WorldWideScience

Sample records for physiological mechanisms genetics

  1. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  2. Genetic approaches in comparative and evolutionary physiology

    Science.gov (United States)

    Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore

    2015-01-01

    Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111

  3. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis.

  4. Genetic and physiological factors affecting repair and mutagenesis in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lemontt, J F

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis.

  5. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lemontt, J.F.

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data, and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described particularly in relation to their involvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus, are shown to also play a role in repair and mutagenesis

  6. Genetic and physiological factors affecting repair and mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lemontt, J.F.

    1979-01-01

    Current views of DNA repair and mutagenesis in the yeast Saccharomyces cerevisiae are discussed in the light of recent data and with emphasis on the isolation and characterization of genetically well-defined mutations that affect DNA metabolism in general (including replication and recombination). Various pathways of repair are described, particularly in relation to their imvolvement in mutagenic mechanisms. In addition to genetic control, certain physiological factors such as cell age, DNA replication, and the regulatory state of the mating-type locus are shown to also play a role in repair and mutagenesis

  7. A multidimensional analysis of physiological and mechanical ...

    African Journals Online (AJOL)

    Journal of Fundamental and Applied Sciences ... investigates the various physiological and mechanical techniques employed by archers of varying skill levels. ... Keywords: archery; muscle activations; heart rate; bow movement; postural sway ...

  8. Dataset on genetic and physiological adults׳ responses to social distress.

    Science.gov (United States)

    Bonassi, Andrea; Ghilardi, Tommaso; Truzzi, Anna; Cataldo, Ilaria; Azhari, Atiqah; Setoh, Peipei; Shinohara, Kazuyuki; Esposito, Gianluca

    2017-08-01

    Both expectations towards interactions with conspecifics, and genetic predispositions, affect adults׳ social behaviors. However, the underlying mechanisms remain largely unknown. Here, we report data to investigate the interaction between genetic factors, (oxytocin receptor (OXTR) and serotonin transporter (5-HTTLPR) polymorphisms), and adult interactional patterns in shaping physiological responses to social distress. During the presentation of distress vocalizations (cries of human female, infants and bonobos) we assessed participants׳ ( N = 42 males) heart rate (HR) and peripheral nose temperature, which index state of arousal and readiness to action. Self-reported questionnaires were used to evaluate participants' interactional patterns towards peers (Attachment Style Questionnaire, Feeney et al., 1994[1]), and the quality of bond with intimate partners (Experiences in Close Relationships Scale, Fraley et al., 2000 [2]). To assess participants׳ genetic predispositions, the OXTR gene (regions rs53576, and rs2254298) and the 5-HTTLPR gene (region SLC6A4) were genotyped. The data set is made publicly available to enable critical or extended analyzes.

  9. Dataset on genetic and physiological adults׳ responses to social distress

    Directory of Open Access Journals (Sweden)

    Andrea Bonassi

    2017-08-01

    Full Text Available Both expectations towards interactions with conspecifics, and genetic predispositions, affect adults׳ social behaviors. However, the underlying mechanisms remain largely unknown. Here, we report data to investigate the interaction between genetic factors, (oxytocin receptor (OXTR and serotonin transporter (5-HTTLPR polymorphisms, and adult interactional patterns in shaping physiological responses to social distress. During the presentation of distress vocalizations (cries of human female, infants and bonobos we assessed participants׳ (N = 42 males heart rate (HR and peripheral nose temperature, which index state of arousal and readiness to action. Self-reported questionnaires were used to evaluate participants’ interactional patterns towards peers (Attachment Style Questionnaire, Feeney et al., 1994 [1], and the quality of bond with intimate partners (Experiences in Close Relationships Scale, Fraley et al., 2000 [2]. To assess participants׳ genetic predispositions, the OXTR gene (regions rs53576, and rs2254298 and the 5-HTTLPR gene (region SLC6A4 were genotyped. The data set is made publicly available to enable critical or extended analyzes.

  10. Physiological mechanisms underlying animal social behaviour.

    Science.gov (United States)

    Seebacher, Frank; Krause, Jens

    2017-08-19

    Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  11. Genetic theory – a suggested cupping therapy mechanism of action

    OpenAIRE

    Shaban , Tamer; Ravalia , Munir

    2017-01-01

    The Cupping Therapy mechanism of action is not clear. Cupping may increase local blood circulation, and may have an immunomodulation effect. Local and systemic effects of Cupping Therapy were reported. Genetic expression is a physiological process that regulates body functions. Genetic modulation is a reported acupuncture effect. In this article, the authors suggest genetic modulation theory as one of the possible mechanisms of action of cupping therapy.

  12. Genetic and physiology basis of the quality of livestock products.

    Directory of Open Access Journals (Sweden)

    Marcello Mele

    2011-02-01

    Full Text Available The animal research gives more attention, for more than twenty years, to the improvement of food quality, because this aspect plays an important role in the consumer choice. In this paper are browsed the principal foods of animal origin (milk, meat and eggs, paying attention on the actual genetic and physiologic knowledge, which influence the quality characteristic. Particularly, we examined the role of Quantitative Genetic in bovine and swine and the growing knowledge about animal genomes and individuation of QTL. Information on genomic regions that control QTL, allow to organize genetic improvement programs, using Markers Assisted Selection (MAS and Markers Assisted Introgression (MAI. Moreover are reported the knowledge about metabolic processes that influence quality especially on lipid and protein component. About other productions are considered the physiology of eggs production and the genetic improvement of hens. Finally the qualitative aspects about poultry and rabbit meat and the actual genetic improvement strategy are reported.

  13. Genetic Sensitivity to the Bitter Taste of 6-n-Propylthiouracil (PROP and Its Association with Physiological Mechanisms Controlling Body Mass Index (BMI

    Directory of Open Access Journals (Sweden)

    Beverly J. Tepper

    2014-08-01

    Full Text Available Taste sensitivity to the bitter compound 6-n-propylthiouracil (PROP is considered a marker for individual differences in taste perception that may influence food preferences and eating behavior, and thereby energy metabolism. This review describes genetic factors that may contribute to PROP sensitivity including: (1 the variants of the TAS2R38 bitter receptor with their different affinities for the stimulus; (2 the gene that controls the gustin protein that acts as a salivary trophic factor for fungiform taste papillae; and (3 other specific salivary proteins that could be involved in facilitating the binding of the PROP molecule with its receptor. In addition, we speculate on the influence of taste sensitivity on energy metabolism, possibly via modulation of the endocannabinoid system, and its possible role in regulating body composition homeostasis.

  14. Physiological and genetic basis of plant tolerance to excess boron

    Directory of Open Access Journals (Sweden)

    Kastori Rudolf R.

    2008-01-01

    Full Text Available Boron (B deficit as well as excess may significantly limit the organic production in plants. In extreme cases they may kill the affected plants. Boron excess occurs primarily in arid and semiarid regions, in saline soils or in consequence to human action. Excessive boron concentrations retard plant growth and cause physiological and morphological changes (chlorosis and necrosis first of all in leaf tips and then in marginal or intercostal parts of the lamina. Physiological mechanisms of plant tolerance to boron excess have not been studied in sufficient detail. The predominant opinion holds that they are based on restricted uptake and accumulation of boron in the root and aboveground plant parts. Significant differences in boron excess tolerance have been observed not only between different crops but even between different genotypes of the same crop. This has enabled the breeding of crop genotypes and crops adapted to growing on soils rich in available boron and intensified the research on the inheritance of plant tolerance to high B concentration. Sources of tolerance to high B concentration have been found in many crops (wheat, mustard, pea, lentil, eucalypt. Using different molecular techniques based on PCR (RAPD, SRAP, plant parents and progenies have been analyzed in an attempt to map as precisely as possible the position of B-tolerant genes. Small grains have been studied in greatest detail for inheritance of B tolerance. B tolerance in wheat is controlled by at least four additive genes, Bo1, Bo2, Bo3 and Bo4. Consequently, there exists a broad range of tolerance levels. Studies of Arabidopsis have broadened our understanding of regulation mechanisms of B transport from roots to above ground parts, allowing more direct genetic manipulations.

  15. Physiological and Genetic Adaptations to Diving in Sea Nomads

    DEFF Research Database (Denmark)

    Ilardo, Melissa A; Moltke, Ida; Korneliussen, Thorfinn S

    2018-01-01

    Understanding the physiology and genetics of human hypoxia tolerance has important medical implications, but this phenomenon has thus far only been investigated in high-altitude human populations. Another system, yet to be explored, is humans who engage in breath-hold diving. The indigenous Bajau...

  16. Structure-Function Relations in Physiology Education: Where's the Mechanism?

    Science.gov (United States)

    Lira, Matthew E.; Gardner, Stephanie M.

    2017-01-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such…

  17. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Mechanical and physiological factors in knee joint contact mechanics

    DEFF Research Database (Denmark)

    Mølgaard, Carsten

    conservative treatment modalities also increases. The aim of this thesis was to 1) identify relationships between footwear and laterally wedged insoles in a healthy group, 2) to evaluate the mechanical and physiological factors of experimental pain when introducing a laterally wedged insoles to otherwise...... not to the level of healthy matched controls. In conclusion, although similar reductions can be achieved by choice of shoe design the difference between a neutral running shoe and Oxford leather shoes are similar in magnitude compared to the effect of lateral wedges in any type of shoe. Experimental pain does...... not seem to change the effect of lateral wedges independently. The knee adduction moment in patients 3-5 years after a medial arthroscopic partial meniscectomy was at a similar level to what is observed with advanced knee osteoarthritis. Therefore, laterally wedged insoles should be considered part...

  19. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    Directory of Open Access Journals (Sweden)

    Francesca Taranto

    2017-02-01

    Full Text Available Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs, following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects.

  20. Physiology and genetics of sulfur-oxidizing bacteria.

    Science.gov (United States)

    Friedrich, C G

    1998-01-01

    Reduced inorganic sulfur compounds are oxidized by members of the domains Archaea and Bacteria. These compounds are used as electron donors for anaerobic phototrophic and aerobic chemotrophic growth, and are mostly oxidized to sulfate. Different enzymes mediate the conversion of various reduced sulfur compounds. Their physiological function in sulfur oxidation is considered (i) mostly from the biochemical characterization of the enzymatic reaction, (ii) rarely from the regulation of their formation, and (iii) only in a few cases from the mutational gene inactivation and characterization of the resulting mutant phenotype. In this review the sulfur-metabolizing reactions of selected phototrophic and of chemotrophic prokaryotes are discussed. These comprise an archaeon, a cyanobacterium, green sulfur bacteria, and selected phototrophic and chemotrophic proteobacteria. The genetic systems are summarized which are presently available for these organisms, and which can be used to study the molecular basis of their dissimilatory sulfur metabolism. Two groups of thiobacteria can be distinguished: those able to grow with tetrathionate and other reduced sulfur compounds, and those unable to do so. This distinction can be made irrespective of their phototrophic or chemotrophic metabolism, neutrophilic or acidophilic nature, and may indicate a mechanism different from that of thiosulfate oxidation. However, the core enzyme for tetrathionate oxidation has not been identified so far. Several phototrophic bacteria utilize hydrogen sulfide, which is considered to be oxidized by flavocytochrome c owing to its in vitro activity. However, the function of flavocytochrome c in vivo may be different, because it is missing in other hydrogen sulfide-oxidizing bacteria, but is present in most thiosulfate-oxidizing bacteria. A possible function of flavocytochrome c is discussed based on biophysical studies, and the identification of a flavocytochrome in the operon encoding enzymes involved

  1. Physiological and molecular biochemical mechanisms of bile formation

    Science.gov (United States)

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  2. Structure-function relations in physiology education: Where's the mechanism?

    Science.gov (United States)

    Lira, Matthew E; Gardner, Stephanie M

    2017-06-01

    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such as structure-function relations, selectively neglect mechanisms by not mentioning this term explicitly. We explored how students characterized mechanisms and functions to shed light on how students make sense of these terms. Students characterized mechanisms as 1 ) processes that occur at levels of organization lower than that of functions; and 2 ) as detailed events with many steps involved. We also found that students produced more variability in how they characterized functions compared with mechanisms: students characterized functions in relation to multiple levels of organization and multiple definitions. We interpret these results as evidence that students see mechanisms as holding a more narrow definition than used in the biological sciences, and that students struggle to coordinate and distinguish mechanisms from functions due to cognitive processes germane to learning in many domains. We offer the instructional suggestion that we scaffold student learning by affording students opportunities to relate and also distinguish between these terms so central to understanding physiology. Copyright © 2017 the American Physiological Society.

  3. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum.

    Science.gov (United States)

    Wójcik, Małgorzata; Dresler, Sławomir; Jawor, Emilia; Kowalczyk, Krzysztof; Tukiendorf, Anna

    2013-01-01

    Waste deposits produced by metal mining and smelting activities provide extremely difficult habitats for plant colonization and growth. Therefore, plants spontaneously colonizing such areas represent a very interesting system for studying evolution of plant adaptation and population differentiation between contaminated and noncontaminated environments. In this study, two populations of Dianthus carthusianorum, one originating from Zn-Pb waste deposit (a metallicolous population, M) and the other from unpolluted soil (a nonmetallicolous population, NM), were analyzed in respect of their morphological and physiological traits as well as genetic markers. It was found that the plants inhabiting the waste heap differed significantly from the NM plants in terms of leaf size and shape, and these differences were persistent between the first generation of the plants of both populations cultivated under uniform, controlled laboratory conditions. In contrast with the evident morphological differences, no significant differentiation between the populations regarding the physiological traits measured (accumulation of proline, anthocyanins, chlorophyll, carotenoids) was found. These traits can be regarded as neither population specific nor stress markers. The genetic variability was analyzed using 17 random amplified polymorphic DNA (RAPD) and four inter simple sequence repeat (ISSR) markers; this proved that the differentiation between the M and NM populations exists also at the genetic level. Analysis of molecular variance (AMOVA) showed that 24% of the total genetic diversity resided among populations, while 76% - within the populations. However, no significant differences in intrapopulation genetic diversity (Hj) between the M and NM populations of D. carthusianorum was found, which contradicts the theory that acquisition of adaptation mechanisms to adverse, isolated growth habitats is related to reduction in genetic diversity. Distinct genetic differences between the two

  4. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant's recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  5. Natural variation in germination responses of Arabidopsis to seasonal cues and their associated physiological mechanisms

    Science.gov (United States)

    Barua, Deepak; Butler, Colleen; Tisdale, Tracy E.; Donohue, Kathleen

    2012-01-01

    Background and Aims Despite the intense interest in phenological adaptation to environmental change, the fundamental character of natural variation in germination is almost entirely unknown. Specifically, it is not known whether different genotypes within a species are germination specialists to particular conditions, nor is it known what physiological mechanisms of germination regulation vary in natural populations and how they are associated with responses to particular environmental factors. Methods We used a set of recombinant inbred genotypes of Arabidopsis thaliana, in which linkage disequilibrium has been disrupted over seven generations, to test for genetic variation and covariation in germination responses to distinct environmental factors. We then examined physiological mechanisms associated with those responses, including seed-coat permeability and sensitivity to the phytohormones gibberellic acid (GA) and abscisic acid (ABA). Key Results Genetic variation for germination was environment-dependent, but no evidence for specialization of germination to different conditions was found. Hormonal sensitivities also exhibited significant genetic variation, but seed-coat properties did not. GA sensitivity was associated with germination responses to multiple environmental factors, but seed-coat permeability and ABA sensitivity were associated with specific germination responses, suggesting that an evolutionary change in GA sensitivity could affect germination in multiple environments, but that of ABA sensitivity may affect germination under more restricted conditions. Conclusions The physiological mechanisms of germination responses to specific environmental factors therefore can influence the ability to adapt to diverse seasonal environments encountered during colonization of new habitats or with future predicted climate change. PMID:22012958

  6. A molecular, genetic and physiological analysis of plant aluminum tolerance (abstract)

    International Nuclear Information System (INIS)

    Pineros, M.

    2005-01-01

    Aluminum (Al) toxicity is an important agronomic trait, limiting crop production on acid soils that comprise up to 50% of the world's potentially arable lands. A significant genetic variation in Al tolerance exists in both crop plants and Arabidopsis. The exploitation of this genetic variation to breed crops with increased Al tolerance has been a productive and active area of research, however, the underlying molecular, genetic and physiological bases are still not well understood. Only very recently was the first Al tolerance gene, ALMT1, isolated in wheat and shown to be a novel Al-activated malate transporter. Work in our laboratory has focused on using integrated genomic (gene and protein expression profiling), molecular genetic and physiological approaches to identify novel Al tolerance genes and the physiological mechanisms they control in the cereal crops maize and sorghum, and also in arabidopsis. In sorghum we had previously shown that Al tolerance is the result of a single locus, Alt/sub SB/ which maps to the top of sorghum chromosome 3 in a region totally distinct from where the major Al tolerance maps in wheat and other related members of the Triticeae. Very recently, we have used map-based cloning techniques in sorghum to clone Alt/sub SB/ and have found it is a novel Al tolerance gene. Here we will present a molecular characterization of the Alt/sub SB/ gene and also the physiological mechanism of sorghum Al tolerance it controls. In arabidopsis, we have previously shown that Al tolerance is a quantitative trait and have identified two major Al tolerance QTL on chromosomes 1 and 5. These genes function to confer tolerance via Al via activated root malate release. We found that a member of the arabidopsis gene family that is a close homolog to wheat ALMT1 maps near the largest tolerance QTL on chromosome 1 and have also found this gene encodes the Al-activated malate transport involved in arabidopsis Al tolerance. However, we have clear molecular

  7. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.

    Science.gov (United States)

    Sun, Jingjing; Deng, Ziqing; Yan, Aixin

    2014-10-17

    Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A graphical simulation software for instruction in cardiovascular mechanics physiology

    Directory of Open Access Journals (Sweden)

    Wenger Roland H

    2011-01-01

    Full Text Available Abstract Background Computer supported, interactive e-learning systems are widely used in the teaching of physiology. However, the currently available complimentary software tools in the field of the physiology of cardiovascular mechanics have not yet been adapted to the latest systems software. Therefore, a simple-to-use replacement for undergraduate and graduate students' education was needed, including an up-to-date graphical software that is validated and field-tested. Methods Software compatible to Windows, based on modified versions of existing mathematical algorithms, has been newly developed. Testing was performed during a full term of physiological lecturing to medical and biology students. Results The newly developed CLabUZH software models a reduced human cardiovascular loop containing all basic compartments: an isolated heart including an artificial electrical stimulator, main vessels and the peripheral resistive components. Students can alter several physiological parameters interactively. The resulting output variables are printed in x-y diagrams and in addition shown in an animated, graphical model. CLabUZH offers insight into the relations of volume, pressure and time dependency in the circulation and their correlation to the electrocardiogram (ECG. Established mechanisms such as the Frank-Starling Law or the Windkessel Effect are considered in this model. The CLabUZH software is self-contained with no extra installation required and runs on most of today's personal computer systems. Conclusions CLabUZH is a user-friendly interactive computer programme that has proved to be useful in teaching the basic physiological principles of heart mechanics.

  9. Physiology and Genetics of Biogenic Methane-Production from Acetate

    Energy Technology Data Exchange (ETDEWEB)

    Sowers, Kevin R

    2013-04-04

    Biomass conversion catalyzed by methanogenic consortia is a widely available, renewable resource for both energy production and waste treatment. The efficiency of this process is directly dependent upon the interaction of three metabolically distinct groups of microorganisms; the fermentative and acetogenic Bacteria and the methanogenic Archaea. One of the rate limiting steps in the degradation of soluble organic matter is the dismutation of acetate, a predominant intermediate in the process, which accounts for 70 % or more of the methane produced by the methanogens. Acetate utilization is controlled by regulation of expression of carbon monoxide dehydrogensase (COdh), which catalyzes the dismutation of acetate. However, physiological and molecular factors that control differential substrate utilization have not been identified in these Archaea. Our laboratory has identified sequence elements near the promoter of the gene (cdh) encoding for COdh and we have confirmed that these sequences have a role in the in vivo expression of cdh. The current proposal focuses on identifying the regulatory components that interact with DNA and RNA elements, and identifying the mechanisms used to control cdh expression. We will determine whether expression is controlled at the level of transcription or if it is mediated by coordinate interaction of transcription initiation with other processes such as transcription elongation rate and differential mRNA stability. Utilizing recently sequenced methanosarcinal genomes and a DNA microarray currently under development genes that encode regulatory proteins and transcription factors will be identified and function confirmed by gene disruption and subsequent screening on different substrates. Functional interactions will be determined in vivo by assaying the effects of gene dosage and site-directed mutagenesis of the regulatory gene on the expression of a cdh::lacZ operon fusion. Results of this study will reveal whether this critical

  10. Lignin biodegradation: experimental evidence, molecular, biochemical and physiological mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Monties, B

    1985-01-01

    A critical review is presented of English, French and some German language literature, mainly from 1983 onwards. It examines experimental evidence on the behaviour as barriers to biodegradation of lignins and phenolic polymers such as tannins and suberins. The different molecular mechanisms of lignolysis by fungi (mainly), actinomycetes and bacteria are examined. A new biochemical approach to the physiological mechanism of regulation of lignolytic activities is suggested based on the discoveries of ligniolytic enzymes: effects of nitrogen, oxygen and substrate are discussed. It is concluded that a better knowledge of the structure and reactivity of phenolic barriers is needed in order to control the process of lignolysis.

  11. Exploitation of physiological and genetic variability to enhance crop productivity

    International Nuclear Information System (INIS)

    Harper, J.E.; Schrader, L.E.; Howell, R.W.

    1985-01-01

    The American Society of Plant Physiologists recognizes the need to identify primary physiological limitations to crop productivity. This basic information is essential to facilitate and accelerate progress towards the goal of enhanced productivity on a global scale. Plant breeders currently select for desirable physiological traits intuitively by selecting for enhanced yield capability. Identification of specific physiological limitations by plant physiologists could potentially foster interdisciplinary research and accelerate progress in breeding for improved cultivars. The recent upsurge in research interest and funding in the area of biotechnology further exemplifies the importance of identification of specific physiological traits which may be amenable to manipulation at the molecular as well as the whole plant level. The theme of this symposium was to focus attention on current progress in identification of possible physiological limitations. The purpose of this publication is to document that progress and hopefully to extend the stimulating ideas to those who were unable to attend the symposium

  12. Morphology, physiology, genetics, enigmas, and status of an extremely rare tree: Mutant tanoak

    Science.gov (United States)

    Philip M. McDonald; Jianwei Zhang; Randy S. Senock; Jessica W. Wright

    2013-01-01

    Important physical characteristics, morphological attributes, physiological functions, and genetic properties of mutant tanoak, Notholithocarpus densiflorus f. attenuato-dentatus (Fagaceae), and normal tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh, were studied on the Challenge...

  13. Circulating nucleic acids: a new class of physiological mobile genetic elements [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Indraneel Mittra

    2015-09-01

    Full Text Available Mobile genetic elements play a major role in shaping biotic genomes and bringing about evolutionary transformations. Herein, a new class of mobile genetic elements is proposed in the form of circulating nucleic acids (CNAs derived from the billions of cells that die in the body every day due to normal physiology and that act intra-corporeally. A recent study shows that CNAs can freely enter into healthy cells, integrate into their genomes by a unique mechanism and cause damage to their DNA. Being ubiquitous and continuously arising, CNA-induced DNA damage may be the underlying cause of ageing, ageing-related disabilities and the ultimate demise of the organism. Thus, DNA seems to act in the paradoxical roles of both preserver and destroyer of life. This new class of mobile genetic element may be relevant not only to multi-cellular organisms with established circulatory systems, but also to other multi-cellular organisms in which intra-corporeal mobility of nucleic acids may be mediated via the medium of extra-cellular fluid.

  14. Physiological and genetic studies towards biofuel production in cyanobacteria

    NARCIS (Netherlands)

    Schuurmans, R.M.

    2017-01-01

    The main aim of this thesis was to contribute to the optimization of the cyanobacterial cell factory and to increase the production of cellulose as a biofuel (precursor) via a physiological and a transgenic approach. Chapter 1 provides an overview of the current state of cyanobacterial biofuel

  15. Genetic analysis of field and physiological indicators of drought ...

    African Journals Online (AJOL)

    In order to study the inheritance of field, physiological and metabolite indicators of drought tolerance in wheat, an eight-parental diallel cross, excluding reciprocals, was grown in a randomized complete block design (RCBD) with three replications under two different water regimes (irrigated and rainfed). Significant ...

  16. Physiological Importance and Mechanisms of Protein Hydrolysate Absorption

    Science.gov (United States)

    Zhanghi, Brian M.; Matthews, James C.

    Understanding opportunities to maximize the efficient digestion and assimilation by production animals of plant- and animal-derived protein products is critical for farmers, nutritionists, and feed manufacturers to sustain and expand the affordable production of high quality animal products for human consumption. The challenge to nutritionists is to match gastrointestinal tract load to existing or ­inducible digestive and absorptive capacities. The challenge to feed manufacturers is to develop products that are efficient substrates for digestion, absorption, and/or both events. Ultimately, the efficient absorption of digesta proteins depends on the mediated passage (transport) of protein hydrosylate products as dipeptides and unbound amino acids across the lumen- and blood-facing membranes of intestinal absorptive cells. Data testing the relative efficiency of supplying protein as hydrolysates or specific dipeptides versus as free amino acids, and the response of animals in several physiological states to feeding of protein hydrolysates, are presented and reviewed in this chapter. Next, data describing the transport mechanisms responsible for absorbing protein hydrolysate digestion products, and the known and putative regulation of these mechanisms by their substrates (small peptides) and hormones are presented and reviewed. Several conclusions are drawn regarding the efficient use of protein hydrolysate-based diets for particular physiological states, the economically-practical application of which likely will depend on technological advances in the manufacture of protein hydrolysate products.

  17. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts.

    Science.gov (United States)

    Gagnon, Kenneth B; Delpire, Eric

    2013-04-15

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.

  18. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    International Nuclear Information System (INIS)

    Sze, Heven

    2008-01-01

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular (Ca2+) during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  19. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    Science.gov (United States)

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in

  20. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  1. Physiological mechanisms of the effect of weightlessness on the body

    Science.gov (United States)

    Kasyan, I. I.; Kopanev, V. I.

    1975-01-01

    Experimental data show that physiological reactions observed under weightlessness conditions are caused by: (1) The direct effect of weightlessness, as a consequence of decrease (""disappearance'') of the weight of body tissues and organs; and (2) the mediated effect of weightlessness, as a result of changes in the functional state of the central nervous system and the cooperative work of the analyzers. The human body adopts to weightless conditions under the prolonged effects of it. In this case, four periods can be distinguished: The first period, a transitional process lasting from 1 to 24 hours; second period, initial adaptation to conditions of weightlessness and readjustment of all functional systems of the body; the third period, adaptation to the unusual mechanical conditions of the external environment, lasting from 3 to 8 days and more; and the fourth period, the stage of possible imbalance of the functions and the systems of some astronauts, as a result of the prolonged effect of weightlessness.

  2. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    Kubitschek, H.E.; Derstine, P.L.; Griego, V.M.; Matsushita, T.; Peak, J.G.; Peak, M.J.; Reynolds, P.R.; Webb, R.B.; Williams-Hill, D.

    1981-01-01

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  3. Introduction to Genetic Mechanisms of Carcinogenesis

    International Nuclear Information System (INIS)

    Yang, W.K.

    1983-01-01

    Recent technical advances in nucleic acid research and molecular biology have made it possible to explore the complicated genetic systems of eukaryotic cells. One of the fields showing rapid progress concerns genes and gene regulatory functions related to neoplastic processes. Thus, the 35th Annual Conference of the Biology Division of Oak Ridge National Laboratory, held at Gatlinburg, April 12-15, 1982, was organized with the intention to bring together investigators working on seemingly diverse fields of cancer research to discuss and exchange their views on the genetic mechanisms of carcinogenesis. The meeting was attended by workers from chemical, physical as well as biological carcinogenesis fields, by classical geneticists as well as by molecular biologists, and by researchers interested in experimental as well as in human cancers. Included in this volume are papers by the invited speakers of the symposium as well as by those presenting poster papers at the meeting

  4. Physiological and genetics studies of highly radiation-resistant bacteria

    International Nuclear Information System (INIS)

    Keller, L.C.

    1981-01-01

    The phenomenon of radiation resistance was studied using micrococci and Moraxella-Acinetobacter capable of surviving very high doses of gamma radiation which were isolated from foods. Physiological age, or growth phase, was found to be an important factor in making comparisons of radiation-resistance among different bacteria and their mutants. Radiation-resistant bacteria were highly resistant to the lethal effect of nitrosoguanidine used for mutagenesis. Studies of relative resistance of radiation-resistant bacteria, radiation-sensitive mutants, and nonradiation-resistant bacteria to killing by different chemical mutagens did not reveal a correlation between the traits of radiation resistance and mutagen resistance among different strains. Comparisons of plasmid profiles of radiation-resistant bacteria and selected radiation-sensitive mutants suggested the possibility that plasmids may carry genes involved in radiation resistance

  5. Water uptake in barley grain: Physiology; genetics and industrial applications.

    Science.gov (United States)

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Genetic Influences on Physiological and Subjective Responses to an Aerobic Exercise Session among Sedentary Adults

    International Nuclear Information System (INIS)

    Karoly, H. C.; Stevens, C.; Harlaar, N.; Hutchison, K. E.; Bryan, A. D.; Magnan, R. E.

