fMRI and support vector machine (SVM learning can be jointly used to accurately assess cognitive states. Therefore, we hypothesized that an SVM trained on fMRI data can assess pain in the absence of self-report. In fMRI experiments, 24 individuals were presented painful and nonpainful thermal stimuli. Using eight individuals, we trained a linear SVM to distinguish these stimuli using whole-brain patterns of activity. We assessed the performance of this trained SVM model by testing it on 16 individuals whose data were not used for training. The whole-brain SVM was 81% accurate at distinguishing painful from non-painful stimuli (p<0.0000001. Using distance from the SVM hyperplane as a confidence measure, accuracy was further increased to 84%, albeit at the expense of excluding 15% of the stimuli that were the most difficult to classify. Overall performance of the SVM was primarily affected by activity in pain-processing regions of the brain including the primary somatosensory cortex, secondary somatosensory cortex, insular cortex, primary motor cortex, and cingulate cortex. Region of interest (ROI analyses revealed that whole-brain patterns of activity led to more accurate classification than localized activity from individual brain regions. Our findings demonstrate that fMRI with SVM learning can assess pain without requiring any communication from the person being tested. We outline tasks that should be

  19. Weak ferromagnetic component on the bulk ZnFe{sub 2}O{sub 4} compound

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, C.B.R. [Departamento de Física, Campus prof. Aluísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Mendonça, E.C. [Departamento de Física, Campus prof. Alberto Carvalho, UFS, 49500-000 Itabaiana, SE (Brazil); Silva, L.S. [Departamento de Física, Campus prof. Aluísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Folly, W.S.D.; Meneses, C.T. [Departamento de Física, Campus prof. Alberto Carvalho, UFS, 49500-000 Itabaiana, SE (Brazil); Duque, J.G.S., E-mail: gerivaldoduque@gmail.com [Departamento de Física, Campus prof. Alberto Carvalho, UFS, 49500-000 Itabaiana, SE (Brazil)

    2014-01-15

    Magnetization data on the bulk ZnFe{sub 2}O{sub 4} antiferromagnetic compound (T{sub N}≈10 K) obtained via solid state reaction at different synthesis temperatures show one weak ferromagnetic component at room temperature. We have related it with the cationic disorder effect present on spinel structure of our bulk samples which comes from the magnetic interaction between iron ions sit on both octahedral and tetrahedral sites. The magnetization measurements show to all samples a clear peak around 10 K consistent with the antiferromagnetic phase transition. On the other hand, after extracted the paramagnetic component, the hysteresis loops measured at room temperature display one weak ferromagnetic component. Once the T-dependence of magnetization does not fit to a Curie–Weiss law to temperatures well above the magnetic transition we have used a combination of the Curie–Weiss law (paramagnetic spins) and a typical temperature dependence of M{sub 0}, M{sub 0}(T)=M{sub 0}(0)[1−(T/T{sub C}){sup 2}]{sup 0.5} (ordered ferromagnetic spins). We note an increase of the M{sub 0}(0) as function of the synthesis temperature. This reinforce our supposition of a cationic disorder effect driving the system to present two kinds of magnetic interactions between iron ions on A and B sites. - Highlights: • Study of the cationic disorder at bulk ZnFe{sub 2}O{sub 4} compound. • Structural and magnetization characterization. • The observation of two magnetic phases.

  20. Activating persulfate by Fe⁰ coupling with weak magnetic field: performance and mechanism.

    Science.gov (United States)

    Xiong, Xinmei; Sun, Bo; Zhang, Jing; Gao, Naiyun; Shen, Jimin; Li, Jialing; Guan, Xiaohong

    2014-10-01

    Weak magnetic field (WMF) and Fe(0) were proposed to activate PS synergistically (WMF-Fe(0)/PS) to degrade dyes and aromatic contaminants. The removal rates of orange G (OG) by WMF-Fe(0)/PS generally decreased with increasing initial pH (3.0-10.0) and increased with increasing Fe(0) (0.5-3.0 mM) or PS dosages (0.5-3.0 mM). Compared to its counterpart without WMF, the WMF-Fe(0)/PS process could induce a 5.4-28.2 fold enhancement in the removal rate of OG under different conditions. Moreover, the application of WMF significantly enhanced the decolorization rate and the mineralization of OG. The degradation rates of caffeine, 4-nitrophenol, benzotriazole and diuron by Fe(0)/PS were improved by 2.1-11.1 fold due to the superimposed WMF. Compared to many other sulfate radical-based advanced oxidation technologies under similar reaction conditions, WMF-Fe(0)/PS technology could degrade selected organic contaminants with much greater rates. Sulfate radical was identified to be the primary radical species responsible for the OG degradation at pH 7.0 in WMF-Fe(0)/PS process. This study unraveled that the presence of WMF accelerated the corrosion rate of Fe(0) and thus promoted the release of Fe(2+), which induced the increased production of sulfate radicals from PS and promoted the degradation of organic contaminants. Employing WMF to enhance oxidation capacity of Fe(0)/PS is a novel, efficient, promising and environmental-friendly method since it does not need extra energy and costly reagents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Evidence of weak pair coupling in the penetration depth of bi-based high-Tc superconductors

    International Nuclear Information System (INIS)

    Thompson, J.R.; Sun, Yang Ren; Ossandon, J.G.; Christen, D.K.; Chakoumakos, B.C.; Sales, B.C.; Kerchner, H.R.; Sonder, E.

    1990-01-01

    The magnetic penetration depth λ(T) has been investigated in Bi(Pb)SrCaCuO high-T c compounds having 2- and 3-layers of copper-oxygen per unit cell. Studies of the magnetization in the vortex state were employed and the results were compared with weak and strong coupling calculations. The temperature dependence of λ is described well by BCS theory in the clean limit, giving evidence for weak pair coupling in this family of materials. For the short component of the λ tensor, we obtain values of 292 and 220 nm (T = 0) for Bi-2212 and (BiPb)-2223, respectively

  2. Characterization of weakly ionized argon flows for radio blackout mitigation experiments

    Science.gov (United States)

    Steffens, L.; Koch, U.; Esser, B.; Gülhan, A.

    2017-06-01

    For reproducing the so-called E × B communication blackout mitigation scheme inside the L2K arc heated facility of the DLR in weakly ionized argon §ows, a §at plate model has been equipped with a superconducting magnet, electrodes, and a setup comprising microwave plasma transmission spectroscopy (MPTS). A thorough characterization of the weakly ionized argon §ow has been performed including the use of microwave interferometry (MWI), Langmuir probe measurements, Pitot probe pro¦les, and spectroscopic methods like diode laser absorption spectroscopy (DLAS) and emission spectroscopy.

  3. Magnifying Lenses with Weak Achromatic Bends for High-Energy Electron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-27

    This memo briefly describes bremsstrahlung background effects in GeV-range electron radiography systems and the use of weak bending magnets to deflect the image to the side of the forward bremsstrahlung spot to reduce background. The image deflection introduces first-order chromatic image blur due to dispersion. Two approaches to eliminating the dispersion effect to first order by use of magnifying lens with achromatic bends are described. Also, higher-order image blur terms caused by weak bends are also discussed, and shown to be negligibly small in most cases of interest.

  4. Assessing formal teaching of ethics in physiology: an empirical survey, patterns, and recommendations.

    Science.gov (United States)

    Goswami, Nandu; Batzel, Jerry Joseph; Hinghofer-Szalkay, Helmut

    2012-09-01

    Ethics should be an important component of physiological education. In this report, we examined to what extent teaching of ethics is formally being incorporated into the physiology curriculum. We carried out an e-mail survey in which we asked the e-mail recipients whether their institution offered a course or lecture on ethics as part of the physiology teaching process at their institution, using the following query: "We are now doing an online survey in which we would like to know whether you offer a course or a lecture on ethics as part of your physiology teaching curriculum." The response rate was 53.3%: we received 104 responses of a total of 195 sent out. Our responses came from 45 countries. While all of our responders confirmed that there was a need for ethics during medical education and scientific training, the degree of inclusion of formal ethics in the physiology curriculum varied widely. Our survey showed that, in most cases (69%), including at our Medical University of Graz, ethics in physiology is not incorporated into the physiology curriculum. Given this result, we suggest specific topics related to ethics and ethical considerations that could be integrated into the physiology curriculum. We present here a template example of a lecture "Teaching Ethics in Physiology" (structure, content, examples, and references), which was based on guidelines and case reports provided by experts in this area (e.g., Benos DJ. Ethics revisited. Adv Physiol Educ 25: 189-190, 2001). This lecture, which we are presently using in Graz, could be used as a base that could lead to greater awareness of important ethical issues in students at an early point in the educational process.

  5. Cryptochromes and Hormone Signal Transduction under Near-Zero Magnetic Fields: New Clues to Magnetic Field Effects in a Rice Planthopper.

    Directory of Open Access Journals (Sweden)

    Gui-Jun Wan

    Full Text Available Although there are considerable reports of magnetic field effects (MFE on organisms, very little is known so far about the MFE-related signal transduction pathways. Here we establish a manipulative near-zero magnetic field (NZMF to investigate the potential signal transduction pathways involved in MFE. We show that exposure of migratory white-backed planthopper, Sogatella furcifera, to the NZMF results in delayed egg and nymphal development, increased frequency of brachypterous females, and reduced longevity of macropterous female adults. To understand the changes in gene expression underlying these phenotypes, we examined the temporal patterns of gene expression of (i CRY1 and CRY2 as putative magnetosensors, (ii JHAMT, FAMeT and JHEH in the juvenile hormone pathway, (iii CYP307A1 in the ecdysone pathway, and (iv reproduction-related Vitellogenin (Vg. The significantly altered gene expression of CRY1 and CRY2 under the NZMF suggest their developmental stage-specific patterns and potential upstream location in magnetic response. Gene expression patterns of JHAMT, JHEH and CYP307A1 were consistent with the NZMF-triggered delay in nymphal development, higher proportion of brachypterous female adults, and the shortened longevity of macropterous female adults, which show feasible links between hormone signal transduction and phenotypic MFE. By conducting manipulative NZMF experiments, our study suggests an important role of the geomagnetic field (GMF in modulating development and physiology of insects, provides new insights into the complexity of MFE-magnetosensitivity interactions, and represents an initial but crucial step forward in understanding the molecular basis of cryptochromes and hormone signal transduction involved in MFE.

  6. Read/write characteristics of a new type of bit-patterned-media using nano-patterned glassy alloy

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Ishimaru, Manabu; Futamoto, Masaaki; Inoue, Akihisa

    2012-01-01

    The paper reports a feasibility study of new type bit-patterned-media using a nano-patterned glassy alloy template for ultra-high density hard disk applications. The prototype bit-patterned-media was prepared using a nano-hole array pattern fabricated on a Pd-based glassy alloy thin film and a Co/Pd multilayered film filled in the nano-holes. The prepared prototype bit-patterned-media had a smooth surface and isolated Co/Pd multilayer magnetic dots, where the average dot diameter, the average dot pitch and the average dot height were 30, 60 and 19 nm, respectively. MFM (magnetic force microscope) observation revealed that each dot was magnetized in a perpendicular direction and the magnetization could reverse when an opposite magnetic field was applied. Static read/write tester measurements showed that repeated writing and reading on isolated magnetic dots were possible in combination with conventional magnetic heads and high-accuracy positioning technologies. The present study indicates that the new type of bit-patterned-media composed of nano-hole arrays fabricated on glassy alloy film template and Co/Pd multilayer magnetic dots are promising for applications to next generation ultra-high density hard disk drives. - Highlights: ► Prototype BPM using a nano-hole array pattern of imprinted Pd-based glassy alloy thin film and Co/Pd multilayered film was set. ► The prototype BPM has smooth surface and isolated Co/Pd multilayer magnetic dots with an average dot diameter of 30 nm. ► Dots acted as perpendicular magnetic dot and were able to read, erase and write in a row by a usual perpendicular magnetic head.

  7. Biological oscillations for learning walking coordination: dynamic recurrent neural network functionally models physiological central pattern generator.

    Science.gov (United States)

    Hoellinger, Thomas; Petieau, Mathieu; Duvinage, Matthieu; Castermans, Thierry; Seetharaman, Karthik; Cebolla, Ana-Maria; Bengoetxea, Ana; Ivanenko, Yuri; Dan, Bernard; Cheron, Guy

    2013-01-01

    The existence of dedicated neuronal modules such as those organized in the cerebral cortex, thalamus, basal ganglia, cerebellum, or spinal cord raises the question of how these functional modules are coordinated for appropriate motor behavior. Study of human locomotion offers an interesting field for addressing this central question. The coordination of the elevation of the 3 leg segments under a planar covariation rule (Borghese et al., 1996) was recently modeled (Barliya et al., 2009) by phase-adjusted simple oscillators shedding new light on the understanding of the central pattern generator (CPG) processing relevant oscillation signals. We describe the use of a dynamic recurrent neural network (DRNN) mimicking the natural oscillatory behavior of human locomotion for reproducing the planar covariation rule in both legs at different walking speeds. Neural network learning was based on sinusoid signals integrating frequency and amplitude features of the first three harmonics of the sagittal elevation angles of the thigh, shank, and foot of each lower limb. We verified the biological plausibility of the neural networks. Best results were obtained with oscillations extracted from the first three harmonics in comparison to oscillations outside the harmonic frequency peaks. Physiological replication steadily increased with the number of neuronal units from 1 to 80, where similarity index reached 0.99. Analysis of synaptic weighting showed that the proportion of inhibitory connections consistently increased with the number of neuronal units in the DRNN. This emerging property in the artificial neural networks resonates with recent advances in neurophysiology of inhibitory neurons that are involved in central nervous system oscillatory activities. The main message of this study is that this type of DRNN may offer a useful model of physiological central pattern generator for gaining insights in basic research and developing clinical applications.

  8. Planetary Magnetism

    International Nuclear Information System (INIS)

    Russell, C.T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io

  9. Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness?

    Science.gov (United States)

    Ashkenazi, Sarit; Mark-Zigdon, Nitza; Henik, Avishai

    2013-01-01

    The abilities of children diagnosed with developmental dyscalculia (DD) were examined in two types of object enumeration: subitizing, and small estimation (5-9 dots). Subitizing is usually defined as a fast and accurate assessment of a number of small dots (range 1 to 4 dots), and estimation is an imprecise process to assess a large number of items (range 5 dots or more). Based on reaction time (RT) and accuracy analysis, our results indicated a deficit in the subitizing and small estimation range among DD participants in relation to controls. There are indications that subitizing is based on pattern recognition, thus presenting dots in a canonical shape in the estimation range should result in a subitizing-like pattern. In line with this theory, our control group presented a subitizing-like pattern in the small estimation range for canonically arranged dots, whereas the DD participants presented a deficit in the estimation of canonically arranged dots. The present finding indicates that pattern recognition difficulties may play a significant role in both subitizing and subitizing deficits among those with DD. © 2012 Blackwell Publishing Ltd.

  10. Magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.48Sb0.52

    International Nuclear Information System (INIS)

    Brown, P J; Gandy, A P; Neumann, K U; Sheikh, A; Ziebeck, K R A; Ishida, K; Oikawa, K; Ito, W; Kainuma, R; Kanomata, T; Ouladdiaf, B

    2010-01-01

    Magnetization and high resolution neutron powder diffraction measurements on the magnetic shape memory compound Ni 2 Mn 1.48 Sb 0.52 have confirmed that it is ferromagnetic below 350 K and undergoes a structural phase transition at T M ∼310 K. The high temperature phase has the cubic L2 1 structure with a = 5.958 A, with the excess manganese atoms occupying the 4(b) Sb sites. In the cubic phase above ∼310 K the manganese moments are ferromagnetically aligned. The magnetic moment at the 4(a) site is 1.57(12) μ B and it is almost zero (0.15(9) μ B ) at the 4(b) site. The low temperature orthorhombic phase which is only fully established below 50 K has the space group Pmma with a cell related to the cubic one by a Bain transformation a orth = (a cub + b cub )/2; b orth = c cub and c orth = (a cub - b cub ). The change in cell volume is ∼2.5%. The spontaneous magnetization of samples cooled in fields less than 0.5 T decreases at temperatures below T M and at 2 K the magnetic moment per formula unit in fields up to 5.5 T is 2.01(5) μ B . Neutron diffraction patterns obtained below ∼132 K gave evidence for a weak incommensurate magnetic modulation with propagation vector (2/3, 1/3, 0).

  11. Chromospheric polarimetry through multiline observations of the 850-nm spectral region - II. A magnetic flux tube scenario

    Science.gov (United States)

    Quintero Noda, C.; Kato, Y.; Katsukawa, Y.; Oba, T.; de la Cruz Rodríguez, J.; Carlsson, M.; Shimizu, T.; Orozco Suárez, D.; Ruiz Cobo, B.; Kubo, M.; Anan, T.; Ichimoto, K.; Suematsu, Y.

    2017-11-01

    In this publication, we continue the work started in Quintero Noda et al., examining this time a numerical simulation of a magnetic flux tube concentration. Our goal is to study if the physical phenomena that take place in it, in particular, the magnetic pumping, leaves a specific imprint on the examined spectral lines. We find that the profiles from the interior of the flux tube are periodically doppler shifted following an oscillation pattern that is also reflected in the amplitude of the circular polarization signals. In addition, we analyse the properties of the Stokes profiles at the edges of the flux tube discovering the presence of linear polarization signals for the Ca II lines, although they are weak with an amplitude around 0.5 per cent of the continuum intensity. Finally, we compute the response functions to perturbations in the longitudinal field, and we estimate the field strength using the weak-field approximation. Our results indicate that the height of formation of the spectral lines changes during the magnetic pumping process, which makes the interpretation of the inferred magnetic field strength and its evolution more difficult. These results complement those from previous works, demonstrating the capabilities and limitations of the 850-nm spectrum for chromospheric Zeeman polarimetry in a very dynamic and complex atmosphere.

  12. Action antiadipogenic of weak magnetic fields: A model for the study of the etiology of the semicircular lipoatrophy in media occupational; Accion antiadipogenica de campos magneticos debiles: un modelo para el estudio de la etiologia de la lipoatrofia semicircular en medios ocupacionales

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Pascual, M. A.; Paino Belarrinaga, C. L.; Trillo ruiz, M. A.; Ubeda Maeso, A.

    2013-07-01

    Although several studies have suggested a possible association between exposure to environmental magnetic fields of industrial frequency and semicircular lipoatrophy, a mechanism that justifies the potential action of these fields magnetic on the adipo genesis has not been identified. The study investigated the in vitro action of a field weak magnetic on the adipo genesis of human adipose tissue-derived stem cells. (Author)

  13. Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magnetized Weakly Collisional Plasmas

    International Nuclear Information System (INIS)

    Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.

    2009-01-01

    This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations

  14. Biochemical and physiological modifications in tissues of Sardina pilchardus: spatial and temporal patterns as a baseline for biomonitoring studies

    Directory of Open Access Journals (Sweden)

    Bruno Silva Nunes

    2015-02-01

    Full Text Available Sardina pilchardus is a marine species common in the North Atlantic Ocean, and is subjected to diffuse anthropogenic chemical contamination and seasonal fluctuations in biotic and abiotic parameters that may alter its physiology and condition. Biological material is easily available through commercial fisheries, which could facilitate its use as a bioindicator species. The aim of the present work was to address its potential inclusion in biomonitoring studies, considering a combinatory approach through the use of enzymatic biomarkers and somatic indices, by assessing spatial and temporal patterns in a metapopulation along the west coast of Portugal. Our results showed significant variability of the biochemical and physiological profile of the fish, mainly concordant between sampling sites. Large differences for most markers were found across periods of the year, showing the importance of seasonality, which was mostly related to the reproductive cycle. Hence, environmental scientists should acknowledge seasonality as a strong driving force for physiological adaptations, influencing biochemical markers that are normally used to identify effects of chemical contamination. The here-obtained set of data suggests that S. pilchardus may be successfully included in oceanic biomonitoring studies, when one considers that the contribution of seasonal factors may exceed the influence of eventual anthropogenic contamination.

  15. Magnetic charge distribution and stray field landscape of asymmetric néel walls in a magnetically patterned exchange bias layer system

    Science.gov (United States)

    Zingsem, Norbert; Ahrend, Florian; Vock, Silvia; Gottlob, Daniel; Krug, Ingo; Doganay, Hatice; Holzinger, Dennis; Neu, Volker; Ehresmann, Arno

    2017-12-01

    The 3D stray field landscape above an exchange bias layer system with engineered domain walls has been fully characterized by quantitative magnetic force microscopy (qMFM) measurements. This method is based on a complete quantification of the MFM tip’s imaging properties and the subtraction of its contribution from the measured MFM data by deconvolution in Fourier space. The magnetically patterned Ir17Mn83/Co70Fe30-exchange-bias-multilayers have been designed to contain asymmetric head-to-head (hh)/tail-to-tail (tt) Néel walls between domains of different magnetic anisotropies for potential use in guided particle transport. In the current application, qMFM reveals the effective magnetic charge profile on the surface of the sample—with high spatial resolution and in an absolute quantitative manner. These data enable to calculate the magnetostatic potential and the full stray field landscape above the sample surface. It has been successfully tested against: (i) micromagnetic simulations of the magnetization structure of a comparable exchange-bias layer system, (ii) measurements of the magnetization profile across the domain boundary with x-ray photoemission electron microscopy, and (iii) direct stray field measurements obtained by scanning Hall probe microscopy at elevated scan heights. This approach results in a quantitative determination of the stray field landscape at close distances to the sample surface, which will be of importance for remote magnetic particle transport applications in lab-on-a-chip devices. Furthermore, the highly resolving and quantitative MFM approach reveals details of the domain transition across the artificially structured phase boundary, which have to be attributed to a continuous change in the materials parameters across this boundary, rather than an abrupt one.

  16. Magnetic resonance imaging of the spinal marrow: Basic understanding of the normal marrow pattern and its variant

    Science.gov (United States)

    Nouh, Mohamed Ragab; Eid, Ahmed Fathi

    2015-01-01

    For now, magnetic resonance (MR) is the best noninvasive imaging modality to evaluate vertebral bone marrow thanks to its inherent soft-tissue contrast and non-ionizing nature. A daily challenging scenario for every radiologist interpreting MR of the vertebral column is discerning the diseased from normal marrow. This requires the radiologist to be acquainted with the used MR techniques to judge the spinal marrow as well as its normal MR variants. Conventional sequences used basically to image marrow include T1W, fat-suppressed T2W and short tau inversion recovery (STIR) imaging provides gross morphological data. Interestingly, using non-routine MR sequences; such as opposed phase, diffusion weighted, MR spectroscopy and contrasted-enhanced imaging; may elucidate the nature of bone marrow heterogeneities; by inferring cellular and chemical composition; and adding new functional prospects. Recalling the normal composition of bone marrow elements and the physiologic processes of spinal marrow conversion and reconversion eases basic understanding of spinal marrow imaging. Additionally, orientation with some common variants seen during spinal marrow MR imaging as hemangiomas and bone islands is a must. Moreover, awareness of the age-associated bone marrow changes as well as changes accompanying different variations of the subject’s health state is essential for radiologists to avoid overrating normal MR marrow patterns as pathologic states and metigate unnecessary further work-up. PMID:26753060

  17. Movement pattern and physiological response in recreational small-sided football - effect of number of players with a fixed pitch size

    DEFF Research Database (Denmark)

    Randers, Morten Bredsgaard; Ørntoft, Christina Øyangen; Hagman, Marie von Ahnen

    2018-01-01

    Recreational soccer is an effective health-promoting activity, but it is unclear how different game formats influence internal and external load. Thus, to be able to advise how to maximise the outcome of recreational football, we examined movement pattern and physiological response in 11 untrained...... men (32.6 ± 6.7 yrs, 23.3 ± 4.9 fat%, 43.4 ± 5.3 ml·min(-1)·kg(-1)) during three football sessions comprising 4 × 12 min of 3v3, 5v5 or 7v7 with a constant pitch size of 20 × 40 m. Movement pattern, heart rate (HR), blood lactate and RPE were measured during and after the 12-min periods. Greater (P...

  18. Broadband strip-line ferromagnetic resonance spectroscopy of soft magnetic CoFeTaZr patterned thin films

    Science.gov (United States)

    Gupta, S.; Kumar, D.; Jin, T. L.; Nongjai, R.; Asokan, K.; Ghosh, A.; Aparnadevi, M.; Suri, P.; Piramanayagam, S. N.

    2018-05-01

    In this paper, magnetic and magnetization dynamic properties of compositionally patterned Co46Fe40Ta9Zr5 thin films are investigated. A combination of self-assembly and ion-implantation was employed to locally alter the composition of Co46Fe40Ta9Zr5 thin film in a periodic manner. 20 keV O+ and 60 keV N+ ions were implanted at different doses in order to modify the magnetization dynamic properties of the samples in a controlled fashion. Magnetic hysteresis loop measurements revealed significant changes in the coercivity for higher influences of 5 × 1016 ions per cm2. In particular, N+ implantation was observed to induce two phase formation with high and low coercivities. Broadband strip-line ferromagnetic resonance spectroscopy over wide range of frequency (8 - 20 GHz) was used to study the magnetization dynamics as a function of ion-beam dosage. With higher fluences, damping constant showed a continuous increase from 0.0103 to 0.0430. Such control of magnetic properties at nano-scale using this method is believed to be useful for spintronics and microwave device applications.

  19. Resting state functional connectivity: its physiological basis and application in neuropharmacology.

    Science.gov (United States)

    Lu, Hanbing; Stein, Elliot A

    2014-09-01

    Brain structures do not work in isolation; they work in concert to produce sensory perception, motivation and behavior. Systems-level network activity can be investigated by resting state magnetic resonance imaging (rsMRI), an emerging neuroimaging technique that assesses the synchrony of the brain's ongoing spontaneous activity. Converging evidence reveals that rsMRI is able to consistently identify distinct spatiotemporal patterns of large-scale brain networks. Dysregulation within and between these networks has been implicated in a number of neurodegenerative and neuropsychiatric disorders, including Alzheimer's disease and drug addiction. Despite wide application of this approach in systems neuroscience, the physiological basis of these fluctuations remains incompletely understood. Here we review physiological studies in electrical, metabolic and hemodynamic fluctuations that are most pertinent to the rsMRI signal. We also review recent applications to neuropharmacology - specifically drug effects on resting state fluctuations. We speculate that the mechanisms governing spontaneous fluctuations in regional oxygenation availability likely give rise to the observed rsMRI signal. We conclude by identifying several open questions surrounding this technique. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Published by Elsevier Ltd.

  20. Weak measurements and quantum weak values for NOON states

    Science.gov (United States)

    Rosales-Zárate, L.; Opanchuk, B.; Reid, M. D.

    2018-03-01

    Quantum weak values arise when the mean outcome of a weak measurement made on certain preselected and postselected quantum systems goes beyond the eigenvalue range for a quantum observable. Here, we propose how to determine quantum weak values for superpositions of states with a macroscopically or mesoscopically distinct mode number, that might be realized as two-mode Bose-Einstein condensate or photonic NOON states. Specifically, we give a model for a weak measurement of the Schwinger spin of a two-mode NOON state, for arbitrary N . The weak measurement arises from a nondestructive measurement of the two-mode occupation number difference, which for atomic NOON states might be realized via phase contrast imaging and the ac Stark effect using an optical meter prepared in a coherent state. The meter-system coupling results in an entangled cat-state. By subsequently evolving the system under the action of a nonlinear Josephson Hamiltonian, we show how postselection leads to quantum weak values, for arbitrary N . Since the weak measurement can be shown to be minimally invasive, the weak values provide a useful strategy for a Leggett-Garg test of N -scopic realism.

  1. Sub-micron magnetic patterns and local variations of adhesion force induced in non-ferromagnetic amorphous steel by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huiyan; Feng, Yuping [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Nieto, Daniel [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); García-Lecina, Eva [Unidad de Superficies Metálicas, IK4-CIDETEC, E20009 Donostia-San Sebastián Gipuzkoa (Spain); Mcdaniel, Clare [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Díaz-Marcos, Jordi [Unitat de Tècniques Nanomètriques, Centres Científics i Tecnològics, Universitat de Barcelona, E08028 Barcelona (Spain); Flores-Arias, María Teresa [Microoptics and GRIN Optics Group, Applied Physics Department, University of Santiago de Compostela, E15782 Santiago de Compostela (Spain); O’Connor, Gerard M. [National Centre for Laser Applications, School of Physics, National University of Ireland, Galway (Ireland); Baró, Maria Dolors [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); Pellicer, Eva, E-mail: eva.pellicer@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, E08193 (Spain); and others

    2016-05-15

    Highlights: • Formation of ripples after femtosecond pulsed laser irradiation (FSPLI) of metallic glass was studied. • Magnetic patterning at the surface of non-ferromagnetic amorphous steel was induced by FSPLI. • The origin of the generated ferromagnetism is the laser-induced devitrification. - Abstract: Periodic ripple and nanoripple patterns are formed at the surface of amorphous steel after femtosecond pulsed laser irradiation (FSPLI). Formation of such ripples is accompanied with the emergence of a surface ferromagnetic behavior which is not initially present in the non-irradiated amorphous steel. The occurrence of ferromagnetic properties is associated with the laser-induced devitrification of the glassy structure to form ferromagnetic (α-Fe and Fe{sub 3}C) and ferrimagnetic [(Fe,Mn){sub 3}O{sub 4} and Fe{sub 2}CrO{sub 4}] phases located in the ripples. The generation of magnetic structures by FSPLI turns out to be one of the fastest ways to induce magnetic patterning without the need of any shadow mask. Furthermore, local variations of the adhesion force, wettability and nanomechanical properties are also observed and compared to those of the as-cast amorphous alloy. These effects are of interest for applications (e.g., biological, magnetic recording, etc.) where both ferromagnetism and tribological/adhesion properties act synergistically to optimize material performance.

  2. Beamstop-based low-background ptychography to image weakly scattering objects

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Juliane, E-mail: juliane.reinhardt@desy.de [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Hoppe, Robert [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Hofmann, Georg [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, Christian D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Patommel, Jens; Baumbach, Christoph [Institute of Structural Physics, Technische Universität Dresden, D-01062 Dresden (Germany); Baier, Sina; Rochet, Amélie; Grunwaldt, Jan-Dierk [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Schroer, Christian G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany); Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2017-02-15

    In recent years, X-ray ptychography has been established as a valuable tool for high-resolution imaging. Nevertheless, the spatial resolution and sensitivity in coherent diffraction imaging are limited by the signal that is detected over noise and over background scattering. Especially, coherent imaging of weakly scattering specimens suffers from incoherent background that is generated by the interaction of the central beam with matter along its propagation path in particular close to and inside of the detector. Common countermeasures entail evacuated flight tubes or detector-side beamstops, which improve the experimental setup in terms of background reduction or better coverage of high dynamic range in the diffraction patterns. Here, we discuss an alternative approach: we combine two ptychographic scans with and without beamstop and reconstruct them simultaneously taking advantage of the complementary information contained in the two scans. We experimentally demonstrate the potential of this scheme for hard X-ray ptychography by imaging a weakly scattering object composed of catalytic nanoparticles and provide the analysis of the signal-to-background ratio in the diffraction patterns. - Highlights: • An opaque beamstop far-upstream of the detector reduces background scattering. • Increased signal-to-background ratio in the diffraction patterns. • Simultaneous ptychographic reconstruction of two data sets with and without beamstop. • Result shows high spatial resolution of 13 nm of a weakly scattering catalyst sample. • High sensitivity to less than 10{sup 5} atoms.

  3. CoPt/TiN films nanopatterned by RF plasma etching towards dot-patterned magnetic media

    Science.gov (United States)

    Szívós, János; Pothorszky, Szilárd; Soltys, Jan; Serényi, Miklós; An, Hongyu; Gao, Tenghua; Deák, András; Shi, Ji; Sáfrán, György

    2018-03-01

    CoPt thin films as possible candidates for Bit Patterned magnetic Media (BPM) were prepared and investigated by electron microscopy techniques and magnetic measurements. The structure and morphology of the Direct Current (DC) sputtered films with N incorporation were revealed in both as-prepared and annealed state. Nanopatterning of the samples was carried out by means of Radio Frequency (RF) plasma etching through a Langmuir-Blodgett film of silica nanospheres that is a fast and high throughput technique. As a result, the samples with hexagonally arranged 100 nm size separated dots of fct-phase CoPt were obtained. The influence of the order of nanopatterning and anneling on the nanostructure formation was revealed. The magnetic properties of the nanopatterned fct CoPt films were investigated by Vibrating Sample Magnetometer (VSM) and Magnetic Force Microscopy (MFM). The results show that CoPt thin film nanopatterned by means of the RF plasma etching technique is promising candidate to a possible realization of BPM. Furthermore, this technique is versatile and suitable for scaling up to technological and industrial applications.

  4. Application of the magnetic fluid as a detector for changing the magnetic field

    Science.gov (United States)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.; Balashov, V.

    2018-05-01

    In article the possibility of use of magnetic fluid as a sensitive element for fixing of change of induction of magnetic field in space is considered. Importance of solvable tasks is connected with search of the perspective magnetic substances susceptible to weak magnetic field. The results of a study of the capacitive method for fixing the change in the magnetic field on the basis of a ferromagnetic liquid are presented. The formation of chain structures in the ferrofluid from magnetic particles under the influence of the applied magnetic field leads to a change in the capacitance of the plate condenser. This task has important practical value for development of a magnetosensitive sensor of change of magnetic field.

  5. An analysis of the physiological FDG uptake pattern in the stomach

    International Nuclear Information System (INIS)

    Koga, Hirofumi; Kuwabara, Yasuo; Hiraka, Kiyohisa; Nakagawa, Makoto; Abe, Koichiro; Kaneko, Koichiro; Hayashi, Kazutaka; Honda, Hiroshi; Sasaki, Masayuki

    2003-01-01

    The purpose of this study was to clarify the normal gastric FDG uptake pattern to provide basic information to make an accurate diagnosis of gastric lesions by FDG PET. We examined 22 cases, including 9 of malignant lymphoma, 8 of lung cancer, 2 of esophageal cancer, and 3 of other malignancies. No gastric lesions were observed in any of the 22 cases on upper gastrointestinal examinations using either barium meal or endoscopic techniques. The intervals between FDG PET and the gastrointestinal examination were within one week in all cases. The stomach regions were classified into the following three areas: U (upper)-area, M (middle)-area, and L (lower)-area. The degree of FDG uptake in these three gastric regions was qualitatively evaluated by visual grading into 4 degrees, and then a semiquantitative evaluation was carried out using the standardized uptake value (SUV). Based on a visual grading evaluation, the mean FDG uptake score in the U-, M-, and L-areas was 1.14±0.96, 0.82±0.96, and 0.36±0.49 (mean±S.D.), respectively. The FDG uptake scores obtained in the three areas were significantly different (Friedman test, p M>L. In conclusion, the physiological gastric FDG uptake was significantly higher at the oral end. A stronger gastric FDG uptake at the anal end may therefore be suggestive of a pathological uptake. (author)

  6. Effect of the thickness reduction on the structural, surface and magnetic properties of α-Fe{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aragón, Fermin F.H., E-mail: fherrera@fis.unb.br [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG (Brazil); Ardisson, José D. [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG (Brazil); Aquino, Juan C.R. [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Gonzalez, Ismael; Macedo, Waldemar A.A. [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901 Belo Horizonte, MG (Brazil); Coaquira, José A.H.; Mantilla, John; Silva, Sebastião W. da; Morais, Paulo C. [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil)

    2016-05-31

    Hematite (α-Fe{sub 2}O{sub 3}) polycrystalline thin films of different thicknesses were produced by thermal oxidation in air atmosphere from Fe metallic thin-films deposited by radio frequency (RF) sputtering technique. X-ray diffraction (XRD) patterns confirm the formation of hematite phase in all samples and indicate that the mean grain size decreases as the film thickness becomes thinner. Conversion electron Mössbauer spectroscopy (CEMS) spectra at room temperature show magnetic splitting (six line patterns). It is determined that the resonance peaks become broader and asymmetric as the film thickness decreases. This finding was associated with the structural disorder introduced by the thickness reduction. Magnetization as a function of the magnetic field curve obtained at 300 K shows the presence of a weak-ferromagnetic contribution, which was assigned to the large density of decompensated spins at the films surface. From the magnetization vs. temperature curves it has been determined that the Morin transition temperature (T{sub M}) is shifted from ~ 240 K to ~ 196 K, meanwhile it becomes more broadened as the film thickness decreases. X-ray photoelectron spectroscopy (XPS) measurements show the presence of Fe{sup 2+} ions coexisting with Fe{sup 3+} ions whose population increases as the film becomes thinner. The density of chemisorbed oxygen increases as the film thickness is reduced in agreement with the results obtained from the other measurements in this work. - Highlights: • Hematite thin films with different thickness were deposited by RF sputtering technique. • X-ray diffraction patterns confirm the formation of hematite phase in all samples. • Hysteresis curve at 300 K shows the presence of a weak-ferromagnetic phase. • XPS show the presence of Fe{sup 2+} ions coexisting with Fe{sup 3+} ions.

  7. Feasibility of low-cost magnetic rail designs by integrating ferrite magnets and NdFeB magnets for HTS Maglev systems

    Science.gov (United States)

    Sun, R. X.; Deng, Z. G.; Gou, Y. F.; Li, Y. J.; Zheng, J.; Wang, S. Y.; Wang, J. S.

    2015-09-01

    Permanent magnet guideway (PMG) is an indispensable part of high temperature superconducting (HTS) Maglev systems. Present PMGs are made of NdFeB magnets with excellent performance and cost much. As another permanent magnet material, the ferrite magnet is weak at magnetic energy product and coercive force, but inexpensive. So, it is a possible way to integrate the ferrite and NdFeB magnets for cutting down the cost of present PMGs. In the paper, the equivalent on magnetic field intensity between ferrite magnets and NdFeB magnets was evaluated by finite element simulation. According to the calculation results, the magnetic field of the PMG integrating ferrite magnets and NdFeB magnets can be increased remarkably comparing with the pure ferrite PMG. It indicates that low-cost PMG designs by integrating the two permanent magnet materials are feasible for the practical HTS Maglev system.

  8. Transport and performance in DIII-D discharges with weak or negative central magnetic shear

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Schissel, D.P.; Stallard, B.W.

    1996-12-01

    Discharges exhibiting the highest plasma energy and fusion reactivity yet realized in the DIII-D tokamak have been produced by combining the benefits of a hollow or weakly sheared central current profile with a high confinement (H-mode) edge. In these discharges, low power neutral beam injection heats the electrons during the initial current ramp, and open-quotes freezes inclose quotes a hollow or flat central current profile. When the neutral beam power is increased, formation of a region of reduced transport and highly peaked profiles in the core often results. Shortly before these plasmas would otherwise disrupt, a transition is triggered from the low (L-mode) to high (H-mode) confinement regimes, thereby broadening the pressure profile and avoiding the disruption. These plasmas continue to evolve until the high performance phase is terminated nondisruptively at much higher β T (ratio of plasma pressure to toroidal magnetic field pressure) than would be attainable with peaked profiles and an L-mode edge. Transport analysis indicates that in this phase, the ion diffusivity is equivalent to that predicted by Chang-Hinton neoclassical theory over the entire plasma volume. This result is consistent with suppression of turbulence by locally enhanced E x B flow shear, and is supported by observations of reduced fluctuations in the plasma. Calculations of performance in these discharges extrapolated to a deuterium-tritium fuel mixture indicates that such plasmas could produce a DT fusion gain Q DT = 0.32

  9. Weak Satiety Responsiveness Is a Reliable Trait Associated with Hedonic Risk Factors for Overeating among Women

    Directory of Open Access Journals (Sweden)

    Michelle Dalton

    2015-09-01

    Full Text Available Some individuals exhibit a weak satiety response to food and may be susceptible to overconsumption. The current study identified women showing consistently low or high satiety responses to standardised servings of food across four separate days and compared them on behavioural, psychological and physiological risk factors for overeating and future weight gain. In a crossover design, 30 female participants (age: 28.0 ± 10.6; body mass index (BMI: 23.1 ± 3.0 recorded sensations of hunger in the post-prandial period following four graded energy level breakfasts. Satiety quotients were calculated to compare individuals on satiety responsiveness across conditions. Body composition, resting metabolic rate (RMR, energy intake, food reward and craving, and eating behaviour traits were assessed under controlled laboratory conditions. A distinct low satiety phenotype (LSP was identified with good consistency across separate study days. These individuals had a higher RMR, greater levels of disinhibition and reported feeling lower control over food cravings. Further, they consumed more energy and exhibited greater wanting for high-fat food. The inverse pattern of characteristics was observed in those exhibiting a consistently high satiety phenotype (HSP. Weak satiety responsiveness is a reliable trait identifiable using the satiety quotient. The LSP was characterised by distinct behavioural and psychological characteristics indicating a risk for overeating, compared to HSP.

  10. Closing in on the radiative weak chiral couplings

    Science.gov (United States)

    Cappiello, Luigi; Catà, Oscar; D'Ambrosio, Giancarlo

    2018-03-01

    We point out that, given the current experimental status of radiative kaon decays, a subclass of the O (p^4) counterterms of the weak chiral lagrangian can be determined in closed form. This involves in a decisive way the decay K^± → π ^± π ^0 l^+ l^-, currently being measured at CERN by the NA48/2 and NA62 collaborations. We show that consistency with other radiative kaon decay measurements leads to a rather clean prediction for the {O}(p^4) weak couplings entering this decay mode. This results in a characteristic pattern for the interference Dalitz plot, susceptible to be tested already with the limited statistics available at NA48/2. We also provide the first analysis of K_S→ π ^+π ^-γ ^*, which will be measured by LHCb and will help reduce (together with the related K_L decay) the experimental uncertainty on the radiative weak chiral couplings. A precise experimental determination of the {O}(p^4) weak couplings is important in order to assess the validity of the existing theoretical models in a conclusive way. We briefly comment on the current theoretical situation and discuss the merits of the different theoretical approaches.

  11. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekara, Nirosha [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada); Sykes, Brian, E-mail: brian.sykes@ualberta.ca [Department of Biochemistry, 4-19B Medical Sciences Bldg., University of Alberta Edmonton, Alberta, Canada T6G 2H7 (Canada); Hugh, Judith, E-mail: judithh@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this

  12. Magnetic Resonance Enhancement Patterns at the Different Ages of Symptomatic Osteoporotic Vertebral Compression Fractures

    Energy Technology Data Exchange (ETDEWEB)

    You, Ja Yeon; Lee, Joon Woo; Kim, Jung Eun; Kang, Heung Sik [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2013-06-15

    To investigate the magnetic resonance (MR) enhancement patterns of symptomatic osteoporotic vertebral compression fracture (VCF) according to the fracture age, based on the successful single-level percutaneous vertebroplasty (PVP) cases. The study included 135 patients who underwent contrast-enhanced MR imaging and successful PVP from 2005 to 2010 due to a single- level osteoporotic VCF. Two radiologists blinded to the fracture age evaluated the MR enhancement patterns in consensus. The MR enhancement patterns were classified according to the enhancing proportion to the vertebral height and the presence or extent of a non-enhancing cleft within the enhancing area on sagittal plane. The Fisher' exact test, Kruskal-Wallis test and Mann-Whitney U test were performed to assess the differences in the MR enhancement patterns according to the fracture age. Symptomatic VCFs show variable MR enhancement patterns in all fracture ages. A diffuse enhancing area can be seen in not only the hyperacute and acute VCFs but also the chronic symptomatic VCFs. Symptomatic VCFs having a segmental enhancing area were all included in the hyperacute or acute stage. Most symptomatic osteoporotic VCFs had a non-enhancing cleft in the enhanced vertebral body (128/135, 94.8%). There was no statistical difference of the enhancement pattern according to the fracture age. Symptomatic VCFs show variable MR enhancement patterns in all fracture ages. The most common pattern is a non-enhancing cleft within a diffuse enhanced vertebra.

  13. Magnetic Resonance Enhancement Patterns at the Different Ages of Symptomatic Osteoporotic Vertebral Compression Fractures

    International Nuclear Information System (INIS)

    You, Ja Yeon; Lee, Joon Woo; Kim, Jung Eun; Kang, Heung Sik

    2013-01-01

    To investigate the magnetic resonance (MR) enhancement patterns of symptomatic osteoporotic vertebral compression fracture (VCF) according to the fracture age, based on the successful single-level percutaneous vertebroplasty (PVP) cases. The study included 135 patients who underwent contrast-enhanced MR imaging and successful PVP from 2005 to 2010 due to a single- level osteoporotic VCF. Two radiologists blinded to the fracture age evaluated the MR enhancement patterns in consensus. The MR enhancement patterns were classified according to the enhancing proportion to the vertebral height and the presence or extent of a non-enhancing cleft within the enhancing area on sagittal plane. The Fisher' exact test, Kruskal-Wallis test and Mann-Whitney U test were performed to assess the differences in the MR enhancement patterns according to the fracture age. Symptomatic VCFs show variable MR enhancement patterns in all fracture ages. A diffuse enhancing area can be seen in not only the hyperacute and acute VCFs but also the chronic symptomatic VCFs. Symptomatic VCFs having a segmental enhancing area were all included in the hyperacute or acute stage. Most symptomatic osteoporotic VCFs had a non-enhancing cleft in the enhanced vertebral body (128/135, 94.8%). There was no statistical difference of the enhancement pattern according to the fracture age. Symptomatic VCFs show variable MR enhancement patterns in all fracture ages. The most common pattern is a non-enhancing cleft within a diffuse enhanced vertebra.

  14. On the regularity criterion of weak solutions for the 3D MHD equations

    Science.gov (United States)

    Gala, Sadek; Ragusa, Maria Alessandra

    2017-12-01

    The paper deals with the 3D incompressible MHD equations and aims at improving a regularity criterion in terms of the horizontal gradient of velocity and magnetic field. It is proved that the weak solution ( u, b) becomes regular provided that ( \

  15. Dynamic and biocompatible thermo-responsive magnetic hydrogels that respond to an alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Crippa, Federica; Moore, Thomas L.; Mortato, Mariangela; Geers, Christoph; Haeni, Laetitia [Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg (Switzerland); Hirt, Ann M. [Institute for Geophysics, ETH Zurich, Sonneggstrasse 5, CH-8092 Zurich (Switzerland); Rothen-Rutishauser, Barbara [Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg (Switzerland); Petri-Fink, Alke, E-mail: alke.fink@unifr.ch [Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg (Switzerland); Chemistry Department, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg Switzerland (Switzerland)

    2017-04-01

    Magnetic thermo-responsive hydrogels are a new class of materials that have recently attracted interest in biomedicine due to their ability to change phase upon magnetic stimulation. They have been used for drug release, magnetic hyperthermia treatment, and can potentially be engineered as stimuli-responsive substrates for cell mechanobiology. In this regard, we propose a series of magnetic thermo-responsive nanocomposite substrates that undergo cyclical swelling and de-swelling phases when actuated by an alternating magnetic field in aqueous environment. The synthetized substrates are obtained with a facile and reproducible method from poly-N-isopropylacrylamide and superparamagnetic iron oxide nanoparticles. Their conformation and the temperature-related, magnetic, and biological behaviors were characterized via scanning electron microscopy, swelling ratio analysis, vibrating sample magnetometry, alternating magnetic field stimulation and indirect viability assays. The nanocomposites showed no cytotoxicity with fibroblast cells, and exhibited swelling/de-swelling behavior near physiological temperatures (around 34 °C). Therefore these magnetic thermo-responsive hydrogels are promising materials as stimuli-responsive substrates allowing the study of cell-behavior by changing the hydrogel properties in situ. - Highlights: • A magnetic thermo-responsive hydrogel for mechanobiology is proposed. • Hydrogels change phase upon magnetic stimulation near physiological temperature. • Phase changes are reversible and triggered in an aqueous environment. • The hydrogels are biocompatible for murine fibroblast cells.