    2012-01-01

    To determine whether genetic variants suggested by the literature to be associated with physiology and fitness phenotypes predicted differential physiological and subjective responses to a bout of aerobic exercise among inactive but otherwise healthy adults. Method. Participants completed a 30-minute submaximal aerobic exercise session. Measures of physiological and subjective responding were taken before, during, and after exercise. 14 single nucleotide polymorphisms (SNPs) that have been previously associated with various exercise phenotypes were tested for associations with physiological and subjective response to exercise phenotypes. Results. We found that two SNPs in the FTO gene (rs8044769 and rs3751812) were related to positive affect change during exercise. Two SNPs in the CREB1 gene (rs2253206 and 2360969) were related to change in temperature during exercise and with maximal oxygen capacity (VO 2 max). The SLIT2 SNP rs1379659 and the FAM5C SNP rs1935881 were associated with norepinephrine change during exercise. Finally, the OPRM1 SNP rs1799971 was related to changes in norepinephrine, lactate, and rate of perceived exertion (RPE) during exercise. Conclusion. Genetic factors influence both physiological and subjective responses to exercise. A better understanding of genetic factors underlying physiological and subjective responses to aerobic exercise has implications for development and potential tailoring of exercise interventions.

  7. Physiology and Genetics of Tree-Phytophage Interactions

    Science.gov (United States)

    Frances Lieutier; William J. Mattson; Michael R. Wagner

    1999-01-01

    Interactions between trees and phytophagous organisms represent an important fundamental process in the evolution of forest ecosystems. Through evolutionary time, the special traits of trees have lead the herbivore populations to differentiate and evolve in order to cope with the variability in natural resistance mechanisms of their hosts. Conversely, damage by...

  8. Studies of photodynamic therapy: Investigation of physiological mechanisms and dosimetry

    Science.gov (United States)

    Woodhams, Josephine Helen

    Photodynamic therapy (PDT) is a treatment for a range of malignant and benign lesions using light activated photosensitising drugs in the presence of molecular oxygen. PDT causes tissue damage by a combination of processes involving the production of reactive oxygen species (in particular singlet oxygen). Since the PDT cytotoxic effect depends on oxygen, monitoring of tissue oxygenation during PDT is important for understanding the basic physiological mechanisms and dosimetry of PDT. This thesis describes the use of non-invasive, optical techniques based on visible light reflectance spectroscopy for the measurement of oxy- to deoxyhaemoglobin ratio or haemoglobin oxygen saturation (HbSat). HbSat was monitored at tissue sites receiving different light dose during aluminium disulphonated phthalocyanine (AIS2PC) PDT. Results are presented on real time PDT-induced changes in HbSat in normal tissue (rat liver) and experimental tumours, and its correlation with the final biological effect under different light regimes, including fractionated light delivery. It was found to some extent that changes in HbSat could indicate whether the tissue would be necrotic after PDT and it was concluded that online physiological dosimetry is feasible for PDT. The evaluation of a new photosensitiser for PDT called palladium-bacteriopheophorbide (WST09) has been carried out in normal and tumour tissue in vivo. WST09 was found to exert a strong PDT effect but was active only shortly after administration. WST09 produced substantial necrosis in colonic tumours whilst only causing a small amount of damage to the normal colon under certain conditions indicating a degree of selectivity. Combination therapy with PDT for enhancing the extent of PDT-induced damage has been investigated in vivo by using the photochemical internalisation (PCI) technique and Type 1 mechanism enhanced phototoxicity with indole acetic acid (IAA). PCI of gelonin using AIS2PC PDT in vivo after systemic administration of

  9. Genetic and QTL analyses of yield and a set of physiological traits in pepper

    NARCIS (Netherlands)

    Alimi, N.A.; Bink, M.C.A.M.; Dieleman, J.A.; Nicolaï, M.; Wubs, M.; Heuvelink, E.; Magan, J.; Voorrips, R.E.; Jansen, J.; Rodrigues, P.C.; Heijden, van der G.W.A.M.; Vercauteren, A.; Vuylsteke, M.; Song, Y.; Glasbey, C.; Barocsi, A.; Lefebvre, V.; Palloix, A.; Eeuwijk, van F.A.

    2013-01-01

    An interesting strategy for improvement of a complex trait dissects the complex trait in a number of physiological component traits, with the latter having hopefully a simple genetic basis. The complex trait is then improved via improvement of its component traits. As first part of such a strategy

  10. Genetics and pathological mechanisms of Usher syndrome.

    Science.gov (United States)

    Yan, Denise; Liu, Xue Z

    2010-06-01

    Usher syndrome (USH) comprises a group of autosomal recessively inherited disorders characterized by a dual sensory impairment of the audiovestibular and visual systems. Three major clinical subtypes (USH type I, USH type II and USH type III) are distinguished on the basis of the severity of the hearing loss, the presence or absence of vestibular dysfunction and the age of onset of retinitis pigmentosa (RP). Since the cloning of the first USH gene (MYO7A) in 1995, there have been remarkable advances in elucidating the genetic basis for this disorder, as evidence for 11 distinct loci have been obtained and genes for 9 of them have been identified. The USH genes encode proteins of different classes and families, including motor proteins, scaffold proteins, cell adhesion molecules and transmembrane receptor proteins. Extensive information has emerged from mouse models and molecular studies regarding pathogenesis of this disorder and the wide phenotypic variation in both audiovestibular and/or visual function. A unifying hypothesis is that the USH proteins are integrated into a protein network that regulates hair bundle morphogenesis in the inner ear. This review addresses genetics and pathological mechanisms of USH. Understanding the molecular basis of phenotypic variation and pathogenesis of USH is important toward discovery of new molecular targets for diagnosis, prevention and treatment of this debilitating disorder.

  11. [An overview on the physiological and ecological adaptation mechanisms of the overwinter ticks].

    Science.gov (United States)

    Yu, Zhi-jun; Yang, Xiao-long; Chen, Jie; Liu, Jing-ze

    2014-10-01

    The current paper introduces the recent research and development on the cryobiology of ticks, based on their overwinter behavior strategy and biochemical and physiological adaptation mechanisms, and provides detail information on the cold hardiness, biochemical and physiological mechanisms, the relationship between cold hardiness and diapause, which will give theoretical clues for subsequent research on the molecular regulation of cold hardiness of ticks.

  12. Aroma Effects on Physiologic and Cognitive Function Following Acute Stress: A Mechanism Investigation

    OpenAIRE

    Chamine, Irina; Oken, Barry S.

    2016-01-01

    Objective: Aromas may improve physiologic and cognitive function after stress, but associated mechanisms remain unknown. This study evaluated the effects of lavender aroma, which is commonly used for stress reduction, on physiologic and cognitive functions. The contribution of pharmacologic, hedonic, and expectancy-related mechanisms of the aromatherapy effects was evaluated.

  13. Phenotypic and genetic effects of contrasting ethanol environments on physiological and developmental traits in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Luis E Castañeda

    Full Text Available A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (covariances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile, using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (covariances of developmental traits, whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster.

  14. Phenotypic and Genetic Effects of Contrasting Ethanol Environments on Physiological and Developmental Traits in Drosophila melanogaster

    Science.gov (United States)

    Castañeda, Luis E.; Nespolo, Roberto F.

    2013-01-01

    A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster. PMID:23505567

  15. APS Conference on Understanding the Biological Clock: From Genetics to Physiology

    Science.gov (United States)

    Frank, Martin

    1996-01-01

    The Conference was designed to take advantage of the fusion of two intellectually dominant but heretofore separate lines of clock research, vertebrate physiology and invertebrate and microbial genetics. The APS Conference attracted 251 scientists, 68 of whom were students. In addition to the excellent speaker program organized by Dunlap and Loros, the attendees also submitted 93 volunteer abstracts that were programmed in poster sessions. Thirty-four percent of the submitted abstracts were first authorized by a female student or scientist.

  16. Genetic predispositions and parental bonding interact to shape adults’ physiological responses to social distress

    Science.gov (United States)

    Esposito, Gianluca; Truzzi, Anna; Setoh, Peipei; Putnick, Diane L.; Shinohara, Kazuyuki; Bornstein, Marc H.

    2018-01-01

    Parental bonding and oxytocin receptor (OXTR) gene genotype each influences social abilities in adulthood. Here, we hypothesized an interaction between the two – environmental experience (parental bonding history) and genetic factors (OXTR gene genotype) – in shaping adults’ social sensitivity (physiological response to distress). We assessed heart rate and peripheral temperature (tip of the nose) in 42 male adults during presentation of distress vocalizations (distress cries belonging to female human infants and adults as well as bonobo). The two physiological responses index, respectively, state of arousal and readiness to action. Participants’ parental bonding in childhood was assessed through the self-report Parental Bonding Instrument. To assess participants’ genetic predispositions, buccal mucosa cell samples were collected, and region rs2254298 of the oxytocin receptor gene was analyzed: previous OXTR gene findings point to associations between the G allele and better sociality (protective factor) and the A allele and poorer sociality (risk factor). We found a gene * environment interaction for susceptibility to social distress: Participants with a genetic risk factor (A carriers) with a history of high paternal overprotection showed higher heart rate increase than those without this risk factor (G/G genotype) to social distress. Also, a significant effect of the interaction between paternal care and genotype on nose temperature changes was found. This susceptibility appears to represent an indirect pathway through which genes and experiences interact to shape mature social sensitivity in males. PMID:27343933

  17. Defining Auditory-Visual Objects: Behavioral Tests and Physiological Mechanisms.

    Science.gov (United States)

    Bizley, Jennifer K; Maddox, Ross K; Lee, Adrian K C

    2016-02-01

    Crossmodal integration is a term applicable to many phenomena in which one sensory modality influences task performance or perception in another sensory modality. We distinguish the term binding as one that should be reserved specifically for the process that underpins perceptual object formation. To unambiguously differentiate binding form other types of integration, behavioral and neural studies must investigate perception of a feature orthogonal to the features that link the auditory and visual stimuli. We argue that supporting true perceptual binding (as opposed to other processes such as decision-making) is one role for cross-sensory influences in early sensory cortex. These early multisensory interactions may therefore form a physiological substrate for the bottom-up grouping of auditory and visual stimuli into auditory-visual (AV) objects. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Genetic diversity of cucumber estimated by morpho-physiological and EST-SSR markers.

    Science.gov (United States)

    Pandey, Sudhakar; Ansari, Waquar Akhter; Pandey, Maneesh; Singh, Bijendra

    2018-02-01

    In the present study, genetic variation among 40 cucumber genotypes was analyzed by means of morpho-physiological traits and 21 EST-SSR markers. Diversity was observed for morpho-physiological characters like days to 50% female flowering (37-46.9, number of fruits/plant (1.33-5.80), average fruit weight (41-333), vine length (36-364), relative water content (58.5-92.7), electrolyte leakage (15.9-37.1), photosynthetic efficiency (0.40-0.75) and chlorophyll concentration index (11.1-28.6). The pair wise Jaccard similarity coefficient ranged from 0.00 to 0.27 for quantitative traits and 0.24 to 0.96 for EST-SSR markers indicating that the accessions represent genetically diverse populations. With twenty-one EST-SSR markers, polymorphism revealed among 40 cucumber genotypes, number of alleles varied 2-6 with an average 3.05. Polymorphism information content varied from 0.002 to 0.989 (mean = 0.308). The number of effective allele (Ne), expected heterozygosity (He) and unbiased expected heterozygosity (uHe) of these EST-SSRs were 1.079-1.753, 0.074-0.428 and 0.074-0.434, respectively. Same 21 EST-SSR markers transferability checked in four other Cucumis species: snapmelon ( Cucumis melo var. momordica ), muskmelon ( Cucumis melo L.), pickling melon ( Cucumis melo var. conomon ) and wild muskmelon ( Cucumis melo var. agrestis ) with frequency of 61.9, 95.2, 76.2, and 76.2%, respectively. Present study provides useful information on variability, which can assist geneticists with desirable traits for cucumber germplasm utilization. Observed physiological parameters may assists in selection of genotype for abiotic stress tolerance also, EST-SSR markers may be useful for genetic studies in related species.

  19. Mechanisms of Bunyavirus Virulence: A Genetic Approach.

    Science.gov (United States)

    1984-12-01

    of canine parvovirus Type-2, feline panleukopenia virus and mink enteritis virus. Virology 129,401-414. Partner A., Webster, R. G., and Bean W. J...CM, and Webster RG. Procedures for the characterization of the genetic material of candidate vaccine strains. Develop Biol Standard 39:15-24, 1977

  20. Characterization of esophageal physiology using mechanical state analysis

    Directory of Open Access Journals (Sweden)

    Richard Eduard Leibbrandt

    2016-02-01

    Full Text Available The esophagus functions to transport swallowed fluids and food from the pharynx to the stomach. The esophageal muscles governing bolus transport comprise circular striated muscle of the proximal esophagus and circular smooth muscle of the distal esophagus. Longitudinal smooth muscle contraction provides a mechanical advantage to bolus transit during circular smooth muscle contraction. Esophageal striated muscle is directly controlled by neural circuits originating in the central nervous system, resulting in coordinated contractions. In contrast, the esophageal smooth muscle is controlled by enteric circuits modulated by extrinsic central neural connections resulting in neural relaxation and contraction. The esophageal muscles are modulated by sensory information arising from within the lumen. Contraction or relaxation, which changes the diameter of the lumen, alters the intraluminal pressure and ultimately inhibits or promotes flow of content. This relationship that exists between the changes in diameter and concurrent changes in intraluminal pressure has been used previously to identify the ‘mechanical states’ of the circular muscle; that is when the muscles are passively or actively, relaxing or contracting. Detecting these changes in the mechanical state of the muscle has been difficult and, as the current interpretation of esophageal motility is based largely upon pressure measurement (manometry, subtle changes in the muscle function during peristalsis can be missed. We hypothesized that quantification of mechanical states of the esophageal circular muscles and the pressure-diameter properties that define them, would allow objective characterization of the mechanisms that govern esophageal peristalsis. To achieve this we analyzed barium swallows captured by simultaneous videofluoroscopy and pressure with impedance recording. From these data we demonstrated that intraluminal impedance measurements could be used to determine changes in the

  1. Characterization of Esophageal Physiology Using Mechanical State Analysis.

    Science.gov (United States)

    Leibbrandt, Richard E; Dinning, Phil G; Costa, Marcello; Cock, Charles; Wiklendt, Lukasz; Wang, Guangsong; Tack, Jan; van Beckevoort, Dirk; Rommel, Nathalie; Omari, Taher I

    2016-01-01

    The esophagus functions to transport swallowed fluids and food from the pharynx to the stomach. The esophageal muscles governing bolus transport comprise circular striated muscle of the proximal esophagus and circular smooth muscle of the distal esophagus. Longitudinal smooth muscle contraction provides a mechanical advantage to bolus transit during circular smooth muscle contraction. Esophageal striated muscle is directly controlled by neural circuits originating in the central nervous system, resulting in coordinated contractions. In contrast, the esophageal smooth muscle is controlled by enteric circuits modulated by extrinsic central neural connections resulting in neural relaxation and contraction. The esophageal muscles are modulated by sensory information arising from within the lumen. Contraction or relaxation, which changes the diameter of the lumen, alters the intraluminal pressure and ultimately inhibits or promotes flow of content. This relationship that exists between the changes in diameter and concurrent changes in intraluminal pressure has been used previously to identify the "mechanical states" of the circular muscle; that is when the muscles are passively or actively, relaxing or contracting. Detecting these changes in the mechanical state of the muscle has been difficult and as the current interpretation of esophageal motility is based largely upon pressure measurement (manometry), subtle changes in the muscle function during peristalsis can be missed. We hypothesized that quantification of mechanical states of the esophageal circular muscles and the pressure-diameter properties that define them, would allow objective characterization of the mechanisms that govern esophageal peristalsis. To achieve this we analyzed barium swallows captured by simultaneous videofluoroscopy and pressure with impedance recording. From these data we demonstrated that intraluminal impedance measurements could be used to determine changes in the internal diameter of

  2. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences

    Science.gov (United States)

    Tribble, Gena D; Kerr, Jennifer E; Wang, Bing-Yan

    2013-01-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that colonizes the human oral cavity. It is implicated in the development of periodontitis, a chronic periodontal disease affecting half of the adult population in the USA. To survive in the oral cavity, these bacteria must colonize dental plaque biofilms in competition with other bacterial species. Long-term survival requires P. gingivalis to evade host immune responses, while simultaneously adapting to the changing physiology of the host and to alterations in the plaque biofilm. In reflection of this highly variable niche, P. gingivalis is a genetically diverse species and in this review the authors summarize genetic diversity as it relates to pathogenicity in P. gingivalis. Recent studies revealing a variety of mechanisms by which adaptive changes in genetic content can occur are also reviewed. Understanding the genetic plasticity of P. gingivalis will provide a better framework for understanding the host–microbe interactions associated with periodontal disease. PMID:23642116

  3. Physiological mechanism of resistance to anthracnose of different ...

    African Journals Online (AJOL)

    However, enzyme activity of resistant cultivars improved markedly after pathogen inoculation, while those of susceptible cultivars did not change. This study broadens the understanding of the mechanisms of disease resistance in Camellia. Keywords: Anthracnose, Camellia oleifera, phenylalanine ammonia lyase, ...

  4. Physiological evaluation of a newly designed lever mechanism for wheelchairs

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); de Boer, Y; Rozendal, R H

    1993-01-01

    Lever-propelled wheelchairs have been described as more efficient and less physically demanding than hand-rim-propelled wheelchairs. To evaluate a newly designed lever mechanism (MARC) in both one- and two-arm use, a series of wheelchair exercise tests were performed on a motor-driven treadmill.

  5. Genetic pathways to Neurodegeneration Models and mechanisms ...

    Indian Academy of Sciences (India)

    Paige Rudich

    Models and mechanisms of repeat expansion disorders: a worm's eye view ..... retardation 1 gene FMR1 gives rise to a spectrum of neurological disorders (Saul and Tarleton ... autism. Shorter repeat expansion lengths from 55-200 cause the.

  6. Genetic, physiologic and ecogeographic factors contributing to variation in Homo sapiens: Homo floresiensis reconsidered.

    Science.gov (United States)

    Richards, Gary D

    2006-11-01

    A new species, Homo floresiensis, was recently named for Pleistocene hominid remains on Flores, Indonesia. Significant controversy has arisen regarding this species. To address controversial issues and refocus investigations, I examine the affinities of these remains with Homo sapiens. Clarification of problematic issues is sought through an integration of genetic and physiological data on brain ontogeny and evolution. Clarification of the taxonomic value of various 'primitive' traits is possible given these data. Based on this evidence and using a H. sapiens morphological template, models are developed to account for the combination of features displayed in the Flores fossils. Given this overview, I find substantial support for the hypothesis that the remains represent a variant of H. sapiens possessing a combined growth hormone-insulin-like growth factor I axis modification and mutation of the MCPH gene family. Further work will be required to determine the extent to which this variant characterized the population.

  7. Genetic behavior of morpho-physiological traits and their role for breeding drought tolerant wheat

    International Nuclear Information System (INIS)

    Saleem, S.; Kashif, M.

    2016-01-01

    The development of drought tolerant and high yielding varieties/germplasm is the major objective of any wheat breeding program. In the present study genetic architecture of physiological traits, yield and yield related parameters were studied using the generation mean analysis to improve grain yield under drought stress. A drought tolerant line, 9877 and a drought susceptible line, NR371 were crossed to develop six generations (P/sub 1/, P/sub 2/, F/sub 1/, BC/sub 1/, BC/sub 2/, and F/sub 2/). Results revealed additive, dominant and epistatic effects involved in the inheritance of characters which varied with trait and stress. Additive gene action was observed for canopy temperature, Chlorophyll a and turgor potential. Although narrow sense heritability estimates for some traits were low but canopy temperature, chlorophyll a and turgor potential expressed reasonably high heritability that supports the results of gene action providing an opportunity for early generation selection to use in a breeding program. The estimation of heritability for leaf carotenoids and turgor potential along with gene action for leaf carotenoids is a new work in wheat. The findings of present study suggested that physiological and bio-chemical traits are the indicators of stress tolerance and their utilization in developing high yielding drought tolerant wheat germplasm can expedite the breeding for stress tolerance. (author)

  8. Genetic divergence of physiological-quality traits of seeds in a population of peppers.

    Science.gov (United States)

    Pessoa, A M S; Barroso, P A; do Rêgo, E R; Medeiros, G D A; Bruno, R L A; do Rêgo, M M

    2015-10-16

    Brazil has a great diversity of Capsicum peppers that can be used in breeding programs. The objective of this study was to evaluate genetic variation in traits related to the physiological quality of seeds of Capsicum annuum L. in a segregating F2 population and its parents. A total of 250 seeds produced by selfing in the F1 generation resulting from crosses between UFPB 77.3 and UFPB 76 were used, with 100 seeds of both parents used as additional controls, totaling 252 genotypes. The seeds were germinated in gerboxes containing substrate blotting paper moistened with distilled water. Germination and the following vigor tests were evaluated: first count, germination velocity index, and root and shoot lengths. Data were subjected to analysis of variance, and means were compared by Scott and Knott's method at 1% probability. Tocher's clustering based on Mahalanobis distance and canonical variable analysis with graphic dispersion of genotypes were performed, and genetic parameters were estimated. All variables were found to be significant by the F test (P ≤ 0.01) and showed high heritability and a CVg/CVe ratio higher than 1.0, indicating genetic differences among genotypes. Parents (genotypes 1 and 2) formed distinct groups in all clustering methods. Genotypes 3, 104, 153, and 232 were found to be the most divergent according to Tocher's clustering method, and this was mainly due to early germination, which was observed on day 14, and would therefore be selected. Understanding the phenotypic variability among these 252 genotypes will serve as a basis for continuing the breeding program within this family.

  9. PATHO-PHYSIOLOGICAL MECHANISMS OF TOBACCO SMOKING EFFECT ON THE CARDIOVASCULAR SYSTEM

    Directory of Open Access Journals (Sweden)

    V.F. Kirichuk

    2007-09-01

    Full Text Available Modern patho-physiological mechanisms with the help of which tobacco smoking contributes to the development of cardiovascular pathology are represented in the review. The most significant of them are endothelial dysfunction, progressing of atherosclerotic processes, alteration of rheologic properties of blood, increase of carboxyhemoglobin levels, activation of sympathetic nervous system of the heart.

  10. Use of Genetic Models to Study the Urinary Concentrating Mechanism

    DEFF Research Database (Denmark)

    Olesen, Emma Tina Bisgaard; Kortenoeven, Marleen L.A.; Fenton, Robert A.

    2015-01-01

    technology is providing critical new information about urinary concentrating processes and thus mechanisms for maintaining body water homeostasis. In this chapter we provide a brief overview of genetic mouse model generation, and then summarize findings in transgenic and knockout mice pertinent to our...

  11. The effect of music therapy on physiological signs of anxiety in patients receiving mechanical ventilatory support.

    Science.gov (United States)

    Korhan, Esra Akin; Khorshid, Leyla; Uyar, Mehmet

    2011-04-01

    The aim of this study was to investigate if relaxing music is an effective method of reducing the physiological signs of anxiety in patients receiving mechanical ventilatory support. Few studies have focused on the effect of music on physiological signs of anxiety in patients receiving mechanical ventilatory support. A study-case-control, experimental repeated measures design was used. Sixty patients aged 18-70 years, receiving mechanical ventilatory support and hospitalised in the intensive care unit, were taken as a convenience sample. Participants were randomised to a control group or intervention group, who received 60 minutes of music therapy. Classical music was played to patients using media player (MP3) and headphones. Subjects had physiological signs taken immediately before the intervention and at the 30th, 60th and 90th minutes of the intervention. Physiological signs of anxiety assessed in this study were mean systolic and diastolic blood pressure, pulse rate, respiratory rate and oxygen saturation in blood measured by pulse oxymetry. Data were collected over eight months in 2006-2007. The music group had significantly lower respiratory rates, and systolic and diastolic blood pressure, than the control group. This decrease improved progressively in the 30th, 60th and 90th minutes of the intervention, indicating a cumulative dose effect. Music can provide an effective method of reducing potentially harmful physiological responses arising from anxiety. As indicated by the results of this study, music therapy can be supplied to allay anxiety in patients receiving mechanical ventilation. Nurses may include music therapy in the routine care of patients receiving mechanical ventilation. © 2011 Blackwell Publishing Ltd.

  12. A physiological and genetic approach to the improvement of tomato (Lycopersicon esculentum Mill.) fruit soluble solids

    International Nuclear Information System (INIS)

    Damon, S.E.

    1989-01-01

    Physiological processes and the genetic basis determining soluble solids content (SSC) of processing tomato fruit were addressed. Analysis of [ 3 H]-(fructosyl)-sucrose translocation in tomato indicates that phloem unloading in the fruit occurs, at least in part, to the apoplast. Apoplastic sucrose, glucose and fructose concentrations were estimated as 1 to 7, 12 to 49 and 8 to 63 millimolar, respectively in tomato fruit pericarp. Short-term uptake of [ 14 C]sucrose, -glucose and -fructose in tomato pericarp discs showes first order kinetics over the physiologically relevant concentration range. The uptake of [ 14 C]-(glycosyl)-1'fluorosucrose was identical to the rate of [ 14 C] sucrose uptake suggesting sucrose may be taken up directly without prior extracellular hydrolysis. Short-term uptake of all three sugars was insensitive to 10 micromolar carbonyl cyanide m-chlorophenylhydrazone and to 10 micromolar p-chloromercuribenzene sulfonic acid. However, long-term accumulation of glucose was sensitive to carbonyl cyanide m-chlorophenylhydrazone. Sugar uptake across the plasmamembrane does not appear to be energy dependent, suggesting that sugar accumulation in the tomato is driven by subsequent intracellular metabolism and/or active uptake at the tonoplast. Fourteen genomic DNA probes and ten restriction endonucleases were used to identify restriction fragment length polymorphisms (RFLPs) useful in the linkage analysis of quantitative trait loci controlling the expression of SSC in a segregating F 2 population from a cross between L. esculentum (UC204B) and L. cheesmanii f. minor, a wild species with high fruit soluble solids. RFLPs were detected between the DNAs of the two tomato species with all 14 probes

  13. Additional mechanisms conferring genetic susceptibility to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Miguel eCalero

    2015-04-01

    Full Text Available Familial Alzheimer's disease (AD, mostly associated with early onset, is caused by mutations in three genes (APP, PSEN1 and PSEN2 involved in the production of the amyloid  peptide. In contrast, the molecular mechanisms that trigger the most common late onset sporadic AD remain largely unknown. With the implementation of an increasing number of case-control studies and the upcoming of large-scale genome-wide association studies (GWAS there is a mounting list of genetic risk factors associated to common genetic variants that have been associated to sporadic AD. Besides APOE, that presents a strong association with the disease (OR~4, the rest of these genes have moderate or low degrees of association, with OR ranging from 0.88 to 1.23. Taking together, these genes may account only for a fraction of the attributable AD risk and therefore, rare variants and epistastic gene interactions should be taken into account in order to get the full picture of the genetic risks associated to AD. Here, we review recent whole-exome studies looking for rare variants, somatic brain mutations with a strong association to the disease, and several studies dealing with epistasis as additional mechanisms conferring genetic susceptibility to AD. Altogether, recent evidence underlines the importance of defining molecular and genetic pathways and networks rather than the contribution of specific genes.

  14. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops.

    Science.gov (United States)

    Hammer, Graeme L; van Oosterom, Erik; McLean, Greg; Chapman, Scott C; Broad, Ian; Harland, Peter; Muchow, Russell C

    2010-05-01

    Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and development model is outlined here. It is designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics. The approach quantifies capture and use of radiation, water, and nitrogen within a framework that predicts the realized growth of major organs based on their potential and whether the supply of carbohydrate and nitrogen can satisfy that potential. The model builds on existing approaches within the APSIM software platform. Experiments on diverse genotypes of sorghum that underpin the development and testing of the adapted crop model are detailed. Genotypes differing in height were found to differ in biomass partitioning among organs and a tall hybrid had significantly increased radiation use efficiency: a novel finding in sorghum. Introducing these genetic effects associated with plant height into the model generated emergent simulated phenotypic differences in green leaf area retention during grain filling via effects associated with nitrogen dynamics. The relevance to plant breeding of this capability in complex trait dissection and simulation is discussed.