  16. Ultrafast magnetization dynamics in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morandi, O [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France); Hervieux, P-A; Manfredi, G [Institut de Physique et Chimie des Materiaux de Strasbourg, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: morandi@dipmat.univpm.it

    2009-07-15

    We present a dynamical model that successfully explains the observed time evolution of the magnetization in diluted magnetic semiconductor quantum wells after weak laser excitation. Based on the pseudo-fermion formalism and a second-order many-particle expansion of the exact p-d exchange interaction, our approach goes beyond the usual mean-field approximation. It includes both the sub-picosecond demagnetization dynamics and the slower relaxation processes that restore the initial ferromagnetic order in a nanosecond timescale. In agreement with experimental results, our numerical simulations show that, depending on the value of the initial lattice temperature, a subsequent enhancement of the total magnetization may be observed within the timescale of a few hundred picoseconds.

  17. Neutrino-heated winds from millisecond protomagnetars as sources of the weak r-process

    Science.gov (United States)

    Vlasov, Andrey D.; Metzger, Brian D.; Lippuner, Jonas; Roberts, Luke F.; Thompson, Todd A.

    2017-06-01

    We explore heavy element nucleosynthesis in neutrino-driven winds from rapidly rotating, strongly magnetized protoneutron stars ('millisecond protomagnetars') for which the magnetic dipole is aligned with the rotation axis, and the field is assumed to be a static force-free configuration. We process the protomagnetar wind trajectories calculated by Vlasov, Metzger & Thompson through the r-process nuclear reaction network SkyNet using contemporary models for the evolution of the wind electron fraction during the protoneutron star cooling phase. Although we do not find a successful second or third-peak r-process for any rotation period P, we show that protomagnetars with P ˜ 1-5 ms produce heavy element abundance distributions that extend to higher nuclear mass number than from otherwise equivalent spherical winds (with the mass fractions of some elements enhanced by factors of ≳100-1000). The heaviest elements are synthesized by outflows emerging along flux tubes that graze the closed zone and pass near the equatorial plane outside the light cylinder. Due to dependence of the nucleosynthesis pattern on the magnetic field strength and rotation rate of the protoneutron star, natural variations in these quantities between core collapse events could contribute to the observed diversity of the abundances of weak r-process nuclei in metal-poor stars. Further diversity, including possibly even a successful third-peak r-process, could be achieved for misaligned rotators with non-zero magnetic inclination with respect to the rotation axis. If protomagnetars are central engines for GRBs, their relativistic jets should contain a high-mass fraction of heavy nuclei of characteristic mass number \\bar{A}≈ 100, providing a possible source for ultrahigh energy cosmic rays comprised of heavy nuclei with an energy spectrum that extends beyond the nominal Grezin-Zatsepin-Kuzmin cut-off for protons or iron nuclei.

  18. GIP-(3-42) does not antagonize insulinotropic effects of GIP at physiological concentrations

    DEFF Research Database (Denmark)

    Deacon, Carolyn F; Plamboeck, Astrid; Rosenkilde, Mette M

    2006-01-01

    Glucose-dependent insulinotropic polypeptide [GIP-(1-42)] is degraded by dipeptidyl peptidase IV (DPP IV), forming GIP-(3-42). In mice, high concentrations of synthetic GIP-(3-42) may function as a GIP receptor antagonist, but it is unclear whether this occurs at physiological concentrations...... GIP, GIP-(3-42) behaved as a weak antagonist (IC(50), 92 and 731 nM for inhibition of cAMP accumulation elicited by 10 pM and 1 nM native GIP, respectively). In the isolated perfused rat pancreas, GIP-(3-42) alone had no effect on insulin output and only reduced the response to GIP (1 nM) when......-42) can weakly antagonize cAMP accumulation and insulin output in vitro, it does not behave as a physiological antagonist in vivo....

  19. Magnetic Nanostructures Patterned by Self-Organized Materials

    Science.gov (United States)

    2016-01-05

    Palma , J. Escrig, J. C. Denardin Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires Journal of...J. L. Palma , C. Gallardo, L. Spinu, J. M. Vargas, L. S. Dorneles, J. C. Denardin, J. Escrig, Magnetic properties of Fe20 Ni80 antidots: Pore size and...array disorder, Journal of Magnetism and Magnetic Materials., 344, 2013, 8-13 7. E. Vargas, P. Toro, J.L. Palma , J. Escrig, C. Chaneac,

  20. Helimagnetism and weak ferromagnetism in edge-shared chain cuprates

    International Nuclear Information System (INIS)

    Drechsler, S.-L.; Richter, J.; Kuzian, R.; Malek, J.; Tristan, N.; Buechner, B.; Moskvin, A.S.; Gippius, A.A.; Vasiliev, A.; Volkova, O.; Prokofiev, A.; Rakoto, H.; Broto, J.-M.; Schnelle, W.; Schmitt, M.; Ormeci, A.; Loison, C.; Rosner, H.

    2007-01-01

    The present understanding of a novel growing class of chain cuprates with intriguing magnetic properties is reviewed. Among them, several undoped edge-shared CuO 2 chain compounds show at low temperature a clear tendency to helicoidal magnetical ordering with acute pitch angles and sometimes also to weak ferromagnetism. Our analysis is based on the isotropic 1D frustrated J 1 -J 2 Heisenberg model with ferromagnetic (FM) 1st neighbor and antiferromagnetic 2nd neighbor exchange. The achieved assignment is supported by microscopic calculations of the electronic and magnetic structure. We consider Na(Li)Cu 2 O 2 , LiVCuO 4 as the best studied helimagnets, Li 2 ZrCuO 4 and other systems close to a FM quantum critical point, as well as Li 2 CuO 2 with FM inchain ordering. The interplay of frustrated inchain couplings, anisotropy and interchain exchange is discussed

  1. Plasma flow measurement using directional Langmuir probe under weakly ion-magnetized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Kenichi; Okamoto, Atsushi [Graduate School of Science, Nagoya Univ., Nagoya (Japan); Yoshimura, Shinji; Tanaka, Masayoshi Y. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2000-07-01

    It is both experimentally and theoretically demonstrated that ion flow velocity at an arbitrary angle with respect to the magnetic field can be measured with a directional Langmuir probe. Based on the symmetry argument, we show that the effect of magnetic field on directional probe current is exactly canceled in determining the ion flow velocity, and obtain the generalized relation between flow velocity and directional probe currents valid for any flowing direction. The absolute value of the flow velocity is determined by an in situ calibration method of the probe. The applicability limit of the present method to a strongly ion-magnetized plasma is experimentally examined. (author)

  2. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.

    Science.gov (United States)

    Pandey, Rachna; Vischer, Norbert O E; Smelt, Jan P P M; van Beilen, Johan W A; Ter Beek, Alexander; De Vos, Winnok H; Brul, Stanley; Manders, Erik M M

    2016-11-01

    Intracellular pH (pH i ) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pH i homeostasis. Unfortunately, accurate pH i quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pH i at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pH i in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pH i and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pH i regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous growth

  3. Magnetism of nakhlites and chassignites

    Science.gov (United States)

    Cisowski, S. M.

    1985-01-01

    Hysteresis measurements on three shergottite and two nakhlite meteorites indicate single domain grain size behavior for the highly shocked Shergotty, Zagami, and EETA 79001 meteorites, with more multidomain-like behavior for the unshocked Nakhla and Governador Valadares meteorites. High viscosity and initial susceptibility for Antarctic shergottite ALHA 7705 indicate the presence of superparamagnetic grains in this specimen. Thermomagnetic analysis indicate Shergotty and Zagami as the least initially oxidized, while EETA 79001 appears to be the most oxidized. Cooling of the meteorite samples from high temperature in air results in a substantial increase in magnetization due to the production of magnetite through oxidation exsolution of titanomagnetite. However, vacuum heating substantially suppresses this process, and in the case of EETA 79001 and Nakhla, results in a rehomogenization of the titanomagnetite grains. Remanence measurements on several subsamples of Shergotty and Zagami meteorites reveal a large variation in intensity that does not seem related to the abundance of remanence carriers. The other meteorites carry only weak remanence, suggesting weak magnetizing fields as the source of their magnetic signal. The meteorites' weak field environment is consistent with Martian or asteroidal body origin but inconsistent with terrestrial origin.

  4. Epitaxial patterning of nanometer-thick Y3Fe5O12 films with low magnetic damping.

    Science.gov (United States)

    Li, Shaozhen; Zhang, Wei; Ding, Junjia; Pearson, John E; Novosad, Valentine; Hoffmann, Axel

    2016-01-07

    Magnetic insulators such as yttrium iron garnet, Y3Fe5O12, with extremely low magnetic damping have opened the door for low power spin-orbitronics due to their low energy dissipation and efficient spin current generation and transmission. We demonstrate here reliable and efficient epitaxial growth and nanopatterning of Y3Fe5O12 thin-film based nanostructures on insulating Gd3Ga5O12 substrates. In particular, our fabrication process is compatible with conventional sputtering and lift-off, and does not require aggressive ion milling which may be detrimental to the oxide thin films. Their structural and magnetic properties indicate good qualities, in particular low magnetic damping of both films and patterned structures. The dynamic magnetic properties of the nanostructures are systematically investigated as a function of the lateral dimension. By comparing with ferromagnetic nanowire structures, a distinct edge mode in addition to the main mode is identified by both experiments and simulations, which also exhibit cross-over with the main mode upon varying the width of the wires. The non-linear evolution of dynamic modes over nanostructural dimensions highlights the important role of size confinement to their material properties in magnetic devices where Y3Fe5O12 nanostructures serve as the key functional component.

  5. Hadron physics studied at TJNAF with the electro-magnetic and weak probes

    International Nuclear Information System (INIS)

    Kox, S.

    2005-01-01

    This contribution presents general features of the hadron physics program developed at the Thomas Jefferson Laboratory. This is made using the EM and Weak probes provided by the electron beams of the CEBAF accelerator and address mostly the non-perturbative regime of QCD. (author)

  6. Proximal muscle weakness as a result of osteomalacia associated with celiac disease: a case report.

    Science.gov (United States)

    Oz, B; Akan, O; Kocyigit, H; Gürgan, H A

    2016-02-01

    A 24-year-old woman suffering from back and hip pain with difficulty in walking was reported. She had proximal muscle weakness. Laboratory findings led to the diagnosis of osteomalacia. Positivity of antibodies strengthened suspicion of celiac disease. In patients with proximal muscle weakness, osteomalacia should be considered in differential diagnosis even in a young woman. A 24-year-old woman suffering from back pain, bilateral hip pain, and difficulty in walking was reported. Her symptoms had started in the first trimester of pregnancy. In her physical examination, proximal muscle weakness and waddling gait pattern were determined. Her lumbar spine and hip MRI revealed no obvious pathological findings. Electromyography showed a myophatic pattern. Physical examination, normal values of creatine kinase, and muscle biopsy were supplied to exclude the diagnosis of primer muscle diseases. Laboratory findings led to the diagnosis of osteomalacia with normal renal function. Gastrointestinal symptoms and positivity of anti-gliadin and anti-endomysium antibodies strengthened the suspicion of celiac disease as a cause of the osteomalacia. The diagnosis of celiac disease was confirmed with duodenal mucosal biopsy. In patients with proximal muscle weakness and waddling gait pattern, osteomalacia should be considered in differential diagnosis even in a young woman and underlying disease should be investigated.

  7. Upper critical magnetic field of superconducting films with magnetic impurities

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1978-01-01

    The upper critical magnetic field, H/sub c2/(T), of In-Mn and Pb-Mn alloy films was measured. H/sub c2/ was determined from the resistance of the films. The results were compared with the theory of Fulde and Maki. This theory assumes that the electron-phonon coupling is weak, and that the interaction between the impurity spins and the conduction electron spins is weak. The theory predicts that the pair-breaking effect of the magnetic impurities is temperature-independent, and that the pair-breaking effects of the magnetic impurities and the applied magnetic field are additive. Furthermore, it predicts explicitly the temperature dependence of H/sub c2/. The temperature dependence of H/sub c2/ for the In-Mn alloy films is well described by the Fulde-Maki theory, despite the moderately strong electron-phonon coupling and the strong interaction between the impurity spins and the conduction electron spins. The temperature dependence of H/sub c2/ for the Pb-Mn alloy films is not well described by the Fulde-Maki theory, probably due to the strong electron-phonon coupling in Pb. However, even without a quantitatively correct theory, one can conclude from the Pb-Mn data that the pair-breaking effect of the magnetic impurities is temperature independent, and that the pair-breaking effects of the magnetic impurities and the applied magnetic field are additive. For some of the Pb-Mn alloy films, there was a region of positive curvature in H/sub c2/(T) near the zero-field transition temperature. This positive curvature is not understood

  8. Magnetic resonance imaging of the pituitary adenoma: Analysis of the enhancement patterns

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ik; Choi, Woo Suk; Shin, In Soo; Ryu, Kyung Nam; Yoon, Yup [Kyung Hee University Hospital, Seoul (Korea, Republic of)

    1993-11-15

    The magnetic resonance images (MRI) of 30 patients with surgically or biochemically confirmed pituitary adenomas (20 macroadenomas, 10 microadenomas) were retrospectively evaluated. Ten patients had hyperprolactinaemia, another eight had acromegaly, another eight had nonfunctioning adenoma and four had cushing disease. The examinations were performed at a1.5 T superconducting MR system using a multisection spin-echo technique with 3 mm thick sections and a 256 X 224 matrix. TI weighted sagittal and coronal images were obtained before and within 30 minutes after the administration of Gd-DTPA (0.1 mmol/kg). Analysis of the MRI was focused on the signal intensity and enhancement patterns of the pituitary adenoma before and after Gd-DTPA administration. Compared with endocrinological diagnosis, macroadenoma showed heterogeneous enhancement in 55%, rim enhancement in 35% and homogeneous enhancement in 10%. Conclusively, the enhancement patterns of the pituitary adenoma did not correlate with the subtypes made according to hormone production.

  9. Observation of Ion Acoustic Waves Excited by Drift Waves in a Weakly Magnetized Plasma

    International Nuclear Information System (INIS)

    Tsukabayashi, Isao; Sato, Sugiya; Nakamura, Yoshiharu

    2003-01-01

    Spontaneous fluctuations excited by drift waves are investigated experimentally in magnetic multi-pole plasma. The magnetic multi-pole has been widely used in DP devices and so on. It was observed that the high level of density fluctuations was generated by the drift instability near a magnetic multi-pole or a dipole magnet. The waves propagate to the middle plasma region forming the envelope train waves

  10. Network Physiology: How Organ Systems Dynamically Interact

    Science.gov (United States)

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  11. Network Physiology: How Organ Systems Dynamically Interact.

    Science.gov (United States)

    Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  12. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Klein, Richard I.; McKee, Christopher F.; Krumholz, Mark R.; Teyssier, Romain

    2012-01-01

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of ∼2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of ∼0.2 β 1/2 compared to the Bondi value, where β is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  13. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Andrew J.; Klein, Richard I. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McKee, Christopher F. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 94560 (United States); Teyssier, Romain, E-mail: ajcunn@gmail.com [Service d' Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  14. Magnetic nanoparticles in different biological environments analyzed by magnetic particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Löwa, Norbert, E-mail: norbert.loewa@ptb.de; Seidel, Maria; Radon, Patricia; Wiekhorst, Frank

    2017-04-01

    Quantification of magnetic iron oxide nanoparticles (MNP) in biological systems like cells, tissue, or organs is of vital importance for development of novel biomedical applications, e.g. magnetofection, drug targeting or hyperthermia. Among others, the recently developed magnetic measurement technique magnetic particle spectroscopy (MPS) provides signals that are specific for MNP. MPS is based on the non–linear magnetic response of MNP exposed to a strong sinusoidal excitation field of up to 25 mT amplitude and 25 kHz frequency. So far, it has been proven a powerful tool for quantification of MNP in biological systems. In this study we investigated in detail the influence of typical biological media on the magnetic behavior of different MNP systems by MPS. The results reveal that amplitude and shape (ratio of harmonics) of the MPS spectra allow for perceptively monitoring changes in MNP magnetism caused by different physiological media. Additionally, the observed linear correlation between MPS amplitude and shape alterations can be used to reduce the quantification uncertainty for MNP suspended in a biological environment. - Highlights: • MPS signal amplitude: allows for MNP quantification in physiological environment. • MPS signal shape: specifically detects changes due to MNP interaction. • Correlation between changes in MPS amplitude and shape were found. • MPS signal (shape/amplitude) correlation allow for a quantification correction. • Reliable quantification result if the dynamic magnetic behavior of MNP do not change.

  15. Eckhaus and Benjamin-Feir instabilities near a weakly inverted bifurcation

    International Nuclear Information System (INIS)

    Brand, H.R.; Deissler, R.J.

    1992-01-01

    We investigate how the criteria for two prototype instabilities in one-dimensional pattern-forming systems, namely for the Eckhaus instability and for the Benjamin-Feir instability, change as one goes from a continuous bifurcation to a spatially periodic or spatially and/or time-periodic state to the corresponding weakly inverted, i.e., hysteretic, cases. We also give the generalization to two-dimensional patterns in systems with anisotropy as they arise, for example, for hydrodynamic instabilities in nematic liquid crystals

  16. Magnetization process in antiferromagnetic EuPdIn

    International Nuclear Information System (INIS)

    Ito, T.; Nishigori, S.; Hiromitsu, I.

    1998-01-01

    Magnetization and magnetic susceptibility measurements have been m[e on EuPdIn single crystals. Isothermal magnetization curves measured along the a-, b- and c-axis exhibit three anomalies at the maximum. The phase diagrams determined by the critical fields are explained by the molecular field theory in weak magnetocrystalline anisotropy. (orig.)

  17. Transport of plasma across a braided magnetic field

    International Nuclear Information System (INIS)

    Stix, T.H.

    1976-10-01

    Transport rates are calculated for a plasma immersed in a region through which magnetic lines of force meander in a stochastic fashion and in which the magnetic surfaces are destroyed. Such a magnetic condition, termed magnetic braiding, may be brought about by asymmetric magnetic perturbations, perhaps quite weak, which typically produce overlap of two sets of magnetic islands. Plasma transport is calculated for this environment, using both a fluid and a kinetic drift model. The latter gives an appreciably higher rate, namely, a fast-particle diffusion coefficient equal to ( 1 / 2 )D/sub M/ [absolute value of v/sub ''/], where D/sub M/ is the coefficient of spatial diffusion for the magnetic lines of force. Correction terms, due to polarization-associated E/sub ''/ fields, are small unless components of the braiding field resonate with ion-acoustic or drift waves. Insertion of a Bhatnager--Gross--Krook collision term shows the diffusion rate is unaffected by weak collisions. Diffusion due to magnetic braiding is of interest for tokamaks, particularly with respect to enhanced electron heat transport, enhanced current penetration, plasma disruption, and internal sawtooth oscillations

  18. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  19. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  20. Measurements of weak conversion lines

    International Nuclear Information System (INIS)

    Feoktistov, A.I.; Frantsev, Yu.E.

    1979-01-01

    Described is a new methods for measuring weak conversion lines with the help of the β spectrometer of the π √ 2 type which permits to increase the reliability of the results obtained. According to this method the measurements were carried out by short series with the storage of the information obtained on the punched tape. The spectrometer magnetic field was stabilized during the measuring of the conversion spectra with the help of three nmr recorders. Instead of the dependence of the pulse calculation rate on the magnetic field value was measured the dependence of the calculation rate on the value of the voltage applied between the source and the spectrometer chamber. A short description of the automatic set-up for measuring conversion lines according to the method proposed is given. The main set-up elements are the voltage multiplexer timer, printer, scaler and the pulse analyzer. With the help of the above methods obtained is the K 1035, 8 keV 182 Ta line. It is obtained as a result of the composition of 96 measurement series. Each measurement time constitutes 640 s 12 points are taken on the line

  1. Effect of divalent (Sr, Ba) doping on the structural and magnetic properties of BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Rangi, Manisha, E-mail: mrangi100@gmail.com; Sanghi, Sujata; Agarwal, Ashish; Jangra, Sandhaya; Singh, Ompal [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar, Haryana- 125001 (India)

    2015-06-24

    The effect of divalent substitution on the crystal structure and magnetic properties of BiFeO{sub 3} has been investigated using X-ray diffraction and magnetic measurements technique. Single phase Bi{sub 0.8}A{sub 0.2}FeO{sub 3} (A= Sr, Ba) multiferroics have been synthesized by solid state reaction method. Rietveld analysis of the XRD patterns revealed that the prepared ceramics exhibit rhombohedral structure with space group R3c. M–H hysteresis loops were recorded at 5K revealed that Sr and Ba substitution transformed antiferromagnetic BiFeO3 into weak ferromagnetic. The enhanced magnetization with Sr and Ba addition is confirmed by the MT curve recorded at 1T. It is closely related to intrinsic structural distortion and modification of the antiparallel spin structure.

  2. New approach to nonleptonic weak interactions. I. Derivation of asymptotic selection rules for the two-particle weak ground-state-hadron matrix elements

    International Nuclear Information System (INIS)

    Tanuma, T.; Oneda, S.; Terasaki, K.

    1984-01-01

    A new approach to nonleptonic weak interactions is presented. It is argued that the presence and violation of the Vertical BarΔIVertical Bar = 1/2 rule as well as those of the quark-line selection rules can be explained in a unified way, along with other fundamental physical quantities [such as the value of g/sub A/(0) and the smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic flavor SU(N) symmetry is secured levelwise for a certain class of chiral algebras in the standard QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements of nonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak matrix elements the asymptotic Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart for the ground-state hadrons, while for strong matrix elements quark-line-like approximate selection rules. However, for the less important weak two-particle vertices involving higher excited states, the Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart are in general violated, providing us with an explicit source of the violation of these selection rules in physical processes

  3. Automatic physiological waveform processing for FMRI noise correction and analysis.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2008-03-01

    Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.

  4. Hall effect driven by non-collinear magnetic polarons in diluted magnetic semiconductors

    Science.gov (United States)

    Denisov, K. S.; Averkiev, N. S.

    2018-04-01

    In this letter, we develop the theory of Hall effect driven by non-collinear magnetic textures (topological Hall effect—THE) in diluted magnetic semiconductors (DMSs). We show that a carrier spin-orbit interaction induces a chiral magnetic ordering inside a bound magnetic polaron (BMP). The inner structure of non-collinear BMP is controlled by the type of spin-orbit coupling, allowing us to create skyrmion- (Rashba) or antiskyrmion-like (Dresselhaus) configurations. The asymmetric scattering of itinerant carriers on polarons leads to the Hall response which exists in weak external magnetic fields and at low temperatures. We point out that DMS-based systems allow one to investigate experimentally the dependence of THE both on a carrier spin polarization and on a non-collinear magnetic texture shape.

  5. Consumable Process Development for Chemical Mechanical Planarization of Bit Patterned Media for Magnetic Storage Fabrication

    Science.gov (United States)

    Bonivel, Joseph T., Jr.

    2010-09-01

    As the superparamagnetic limit is reached, the magnetic storage industry looks to circumvent the barrier by implementing patterned media (PM) as a viable means to store and access data. Chemical mechanical polishing (CMP) is a semiconductor fabrication technique used to planarize surfaces and is investigated as a method to ensure that the PM is polished to surface roughness parameters that allow the magnetic read/write head to move seamlessly across the PM. Results from this research have implications in feasibility studies of utilizing CMP as the main planarization technique for PM fabrication. Benchmark data on the output parameters of the CMP process, for bit patterned media (BPM), based on the machine process parameters, pad properties, and slurry characteristics are optimized. The research was conducted in a systematic manner in which the optimized parameters for each phase are utilized in future phases. The optimum results from each of the phases provide an overall optimum characterization for BPM CMP. Results on the CMP machine input parameters indicate that for optimal surface roughness and material removal, low polish pressures and high velocities should be used on the BPM. Pad characteristics were monitored by non destructive technique and results indicate much faster deterioration of all padcharacteristics versus polish time of BPM when compared to IC CMP. The optimum pad for PM polishing was the IC 1400 dual layer Suba V pad with a shore hardness of 57, and a k-groove pattern. The final phase of polishing evaluated the slurry polishing properties and novel nanodiamond (ND) slurry was created and benchmarked on BPM. The resulting CMP output parameters were monitored and neither the ND slurry nor the thermally responsive polymer slurry performed better than the commercially available Cabot iCue slurry for MRR or surface roughness. Research results indicate CMP is a feasible planarization technique for PM fabrication, but successful implementation of CMP

  6. Patterns of magnetic field merging sites on the magnetopause

    International Nuclear Information System (INIS)

    Luhmann, J.G.; Walker, R.J.; Russell, C.T.; Crooker, N.U.; Spreiter, J.R.; Stahara, S.S.