  15. [Molecular, genetic and physiological analysis of photoinhibition and photosynthetic]. Progress report, June 1991--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    A major goal of this project is to use a combined molecular genetic, biochemical and physiological approach to understand the relationship between photosynthetic performance and the structure of the multifunctional D1 reaction center protein of Photosystem II encoded by the chloroplast psbA gene. Relative to other chloroplast proteins, turover of D1 is rapid and highly light dependent and de novo synthesis of D1 is required for a plant`s recovery from short term exposure to irradiances which induce photoinhibitory damage. These observations have led to models for a damage/repair cycle of PSII involving the targeted degradation and replacement of photodamaged D1. To investigate the effects of perturbing the D1 cycle on photosynthesis and autotrophic growth under high and low irradiance, we have examined the consequences of site-specific mutations of the psbA and 16S rRNA genes affecting synthesis, maturation and function/stability of the D1 protein introduced into the chloroplast genome of wildtype strain of the green alga Chlamydomonas reinhardtii using biolistic transformation.

  16. Generation of Compliant Mechanisms using Hybrid Genetic Algorithm

    Science.gov (United States)

    Sharma, D.; Deb, K.

    2014-10-01

    Compliant mechanism is a single piece elastic structure which can deform to perform the assigned task. In this work, compliant mechanisms are evolved using a constraint based bi-objective optimization formulation which requires one user defined parameter ( η). This user defined parameter limits a gap between a desired path and an actual path traced by the compliant mechanism. The non-linear and discrete optimization problems are solved using the hybrid Genetic Algorithm (GA) wherein domain specific initialization, two-dimensional crossover operator and repairing techniques are adopted. A bit-wise local search method is used with elitist non-dominated sorting genetic algorithm to further refine the compliant mechanisms. Parallel computations are performed on the master-slave architecture to reduce the computation time. A parametric study is carried out for η value which suggests a range to evolve topologically different compliant mechanisms. The applied and boundary conditions to the compliant mechanisms are considered the variables that are evolved by the hybrid GA. The post-analysis of results unveils that the complaint mechanisms are always supported at unique location that can evolve the non-dominated solutions.

  17. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability.

    Science.gov (United States)

    Zhang, Genyi; Hasek, Like Y; Lee, Byung-Hoo; Hamaker, Bruce R

    2015-04-01

    Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.

  18. Aroma Effects on Physiologic and Cognitive Function Following Acute Stress: A Mechanism Investigation.

    Science.gov (United States)

    Chamine, Irina; Oken, Barry S

    2016-09-01

    Aromas may improve physiologic and cognitive function after stress, but associated mechanisms remain unknown. This study evaluated the effects of lavender aroma, which is commonly used for stress reduction, on physiologic and cognitive functions. The contribution of pharmacologic, hedonic, and expectancy-related mechanisms of the aromatherapy effects was evaluated. Ninety-two healthy adults (mean age, 58.0 years; 79.3% women) were randomly assigned to three aroma groups (lavender, perceptible placebo [coconut], and nonperceptible placebo [water] and to two prime subgroups (primed, with a suggestion of inhaling a powerful stress-reducing aroma, or no prime). Participants' performance on a battery of cognitive tests, physiologic responses, and subjective stress were evaluated at baseline and after exposure to a stress battery during which aromatherapy was present. Participants also rated the intensity and pleasantness of their assigned aroma. Pharmacologic effects of lavender but not placebo aromas significantly benefited post-stress performance on the working memory task (F(2, 86) = 5.41; p = 0.006). Increased expectancy due to positive prime, regardless of aroma type, facilitated post-stress performance on the processing speed task (F(1, 87) = 8.31; p = 0.005). Aroma hedonics (pleasantness and intensity) played a role in the beneficial lavender effect on working memory and physiologic function. The observable aroma effects were produced by a combination of mechanisms involving aroma-specific pharmacologic properties, aroma hedonic properties, and participant expectations. In the future, each of these mechanisms could be manipulated to produce optimal functioning.

  19. The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women.

    Science.gov (United States)

    Liao, Shunyao; Liu, Yunqiang; Chen, Xiaojuan; Tan, Yuande; Mei, Jie; Song, Wenzhong; Gan, Lu; Wang, Hailian; Yin, Shi; Dong, Xianjue; Chi, Shu; Deng, Shaoping

    2015-11-01

    We investigate the impact of genetic variants on transiently upregulated gestational insulin signaling. We recruited 1152 unrelated nondiabetic pregnant Han Chinese women (age 28.5 ± 4.1 years; body mass index [BMI] 21.4 ± 2.6 kg/m(2)) and gave them oral glucose tolerance tests. Matsuda index of insulin sensitivity, homeostatic model assessment of insulin resistance, indices of insulin disposition, early-phase insulin release, fasting state, and 0 to 120 minute's proinsulin to insulin conversion were used to dissect insulin physiological characterization. Several variants related to β-cell function were genotyped. The genetic impacts were analyzed using logistic regression under an additive model. By adjusting for maternal age, BMI, and the related interactions, the genetic variants in ABCC8, CDKAL1, CDKN2A, HNF1B, KCNJ11, and MTNR1B were detected to impact gestational insulin signaling through heterogeneous mechanisms; however, compared with that in nonpregnant metabolism, the genetic effects seem to be eminently and heavily influenced by maternal age and BMI, indicating possible particular mechanisms underlying gestational metabolism and diabetic pathogenesis. © The Author(s) 2015.

  20. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment.

    Science.gov (United States)

    Choudhary, Lokesh; Raman, R K Singh

    2012-02-01

    It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Genetic engineering: a promising tool to engender physiological, biochemical and molecular stress resilience in green microalgae

    Directory of Open Access Journals (Sweden)

    Freddy eGuiheneuf

    2016-03-01

    Full Text Available As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest towards a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric CO2 into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight, carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors like nitrogen starvation , salinity, heat shock etc. can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests.

  2. Animal models of physiologic markers of male reproduction: genetically defined infertile mice

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, C.

    1987-10-01

    The present report focuses on novel animal models of male infertility: genetically defined mice bearing single-gene mutations that induce infertility. The primary goal of the investigations was to identify the reproductive defects in these mutant mice. The phenotypic effects of the gene mutations were deciphered by comparing the mutant mice to their normal siblings. Initially testicular steroidogenesis and spermatogenesis were investigated. The physiologic markers for testicular steroidogenesis were steroid secretion by testes perifused in vitro, seminal vesicle weight, and Leydig cell histology. Spermatogenesis was evaluated by the enumeration of homogenization-resistant sperm/spermatids in testes and by morphometric analyses of germ cells in the seminiferous epithelium. If testicular function appeared normal, the authors investigated the sexual behavior of the mice. The parameters of male sexual behavior that were quantified included mount patency, mount frequency, intromission latency, thrusts per intromission, ejaculation latency, and ejaculation duration. Females of pairs breeding under normal circumstances were monitored for the presence of vaginal plugs and pregnancies. The patency of the ejaculatory process was determined by quantifying sperm in the female reproductive tract after sexual behavior tests. Sperm function was studied by quantitatively determining sperm motility during videomicroscopic observation. Also, the ability of epididymal sperm to function within the uterine environment was analyzed by determining sperm capacity to initiate pregnancy after artificial insemination. Together, the experimental results permitted the grouping of the gene mutations into three general categories. They propose that the same biological markers used in the reported studies can be implemented in the assessment of the impact that environmental toxins may have on male reproduction.

  3. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-01-01

    Full Text Available The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS and trehalose-6-phosphate phosphatase (TPP pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects.

  4. Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses.

    Science.gov (United States)

    Yin, Zepeng; Ren, Jing; Zhou, Lijuan; Sun, Lina; Wang, Jiewan; Liu, Yulong; Song, Xingshun

    2016-01-01

    Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry ( Cerasus humilis ) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is to identify the effect of WD on C. humilis through physiological and global proteomics analysis and improve understanding of the WD resistance of plants. Currently, physiological parameters were applied to investigate C. humilis response to WD. Moreover, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in C. humilis leaves subjected to WD (24 d). Furthermore, we also examined the correlation between protein and transcript levels. Several physiological parameters, including relative water content and Pn were reduced by WD. In addition, the malondialdehyde (MDA), relative electrolyte leakage (REL), total soluble sugar, and proline were increased in WD-treated C. humilis . Comparative proteomic analysis revealed 46 protein spots (representing 43 unique proteins) differentially expressed in C. humilis leaves under WD. These proteins were mainly involved in photosynthesis, ROS scavenging, carbohydrate metabolism, transcription, protein synthesis, protein processing, and nitrogen and amino acid metabolisms, respectively. WD promoted the CO 2 assimilation by increase light reaction and Calvin cycle, leading to the reprogramming of carbon metabolism. Moreover, the accumulation of osmolytes (i.e., proline and total soluble sugar) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione s-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under WD. Importantly, the regulation role of carbohydrate metabolisms (e. g. glycolysis, pentose phosphate pathways, and TCA) was enhanced. These findings provide key candidate proteins for genetic improvement of perennial plants metabolism under

  5. Preschoolers’ Genetic, Physiological, and Behavioral Sensitivity Factors Moderate Links Between Parenting Stress and Child Internalizing, Externalizing, and Sleep Problems

    Science.gov (United States)

    Davis, Molly; Thomassin, Kristel; Bilms, Joanie; Suveg, Cynthia; Shaffer, Anne; Beach, Steven R. H.

    2017-01-01

    This study examined three potential moderators of the relations between maternal parenting stress and preschoolers’ adjustment problems: a genetic polymorphism - the short allele of the serotonin transporter (5-HTTLPR, ss/sl allele) gene, a physiological indicator - children’s baseline respiratory sinus arrhythmia (RSA), and a behavioral indicator - mothers’ reports of children’s negative emotionality. A total of 108 mothers (Mage = 30.68 years, SDage = 6.06) reported on their parenting stress as well as their preschoolers’ (Mage = 3.50 years, SDage = .51, 61% boys) negative emotionality and internalizing, externalizing, and sleep problems. Results indicated that the genetic sensitivity variable functioned according to a differential susceptibility model; however, the results involving physiological and behavioral sensitivity factors were most consistent with a diathesis-stress framework. Implications for prevention and intervention efforts to counter the effects of parenting stress are discussed. PMID:28295263

  6. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    Science.gov (United States)

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  7. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Andreas eHolzinger

    2013-08-01

    Full Text Available Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. For example, Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of

  8. Rice Physiology

    Science.gov (United States)

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  9. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario.

    Science.gov (United States)

    Ali, Muhammad Umar; Rahman, Muhammad Saif Ur; Cao, Jiang; Yuan, Ping Xi

    2017-08-01

    Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.

  10. Effects of competitive pressure on expert performance: underlying psychological, physiological, and kinematic mechanisms.

    Science.gov (United States)

    Cooke, Andrew; Kavussanu, Maria; McIntyre, David; Boardley, Ian D; Ring, Christopher

    2011-08-01

    Although it is well established that performance is influenced by competitive pressure, our understanding of the mechanisms which underlie the pressure-performance relationship is limited. The current experiment examined mediators of the relationship between competitive pressure and motor skill performance of experts. Psychological, physiological, and kinematic responses to three levels of competitive pressure were measured in 50 expert golfers, during a golf putting task. Elevated competitive pressure increased putting accuracy, anxiety, effort, and heart rate, but decreased grip force. Quadratic effects of pressure were noted for self-reported conscious processing and impact velocity. Mediation analyses revealed that effort and heart rate partially mediated improved performance. The findings indicate that competitive pressure elicits effects on expert performance through both psychological and physiological pathways. Copyright © 2011 Society for Psychophysiological Research.

  11. Asymmetry in family history implicates nonstandard genetic mechanisms: application to the genetics of breast cancer.

    Directory of Open Access Journals (Sweden)

    Clarice R Weinberg

    2014-03-01

    Full Text Available Genome-wide association studies typically target inherited autosomal variants, but less studied genetic mechanisms can play a role in complex disease. Sex-linked variants aside, three genetic phenomena can induce differential risk in maternal versus paternal lineages of affected individuals: 1. maternal effects, reflecting the maternal genome's influence on prenatal development; 2. mitochondrial variants, which are inherited maternally; 3. autosomal genes, whose effects depend on parent of origin. We algebraically show that small asymmetries in family histories of affected individuals may reflect much larger genetic risks acting via those mechanisms. We apply these ideas to a study of sisters of women with breast cancer. Among 5,091 distinct families of women reporting that exactly one grandmother had breast cancer, risk was skewed toward maternal grandmothers (p<0.0001, especially if the granddaughter was diagnosed between age 45 and 54. Maternal genetic effects, mitochondrial variants, or variant genes with parent-of-origin effects may influence risk of perimenopausal breast cancer.

  12. Physiologic and genetic evidence links hemopexin to triglycerides in mice and humans.

    Science.gov (United States)

    Lawson, H A; Zayed, M; Wayhart, J P; Fabbrini, E; Love-Gregory, L; Klein, S; Semenkovich, C F

    2017-04-01

    Elevated triglycerides predict insulin resistance and vascular disease in obesity, but how the inert triglyceride molecule is related to development of metabolic disease is unknown. To pursue novel potential mediators of triglyceride-associated metabolic disease, we used a forward genetics approach involving inbred mice and translated our findings to human subjects. Hemopexin (HPX) was identified as a differentially expressed gene within a quantitative trait locus associated with serum triglycerides in an F 16 advanced intercross between the LG/J and SM/J strains of mice. Hpx expression was evaluated in both the reproductive fat pads and livers of mice representing three strains, LG/J (n=25), SM/J (n=27) and C57Bl/6J (n=19), on high- and low-fat diets. The effect of altered Hpx expression on adipogenesis was studied in 3T3-L1 cells. Circulating HPX protein along with HPX expression were characterized in subcutaneous white adipose tissue samples obtained from a cohort of metabolically abnormal (n=18) and of metabolically normal (n=24) obese human subjects. We further examined the relationship between HPX and triglycerides in human atherosclerotic plaques (n=18). HPX expression in mouse adipose tissue, but not in liver, was regulated by dietary fat regardless of genetic background. HPX increased in concert with adipogenesis in 3T3-L1 cells, and disruption of its expression impaired adipocyte differentiation. RNAseq data from the adipose tissue of obese humans showed differential expression of HPX based on metabolic disease status (Ptriglycerides in these subjects (r=0.33; P=0.03). HPX was also found in an unbiased proteomic screen of human atherosclerotic plaques and shown to display differential abundance based on the extent of disease and triglyceride content (Ptriglycerides and provide a framework for understanding mechanisms underlying lipid metabolism and metabolic disease.

  13. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.

    Science.gov (United States)

    Tang, Xiaoli; Mu, Xingmin; Shao, Hongbo; Wang, Hongyan; Brestic, Marian

    2015-01-01

    The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.

  14. Defence mechanisms: the role of physiology in current and future environmental protection paradigms

    Science.gov (United States)

    Glover, Chris N

    2018-01-01

    Abstract Ecological risk assessments principally rely on simplified metrics of organismal sensitivity that do not consider mechanism or biological traits. As such, they are unable to adequately extrapolate from standard laboratory tests to real-world settings, and largely fail to account for the diversity of organisms and environmental variables that occur in natural environments. However, an understanding of how stressors influence organism health can compensate for these limitations. Mechanistic knowledge can be used to account for species differences in basal biological function and variability in environmental factors, including spatial and temporal changes in the chemical, physical and biological milieu. Consequently, physiological understanding of biological function, and how this is altered by stressor exposure, can facilitate proactive, predictive risk assessment. In this perspective article, existing frameworks that utilize physiological knowledge (e.g. biotic ligand models, adverse outcomes pathways and mechanistic effect models), are outlined, and specific examples of how mechanistic understanding has been used to predict risk are highlighted. Future research approaches and data needs for extending the incorporation of physiological information into ecological risk assessments are discussed. Although the review focuses on chemical toxicants in aquatic systems, physical and biological stressors and terrestrial environments are also briefly considered. PMID:29564135

  15. Insights into the mechanism and catalysis of oxime coupling chemistry at physiological pH.

    Science.gov (United States)

    Wang, Shujiang; Gurav, Deepanjali; Oommen, Oommen P; Varghese, Oommen P

    2015-04-07

    The dynamic covalent-coupling reaction involving α-effect nucleophiles has revolutionized bioconjugation approaches, due to its ease and high efficiency. Key to its success is the discovery of aniline as a nucleophilic catalyst, which made this reaction feasible under physiological conditions. Aniline however, is not so effective for keto substrates. Here, we investigate the mechanism of aniline activation in the oxime reaction with aldehyde and keto substrates. We also present carboxylates as activating agents that can promote the oxime reaction with both aldehyde and keto substrates at physiological pH. This rate enhancement circumvents the influence of α-effect by forming H-bonds with the rate-limiting intermediate, which drives the reaction to completion. The combination of aniline and carboxylates had a synergistic effect, resulting in a ∼14-31-fold increase in reaction rate at pD 7.4 with keto substrates. The biocompatibility and efficiency of carboxylate as an activating agent is demonstrated by performing cell-surface oxime labeling at physiological pH using acetate, which showed promising results that were comparable with aniline. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    Science.gov (United States)

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.

  17. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp.

    Science.gov (United States)

    Ueda, H

    2012-07-01

    After several years of feeding at sea, salmonids have an amazing ability to migrate long distances from the open ocean to their natal stream to spawn. Three different research approaches from behavioural to molecular biological studies have been used to elucidate the physiological mechanisms underpinning salmonid imprinting and homing migration. The study was based on four anadromous Pacific salmon Oncorhynchus spp., pink salmon Oncorhynchus gorbuscha, chum salmon Oncorhynchus keta, sockeye salmon Oncorhynchus nerka and masu salmon Oncorhynchus masou, migrating from the North Pacific Ocean to the coast of Hokkaido, Japan, as well as lacustrine O. nerka and O. masou in Lake Toya, Hokkaido, where the lake serves as the model oceanic system. Behavioural studies using biotelemetry techniques showed swimming profiles from the Bering Sea to the coast of Hokkaido in O. keta as well as homing behaviours of lacustrine O. nerka and O. masou in Lake Toya. Endocrinological studies on hormone profiles in the brain-pituitary-gonad axis of O. keta, and lacustrine O. nerka identified the hormonal changes during homing migration. Neurophysiological studies revealed crucial roles of olfactory functions on imprinting and homing during downstream and upstream migration, respectively. These findings are discussed in relation to the physiological mechanisms of imprinting and homing migration in anadromous and lacustrine salmonids. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. Physiological Mechanisms in Herbivores for Retention and Utilization of Nitrogenous Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, I. [Department of Animal Physiology, Agricultural College of Sweden, Uppsala 7 (Sweden)

    1968-07-01

    A short review is given of some aspects of nitrogen metabolism in herbivorous mammals. In the rumen the passage of urea into the rumen and of ammonia out of the rumen are of considerable importance. As yet no facts have been disclosed which definitely prove the existence of special mechanisms influencing these processes in a way favouring the use of endogenous urea in the rumen. The excretion of urea by the kidneys on the other hand is regulated in a manner which appears to be adapted for improved utilization of nitrogen when the nitrogen supply is low. It is further pointed out that efficient retention of microbial protein produced in the caecum must be of considerable importance to herbivores with a large caecum. Some preliminary results are given concerning the physiology of the colon in rabbits and the anatomy and physiology of the colon in lemmings. In the rabbit it appears probable that the passage of fluid and fine particles through the colon is considerably delayed compared with the passage of larger particles. In the lemming an anatomically complicated proximal part of the colon effects a very efficient separation of the microorganisms from the indigestible food residues when caecal contents pass through the colon. The microorganisms appear to be returned to the most proximal part of the colon or into the caecum. Mechanisms of this type seem to be of considerable value to herbivores, enabling them to utilize food with a low digestibility and a low protein content. (author)

  19. A Preliminary Evaluation of the Physiological Mechanisms of Action for Sleep Restriction Therapy

    Directory of Open Access Journals (Sweden)

    Annie Vallières

    2013-01-01

    Full Text Available Our objective was to investigate the physiological mechanisms involved in the sleep restriction treatment of insomnia. A multiple baseline across subjects design was used. Sleep of five participants suffering from insomnia was assessed throughout the experimentation by sleep diaries and actigraphy. Ten nights of polysomnography were conducted over five occasions. The first two-night assessment served to screen for sleep disorders and to establish a baseline for dependent measures. Three assessments were undertaken across the treatment interval, with the fifth and last one coming at follow-up. Daily cortisol assays were obtained. Sleep restriction therapy was applied in-lab for the first two nights of treatment and was subsequently supervised weekly. Interrupted time series analyses were computed on sleep diary data and showed a significantly decreased wake time, increased sleep efficiency, and decreased total sleep time. Sleepiness at night seems positively related to sleep variables, polysomnography data suggest objective changes mainly for stage 2, and power spectral analysis shows a decrease in beta-1 and -2 powers for the second night of treatment. Cortisol levels seem to be lower during treatment. These preliminary results confirm part of the proposed physiological mechanisms and suggest that sleep restriction contributes to a rapid decrease in hyperarousal insomnia.

  20. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects

    Directory of Open Access Journals (Sweden)

    Farhad Dehkhoda

    2018-02-01

    Full Text Available The growth hormone receptor (GHR, although most well known for regulating growth, has many other important biological functions including regulating metabolism and controlling physiological processes related to the hepatobiliary, cardiovascular, renal, gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an important regulator of aging and plays a significant role in cancer development. Growth hormone activates the Janus kinase (JAK–signal transducer and activator of transcription (STAT signaling pathway, and recent studies have provided a new understanding of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 activation is required for growth hormone-mediated activation of STAT1, STAT3, and STAT5, and the negative regulation of JAK–STAT signaling comprises an important step in the control of this signaling pathway. The GHR also activates the Src family kinase signaling pathway independent of JAK2. This review covers the molecular mechanisms of GHR activation and signal transduction as well as the physiological consequences of growth hormone signaling.

  1. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David J.; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucía; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David M.; Macalady, Alison K.; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O’Brien, Michael J.; O’Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer A.; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Xu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-08-07

    Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  2. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.

    Science.gov (United States)

    Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G

    2017-09-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  3. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    Science.gov (United States)

    Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-01-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  4. Genetic and epigenetic mechanisms of epilepsy: a review

    Directory of Open Access Journals (Sweden)

    Chen T

    2017-07-01

    Full Text Available Tian Chen,1,* Mohan Giri,2,* Zhenyi Xia,3 Yadu Nanda Subedi,2 Yan Li1 1Department of Health Management Center, Chongqing Three Gorges Central Hospital, Chongqing, People’s Republic of China; 2National Center for Rheumatic Diseases, Ratopul, Gaushala, Kathmandu, Nepal; 3Department of Thoracic Surgery, Chongqing Three Gorges Central Hospital, Chongqing, People’s Republic of China *These authors contributed equally to this work Abstract: Epilepsy is a common episodic neurological disorder or condition characterized by recurrent epileptic seizures, and genetics seems to play a key role in its etiology. Early linkage studies have localized multiple loci that may harbor susceptibility genes to epilepsy, and mutational analyses have detected a number of mutations involved in both ion channel and nonion channel genes in patients with idiopathic epilepsy. Genome-wide studies of epilepsy have found copy number variants at 2q24.2-q24.3, 7q11.22, 15q11.2-q13.3, and 16p13.11-p13.2, some of which disrupt multiple genes, such as NRXN1, AUTS2, NLGN1, CNTNAP2, GRIN2A, PRRT2, NIPA2, and BMP5, implicated for neurodevelopmental disorders, including intellectual disability and autism. Unfortunately, only a few common genetic variants have been associated with epilepsy. Recent exome-sequencing studies have found some genetic mutations, most of which are located in nonion channel genes such as the LGI1, PRRT2, EFHC1, PRICKLE, RBFOX1, and DEPDC5 and in probands with rare forms of familial epilepsy, and some of these genes are involved with the neurodevelopment. Since epigenetics plays a role in neuronal function from embryogenesis and early brain development to tissue-specific gene expression, epigenetic regulation may contribute to the genetic mechanism of neurodevelopment through which a gene and the environment interacting with each other affect the development of epilepsy. This review focused on the analytic tools used to identify epilepsy and then provided a

  5. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, Ole; Butt, Simon J.B.

    2003-01-01

    . These latter experiments have defined EphA4 as a molecular marker for mammalian excitatory hindlimb CPG neurons. We also review genetic approaches that can be applied to the mouse spinal cord. These include methods for identifying sub-populations of neurons by genetically encoded reporters, techniques to trace...... network connectivity with cell-specific genetically encoded tracers, and ways to selectively ablate or eliminate neuron populations from the CPG. We propose that by applying a multidisciplinary approach it will be possible to understand the network structure of the mammalian locomotor CPG...

  6. Mechanisms of realization of THz-waves of nitrogen oxide occurrence physiological effects

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available In this review, there is generalized material of many experimental researches in interaction of THz-waves molecular emission and absorption spectrum (MEAS of nitrogen oxide occurrence with bioobjects. Thrombocytes and experimental animals were used as bioobjects. The experiments let indicate changes caused by THz-waves: at the cellular, tissular, system, organismic levels. There are all data of changes in physiological mechanisms of reglations at all levels: autocrine, paracrine, endocrine and nervous. There is a complex overview of experimental material firstly performed in the article. There had been shown that the effect of THz-waves of the given occurrence is realized by the changed activity of nitroxidergic system. It had been proved that THz-waves of nitrogen oxide occurrence can stimulate nitrogen oxide producing in organs and tissues in condition of its low concentration. Possible mechanisms of antiaggregative effect of the given waves had been described. There had been shown the possibility of regulating of vascular tone and system hemodynamics with the help of the studying these frequencies. The represented data of lipid peroxidation and enzymatic and nonenzymatic components of organism system under the influence of THz-waves of nitrogen oxide occurrence in stress conditions. Besides, there were shown changes of stress-regulating system activity and in concentration of important mediators - catecholamines and glucocorticosteroids. These data let characterize mechanism of realization of THz-waves basic effects. The research had shown the possibility of THz-waves of nitrogen oxide occurrence usage as a method of natural physiological noninvasive regulation of significant organism functions.

  7. Learning Similar Actions by Reinforcement or Sensory-Prediction Errors Rely on Distinct Physiological Mechanisms.

    Science.gov (United States)

    Uehara, Shintaro; Mawase, Firas; Celnik, Pablo

    2017-09-14

    Humans can acquire knowledge of new motor behavior via different forms of learning. The two forms most commonly studied have been the development of internal models based on sensory-prediction errors (error-based learning) and success-based feedback (reinforcement learning). Human behavioral studies suggest these are distinct learning processes, though the neurophysiological mechanisms that are involved have not been characterized. Here, we evaluated physiological markers from the cerebellum and the primary motor cortex (M1) using noninvasive brain stimulations while healthy participants trained finger-reaching tasks. We manipulated the extent to which subjects rely on error-based or reinforcement by providing either vector or binary feedback about task performance. Our results demonstrated a double dissociation where learning the task mainly via error-based mechanisms leads to cerebellar plasticity modifications but not long-term potentiation (LTP)-like plasticity changes in M1; while learning a similar action via reinforcement mechanisms elicited M1 LTP-like plasticity but not cerebellar plasticity changes. Our findings indicate that learning complex motor behavior is mediated by the interplay of different forms of learning, weighing distinct neural mechanisms in M1 and the cerebellum. Our study provides insights for designing effective interventions to enhance human motor learning. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences.

    Science.gov (United States)

    Gunderson, Alex R; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    A major focus of current ecological research is to understand how global change makes species vulnerable to extirpation. To date, mechanistic ecophysiological analyses of global change vulnerability have focused primarily on the direct effects of changing abiotic conditions on whole-organism physiological traits, such as metabolic rate, locomotor performance, cardiac function, and critical thermal limits. However, species do not live in isolation within their physical environments, and direct effects of climate change are likely to be compounded by indirect effects that result from altered interactions with other species, such as competitors and predators. The Society for Integrative and Comparative Biology 2017 Symposium "Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences" was designed to synthesize multiple approaches to investigating the indirect effects of global change by bringing together researchers that study the indirect effects of global change from multiple perspectives across habitat, type of anthropogenic change, and level of biological organization. Our goal in bringing together researchers from different backgrounds was to foster cross-disciplinary insights into the mechanistic bases and higher-order ecological consequences of indirect effects of global change, and to promote collaboration among fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    NARCIS (Netherlands)

    Bogaard, E.H. van den; Podolsky, M.A.; Smits, J.P.H.; Cui, X.; John, C.; Gowda, K.; Desai, D.; Amin, S.G.; Schalkwijk, J.; Perdew, G.H.; Glick, A.B.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis

  10. [Effect of mechanical grinding of Sphagnum on the structure and physiological state of bacterial communities].

    Science.gov (United States)

    Dobrovol'skaya, T G; Golovchenko, A V; Yakushev, A V; Manucharova, N A; Yurchenko, E N

    2014-01-01

    The microcosm method was used to demonstrate an increase in bacterial numbers and drastic changes in the taxonomic structure of saprotrophic bacteria as a result of mechanical grinding of Sphagnum moss. Ekkrisotrophic agrobacteria predominant in untreated moss were replaced by hydrolytic bacteria. Molecular biological approaches revealed such specific hydrolytic bacteria as Janthinobacterium agaricum and Streptomyces purpurascens among the dominant taxa. The application of kinetic technique for determination of the physiological state of bacteria in situ revealed higher functional diversity of hydrolytic bacteria in ground moss than in untreated samples. A considerable decrease of the C/N ratio in ground samples of living Sphagnum incubated using the microcosm technique indicated decomposition of this substrate.