    1984-01-01

    Several years ago, Crooker presented a qualitative picture of the merging sites on the magnetopause defined as the points where the magnetospheric and magnetosheath field are antiparallel. However, Cowley pointed out that merging can also occur where these fields are not exactly antiparallel, but merely have antiparallel components. Using realistic models of the magnetosphere and magnetosheath magnetic fields, the angles between the fields at the magnetopause boundary were determined for different interplanetary field orientations, including radial field and Parker spiral field. The results are summarized in Figure 1, which displays contours on the dayside magnetopause (viewed from the sun, i.e., the GSE Y-Z plane projection) of equal value of the cosine of the angle between the magnetospheric and magnetosheath model fields. Only contours with negative values, implying some antiparallel component, are shown. Values at the contours, starting with the contour filled with shading, are -.98, -.95, -.9, -.8, -.7, -.6, -.5, -.4, -.3, -.2, -.1, -.0. The interplanetary field orientations are indicated in vector notation in the lower right corners. In particular, the pattern for a 45 0 cone angle is shown in the fourth diagram in the right hand column and patterns for northward and southward fields occupy the first position in the first column and the second position in the right hand column. These results can be used for comparisons with observed distribution of flux transfer events and for studies of magnetospheric particle leakage

  7. THE HIDDEN MAGNETIC FIELD OF THE YOUNG NEUTRON STAR IN KESTEVEN 79

    International Nuclear Information System (INIS)

    Shabaltas, Natalia; Lai Dong

    2012-01-01

    Recent observations of the central compact object in the Kesteven 79 supernova remnant show that this neutron star (NS) has a weak dipole magnetic field (a few × 10 10 G) but an anomalously large (∼64%) pulse fraction in its surface X-ray emission. We explore the idea that a substantial sub-surface magnetic field exists in the NS crust, which produces diffuse hot spots on the stellar surface due to anisotropic heat conduction, and gives rise to the observed X-ray pulsation. We develop a general-purpose method, termed 'Temperature Template with Full Transport' (TTFT), that computes the synthetic pulse profile of surface X-ray emission from NSs with arbitrary magnetic field and surface temperature distributions, taking into account magnetic atmosphere opacities, beam pattern, vacuum polarization, and gravitational light bending. We show that a crustal toroidal magnetic field of order a few × 10 14 G or higher, varying smoothly across the crust, can produce sufficiently distinct surface hot spots to generate the observed pulse fraction in the Kes 79 NS. This result suggests that substantial sub-surface magnetic fields, much stronger than the 'visible' dipole fields, may be buried in the crusts of some young NSs, and such hidden magnetic fields can play an important role in their observational manifestations. The general TTFT tool we have developed can also be used for studying radiation from other magnetic NSs.

  8. Effects of intense magnetic fields on sedimentation pattern and gene expression profile in budding yeast

    Science.gov (United States)

    Ikehata, Masateru; Iwasaka, Masakazu; Miyakoshi, Junji; Ueno, Shoogo; Koana, Takao

    2003-05-01

    Effects of magnetic fields (MFs) on biological systems are usually investigated using biological indices such as gene expression profiles. However, to precisely evaluate the biological effects of MF, the effects of intense MFs on systematic material transport processes including experimental environment must be seriously taken into consideration. In this study, a culture of the budding yeast, Saccharomyces cerevisiae, was used as a model for an in vitro biological test system. After exposure to 5 T static vertical MF, we found a difference in the sedimentation pattern of cells depending on the location of the dish in the magnet bore. Sedimented cells were localized in the center of the dish when they were placed in the lower part of the magnet bore while the sedimentation of the cells was uniform in dishes placed in the upper part of the bore because of the diamagnetic force. Genome wide gene expression profile of the yeast cells after exposure to 5 T static MF for 2 h suggested that the MF did not affect the expression level of any gene in yeast cells although the sedimentation pattern was altered. In addition, exposure to 10 T for 1 h and 5 T for 24 h also did not affect the gene expression. On the other hand, a slight change in expressions of several genes which are related to respiration was observed by exposure to a 14 T static MF for 24 h. The necessity of estimating the indirect effects of MFs on a study of its biological effect of MF in vitro will be discussed.

  9. Magnetic activity at Mars - Mars Surface Magnetic Observatory

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Menvielle, M.; Merayo, José M.G.

    2012-01-01

    , and use this to provide an estimate of the expected magnetic disturbances at the Martian surface. Far from crustal anomaly regions the expected magnetic disturbances originating from currents associated with the induced magnetosphere are very weak at the day-side, but most likely larger on the night...... around medium intensity radial anomalies in the equatorial region appear to derive from local current loops or vortices around cusp-like radial fields, acting to partly cancel the crustal field. The radial perturbation is further found to depend on upstream solar wind dynamic pressure. We define...

  10. A field study on heavy metals phytoattenuation potential of monocropping and intercropping of maize and/or legumes in weakly alkaline soils.

    Science.gov (United States)

    Zhu, Saiyong; Ma, Xinwang; Guo, Rui; Ai, Shiwei; Liu, Bailin; Zhang, Wenya; Zhang, Yingmei

    2016-10-02

    The study focused on the phytoattenuation effects of monocropping and intercropping of maize (Zea mays) and/or legumes on Cu, Zn, Pb, and Cd in weakly alkaline soils. Nine growth stages of monocropping maize were chosen to study the dynamic process of extraction of heavy metals. The total content of heavy metals extracted by the aerial part of monocropped maize increased in a sigmoidal pattern over the effective accumulative temperature. The biggest biomass, highest extraction content, and lowest heavy metals bioaccumulation level occurred at physiological maturity. Among the different planting patterns, including monocropping and intercropping of maize and/or soybean (Glycine max), pea (Pisum sativum), and alfalfa (Medicago sativa), the extraction efficiency of Cu, Zn, Pb, and Cd varied greatly. Only intercropping of maize and soybean yielded relatively higher extraction efficiency for the four metals with no significant difference in the total biomass. Moreover, the heavy metals concentrations in dry biomass from all the planting patterns in the present study were within China's national legal thresholds for fodder use. Therefore, slightly polluted alkaline soils can be safely used through monocropping and intercropping of maize and/or legumes for a range of purposes. In particular, this study indicated that intercropping improves soil ecosystems polluted by heavy metals compared with monocropping.

  11. Effect of transient annealing on patterned CoFeB-based magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kuo-Ming; Huang, Chao-Hsien; Lin, Shiao-Chi; Wu, Jong-Ching [Department of Physics and Taiwan SPIN Research Center, National Changhua University of Education, Changhua 50007 (China); Kao, Ming-Jer; Tsai, Ming-Jinn [Industrial Technology Research Institute, Hsinchu 31040 (China); Horng, Lance

    2007-12-15

    In this study, the transient annealing effect on the switching behavior of microstructured Co{sub 60}Fe{sub 20}B{sub 20}-based magnetic tunnel junctions has been studied through magnetoresistance measurements (R-H loop). Elliptical shape of devices with long/short axis of 4/2 micrometers was patterned out of sheet film stack of: Ta(20)/PtMn(15)/CoFeB(3)/Al(0.7)-oxide/CoFeB(2)/Ru(8)/Ta(40) (thickness unit in nanometers) after a conventional long time field cooling annealing. The transient annealing was then executed by sample loading into a furnace with pre-set temperatures ranging from 100 to 400 C for only 5 minutes in the absence of any external magnetic field. The vortex-like reverse of free layer in as-etched MTJ evidently changes to single-domain-like reverser after 200{proportional_to}250 C transient annealing. The magnetoresistance was found to increase with increasing annealing temperatures up to 265 C and then slowly decrease at higher annealing temperatures. The transient thermal annealing creates obvious efforts to repair magnetic properties of MTJ cell befor 265 C annealing and results in less damage at temperature of 350 C and 400 C. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Effect of transient annealing on patterned CoFeB-based magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Wu, Kuo-Ming; Huang, Chao-Hsien; Lin, Shiao-Chi; Wu, Jong-Ching; Kao, Ming-Jer; Tsai, Ming-Jinn; Horng, Lance

    2007-01-01

    In this study, the transient annealing effect on the switching behavior of microstructured Co 60 Fe 20 B 20 -based magnetic tunnel junctions has been studied through magnetoresistance measurements (R-H loop). Elliptical shape of devices with long/short axis of 4/2 micrometers was patterned out of sheet film stack of: Ta(20)/PtMn(15)/CoFeB(3)/Al(0.7)-oxide/CoFeB(2)/Ru(8)/Ta(40) (thickness unit in nanometers) after a conventional long time field cooling annealing. The transient annealing was then executed by sample loading into a furnace with pre-set temperatures ranging from 100 to 400 C for only 5 minutes in the absence of any external magnetic field. The vortex-like reverse of free layer in as-etched MTJ evidently changes to single-domain-like reverser after 200∝250 C transient annealing. The magnetoresistance was found to increase with increasing annealing temperatures up to 265 C and then slowly decrease at higher annealing temperatures. The transient thermal annealing creates obvious efforts to repair magnetic properties of MTJ cell befor 265 C annealing and results in less damage at temperature of 350 C and 400 C. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Magnetic domain-wall motion study under an electric field in a Finemet{sup ®} thin film on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ngo Thi [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Mercone, Silvana, E-mail: silvana.mercone@univ-paris13.fr [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Moulin, Johan [Institut d' Electronique Fondamentale, UMR 8622 Université Paris Sud/CNRS, Orsay (France); Bahoui, Anouar El; Faurie, Damien; Zighem, Fatih; Belmeguenai, Mohamed; Haddadi, Halim [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France)

    2015-01-01

    We study the influence of applied in-plane elastic strains on the static magnetic configuration of a 530 nm magnetostrictive FeCuNbSiB (Finemet{sup ®}) thin film. The in-plane strains are induced via the application of a voltage to a piezoelectric actuator on which the film/substrate system was glued. A quantitative characterization of the voltage dependence of the induced-strain at the surface of the film was performed using a digital image correlation technique. Magnetic Force Microscopy (MFM) images at remanence (H=0 Oe and U=0 V) clearly reveal the presence of weak stripe domains. The effect of the voltage-induced strain shows the existence of a voltage threshold value for the strike configuration break. For a maximum strain of ε{sub XX}∼0.5×10{sup −3} we succeed in destabilizing the stripes configuration helping the setting up of a complete homogeneous magnetic pattern. - Highlights: • Elastic strain effect on the magnetic domain structure of a Finemet/Kapton is investigated. • External loading is applied thanks to a piezo-actuator on which the sample is glued. • The amount of strains was measured by the Digital Image Correlation technique. • Magnetic Force Microscopy showed high mobility of magnetic stripes domains. • Bending, curving and branching of domains go into maze-like pattern.

  14. Pattern of magnetic resonance imaging and magnetic resonance venography changes in cerebral venous sinus thrombosis

    International Nuclear Information System (INIS)

    Zafar, A.; Ali, Z.

    2012-01-01

    Background: Cerebral venous sinus thrombosis is a common but highly under-recognised condition, which is missed not only by general practitioners but also by neurologists. Computerised tomography (CT) or magnetic resonance imaging (MRI) of brain alone is not sufficient to diagnose this condition. Objective of this study was to explore the pattern of magnetic resonance imaging (MRI) and magnetic resonance venography (MRV) changes in cerebral venous sinus thrombosis (CVST). Methods: This was a descriptive study in which 52 cases of cerebral venous sinus thrombosis with special emphasis on their MRI and MRV findings were included. The study was conducted in Neurology Unit, Lady Reading Hospital, Peshawar, Pakistan, from January 2010 to July 2011. All patients suffering from cerebral venous sinus thrombosis were included in the study. Multi-planar/multi-sequential, Tesla 1.5 MRI/MRV time of flight images were done in all cases where there was suspicion of cerebral venous sinus thrombosis. Results: Out of 52 patients with cerebral venous sinus thrombosis 41 (78.84%) were female and 11 (21.15%) were male. Mean age was 37+-5 years. Definite risk factors were found in 38 (73.076%) patients with pregnancy, use of oral contraceptives or puerperium being the most frequently found risk factor in 20 (73.076%) patients. Most common complaint was headache found in 41 (78.84%) patients, followed by focal neurological deficits, and altered mental status and seizures. Papilloedema was seen in 20 (38.46%) patients. The cerebral venous sinuses most frequently involved were transverse and sigmoid sinuses in 17 patients (32.69%) while superior sagittal sinus alone in 10 (19.23%) patients. Overall CT brain was normal in 30% and MRI brain in 23.07% patients; however, MRV of these patients revealed CVST. Conclusion: Imaging plays a primary role in the diagnosis of cerebral venous sinus thrombosis because the clinical picture of CVST is non-specific and highly variable. Thrombosis of

  15. Strange magnetism and the anapole structure of the proton

    International Nuclear Information System (INIS)

    Hasty, R.; Beck, D.H.; Danagoulian, A.; Blake, A.; Carr, R.; Covrig, S.; Filipoone, B.W.; Ito, T.M.; Gao, J.; Jones, C.E.; Lee, P.; McKeown, R.D.; Savu, V.; Beise, E.J.; Breuer, H.; Spayde, D.T.; Tieulent, R.; Herda, M.C.; Barkhuff, D.; Dodson, G.; Dow, K.; Farkhondeh, M.; Kowalski, S.; Tsentalovich, E.; Yang, B.; Zwart, T.; Hawthorne-Allen, A.M.; Pitt, M.; Ritter, J.; Korsch, W.; Mueller, B.; Wells, S.P.; Averett, T.; Roche, J.; Kramer, K.

    2000-01-01

    The violation of mirror symmetry in the weak force provides a powerful tool to study the internal structure of the proton. Experimental results have been obtained that address the role of strange quarks in generating nuclear magnetism. The measurement reported here provides an unambiguous constraint on strange quark contributions to the proton's magnetic moment through the electron-proton weak interaction. We also report evidence for the existence of a parity-violating electromagnetic effect known as the anapole moment of the proton. The proton's anapole moment is not yet well understood theoretically, but it could have important implications for precision weak interaction studies in atomic systems such as cesium.

  16. Weak Interaction processes in core-collapse supernova

    International Nuclear Information System (INIS)

    Martinez-Pinedo, Gabriel

    2008-01-01

    In this manuscript we review the role that weak interaction processes play in supernova. This includes electron captures and inelastic neutrino-nucleus scattering (INNS). Electron captures during the collapse occur mainly in heavy nuclei, however the proton contribution is responsible for the convergence of different models to a 'norm' stellar trajectory. Neutrino-nucleus cross sections at supernova neutrino energies can be determined from precise data on the magnetic dipole strength. The results agree well with large-scale shell-model calculations. When incorporated in core-collapse simulations INNS increases the neutrino opacities noticeably and strongly reduces the high-energy part of the supernova spectrum

  17. Faculty perceptions of the strengths, weaknesses and future prospects of the current medical undergraduate experimental physiology curriculum in Gujarat, India.

    Science.gov (United States)

    Paralikar, Swapnil; Shah, Chinmay

    2015-01-01

    Over the past several years, an opinion has emerged in India that the current practical curricula in medical schools fail to meet many of the objectives for which they were instituted. Hence, this study has assessed the perception of physiology faculty members regarding the current experimental physiology curriculum in one Indian state, Gujarat. The faculty were of the opinion that many of the topics currently taught in experimental physiology (amphibian nerve-muscle and heart muscle experiments) were outdated and clinically irrelevant: Therefore, the faculty advocated that duration of teaching time devoted to some of these topics should be reduced and topics with clinical relevance should be introduced at the undergraduate level. The faculty also felt that more emphasis should be laid on highlighting the clinical aspect related to each concept taught in experimental physiology . Moreover, a majority of faculty members were in favour of replacing the current practice in Gujarat of teaching experimental physiology only by explanation of graphs obtained from experiments conducted in the previous years, with computer assisted learning in small groups.

  18. Weak interactions

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    The problem of the use of weak interaction laws to study models of elementary particles is discussed. The most typical examples of weak interaction is beta-decay of nucleons and muons. Beta-interaction is presented by quark currents in the form of universal interaction of the V-A type. Universality of weak interactions is well confirmed using as examples e- and μ-channels of pion decay. Hypothesis on partial preservation of axial current is applicable to the analysis of processes with pion participation. In the framework of the model with four flavours lepton decays of hadrons are considered. Weak interaction without lepton participation are also considered. Properties of neutral currents are described briefly

  19. Weakly clopen functions

    International Nuclear Information System (INIS)

    Son, Mi Jung; Park, Jin Han; Lim, Ki Moon

    2007-01-01

    We introduce a new class of functions called weakly clopen function which includes the class of almost clopen functions due to Ekici [Ekici E. Generalization of perfectly continuous, regular set-connected and clopen functions. Acta Math Hungar 2005;107:193-206] and is included in the class of weakly continuous functions due to Levine [Levine N. A decomposition of continuity in topological spaces. Am Math Mon 1961;68:44-6]. Some characterizations and several properties concerning weakly clopenness are obtained. Furthermore, relationships among weak clopenness, almost clopenness, clopenness and weak continuity are investigated

  20. Flow patterns of GaInSn liquid on inclined stainless steel plate under a range of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan-Cheng, E-mail: yangjc@xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qi, Tian-Yu [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Wang, Zeng-Hui [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China)

    2016-11-01

    Highlights: • The liquid GaInSn metal flow loop was built to study some fusion related liquid metal MHD phenomenon. • The flow patterns of GaInSn free surface flow with the change of Re number and Ha number were got by lot of experiments. • Some detailed descriptions of these flow patterns were also made, and a solid conclusion which agreed with some previous studies was got. - Abstract: In the present paper, some preliminary experimental studies have been conducted to show the flow pattern of liquid metal flow using visualization method. For the convenience of experiments in lab, Ga{sup 67}In{sup 20.5}Sn{sup 12.5} in liquid state at room temperature is used. A test section made by stainless steel is inserted in a traverse magnetic field with strength (B{sub 0}) varies from 0 to 1.28 T. The inclined angle of stainless steel plate in test section is about 9°. Visualization results obtained by high-speed camera (Phantom M/LC 310) shown that GaInSn liquid flow on inclined stainless steel plate behaved unstable liquid column flow pattern in the low flow rate, while behaved large area spreading flow pattern with small waves on the free surface in the large flow rate. However, in the magnetic field, under the action of electromagnetic force, the flow patterns of GaInSn liquid have some significant changes on the spreading width and surface structure of free surface. Some detailed analyses on these changes have been also showed in the present paper. Plans for future work are also presented.

  1. High gradient magnetic separation

    International Nuclear Information System (INIS)

    Prothero, D.H.

    1982-01-01

    In a process in which magnetic material is trapped in a filter disposed in a magnetic field, and is unloaded by passing a fluid through the filter in the absence of the initial magnetic field, the magnetic field is first reduced to an intermediate value to allow unloading of the more weakly magnetic particles, the more strongly magnetic particles being retained and subsequently unloaded by further reduction of the magnetic field. Stage by stage reduction of the magnetic field during unloading allows separation of different species from the mixture. As an example the method can be applied to the separation of uranium compounds from mine ores. The uranium compounds are magnetic, while most of the other constituents of the ore are non-magnetic. The starting material is a suspension of the ore. Water is used for unloading. The filter material in this case is stainless steel balls. (author)

  2. The influence of the magnetic field on the performance of an active magnetic regenerator (AMR)

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Engelbrecht, Kurt

    2011-01-01

    The influence of the time variation of the magnetic field, termed the magnetic field profile, on the performance of a magnetocaloric refrigeration device using the active magnetic regeneration (AMR) cycle is studied for a number of process parameters for both a parallel plate and packed bed...... temperature span and the maximum cooling capacity of 20–40% for both parallel plate and packed bed regenerators. The maximum cooling capacity is shown to depend very weakly on the ramp rate of the magnetic field. Reducing the temporal width of the high field portion of the magnetic field profile by 10% leads...

  3. Evidence of weak ferromagnetism in chromium(III) oxide particles

    International Nuclear Information System (INIS)

    Vazquez-Vazquez, Carlos; Banobre-Lopez, Manuel; Lopez-Quintela, M.A.; Hueso, L.E.; Rivas, J.

    2004-01-01

    The low temperature (4< T(K)<350) magnetic properties of chromium(III) oxide particles have been studied. A clear evidence of the presence of weak ferromagnetism is observed below 250 K. The magnetisation curves as a function of the applied field show coercive fields due to the canted antiferromagnetism of the particles. Around 55 K a maximum is observed in the zero-field-cooled curves; this maximum can be assumed as a blocking temperature, similarly to ultrafine ferromagnetic particles

  4. Certain patterns of IgG adsorption by polystyrene bead surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mamedov, M K

    1985-01-01

    The article reports on tests of domestic Soviet polystyrene beads that permit a simplified modification of the enzyme-adsorption method to identify the alpha hepatitis virus and its antibody in nonspecialized, general laboratories. Only patterns of Ig immunoglobulin adsorption were studied. Human IgG was conjugated with the radioactive isotope /sup 125/I by a chloramine method, with mean radioactivity and protein concentration measured frequently. Bovine serum albumin (BSA) and an anionic detergent Tween-20, and a phosphate-salt buffer with pH 5.8-8.2, were used to produce m-Ig and Ig. Adsorption involved incubation of the beads in various solutions, followed by measurement of their radioactivity. Results of several series of tests were subjected to Student-Fisher evaluation. This suggested that the presence of albumin in physiological concentrations in the solution had no important impact on m-Ig adsorption on the bead surface, which effectively adsorbed Ig from solutions without additional proteins, but also from Ig solutions containing serum albumin in physiological concentrations. Thus, it was possible to coat the beads with alpha Ig hepatitis virus. The Tween-20 weak detergent was effective for eliminating unwanted protein adsorption. 9 references, 3 figures.

  5. Oblique non-neutral solitary Alfven modes in weakly nonlinear pair plasmas

    International Nuclear Information System (INIS)

    Verheest, Frank; Lakhina, G S

    2005-01-01

    The equal charge-to-mass ratio for both species in pair plasmas induces a decoupling of the linear eigenmodes between waves that are charge neutral or non-neutral, also at oblique propagation with respect to a static magnetic field. While the charge-neutral linear modes have been studied in greater detail, including their weakly and strongly nonlinear counterparts, the non-neutral mode has received less attention. Here the nonlinear evolution of a solitary non-neutral mode at oblique propagation is investigated in an electron-positron plasma. Employing the framework of reductive perturbation analysis, a modified Korteweg-de Vries equation (with cubic nonlinearity) for the lowest-order wave magnetic field is obtained. In the linear approximation, the non-neutral mode has its magnetic component orthogonal to the plane spanned by the directions of wave propagation and of the static magnetic field. The linear polarization is not maintained at higher orders. The results may be relevant to the microstructure in pulsar radiation or to the subpulses

  6. Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction and metal diffusion on sub-L* galaxy formation

    Science.gov (United States)

    Su, Kung-Yi; Hopkins, Philip F.; Hayward, Christopher C.; Faucher-Giguère, Claude-André; Kereš, Dušan; Ma, Xiangcheng; Robles, Victor H.

    2017-10-01

    Using high-resolution simulations with explicit treatment of stellar feedback physics based on the FIRE (Feedback In Realistic Environments) project, we study how galaxy formation and the interstellar medium (ISM) are affected by magnetic fields, anisotropic Spitzer-Braginskii conduction and viscosity, and sub-grid metal diffusion from unresolved turbulence. We consider controlled simulations of isolated (non-cosmological) galaxies but also a limited set of cosmological 'zoom-in' simulations. Although simulations have shown significant effects from these physics with weak or absent stellar feedback, the effects are much weaker than those of stellar feedback when the latter is modelled explicitly. The additional physics have no systematic effect on galactic star formation rates (SFRs). In contrast, removing stellar feedback leads to SFRs being overpredicted by factors of ˜10-100. Without feedback, neither galactic winds nor volume-filling hot-phase gas exist, and discs tend to runaway collapse to ultra-thin scaleheights with unphysically dense clumps congregating at the galactic centre. With stellar feedback, a multi-phase, turbulent medium with galactic fountains and winds is established. At currently achievable resolutions and for the investigated halo mass range 1010-1013 M⊙, the additional physics investigated here (magnetohydrodynamic, conduction, viscosity, metal diffusion) have only weak (˜10 per cent-level) effects on regulating SFR and altering the balance of phases, outflows or the energy in ISM turbulence, consistent with simple equipartition arguments. We conclude that galactic star formation and the ISM are primarily governed by a combination of turbulence, gravitational instabilities and feedback. We add the caveat that active galactic nucleus feedback is not included in the present work.

  7. Renormalization of the weakly-interacting spin chains in a field

    International Nuclear Information System (INIS)

    Sznajd, J.

    2002-01-01

    In quasi-one-dimensional magnets made of spin chains with the intrachain coupling J, the much weaker interchain coupling J>> J may trigger the low temperature phase transition. However, in high temperature the one-dimensional character of such systems is responsible for observed phenomena. For example the maxima of the susceptibility in some compounds can be connected rather with their low dimensionality than indicates a phase transition. In some of the quasi-1D magnets such as (C 6 H 11 NH 3 )CuBr 3 or KEr(Mo0 4 ) 2 the existence of the long range magnetic order in low temperature is good established, however, in others for example Yb 4 As 3 [1] or UX 3 (X = S, Se,Te) it is still an open question. So, it seems to be important to have a method which allows to control the influence of the weak interchain interaction on the thermodynamic behavior of quasi-one-dimensional systems especially in the presence of external magnetic field. 2J it is

  8. A physiologically informed virtual reality based social communication system for individuals with autism.

    Science.gov (United States)

    Lahiri, Uttama; Bekele, Esubalew; Dohrmann, Elizabeth; Warren, Zachary; Sarkar, Nilanjan

    2015-04-01

    Clinical applications of advanced technology may hold promise for addressing impairments associated with autism spectrum disorders (ASD). This project evaluated the application of a novel physiologically responsive virtual reality based technological system for conversation skills in a group of adolescents with ASD. The system altered components of conversation based on (1) performance alone or (2) the composite effect of performance and physiological metrics of predicted engagement (e.g., gaze pattern, pupil dilation, blink rate). Participants showed improved performance and looking pattern within the physiologically sensitive system as compared to the performance based system. This suggests that physiologically informed technologies may have the potential of being an effective tool in the hands of interventionists.

  9. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS?

    Science.gov (United States)

    Thielscher, Axel; Antunes, Andre; Saturnino, Guilherme B

    2015-01-01

    Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications of TMS. Here, we start by delineating three main challenges that need to be addressed to unravel their full potential. This comprises (i) identifying and dealing with the model uncertainties, (ii) establishing a clear link between the induced fields and the physiological stimulation effects, and (iii) improving the usability of the tools for field calculation to the level that they can be easily used by non-experts. We then introduce a new version of our pipeline for field calculations (www.simnibs.org) that substantially simplifies setting up and running TMS and tDCS simulations based on Finite-Element Methods (FEM). We conclude with a brief outlook on how the new version of SimNIBS can help to target the above identified challenges.

  10. Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.

    Science.gov (United States)

    Shen, Hui-Min; Hu, Liang; Fu, Xin

    2018-01-07

    With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.

  11. Weak value controversy

    Science.gov (United States)

    Vaidman, L.

    2017-10-01

    Recent controversy regarding the meaning and usefulness of weak values is reviewed. It is argued that in spite of recent statistical arguments by Ferrie and Combes, experiments with anomalous weak values provide useful amplification techniques for precision measurements of small effects in many realistic situations. The statistical nature of weak values is questioned. Although measuring weak values requires an ensemble, it is argued that the weak value, similarly to an eigenvalue, is a property of a single pre- and post-selected quantum system. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  12. Origin and phenomenology of weak-doublet spin-1 bosons

    International Nuclear Information System (INIS)

    Chizhov, M.V.; Dvali, Gia

    2011-01-01

    We study phenomenological consequences of the Standard Model extension by the new spin-1 fields with the internal quantum numbers of the electroweak Higgs doublets. We show, that there are at least three different classes of theories, all motivated by the hierarchy problem, which predict appearance of such vector weak-doublets not far from the weak scale. The common feature for all the models is the existence of an SU(3) W gauge extension of the weak SU(2) W group, which is broken down to the latter at some energy scale around TeV. The Higgs doublet then emerges as either a pseudo-Nambu-Goldstone boson of a global remnant of SU(3) W , or as a symmetry partner of the true eaten-up Goldstone boson. In the third class, the Higgs is a scalar component of a high-dimensional SU(3) W gauge field. The common phenomenological feature of these theories is the existence of the electroweak doublet vectors (Z * ,W * ), which in contrast to well-known Z ' and W ' bosons posses only anomalous (magnetic moment type) couplings with ordinary light fermions. This fact leads to some unique signatures for their detection at the hadron colliders.

  13. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    Science.gov (United States)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  14. Measuring positive and negative affect and physiological hyperarousal among Serbian youth.

    Science.gov (United States)

    Stevanovic, Dejan; Laurent, Jeff; Lakic, Aneta

    2013-01-01

    This study extended previous cross-cultural work regarding the tripartite model of anxiety and depression by developing Serbian translations of the Positive and Negative Affect Scale for Children (PANAS-C), the Physiological Hyperarousal Scale for Children (PH-C), and the Affect and Arousal Scale (AFARS). Characteristics of the scales were examined using 449 students (M age = 12.61 years). Applying item retention criteria established in other studies, PH-C, PANAS-C, and AFARS translations with psychometric properties similar to English-language versions were identified. Preliminary validation of the scales was conducted using a subset of 194 students (M age = 12.37 years) who also completed measures of anxiety and depression. Estimates of reliability, patterns of correlations among scales, and age and gender differences were consistent with previous studies with English-speaking samples. Findings regarding scale validity were mixed, although consistent with existing literature. Serbian translations of the PH-C, PANAS-C, and AFARS mirror the original English-language scales in terms of both strengths and weaknesses.

  15. Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields

    International Nuclear Information System (INIS)

    Binhi, V.N.; Savin, A.V.

    2002-01-01

    Extremely low-frequency magnetic fields are known to affect biological systems. In many cases, biological effects display 'windows' in biologically effective parameters of the magnetic fields: most dramatic is the fact that the relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the order of 10-100 μT do. Linear resonant physical processes do not explain the frequency windows in this case. Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has been proposed recently to explain those 'windows'. It considers the quantum-interference effects on the protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field frequency and amplitude windows within which the biological effects occur. It agrees with a lot of experiments. However, according to the mechanism, the lifetime Γ -1 of ion quantum states within a protein cavity should be of unrealistic value, more than 0.01 s for frequency band 10-100 Hz. In this paper, a biophysical mechanism has been proposed, which (i) retains the attractive features of the ion interference mechanism, i.e., predicts physical characteristics that might be experimentally examined and (ii) uses the principles of gyroscopic motion and removes the necessity to postulate large lifetimes. The mechanism considers the dynamics of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the molecular gyroscopes. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of 28 Aa

  16. Modeling the developmental patterns of auditory evoked magnetic fields in children.

    Directory of Open Access Journals (Sweden)

    Rupesh Kotecha

    Full Text Available BACKGROUND: As magnetoencephalography (MEG is of increasing utility in the assessment of deficits and development delays in brain disorders in pediatrics, it becomes imperative to fully understand the functional development of the brain in children. METHODOLOGY: The present study was designed to characterize the developmental patterns of auditory evoked magnetic responses with respect to age and gender. Sixty children and twenty adults were studied with a 275-channel MEG system. CONCLUSIONS: Three main responses were identified at approximately 46 ms (M50, 71 ms (M70 and 106 ms (M100 in latency for children. The latencies of M70 and M100 shortened with age in both hemispheres; the latency of M50 shortened with age only in the right hemisphere. Analysis of developmental lateralization patterns in children showed that the latency of the right hemispheric evoked responses shortened faster than the corresponding left hemispheric responses. The latency of M70 in the right hemisphere highly correlated to the age of the child. The amplitudes of the M70 responses increased with age and reached their peaks in children 12-14 years of age, after which they decreased with age. The source estimates for the M50 and M70 responses indicated that they were generated in different subareas in the Heschl's gyrus in children, while not localizable in adults. Furthermore, gender also affected developmental patterns. The latency of M70 in the right hemisphere was proposed to be an index of auditory development in children, the modeling equation is 85.72-1.240xAge (yrs. Our results demonstrate that there is a clear developmental pattern in the auditory cortex and underscore the importance of M50 and M70 in the developing brain.

  17. Aberdeen polygons: computer displays of physiological profiles for intensive care.

    Science.gov (United States)

    Green, C A; Logie, R H; Gilhooly, K J; Ross, D G; Ronald, A

    1996-03-01

    The clinician in an intensive therapy unit is presented regularly with a range of information about the current physiological state of the patients under care. This information typically comes from a variety of sources and in a variety of formats. A more integrated form of display incorporating several physiological parameters may be helpful therefore. Three experiments are reported that explored the potential use of analogue, polygon diagrams to display physiological data from patients undergoing intensive therapy. Experiment 1 demonstrated that information can be extracted readily from such diagrams comprising 8- or 10-sided polygons, but with an advantage for simpler polygons and for information displayed at the top of the diagram. Experiment 2 showed that colour coding removed these biases for simpler polygons and the top of the diagram, together with speeding the processing time. Experiment 3 used polygons displaying patterns of physiological data that were consistent with typical conditions observed in the intensive care unit. It was found that physicians can readily learn to recognize these patterns and to diagnose both the nature and severity of the patient's physiological state. These polygon diagrams appear to have some considerable potential for use in providing on-line summary information of a patient's physiological state.

  18. Quasiclassical approach to the weak levitation of extended states in the quantum Hall effect

    OpenAIRE

    Fogler, M. M.

    1997-01-01

    The two-dimensional motion of a charged particle in a random potential and a transverse magnetic field is believed to be delocalized only at discrete energies $E_N$. In strong fields there is a small positive deviation of $E_N$ from the center of the $N$th Landau level, which is referred to as the ``weak levitation'' of the extended state. I calculate the size of the weak levitation effect for the case of a smooth random potential re-deriving earlier results of Haldane and Yang [PRL 78, 298 (...

  19. Resonance reactions and enhancement of weak interactions in collisions of cold molecules

    International Nuclear Information System (INIS)

    Flambaum, V. V.; Ginges, J. S. M.

    2006-01-01

    With the creation of ultracold atoms and molecules, a new type of chemistry - 'resonance' chemistry - emerges: chemical reactions can occur when the energy of colliding atoms and molecules matches a bound state of the combined molecule (Feshbach resonance). This chemistry is rather similar to reactions that take place in nuclei at low energies. In this paper we suggest some problems for future experimental and theoretical work related to the resonance chemistry of ultracold molecules. Molecular Bose-Einstein condensates are particularly interesting because in this system collisions and chemical reactions are extremely sensitive to weak fields; also, a preferred reaction channel may be enhanced due to a finite number of final states. The sensitivity to weak fields arises due to the high density of narrow compound resonances and the macroscopic number of molecules with kinetic energy E=0 (in the ground state of a mean-field potential). The high sensitivity to the magnetic field may be used to measure the distribution of energy intervals, widths, and magnetic moments of compound resonances and study the onset of quantum chaos. A difference in the production rate of right-handed and left-handed chiral molecules may be produced by external electric E and magnetic B fields and the finite width Γ of the resonance (correlation ΓE·B). The same effect may be produced by the parity-violating energy difference in chiral molecules

  20. Weak Localization of Light in a Disordered Microcavity

    Science.gov (United States)

    Gurioli, M.; Bogani, F.; Cavigli, L.; Gibbs, H.; Khitrova, G.; Wiersma, D. S.

    2005-05-01

    We report the observation of weak localization of light in a semiconductor microcavity. The intrinsic disorder in a microcavity leads to multiple scattering and hence to static speckle. We show that averaging over realizations of the disorder reveals a coherent backscattering cone that has a coherent enhancement factor ≥2, as required by reciprocity. The coherent backscattering cone is observed along a ring-shaped pattern due to confinement by the microcavity.

  1. Depth of origin of ocean-circulation-induced magnetic signals

    Science.gov (United States)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik

    2018-01-01

    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  2. Electric and magnetic dipole moments of the neutron

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1977-01-01

    Experiments to measure the electric and magnetic dipole moments of the neutron are described. The apparatus used in this experiment is one to measure with high precision the precessional frequency of the neutron spin in a weak magnetic field with a neutron beam magnetic resonance apparatus similar to that used for measuring the magnetic moment of the neutron. Results of the measurement are presented. 52 references

  3. Weak Acid Ionization Constants and the Determination of Weak Acid-Weak Base Reaction Equilibrium Constants in the General Chemistry Laboratory

    Science.gov (United States)

    Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca

    2013-01-01

    A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…

  4. Facing a changing world: Thermal physiology of American pikas (Ochotona princeps)

    Science.gov (United States)

    Otto, Hans W; Wilson, James A; Beever, Erik

    2015-01-01

    American pikas (Ochotona princeps) are of concern with respect to warming montane temperatures; however, little information exists regarding their physiological ability to adapt to warming temperatures. Previous studies have shown that pikas have high metabolism and low thermal conductance, which allow survival during cold winters. It has been hypothesized that these characteristics may be detrimental, given the recent warming trends observed in montane ecosystems. We examined resting metabolic rate, surface activity, and den and ambient temperatures (Ta) of pikas in late summer (August 2011 and 2012) at 2 locations in the Rocky Mountains. Resting metabolic rate was calculated to be 2.02 mL O2 · g-1h-1, with a lower critical temperature (LCT) of 28.1 ± 0.2 °C. No upper critical temperature (UCT) could be determined from our data; therefore, the estimated thermoneutral zone (TNZ) was 28.1 °C to at least 35.0 °C (upper experimental temperature). Pikas in this study showed the same bimodal above-talus activity patterns reported in previous studies. Den temperatures in Colorado were correlated with, but consistently lower than, current ambient temperatures. Wyoming den temperatures showed a weak correlation with Ta 20 min prior to the current den temperature. This study is one of few to present data on the physiological response pikas may have to current warming conditions, and the first to perform metabolic measurements in situ. Our data support conclusions of previous studies, specifically MacArthur and Wang (1973, 1974) and Smith (1974), which indicated American pikas may not have the physiological ability to cope with high Ta. Our results also highlight the importance of shaded regions below the talus rocks for behavioral thermoregulation by pikas.

  5. The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor–Couette Flow

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S. E. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu [Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 (United States)

    2017-05-20

    We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor–Couette flow. This is a multiscale, perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical MRI, with an azimuthal background field component. This is the first weakly nonlinear analysis of the MRI in a global Taylor–Couette geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the evolution of the amplitude of the standard MRI is described by a real Ginzburg–Landau equation (GLE), whereas the amplitude of the helical MRI takes the form of a complex GLE. This suggests that the saturated state of the helical MRI may itself be unstable on long spatial and temporal scales.

  6. MagnetoSperm: A microrobot that navigates using weak magnetic fields

    NARCIS (Netherlands)

    Khalil, I.S.M.; Dijkslag, Herman C.; Abelmann, Leon; Misra, Sarthak

    2014-01-01

    In this work, a propulsion system similar in motion to a sperm-cell is investigated. This system consists of a structure resembling a sperm-cell with a magnetic head and a flexible tail of 42 μm and 280 μm in length, respectively. The thickness, length, and width of this structure are 5.2 μm, 322

  7. Weak interaction studies from nuclear beta decay

    International Nuclear Information System (INIS)

    Morita, M.

    1981-01-01

    The studies performed at the theoretical nuclear physics division of the Laboratory of Nuclear Studies, Osaka University, are reported. Electron spin density and internal conversion process, nuclear excitation by electron transition, beta decay, weak charged current, and beta-ray angular distributions in oriented nuclei have been studied. The relative intensity of internal conversion electrons for the case in which the radial wave functions of orbital electrons are different for electron spin up and down was calculated. The calculated value was in good agreement with the experimental one. The nuclear excitation following the transition of orbital electrons was studied. The calculated probability of the nuclear excitation of Os 189 was 1.4 x 10 - 7 in conformity with the experimental value 1.7 x 10 - 7 . The second class current and other problems on beta-decay have been extensively studied, and described elsewhere. Concerning weak charged current, the effects of all induced terms, the time component of main axial vector, all partial waves of leptons, Coulomb correction for the electrons in finite size nuclei, and radiative correction were studied. The beta-ray angular distribution for the 1 + -- 0 + transition in oriented B 12 and N 12 was investigated. In this connection, investigation on the weak magnetism to include all higher order corrections for the evaluation of the spectral shape factors was performed. Other works carried out by the author and his collaborators are also explained. (Kato, T.)

  8. Weak decays

    International Nuclear Information System (INIS)

    Wojcicki, S.

    1978-11-01

    Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references

  9. Physiology-based face recognition in the thermal infrared spectrum.

    Science.gov (United States)

    Buddharaju, Pradeep; Pavlidis, Ioannis T; Tsiamyrtzis, Panagiotis; Bazakos, Mike

    2007-04-01

    The current dominant approaches to face recognition rely on facial characteristics that are on or over the skin. Some of these characteristics have low permanency can be altered, and their phenomenology varies significantly with environmental factors (e.g., lighting). Many methodologies have been developed to address these problems to various degrees. However, the current framework of face recognition research has a potential weakness due to its very nature. We present a novel framework for face recognition based on physiological information. The motivation behind this effort is to capitalize on the permanency of innate characteristics that are under the skin. To establish feasibility, we propose a specific methodology to capture facial physiological patterns using the bioheat information contained in thermal imagery. First, the algorithm delineates the human face from the background using the Bayesian framework. Then, it localizes the superficial blood vessel network using image morphology. The extracted vascular network produces contour shapes that are characteristic to each individual. The branching points of the skeletonized vascular network are referred to as Thermal Minutia Points (TMPs) and constitute the feature database. To render the method robust to facial pose variations, we collect for each subject to be stored in the database five different pose images (center, midleft profile, left profile, midright profile, and right profile). During the classification stage, the algorithm first estimates the pose of the test image. Then, it matches the local and global TMP structures extracted from the test image with those of the corresponding pose images in the database. We have conducted experiments on a multipose database of thermal facial images collected in our laboratory, as well as on the time-gap database of the University of Notre Dame. The good experimental results show that the proposed methodology has merit, especially with respect to the problem of

  10. Magnetic domains and magnetic stability of cohenite from the Morasko iron meteorite

    Energy Technology Data Exchange (ETDEWEB)

    Reznik, B. [Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe (Germany); Kontny, A., E-mail: agnes.kontny@kit.edu [Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe (Germany); Uehara, M.; Gattacceca, J. [CNRS, Aix Marseille Univ, IRD, Coll France, CEREGE, Aix-en-Provence (France); Solheid, P.; Jackson, M. [Institute for Rock Magnetism, University of Minnesota, Minneapolis, MN (United States)

    2017-03-15

    Magnetic properties, texture and microstructure of cohenite grains from Morasko iron meteorite have been investigated using electron backscattered diffraction, Bitter pattern technique, magneto-optical imaging method and magnetic force microscopy. Cohenite shows much stronger magnetic contrast compared to kamacite because it is magnetically harder than the Fe-Ni alloy, and thus causes higher stray fields. A surprising result is the high stability and reversibility of the global stripe-like magnetic domain structure in cohenite when applying high magnetic fields up to 1.5 T, and exposing it to high temperatures above the Curie temperature of about 220 °C. Heating up to 700 °C under atmosphere conditions has shown that cohenite remains stable and that the global magnetic domain structures mainly recover to its preheating state. This observation suggests that magnetic domains are strongly controlled by the crystal anisotropy of cohenite. Branching magnetic domain structures at the grain boundary to kamacite can be annealed, which indicates that they are very sensitive to record deformation. EBSD observations clearly demonstrate that increasing deviation from the easy [010] crystallographic axis and stress localization are the main factors controlling the distortion of Bitter patterns, and suggest a high sensitivity of the cohenite magnetic domain structure to local microstructural heterogeneities. The results of this study substantiate the theory that cohenite can be a good recorder of magnetic fields in planetary core material. - Highlights: • Magnetic domain structure of cohenite from the Morasko iron meteorite was investigated by Bitter pattern method, magneto-optical imaging and magnetic force microscopy. • Strong magnetocrystalline anisotropy explains high magnetic stability. • Magnetic domain structure shows high sensitivity to local microstructural heterogeneities. • Cohenite is probably a good recorder of magnetic fields in planetary core material.

  11. Magnetic domains and magnetic stability of cohenite from the Morasko iron meteorite

    International Nuclear Information System (INIS)

    Reznik, B.; Kontny, A.; Uehara, M.; Gattacceca, J.; Solheid, P.; Jackson, M.

    2017-01-01

    Magnetic properties, texture and microstructure of cohenite grains from Morasko iron meteorite have been investigated using electron backscattered diffraction, Bitter pattern technique, magneto-optical imaging method and magnetic force microscopy. Cohenite shows much stronger magnetic contrast compared to kamacite because it is magnetically harder than the Fe-Ni alloy, and thus causes higher stray fields. A surprising result is the high stability and reversibility of the global stripe-like magnetic domain structure in cohenite when applying high magnetic fields up to 1.5 T, and exposing it to high temperatures above the Curie temperature of about 220 °C. Heating up to 700 °C under atmosphere conditions has shown that cohenite remains stable and that the global magnetic domain structures mainly recover to its preheating state. This observation suggests that magnetic domains are strongly controlled by the crystal anisotropy of cohenite. Branching magnetic domain structures at the grain boundary to kamacite can be annealed, which indicates that they are very sensitive to record deformation. EBSD observations clearly demonstrate that increasing deviation from the easy [010] crystallographic axis and stress localization are the main factors controlling the distortion of Bitter patterns, and suggest a high sensitivity of the cohenite magnetic domain structure to local microstructural heterogeneities. The results of this study substantiate the theory that cohenite can be a good recorder of magnetic fields in planetary core material. - Highlights: • Magnetic domain structure of cohenite from the Morasko iron meteorite was investigated by Bitter pattern method, magneto-optical imaging and magnetic force microscopy. • Strong magnetocrystalline anisotropy explains high magnetic stability. • Magnetic domain structure shows high sensitivity to local microstructural heterogeneities. • Cohenite is probably a good recorder of magnetic fields in planetary core material.

  12. Reception pattern influence on magnetoacoustic tomography with magnetic induction

    International Nuclear Information System (INIS)

    Sun Xiao-Dong; Wang Xin; Zhou Yu-Qi; Ma Qing-Yu; Zhang Dong

    2015-01-01

    Based on the acoustic radiation theory of a dipole source, the influence of the transducer reception pattern is studied for magnetoacoustic tomography with magnetic induction (MAT-MI). Numerical studies are conducted to simulate acoustic pressures, waveforms, and reconstructed images with unidirectional, omnidirectional, and strong directional transducers. With the analyses of equivalent and projection sources, the influences of the model dimension and the layer effect are qualitatively analyzed to evaluate the performance of MAT-MI. Three-dimensional simulation studies show that the strong directional transducer with a large radius can reduce the influences of equivalent sources, projection sources, and the layer effect effectively, resulting in enhanced pressure and improved image contrast, which is beneficial for boundary pressure extraction in conductivity reconstruction. The reconstructed conductivity contrast images present the conductivity boundaries as stripes with different contrasts and polarities, representing the values and directions of the conductivity changes of the scanned layer. The favorable results provide solid evidence for transducer selection and suggest potential practical applications of MAT-MI in biomedical imaging. (paper)

  13. Migraine aura: retracting particle-like waves in weakly susceptible cortex.

    Directory of Open Access Journals (Sweden)

    Markus A Dahlem

    Full Text Available Cortical spreading depression (SD has been suggested to underlie migraine aura. Despite a precise match in speed, the spatio-temporal patterns of SD observed in animal cortex and aura symptoms mapped to the cortical surface ordinarily differ in aspects of size and shape. We show that this mismatch is reconciled by utilizing that both pattern types bifurcate from an instability point of generic reaction-diffusion models. To classify these spatio-temporal pattern we suggest a susceptibility scale having the value sigma = 1 at the instability point. We predict that human cortex is only weakly susceptible to SD (sigma1, and potentially silent aura occurring below a second bifurcation point at sigma = 0 on the susceptible scale.