  11. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta

    DEFF Research Database (Denmark)

    Boardman, Leigh; Sørensen, Jesper Givskov; Terblanche, John S

    2015-01-01

    identified to date. Using larvae of false codling moth Thaumatotibia leucotreta, a pest of southern Africa, we investigated the physiological and molecular responses to hypoxia or temperature stress pre-treatments, followed by a standard low temperature exposure. Survival rates were significantly influenced...... by pretreatment conditions, although T. leucotreta shows relatively high basal resistance to various stressors (4% variation in larval survival across all pre-treatments). Results showed that mild pre-treatments with chilling and hypoxia increased resistance to low temperatures and that these responses were...... correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2 h at 35 C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold...

  12. INTERNATIONAL SCIENTIFIC CONFERENCE «PLANT PHYSIOLOGY AND GENETICS – SUCCESSES AND CHALLENGES», 24\\26 SEPTEMBER 2014, SOFIA, REPUBLIC OF BULGARIA

    OpenAIRE

    F. B. Musayev; E. G. Kozar

    2014-01-01

    24-26 September 2014 in the Republic of Bulgaria the International scientific and practical conference entitled «Plant Physiology and Genetics – Achievements and Challenges» was hold. The forum discussed the biotechnology and genetic approaches for environmental and sustainable agriculture; genetic resources and biodiversity; efficient use of plant nutrition and symbiotic interaction; regulation of plant growth and development; photosynthesis under stress conditions.

  13. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  14. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.

    Science.gov (United States)

    Anderegg, Leander D L; HilleRisLambers, Janneke

    2016-03-01

    Range shifts are among the most ubiquitous ecological responses to anthropogenic climate change and have large consequences for ecosystems. Unfortunately, the ecophysiological forces that constrain range boundaries are poorly understood, making it difficult to mechanistically project range shifts. To explore the physiological mechanisms by which drought stress controls dry range boundaries in trees, we quantified elevational variation in drought tolerance and in drought avoidance-related functional traits of a widespread gymnosperm (ponderosa pine - Pinus ponderosa) and angiosperm (trembling aspen - Populus tremuloides) tree species in the southwestern USA. Specifically, we quantified tree-to-tree variation in growth, water stress (predawn and midday xylem tension), drought avoidance traits (branch conductivity, leaf/needle size, tree height, leaf area-to-sapwood area ratio), and drought tolerance traits (xylem resistance to embolism, hydraulic safety margin, wood density) at the range margins and range center of each species. Although water stress increased and growth declined strongly at lower range margins of both species, ponderosa pine and aspen showed contrasting patterns of clinal trait variation. Trembling aspen increased its drought tolerance at its dry range edge by growing stronger but more carbon dense branch and leaf tissues, implying an increased cost of growth at its range boundary. By contrast, ponderosa pine showed little elevational variation in drought-related traits but avoided drought stress at low elevations by limiting transpiration through stomatal closure, such that its dry range boundary is associated with limited carbon assimilation even in average climatic conditions. Thus, the same climatic factor (drought) may drive range boundaries through different physiological mechanisms - a result that has important implications for process-based modeling approaches to tree biogeography. Further, we show that comparing intraspecific patterns of

  15. Physiological Mechanism of Salicylic Acid for Alleviation of Salt Stress in Rice

    Directory of Open Access Journals (Sweden)

    D. Jini

    2017-03-01

    Full Text Available Soil salinity is one of the most important problems of crop production in estuarine and coastal zones. Improvement in salt tolerance of major food crops is an important way for the economic utilization of coastal zones. This study proved that the application of salicylic acid (SA improved the growth and yield under salt stress conditions and investigated its physiological mechanisms for salt tolerance. The investigation on the effect of SA for salt tolerance during germination showed that the decreased rates of germination and growth (in terms of shoot and root lengths by the salt stress were significantly increased by the SA application (SA + NaCl. The treatment of SA to the high and low saline soils enhanced the growth, yield and nutrient values of rice. The effects of SA on Na+, K+ and Cl– ionic accumulation were traced under salt stress condition by inductively coupled plasma optical emission spectrometry and ion chromatography. It was revealed that the increased accumulation of Na+ and Clˉ ions by the salt stress were reduced by SA application. An increased concentration of endogenous SA level was detected from the SA-treated rice varieties (ASD16 and BR26 by liquid chromatography electrospray Ionization-tandem mass spectrometry. The activities of antioxidant enzymes such as superoxide dismutase, catalase and peroxidase were increased by salt stress whereas decreased by the SA application. The study proved that the application of SA could alleviate the adverse effects of salt stress by the regulation of physiological mechanism in rice plants. In spite of salt stress, it can be applied to the coastal and estuarine regions to increase the rice production.

  16. Use of physiological and genetic algal tests for the hygienic evaluation of pollutants in waters. Part I

    International Nuclear Information System (INIS)

    Havlik, B.; Necas, J.

    1981-01-01

    After exposure for several days of intensively growing algal cultures to a radium concentration of 10 -6 g.l -1 the physiological and genetic responses of Chlorella kessleri and Scenedesmus obliquus cells could clearly be demonstrated. Of physiological characteristics, the frequency of cells with a reduced number of autospores, the length of the lag phase and cell survival were recorded. Of genetic responses, the frequencies of delayed lethal and sublethal effects, the frequencies of minute colonies, colonies with big cells and scabby colonies, and the frequencies of pigmentation changes were followed. The above concentration produced no toxic effect. No clear-cut correlation was found between the responses recorded and the amount of accumulated radium in algal cells. For the interpretation of the mutagenic effect a homogeneous irradiation of the mixed cell suspension had to be assumed. The participation of repair systems of algae with regard to their survival or manifestation of mutagenic changes in individuals in which mutagenesis had been induced had also to be taken into consideration. (author)

  17. Preschoolers' genetic, physiological, and behavioral sensitivity factors moderate links between parenting stress and child internalizing, externalizing, and sleep problems.

    Science.gov (United States)

    Davis, Molly; Thomassin, Kristel; Bilms, Joanie; Suveg, Cynthia; Shaffer, Anne; Beach, Steven R H

    2017-05-01

    This study examined three potential moderators of the relations between maternal parenting stress and preschoolers' adjustment problems: a genetic polymorphism-the short allele of the serotonin transporter (5-HTTLPR, ss/sl allele) gene, a physiological indicator-children's baseline respiratory sinus arrhythmia (RSA), and a behavioral indicator-mothers' reports of children's negative emotionality. A total of 108 mothers (M age  = 30.68 years, SD age  = 6.06) reported on their parenting stress as well as their preschoolers' (M age  = 3.50 years, SD age  = 0.51, 61% boys) negative emotionality and internalizing, externalizing, and sleep problems. Results indicated that the genetic sensitivity variable functioned according to a differential susceptibility model; however, the results involving physiological and behavioral sensitivity factors were most consistent with a diathesis-stress framework. Implications for prevention and intervention efforts to counter the effects of parenting stress are discussed. © 2017 Wiley Periodicals, Inc.

  18. Genetic variability of environmental sensitivity revealed by phenotypic variation in body weight and (its correlations to physiological and behavioral traits.

    Directory of Open Access Journals (Sweden)

    Delphine Lallias

    Full Text Available Adaptive phenotypic plasticity is a key component of the ability of organisms to cope with changing environmental conditions. Fish have been shown to exhibit a substantial level of phenotypic plasticity in response to abiotic and biotic factors. In the present study, we investigate the link between environmental sensitivity assessed globally (revealed by phenotypic variation in body weight and more targeted physiological and behavioral indicators that are generally used to assess the sensitivity of a fish to environmental stressors. We took advantage of original biological material, the rainbow trout isogenic lines, which allowed the disentangling of the genetic and environmental parts of the phenotypic variance. Ten lines were characterized for the changes of body weight variability (weight measurements taken every month during 18 months, the plasma cortisol response to confinement stress (3 challenges and a set of selected behavioral indicators. This study unambiguously demonstrated the existence of genetic determinism of environmental sensitivity, with some lines being particularly sensitive to environmental fluctuations and others rather insensitive. Correlations between coefficient of variation (CV for body weight and behavioral and physiological traits were observed. This confirmed that CV for body weight could be used as an indicator of environmental sensitivity. As the relationship between indicators (CV weight, risk-taking, exploration and cortisol was shown to be likely depending on the nature and intensity of the stressor, the joint use of several indicators should help to investigate the biological complexity of environmental sensitivity.

  19. An Adaptive Test Sheet Generation Mechanism Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Huan-Yu Lin

    2012-01-01

    Full Text Available For test-sheet composition systems, it is important to adaptively compose test sheets with diverse conceptual scopes, discrimination and difficulty degrees to meet various assessment requirements during real learning situations. Computation time and item exposure rate also influence performance and item bank security. Therefore, this study proposes an Adaptive Test Sheet Generation (ATSG mechanism, where a Candidate Item Selection Strategy adaptively determines candidate test items and conceptual granularities according to desired conceptual scopes, and an Aggregate Objective Function applies Genetic Algorithm (GA to figure out the approximate solution of mixed integer programming problem for the test-sheet composition. Experimental results show that the ATSG mechanism can efficiently, precisely generate test sheets to meet the various assessment requirements than existing ones. Furthermore, according to experimental finding, Fractal Time Series approach can be applied to analyze the self-similarity characteristics of GA’s fitness scores for improving the quality of the test-sheet composition in the near future.

  20. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?

    Directory of Open Access Journals (Sweden)

    Anna-Lisa Paul

    Full Text Available Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response

  1. Classification of genetic variation for cadmium tolerance in Bermudagrass [Cynodon dactylon (L.) Pers.] using physiological traits and molecular markers.

    Science.gov (United States)

    Xie, Yan; Luo, Hongji; Hu, Longxing; Sun, Xiaoyan; Lou, Yanhong; Fu, Jinmin

    2014-08-01

    Cadmium (Cd) is one of the most toxic pollutants that caused severe threats to animal and human health. Bermudagrass is a dominant species in Cd contaminated soils, which can prevent Cd flow and spread. The objectives of this study were to determine the genetic variations in major physiological traits related to Cd tolerance in six populations of Bermudagrass collected from China, and to examine the genetic diversity and relationships among these accessions that vary in Cd tolerance using molecular markers. Plants of 120 accessions (116 natural accessions and 4 commercial cultivars) were exposed to 0 (i.e. control) or 1.5 mM CdSO4·8/3H2O for 3 weeks in hydroponic culture. Turf quality, transpiration rate, chlorophyll content, leaf water content and growth rate showed wide phenotypic variation. The membership function method was used to comprehensively evaluate Cd-tolerance. According to the average subordinate function value, four accessions were classified as the most tolerant genotypes and four accessions as Cd-sensitive genotypes. The trend of Cd tolerance among the six studied populations was as follows: Hunan > South China > North China > Central China > West South China and Xinjiang population. Phylogenetic analysis revealed that the majority of accessions from the same or adjacent regions were clustered into the same groups or subgroups, and the accessions with similar cadmium tolerance displayed a close phylogenetic relationship. Screening genetically diverse germplasm by combining the physiological traits and molecular markers could prove useful in developing Cd-tolerant Bermudagrass for the remediation of mill tailings and heavy metal polluted soils.

  2. Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms

    Science.gov (United States)

    Moiroux, Joffrey; Abram, Paul K.; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy

    2016-04-01

    Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.

  3. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms.

    Science.gov (United States)

    Bressuire-Isoard, Christelle; Broussolle, Véronique; Carlin, Frédéric

    2018-05-17

    Bacterial spores are resistant to physical and chemical insults, which make them a major concern for public health and for industry. Spores help bacteria to survive extreme environmental conditions that vegetative cells cannot tolerate. Spore resistance and dormancy are important properties for applications in medicine, veterinary health, food safety, crop protection, and other domains. The resistance of bacterial spores results from a protective multilayered structure and from the unique composition of the spore core. The mechanisms of sporulation and germination, the first stage after breaking of dormancy, and organization of spore structure have been extensively studied in Bacillus species. This review aims to illustrate how far the structure, composition and properties of spores are shaped by the environmental conditions in which spores form. We look at the physiological and molecular mechanisms underpinning how sporulation media and environment deeply affect spore yield, spore properties like resistance to wet heat and physical and chemical agents, germination, and further growth. For example, spore core water content decreases as sporulation temperature increases, and resistance to wet heat increases. Controlling the fate of Bacillus spores is pivotal to controlling bacterial risks and process efficiencies in, for example, the food industry, and better control hinges on better understanding how sporulation conditions influence spore properties.

  4. Physiological Mechanisms behind Differences in Pod Shattering Resistance in Rapeseed (Brassica napus L. Varieties.

    Directory of Open Access Journals (Sweden)

    Jie Kuai

    Full Text Available Pod shattering resistance index (SRI is a key factor affecting the mechanical harvesting of rapeseed. Research on the differences in pod shattering resistance levels of various rapeseed varieties can provide a theoretical basis for varietal breeding and application in mechanical harvesting. The indicators on pod shattering resistance including pod morphology and wall components were evaluated on eight hybrids and open pollinators, respectively, during 2012-2014. The results showed the following: (1 From the current study, SRI varied greatly with variety, and conventional varieties had stronger resistance than hybrid according to the physiological indexes. and (2 Under the experimental conditions, the SRI was linearly related to pod wall weight and the water content in pod walls, and the goodness-of-fit measurements for the regression model of the SRI based on pod wall weight and water content were 0.584** and 0.377*, respectively, reaching the significant level. This illustrated that pod wall weight and the water content in pod walls determined the SRI. (3 Compared with the relative contents of biochemical components in pod walls, the contents of particular biochemical components in pod walls had closer correlations with SRI. Among the biochemical components, the hemicellulose content was the decisive factor for the SRI.

  5. Hormones and phenotypic plasticity in an ecological context: linking physiological mechanisms to evolutionary processes.

    Science.gov (United States)

    Lema, Sean C

    2014-11-01

    Hormones are chemical signaling molecules that regulate patterns of cellular physiology and gene expression underlying phenotypic traits. Hormone-signaling pathways respond to an organism's external environment to mediate developmental stage-specific malleability in phenotypes, so that environmental variation experienced at different stages of development has distinct effects on an organism's phenotype. Studies of hormone-signaling are therefore playing a central role in efforts to understand how plastic phenotypic responses to environmental variation are generated during development. But, how do adaptive, hormonally mediated phenotypes evolve if the individual signaling components (hormones, conversion enzymes, membrane transporters, and receptors) that comprise any hormone-signaling pathway show expressional flexibility in response to environmental variation? What relevance do these components hold as molecular targets for selection to couple or decouple correlated hormonally mediated traits? This article explores how studying the endocrine underpinnings of phenotypic plasticity in an ecologically relevant context can provide insights into these, and other, crucial questions into the role of phenotypic plasticity in evolution, including how plasticity itself evolves. These issues are discussed in the light of investigations into how thyroid hormones mediate morphological plasticity in Death Valley's clade of pupfishes (Cyprinodon spp.). Findings from this work with pupfish illustrate that the study of hormone-signaling from an ecological perspective can reveal how phenotypic plasticity contributes to the generation of phenotypic novelty, as well as how physiological mechanisms developmentally link an organism's phenotype to its environmental experiences. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Physiological response and microRNA expression profiles in head kidney of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to acute cold stress.

    Science.gov (United States)

    Qiang, Jun; Cui, Yan T; Tao, Fan Y; Bao, Wen J; He, Jie; Li, Xia H; Xu, Pao; Sun, Lan Y

    2018-01-09

    Cold stress has a serious impact on the overwintering survival and yield of genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Understanding the physiological and molecular regulation mechanisms of low-temperature adaptation is necessary to help breed new tolerant strains. The semi-lethal low temperature of juvenile GIFT at 96 h was determined as 9.4 °C. We constructed and sequenced two small RNA libraries from head kidney tissues, one for the control (CO) group and one for the 9.4 °C-stressed (LTS) group, and identified 1736 and 1481 known microRNAs (miRNAs), and 164 and 152 novel miRNAs in the CO and LTS libraries, respectively. We verify the expression of nine up-regulated miRNAs and eight down-regulation miRNAs by qRT-PCR, and found their expression patterns were consistent with the sequencing results. We found that cold stress may have produced dysregulation of free radical and lipid metabolism, decreased superoxide dismutase activity, reduced respiratory burst and phagocytic activity of macrophages, increased malondialdehyde content, and adversely affected the physiological adaptation of GIFT, eventually leading to death. This study revealed interactions among miRNAs and signal regulated pathways in GIFT under cold stress that may help to understand the pathways involved in cold resistance.

  7. [New theory of holistic integrative physiology and medicine. I: New insight of mechanism of control and regulation of breathing].

    Science.gov (United States)

    Sun, Xing-guo

    2015-07-01

    The modern systemic physiology, based on limit-understand functional classification, has significant limitation and one-sidedness. Human being is organic; we should approach the mechanism of control and regulation of breathing integrating all the systems. We use new theory of holistic integrative physiology and medicine to explain the mechanism of control and regulation of breathing. Except the mean level information, the up-down "W" waveform information of arterial blood gas (ABG) is core signal to control and regulate breathing. In order to do so, we must integrate all systems together. New theory will help to explain some unanswered questions in physiology and medicine, for example: fetal does not breathing; how first breath generate; how respiratory rhythm and frequency generate, etc. Breathing is the sign of life. Mechanism of control and regulation of breathing has to integrate respiration, circulation, nerves, metabolism, exercise, sleep and digestion, absorption and elimination and etc altogether.

  8. Toward modular biological models: defining analog modules based on referent physiological mechanisms.

    Science.gov (United States)

    Petersen, Brenden K; Ropella, Glen E P; Hunt, C Anthony

    2014-08-16

    Currently, most biomedical models exist in isolation. It is often difficult to reuse or integrate models or their components, in part because they are not modular. Modular components allow the modeler to think more deeply about the role of the model and to more completely address a modeling project's requirements. In particular, modularity facilitates component reuse and model integration for models with different use cases, including the ability to exchange modules during or between simulations. The heterogeneous nature of biology and vast range of wet-lab experimental platforms call for modular models designed to satisfy a variety of use cases. We argue that software analogs of biological mechanisms are reasonable candidates for modularization. Biomimetic software mechanisms comprised of physiomimetic mechanism modules offer benefits that are unique or especially important to multi-scale, biomedical modeling and simulation. We present a general, scientific method of modularizing mechanisms into reusable software components that we call physiomimetic mechanism modules (PMMs). PMMs utilize parametric containers that partition and expose state information into physiologically meaningful groupings. To demonstrate, we modularize four pharmacodynamic response mechanisms adapted from an in silico liver (ISL). We verified the modularization process by showing that drug clearance results from in silico experiments are identical before and after modularization. The modularized ISL achieves validation targets drawn from propranolol outflow profile data. In addition, an in silico hepatocyte culture (ISHC) is created. The ISHC uses the same PMMs and required no refactoring. The ISHC achieves validation targets drawn from propranolol intrinsic clearance data exhibiting considerable between-lab variability. The data used as validation targets for PMMs originate from both in vitro to in vivo experiments exhibiting large fold differences in time scale. This report demonstrates

  9. Molecular mechanism and genetic determinants of buprofezin degradation.

    Science.gov (United States)

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-07-14

    . However, the molecular mechanism and genetic determinants of microbial degradation of buprofezin has not been well identified. This work revealed that gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin in R. qingshengii YL-1. The products of bfzBA3A4A1A2C could also degrade bifenthrin, a widely used pyrethroid insecticide. These findings enhance our understanding of the microbial degradation mechanism of buprofezin and benefit the application of strain YL-1 and bfzBA3A4A1A2C in the bioremediation of buprofezin contamination. Copyright © 2017 American Society for Microbiology.

  10. Genetic differences in physiology, growth hormone levels and migratory behaviour of Atlantic salmon smolts

    DEFF Research Database (Denmark)

    Nielsen, Christian; Holdensgaard, Gert; Petersen, Hans Christian

    2001-01-01

    Out of five strains of Atlantic salmon Salmo salar of 1 + years released upstream of a fyke net in the River Gudenaa in 1996 three Lagan Atran and Corrib migrated immediately 50% of the recaptured fish reaching the net in 3-6 days. Burrishoole and Conon fish migrated with a 15-19 day delay. Smolt......+.K+-ATPase and seawater tolerance development. The study gives evidence of genetic influence on the timing and intensity of smolting and subsequent migration in Atlantic salmon....

  11. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders.

    Science.gov (United States)

    Houten, Sander M; Violante, Sara; Ventura, Fatima V; Wanders, Ronald J A

    2016-01-01

    Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.

  12. Physiological, Biochemical and Genetic Characteristics of Ralstonia solanacearum Strains Isolated from Pepper Plants in Korea

    Directory of Open Access Journals (Sweden)

    Young Kee Lee

    2013-12-01

    Full Text Available Totally sixty three bacteria were isolated from lower stems showing symptoms of bacterial wilt on pepper plants in 14 counties of 7 provinces, Korea. The isolates showed strong pathogenicity on red pepper (cv. Daewang and tomato (cv. Seogwang seedlings. All virulent bacteria were identified as Ralstonia solanacearum based on colony types, physiological and biochemical tests and polymerase chain reaction (PCR. All R. solanacearum isolates from peppers were race 1. The bacterial isolates consisted of biovar 3 (27% and biovar 4 (73%. Based on polymorphic PCR bands generated by repetitive sequence (rep-PCR, the 63 R. solanacearum isolates were divided into 12 groups at 70% similarity level. These results will be used as basic materials for resistant breeding program and efficient control against bacterial wilt disease of pepper.

  13. Genetic favouring of pheomelanin-based pigmentation limits physiological benefits of coloniality in lesser kestrels Falco naumanni.

    Science.gov (United States)

    Galván, Ismael; Moraleda, Virginia; Otero, Ignacio; Álvarez, Ernesto; Inácio, Ângela

    2017-10-01

    Pheomelanin contributes to the pigmentation phenotype of animals by producing orange and light brown colours in the integument. However, pheomelanin synthesis in melanocytes requires consumption of glutathione (GSH), the most important intracellular antioxidant. Therefore, a genetic control favouring the production of large amounts of pheomelanin for pigmentation may lead to physiological costs under environmental conditions that promote oxidative stress. We investigated this possibility in the context of breeding coloniality, a reproductive strategy that may affect oxidative stress. We found in lesser kestrel Falco naumanni nestlings that the GSH:GSSG ratio, which decreases with systemic oxidative stress, increased with the size of the colony where they were reared, but the expression in feather melanocytes of five genes involved in pheomelanin synthesis (Slc7a11, Slc45a2, CTNS, MC1R and AGRP) did not vary with colony size. The antioxidant capacity (TEAC) of lesser kestrel nestlings also increased with colony size, but in a manner that depended on Slc7a11 expression and not on the expression of the other genes. Thus, antioxidant capacity increased with colony size only in nestlings least expressing Slc7a11, a gene with a known role in mediating cysteine (a constituent amino acid of GSH) consumption for pheomelanin production. The main predictor of the intensity of pheomelanin-based feather colour was Slc45a2 expression followed in importance by Slc7a11 expression, hence suggesting that the genetic regulation of the pigmentation phenotype mediated by Slc7a11 and a lack of epigenetic lability in this gene limits birds from benefiting from the physiological benefits of coloniality. © 2017 John Wiley & Sons Ltd.

  14. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    Science.gov (United States)

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  15. "Sebocytes' makeup": novel mechanisms and concepts in the physiology of the human sebaceous glands.

    Science.gov (United States)

    Tóth, Balázs I; Oláh, Attila; Szöllosi, Attila G; Czifra, Gabriella; Bíró, Tamás

    2011-06-01

    The pilosebaceous unit of the human skin consists of the hair follicle and the sebaceous gland. Within this "mini-organ", the sebaceous gland has been neglected by the researchers of the field for several decades. Actually, it was labeled as a reminiscence of human development ("a living fossil with a past but no future"), and was thought to solely act as a producer of sebum, a lipid-enriched oily substance which protects our skin (and hence the body) against various insults. However, due to emerging research activities of the past two decades, it has now become evident that the sebaceous gland is not only a "passive" cutaneous "relic" to establish the physico-chemical barrier function of the skin against constant environmental challenges, but it rather functions as an "active" neuro-immuno-endocrine cutaneous organ. This review summarizes recent findings of sebaceous gland research by mainly focusing on newly discovered physiological functions, novel regulatory mechanisms, key events in the pathology of the gland, and future directions in both experimental and clinical dermatology.

  16. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    Science.gov (United States)

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  17. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    Science.gov (United States)

    Demongeot, Jacques; Fouquet, Yannick; Tayyab, Muhammad; Vuillerme, Nicolas

    2009-01-01

    Background Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. Methodology First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. Conclusions We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery. PMID:19547712

  18. Understanding physiological and degenerative natural vision mechanisms to define contrast and contour operators.

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    Full Text Available BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS: We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery.

  19. Exercise physiology in chronic mechanical circulatory support patients: vascular function and beyond.

    Science.gov (United States)

    Hayward, Christopher S; Fresiello, Libera; Meyns, Bart

    2016-05-01

    The majority of patients currently implanted with left ventricular assist devices have the expectation of support for more than 2 years. As a result, survival alone is no longer a sufficient distinctive for this technology, and there have been many studies within the last few years examining functional capacity and exercise outcomes. Despite strong evidence for functional class improvements and increases in simple measures of walking distance, there remains incomplete normalization of exercise capacity, even in the presence of markedly improved resting hemodynamics. Reasons for this remain unclear. Despite current pumps being run at a fixed speed, it is widely recognized that pump outputs significantly increase with exercise. The mechanism of this increase involves the interaction between preload, afterload, and the intrinsic pump function curves. The role of the residual heart function is also important in determining total cardiac output, as well as whether the aortic valve opens with exercise. Interactions with the vasculature, with skeletal muscle blood flow and the state of the autonomic nervous system are also likely to be important contributors to exercise performance. Further studies examining optimization of pump function with active pump speed modulation and options for optimization of the overall patient condition are likely to be needed to allow left ventricular assist devices to be used with the hope of full functional physiological recovery.

  20. Physiological Mechanism of Enhancing Salt Stress Tolerance of Perennial Ryegrass by 24-Epibrassinolide

    Directory of Open Access Journals (Sweden)

    Wenli Wu

    2017-06-01

    Full Text Available Brassinosteroids (BR regulate plant tolerance to salt stress but the mechanisms underlying are not fully understood. This study was to investigate physiological mechanisms of 24-epibrassinolide (EBR's impact on salt stress tolerance in perennial ryegrass (Lolium perenne L. The grass seedlings were treated with EBR at 0, 10, and 100 nM, and subjected to salt stress (250 mM NaCl. The grass irrigated with regular water without EBR served as the control. Salt stress increased leaf electrolyte leakage (EL, malondialdehyde (MDA, and reduced photosynthetic rate (Pn. Exogenous EBR reduced EL and MDA, increased Pn, chlorophyll content, and stomatal conductance (gs. The EBR applications also alleviated decline of superoxide dismutase (SOD and catalase (CAT and ascorbate peroxidase (APX activity when compared to salt treatment alone. Salt stress increased leaf abscisic acid (ABA and gibberellin A4 (GA4 content but reduced indole-3-acetic acid (IAA, zeatin riboside (ZR, isopentenyl adenosine (iPA, and salicylic acid (SA. Exogenous EBR at 10 nm and 100 nM increased ABA, and iPA content under salt stress. The EBR treatment at 100 nM also increased leaf IAA, ZR, JA, and SA. In addition, EBR treatments increased leaf proline and ions (K+, Mg2+, and Ca2+ content, and reduced Na+/K+ in leaf tissues. The results of this study suggest that EBR treatment may improve salt stress tolerance by increasing the level of selected hormones and antioxidant enzyme (SOD and CAT activity, promoting accumulation of proline and ions (K+, Ca2+, and Mg2+ in perennial ryegrass.

  1. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Ole A Andreassen

    Full Text Available Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS to investigate shared single nucleotide polymorphisms (SNPs between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals, applying new False Discovery Rate (FDR methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG, low density lipoproteins (LDL, high density lipoproteins (HDL] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis. We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88, LDL (n = 87 and HDL (n = 52. Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2 and intestinal host-microbe interactions (e.g. ATG16L1. We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  2. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis.

    Science.gov (United States)

    Wang, Liying; Cao, Chunwei; Wang, Fang; Zhao, Jianguo; Li, Wei

    2017-09-03

    RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.

  3. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.

    Science.gov (United States)

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara

    2017-08-01

    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  4. Reconciling genetic evolution and the associative learning account of mirror neurons through data-acquisition mechanisms.

    Science.gov (United States)

    Lotem, Arnon; Kolodny, Oren

    2014-04-01

    An associative learning account of mirror neurons should not preclude genetic evolution of its underlying mechanisms. On the contrary, an associative learning framework for cognitive development should seek heritable variation in the learning rules and in the data-acquisition mechanisms that construct associative networks, demonstrating how small genetic modifications of associative elements can give rise to the evolution of complex cognition.

  5. AN ARTIFICIAL NEURAL NETWORK EVALUATION OF TUBERCULOSIS USING GENETIC AND PHYSIOLOGICAL PATIENT DATA

    International Nuclear Information System (INIS)

    Griffin, William O.; Darsey, Jerry A.; Hanna, Josh; Razorilova, Svetlana; Kitaev, Mikhael; Alisherov, Avtandiil; Tarasenko, Olga

    2010-01-01

    When doctors see more cases of patients with tell-tale symptoms of a disease, it is hoped that they will be able to recognize an infection administer treatment appropriately, thereby speeding up recovery for sick patients. We hope that our studies can aid in the detection of tuberculosis by using a computer model called an artificial neural network. Our model looks at patients with and without tuberculosis (TB). The data that the neural network examined came from the following: patient' age, gender, place, of birth, blood type, Rhesus (Rh) factor, and genes of the human Leukocyte Antigens (HLA) system (9q34.1) present in the Major Histocompatibility Complex. With availability in genetic data and good research, we hope to give them an advantage in the detection of tuberculosis. We try to mimic the doctor's experience with a computer test, which will learn from patient data the factors that contribute to TB.

  6. Genetic characteristics and pathogenic mechanisms of periodontal pathogens.

    Science.gov (United States)

    Amano, A; Chen, C; Honma, K; Li, C; Settem, R P; Sharma, A

    2014-05-01

    Periodontal disease is caused by a group of bacteria that utilize a variety of strategies and molecular mechanisms to evade or overcome host defenses. Recent research has uncovered new evidence illuminating interesting aspects of the virulence of these bacteria and their genomic variability. This paper summarizes some of the strategies utilized by the major species - Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Porphyromonas gingivalis - implicated in the pathogenesis of periodontal disease. Whole-genome sequencing of 14 diverse A. actinomycetemcomitans strains has revealed variations in their genetic content (ranging between 0.4% and 19.5%) and organization. Strikingly, isolates from human periodontal sites showed no genomic changes during persistent colonization. T. forsythia manipulates the cytokine responses of macrophages and monocytes through its surface glycosylation. Studies have revealed that bacterial surface-expressed O-linked glycans modulate T-cell responses during periodontal inflammation. Periodontal pathogens belonging to the "red complex" consortium express neuraminidases, which enables them to scavenge sialic acid from host glycoconjugates. Analysis of recent data has demonstrated that the cleaved sialic acid acts as an important nutrient for bacterial growth and a molecule for the decoration of bacteria surfaces to help evade the host immune attack. In addition, bacterial entry into host cells is also an important prerequisite for the lifestyle of periodontal pathogens such as P. gingivalis. Studies have shown that, after its entry into the cell, this bacterium uses multiple sorting pathways destined for autophagy, lysosomes, or recycling pathways. In addition, P. gingivalis releases outer membrane vesicles which enter cells via endocytosis and cause cellular functional impairment.

  7. Relationship among the repair mechanisms and the genetic recombination

    International Nuclear Information System (INIS)

    Alcantara D, D.

    1987-12-01

    In accordance with the previous reports of the Project BZ87 of the Department of Radiobiology, a dependent stimulation of the system exists in E.coli SOS, of the recombination of the bacteriophage Lambda whose genetic material has not been damaged. This stimulation is not due to the increase of the cellular concentration of the protein RecA and the mechanism but probable for which we find that it is carried out, it is through a cooperation among the product of the gene rec N of E. coli and the system Net of recombination of Lambda. The gene recN belongs to the group of genes SOS and its expression is induced when damaging the bacterial DNA where it intervenes in the repair of breaks of the double helix of the molecule (Picksley et, 1984). If the repair of breaks of this type is a factor that limits the speed with which it happens the recombination among viral chromosomes, then the biggest readiness in the protein RecN, due to the induction of the functions SOS, would facilitate the repair of such ruptures. In this new project it is to enlarge the knowledge about this phenomenon, it was, on one hand of corroborating in a way but he/she specifies the relationship between the recombinogenic response of Lambda and the System SOS of E. coli and for the other one to determine the effect that has the inhibition of the duplication of the DNA on the stimulation of the viral recombination. Everything it with the idea of making it but evident and to be able to use it as a system of genotoxic agents detection in E. coli. (Author)

  8. Genetic resistance to marrow transplantation as a leukemia defense mechanism

    International Nuclear Information System (INIS)

    Gallagher, M.T.; Lotzova, E.; Trentin, J.J.

    1976-01-01

    The normal role of genetic resistance to bone marrow transplantation was investigated. It is demonstrated, using three different systems e.g. colony studies in the spleen, spleen weight studies and mortality studies, that irradiated or unirradiated mice which show genetic resistance are able to recognize and reject intravenously transplanted parental lymphoma cells, while they accept normal parental bone marrow cells. Either the lymphoma cells have a new antigen which is recognized and reacted to by the cells responsible for genetic resistance and, or, bone marrow cells have a low level of Hh antigen which is increased greatly by the lymphoma transformation process, thereby resulting in the rejection of the lymphoma cells by the cells responsible for genetic resistance. Lymphoma resistance as well as genetic resistance can be overridden by increasing the number of cells injected. Genetic resistance seems to be restricted to the spleen and bone marrow. There is evidence that the normal biological role for genetic resistance may be lymphoma-leukemia surveillance

  9. Genetic factors and molecular mechanisms in dry eye disease.

    Science.gov (United States)

    Lee, Ling; Garrett, Qian; Flanagan, Judith; Chakrabarti, Subhabrata; Papas, Eric

    2018-04-01

    Dry eye disease (DED) is a complex condition with a multifactorial etiology that can be difficult to manage successfully. While external factors are modifiable, treatment success is limited if genetic factors contribute to the disease. The purpose of this review is to compile research describing normal and abnormal ocular surface function on a molecular level, appraise genetic studies involving DED or DED-associated diseases, and introduce the basic methods used for conducting genetic epidemiology studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Estimating the capability of microalgae to physiological acclimatization and genetic adaptation to petroleum and diesel oil contamination

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Lopez, Julia; Lopez-Rodas, Victoria [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, E-28040 Madrid (Spain); Costas, Eduardo, E-mail: ecostas@vet.ucm.es [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, E-28040 Madrid (Spain)

    2012-11-15

    cells arising from rare spontaneous mutations was accomplished. In addition, an analysis was done as to the maximum capacity of adaptation to a gradual contamination process. An experimental ratchet protocol was used, which maintains a strong selection pressure in a temporal scale up to several months over very large experimental populations of microalgae. Microalgae are able to survive to petroleum contamination as a result of physiological acclimatization without genetic changes. However, when petroleum concentration exceeds the physiological limits, survival depends exclusively on the occurrence on mutations that confer resistance and subsequent selection of these mutants. Finally, it is certain that further mutations and selection will ultimately determine adaptation of microalgae to the environmental forcing.

  11. Estimating the capability of microalgae to physiological acclimatization and genetic adaptation to petroleum and diesel oil contamination

    International Nuclear Information System (INIS)

    Romero-Lopez, Julia; Lopez-Rodas, Victoria; Costas, Eduardo

    2012-01-01

    adaptation to a gradual contamination process. An experimental ratchet protocol was used, which maintains a strong selection pressure in a temporal scale up to several months over very large experimental populations of microalgae. Microalgae are able to survive to petroleum contamination as a result of physiological acclimatization without genetic changes. However, when petroleum concentration exceeds the physiological limits, survival depends exclusively on the occurrence on mutations that confer resistance and subsequent selection of these mutants. Finally, it is certain that further mutations and selection will ultimately determine adaptation of microalgae to the environmental forcing.

  12. Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures.

    Science.gov (United States)

    Moisset, S; Kim Tiam, S; Feurtet-Mazel, A; Morin, S; Delmas, F; Mazzella, N; Gonzalez, P

    2015-03-01

    This study examined the effects of diuron on strains of three major freshwater diatom species, Eolimna minima, Nitzschia palea and Planothidium lanceolatum. These species are frequently recorded in the Morcille River, where diuron runs off during phytosanitary treatments of the vineyards around. Here, there were three diatom exposure groups for each species: 0, 1 and 10 μg/L diuron during a 14-day laboratory assessment. Diuron water concentration, cell number, photosynthetic activity and gene expression were assessed at 6 h and 2, 7 and 14 days after contamination. Diuron exposure altered photosynthetic activity in that the optimal quantum yield of photosystem II (PSII) decreased between 40 and 50% and, for P. lanceolatum at 10 μg/L, there was complete inhibition. Genetic responses indicated diuron effects on both photosystem II and mitochondrial metabolism in all three species at both diuron exposure levels. Thus, analysis of the expression of psaA, d1, cox1, nad5 and 12s could be an early biomarker to detect pesticide pollution. Overall, this study revealed differences in diuron sensitivity among the three species: E. minima and N. palea appeared to be more tolerant than P. lanceolatum. These results suggest that the development of molecular tools, and more precisely of biomarkers, will aid in early assessment of contamination and water quality.

  13. Effects of sub-culturing on genetic and physiological parameters in different Beauveria bassiana isolates.

    Science.gov (United States)

    Eivazian Kary, Naser; Alizadeh, Zhila

    2017-05-01

    Beauveria bassiana is a fungus which is widely used as a biological insecticide to control a number of economically important insect pests. Knowledge of the genetic diversity of the isolates, understanding the underlying nature of these evolutionary phenomena and finding appropriate and simple screening tools play an important role in developing effective biocontrol agents. Here, we monitored changes of electrophoretic karyotype of small molecules of extrachromosomal DNAs, presumably mitochondrial DNA or plasmids in several individual isolates of B. bassiana during the forced in vitro evolution by continual subculture on artificial media and then we evaluated these changes on the virulence of the isolates. Through agarose gel electrophoresis of the small extrachromosomal DNAs molecules, we found that mutations accumulate quickly and obvious changes take place in extrachromosomal DNAs of some isolates, although this did not always occur. This plasticity in response to culturing pressure suggests that buffering capacity of fungal genome against mutations is isolate dependent. Following the forced evolution by sub-culturing, five discriminable electrophoretic karyotype of extrachromosomal DNAs was observed among isolates. The results showed that some isolates are prone to deep mutations, but during enforced sub-culturing some others have efficiently conserved genome. These differences are influensive in screening appropriate isolates for mass production as a keystone in biocontrol program. To determine the effects of these changes on isolate traits, virulence, germination rate and spore-bound Pr1 activity were assessed parallel to sub-culturing. The results clearly revealed that parallel to sub-culturing and in correlation with karyotypic changes, isolates significantly suffered from virulence, germination rate and spore-bound Pr1 activity deficiencies. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. MOLECULAR-GENETIC BASIS OF PHYSIOLOGY AND PATHOGENICITY OF COXIELLA BURNETII

    Directory of Open Access Journals (Sweden)

    Yu. A. Panpherova

    2012-01-01

    Full Text Available Abstract. The agent of Q-fever Coxiella burnetii is unusual intracellular pathogen which is possessed of biggest transporting and metabolic abilities in compare with microorganisms with similar parasitic strategy. It is supposed that different strains of the pathogen exist in various stages of pathological adaption and have different potential of virulence. The structure of C. burnetii genome, characteristics of metabolic routes, mechanisms of interaction with host cells and possible virulence factors are discussed in the review. The special attention is paid to Coxiella genotyping methods and possible correlations between genomic polymorphism of different strains and their virulence potential.

  15. Physiological variation as a mechanism for developmental caste-biasing in a facultatively eusocial sweat bee.

    Science.gov (United States)

    Kapheim, Karen M; Smith, Adam R; Ihle, Kate E; Amdam, Gro V; Nonacs, Peter; Wcislo, William T

    2012-04-07

    Social castes of eusocial insects may have arisen through an evolutionary modification of an ancestral reproductive ground plan, such that some adults emerge from development physiologically primed to specialize on reproduction (queens) and others on maternal care expressed as allo-maternal behaviour (workers). This hypothesis predicts that variation in reproductive physiology should emerge from ontogeny and underlie division of labour. To test these predictions, we identified physiological links to division of labour in a facultatively eusocial sweat bee, Megalopta genalis. Queens are larger, have larger ovaries and have higher vitellogenin titres than workers. We then compared queens and workers with their solitary counterparts-solitary reproductive females and dispersing nest foundresses-to investigate physiological variation as a factor in caste evolution. Within dyads, body size and ovary development were the best predictors of behavioural class. Queens and dispersers are larger, with larger ovaries than their solitary counterparts. Finally, we raised bees in social isolation to investigate the influence of ontogeny on physiological variation. Body size and ovary development among isolated females were highly variable, and linked to differences in vitellogenin titres. As these are key physiological predictors of social caste, our results provide evidence for developmental caste-biasing in a facultatively eusocial bee.

  16. Genetic and Physiological Characterization of Two Clusters of Quantitative Trait Loci Associated With Seed Dormancy and Plant Height in Rice

    OpenAIRE

    Ye, Heng; Beighley, Donn H.; Feng, Jiuhuan; Gu, Xing-You

    2013-01-01

    Seed dormancy and plant height have been well-studied in plant genetics, but their relatedness and shared regulatory mechanisms in natural variants remain unclear. The introgression of chromosomal segments from weedy into cultivated rice (Oryza sativa) prompted the detection of two clusters (qSD1-2/qPH1 and qSD7-2/qPH7) of quantitative trait loci both associated with seed dormancy and plant height. Together, these two clusters accounted for >96% of the variances for plant height and ~71% of t...

  17. Biological pathways and genetic mechanisms involved in social functioning.

    Science.gov (United States)

    Ordoñana, Juan R; Bartels, Meike; Boomsma, Dorret I; Cella, David; Mosing, Miriam; Oliveira, Joao R; Patrick, Donald L; Veenhoven, Ruut; Wagner, Gert G; Sprangers, Mirjam A G

    2013-08-01

    To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants that could be involved in social functioning, and (3) the implications of these results for quality-of-life research. A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction. Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior. Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

  18. Petunia as model for elucidating adventitious root formation and mycorrhizal symbiosis: at the nexus of physiology, genetics, microbiology and horticulture.

    Science.gov (United States)

    Druege, Uwe; Franken, Philipp

    2018-05-17

    Adventitious root formation in cuttings and establishment of arbuscular mycorrhizal symbiosis reflect the enormous plasticity of plants and are key factors in the efficient and sustainable clonal propagation and production of ornamental crops. Based on the high importance of Petunia hybrida for the European and US annual bedding plant markets and its suitability as a model for basic plant sciences, petunia has been established as an experimental system for elucidating the molecular and physiological processes underlying adventitious root formation and mycorrhizal symbiosis. In the present review, we introduce the tools of the Petunia model system. Then, we discuss findings regarding the hormonal and metabolic control of adventitious rooting in the context of diverse environmental factors as well as findings on the function of arbuscular mycorrhiza related to nutrient uptake and resistance to root pathogens. Considering the recent publication of the genomes of the parental species of P. hybrida and other tools available in the petunia scientific community, we will outline the quality of petunia as a model for future system-oriented analysis of root development and function in the context of environmental and genetic control, which are at the heart of modern horticulture. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Current concepts on the physiology and genetics of neurotransmitters-mediating enzyme-aromatic L-amino acid decarboxylase

    International Nuclear Information System (INIS)

    Rahman, M.K.

    1993-03-01

    Two most important neurotransmitters, dopamine and serotonin are mediated by the enzyme aromatic L-amino acid decarboxylase (AADC). Because of their importance in the regulation of neuronal functions, behaviour and emotion of higher animals, many researchers are working on this enzyme to elucidate its physiological properties, structure and genetic aspects. We have discovered this enzyme in the mammalian blood, we established sensitive assay methods for the assay of the activities of this enzyme. We have made systematic studies on this enzyme in the tissues and brains of rats, and human subjects. We have found an endogenous inhibitor of this enzyme in the monkey's blood. The amino acid sequences of human AADC has been compared to rat or bovine. A full-length cDNA clone encoding human AADC has been isolated. Very recently the structure of human AADC gene including 5'-flaking region has been characterized and the transcriptional starting point has been determined. The human AADC gene assigned to chromosome 7. Up-to-date research data have shown that AADC is encoded by a single gene. Recently two patients with AADC deficiency were reported. This paper describes the systematic up-to-date review studies on AADC. (author). 62 refs, 5 figs, 8 tabs

  20. Genetic variation for germination and physiological traits in sunflower mutants induced by gamma rays [Helianthus annuus L.

    International Nuclear Information System (INIS)

    Alejo-Jaimes, A.; Jardinaud, M.F.; Maury, P.; Alibert, G.; Gentzbittel, L.; Sarrafi, A.; Grieu, P.; Petiprez, M.

    2004-01-01

    Seeds of sunflower line AS-613 were irradiated with gamma rays and 1,559 M4 progenies were studied for their germination characteristics and the following traits were studied: thousand seed weight, seed size, time before emergence, percentage of emerged seedlings, hypocotyl length and diameter, number of cotyledons and cotyledons pigmentation intensity. A high genetic variability was observed for all the studied traits. Through M4 progenies, 9 mutants presenting the most differences with the original genotype (AS-613) were planted in a randomized blocks design with 8 replications in a controlled greenhouse and some morphological and physiological traits were studied, which are: plant height, number of leaves, total leaf area, net photosynthesis, transpiration, stomatal conductance, water use efficiency and net carbon assimilation. When harvesting, flower head diameter, head weight, stem weight, leaves weight, total number of seeds per plant and thousand seed weight were measured. The differences between mutants and also non irradiated genotype (AS-613) were significant for most of studied traits suggesting that several developmental processes have been modified [it

  1. Population genetics, ecogenomics and physiological mechanisms of adaptation of Daphnia to cyanobacteria

    OpenAIRE

    Küster, Christian

    2012-01-01

    In many freshwater ecosystems Daphnia represent both, an important herbivorous grazer of phytoplankton and a major prey of planktivorous fish and invertebrate predators. Thus, Daphnia provide an important link for the transfer of energy and carbon from primary producers to higher trophic levels. In eutrophic lakes this transfer is often reduced by the occurrence of cyanobacteria that are known for their low food quality for Daphnia: Cyanobacteria lack essential sterols and polyunsaturated fat...

  2. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans

    OpenAIRE

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D.; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G.; Joyner, Michael J.; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBR...

  3. Study of exposure to cold stress and body physiological responses in auto mechanic employees in Hamadan city

    Directory of Open Access Journals (Sweden)

    Keivan Saedpanah

    2017-09-01

    Full Text Available Introduction: Continuous exposure to cold air is considered to be a hazardous agent in the workplace in cold seasons. This study aimed to determine the level of cold stress and relation with physiological responses in auto mechanic employees. Method: This cross-sectional study was conducted in the winter of 1395 on auto mechanic employees in Hamadan city. Physiological responses during daily activity were measured in accordance with ISO 9886 standard method. Environmental air measures like air temperature and air velocity were measured simultaneously and cold stress indexes were also determined. Data was analyzed using SPSS 21 software. Result: The result showed that mean wind chill index, equivalent chill temperature and required clothing insulation were 489.97±47.679 kcal/m2.h, 13.78± 1.869 0c and 2.04 ± 0.246 clo, respectively. According to the results of cold stress indexes, the studied employees are exposed to cold stress. Pearson correlation test showed that there are significant relationship between cold stress indexes with physiological responses (p<0.05, however, IREQ min showed more correlation than the others.  There is also a significant relationship between body fat percentage and deep temperature (p<0.05, r=0.314. Conclusion: The result confirmed that IREQ min index has high validity for estimation of cold stress among auto mechanic employees. Moreover, the increase of body fat percentage leads to an increase of cold tolerance power of employees.

  4. Using a Molecular-Genetic Approach to Investigate Bacterial Physiology in a Continuous, Research-Based, Semester-Long Laboratory for Undergraduates

    Directory of Open Access Journals (Sweden)

    Jeremiah Foster Ault

    2011-09-01

    Full Text Available Designing investigative laboratory exercises that encourage critical thinking, problem solving, and independent thought for upper-division biology courses is a difficult but worthwhile task. In an effort to do so, we developed a semester-long, continuous, research-based investigative laboratory that integrates numerous genetic and molecular biology methods into the investigation of a bacterial physiological process. In this lab, students use random Tn5 transposon mutagenesis to create prodigiosin pigment mutants in the bacterium, Serratia marcescens. This is followed by phenotypic characterization, cloning, and sequencing the Tn insertion site to identify genes involved in pigment biosynthesis. During this lab, students gain ample experience performing basic lab techniques while learning about — and applying — methods for elucidating gene function. The approach to the laboratory and the outcomes are intimately integrated into the teaching of many fundamental physiological processes underlying prodigiosin production in bacteria. The result is a cohesive course that integrates the theory and application of molecular genetic techniques with the study of bacterial physiology. Assessments of student learning objectives demonstrated that students greatly improved their understanding of both physiological processes and the genetic techniques used to investigate them. In addition, students felt that this semester-long exercise provided the necessary laboratory experience they needed and desired in preparation for careers in molecular biology, microbiology, and biochemistry.

  5. What are you hiding? : The underlying and contributing mechanisms of physiological memory detection

    NARCIS (Netherlands)

    klein Selle, N.

    2017-01-01

    The notion that physiological and behavioral measures can be used to detect concealed memories is intriguing, to say the least. Although years of research on the Concealed Information Test (CIT) have proven the validity of this method, it also raised new questions. The present dissertation focused

  6. Exploring differences in adiposity in two U.S. Hispanic populations of Mexican origin using social, behavioral, physiologic and genetic markers: the IRAS Family Study.

    Science.gov (United States)

    Young, Kendra A; Fingerlin, Tasha E; Langefeld, Carl D; Lorenzo, Carlos; Haffner, Steven M; Wagenknecht, Lynne E; Norris, Jill M

    2012-01-01

    The census classification of Hispanic origin is used in epidemiological studies to group individuals, even though there is geographical, cultural, and genetic diversity within Hispanic Americans of purportedly similar backgrounds. We observed differences in our measures of adiposity between our two Mexican American populations, and examined whether these differences were attributed to social, behavioral, physiologic or genetic differences between the two populations. In the IRAS Family Study, we examined 478 Hispanics from San Antonio, Texas and 447 Hispanics from the San Luis Valley, Colorado. Associations with body mass index (BMI), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) using social, behavioral, physiologic and genetic variables were examined. Hispanics of Mexican origin in our clinic population in San Antonio had significantly higher mean BMI (31.09 vs. 28.35 kg/m2), VAT (126.3 vs. 105.5 cm2), and SAT (391.6 vs. 336.9 cm2), than Hispanics of Mexican origin in the San Luis Valley. The amount of variation in adiposity explained by clinic population was 4.5% for BMI, 2.8% for VAT, and 2.7% for SAT. After adjustment, clinic population was no longer associated with VAT and SAT, but remained associated with BMI, although the amount of variation explained by population was substantially less (1.0% for BMI). Adiposity differences within this population of Mexican origin can be largely explained by social, behavioral, physiologic and genetic differences.

  7. Genetic Mechanisms of Immune Evasion in Colorectal Cancer.

    Science.gov (United States)

    Grasso, Catherine S; Giannakis, Marios; Wells, Daniel K; Hamada, Tsuyoshi; Mu, Xinmeng Jasmine; Quist, Michael; Nowak, Jonathan A; Nishihara, Reiko; Qian, Zhi Rong; Inamura, Kentaro; Morikawa, Teppei; Nosho, Katsuhiko; Abril-Rodriguez, Gabriel; Connolly, Charles; Escuin-Ordinas, Helena; Geybels, Milan S; Grady, William M; Hsu, Li; Hu-Lieskovan, Siwen; Huyghe, Jeroen R; Kim, Yeon Joo; Krystofinski, Paige; Leiserson, Mark D M; Montoya, Dennis J; Nadel, Brian B; Pellegrini, Matteo; Pritchard, Colin C; Puig-Saus, Cristina; Quist, Elleanor H; Raphael, Ben J; Salipante, Stephen J; Shin, Daniel Sanghoon; Shinbrot, Eve; Shirts, Brian; Shukla, Sachet; Stanford, Janet L; Sun, Wei; Tsoi, Jennifer; Upfill-Brown, Alexander; Wheeler, David A; Wu, Catherine J; Yu, Ming; Zaidi, Syed H; Zaretsky, Jesse M; Gabriel, Stacey B; Lander, Eric S; Garraway, Levi A; Hudson, Thomas J; Fuchs, Charles S; Ribas, Antoni; Ogino, Shuji; Peters, Ulrike

    2018-06-01

    To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion. Significance: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. Cancer Discov; 8(6); 730-49. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 663 . ©2018 American Association for Cancer Research.

  8. Maternal anxiety and physiological reactivity as mechanisms to explain overprotective primiparous parenting behaviors.

    Science.gov (United States)

    Kalomiris, Anne E; Kiel, Elizabeth J

    2016-10-01

    In this study, we sought to determine whether the affective and physiological experience of primiparous, or first-time, motherhood is distinct from multiparous motherhood, how the child's level of inhibited temperament impacts it, and if such a temperament results in overprotective parenting behaviors. A total of 117 mothers and their 24-month-old toddlers participated in novelty tasks designed to elicit parenting behaviors and toddler's typical fear reactions. Mothers also completed a battery of questionnaires. Results suggest that primiparous mothers experienced more worry, which was associated with increased overprotective parenting behaviors. Primiparous mothers also demonstrated greater physiological (i.e., cortisol) reactivity while watching their first-born children interact with novel stimuli, but how this related to overprotective parenting was dependent on the child's level of inhibition. Specifically, primiparous mothers displayed more cortisol reactivity with their uninhibited toddlers, which indirectly linked parity to less overprotective parenting behaviors. Primiparous mothers of highly inhibited toddlers displayed greater overprotective parenting behaviors, independent of maternal cortisol reactivity. The results indicate that the transition to motherhood is a unique experience associated with greater worry and physiological reactivity and is meaningfully influenced by the toddler's temperament. Distinctions in both observed and self-reported overprotective parenting are evident through considering the dynamic interaction of these various aspects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Grass Carp Laboratory of Genetics and Physiology 2 Serves As a Negative Regulator in Retinoic Acid-Inducible Gene I- and Melanoma Differentiation-Associated Gene 5-Mediated Antiviral Signaling in Resting State and Early Stage of Grass Carp Reovirus Infection

    OpenAIRE

    Rao, Youliang; Wan, Quanyuan; Yang, Chunrong; Su, Jianguo

    2017-01-01

    Laboratory of genetics and physiology 2 (LGP2) is a key component of RIG-I-like receptors (RLRs). However, the lack of the caspase recruitment domains (CARDs) results in its controversial functional performance as a negative or positive regulator in antiviral responses. Especially, no sufficient evidence uncovers the functional mechanisms of LGP2 in RLR signaling pathways in teleost. Here, negative regulation mechanism of LGP2 in certain situations in retinoic acid-inducible gene I (RIG-I) an...

  10. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  11. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses.

    Science.gov (United States)

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger; Sepehri, Mozhgan

    2018-05-01

    Under combined drought and mechanical stresses, mechanical stress primarily controlled physiological responses of maize. Piriformospora indica mitigated the adverse effects of stresses, and inoculated maize experienced less oxidative damage and had better adaptation to stressful conditions. The objective of this study was to investigate the effect of maize root colonization by an endophytic fungus P. indica on plant water status, physiological traits and root morphology under combined drought and mechanical stresses. Seedlings of inoculated and non-inoculated maize (Zea mays L., cv. single cross 704) were cultivated in growth chambers filled with moistened siliceous sand at a matric suction of 20 hPa. Drought stress was induced using PEG 6000 solution with osmotic potentials of 0, - 0.3 and - 0.5 MPa. Mechanical stress (i.e., penetration resistances of 1.05, 4.23 and 6.34 MPa) was exerted by placing weights on the surface of the sand medium. After 30 days, leaf water potential (LWP) and relative water content (RWC), root and shoot fresh weights, root volume (RV) and diameter (RD), leaf proline content, leaf area (LA) and catalase (CAT) and ascorbate peroxidase (APX) activities were measured. The results show that exposure to individual drought and mechanical stresses led to higher RD and proline content and lower plant biomass, RV and LA. Moreover, increasing drought and mechanical stress severity increased APX activity by about 1.9- and 3.1-fold compared with the control. When plants were exposed to combined stresses, mechanical stress played the dominant role in controlling plant responses. P. indica-inoculated plants are better adapted to individual and combined stresses. The inoculated plants had greater RV, LA, RWC, LWP and proline content under stressful conditions. In comparison with non-inoculated plants, inoculated plants showed lower CAT and APX activities which means that they experienced less oxidative stress induced by stressful conditions.

  12. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Science.gov (United States)

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  13. Genetic mechanisms of Coxiella burnetii lipopolysaccharide phase variation.