  14. Measurement of weak magnetic field of corrosion current of isolated corrosion center

    Directory of Open Access Journals (Sweden)

    I. V. Bardin

    2015-01-01

    Full Text Available A very small magnetic field of corrosion current, of the order of 10−4 Oe, generated by isolated zinc inclusion in a copper platelet placed in electrolyte has been measured for the first time with a highly sensitive giant magneto-impedance magnetometer. The total corrosion current of the inclusion is estimated comparing the measured magnetic field distribution with corresponding theoretical calculation. The estimated value of the total corrosion current turns out to be in reasonable agreement with that one obtained in the standard gravimetric measurement.

  15. Magnetic field effects in proteins

    Science.gov (United States)

    Jones, Alex R.

    2016-06-01

    Many animals can sense the geomagnetic field, which appears to aid in behaviours such as migration. The influence of man-made magnetic fields on biology, however, is potentially more sinister, with adverse health effects being claimed from exposure to fields from mobile phones or high voltage power lines. Do these phenomena have a common, biophysical origin, and is it even plausible that such weak fields can profoundly impact noisy biological systems? Radical pair intermediates are widespread in protein reaction mechanisms, and the radical pair mechanism has risen to prominence as perhaps the most plausible means by which even very weak fields might impact biology. In this New Views article, I will discuss the literature over the past 40 years that has investigated the topic of magnetic field effects in proteins. The lack of reproducible results has cast a shadow over the area. However, magnetic field and spin effects have proven to be useful mechanistic tools for radical mechanism in biology. Moreover, if a magnetic effect on a radical pair mechanism in a protein were to influence a biological system, the conditions necessary for it to do so appear increasing unlikely to have come about by chance.

  16. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  17. Effect of Boards in Small-Sided Street Soccer Games on Movement Pattern and Physiological Response in Recreationally Active Young Men

    DEFF Research Database (Denmark)

    Randers, Morten B; Brix, Jonathan; Hagman, Marie

    2018-01-01

    The present study investigated whether street soccer might be proposed as an alternative to recreational small-sided games on grass as a health-enhancing activity, and specifically the effects of the boards surrounding the pitch. Eleven recreationally active young males (28.4±4.2 (±SD) yrs, 19.......9±4.2% body fat, 47.7±6.0 mlminkg), after familiarization, completed one to two sessions of 20x13-m 3v3 street soccer games with boards (WB) and one to two sessions without boards (WOB) in a randomized order. Movement pattern was measured using GPS and heart rate recordings, blood sampling and RPE scales were...... after WB than after WOB (7.1±1.0 vs. 5.5±1.2, p game formats to expect short- and long-term health improvements as a result of regular participation. Boards affected movement pattern and physiological demands, producing higher...

  18. Diffusion in a tokamak with helical magnetic cells

    International Nuclear Information System (INIS)

    Wakatani, Masahiro

    1975-05-01

    In a tokamak with helical magnetic cells produced by a resonant helical magnetic field, diffusion in the collisional regime is studied. The diffusion coefficient is greatly enhanced near the resonant surface even for a weak helical magnetic field. A theoretical model for disruptive instabilities based on the enhanced transport due to helical magnetic cells is discussed. This may explain experiments of the tokamak with resonant helical fields qualitatively. (author)

  19. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  20. Quasistatic remanence in Dzyaloshinskii-Moriya interaction driven weak ferromagnets and piezomagnets

    Science.gov (United States)

    Pattanayak, Namrata; Bhattacharyya, Arpan; Nigam, A. K.; Cheong, Sang-Wook; Bajpai, Ashna

    2017-09-01

    We explore remanent magnetization (μ ) as a function of time and temperature, in a variety of rhombohedral antiferromagnets (AFMs) which are also weak ferromagnets (WFMs) and piezomagnets (PzMs). These measurements, across samples with length scales ranging from nano to bulk, firmly establish the presence of a remanence that is quasistatic in nature and exhibits a counterintuitive magnetic field dependence. These observations unravel an ultraslow magnetization relaxation phenomenon related to this quasistatic remanence. This feature is also observed in a defect-free single crystal of α -Fe2O3 , which is a canonical WFM and PzM. Notably, α -Fe2O3 is not a typical geometrically frustrated AFM, and in single crystal form it is also devoid of any size or interface effects, which are the usual suspects for a slow magnetization relaxation phenomenon. The underlying pinning mechanism appears exclusive to those AFMs which either are symmetry allowed WFMs, driven by Dzyaloshinskii-Moriya interaction, or can generate this trait by tuning of size and interface. The qualitative features of the quasistatic remanence indicate that such WFMs are potential piezomagnets, in which magnetization can be tuned by stress alone.

  1. Homological properties of modules with finite weak injective and weak flat dimensions

    OpenAIRE

    Zhao, Tiwei

    2017-01-01

    In this paper, we define a class of relative derived functors in terms of left or right weak flat resolutions to compute the weak flat dimension of modules. Moreover, we investigate two classes of modules larger than that of weak injective and weak flat modules, study the existence of covers and preenvelopes, and give some applications.

  2. Universal behavior of magnetoconductance due to weak localization in two dimensions

    Science.gov (United States)

    Zduniak, A.; Dyakonov, M. I.; Knap, W.

    1997-07-01

    Magnetoconductance due to weak localization is studied experimentally for different semiconductor heterostructures. We observe that, when presented as a function of the appropriately normalized magnetic field, different samples show very similar high-field behavior. A theoretical description is developed that allows one to describe in a consistent way both the high- and low-field limits. The theory predicts universal magnetic field dependence (B-1/2) of the conductivity correction for two-dimensional systems in the high-field limit. Low-field magnetoconductance depends strongly on spin and phase relaxation processes. Comparison of the theory with experiment confirms the universal behavior in high fields and allows one to estimate the spin and phase relaxation times.

  3. A review on ion–ion plasmas created in weakly magnetized electronegative plasmas

    International Nuclear Information System (INIS)

    Aanesland, A; Bredin, J; Chabert, P

    2014-01-01

    Ion–Ion plasmas are electronegative plasmas where the electron density is several orders of magnitude lower than the negative ion density. These plasmas have been scarcely observed and investigated since the 1960s and are formed as a transient state of pulsed plasmas or in separate regions in magnetized plasmas. In this review we focus on the latter case of continuous formation of ion–ion plasmas created at the periphery of magnetized plasma columns or downstream localized magnetic barriers. We bring together and review experimental results already published elsewhere and complement them with new results to illustrate the physics important in ion–ion plasma formation and highlight in particular unanswered questions. We show that with a good design the density in the ion–ion region is dropping only by a factor of 2–3 from the initial plasma density. These plasmas can therefore be well suited for various ion source applications when both fluxes or beams of positive and negative ions are desired, and when electrons can cause harmful effects. (paper)

  4. Magnetoresistance Probe of Ultrathin Mn5Ge3 Films with Anderson Weak Localization

    International Nuclear Information System (INIS)

    Li-Jun, Chen; De-Yong, Wang; Qing-Feng, Zhan; Wei, He; Qing-An, Li

    2008-01-01

    We present the magnetoresistance measurements of ultrathin Mn 5 Ge 3 films with different thicknesses at low temperatures. Owing to the lattice mismatch between Mn 5 Ge 3 and Ge (111), the thickness of Mn 5 Ge 3 films has a significant effect on the magnetoresistance. When the thickness of Mn is more than 72 monolayers (MLs), the magnetoresistance of the Mn 5 Ge 3 films appears a peak at about 6kOe, which shows that the magnetoresistance results from the Anderson weak localization effect and the variable range hopping in the presence of a magnetic field. The magnetic and semiconducting properties indicate that the Mn 5 Ge 3 film is a potential material for spin injection. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates

    NARCIS (Netherlands)

    Bouts, Mark. J. R. J.; Westmoreland, Susan. V.; de Crespigny, Alex J.; Liu, Yutong; Vangel, Mark; Dijkhuizen, Rick M.; Wu, Ona; D'Arceuil, Helen E.

    2015-01-01

    Background: Spatial and temporal changes in brain tissue after acute ischemic stroke are still poorly understood. Aims of this study were three-fold: (1) to determine unique temporal magnetic resonance imaging (MRI) patterns at the acute, subacute and chronic stages after stroke in macaques by

  6. Exploring the magnetization dynamics of NiFe/Pt multilayers in flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Corrêa, M.A., E-mail: marciocorrea@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Dutra, R.; Marcondes, T.L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil); Mori, T.J.A. [Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro, 1000, Guará, 13083-100 Campinas, SP (Brazil); Bohn, F. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Sommer, R.L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca, 22290-180 Rio de Janeiro, RJ (Brazil)

    2016-09-15

    Highlights: • Magnetic properties of multilayers grown onto flexible substrates were investigated. • Experimental and theoretical magnetization dynamics results are presented. • The flexible substrates become promising candidate for rf-frequency devices. - Abstract: We investigate the structural and magnetic properties, and the magnetization dynamics in Ni{sub 81}Fe{sub 19}/Pt multilayer systems grown onto rigid and flexible substrates. The structural characterization shows evidence of a superlattice behavior, while the quasi-static magnetization characterization reveal a weak magnetic anisotropy induced in the multilayers. The magnetization dynamics is investigated through the magnetoimpedance effect. We employ a theoretical approach to describe the experimental magnetoimpedance effect and verify the influence of the effective damping parameter on the magnetization dynamics. Experimental data and theoretical results are in agreement and suggest that the multilayers present high effective damping parameter. Moreover, our experiments raise an interesting issue on the possibility of achieving considerable MI% values, even for systems with weak magnetic anisotropy and high damping parameter grown onto flexible substrates.

  7. Magnetic vortex racetrack memory

    Science.gov (United States)

    Geng, Liwei D.; Jin, Yongmei M.

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications.

  8. Streaming flows produced by oscillating interface of magnetic fluid adsorbed on a permanent magnet in alternating magnetic field

    Science.gov (United States)

    Sudo, S.; Ito, M.; Ishimoto, Y.; Nix, S.

    2017-04-01

    This paper describes microstreaming flows generated by oscillating interface of magnetic fluid adsorbed on a circular cylindrical permanent magnet in alternating magnetic field. The interface of magnetic fluid adsorbed on the NdFeB magnet responds to the external alternating magnetic flied as harmonic oscillation. The directions of alternating magnetic field are parallel and antiparallel to the magnetic field of permanent magnet. The oscillation of magnetic fluid interface generates streaming flow around the magnet-magnetic fluid element in water. Microstreaming flows are observed with a high-speed video camera analysis system. The flow pattern generated by magnetic fluid motion depends on the Keulegan-Carpenter number and the Reynolds number.

  9. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  10. Effects of weak localization in quasi-one-dimensional electronic system over liquid helium

    CERN Document Server

    Kovdrya, Y Z; Gladchenko, S P

    2001-01-01

    One measured rho sub x sub x magnetoresistance of a quasi-one-dimensional electronic system over liquid helium within gas scattering range (1.3-2.0 K temperature range). It is shown that with increase of magnetic field the magnetoresistance is reduced at first and them upon passing over minimum it begins to increase from rho sub x sub x approx B sup 2 law. One anticipated that the negative magnetoresistance detected in the course of experiments resulted from the effects of weak localization. The experiment results are in qualitative conformity with the theoretical model describing processes of weak localization in single-dimensional nondegenerate electronic systems

  11. Peer Assisted Learning Strategy for Improving Students’ Physiologic Literacy

    Science.gov (United States)

    Diana, S.

    2017-09-01

    Research about the implementation of the Peer Assisted Learning (PAL) strategy in Plant Physiology lecture has carried out, in which it aims to improve students’ physiologic literacy. The PAL strategy began with a briefing by the lecturers to the students tutor about pretest questions, followed by the interaction between student tutors with their peers to discuss response problems, terminated by answering responsiveness questions individually. This study used a quasi-experimental method, one - group pre-test post-test design. This design includes a group of students observed in the pre-test phase (tests carried out before PAL treatment) which is then followed by treatment with PAL and ends with post-test. The other students group (control) was given the pre-test and post-test only. The results showed that the PAL strategy can increase student’s physiologic literacy significantly. One of the weaknesses of students’ physiologic literacy is that they have not been able to read the graph. The faculties are encouraged to begin introducing and teaching material using a variety of strategies with scientific literacy aspects, for example teaching research-based material. All students respond positively to the PAL strategy.

  12. Irreversible magnetization deep in the vortex-liquid state of a 2D superconductor at high magnetic fields

    International Nuclear Information System (INIS)

    Maniv, T; Zhuravlev, V; Wosnitza, J; Hagel, J

    2004-01-01

    The remarkable phenomenon of weak magnetization hysteresis loops, observed recently deep in the vortex-liquid state of a nearly two-dimensional (2D) superconductor at low temperatures and high magnetic fields, is shown to reflect the existence of an unusual vortex-liquid state, consisting of collectively pinned crystallites of easily sliding vortex chains. (letter to the editor)

  13. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection

    Directory of Open Access Journals (Sweden)

    Haibin Zhang

    2015-08-01

    Full Text Available Stochastic resonance (SR has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR. Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  14. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.

    Science.gov (United States)

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-28

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  15. Synthesis, structure and magnetic properties of distorted Y{sub x}La{sub 1-x}FeO{sub 3}: Effects of mechanochemical activation and composition

    Energy Technology Data Exchange (ETDEWEB)

    Cristobal, A.A. [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, INTEMA (CONICET-UNMdP), J.B. Justo 4302 B7608FDQ, Mar del Plata (Argentina); Botta, P.M., E-mail: pbotta@fi.mdp.edu.ar [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, INTEMA (CONICET-UNMdP), J.B. Justo 4302 B7608FDQ, Mar del Plata (Argentina); Aglietti, E.F.; Conconi, M.S. [Centro de Tecnologia de Recursos Minerales y Ceramica, CETMIC (CIC-CONICET), Camino P. Centenario y 506 B1897ZCA, Gonnet (Argentina); Bercoff, P.G. [Facultad de Matematica, Astronomia y Fisica, FaMAF UNC and IFEG (CONICET), Ciudad Universitaria (5000), Cordoba (Argentina); Porto Lopez, J.M. [Instituto de Investigaciones en Ciencia y Tecnologia de Materiales, INTEMA (CONICET-UNMdP), J.B. Justo 4302 B7608FDQ, Mar del Plata (Argentina)

    2011-11-01

    Highlights: {yields} Y{sub x}La{sub 1-x}FeO{sub 3} phases (0 {<=} x {<=} 1) were prepared at RT by mechanochemical treatment. {yields} The obtained materials showed an anisotropic distortion of its crystal structure. {yields} Combination of Y-doping and mechanochemistry produced weak ferromagnetic materials. {yields} Thermal treatments improved the structural order, leading to antiferromagnetic solids. {yields} Neel temperature decreased with x due to less stable magnetic structures. - Abstract: The influence of mechanochemical treatment on the synthesis and properties of Y{sub x}La{sub 1-x}FeO{sub 3} (0 {<=} x {<=} 1) orthoferrites is studied. Solid mixtures of the corresponding metal oxides were treated in a high-energy ball-mill. X-ray diffraction revealed that during the milling the disappearance of the reactants and a fast conversion to orthoferrite phase take place. Magnetic measurements showed a weak ferromagnetic behavior of the obtained materials, observing higher magnetization for larger x. The activated powders heated at 600 and 800 deg. C showed a progressive crystalline ordering together with a significant drop of magnetization. Thermal treatments at 1000 deg. C produced the formation of the phase Y{sub 3}Fe{sub 5}O{sub 12} for the samples richer in yttrium, increasing the magnetization. Rietveld refinements of the diffraction patterns and dynamical scanning calorimetry were used respectively to determine the lattice parameters and Neel temperatures for the formed orthoferrites. The effect of the composition on the structure and magnetic behavior is discussed.

  16. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Yu.A., E-mail: kravtsov@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland); Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation); Berczynski, P., E-mail: pawel.berczynski@ps.p [Institute of Physics, West Pomeranian University of Technology, Szczecin 70-310 (Poland); Bieg, B., E-mail: b.bieg@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)

    2009-08-10

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  17. Gaussian beam diffraction in weakly anisotropic inhomogeneous media

    International Nuclear Information System (INIS)

    Kravtsov, Yu.A.; Berczynski, P.; Bieg, B.

    2009-01-01

    Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.

  18. Multi-pole magnetization of NdFeB magnets for magnetic micro-actuators and its characterization with a magnetic field mapping device

    International Nuclear Information System (INIS)

    Toepfer, J.; Pawlowski, B.; Beer, H.; Ploetner, K.; Hofmann, P.; Herrfurth, J.

    2004-01-01

    Multi-pole magnetization of NdFeB plate magnets of thickness between 0.25 and 2 mm with a stripe pattern and a pole pitch of 2 or 1 mm was performed by pulse magnetization. The experimental conditions of the magnetization process were optimized to give a maximum surface flux density at the poles. The magnetic field distribution above the magnets was measured with a field mapping device that automatically scans the surface of the magnet with a Hall probe. It is demonstrated for different magnet geometries that the field mapping system is a useful device to study the magnetic surface pole structure. The characterization of the pole flux density of multi-pole NdFeB flat magnets is an important prerequisite for the application of these magnets in miniature actuators

  19. Effect of site disorder on the magnetic properties of weak itinerant ...

    Indian Academy of Sciences (India)

    Intense scientific activity in the field of metallic (band) magnetism has led to a substan- tial progress in understanding various physical phenomena associated with ... As site disorder increases (i.e., decreasing Ë), a and D(0)/TC increase while ...

  20. Magnetic hyperthermia with hard-magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kashevsky, Bronislav E., E-mail: bekas@itmo.by [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Kashevsky, Sergey B.; Korenkov, Victor S. [A.V Luikov Heat and Mass Transfer Institute, Belarus Academy of Sciences, P. Brovka str. 15, Minsk 220072 (Belarus); Istomin, Yuri P. [N. N. Alexandrov National Cancer Center of Belarus, Lesnoy-2, Minsk 223040 (Belarus); Terpinskaya, Tatyana I.; Ulashchik, Vladimir S. [Institute of Physiology, Belarus Academy of Sciences, Akademicheskaya str. 28, Minsk 220072 (Belarus)

    2015-04-15

    Recent clinical trials of magnetic hyperthermia have proved, and even hardened, the Ankinson-Brezovich restriction as upon magnetic field conditions applicable to any site of human body. Subject to this restriction, which is harshly violated in numerous laboratory and small animal studies, magnetic hyperthermia can relay on rather moderate heat source, so that optimization of the whole hyperthermia system remains, after all, the basic problem predetermining its clinical perspectives. We present short account of our complex (theoretical, laboratory and small animal) studies to demonstrate that such perspectives should be related with the hyperthermia system based on hard-magnetic (Stoner–Wohlfarth type) nanoparticles and strong low-frequency fields rather than with superparamagnetic (Brownian or Neél) nanoparticles and weak high-frequency fields. This conclusion is backed by an analytical evaluation of the maximum absorption rates possible under the field restriction in the ideal hard-magnetic (Stoner–Wohlarth) and the ideal superparamagnetic (single relaxation time) systems, by theoretical and experimental studies of the dynamic magnetic hysteresis in suspensions of movable hard-magnetic particles, by producing nanoparticles with adjusted coercivity and suspensions of such particles capable of effective energy absorption and intratumoral penetration, and finally, by successful treatment of a mice model tumor under field conditions acceptable for whole human body. - Highlights: • Hard-magnetic nanoparticles are shown superior for hyperthetmia to superparamagnetic. • Optimal system parameters are found from magnetic reversal model in movable particle. • Penetrating suspension of HM particles with aggregation-independent SAR is developed. • For the first time, mice with tumors are healed in AC field acceptable for human body.

  1. The use of magnetic resonance imaging to quantify multi-phase flow patterns and transitions

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.; Lafi, A.Y.; Saloner, D.

    1998-01-01

    Conventional measurement techniques have given limited insights into the complex structure of multi-phase flows. This has led to highly subjective flow pattern classifications which have been cast in terms of flow regime maps. Rather than using static flow regime maps, some of the next generation of multi-phase flow analysis codes will implement interfacial area transport equations that would calculate the flow patterns that evolve spatially and temporally. To assess these new codes, a large data base needs to be established to quantify the essential characteristics of multi-phase flow structure. One such characteristic is the interfacial area concentration. In this paper, we discuss the current benefits and limitations of using Magnetic Resonance Imaging (MRI) to examine multi- phase flow patterns and transitions. Of particular interest, are the MRI measurements of interfacial area concentration for slug flow in an air-water system. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). The special scanning sequences designed by UCSF were capable of imaging at repetition intervals as fast as 7 milliseconds. (author)

  2. The use of magnetic resonance imaging to quantify multi-phase flow patterns and transitions

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Jr, J N; Lafi, A Y [Department of Nuclear Engineering, Oregon State University, Corvallis, OR (United States); Saloner, D [University of California, San Francisco School of Medicine, Veterans Administration Medical Center, San Francisco, CA (United States)

    1998-09-01

    Conventional measurement techniques have given limited insights into the complex structure of multi-phase flows. This has led to highly subjective flow pattern classifications which have been cast in terms of flow regime maps. Rather than using static flow regime maps, some of the next generation of multi-phase flow analysis codes will implement interfacial area transport equations that would calculate the flow patterns that evolve spatially and temporally. To assess these new codes, a large data base needs to be established to quantify the essential characteristics of multi-phase flow structure. One such characteristic is the interfacial area concentration. In this paper, we discuss the current benefits and limitations of using Magnetic Resonance Imaging (MRI) to examine multi- phase flow patterns and transitions. Of particular interest, are the MRI measurements of interfacial area concentration for slug flow in an air-water system. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). The special scanning sequences designed by UCSF were capable of imaging at repetition intervals as fast as 7 milliseconds. (author)

  3. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Science.gov (United States)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  4. Neurobehavioral and neurometabolic (SPECT) correlates of paranormal information: involvement of the right hemisphere and its sensitivity to weak complex magnetic fields.

    Science.gov (United States)

    Roll, W G; Persinger, M A; Webster, D L; Tiller, S G; Cook, C M

    2002-02-01

    Experiments were designed to help elucidate the neurophysiological correlates for the experiences reported by Sean Harribance. For most of his life he has routinely experienced "flashes of images" of objects that were hidden and of accurate personal information concerning people with whom he was not familiar. The specificity of details for target pictures of people was correlated positively with the proportion of occipital alpha activity. Results from a complete neuropsychological assessment, Single Photon Emission Computed Tomography (SPECT), and screening electroencephalography suggested that his experiences were associated with increased activity within the parietal lobe and occipital regions of the right hemisphere. Sensed presences (subjectively localized to his left side) were evoked when weak, magnetic fields, whose temporal structure simulated long-term potentiation in the hippocampus, were applied over his right temporoparietal lobes. These results suggest that the phenomena attributed to paranormal or "extrasensory" processes are correlated quantitatively with morphological and functional anomalies involving the right parietotemporal cortices (or its thalamic inputs) and the hippocampal formation.

  5. Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals

    Science.gov (United States)

    Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2017-09-01

    The uncertainty principle configures a low bound to the measuring precision for a pair of non-commuting observables, and hence is considerably nontrivial to quantum precision measurement in the field of quantum information theory. In this letter, we consider the entropic uncertainty relation (EUR) in the context of quantum memory in a two-qubit isotropic Heisenberg spin chain. Specifically, we explore the dynamics of EUR in a practical scenario, where two associated nodes of a one-dimensional XXX-spin chain, under an inhomogeneous magnetic field, are connected to a thermal entanglement. We show that the temperature and magnetic field effect can lead to the inflation of the measuring uncertainty, stemming from the reduction of systematic quantum correlation. Notably, we reveal that, firstly, the uncertainty is not fully dependent on the observed quantum correlation of the system; secondly, the dynamical behaviors of the measuring uncertainty are relatively distinct with respect to ferromagnetism and antiferromagnetism chains. Meanwhile, we deduce that the measuring uncertainty is dramatically correlated with the mixedness of the system, implying that smaller mixedness tends to reduce the uncertainty. Furthermore, we propose an effective strategy to control the uncertainty of interest by means of quantum weak measurement reversal. Therefore, our work may shed light on the dynamics of the measuring uncertainty in the Heisenberg spin chain, and thus be important to quantum precision measurement in various solid-state systems.