    Science.gov (United States)

    Beare, Paul A; Jeffrey, Brendan M; Long, Carrie M; Martens, Craig M; Heinzen, Robert A

    2018-03-01

    Coxiella burnetii is an intracellular pathogen that causes human Q fever, a disease that normally presents as a severe flu-like illness. Due to high infectivity and disease severity, the pathogen is considered a risk group 3 organism. Full-length lipopolysaccharide (LPS) is required for full virulence and disease by C. burnetii and is the only virulence factor currently defined by infection of an immunocompetent animal. Transition of virulent phase I bacteria with smooth LPS, to avirulent phase II bacteria with rough LPS, occurs during in vitro passage. Semi-rough intermediate forms are also observed. Here, the genetic basis of LPS phase conversion was investigated to obtain a more complete understanding of C. burnetii pathogenesis. Whole genome sequencing of strains producing intermediate and/or phase II LPS identified several common mutations in predicted LPS biosynthesis genes. After passage in broth culture for 30 weeks, phase I strains from different genomic groups exhibited similar phase transition kinetics and elevation of mutations in LPS biosynthesis genes. Targeted mutagenesis and genetic complementation using a new C. burnetii nutritional selection system based on lysine auxotrophy confirmed that six of the mutated genes were necessary for production of phase I LPS. Disruption of two of these genes in a C. burnetii phase I strain resulted in production of phase II LPS, suggesting inhibition of the encoded enzymes could represent a new therapeutic strategy for treatment of Q fever. Additionally, targeted mutagenesis of genes encoding LPS biosynthesis enzymes can now be used to construct new phase II strains from different genomic groups for use in pathogen-host studies at a risk group 2 level.

  14. [Physiological mechanisms of the etiology of visual fatigue during work involving visual stress].

    Science.gov (United States)

    Korniushina, T A

    2000-01-01

    Physiological parameters of vision were studied in three professional groups (a total of 1204 subjects): microscope operators, subjects working with magnifying glasses, and computer users. General and specific features of visual system fatigue formation were identified. Because of complete (in microscope operators) or partial (in subjects working with magnifying glasses and display users) "deprivation" of accommodation, these subjects develop early presbyopia (at the age of 30-35 years). In microscope operators long strain of accommodation system leads to professional myopia, while display users develop pseudomyopia. The highest overstrain is observed after 4 years of work in microscope operators, after 5 years in magnifying glass users, and after 6 years in computer users.

  15. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training

    Directory of Open Access Journals (Sweden)

    Nosratollah Hedayatpour

    2015-01-01

    Full Text Available Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered.

  16. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may

  17. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    Science.gov (United States)

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P  0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  18. The Physiological Mechanisms of Effect of Vitamins and Amino Acids on Tendon and Muscle Healing: A Systematic Review.

    Science.gov (United States)

    Tack, Christopher; Shorthouse, Faye; Kass, Lindsy

    2018-05-01

    To evaluate the current literature via systematic review to ascertain whether amino acids/vitamins provide any influence on musculotendinous healing and if so, by which physiological mechanisms. EBSCO, PubMed, ScienceDirect, Embase Classic/Embase, and MEDLINE were searched using terms including "vitamins," "amino acids," "healing," "muscle," and "tendon." The primary search had 479 citations, of which 466 were excluded predominantly due to nonrandomized design. Randomized human and animal studies investigating all supplement types/forms of administration were included. Critical appraisal of internal validity was assessed using the Cochrane risk of Bias Tool or the Systematic Review Centre for Laboratory Animal Experimentation Risk of Bias Tool for human and animal studies, respectively. Two reviewers performed duel data extraction. Twelve studies met criteria for inclusion: eight examined tendon healing and four examined muscle healing. All studies used animal models, except two human trials using a combined integrator. Narrative synthesis was performed via content analysis of demonstrated statistically significant effects and thematic analysis of proposed physiological mechanisms of intervention. Vitamin C/taurine demonstrated indirect effects on tendon healing through antioxidant activity. Vitamin A/glycine showed direct effects on extracellular matrix tissue synthesis. Vitamin E shows an antiproliferative influence on collagen deposition. Leucine directly influences signaling pathways to promote muscle protein synthesis. Preliminary evidence exists, demonstrating that vitamins and amino acids may facilitate multilevel changes in musculotendinous healing; however, recommendations on clinical utility should be made with caution. All animal studies and one human study showed high risk of bias with moderate interobserver agreement (k = 0.46). Currently, there is limited evidence to support the use of vitamins and amino acids for musculotendinous injury. Both

  19. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    OpenAIRE

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-01-01

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon...

  20. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    OpenAIRE

    Kosan, Christian; Godmann, Maren

    2015-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several trans...

  1. A new genetic mechanism of natural gas accumulation.

    Science.gov (United States)

    Yang, Chengyu; Ni, Zhiyong; Wang, Tieguan; Chen, Zhonghong; Hong, Haitao; Wen, Long; Luo, Bing; Wang, Wenzhi

    2018-05-29

    Natural gas of organic origin is primarily biogenic or thermogenic; however, the formation of natural gas is occasionally attributed to hydrothermal activity. The Precambrian dolomite reservoir of the Anyue gas field is divided into three stages. Dolomite-quartz veins were precipitated after two earlier stages of dolomite deposition. Fluid inclusions in the dolomite and quartz are divided into pure methane (P-type), methane-bearing (M-type), aqueous (W-type), and solid bitumen-bearing (S-type) inclusions. The W-type inclusions within the quartz and buried dolomite homogenized between 107 °C and 223 °C. Furthermore, the trapping temperatures and pressures of the fluid (249 °C to 319 °C and 1619 bar to 2300 bar, respectively) are obtained from the intersections of the isochores of the P-type and the coeval W-type inclusions in the quartz. However, the burial history of the reservoir indicates that the maximum burial temperature did not exceed 230 °C. Thus, the generation of the natural gas was not caused solely by the burial of the dolomite reservoir. The results are also supported by the presence of paragenetic pyrobitumen and MVT lead-zinc ore. A coupled system of occasional invasion by hydrothermal fluids and burial of the reservoir may represent a new genetic model for natural gas accumulation in this gas field.

  2. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan

    2016-01-01

    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  3. Mechanisms and impact of genetic recombination in the evolution of Streptococcus pneumoniae.

    Science.gov (United States)

    Chaguza, Chrispin; Cornick, Jennifer E; Everett, Dean B

    2015-01-01

    Streptococcus pneumoniae (the pneumococcus) is a highly recombinogenic bacterium responsible for a high burden of human disease globally. Genetic recombination, a process in which exogenous DNA is acquired and incorporated into its genome, is a key evolutionary mechanism employed by the pneumococcus to rapidly adapt to selective pressures. The rate at which the pneumococcus acquires genetic variation through recombination is much higher than the rate at which the organism acquires variation through spontaneous mutations. This higher rate of variation allows the pneumococcus to circumvent the host innate and adaptive immune responses, escape clinical interventions, including antibiotic therapy and vaccine introduction. The rapid influx of whole genome sequence (WGS) data and the advent of novel analysis methods and powerful computational tools for population genetics and evolution studies has transformed our understanding of how genetic recombination drives pneumococcal adaptation and evolution. Here we discuss how genetic recombination has impacted upon the evolution of the pneumococcus.

  4. Physiologically based indices of volumetric capnography in patients receiving mechanical ventilation.

    Science.gov (United States)

    Romero, P V; Lucangelo, U; Lopez Aguilar, J; Fernandez, R; Blanch, L

    1997-06-01

    Several indices of ventilatory heterogeneity can be identified from the expiratory CO2 partial pressure or CO2 elimination versus volume curves. The aims of this study were: 1) to analyse several computerizable indices of volumetric capnography in order to detect ventilatory disturbances; and 2) to establish the relationship between those indices and respiratory system mechanics in subjects with normal lungs and in patients with acute respiratory distress syndrome (ARDS), both receiving mechanical ventilation. We studied six normal subjects and five patients with early ARDS mechanically ventilated at three levels of tidal volume (VT). Respiratory system mechanics were assessed by end-expiratory and end-inspiratory occlusion methods, respectively. We determined Phase III slopes, Fletcher's efficiency index, Bohr's dead space (VD,Bohr/VT), and the ratio of alveolar ejection volume to tidal volume (VAE/VT) from expiratory capnograms, as a function of expired volume. Differences between normal subjects and ARDS patients were significant both for capnographic and mechanical parameters. Changes in VT significantly altered capnographic indices in normal subjects, but failed to change ventilatory mechanics and VAE/VT in ARDS patients. After adjusting for breathing pattern, VAE/VT exhibited the best correlation with the mechanical parameters. In conclusion, volumetric capnography, and, specifically, the ratio of alveolar ejection volume to tidal volume allows evaluation and monitoring of ventilatory disturbances in patients with adult respiratory distress syndrome.

  5. Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms.

    Science.gov (United States)

    Lahola-Chomiak, Adrian A; Walter, Michael A

    2018-01-01

    We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.

  6. PHYSIOLOGICAL QUALITY OF SOYBEAN SEEDS UNDER MECHANICAL INJURIES CAUSED BY COMBINES

    OpenAIRE

    FÁBIO PALCZEWSKI PACHECO; LÚCIA HELENA PEREIRA NÓBREGA; GISLAINE PICOLLO DE LIMA; MÁRCIA SANTORUM; WALTER BOLLER; LORIVAN FORMIGHIERI

    2015-01-01

    The mechanical harvesting causes injuries on seeds and may affect their quality. Different threshing mechanisms and their adjustments may also affect the intensity of impacts that machines cause on seeds. So, this study aimed at diagnosing and evaluating the effect of two combines: the first one with a threshing system of axial flow and the other one with a threshing system of tangential flow, under adjustments of concave opening (10 mm, 30 mm and 10 mm for a combine with axial ...

  7. Mammalian life histories: their evolution and molecular-genetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, G.A.

    1978-01-01

    Survival curves for various species of mammals are discussed and a table is presented to show recorded maximum life spans of about 30 species of mammals. The range of longevities is from one year for shrews and moles up to more than 80 years for the fin whale. The constitutional correlates of longevity are discussed with regard to body size, brain weight,metabolic rates, and body temperature. It is concluded that longevity evolved as a positive trait, associated with the evolution of large body size and brain size. Life table data for man, the thorough-bred horse, beagle dogs, and the laboratory rodents, Mus musculus and Peromyscus leucopus are discussed. The data show a pattern of exponential increase of death rate with age. A laboratory model using Mus musculus and Peromyscus leucopus for the study of the longevity-assurance mechanisms is described. (HLW)

  8. Integrating 4-d light-sheet imaging with interactive virtual reality to recapitulate developmental cardiac mechanics and physiology

    Science.gov (United States)

    Ding, Yichen; Yu, Jing; Abiri, Arash; Abiri, Parinaz; Lee, Juhyun; Chang, Chih-Chiang; Baek, Kyung In; Sevag Packard, René R.; Hsiai, Tzung K.

    2018-02-01

    There currently is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3- dimensional (3-D) architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3-D and 4-D (3-D spatial + 1-D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods such as routine optical microscopes. We hereby demonstrate multi-scale applicability of VR-LSFM to 1) interrogate skin fibroblasts interacting with a hyaluronic acid-based hydrogel, 2) navigate through the endocardial trabecular network during zebrafish development, and 3) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation (BINS) algorithm with deformable image registration (DIR) to interface a VR environment for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.

  9. Comparative anatomy, physiology, and mechanisms of disease production of the esophagus, stomach, and small intestine.

    Science.gov (United States)

    Gelberg, Howard B

    2014-01-01

    The alimentary system may be thought of as an open-ended tube within a tube that begins at the oral cavity and ends at the anus. Gastrointestinal lumens are potential spaces that accommodate ingested substances and are lined by polarized epithelium that is smooth and shiny (with the exception of the rumen) when healthy and intact. Because xenobiotics most frequently enter the body via ingestion, the gastrointestinal system and its ancillary glands are the first line of defense against foreign materials and pathogens of all types. The anatomic, biochemical, physical, secretory, and endocrinologic properties of the epithelium, resident, and blood-borne effector cells, microbiota, genetic polymorphisms, and gut-associated lymphoid tissue (which comprises one-quarter of the body's total) must be physically or functionally altered for diarrhea to occur. The average person ingests 700 tons of antigens in their lifetime. That enteritis does not occur more often than it does is testimony to the efficacy of gastrointestinal protective systems.

  10. Time to Death after Terminal Withdrawal of Mechanical Ventilation: Specific Respiratory and Physiologic Parameters May Inform Physician Predictions.

    Science.gov (United States)

    Long, Ann C; Muni, Sarah; Treece, Patsy D; Engelberg, Ruth A; Nielsen, Elizabeth L; Fitzpatrick, Annette L; Curtis, J Randall

    2015-12-01

    Discussions about withdrawal of life-sustaining therapies often include family members of critically ill patients. These conversations should address essential components of the dying process, including expected time to death after withdrawal. The study objective was to aid physician communication about the dying process by identifying predictors of time to death after terminal withdrawal of mechanical ventilation. We conducted an observational analysis from a single-center, before-after evaluation of an intervention to improve palliative care. We studied 330 patients who died after terminal withdrawal of mechanical ventilation. Predictors included patient demographics, laboratory, respiratory, and physiologic variables, and medication use. The median time to death for the entire cohort was 0.58 hours (interquartile range (IQR) 0.22-2.25 hours) after withdrawal of mechanical ventilation. Using Cox regression, independent predictors of shorter time to death included higher positive end-expiratory pressure (per 1 cm H2O hazard ratio [HR], 1.07; 95% CI 1.04-1.11); higher static pressure (per 1 cm H2O HR, 1.03; 95% CI 1.01-1.04); extubation prior to death (HR, 1.41; 95% CI 1.06-1.86); and presence of diabetes (HR, 1.75; 95% CI 1.25-2.44). Higher noninvasive mean arterial pressure predicted longer time to death (per 1 mmHg HR, 0.98; 95% CI 0.97-0.99). Comorbid illness and key respiratory and physiologic parameters may inform physician predictions of time to death after withdrawal of mechanical ventilation. An understanding of the predictors of time to death may facilitate discussions with family members of dying patients and improve communication about end-of-life care.

  11. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    Science.gov (United States)

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  12. Anabolic Androgenic Steroids and Intracellular Calcium Signaling: A Mini Review on Mechanisms and Physiological Implications

    Science.gov (United States)

    Vicencio, J.M.; Estrada, M.; Galvis, D.; Bravo, R.; Contreras, A.E.; Rotter, D.; Szabadkai, G.; Hill, J.A.; Rothermel, B.A.; Jaimovich, E.; Lavandero, S.

    2015-01-01

    Increasing evidence suggests that nongenomic effects of testosterone and anabolic androgenic steroids (AAS) operate concertedly with genomic effects. Classically, these responses have been viewed as separate and independent processes, primarily because nongenomic responses are faster and appear to be mediated by membrane androgen receptors, whereas long-term genomic effects are mediated through cytosolic androgen receptors regulating transcriptional activity. Numerous studies have demonstrated increases in intracellular Ca2+ in response to AAS. These Ca2+ mediated responses have been seen in a diversity of cell types, including osteoblasts, platelets, skeletal muscle cells, cardiac myocytes and neurons. The versatility of Ca2+ as a second messenger provides these responses with a vast number of pathophysiological implications. In cardiac cells, testosterone elicits voltage-dependent Ca2+ oscillations and IP3R-mediated Ca2+ release from internal stores, leading to activation of MAPK and mTOR signaling that promotes cardiac hypertrophy. In neurons, depending upon concentration, testosterone can provoke either physiological Ca2+ oscillations, essential for synaptic plasticity, or sustained, pathological Ca2+ transients that lead to neuronal apoptosis. We propose therefore, that Ca2+ acts as an important point of crosstalk between nongenomic and genomic AAS signaling, representing a central regulator that bridges these previously thought to be divergent responses. PMID:21443511

  13. Real-time Physiological Emotion Detection Mechanisms: Effects of Exercise and Affect Intensity.

    Science.gov (United States)

    Leon, E; Clarke, G; Sepulveda, F; Callaghan, V

    2005-01-01

    The development of systems capable of recognizing and categorising emotions is of interest to researchers in various scientific areas including artificial intelligence. The traditional notion that emotions and rationality are two separate realms has gradually been challenged. The work of neurologists has shown the strong relationship between emotional episodes and the way humans think and act. Furthermore, emotions not only regulate human decisions but could also contribute to a more satisfactory response to the environment, i.e., faster and more precise actions. In this paper an analysis of physiological signals employed in real-time emotion detection is presented in the context of Intelligent Inhabited Environments (IIE). Two studies were performed to investigate whether physical exertion has a significant effect on bodily signals stemming from emotional episodes with subjects having various degrees of affect intensity: 1) a statistical analysis using the Wilcoxon Test, and 2) a cluster analysis using the Davies-Bouldin Index. Preliminary results demonstrated that the heart rate and skin resistance consistently showed similar changes regardless of the physical stimuli while blood volume pressure did not show a significant change. It was also found that neither physical stress nor affect intensity played a role in the separation of neutral and non-neutral emotional states.

  14. Genetic and physiological characterization of two clusters of quantitative trait Loci associated with seed dormancy and plant height in rice.

    Science.gov (United States)

    Ye, Heng; Beighley, Donn H; Feng, Jiuhuan; Gu, Xing-You

    2013-02-01

    Seed dormancy and plant height have been well-studied in plant genetics, but their relatedness and shared regulatory mechanisms in natural variants remain unclear. The introgression of chromosomal segments from weedy into cultivated rice (Oryza sativa) prompted the detection of two clusters (qSD1-2/qPH1 and qSD7-2/qPH7) of quantitative trait loci both associated with seed dormancy and plant height. Together, these two clusters accounted for >96% of the variances for plant height and ~71% of the variances for germination rate in an isogenic background across two environments. On the initial introgression segments, qSD1-2/qPH1 was dissected genetically from OsVp1 for vivipary and qSD7-2/qPH7 separated from Sdr4 for seed dormancy. The narrowed qSD1-2/qPH1 region encompasses the semidwarf1 (sd1) locus for gibberellin (GA) biosynthesis. The qSD1-2/qPH1 allele from the cultivar reduced germination and stem elongation and the mutant effects were recovered by exogenous GA, suggesting that sd1 is a candidate gene of the cluster. In contrast, the effect-reducing allele at qSD7-2/qPH7 was derived from the weedy line; this allele was GA-insensitive and blocked GA responses of qSD1-2/qPH1, including the transcription of a GA-inducible α-amylase gene in imbibed endosperm, suggesting that qSD7-2/qPH7 may work downstream from qSD1-2/qPH1 in GA signaling. Thus, this research established the seed dormancy-plant height association that is likely mediated by GA biosynthesis and signaling pathways in natural populations. The detected association contributed to weed mimicry for the plant stature in the agro-ecosystem dominated by semidwarf cultivars and revealed the potential benefit of semidwarf genes in resistance to preharvest sprouting.

  15. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    Science.gov (United States)

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  16. Differential mechanism of Escherichia coli Inactivation by (+)-limonene as a function of cell physiological state and drug's concentration.

    Science.gov (United States)

    Chueca, Beatriz; Pagán, Rafael; García-Gonzalo, Diego

    2014-01-01

    (+)-limonene is a lipophilic antimicrobial compound, extracted from citrus fruits' essential oils, that is used as a flavouring agent and organic solvent by the food industry. A recent study has proposed a common and controversial mechanism of cell death for bactericidal antibiotics, in which hydroxyl radicals ultimately inactivated cells. Our objective was to determine whether the mechanism of Escherichia coli MG1655 inactivation by (+)-limonene follows that of bactericidal antibiotics. A treatment with 2,000 μL/L (+)-limonene inactivated 4 log10 cycles of exponentially growing E. coli cells in 3 hours. On one hand, an increase of cell survival in the ΔacnB mutant (deficient in a TCA cycle enzyme), or in the presence of 2,2'-dipyridyl (inhibitor of Fenton reaction by iron chelation), thiourea, or cysteamine (hydroxyl radical scavengers) was observed. Moreover, the ΔrecA mutant (deficient in an enzyme involved in SOS response to DNA damage) was more sensitive to (+)-limonene. Thus, this indirect evidence indicates that the mechanism of exponentially growing E. coli cells inactivation by 2,000 μL/L (+)-limonene is due to the TCA cycle and Fenton-mediated hydroxyl radical formation that caused oxidative DNA damage, as observed for bactericidal drugs. However, several differences have been observed between the proposed mechanism for bactericidal drugs and for (+)-limonene. In this regard, our results demonstrated that E. coli inactivation was influenced by its physiological state and the drug's concentration: experiments with stationary-phase cells or 4,000 μL/L (+)-limonene uncovered a different mechanism of cell death, likely unrelated to hydroxyl radicals. Our research has also shown that drug's concentration is an important factor influencing the mechanism of bacterial inactivation by antibiotics, such as kanamycin. These results might help in improving and spreading the use of (+)-limonene as an antimicrobial compound, and in clarifying the controversy about

  17. Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Kanatsu, Kunihiko; Tomita, Taisuke

    2017-01-01

    Alzheimer disease (AD) is a neurodegenerative disease characterized by the extensive deposition of senile plaques and neurofibrillary tangles. Until recently, only the APOE gene had been known as a genetic risk factor for late-onset AD (LOAD), which accounts for more than 95% of all AD cases. However, in addition to this well-established genetic risk factor, genome-wide association studies have identified several single nucleotide polymorphisms as genetic risk factors of LOAD, such as PICALM and BIN1 . In addition, whole genome sequencing and exome sequencing have identified rare variants associated with LOAD, including TREM2 . We review the recent findings related to the molecular mechanisms by which these genetic risk factors contribute to AD, and our perspectives regarding the etiology of AD for the development of therapeutic agents.

  18. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.

    Science.gov (United States)

    Cristofari, Robin; Trucchi, Emiliano; Whittington, Jason D; Vigetta, Stéphanie; Gachot-Neveu, Hélène; Stenseth, Nils Christian; Le Maho, Yvon; Le Bohec, Céline

    2015-01-01

    How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the importance of

  19. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.

    Directory of Open Access Journals (Sweden)

    Robin Cristofari

    Full Text Available How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the

  20. Effect of potassium fertilizer on the physiological mechanisms of cotton fiber quality

    International Nuclear Information System (INIS)

    Chen, B.; Chai, Z.; Sheng, J.; Jiang, P.

    2017-01-01

    Endogenous hormones are a key factor in cotton fiber quality. Studying the relationship among endogenous hormone contents and fiber quality can provide a theoretical basis for exploring physiological measurements to improve fiber quality. The relationships among endogenous hormone contents and fiber quality for different boll positions and potassium (K) conditions were investigated for the main cultivar 'Xinluzao' 24. We used eight application rates of K fertilizer (K/sub 2/O 0, 37.5, 75, 112.5, 150, 37.5 and sprayed 1% K/sub 2/SO/sub 4/, 75 and sprayed 1% K/sub 2/SO/sub 4/, and 150 and sprayed 1% K/sub 2/SO/sub 4/ kg ha/sup -1/ under field conditions). We then measured the contents of indoleacetic acid (IAA), gibberellin (GA3), zeatin (Z), and abscisic acid (ABA) in relation to changes in fiber quality indices. Results showed that application of K fertilizer significantly increased the contents of IAA, GA3, and Z in the upper and middle boll, and decreased the contents of ABA in the upper, middle, and the lower boll. Compared with the control, applying K fertilizer between 37.5 kg K/sub 2/O ha/sup -1/ and 112.5 kg K2O ha/sup -1/ can significantly increase the length, uniformity, strength, micronaire, and maturity of fiber in three parts of the plant. However, excessive application of K fertilizer can reduce fiber uniformity, strength, and micronaire in these locations. Through comprehensive comparison, we determined that the optimal application of K fertilizer for regulating endogenous hormones and improving fiber quality was a basal application of 75 kg K/sub 2/O ha/sup -1/ and a spray application of 1% K/sub 2/SO/sub 4/. The endogenous hormones IAA, GA/sub 3/, and Z can improve cotton fiber quality, but ABA can inhibit cotton fiber quality. Results indicate that reasonable applications of potassium fertilizer could regulate endogenous hormones and improve fiber quality.

  1. PHYSIOLOGICAL QUALITY OF SOYBEAN SEEDS UNDER MECHANICAL INJURIES CAUSED BY COMBINES

    Directory of Open Access Journals (Sweden)

    FÁBIO PALCZEWSKI PACHECO

    2015-01-01

    Full Text Available The mechanical harvesting causes injuries on seeds and may affect their quality. Different threshing mechanisms and their adjustments may also affect the intensity of impacts that machines cause on seeds. So, this study aimed at diagnosing and evaluating the effect of two combines: the first one with a threshing system of axial flow and the other one with a threshing system of tangential flow, under adjustments of concave opening (10 mm, 30 mm and 10 mm for a combine with axial flow and 3.0 mm, 15 mm and 3.0 mm for a combine with tangential flow and three cylinder rotations on the quality of soybean seeds harvested at two moisture contents. Soybean seeds of cultivar 'ND 4910' were harvested at 16.6% moisture (mid - morning and 13.7% moisture in the afternoon. The seeds quality was evaluated by germination tests, germination speed index (GSI, germination rate, moisture content, percentage of purity and vigor by tetrazolium test. Despite the combine, the results showed that the mechanical injury has most reduced seeds quality, at 16.6% moisture content, concave opening of 30 mm (axial and 10 mm (tangential and cylinder rotation of 1100 rpm (axial and 1000 (tangential, both with the highest rotations used. The combine with tangential flow had the highest degree of seeds purity. When seeds moisture content at harvest was close to 13.7%, there was the highest seed injury, while, at 16.6%, there was the highest number of crushed soybeans, regardless the combine adjustment.

  2. The influence of mechanical ventilation on physiological parameters in ball pythons (Python regius).

    Science.gov (United States)

    Jakobsen, Sashia L; Williams, Catherine J A; Wang, Tobias; Bertelsen, Mads F

    2017-05-01

    Mechanical ventilation is widely recommended for reptiles during anesthesia, and while it is well-known that their low ectothermic metabolism requires much lower ventilation than in mammals, very little is known about the influence of ventilation protocol on the recovery from anesthesia. Here, 15 ball pythons (Python regius) were induced and maintained with isoflurane for 60min at one of three ventilation protocols (30, 125, or 250mlmin -1 kg -1 body mass) while an arterial catheter was inserted, and ventilation was then continued on 100% oxygen at the specified rate until voluntary extubation. Mean arterial blood pressure and heart rate (HR) were measured, and arterial blood samples collected at 60, 80, 180min and 12 and 24h after intubation. In all three groups, there was evidence of a metabolic acidosis, and snakes maintained at 30mlmin -1 kg -1 experienced an additional respiratory acidosis, while the two other ventilation protocols resulted in normal or low arterial PCO 2 . In general, normal acid-base status was restored within 12h in all three protocols. HR increased by 143±64% during anesthesia with high mechanical ventilation (250mlmin -1 kg -1 ) in comparison with recovered values. Recovery times after mechanical ventilation at 30, 125, or 250mlmin -1 kg -1 were 289±70, 126±16, and 68±7min, respectively. Mild overventilation may result in a faster recovery, and the associated lowering of arterial PCO 2 normalised arterial pH in the face of metabolic acidosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Mechanisms of waterlogging tolerance in wheat - a review of root and shoot physiology

    DEFF Research Database (Denmark)

    Herzog, Max; Striker, Gustavo G; Colmer, Timothy D

    2016-01-01

    :shoot ratio. Genotypes differ in seminal root anoxia tolerance, but mechanisms remain to be established; ethanol production rates do not explain anoxia tolerance. Root tip survival is short-term, and thereafter, seminal root re-growth upon re-aeration is limited. Genotypes differ in adventitious root numbers....... Although photosynthesis declines, sugars typically accumulate in shoots of waterlogged plants. Mn or Fe toxicity might occur in shoots of wheat on strongly acidic soils, but probably not more widely. Future breeding for waterlogging tolerance should focus on root internal aeration and better N...

  4. Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms

    NARCIS (Netherlands)

    Burger, N.B.; Bekker, M.N.; Groot, C.J. de; Christoffels, V.M.; Haak, M.C.

    2015-01-01

    This overview provides insight into the underlying genetic mechanism of the high incidence of cardiac defects in fetuses with increased nuchal translucency (NT). Nuchal edema, the morphological equivalent of increased NT, is likely to result from abnormal lymphatic development and is strongly

  5. I'm so tired: biological and genetic mechanisms of cancer-related fatigue

    NARCIS (Netherlands)

    Barsevick, Andrea; Frost, Marlene; Zwinderman, Aeilko; Hall, Per; Halyard, Michele; Abertnethy, Amy P.; Baas, Frank; Barsevick, Andrea M.; Bartels, Meike; Boomsma, Dorret I.; Chauhan, Cynthia; Cleeland, Charles S.; Dueck, Amylou C.; Frost, Marlene H.; Halyard, Michele Y.; Klepstad, Pål; Martin, Nicholas G.; Miaskowski, Christine; Mosing, Miriam; Movsas, Benjamin; van Noorden, Cornelis J. F.; Patrick, Donald L.; Pedersen, Nancy L.; Ropka, Mary E.; Shi, Quiling; Shinozaki, Gen; Singh, Jasvinder A.; Sloan, Jeff A.; Sprangers, Mirjam A. G.; Veenhoven, Ruut; Yang, Ping

    2010-01-01

    Objective The goal of this paper is to discuss cancer-related fatigue (CRF) and address issues related to the investigation into potential biological and genetic causal mechanisms. The objectives are to: (1) describe CRF as a component of quality of life (QOL); (2) address measurement issues that

  6. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk.

    Science.gov (United States)

    McCraty, Rollin; Shaffer, Fred

    2015-01-01

    Heart rate variability, the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operates on different time scales to adapt to environmental and psychological challenges. This article briefly reviews neural regulation of the heart and offers some new perspectives on mechanisms underlying the very low frequency rhythm of heart rate variability. Interpretation of heart rate variability rhythms in the context of health risk and physiological and psychological self-regulatory capacity assessment is discussed. The cardiovascular regulatory centers in the spinal cord and medulla integrate inputs from higher brain centers with afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. We also discuss the intrinsic cardiac nervous system and the heart-brain connection pathways, through which afferent information can influence activity in the subcortical, frontocortical, and motor cortex areas. In addition, the use of real-time HRV feedback to increase self-regulatory capacity is reviewed. We conclude that the heart's rhythms are characterized by both complexity and stability over longer time scales that reflect both physiological and psychological functional status of these internal self-regulatory systems.

  7. The renin-angiotensin-aldosterone system (RAAS – physiology and molecular mechanisms of functioning

    Directory of Open Access Journals (Sweden)

    Monika Chaszczewska-Markowska

    2016-09-01

    Full Text Available Secretion of renin juxtaglomerular cells into bloodstream initiates activation of an enzymatic-hormonal cascade known as the RAAS (renin – angiotensin – aldosterone system. As a result, blood pressure is increased by the means several interrelated mechanisms. Mechanism of Zjednoczoaction of this system has been known for decades, but a few previously unknown components were recently added, such as ACE-2 and Ang(1-7, and their role often seems to be opposite to that of the conventional components. Local tissue systems also have important biological functions. They operate largely independently of the systemic activity, and their activity is observed primarily in the kidney, heart, in blood vessels, adrenal gland and nervous system. Angiotensin-2 (Ang-2, the main RAAS effector, has a wide scope of action, and thus abnormalities in its functioning have many consequences. Excessive activation is accompanied by chronic inflammation, as Ang-2 stimulates inflammatory mediators. As a result, degenerative processes and atherosclerosis are initiated. RAAS imbalance is associated with the most common diseases of civilization, such as cardio-vascular diseases, diabetes, kidney diseases, preeclampsia, osteoporosis and even neurodegenerative diseases. Many of these pathological processes are attributed to the excessive activation of tissue RA system. Therapeutic strategies based on inhibition of the RAAS are commonly used mainly in the treatment of hypertension and other cardiovascular disorders. The benefits of this class of drugs is primarily a decrease in blood pressure, but also the suppression of inflammatory processes and other pathological phenomena resulting from excessive activation of the RAAS. For that reason, some consider to use RAAS inhibitors in other diseases, e.g. Parkinson’s disease. Further studies give hope for the improvement of RAAS inhibitor therapy and the development of new therapeutic strategies

  8. Zebrafish hair cell mechanics and physiology through the lens of noise-induced hair cell death

    Science.gov (United States)

    Coffin, Allison B.; Xu, Jie; Uribe, Phillip M.

    2018-05-01

    Hair cells are exquisitely sensitive to auditory stimuli, but also to damage from a variety of sources including noise trauma and ototoxic drugs. Mammals cannot regenerate cochlear hair cells, while non-mammalian vertebrates exhibit robust regenerative capacity. Our research group uses the lateral line system of larval zebrafish to explore the mechanisms underlying hair cell damage, identify protective therapies, and determine molecular drivers of innate regeneration. The lateral line system contains externally located sensory organs called neuromasts, each composed of ˜8-20 hair cells. Lateral line hair cells are homologous to vertebrate inner ear hair cells and share similar susceptibility to ototoxic damage. In the last decade, the lateral line has emerged as a powerful model system for understanding hair cell death mechanisms and for identifying novel protective compounds. Here we demonstrate that the lateral line is a tractable model for noise-induced hair cell death. We have developed a novel noise damage system capable of inducing over 50% loss of lateral line hair cells, with hair cell death occurring in a dose- and time-dependent manner. Cell death is greatest 72 hours post-exposure. However, early signs of hair cell damage, including changes in membrane integrity and reduced mechanotransduction, are apparent within hours of noise exposure. These features, early signs of damage followed by delayed hair cell death, are consistent with mammalian data, suggesting that noise acts similarly on zebrafish and mammalian hair cells. In our future work we will use our new model system to investigate noise damage events in real time, and to develop protective therapies for future translational research.

  9. In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application.

    Science.gov (United States)

    Liebsch, Christian; Zimmermann, Julia; Graf, Nicolas; Schilling, Christoph; Wilke, Hans-Joachim; Kienle, Annette

    2018-01-01

    Biomechanical in vitro tests analysing screw loosening often include high standard deviations caused by high variabilities in bone mineral density and pedicle geometry, whereas standardized mechanical models made of PU foam often do not integrate anatomical or physiological boundary conditions. The purpose of this study was to develop a most realistic mechanical model for the standardized and reproducible testing of pedicle screws regarding the resistance against screw loosening and the holding force as well as to validate this model by in vitro experiments. The novel mechanical testing model represents all anatomical structures of a human vertebra and is consisting of PU foam to simulate cancellous bone, as well as a novel pedicle model made of short carbon fibre filled epoxy. Six monoaxial cannulated pedicle screws (Ø6.5 × 45mm) were tested using the mechanical testing model as well as human vertebra specimens by applying complex physiological cyclic loading (shear, tension, and bending; 5Hz testing frequency; sinusoidal pulsating forces) in a dynamic materials testing machine with stepwise increasing load after each 50.000 cycles (100.0N shear force + 20.0N per step, 51.0N tension force + 10.2N per step, 4.2Nm bending moment + 0.8Nm per step) until screw loosening was detected. The pedicle screw head was fixed on a firmly clamped rod while the load was applied in the vertebral body. For the in vitro experiments, six human lumbar vertebrae (L1-3, BMD 75.4 ± 4.0mg/cc HA, pedicle width 9.8 ± 0.6mm) were tested after implanting pedicle screws under X-ray control. Relative motions of pedicle screw, specimen fixture, and rod fixture were detected using an optical motion tracking system. Translational motions of the mechanical testing model experiments in the point of load introduction (0.9-2.2mm at 240N shear force) were reproducible within the variation range of the in vitro experiments (0.6-3.5mm at 240N shear force). Screw loosening occurred continuously in

  10. Genetic, pathological and physiological determinants of transdermal fentanyl pharmacokinetics in 620 cancer patients of the EPOS study

    DEFF Research Database (Denmark)

    Barratt, Daniel T; Bandak, Benedikte; Klepstad, Pål

    2014-01-01

    This study aimed to investigate whether CYP3A4/5 genetic variants, together with clinical and patient factors, influence serum fentanyl and norfentanyl concentrations and their ratio in cancer pain patients receiving transdermal fentanyl....

  11. Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure.

    Science.gov (United States)

    Ghanta, Ravi K; Rangaraj, Aravind; Umakanthan, Ramanan; Lee, Lawrence; Laurence, Rita G; Fox, John A; Bolman, R Morton; Cohn, Lawrence H; Chen, Frederick Y

    2007-03-13

    Ventricular restraint is a nontransplantation surgical treatment for heart failure. The effect of varying restraint level on left ventricular (LV) mechanics and remodeling is not known. We hypothesized that restraint level may affect therapy efficacy. We studied the immediate effect of varying restraint levels in an ovine heart failure model. We then studied the long-term effect of restraint applied over a 2-month period. Restraint level was quantified by use of fluid-filled epicardial balloons placed around the ventricles and measurement of balloon luminal pressure at end diastole. At 4 different restraint levels (0, 3, 5, and 8 mm Hg), transmural myocardial pressure (P(tm)) and indices of myocardial oxygen consumption (MVO2) were determined in control (n=5) and ovine heart failure (n=5). Ventricular restraint therapy decreased P(tm) and MVO2, and improved mechanical efficiency. An optimal physiological restraint level of 3 mm Hg was identified to maximize improvement without an adverse affect on systemic hemodynamics. At this optimal level, end-diastolic P(tm) and MVO2 indices decreased by 27% and 20%, respectively. The serial longitudinal effects of optimized ventricular restraint were then evaluated in ovine heart failure with (n=3) and without (n=3) restraint over 2 months. Optimized ventricular restraint prevented and reversed pathological LV dilatation (130+/-22 mL to 91+/-18 mL) and improved LV ejection fraction (27+/-3% to 43+/-5%). Measured restraint level decreased over time as the LV became smaller, and reverse remodeling slowed. Ventricular restraint level affects the degree of decrease in P(tm), the degree of decrease in MVO2, and the rate of LV reverse remodeling. Periodic physiological adjustments of restraint level may be required for optimal restraint therapy efficacy.

  12. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response.

    Science.gov (United States)

    Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E

    2016-07-01

    The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.

  13. Physiological effects of a single chest physiotherapy session in mechanically ventilated and extubated preterm neonates.

    Science.gov (United States)

    Mehta, Y; Shetye, J; Nanavati, R; Mehta, A

    2016-01-01

    To assess the changes on various physiological cardio-respiratory parameters with a single chest physiotherapy session in mechanically ventilated and extubated preterm neonates with respiratory distress syndrome. This is a prospective observational study in a neonatal intensive care unit setting. Sixty preterm neonates with respiratory distress syndrome, thirty mechanically ventilated and thirty extubated preterm neonates requiring chest physiotherapy were enrolled in the study. Parameters like heart rate (HR), respiratory rate (RR), Silverman Anderson score (SA score in extubated), oxygen saturation (SpO2) and auscultation findings were noted just before, immediately after chest physiotherapy but before suctioning, immediately after suctioning and after 5 minutes of the session. The mean age of neonates was 9.55±5.86 days and mean birth weight was 1550±511.5 g. As there was no significant difference in the change in parameters on intergroup comparison, further analysis was done considering two groups together (n = 60) except for SA score. As SA score was measured only in extubated neonates. HR did not change significantly during chest physiotherapy compared to the baseline but significantly decreased after 15 minutes (p = 0.01). RR and SA score significantly increased after suctioning (p = 0.014) but reduced after 15 minutes (p = physiotherapy (p = physiotherapy may help facilitate the overall well-being of a fragile preterm neonate. Lung auscultation finding suggests that after suctioning, there was a significant reduction in crepitation (p = 0.0000) but significant increase in crepitation after 15 minutes (p = physiotherapy. Chest physiotherapy is safe in preterm neonates. Suctioning causes significant cardio-respiratory parameter changes, but within normal physiological range. Thus, chest physiotherapy should be performed with continuous monitoring only when indicated and not as a routine procedure. More research is needed

  14. A Comparison of the Physiology and Mechanics of Exercise in LBNP and Upright Gait

    Science.gov (United States)

    Boda, W. L.; Watenpaugh, D. E.; Ballard, R. E.; Chang, D.; Looft-Wilson, R.; Hargens, A. R.

    1996-01-01

    Bone, muscular strength, aerobic capacity, and normal fluid pressure gradients within the body are lost during bed rest and spaceflight. Lower Body Negative Pressure (LBNP) exercise may create musculoskeletal and cardiovascular strains equal to a greater than those experienced on Earth and elucidate some of the mechanisms for maintaining bone integrity. LBNP exercise simulates gravity during supine posture by using negative pressure to pull subjects inward against a treadmill generating footward forces and increasing transmural pressures. Footward forces are generated which equal the product of the pressure differential and the cross-sectional area of the LBNP waist seal. Subjects lie supine within the chamber with their legs suspended from one another via cuffs, bungee cords, and pulleys, such that each leg acts as a counterweight to the other leg during the gait cycle. The subjects then walk or run on a treadmill which is positioned vertically within the chamber. Supine orientation allows only footward force production due to the negative pressure within the chamber. The purpose of this study was to determine if the kinematics, kinetics, and metabolic rate during supine walking and slow running on a vertical treadmill within LBNP are similar to those on a treadmill in 1-g environment in an upright posture.

  15. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology.

    Directory of Open Access Journals (Sweden)

    Chung-Yi Yang

    Full Text Available Superparamagnetic iron oxide (SPIO nanoparticles are contrast agents used for magnetic resonance imaging. Ferucarbotran is a clinically approved SPIO-coated carboxydextran with a diameter of about 45-60 nm. We investigated the mechanism of cellular uptake of Ferucarbotran with a cell model using the murine macrophage cell line Raw 264.7. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P<0.001, R(2 = 0. 8048. For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. There was a significant decrease of side scattering counts in the cells and a less significant change in signal intensity based on magnetic resonance in the phenylarsine oxide-treated macrophages. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species at 2, 24, and 48 h; a decrease in mitochondrial membrane potential at 24 h; and an increase in cell proliferation at 24 h. We concluded that Ferucarbotran was internalized into macrophages via the clathrin-mediated pathway and can change the cellular behavior of these cells after labeling.

  16. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses.

    Science.gov (United States)

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger

    2017-09-01

    This study was done to evaluate the effects of the root-colonizing endophytic fungus Piriformospora indica on wheat growth under combined drought and mechanical stresses. Inoculated (colonized) and non-inoculated (uncolonized) wheat (Triticum aestivum L. cv. Chamran) seedlings were planted in growth chambers filled with moist sand (at a matric suction of 20 hPa). Slight, moderate and severe mechanical stresses (i.e., penetration resistance, Q p , of 1.17, 4.17 and 5.96 MPa, respectively) were produced by a dead-load technique (i.e., placing a weight on the sand surface) in the root medium. Slight, moderate and severe drought stresses were induced using PEG 6000 solutions with osmotic potentials of 0, -0.3 and -0.5 MPa, respectively. After 30 days, plant physiological characteristics and root morphology were measured. An increase in Q p from 1.17 to 5.96 MPa led to greater leaf proline concentration and root diameter, and lower relative water content (RWC), leaf water potential (LWP), chlorophyll contents and root volume. Moreover, severe drought stress decreased root and shoot fresh weights, root volume, leaf area, RWC, LWP and chlorophyll content compared to control. Catalase (CAT) and ascorbate peroxidase (APX) activities under severe drought stress were about 1.5 and 2.9 times greater than control. Interaction of the stresses showed that mechanical stress primarily controls plant water status and physiological responses. However, endophyte presence mitigated the adverse effects of individual and combined stresses on plant growth. Colonized plants were better adapted and had greater root length and volume, RWC, LWP and chlorophyll contents under stressful conditions due to higher absorption sites for water and nutrients. Compared with uncolonized plants, colonized plants showed lower CAT activity implying that wheat inoculated with P. indica was more tolerant and experienced less oxidative damage induced by drought and/or mechanical stress. Copyright

  17. MODEL-ASSISTED ESTIMATION OF THE GENETIC VARIABILITY IN PHYSIOLOGICAL PARAMETERS RELATED TO TOMATO FRUIT GROWTH UNDER CONTRASTED WATER CONDITIONS

    Directory of Open Access Journals (Sweden)

    Dario Constantinescu

    2016-12-01

    Full Text Available Drought stress is a major abiotic stres threatening plant and crop productivity. In case of fleshy fruits, understanding Drought stress is a major abiotic stress threatening plant and crop productivity. In case of fleshy fruits, understanding mechanisms governing water and carbon accumulations and identifying genes, QTLs and phenotypes, that will enable trade-offs between fruit growth and quality under Water Deficit (WD condition is a crucial challenge for breeders and growers. In the present work, 117 recombinant inbred lines of a population of Solanum lycopersicum were phenotyped under control and WD conditions. Plant water status, fruit growth and composition were measured and data were used to calibrate a process-based model describing water and carbon fluxes in a growing fruit as a function of plant and environment. Eight genotype-dependent model parameters were estimated using a multiobjective evolutionary algorithm in order to minimize the prediction errors of fruit dry and fresh mass throughout fruit development. WD increased the fruit dry matter content (up to 85 % and decreased its fresh weight (up to 60 %, big fruit size genotypes being the most sensitive. The mean normalized root mean squared errors of the predictions ranged between 16-18 % in the population. Variability in model genotypic parameters allowed us to explore diverse genetic strategies in response to WD. An interesting group of genotypes could be discriminated in which i the low loss of fresh mass under WD was associated with high active uptake of sugars and low value of the maximum cell wall extensibility, and ii the high dry matter content in control treatment (C was associated with a slow decrease of mass flow. Using 501 SNP markers genotyped across the genome, a QTL analysis of model parameters allowed to detect three main QTLs related to xylem and phloem conductivities, on chromosomes 2, 4 and 8. The model was then applied to design ideotypes with high dry matter

  18. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    Science.gov (United States)

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  19. Physiological and Molecular Mechanism of Nitric Oxide (NO Involved in Bermudagrass Response to Cold Stress.

    Directory of Open Access Journals (Sweden)

    Jibiao Fan

    Full Text Available Bermudagrass is widely utilized in parks, lawns, and golf courses. However, cold is a key factor limiting resource use in bermudagrass. Therefore, it is meaningful to study the mechanism of bermudagrass response to cold. Nitric oxide (NO is a crucial signal molecule with multiple biological functions. Thus, the objective of this study was to investigate whether NO play roles in bermudagrass response to cold. Sodium nitroprusside (SNP was used as NO donor, while 2-phenyl-4,4,5,5-tetramentylimidazoline-l-oxyl-3-xide (PTIO plus NG-nitro-L-arginine methyl ester (L-NAME were applied as NO inhibitor. Wild bermudagrass was subjected to 4 °C in a growth chamber under different treatments (Control, SNP, PTIO + L-NAME. The results indicated lower levels of malondialdehyde (MDA content and electrolyte leakage (EL, higher value for chlorophyll content, superoxide dismutase (SOD and peroxidase (POD activities after SNP treatment than that of PTIO plus L-NAME treatments under cold stress. Analysis of Chlorophyll (Chl a fluorescence transient displayed that the OJIP transient curve was higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. The values of photosynthetic fluorescence parameters were higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. Expression of cold-responsive genes was altered under cold stress after treated with SNP or PTIO plus L-NAME. In summary, our findings indicated that, as an important strategy to protect bermudagrass against cold stress, NO could maintain the stability of cell membrane, up-regulate the antioxidant enzymes activities, recover process of photosystem II (PSII and induce the expression of cold-responsive genes.

  20. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  1. Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms

    Directory of Open Access Journals (Sweden)

    Adrian A. Lahola-Chomiak

    2018-01-01

    Full Text Available We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS and pigmentary glaucoma (PG. As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.

  2. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)

    Science.gov (United States)

    FUNK, W. CHRIS; LOVICH, ROBERT E.; HOHENLOHE, PAUL A.; HOFMAN, COURTNEY A.; MORRISON, SCOTT A.; SILLETT, T. SCOTT; GHALAMBOR, CAMERON K.; MALDONADO, JESUS E.; RICK, TORBEN C.; DAY, MITCH D.; POLATO, NICHOLAS R.; FITZPATRICK, SARAH W.; COONAN, TIMOTHY J.; CROOKS, KEVIN R.; DILLON, ADAM; GARCELON, DAVID K.; KING, JULIE L.; BOSER, CHRISTINA L.; GOULD, NICHOLAS; ANDELT, WILLIAM F.

    2016-01-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of 6 subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland gray foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness, and reduced adaptive potential. PMID:26992010

  3. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    Science.gov (United States)

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. © 2016 John Wiley & Sons Ltd.

  4. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  5. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation.

    Science.gov (United States)

    Fogel, Stuart M; Smith, Carlyle T

    2011-04-01

    Until recently, the electrophysiological mechanisms involved in strengthening new memories into a more permanent form during sleep have been largely unknown. The sleep spindle is an event in the electroencephalogram (EEG) characterizing Stage 2 sleep. Sleep spindles may reflect, at the electrophysiological level, an ideal mechanism for inducing long-term synaptic changes in the neocortex. Recent evidence suggests the spindle is highly correlated with tests of intellectual ability (e.g.; IQ tests) and may serve as a physiological index of intelligence. Further, spindles increase in number and duration in sleep following new learning and are correlated with performance improvements. Spindle density and sigma (14-16Hz) spectral power have been found to be positively correlated with performance following a daytime nap, and animal studies suggest the spindle is involved in a hippocampal-neocortical dialogue necessary for memory consolidation. The findings reviewed here collectively provide a compelling body of evidence that the function of the sleep spindle is related to intellectual ability and memory consolidation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Diversity evaluation based on morphological, physiological and isozyme variation in genetic resources of garlic (Allium sativum L.) collected worldwide.

    Science.gov (United States)

    Hirata, Sho; Abdelrahman, Mostafa; Yamauchi, Naoki; Shigyo, Masayoshi

    2016-11-26

    The aim of this study was to obtain primary information about the global diversity of garlic (Allium sativum L.) by evaluating morphological, physiological and isozyme variation. A total of 107 garlic accessions collected worldwide were grown in Yamaguchi, Japan. Five morphological traits (bulb weight, bulb diameter, number of cloves per bulb, number of bulbils and scape length) and one physiological trait (bolting period) of the collected garlic showed wide variation. Meanwhile, a total of 140 garlic accessions, including the 107 mentioned above, were characterized by leucine aminopeptidase (LAP) and phosphoglucoisomerase (PGI) isozyme analyses; they clearly showed polymorphisms in putative isozyme loci (Lap-1, Lap-2 and Pgi-1). Allelic frequencies were estimated in each group of accessions categorized by their geographical origin, and the observed (H o ) and expected (H e ) heterozygosities were calculated. The allelic frequencies differed between groups. A principal component analysis based on morpho-physiological data indicated a grouping of the garlic accessions into Central Asian and Northern Mediterranean groups as well as others. We discuss the roles of artificial and natural selection that may have caused differentiation in these traits, on the assumption that ancestral domesticated garlic populations have adapted in various regions using standing variation or mutations that accumulated during expansion, and have evolved along with human-preferred traits over a long history of cultivation.

  7. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions

    Science.gov (United States)

    Yin, Xinyou

    2012-01-01

    To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO2 to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g s), mesophyll conductance (g m), electron transport capacity (J max), and Rubisco carboxylation capacity (V cmax). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g s and g m. One previously mapped major QTL of photosynthesis was associated with variation in g s and g m, but also in J max and V cmax at flowering. Thus, g s and g m, which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background. PMID:22888131

  8. The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Daniel J. Guerra

    2011-01-01

    Full Text Available Autism spectrum disorders (ASDs have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.

  9. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  10. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy

    Directory of Open Access Journals (Sweden)

    Fang eCheng

    2015-11-01

    Full Text Available Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment or negative effects (e.g., autotoxicity, soil sickness, or biological invasion. To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory / inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1 Description of management practices related to allelopathy and allelochemicals in agriculture. (2 Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3 Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4 Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on

  11. Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging.

    Directory of Open Access Journals (Sweden)

    Aviv Bergman

    2007-08-01

    Full Text Available An unrealized potential to understand the genetic basis of aging in humans, is to consider the immense survival advantage of the rare individuals who live 100 years or more. The Longevity Gene Study was initiated in 1998 at the Albert Einstein College of Medicine to investigate longevity genes in a selected population: the "oldest old" Ashkenazi Jews, 95 years of age and older, and their children. The study proved the principle that some of these subjects are endowed with longevity-promoting genotypes. Here we reason that some of the favorable genotypes act as mechanisms that buffer the deleterious effect of age-related disease genes. As a result, the frequency of deleterious genotypes may increase among individuals with extreme lifespan because their protective genotype allows disease-related genes to accumulate. Thus, studies of genotypic frequencies among different age groups can elucidate the genetic determinants and pathways responsible for longevity. Borrowing from evolutionary theory, we present arguments regarding the differential survival via buffering mechanisms and their target age-related disease genes in searching for aging and longevity genes. Using more than 1,200 subjects between the sixth and eleventh decades of life (at least 140 subjects in each group, we corroborate our hypotheses experimentally. We study 66 common allelic site polymorphism in 36 candidate genes on the basis of their phenotype. Among them we have identified a candidate-buffering mechanism and its candidate age-related disease gene target. Previously, the beneficial effect of an advantageous cholesteryl ester transfer protein (CETP-VV genotype on lipoprotein particle size in association with decreased metabolic and cardiovascular diseases, as well as with better cognitive function, have been demonstrated. We report an additional advantageous effect of the CETP-VV (favorable genotype in neutralizing the deleterious effects of the lipoprotein(a (LPA gene

  12. Malicious Botnet Survivability Mechanism Evolution Forecasting by Means of a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nikolaj Goranin

    2012-04-01

    Full Text Available Botnets are considered to be among the most dangerous modern malware types and the biggest current threats to global IT infrastructure. Botnets are rapidly evolving, and therefore forecasting their survivability strategies is important for the development of countermeasure techniques. The article propose the botnet-oriented genetic algorithm based model framework, which aimed at forecasting botnet survivability mechanisms. The model may be used as a framework for forecasting the evolution of other characteristics. The efficiency of different survivability mechanisms is evaluated by applying the proposed fitness function. The model application area also covers scientific botnet research and modelling tasks.

  13. Genetic instability in budding and fission yeast—sources and mechanisms

    Science.gov (United States)

    Skoneczna, Adrianna; Kaniak, Aneta; Skoneczny, Marek

    2015-01-01

    Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. PMID:26109598

  14. Comparison of physiological and genetic effects of gamma radiation and sodium azide on two rice (Oryza sativa, L.) genotypes

    International Nuclear Information System (INIS)

    Faracco, A.L.A.

    1990-01-01

    The sensitivity of both genotypes (Oryzica 1 and Strain 30036) to gamma rays and sodium azide is studied. Doses of gamma-rays and concentrations of sodium azide were chosen so as to produce around 20%-25% height reduction in these genotypes. Emergence, survival and fertility were the physiological effects on M 1 generation analysed after the final treatment. The number of chlorophyll mutations and the number of seedling mutants were counted in M 2 generation. Taking into consideration, specially M 1 generation sterility, it was concluded that for the two genotypes studied, sodium azide presented a greater mutagen effect. (M.A.C.)

  15. Behavioral and Genetic Evidence for GIRK Channels in the CNS: Role in Physiology, Pathophysiology, and Drug Addiction.

    Science.gov (United States)

    Mayfield, Jody; Blednov, Yuri A; Harris, R Adron

    2015-01-01

    G protein-coupled inwardly rectifying potassium (GIRK) channels are widely expressed throughout the brain and mediate the inhibitory effects of many neurotransmitters. As a result, these channels are important for normal CNS function and have also been implicated in Down syndrome, Parkinson's disease, psychiatric disorders, epilepsy, and drug addiction. Knockout mouse models have provided extensive insight into the significance of GIRK channels under these conditions. This review examines the behavioral and genetic evidence from animal models and genetic association studies in humans linking GIRK channels with CNS disorders. We further explore the possibility that subunit-selective modulators and other advanced research tools will be instrumental in establishing the role of individual GIRK subunits in drug addiction and other relevant CNS diseases and in potentially advancing treatment options for these disorders. © 2015 Elsevier Inc. All rights reserved.

  16. [Genetic and physiological compatibility of different forms of stem eelworms. VI. The crossing of eelworms from cultivated plants and weeds].

    Science.gov (United States)

    Ladygina, N M

    1978-01-01

    The crossing of stem eelworms of onion and red clover with these from Cirsium setosum and Taraxacum officinale resulted in the fertilization of females, egglaying and embriogenesis. However, the hybrid eggs died, as a rule. Only in one experiment a large population developed up to F5 but few hybrids survived to F10. The studied stem eelworms of weeds are genetically non-compatible with Ditylenchus dipsaci of onion and red clover and are distinct species.

  17. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.

    Science.gov (United States)

    Nasr Esfahani, Maryam; Sulieman, Saad; Schulze, Joachim; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2014-09-01

    Drought negatively impacts symbiotic nitrogen fixation (SNF) in Cicer arietinum L. (chickpea), thereby limiting yield potential. Understanding how drought affects chickpea nodulation will enable the development of strategies to biotechnologically engineer chickpea varieties with enhanced SNF under drought conditions. By analyzing carbon and nitrogen metabolism, we studied the mechanisms of physiological adjustment of nitrogen fixation in chickpea plants nodulated with Mesorhizobium ciceri during both drought stress and subsequent recovery. The nitrogenase activity, levels of several key carbon (in nodules) and nitrogen (in both nodules and leaves) metabolites and antioxidant compounds, as well as the activity of related nodule enzymes were examined in M. ciceri-inoculated chickpea plants under early drought stress and subsequent recovery. Results indicated that drought reduced nitrogenase activity, and that this was associated with a reduced expression of the nifK gene. Furthermore, drought stress promoted an accumulation of amino acids, mainly asparagine in nodules (but not in leaves), and caused a cell redox imbalance in nodules. An accumulation of organic acids, especially malate, in nodules, which coincided with the decline of nodulated root respiration, was also observed under drought stress. Taken together, our findings indicate that reduced nitrogenase activity occurring at early stages of drought stress involves, at least, the inhibition of respiration, nitrogen accumulation and an imbalance in cell redox status in nodules. The results of this study demonstrate the potential that the genetic engineering-based improvement of SNF efficiency could be applied to reduce the impact of drought on the productivity of chickpea, and perhaps other legume crops. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  18. Coexistence of insulin resistance and increased glucose tolerance in pregnant rats: a physiological mechanism for glucose maintenance.