  6. Interface magnetism of iron grown on sulfur and hydrogen passivated GaAs(001)

    International Nuclear Information System (INIS)

    Kardasz, B.; Watkins, S. P.; Montoya, E. A.; Burrowes, C.; Girt, E.; Heinrich, B.

    2012-01-01

    Sulfur (S) and hydrogen (H) atom passivated GaAs(001) templates were used for deposition of ultrathin crystalline Fe films using molecular beam epitaxy, where the Fe thickness ranged from 10 to 45 atomic layers. Reflection high-energy electron diffraction patterns showed that the S- and H-passivated surfaces had no and very weak (1 x 2) superlattice reconstructions, respectively. This indicates that these GaAs(001) templates have a square-like symmetry. Magnetic anisotropies were investigated using the in-plane angular dependence of ferromagnetic resonance at 36 GHz. The in-plane cubic and uniaxial anisotropies and perpendicular uniaxial field were described by bulk and interface contributions, indicating that the Fe films have a high lattice coherence. The magnetic properties of the Fe films were compared to those grown on more commonly used GaAs(001) templates having a (4 x 6) reconstruction with an As-rich in-plane uniaxial symmetry. The Fe films grown on S-passivated templates exhibited unique magnetic properties caused by a decreased lattice spacing compared to the bulk Fe.

  7. Interface magnetism of iron grown on sulfur and hydrogen passivated GaAs(001)

    Energy Technology Data Exchange (ETDEWEB)

    Kardasz, B.; Watkins, S. P.; Montoya, E. A.; Burrowes, C.; Girt, E.; Heinrich, B.

    2012-04-01

    Sulfur (S) and hydrogen (H) atom passivated GaAs(001) templates were used for deposition of ultrathin crystalline Fe films using molecular beam epitaxy, where the Fe thickness ranged from 10 to 45 atomic layers. Reflection high-energy electron diffraction patterns showed that the S- and H-passivated surfaces had no and very weak (1 x 2) superlattice reconstructions, respectively. This indicates that these GaAs(001) templates have a square-like symmetry. Magnetic anisotropies were investigated using the in-plane angular dependence of ferromagnetic resonance at 36 GHz. The in-plane cubic and uniaxial anisotropies and perpendicular uniaxial field were described by bulk and interface contributions, indicating that the Fe films have a high lattice coherence. The magnetic properties of the Fe films were compared to those grown on more commonly used GaAs(001) templates having a (4 x 6) reconstruction with an As-rich in-plane uniaxial symmetry. The Fe films grown on S-passivated templates exhibited unique magnetic properties caused by a decreased lattice spacing compared to the bulk Fe.

  8. Dzyaloshinskii-Moriya interaction and magnetic anisotropies in Uranium compounds

    Science.gov (United States)

    Sandratskii, L. M.

    2018-05-01

    We report on the first-principles study of complex noncollinear magnetic structures in Uranium compounds. We contrast two cases. The first is the periodic magnetic structure of U2Pd2In with exactly orthogonal atomic moments, the second is an incommensurate plane spiral structure of UPtGe where the angle between atomic moments of nearest neighbors is also close to 90°. We demonstrate that the hierarchy of magnetic interactions leading to the formation of the magnetic structure is opposite in the two cases. In U2Pd2In, the magnetic anisotropy plays the leading role, followed by the Dzyaloshinskii-Moriya interaction (DMI) interaction specifying the chirality of the structure. Here, the interatomic exchange interaction does not play important role. In UPtGe the hierarchy of the interactions is opposite. The leading interaction is the interatomic exchange interaction responsible for the formation of the incommensurate spiral structure followed by the DMI responsible for the selected chirality of the helix. The magnetic anisotropy is very weak that is a prerequisite for keeping the distortion of the helical structure weak.

  9. Underwater Animal Monitoring Magnetic Sensor System

    KAUST Repository

    Kaidarova, Altynay

    2017-10-01

    Obtaining new insights into the behavior of free-living marine organisms is fundamental for conservation efforts and anticipating the impact of climate change on marine ecosystems. Despite the recent advances in biotelemetry, collecting physiological and behavioral parameters of underwater free-living animals remains technically challenging. In this thesis, we develop the first magnetic underwater animal monitoring system that utilizes Tunnel magnetoresistance (TMR) sensors, the most sensitive solid-state sensors today, coupled with flexible magnetic composites. The TMR sensors are composed of CoFeB free layers and MgO tunnel barriers, patterned using standard optical lithography and ion milling procedures. The short and long-term stability of the TMR sensors has been studied using statistical and Allan deviation analysis. Instrumentation noise has been reduced using optimized electrical interconnection schemes. We also develop flexible NdFeB-PDMS composite magnets optimized for applications in corrosive marine environments, and which can be attached to marine animals. The magnetic and mechanical properties are studied for different NdFeB powder concentrations and the performance of the magnetic composites for different exposure times to sea water is systematically investigated. Without protective layer, the composite magnets loose more than 50% of their magnetization after 51 days in seawater. The durability of the composite magnets can be considerably improved by using polymer coatings which are protecting the composite magnet, whereby Parylene C is found to be the most effective solution, providing simultaneously corrosion resistance, flexibility, and enhanced biocompatibility. A Parylene C film of 2μm thickness provides the sufficient protection of the magnetic composite in corrosive aqueous environments for more than 70 days. For the high level performance of the system, the theoretically optimal position of the composite magnets with respect to the sensing

  10. Large-angle magnetization dynamics investigated by vector-resolved magnetization-induced optical second-harmonic generation

    NARCIS (Netherlands)

    Gerrits, T.; Silva, T.J.; Nibarger, J.P.; Rasing, T.H.M.

    2004-01-01

    We examine the relationship between nonlinear magnetic responses and the change in the Gilbert damping parameter alpha for patterned and unpatterned thin Permalloy films when subjected to pulsed magnetic fields. An improved magnetization-vector-resolved technique utilizing magnetization-induced

  11. Sulfur passivation of semi-insulating GaAs: Transition from Coulomb blockade to weak localization regime

    Energy Technology Data Exchange (ETDEWEB)

    Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru [Ioffe Institute (Russian Federation); Chaikina, E. I. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Division de Fisica Aplicada (Mexico); Danilovskii, E. Yu.; Gets, D. S.; Klyachkin, L. E.; L’vova, T. V.; Malyarenko, A. M. [Ioffe Institute (Russian Federation)

    2016-04-15

    The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The results obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.

  12. Anisotropy of the Faraday effect in the weak ferromagnet YFeO3

    International Nuclear Information System (INIS)

    Zenkov, A.V.; Krichevtsov, B.B.; Moskvin, A.S.; Mukimov, K.M.; Pisarev, R.V.; Ruvinshtein, M.M.

    1989-01-01

    An experimental investigation was made of the magnetic-field dependence of the Faraday effect in a weak ferromagnet YFeO 3 at the wavelength λ = 0.63 μm. Measurements were made for different orientations of the direction of light propagation k and of the magnetic field H. Changes in the Faraday effect in the k parallel c, H parallel a case were not proportional to changes in the component of the magnetic moment m z . A phenomenological description of the Faraday effect in YFeO 3 was used to separate the ferromagnetic, antiferromagnetic, and diamagnetic contributions to the effect. The antiferromagnetic contribution dominating the Faraday effect was strongly anisotropic. A theoretical analysis was made of the microscopic Faraday effect mechanisms in YFeO 3 using the example of a dipole-allowed transition 6 A 1g → 6 T 1u

  13. Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in northwest China.

    Science.gov (United States)

    Zhang, Li-Juan; Cai, Wan-Zhi; Luo, Jun-Yu; Zhang, Shuai; Wang, Chun-Yi; Lv, Li-Min; Zhu, Xiang-Zhen; Wang, Li; Cui, Jin-Jie

    2017-01-01

    Lygus pratensis (L.) is an important cotton pest in China, especially in the northwest region. Nymphs and adults cause serious quality and yield losses. However, the genetic structure and geographic distribution of L. pratensis is not well known. We analyzed genetic diversity, geographical structure, gene flow, and population dynamics of L. pratensis in northwest China using mitochondrial and nuclear sequence datasets to study phylogeographical patterns and demographic history. L. pratensis (n = 286) were collected at sites across an area spanning 2,180,000 km2, including the Xinjiang and Gansu-Ningxia regions. Populations in the two regions could be distinguished based on mitochondrial criteria but the overall genetic structure was weak. The nuclear dataset revealed a lack of diagnostic genetic structure across sample areas. Phylogenetic analysis indicated a lack of population level monophyly that may have been caused by incomplete lineage sorting. The Mantel test showed a significant correlation between genetic and geographic distances among the populations based on the mtDNA data. However the nuclear dataset did not show significant correlation. A high level of gene flow among populations was indicated by migration analysis; human activities may have also facilitated insect movement. The availability of irrigation water and ample cotton hosts makes the Xinjiang region well suited for L. pratensis reproduction. Bayesian skyline plot analysis, star-shaped network, and neutrality tests all indicated that L. pratensis has experienced recent population expansion. Climatic changes and extensive areas occupied by host plants have led to population expansion of L. pratensis. In conclusion, the present distribution and phylogeographic pattern of L. pratensis was influenced by climate, human activities, and availability of plant hosts.

  14. Forward Compton scattering with weak neutral current: Constraints from sum rules

    Directory of Open Access Journals (Sweden)

    Mikhail Gorchtein

    2015-07-01

    Full Text Available We generalize forward real Compton amplitude to the case of the interference of the electromagnetic and weak neutral current, formulate a low-energy theorem, relate the new amplitudes to the interference structure functions and obtain a new set of sum rules. We address a possible new sum rule that relates the product of the axial charge and magnetic moment of the nucleon to the 0th moment of the structure function g5(ν,0. For the dispersive γZ-box correction to the proton's weak charge, the application of the GDH sum rule allows us to reduce the uncertainty due to resonance contributions by a factor of two. The finite energy sum rule helps addressing the uncertainty in that calculation due to possible duality violations.

  15. Electronic Structure and Magnetic Interactions in the Radical Salt [BEDT-TTF]2[CuCl4].

    Science.gov (United States)

    Calzado, Carmen J; Rodríguez-García, Bárbara; Galán Mascarós, José Ramón; Hernández, Norge Cruz

    2018-06-07

    The magnetic behavior and electric properties of the hybrid radical salt [BEDT-TTF] 2 [CuCl 4 ] have been revisited through extended experimental analyses and DDCI and periodic DFT plane waves calculations. Single crystal X-ray diffraction data have been collected at different temperatures, discovering a phase transition occurring in the 250-300 K range. The calculations indicate the presence of intradimer, interdimer, and organic-inorganic π-d interactions in the crystal, a magnetic pattern much more complex than the Bleaney-Bowers model initially assigned to this material. Although this simple model was good enough to reproduce the magnetic susceptibility data, our calculations demonstrate that the actual magnetic structure is significantly more intricate, with alternating antiferromagnetic 1D chains of the organic BEDT-TTF + radical, connected through weak antiferromagnetic interactions with the CuCl 4 2- ions. Combination of experiment and theory allowed us to unambiguously determine and quantify the leading magnetic interactions in the system. The density-of-states curves confirm the semiconductor nature of the system and the dominant organic contribution of the valence and conduction band edges. This general and combined approach appears to be fundamental in order to properly understand the magnetic structure of these complex materials, where experimental data can actually be fitted from a variety of models and parameters.

  16. Quantum transport in topological semimetals under magnetic fields

    Science.gov (United States)

    Lu, Hai-Zhou; Shen, Shun-Qing

    2017-06-01

    Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.

  17. Magnetic fields and cancer. Epidemiological studies and a synthesis of evidence

    International Nuclear Information System (INIS)

    Feychting, M.

    1995-01-01

    The aims of this thesis were to test the hypothesis that exposure to residential magnetic fields generated by high voltage power lines leads to an increased incidence of childhood cancer, and of leukemia and central nervous system tumors in adults; to investigate important aspects of magnetic field exposure assessment; to synthesize the available evidence on EMF and cancer through different meta-analytical techniques, and to assess some possibilities and limitations of these techniques. A case-control study was conducted within a population of 430,000 subjects living close to power lines. Magnetic field exposure estimated through spot measurements and theoretical calculations of the magnetic fields generated by the power lines at the time of the measurement and prior to diagnosis. The results provide support for the hypothesis of an association between exposure to residential magnetic fields from power lines and childhood leukemia. For adults, there is some evidence of an association for acute and chronic myeloid leukemia. The study's most obvious weakness is the small numbers, and chance may be an explanation for the association between magnetic field exposure and childhood leukemia. Against this speak the consistent results in different subgroups and in the Nordic countries, the magnitude of the association, the obtained confidence intervals, and the dose-response pattern. The heterogeneity among the existing EMF studies does not allow for a meta-analysis where all studies are combined into a common effect estimate. 96 refs

  18. Chaotic weak chimeras and their persistence in coupled populations of phase oscillators

    International Nuclear Information System (INIS)

    Bick, Christian; Ashwin, Peter

    2016-01-01

    Nontrivial collective behavior may emerge from the interactive dynamics of many oscillatory units. Chimera states are chaotic patterns of spatially localized coherent and incoherent oscillations. The recently-introduced notion of a weak chimera gives a rigorously testable characterization of chimera states for finite-dimensional phase oscillator networks. In this paper we give some persistence results for dynamically invariant sets under perturbations and apply them to coupled populations of phase oscillators with generalized coupling. In contrast to the weak chimeras with nonpositive maximal Lyapunov exponents constructed so far, we show that weak chimeras that are chaotic can exist in the limit of vanishing coupling between coupled populations of phase oscillators. We present numerical evidence that positive Lyapunov exponents can persist for a positive measure set of this inter-population coupling strength. (paper)

  19. Weak light emission of soft tissues induced by heating

    Science.gov (United States)

    Spinelli, Antonello E.; Durando, Giovanni; Boschi, Federico

    2018-04-01

    The main goal of this work is to show that soft tissue interaction with high-intensity focused ultrasound (HIFU) or direct heating leads to a weak light emission detectable using a small animal optical imaging system. Our results show that the luminescence signal is detectable after 30 min of heating, resembling the time scale of delayed luminescence. The imaging of a soft tissue after heating it using an HIFU field shows that the luminescence pattern closely matches the shape of the cone typical of the HIFU beam. We conclude that heating a soft tissue using two different sources leads to the emission of a weak luminescence signal from the heated region with a decay half-life of a few minutes (4 to 6 min). The origin of such light emission needs to be further investigated.

  20. Study on magnetic property and fracture behavior of magnetic materials

    International Nuclear Information System (INIS)

    Miya, Kenzo; Demachi, Kazuyuki; Aoto, Kazumi; Nagae, Yuji

    2002-04-01

    Establishment of evaluation methods of material degradation before crack initiation is needed very much to enhance the reliability of structural components. We remark magnetic methods in this report. Our objectives are to reveal the relation between degradation and magnetic property and to develop evaluation methods of material degradation, especially plastic deformation and stress corrosion cracking (SCC). In the former part of this report, evaluation methods for plastic deformation are discussed. At first, the study that shows the relation between the magnetic flux leakage and plastic deformation is reviewed. We developed the inverse analysis method of magnetization to specify the degradation distribution. Moreover, we propose inverse analysis of magnetic susceptibility for quantitative evaluation. In the latter part, the topic is SCC. We measured the magnetic flux leakage from the sample induced a SCC crack (Inconel 600). Inconel 600 is a paramagnetic material at room temperature but the sample shows ferromagnetic and the magnetic flux leakage was changed near the SCC crack. The possibility of detection of a SCC crack is shown by the inverse analysis result from the magnetic flux leakage. Finally, it is recognized by observation of the micro magnetic distributions by using a magnetic force microscope that the magnetization has relation with chromium depletion near grain boundaries and it is weak near the SCC crack. From these results, the magnetic method is very effective for evaluation of degradation. (author)

  1. Numerical investigation of micro-macro coupling in magneto-impedance sensors for weak field measurements

    Science.gov (United States)

    Eason, Kwaku

    There is strong interest in the use of small low-cost highly sensitive magnetic field sensors for applications (e.g. biomedical devices) requiring weak field measurements. Among weak-field sensors, the magneto-impedance (MI) sensor has demonstrated an absolute resolution of 10-11 T. The MI effect is a sensitive realignment of a periodic magnetization in response to an external field in small ferromagnets. However, design of MI sensors has relied primarily on trial and error experimental methods along with decoupled models describing the MI effect. To offer a basis for more cost-effective designs, this thesis research begins with a general formulation describing MI sensors, which relaxes assumptions commonly made for decoupling. The coupled set of nonlinear equations is solved numerically using an efficient meshless method in a point collocation formulation. For the problem considered, the chosen method is shown to offer advantages over alternative methods including the finite element method. Projection methods are used to stabilize the time discretization while quasi-Newton methods (nonlinear solver) are shown to be more computationally efficient, as well. Specifically, solutions for two MI sensor element geometries are presented, which were validated against published experimental data. While the examples illustrated here are for MI sensors, the approach presented can also be extended to other weak-field sensors like fluxgate and Hall effect sensors.

  2. Traction bronchiectasis in cryptogenic fibrosing alveolitis: associated computed tomographic features and physiological significance

    International Nuclear Information System (INIS)

    Desai, Sujal R.; Wells, Athol U.; Bois, Roland M. du; Rubens, Michael B.; Hansell, David M.

    2003-01-01

    Our objective was to evaluate the associated CT features and physiological consequences of traction bronchiectasis in patients with cryptogenic fibrosing alveolitis (CFA). The CT scans of 212 patients with CFA (158 men, 54 women; mean age 62.2±10.6 years) were evaluated independently by two observers. The extent of fibrosis, the proportions of a reticular pattern and ground-glass opacification and the extent of emphysema were scored at five levels. The predominant CT pattern, coarseness of a reticular pattern and severity of traction bronchiectasis were graded semiquantitatively. Physiological indices were correlated with CT features. There was traction bronchiectasis on CT in 202 of 212 (95%) patients. Increasingly severe traction bronchiectasis was independently associated with increasingly extensive CFA (p CO (p 2 (p<0.0005), but not indices of air-flow obstruction. In CFA, traction bronchiectasis increases with more extensive disease, a lower proportion of ground-glass opacification and a coarser reticular pattern, but it decreases with concurrent emphysema. Increasingly severe traction bronchiectasis is associated with additional physiological impairment for a given extent of pulmonary fibrosis and emphysema. (orig.)

  3. Injury Patterns, Physiological Profile, and Performance in University Rugby Union.

    Science.gov (United States)

    Ball, Shane; Halaki, Mark; Sharp, Tristan; Orr, Rhonda

    2018-01-01

    Rugby union is a physically demanding collision sport with high injury rates. There is a common perception that higher training loads result in greater injury risk in field-based sports. To determine injury, anthropometric, and physical-performance characteristics in junior rugby union players and investigate the interaction between training load and injury across a competitive season. Prospective cohort study. Fifty-one players (age 19.2 ± 0.7 y) from an under-20 university rugby union team (forwards, n = 27; backs, n = 24) participated in a study conducted over a competition season. Training load, injury characteristics, anthropometry, physiological performance, and match time-loss injury incidence were observed. Backs had significantly lower body mass (ES [95% CI] = 1.6 [0.9, 2.2]), skinfold thickness (ES = 1.1 [0.5, 1.7]), strength (squat ES = 0.6 [0.0, 1.2], deadlift ES = 0.6 [0.0, 1.1], bench press ES = 0.9 [0.4, 1.5]), lower-body power (ES = 0.4 [-0.2, 1.0]), and higher maximal aerobic capacity (ES = -0.3 [-0.8, 0.3]) than forwards. Match injury incidence was 107.3 injuries/1000 player hours (forwards 91.4/1000, backs 125.5/1000) during preseason and 110.7 injuries/1000 player hours (forwards 124.1/1000, backs 95.2/1000) during in-season. Forwards showed higher incidence of joint and ligament (P = .049) and upper-limb (P = .011) injuries than backs. No significant relationship between overall training load and match injury incidence was found. However, lower match injury incidence was associated with higher weekly training volume in backs (P = .007). Positional differences in body composition, performance, injury characteristics, and match injury patterns were identified in junior university rugby union players, indicating the need for position-specific training programs to reduce risk of injury.

  4. Magnetic vortex racetrack memory

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Liwei D.; Jin, Yongmei M., E-mail: ymjin@mtu.edu

    2017-02-01

    We report a new type of racetrack memory based on current-controlled movement of magnetic vortices in magnetic nanowires with rectangular cross-section and weak perpendicular anisotropy. Data are stored through the core polarity of vortices and each vortex carries a data bit. Besides high density, non-volatility, fast data access, and low power as offered by domain wall racetrack memory, magnetic vortex racetrack memory has additional advantages of no need for constrictions to define data bits, changeable information density, adjustable current magnitude for data propagation, and versatile means of ultrafast vortex core switching. By using micromagnetic simulations, current-controlled motion of magnetic vortices in cobalt nanowire is demonstrated for racetrack memory applications. - Highlights: • Advance fundamental knowledge of current-driven magnetic vortex phenomena. • Report appealing new magnetic racetrack memory based on current-controlled magnetic vortices in nanowires. • Provide a novel approach to adjust current magnitude for data propagation. • Overcome the limitations of domain wall racetrack memory.

  5. TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

    International Nuclear Information System (INIS)

    Davidson, J. A.; Li, Z.-Y.; Hull, C. L. H.; Plambeck, R. L.; Kwon, W.; Crutcher, R. M.; Looney, L. W.; Novak, G.; Chapman, N. L.; Matthews, B. C.; Stephens, I. W.; Tobin, J. J.; Jones, T. J.

    2014-01-01

    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse

  6. TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J. A. [University of Western Australia, School of Physics, 35 Stirling Highway, Crawley, WA 6009 (Australia); Li, Z.-Y. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Hull, C. L. H.; Plambeck, R. L. [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD, Groningen (Netherlands); Crutcher, R. M.; Looney, L. W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Novak, G.; Chapman, N. L. [Northwestern University, Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Matthews, B. C. [Herzberg Astronomy and Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Stephens, I. W. [Boston University, Institute for Astrophysical Research, Boston, MA 02215 (United States); Tobin, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Jones, T. J., E-mail: jackie.davidson@uwa.edu.au [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2014-12-20

    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.

  7. Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests

    Science.gov (United States)

    Shenoy, A.; Kielland, K.; Johnstone, J. F.

    2011-12-01

    Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (μg N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species

  8. Effects of an anomalous W-boson weak electric dipole moment in fi- fj → W ± Z0 (γ)

    International Nuclear Information System (INIS)

    Queijeiro, A.; Garcia, J.

    1995-01-01

    We study the high-energy production process f i - f j → W ± Z 0 (γ) allowing for gauge boson compositeness through an anomalous W - -boson weak-electric dipole moment parameter ∼ k z . We give the angular differential and total cross-section for different values of ∼ k z , and compare with the corresponding results coming from an anomalous weak-magnetic dipole moment k z . (Author)

  9. Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect

    International Nuclear Information System (INIS)

    Gvozdikov, V M; Taut, M

    2009-01-01

    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.

  10. Utilization Of Second Harmonisa Fluxgate For Two Dimension Direct Magnetic Field

    International Nuclear Information System (INIS)

    Limansyah, Ivan; Djamal, Mitra

    2003-01-01

    Fluxgate magnetic field sensor is a cheap, accurate and simple solution to measure DC external weak magnetic field. With adding some modification, this sensor can be used to measure amplitude and direction of the external magnetic field. By adding another pick up coils that orthogonal with ordinary pick up coils, two dimensions fluxgate magnetic field sensor can be build

  11. Impact of a primordial magnetic field on cosmic microwave background B modes with weak lensing

    Science.gov (United States)

    Yamazaki, Dai G.

    2018-05-01

    We discuss the manner in which the primordial magnetic field (PMF) suppresses the cosmic microwave background (CMB) B mode due to the weak-lensing (WL) effect. The WL effect depends on the lensing potential (LP) caused by matter perturbations, the distribution of which at cosmological scales is given by the matter power spectrum (MPS). Therefore, the WL effect on the CMB B mode is affected by the MPS. Considering the effect of the ensemble average energy density of the PMF, which we call "the background PMF," on the MPS, the amplitude of MPS is suppressed in the wave number range of k >0.01 h Mpc-1 . The MPS affects the LP and the WL effect in the CMB B mode; however, the PMF can damp this effect. Previous studies of the CMB B mode with the PMF have only considered the vector and tensor modes. These modes boost the CMB B mode in the multipole range of ℓ>1000 , whereas the background PMF damps the CMB B mode owing to the WL effect in the entire multipole range. The matter density in the Universe controls the WL effect. Therefore, when we constrain the PMF and the matter density parameters from cosmological observational data sets, including the CMB B mode, we expect degeneracy between these parameters. The CMB B mode also provides important information on the background gravitational waves, inflation theory, matter density fluctuations, and the structure formations at the cosmological scale through the cosmological parameter search. If we study these topics and correctly constrain the cosmological parameters from cosmological observations, including the CMB B mode, we need to correctly consider the background PMF.

  12. Analysis of Long Bone and Vertebral Failure Patterns

    Science.gov (United States)

    1985-02-14

    and alter the injury pattern. Classified on an anatomical, kinesiologic , £s and pathologic basis, the vertebral body fracture patterns may...814. Boyde, A. (1972) Scanning electron microscope studies of bone. In Bourne, G.H. (ed): The Biochemistry and Physiology of Bone. New York...Eyring, E.J. (1969) The biochemistry and physiology of intervertebral disk. Clin. Orthop. Rel, Res. 67: 16-18. Fick, R. (1904) Handbuch der Anatomie

  13. Role of Acid and Weakly Acidic Reflux in Gastroesophageal Reflux Disease Off Proton Pump Inhibitor Therapy

    Science.gov (United States)

    Sung, Hea Jung; Moon, Sung Jin; Kim, Jin Su; Lim, Chul Hyun; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Myung-Gye

    2012-01-01

    Background/Aims Available data about reflux patterns and symptom determinants in the gastroesophageal reflux disease (GERD) subtypes off proton pump inhibitor (PPI) therapy are lacking. We aimed to evaluate reflux patterns and determinants of symptom perception in patients with GERD off PPI therapy by impedance-pH monitoring. Methods We retrospectively reviewed the impedance-pH data in patients diagnosed as GERD based on results of impedance-pH monitoring, endoscopy and/or typical symptoms. The characteristics of acid and weakly acidic reflux were evaluated. Symptomatic and asymptomatic reflux were compared according to GERD subtypes and individual symptoms. Results Forty-two patients (22 males, mean age 46 years) were diagnosed as GERD (17 erosive reflux disease, 9 pH(+) non-erosive reflux disease [NERD], 9 hypersensitive esophagus and 7 symptomatic NERD). A total of 1,725 reflux episodes were detected (855 acid [50%], 857 weakly acidic [50%] and 13 weakly alkaline reflux [reflux was more frequently symptomatic and bolus clearance was longer compared with weakly acidic reflux. In terms of globus, weakly acidic reflux was more symptomatic. Symptomatic reflux was more frequently acid and mixed reflux; these associations were more pronounced in erosive reflux disease and symptomatic NERD. The perception of regurgitation was related to acid reflux, while that of globus was more related to weakly acidic reflux. Conclusions In patients not taking PPI, acid reflux was more frequently symptomatic and had longer bolus clearance. Symptomatic reflux was more frequently acid and mixed type; however, weakly acidic reflux was associated more with globus. These data suggest a role for impedance-pH data in the evaluation of globus. PMID:22837877

  14. Role of Acid and weakly acidic reflux in gastroesophageal reflux disease off proton pump inhibitor therapy.

    Science.gov (United States)

    Sung, Hea Jung; Cho, Yu Kyung; Moon, Sung Jin; Kim, Jin Su; Lim, Chul Hyun; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Myung-Gye

    2012-07-01

    Available data about reflux patterns and symptom determinants in the gastroesophageal reflux disease (GERD) subtypes off proton pump inhibitor (PPI) therapy are lacking. We aimed to evaluate reflux patterns and determinants of symptom perception in patients with GERD off PPI therapy by impedance-pH monitoring. We retrospectively reviewed the impedance-pH data in patients diagnosed as GERD based on results of impedance-pH monitoring, endoscopy and/or typical symptoms. The characteristics of acid and weakly acidic reflux were evaluated. Symptomatic and asymptomatic reflux were compared according to GERD subtypes and individual symptoms. Forty-two patients (22 males, mean age 46 years) were diagnosed as GERD (17 erosive reflux disease, 9 pH(+) non-erosive reflux disease [NERD], 9 hypersensitive esophagus and 7 symptomatic NERD). A total of 1,725 reflux episodes were detected (855 acid [50%], 857 weakly acidic [50%] and 13 weakly alkaline reflux [Acid reflux was more frequently symptomatic and bolus clearance was longer compared with weakly acidic reflux. In terms of globus, weakly acidic reflux was more symptomatic. Symptomatic reflux was more frequently acid and mixed reflux; these associations were more pronounced in erosive reflux disease and symptomatic NERD. The perception of regurgitation was related to acid reflux, while that of globus was more related to weakly acidic reflux. In patients not taking PPI, acid reflux was more frequently symptomatic and had longer bolus clearance. Symptomatic reflux was more frequently acid and mixed type; however, weakly acidic reflux was associated more with globus. These data suggest a role for impedance-pH data in the evaluation of globus.

  15. Hartman effect and weak measurements that are not really weak

    International Nuclear Information System (INIS)

    Sokolovski, D.; Akhmatskaya, E.

    2011-01-01

    We show that in wave packet tunneling, localization of the transmitted particle amounts to a quantum measurement of the delay it experiences in the barrier. With no external degree of freedom involved, the envelope of the wave packet plays the role of the initial pointer state. Under tunneling conditions such ''self-measurement'' is necessarily weak, and the Hartman effect just reflects the general tendency of weak values to diverge, as postselection in the final state becomes improbable. We also demonstrate that it is a good precision, or a 'not really weak' quantum measurement: no matter how wide the barrier d, it is possible to transmit a wave packet with a width σ small compared to the observed advancement. As is the case with all weak measurements, the probability of transmission rapidly decreases with the ratio σ/d.

  16. Magnetic interference patterns in 0-pi superconductor/insulator/ferromagnet/superconductor Josephson junctions: Effects of asymmetry between 0 and pi regions

    OpenAIRE

    Kemmler, M.; Weides, M.; Goldobin, E.; Weiler, M.; Opel, M.; Goennenwein, S.T.B.; Vasenko, A.S.; Golubov, A.A.; Kohlstedt, H.; Koelle, D.; Kleiner, R.

    2010-01-01

    We present a detailed analysis of the dependence of the critical current I-c on an in-plane magnetic field B of 0, pi, and 0-pi superconductor-insulator-ferromagnet-superconductor Josephson junctions. I-c(B) of the 0 and the pi junction closely follows a Fraunhofer pattern, indicating a homogeneous critical current density j(c)(x). The maximum of I-c(B) is slightly shifted along the field axis, pointing to a small remanent in-plane magnetization of the F-layer along the field axis. I-c(B) of ...

  17. An interpretation of the tectonostratigraphic framework of the Murray Basin region of southeastern Australia, based on an examination of airborne magnetic patterns

    Science.gov (United States)

    Brown, C. M.; Tucker, D. H.; Anfiloff, V.

    1988-11-01

    New pixel map representations of regional total magnetic intensity data reveal previously unknown characteristics of the basement concealed beneath thin Cainozoic sediments of the Murray Basin in southeastern Australia. Interpretations of magnetic patterns in terms of structural features allow a revised interpretation of the nature of the tectonostratigraphic framework underlying and flanking the basin. The magnetic data indicate that arcuate or curvilinear structural trends under the Murray Basin do not conform with those of the exposed Lachlan Fold Belt to the east and suggest that the basement concealed beneath the basin, together with that exposed in the Victorian Highlands to the south, forms a distinct composite tectonostratigraphic terrane. Beneath the southwestern Murray Basin ?Proterozoic-Lower Cambrian metasediments of the Padthaway Ridge of the Kanmantoo Fold Belt display a northwesterly trending structural grain and a previously unsuspected continuity of structural trend with Adelaidean-Cambrian rocks of the Mount Lofty Ranges to the west. In the south, Cambrian volcanics of the Black Range and Stavely greenstone belts have similar magnetic response and appear to be components of a single elongate and strongly magnetic domain which extends to the northwest for at least 400 km (Stavely Belt). To the north a similar but entirely concealed northeasterly trending magnetic domain can also be interpreted as volcanics (Lake Wintlow Belt). Together these two magnetic domains appear to form an arcuate zone of volcanics, with a concave-to-the-east configuration, located at a possible suture between the Lachlan and Kanmantoo Fold Belts beneath the western Murray Basin. In the south the magnetic imagery indicates that metasediments of the ?Cambro-Ordovician Stawell Belt produce magnetic patterns distinct from those produced by the metasediments of the adjacent Ordovician Bendigo Belt, which can itself be subdivided into a number of areas of distinct magnetic

  18. Numerical evaluation of energy barriers and magnetic relaxation in interacting nanostructured magnetic systems

    International Nuclear Information System (INIS)

    Chubykalo-Fesenko, Oksana A.; Chantrell, Roy W.

    2004-01-01

    We discuss a model to quantify long-time thermally induced magnetization reversal in magnetic systems with distributed properties. Two algorithms, based on kinetic and Metropolis Monte Carlo are introduced. While the former requires the constant recalculation of all energy barriers and is useful when the interactions are weak, the latter uses the Metropolis Monte Carlo to estimate the magnetization trajectory and, consequently, only the most probable transition rates are evaluated. The ridge optimization method is used to evaluate the energy barriers in a multidimensional energy landscape. The algorithms are applied to a granular system modeled by means of Voronoi polyhedra and having random in-plane anisotropy

  19. Relativistic stability of interacting Fermi gas in a strong magnetic field

    International Nuclear Information System (INIS)

    Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng

    2013-01-01

    By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)

  20. X-ray magnetic microscopy for correlations between magnetic domains and crystal structure

    International Nuclear Information System (INIS)

    Denbeaux, G.; Anderson, E.; Bates, B.; Chao, W.; Liddle, J.A.; Harteneck, B.; Pearson, A.; Salmassi, F.; Schneider, G.; Fischer, P.; Eimuller, T.; Taylor, S.; Chang, H.; Kusinski, G.J.

    2002-01-01

    Accurately determining the resolution of x-ray microscopes has been a challenge because good test patterns for x-ray microscopy have been hard to make. We report on a sputter-deposited multilayer imaged in cross section as a test pattern with small features and high aspect ratios. One application of high-resolution imaging is magnetic materials. Off-axis bend magnet radiation is known to have a component of circular polarization which can be used for x-ray magnetic circular dichroism. We calculate the integrated circular polarization collected by the illumination optics in the XM-1 full-field x-ray microscope. (authors)

  1. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy......) of the magnetic field and the weak nonlinearity of the magnetic forces. Through mathematical modelling the nonlinear equations of motion are established for describing the shaft and bearing housing lateral dynamics coupled via the nonlinear and non-uniform magnetic forces. The equations of motion are solved...

  2. Ideal MHD equilibrium of a weakly toroidal plasma column with elongated cross-section

    International Nuclear Information System (INIS)

    Heesch, E.J.M. van; Schuurman, W.

    1980-07-01

    Solutions are obtained of the ideal MHD equations describing the equilibrium of a weakly toroidal plasma with an elliptic cross-section surrounded by a force-free magnetic field with constant ratio between current density and magnetic field strength. The force-free field parameter causes the stagnation points to recede along the major axis of the ellipse. Above a certain value of the force-free field parameter, stagnation points do not exist, so that the compression ratio of the plasma column is no longer limited. The analysis was carried out to first order in the force-free field parameter as well as to second order for an estimate of the error

  3. Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations

    KAUST Repository

    Figalli, Alessio; Gomes, Diogo A.; Marcon, Diego

    2016-01-01

    Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.

  4. Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations

    KAUST Repository

    Figalli, Alessio

    2016-06-23

    Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.

  5. Molecular Magnets for Quantum Computation

    Science.gov (United States)

    Kuroda, Takayoshi

    2009-06-01

    We review recent progress in molecular magnets especially in the viewpoint of the application for quantum computing. After a brief introduction to single-molecule magnets (SMMs), a method for qubit manipulation by using non-equidistant spin sublevels of a SMM will be introduced. A weakly-coupled dimer of two SMMs is also a candidate for quantum computing, which shows no quantum tunneling of magnetization (QTM) at zero field. In the AF ring Cr7Ni system, the large tunnel splitting is a great advantage to reduce decoherence during manipulation, which can be a possible candidate to realize quantum computer devices in future.

  6. Gauge theory of amorphous magnets

    International Nuclear Information System (INIS)

    Nesterov, A.I.; Ovchinnikov, S.G.

    1989-01-01

    A gauge theory of disordered magnets as a field theory in the principal fiber bundle with structure group SL(3, R) is constructed. The gauge field interacting with a vector field (the magnetization) is responsible for the disorder. A complete system of equations, valid for arbitrary disordered magnets, is obtained. In the limiting case of a free gauge field the proposed approach leads to the well-known Volovik-Dzyaloshinskii theory, which describes isotropic spin glasses. In the other limiting case when the curvature is zero the results of Ignatchenko and Iskhakov for weakly disordered ferromagnets are reproduced

  7. Elderly persons with ICU-acquired weakness: the potential role for β-hydroxy-β-methylbutyrate (HMB) supplementation?

    Science.gov (United States)

    Rahman, Adam; Wilund, Kenneth; Fitschen, Peter J; Jeejeebhoy, Khursheed; Agarwala, Ravi; Drover, John W; Mourtzakis, Marina

    2014-07-01

    Intensive care unit (ICU)-acquired weakness is common and characterized by muscle loss, weakness, and paralysis. It is associated with poor short-term outcomes, including increased mortality, but the consequences of reduced long-term outcomes, including decreased physical function and quality of life, can be just as devastating. ICU-acquired weakness is particularly relevant to elderly patients who are increasingly consuming ICU resources and are at increased risk for ICU-acquired weakness and complications, including mortality. Elderly patients often enter critical illness with reduced muscle mass and function and are also at increased risk for accelerated disuse atrophy with acute illness. Increasingly, intensivists and researchers are focusing on strategies and therapies aimed at improving long-term neuromuscular function. β-Hydroxy-β-methylbutyrate (HMB), an ergogenic supplement, has shown efficacy in elderly patients and certain clinical populations in counteracting muscle loss. The present review discusses ICU-acquired weakness, as well as the unique physiology of muscle loss and skeletal muscle function in elderly patients, and then summarizes the evidence for HMB in elderly patients and in clinical populations. We subsequently postulate on the potential role and strategies in studying HMB in elderly ICU patients to improve muscle mass and function. © 2013 American Society for Parenteral and Enteral Nutrition.

  8. Layering and temperature-dependent magnetization and anisotropy of naturally produced Ni/NiO multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S. D.; Trachylis, D.; Velgakis, M. J. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Kapaklis, V.; Joensson, P. E.; Papaioannou, E. Th. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process Engineering Research Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Poulopoulos, P. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Materials Science Department, University of Patras, 26504 Patras (Greece); Fumagalli, P. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Politis, C. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2012-09-01

    Ni/NiO multilayers were grown by magnetron sputtering at room temperature, with the aid of the natural oxidation procedure. That is, at the end of the deposition of each single Ni layer, air is let to flow into the vacuum chamber through a leak valve. Then, a very thin NiO layer ({approx}1.2 nm) is formed. Simulated x-ray reflectivity patterns reveal that layering is excellent for individual Ni-layer thickness larger than 2.5 nm, which is attributed to the intercalation of amorphous NiO between the polycrystalline Ni layers. The magnetization of the films, measured at temperatures 5-300 K, has almost bulk-like value, whereas the films exhibit a trend to perpendicular magnetic anisotropy (PMA) with an unusual significant positive interface anisotropy contribution, which presents a weak temperature dependence. The power-law behavior of the multilayers indicates a non-negligible contribution of higher order anisotropies in the uniaxial anisotropy. Bloch-law fittings for the temperature dependence of the magnetization in the spin-wave regime show that the magnetization in the multilayers decreases faster as a function of temperature than the one of bulk Ni. Finally, when the individual Ni-layer thickness decreases below 2 nm, the multilayer stacking vanishes, resulting in a dramatic decrease of the interface magnetic anisotropy and consequently in a decrease of the perpendicular magnetic anisotropy.

  9. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of ∼ 1013 G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties of quark ...

  10. Dark-Matter Particles without Weak-Scale Masses or Weak Interactions

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Kumar, Jason

    2008-01-01

    We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders

  11. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology.

    Science.gov (United States)

    Seebacher, Frank; Franklin, Craig E

    2012-06-19

    The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.

  12. Anisotropy of susceptibility in rocks that are magnetically non-linear even in weak fields

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin; Ježek, J.; Hrouda, F.

    2017-01-01

    Roč. 19, EGU General Assembly 2017 (2017) ISSN 1029-7006. [European Geosciences Union General Assembly. 23.04.2017-28.04.2017, Vienna] Institutional support: RVO:67985831 Keywords : anisotropy of magnetic susceptibility * field-dependent susceptibility * second-rank tensor Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://meetingorganizer.copernicus.org/EGU2017/EGU2017-7210-1.pdf

  13. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Tsujimura, M. [Aichi Giken Co., 2-1-47 Shiobaru, Minami-ku, Fukuoka 815-8520 (Japan); Terasawa, T. [IMRA Material R and D Co., Ltd., 2-1 Asahimachi, Kariya, Aichi 448-0032 (Japan)

    2013-01-15

    Highlights: ► The magnetic separation was operated for recycling the electroless plating waste. ► The HTS bulk magnet effectively attracted the ferromagnetic precipitates with Ni. ► The separation ratios over 90% were reported under flow rates up to 1.35 L/min. -- Abstract: The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni–P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  14. Separate structure of two branches of sheared slab ηi mode and effects of plasma rotation shear in weak magnetic shear region

    International Nuclear Information System (INIS)

    Jiquan Li; Kishimoto, Y.; Tuda, T.

    2000-01-01

    The separate structure of two branches of the sheared slab η i mode near the minimum-q magnetic surface is analysed and the effects of plasma rotation shears are considered in the weak magnetic shear region. Results show that the separation condition depends on the non-monotonous q profile and the deviation of rational surface from the minimum-q surface. Furthermore, it is found that the diamagnetic rotation shear may suppress the perturbation of the sheared slab η i mode at one side of the minimum-q surface, the poloidal rotation shear from the sheared E-vector x B-vector flow has a similar role to the slab mode structure when it possesses a direction same as the diamagnetic shear. A plausible interrelation between the separate structures of the two branches of the sheared slab mode and the discontinuity or gap of the radially global structure of the drift wave near the minimum-q surface observed in the toroidal particle simulation (Kishimoto Y et al 1998 Plasma Phys. Control. Fusion 40 A663) is discussed. It seems to support such a viewpoint: the double or/and global branches of the sheared slab η i mode near the minimum-q surface may become a bridge to connect the radially global structures of the drift wave at two sides of the minimum-q surface and the discontinuity may originate from the separate structures of these slab modes for a flatter q profile. (author)

  15. Feedforward Control of a 3-D Physiological Articulatory Model for Vowel Production

    Institute of Scientific and Technical Information of China (English)

    FANG Qiang; Akikazu Nishikido; Jianwu Dang

    2009-01-01

    A three-dimensional (3-D) physiological articulatory model was developed to account for the bio-mechanical properties of the speech organs in speech production. Control of the model to investigate the mechanism of speech production requires an efficient control module to estimate muscle activation patterns, which is used to manipulate the 3-D physiological arUculatory model, according to the desired articulatory posture. For this purpose, a feedforward control strategy was developed by mapping the articulatory target to the corresponding muscle activation pattern via the intrinsic representation of vowel articulation. In this process, the articulatory postures are first mapped to the corresponding intrinsic representations; then, the articulatory postures are clustered in the intrinsic representations space and a nonlinear function is ap-proximated for each cluster to map the intrinsic representation of vowel articulation to the muscle activation pattern by using general regression neural networks (GRNN). The results show that the feedforward control module is able to manipulate the 3-D physiological articulatory model for vowel production with high accu-racy both acoustically and articulatodly.

  16. Stability of skyrmions on curved surfaces in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elias, R.G.; Altbir, D. [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, J.M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000 Viçosa, MG (Brazil)

    2015-10-01

    We study the stability and energetics associated to skyrmions appearing as excitations on curved surfaces. Using a continuum model we show that the presence of cylindrically radial and azimuthal fields destabilize the skyrmions that appear in the absence of an external field. Weak fields generate fractional skyrmions while strong magnetic fields yield stable 2π-skyrmions, which have their widths diminished by the magnetic field strength. Under azimuthal fields vortex appears as stable state on the curved surface. - Highlights: • Stability of skyrmions on curved surfaces in the presence of a magnetic field. • Weak fields can destabilize skyrmions. • Strong magnetic fields yield the appearing of 2π-skyrmions. • The width of skyrmions is determined by the curvature and magnetic field strength. • Under azimuthal fields vortex appears as stable states.

  17. Differences in male and female subjective experience and physiological reactions to emotional stimuli.

    Science.gov (United States)

    Poláčková Šolcová, Iva; Lačev, Alek

    2017-07-01

    Research based on self-reported data often indicates that women are the more emotional sex. The present study examined differences in emotion between the sexes across two components of the emotional process: subjective experience and physiological reactions to emotional stimuli. During the experimental study, participants (N=124; 22.5±2.88; 51 males) subjectively rated their emotional experience (valence and intensity) towards presented positive and negative affective stimuli, while physiological reactions (facial electromyography, heart rate, skin conductance, and finger skin temperature) were measured during expositions. Results from self-reports suggest that women declared more intensive emotional experiences for positive and negative stimuli and rated negative stimuli as more negative in comparison to men. Physiological measurements showed differences between the sexes in the physiological baseline measurements (facial electromyography, skin conductance and finger skin temperature). However, physiological responses towards positive or negative emotional stimuli did not prove to be different between men and women, except for finger skin temperature. Relations between self-reported subjective experiences and physiological changes were weak and insignificant. Collectively, our findings suggest certain emotional differences experienced between men and women. These differences can be found specifically in self-reported subjective experiences, while significant differences were not predominantly present in recorded physiological reactions. Copyright © 2017. Published by Elsevier B.V.

  18. Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)

    OpenAIRE

    Mogi, Iwao; Kamiko, Masao

    1996-01-01

    Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.

  19. Complex magnetic susceptibility setup for spectroscopy in the extremely low-frequency range

    NARCIS (Netherlands)

    Kuipers, B.W.M.; Bakelaar, I.A.; Klokkenburg, M.; Erne, B.H.

    2008-01-01

    A sensitive balanced differential transformer was built to measure complex initial parallel magnetic susceptibility spectra in the 0.01–1000 Hz range. The alternating magnetic field can be chosen sufficiently weak that the magnetic structure of the samples is only slightly perturbed and the low

  20. Magnetic circular dichroism spectroscopy of weakly exchange coupled transition metal dimers: A model study

    DEFF Research Database (Denmark)

    Piligkos, S.; Slep, L.D.; Weyhermuller, T.

    2009-01-01

    bands of the minority spin Ni(II) ligand field bands were observed to change sign relative to the parent complex 2. This behavior has been analyzed. The present work hence provides a benchmark study for the application of MCD spectroscopy to weakly interacting transition metal dinners. (C) 2008 Elsevier...