    Science.gov (United States)

    Carrara, Marcia Aparecida; Batista, Márcia Regina; Saruhashi, Tiago Ribeiro; Felisberto, Antonio Machado; Guilhermetti, Marcio; Bazotte, Roberto Barbosa

    2012-06-06

    The contribution of insulin resistance (IR) and glucose tolerance to the maintenance of blood glucose levels in non diabetic pregnant Wistar rats (PWR) was investigated. PWR were submitted to conventional insulin tolerance test (ITT) and glucose tolerance test (GTT) using blood sample collected 0, 10 and 60 min after intraperitoneal insulin (1 U/kg) or oral (gavage) glucose (1g/kg) administration. Moreover, ITT, GTT and the kinetics of glucose concentration changes in the fed and fasted states were evaluated with a real-time continuous glucose monitoring system (RT-CGMS) technique. Furthermore, the contribution of the liver glucose production was investigated. Conventional ITT and GTT at 0, 7, 14 and 20 days of pregnancy revealed increased IR and glucose tolerance after 20 days of pregnancy. Thus, this period of pregnancy was used to investigate the kinetics of glucose changes with the RT-CGMS technique. PWR (day 20) exhibited a lower (pinsulin sensitivity and/or glucose tolerance during late pregnancy. In contrast to the general view that IR is a pathological process associated with gestational diabetes, a certain degree of IR may represent an important physiological mechanism for blood glucose maintenance during fasting. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine.

    Science.gov (United States)

    Huang, Rong-Chi

    2018-02-01

    Circadian clocks evolved to allow plants and animals to adapt their behaviors to the 24-hr change in the external environment due to the Earth's rotation. While the first scientific observation of circadian rhythm in the plant leaf movement may be dated back to the early 18th century, it took 200 years to realize that the leaf movement is controlled by an endogenous circadian clock. The cloning and characterization of the first Drosophila clock gene period in the early 1980s, independently by Jeffery C. Hall and Michael Rosbash at Brandeis University and Michael Young at Rockefeller University, paved the way for their further discoveries of additional genes and proteins, culminating in establishing the so-called transcriptional translational feedback loop (TTFL) model for the generation of autonomous oscillator with a period of ∼24 h. The 2017 Nobel Prize in Physiology or Medicine was awarded to honor their discoveries of molecular mechanisms controlling the circadian rhythm. Copyright © 2018 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  20. Induction of Osmoadaptive Mechanisms and Modulation of Cellular Physiology Help Bacillus licheniformis Strain SSA 61 Adapt to Salt Stress

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sangeeta; Aggarwal, Chetana; Thakur, Jyoti Kumar; Bandeppa, G. S.; Khan, Md. Aslam; Pearson, Lauren M.; Babnigg, Gyorgy; Giometti, Carol S.; Joachimiak, Andrzej

    2015-01-06

    Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhanced expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.

  1. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants.

    Directory of Open Access Journals (Sweden)

    Steven C Bagley

    2016-04-01

    Full Text Available Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford, and compared to a large database of published disease-associated genetic variants (VARIMED; data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups.

  2. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18.

    Directory of Open Access Journals (Sweden)

    Stephen D Bentley

    2007-02-01

    Full Text Available The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an

  3. Genetic Mechanisms of Antibiotic Resistance and the Role of Antibiotic Adjuvants.

    Science.gov (United States)

    Pontes, Daniela Santos; de Araujo, Rodrigo Santos Aquino; Dantas, Natalina; Scotti, Luciana; Scotti, Marcus Tullius; de Moura, Ricardo Olimpio; Mendonca-Junior, Francisco Jaime Bezerra

    2018-01-01

    The ever increasing number of multidrug-resistant microorganism pathogens has become a great and global public health threat. Antibiotic mechanisms of action and the opposing mechanisms of resistance are intimately associated, but comprehension of the biochemical and molecular functions of such drugs is not a simple exercise. Both the environment, and genetic settings contribute to alterations in phenotypic resistance (natural bacterial evolution), and make it difficult to control the emergence and impacts of antibiotic resistance. Under such circumstances, comprehension of how bacteria develop and/or acquire antibiotic resistance genes (ARG) has a critical role in developing propositions to fight against these superbugs, and to search for new drugs. In this review, we present and discuss both general information and examples of common genetic and molecular mechanisms related to antibiotic resistance, as well as how the expression and interactions of ARGs are important to drug resistance. At the same time, we focus on the recent achievements in the search for antibiotic adjuvants, which help combat antibiotic resistance through deactivation of bacterial mechanisms of action such as β-lactamases. Recent advances involving the use of anti-resistance drugs such as: efflux pump inhibitors; anti-virulence drugs; drugs against quorum sensing; and against type II/III secretion systems are revealed. Such antibiotic adjuvants (as explored herein) collaborate against the problems of antibiotic resistance, and may restore or prolong the therapeutic activity of known antibiotics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  5. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos.

    Science.gov (United States)

    Ovejero Aguilar, Ramiro J A; Jahn, Graciela A; Soto-Gamboa, Mauricio; Novaro, Andrés J; Carmanchahi, Pablo

    2016-01-01

    Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. As expected, there was a marked adrenal ( p -value = .3.4e-12) and gonadal ( p -value = 0.002656) response due to seasonal variation in Lama guanicoe . No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period ( p -value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation ( p -value = 1.952e-11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine ( r 2  = 0.806) and gonad ( r 2  = 0.7231) response due to seasonal

  6. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos

    Directory of Open Access Journals (Sweden)

    Ramiro J.A. Ovejero Aguilar

    2016-11-01

    Full Text Available Background Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life’s challenges is the activation of the Stress (HPA and Gonadal (HPG axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T and Glucocorticoid (GCs in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods All of the data for individuals were collected by non-invasive methods (fecal samples to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results As expected, there was a marked adrenal (p-value = .3.4e−12 and gonadal (p-value = 0.002656 response due to seasonal variation in Lama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839. Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e−11, COR = 0.50 between the adrenal and gonadal system. The marked endocrine (r2 = 0.806 and gonad (r2 = 0

  7. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium.

    Science.gov (United States)

    Wu, Dan; Li, Ang; Ma, Fang; Yang, Jixian; Xie, Yutong

    2016-07-01

    Agrobacterium is a genus of gram-negative bacteria that can produce several typical exopolysaccharides with commercial uses in the food and pharmaceutical fields. In particular, succinoglycan and curdlan, due to their good quality in high yield, have been employed on an industrial scale comparatively early. Exopolysaccharide biosynthesis is a multiple-step process controlled by different functional genes, and various environmental factors cause changes in exopolysaccharide biosynthesis through regulatory mechanisms. In this mini-review, we focus on the genetic control and regulatory mechanisms of succinoglycan and curdlan produced by Agrobacterium. Some key functional genes and regulatory mechanisms for exopolysaccharide biosynthesis are described, possessing a high potential for application in metabolic engineering to modify exopolysaccharide production and physicochemical properties. This review may contribute to the understanding of exopolysaccharide biosynthesis and exopolysaccharide modification by metabolic engineering methods in Agrobacterium.

  8. Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction

    Directory of Open Access Journals (Sweden)

    Bianca Jupp

    2013-03-01

    Full Text Available Impulsivity describes the tendency of an individual to act prematurely without foresight and is associated with a number of neuropsychiatric co-morbidities, including drug addiction. As such, there is increasing interest in the neurobiological mechanisms of impulsivity, as well as the genetic and environmental influences that govern the expression of this behaviour. Tests used on rodent models of impulsivity share strong parallels with tasks used to assess this trait in humans, and studies in both suggest a crucial role of monoaminergic corticostriatal systems in the expression of this behavioural trait. Furthermore, rodent models have enabled investigation of the causal relationship between drug abuse and impulsivity. Here, we review the use of rodent models of impulsivity for investigating the mechanisms involved in this trait, and how these mechanisms could contribute to the pathogenesis of addiction.

  9. Epigenetics and genetics in endometrial cancer: new carcinogenic mechanisms and relationship with clinical practice.

    Science.gov (United States)

    Banno, Kouji; Kisu, Iori; Yanokura, Megumi; Masuda, Kenta; Ueki, Arisa; Kobayashi, Yusuke; Susumu, Nobuyuki; Aoki, Daisuke

    2012-04-01

    Endometrial cancer is the seventh most common cancer worldwide among females. An increased incidence and a younger age of patients are also predicted to occur, and therefore elucidation of the pathological mechanisms is important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, epigenetic mechanisms have been examined. Silencing of genes by DNA hypermethylation, hereditary epimutation of DNA mismatch repair genes and regulation of gene expression by miRNAs may underlie carcinogenesis in endometrial cancer. New therapies include targeting epigenetic changes using histone deacetylase inhibitors. Some cases of endometrial cancer may also be hereditary. Thus, patients with Lynch syndrome which is a hereditary disease, have a higher risk for developing endometrial cancer than the general population. Identification of such disease-related genes may contribute to early detection and prevention of endometrial cancer.

  10. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    Science.gov (United States)

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  11. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli

    DEFF Research Database (Denmark)

    Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.

    2018-01-01

    Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic...

  12. The physiological and biochemical mechanism of nitrate-nitrogen removal by water hyacinth from agriculture eutrophic wastewater

    Directory of Open Access Journals (Sweden)

    WU Wenwei

    Full Text Available ABSTRACT Large amount of agriculturl wastewater containing high level nitrate-nitrogen (NO3 --N is produced from modern intensive agricultural production management due to the excessive use of chemical fertilizers and livestock scale farming. The hydroponic experiment of water hyacinth was conducted for analyzing the content of NO3 --N, soluble sugar content, N-transported the amino acid content and growth change in water hyacinth to explore its purification ability to remove NO3 --N from agriculture eutrophic wastewater and physiological and biochemical mechanism of this plant to remove NO3 --N. The results showed that the water hyacinth could effectively utilize the NO3 --N from agriculture eutrophic wastewater. Compared with the control, the contents of NO3 -change to NO3 --N in the root, leaf petiole and leaf blade of water hyacinth after treatment in the wastewater for a week was significantly higher than that in the control plants treated with tap water, and also the biomass of water hyacinth increased significantly, indicating that the accumulation of biomass due to the rapid growth of water hyacinth could transfer some amount of NO3 --N.13C-NMR analysis confirmed that water hyacinth would convert the part nitrogen absorbed from agriculture eutrophic wastewater to ammonia nitrogen, which increased the content of aspartic acid and glutamic acid, decreased the content of soluble sugar, sucrose and fructose and the content of N-storaged asparagine and glutamine, lead to enhance the synthesis of plant amino acids and promote the growth of plants. These results indicate that the nitrate in agriculture eutrophic wastewater can be utilized by water hyacinth as nitrogen nutrition, and can promote plant growth by using soluble sugar and amide to synthesis amino acids and protein.

  13. Elucidation of molecular mechanisms of physiological variations between bovine subcutaneous and visceral fat depots under different nutritional regimes.

    Directory of Open Access Journals (Sweden)

    Josue Moura Romao

    Full Text Available Adipose tissue plays a critical role in energy homeostasis and metabolism. There is sparse understanding of the molecular regulation at the protein level of bovine adipose tissues, especially within different fat depots under different nutritional regimes. The objective of this study was to analyze the differences in protein expression between bovine subcutaneous and visceral fat depots in steers fed different diets and to identify the potential regulatory molecular mechanisms of protein expression. Subcutaneous and visceral fat tissues were collected from 16 British-continental steers (15.5 month old fed a high-fat diet (7.1% fat, n=8 or a control diet (2.7% fat, n=8. Protein expression was profiled using label free quantification LC-MS/MS and expression of selected transcripts was evaluated using qRT-PCR. A total of 682 proteins were characterized and quantified with fat depot having more impact on protein expression, altering the level of 51.0% of the detected proteins, whereas diet affected only 5.3%. Functional analysis revealed that energy production and lipid metabolism were among the main functions associated with differentially expressed proteins between fat depots, with visceral fat being more metabolically active than subcutaneous fat as proteins associated with lipid and energy metabolism were upregulated. The expression of several proteins was significantly correlated to subcutaneous fat thickness and adipocyte size, indicating their potential as adiposity markers. A poor correlation (r=0.245 was observed between mRNA and protein levels for 9 genes, indicating that many proteins may be subjected to post-transcriptional regulation. A total of 8 miRNAs were predicted to regulate more than 20% of lipid metabolism proteins differentially expressed between fat depots, suggesting that miRNAs play a role in adipose tissue regulation. Our results show that proteomic changes support the distinct metabolic and physiological characteristics

  14. Elucidation of molecular mechanisms of physiological variations between bovine subcutaneous and visceral fat depots under different nutritional regimes.

    Science.gov (United States)

    Romao, Josue Moura; Jin, Weiwu; He, Maolong; McAllister, Tim; Guan, Le Luo

    2013-01-01

    Adipose tissue plays a critical role in energy homeostasis and metabolism. There is sparse understanding of the molecular regulation at the protein level of bovine adipose tissues, especially within different fat depots under different nutritional regimes. The objective of this study was to analyze the differences in protein expression between bovine subcutaneous and visceral fat depots in steers fed different diets and to identify the potential regulatory molecular mechanisms of protein expression. Subcutaneous and visceral fat tissues were collected from 16 British-continental steers (15.5 month old) fed a high-fat diet (7.1% fat, n=8) or a control diet (2.7% fat, n=8). Protein expression was profiled using label free quantification LC-MS/MS and expression of selected transcripts was evaluated using qRT-PCR. A total of 682 proteins were characterized and quantified with fat depot having more impact on protein expression, altering the level of 51.0% of the detected proteins, whereas diet affected only 5.3%. Functional analysis revealed that energy production and lipid metabolism were among the main functions associated with differentially expressed proteins between fat depots, with visceral fat being more metabolically active than subcutaneous fat as proteins associated with lipid and energy metabolism were upregulated. The expression of several proteins was significantly correlated to subcutaneous fat thickness and adipocyte size, indicating their potential as adiposity markers. A poor correlation (r=0.245) was observed between mRNA and protein levels for 9 genes, indicating that many proteins may be subjected to post-transcriptional regulation. A total of 8 miRNAs were predicted to regulate more than 20% of lipid metabolism proteins differentially expressed between fat depots, suggesting that miRNAs play a role in adipose tissue regulation. Our results show that proteomic changes support the distinct metabolic and physiological characteristics observed between

  15. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans.

    Science.gov (United States)

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G; Joyner, Michael J; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions ( n = 8), and during progressive loss of 1 L blood ( n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result

  16. The genetic characteristics in cytology and plant physiology of two wheat (Triticum aestivum) near isogenic lines with different freezing tolerances.

    Science.gov (United States)

    Wang, Wenqiang; Hao, Qunqun; Wang, Wenlong; Li, Qinxue; Wang, Wei

    2017-11-01

    Freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway. Two wheat (Triticum aestivum) near isogenic lines (NIL) named tafs (freezing sensitivity) and taft (freezing tolerance) were isolated in the laboratory and their various cytological and physiological characteristics under freezing conditions were studied. Proplastid, cell membrane, and mitochondrial ultrastructure were less damaged by freezing treatment in taft than tafs plants. Chlorophyll, ATP, and thylakoid membrane protein contents were significantly higher, but malondialdehyde content was significantly lower in taft than tafs plants under freezing condition. Antioxidant capacity, as indicated by reactive oxygen species accumulation and antioxidant enzyme activity, and the relative gene expression were significantly greater in taft than tafs plants. Soluble sugars and abscisic acid (ABA) contents were significantly higher in taft plants than in tafs plants under both normal and freezing conditions. The upregulated expression levels of certain freezing tolerance-related genes were greater in taft than tafs plants under freezing treatment. The addition of sodium tungstate, an ABA synthesis inhibitor, led to only partial freezing tolerance inhibition in taft plants and the down-regulated expression of some ABA-dependent genes. Thus, both ABA-dependent and ABA-independent signaling pathways are involved in the freezing tolerance of taft plants. At the same time, freezing tolerance in taft plants relied more upon an ABA-independent- than an ABA-dependent antifreeze signaling pathway.

  17. Transferability of MCR-1/2 Polymyxin Resistance: Complex Dissemination and Genetic Mechanism.

    Science.gov (United States)

    Feng, Youjun

    2018-03-09

    Polymyxins, a group of cationic antimicrobial polypeptides, act as a last-resort defense against lethal infections by carbapenem-resistant Gram-negative pathogens. Recent emergence and fast spread of mobilized colistin resistance determinant mcr-1 argue the renewed interest of colistin in clinical therapies, threatening global public health and agriculture production. This mini-review aims to present an updated overview of mcr-1, covering its global dissemination, the diversity of its hosts/plasmid reservoirs, the complexity in the genetic environment adjacent to mcr-1, the appearance of new mcr-like genes, and the molecular mechanisms for mobilized colistin resistance determinant 1/2 (MCR-1/2).

  18. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans

    NARCIS (Netherlands)

    Silvani, A.; Calandra-Buonaura, G.; Johnson, B.D.; Helmond, N. van; Barletta, G.; Cecere, A.G.; Joyner, M.J.; Cortelli, P.

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological

  19. Genetic and Molecular Mechanisms of Quantitative Trait Loci Controlling Maize Inflorescence Architecture.

    Science.gov (United States)

    Li, Manfei; Zhong, Wanshun; Yang, Fang; Zhang, Zuxin

    2018-03-01

    The establishment of inflorescence architecture is critical for the reproduction of flowering plant species. The maize plant generates two types of inflorescences, the tassel and the ear, and their architectures have a large effect on grain yield and yield-related traits that are genetically controlled by quantitative trait loci (QTLs). Since ear and tassel architecture are deeply affected by the activity of inflorescence meristems, key QTLs and genes regulating meristematic activity have important impacts on inflorescence development and show great potential for optimizing grain yield. Isolation of yield trait-related QTLs is challenging, but these QTLs have direct application in maize breeding. Additionally, characterization and functional dissection of QTLs can provide genetic and molecular knowledge of quantitative variation in inflorescence architecture. In this review, we summarize currently identified QTLs responsible for the establishment of ear and tassel architecture and discuss the potential genetic control of four ear-related and four tassel-related traits. In recent years, several inflorescence architecture-related QTLs have been characterized at the gene level. We review the mechanisms of these characterized QTLs.

  20. Comparative population genetics of two invading ticks: Evidence of the ecological mechanisms underlying tick range expansions.

    Science.gov (United States)

    Nadolny, Robyn; Gaff, Holly; Carlsson, Jens; Gauthier, David

    2015-10-01

    Two species of ixodid tick, Ixodes affinis Neumann and Amblyomma maculatum Koch, are simultaneously expanding their ranges throughout the mid-Atlantic region of the US. Although we have some understanding of the ecology and life history of these species, the ecological mechanisms governing where and how new populations establish and persist are unclear. To assess population connectivity and ancestry, we sequenced a fragment of the 16S mitochondrial rRNA gene from a representative sample of individuals of both species from populations throughout the eastern US. We found that despite overlapping host preferences throughout ontogeny, each species exhibited very different genetic and geographic patterns of population establishment and connectivity. I. affinis was of two distinct mitochondrial clades, with a clear geographic break separating northern and southern populations. Both I. affinis populations showed evidence of recent expansion, although the southern population was more genetically diverse, indicating a longer history of establishment. A. maculatum exhibited diverse haplotypes that showed no significant relationship with geographic patterns and little apparent connectivity between sites. Heteroplasmy was also observed in the 16S mitochondrial rRNA gene in 3.5% of A. maculatum individuals. Genetic evidence suggests that these species rely on different key life stages to successfully disperse into novel environments, and that host vagility, habitat stability and habitat connectivity all play critical roles in the establishment of new tick populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Science.gov (United States)

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.

  2. The effect of foot reflexology on physiologic parameters and mechanical ventilation weaning time in patients undergoing open-heart surgery: A clinical trial study.

    Science.gov (United States)

    Ebadi, Abbas; Kavei, Parastoo; Moradian, Seyyed Tayyeb; Saeid, Yaser

    2015-08-01

    The aim of this study was to investigate the efficacy of foot reflexology on physiological parameters and mechanical ventilation weaning time in patients undergoing open-heart surgery. This was a double blind three-group randomized controlled trial. Totally, 96 patients were recruited and randomly allocated to the experimental, placebo, and the control groups. Study groups respectively received foot reflexology, simple surface touching, and the routine care of the study setting. Physiological parameters (pulse rate, respiratory rate, systolic and diastolic blood pressures, mean arterial pressure, percutaneous oxygen saturation) and weaning time were measured. The study groups did not differ significantly in terms of physiological parameters (P value > 0.05). However, the length of weaning time in the experimental group was significantly shorter than the placebo and the control groups (P value foot reflexology in shortening the length of weaning time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Association of GSK-3β genetic variation with GSK-3β expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia.

    Science.gov (United States)

    Blasi, Giuseppe; Napolitano, Francesco; Ursini, Gianluca; Di Giorgio, Annabella; Caforio, Grazia; Taurisano, Paolo; Fazio, Leonardo; Gelao, Barbara; Attrotto, Maria Teresa; Colagiorgio, Lucia; Todarello, Giovanna; Piva, Francesco; Papazacharias, Apostolos; Masellis, Rita; Mancini, Marina; Porcelli, Annamaria; Romano, Raffaella; Rampino, Antonio; Quarto, Tiziana; Giulietti, Matteo; Lipska, Barbara K; Kleinman, Joel E; Popolizio, Teresa; Weinberger, Daniel R; Usiello, Alessandro; Bertolino, Alessandro

    2013-08-01

    OBJECTIVE Glycogen synthase kinase 3β (GSK-3β) is an enzyme implicated in neurodevelopmental processes with a broad range of substrates mediating several canonical signaling pathways in the brain. The authors investigated the association of variation in the GSK-3β gene with a series of progressively more complex phenotypes of relevance to schizophrenia, a neurodevelopmental disorder with strong genetic risk. METHOD Based on computer predictions, the authors investigated in humans the association of GSK-3β functional variation with 1) GSK-3β mRNA expression from postmortem prefrontal cortex, 2) GSK-3β and β-catenin protein expression from peripheral blood mononuclear cells (PBMCs), 3) prefrontal imaging phenotypes, and 4) diagnosis of schizophrenia. RESULTS Consistent with predictions, the TT genotype of a single-nucleotide polymorphism in GSK-3β (rs12630592) was associated with reduced GSK-3β mRNA from postmortem prefrontal cortex. Furthermore, this genotype was associated with GSK-3β protein expression and kinase activity, as well as with downstream effects on β-catenin expression in PBMCs. Finally, the TT genotype was associated with attenuated functional MRI prefrontal activity, reduced prefrontal cortical thickness, and diagnosis of schizophrenia. CONCLUSIONS These results suggest that GSK-3β variation is implicated in multiple phenotypes relevant to schizophrenia.

  4. Studies on cytological, physiological and genetic characteristics in somatic mutant strains of Sugi (Cryptomeria japonica D. Don)

    International Nuclear Information System (INIS)

    Maeta, T.; Somegou, M.; Nakahira, K.; Miyazaki, Y.; Kondo, T.

    1982-01-01

    From microscopic observation of the pollen of induced mutant strains in Sugi (Cryptomeria japonica D. Don), it was found that there were large differences in pollen fertility among the mutant strains, and that it deviated year to year from the mother plants. The large differences in frequency of sterile pollen among mutant strains depended on the genetic characteristics of each mutant strain. Higher frequencies of sterile pollen were observed at the terminal part of branchlets in some mutant strains, and this was considered to be induced by the lateness of flower-bud formation at low temperature conditions in late summer. Delayed formation and gibberellic acid treatment applied for flower induction resulted in low fertility and abnormality of pollen in mutant strains. Chromosome aberration in mutant strains was caused either by gamma irradiation or by some mutational events that responded to environmental conditions. In the former case, aberration might have been maintained for a long period through vegetative propagation. Some of the irregularities were due to mitotic cell division, because cells with micronuclei at the pacytene stage in pollen mother cells and with fragments at MI were observed. Somatic mutability of Kuma-sugi mutants after re-irradiation was investigated. From waxless mutants morphological somatic mutations, which have fat or stout stems and thick and short needles, were frequently produced, whereas from morphological mutants the lowest somatic mutation frequency was induced. In some mutant strains higher rooting ability than the mother plants was found, and the possibility of character improvement was pointed out. (author)

  5. Robustness in Regulatory Interaction Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic

    Science.gov (United States)

    Demongeot, Jacques; Ben Amor, Hedi; Elena, Adrien; Gillois, Pierre; Noual, Mathilde; Sené, Sylvain

    2009-01-01

    Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability). We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses of nodes or edges in the networks interactions architecture, changes in their environmental boundary conditions as well as changes in the update schedule (or updating mode) of the states of their elements (e.g., if these elements are genes, their synchronous coexpression mode versus their sequential expression). We define the generic notions of boundary, core, and critical vertex or edge of the underlying interaction graph of the regulatory network, whose disappearance causes dramatic changes in the number and nature of attractors (e.g., passage from a bistable behaviour to a unique periodic regime) or in the range of their basins of stability. The dynamic transition of states will be presented in the framework of threshold Boolean automata rules. A panorama of applications at different levels will be given: brain and plant morphogenesis, bulbar cardio-respiratory regulation, glycolytic/oxidative metabolic coupling, and eventually cell cycle and feather morphogenesis genetic control. PMID:20057955

  6. Robustness in Regulatory Interaction Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic

    Directory of Open Access Journals (Sweden)

    Sylvain Sené

    2009-10-01

    Full Text Available Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability. We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses of nodes or edges in the networks interactions architecture, changes in their environmental boundary conditions as well as changes in the update schedule (or updating mode of the states of their elements (e.g., if these elements are genes, their synchronous coexpression mode versus their sequential expression. We define the generic notions of boundary, core, and critical vertex or edge of the underlying interaction graph of the regulatory network, whose disappearance causes dramatic changes in the number and nature of attractors (e.g., passage from a bistable behaviour to a unique periodic regime or in the range of their basins of stability. The dynamic transition of states will be presented in the framework of threshold Boolean automata rules. A panorama of applications at different levels will be given: brain and plant morphogenesis, bulbar cardio-respiratory regulation, glycolytic/oxidative metabolic coupling, and eventually cell cycle and feather morphogenesis genetic control.

  7. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD.

    Science.gov (United States)

    Chen, Hongbo; Kankel, Mark W; Su, Susan C; Han, Steve W S; Ofengeim, Dimitry

    2018-03-01

    Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia

  8. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction.

    Science.gov (United States)

    Weinstein, Aviv; Lejoyeux, Michel

    2015-03-01

    There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.

  9. Compensatory mechanisms in genetic models of neurodegeneration: are the mice better than humans?

    Directory of Open Access Journals (Sweden)

    Grzegorz eKreiner

    2015-03-01

    Full Text Available Neurodegenerative diseases are one of the main causes of mental and physical disabilities. Neurodegeneration has been estimated to begin many years before the first clinical symptoms manifest, and even a prompt diagnosis at this stage provides very little advantage for a more effective treatment as the currently available pharmacotherapies are based on disease symptomatology. The etiology of the majority of neurodegenerative diseases remains unknown, and even for those diseases caused by identified genetic mutations, the direct pathways from gene alteration to final cell death have not yet been fully elucidated. Advancements in genetic engineering have provided many transgenic mice that are used as an alternative to pharmacological models of neurodegenerative diseases. Surprisingly, even the models reiterating the same causative mutations do not fully recapitulate the inevitable neuronal loss, and some fail to even show phenotypic alterations, which suggests the possible existence of compensatory mechanisms. A better evaluation of these mechanisms may not only help us to explain why neurodegenerative diseases are mostly late-onset disorders in humans but may also provide new markers and targets for novel strategies designed to extend neuronal function and survival. The aim of this mini-review is to draw attention to this under-explored field in which investigations may reasonably contribute to unveiling hidden reserves in the organism.

  10. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    Science.gov (United States)

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Effects and safety of mechanical bathing as a complementary therapy for terminal stage cancer patients from the physiological and psychological perspective: a pilot study.

    Science.gov (United States)

    Fujimoto, Sawako; Iwawaki, Yoko; Takishita, Yukie; Yamamoto, Yoko; Murota, Masako; Yoshioka, Saori; Hayano, Azusa; Hosokawa, Toyoshi; Yamanaka, Ryuya

    2017-11-01

    In palliative care hospitals in Japan, mechanical bathing is conducted to maintain cleanliness. However, the physiological and psychological influence of mechanical bathing on patients has not been sufficiently studied. The objective of this study was to assess, using physiological and psychological indices, the effects of mechanical bathing care for patients in the terminal stage of cancer. Mechanical bathing was performed using a Marine Court SB7000 in a supine or semi-seated position. The heart rate variability analysis method was used to measure autonomic nervous system function. The patients' state of anxiety was assessed using the State-Trait Anxiety Inventory (STAI), a psychological index, and patients' verbal responses were also collected after mechanical bathing. Twenty-four patients were enrolled in this study. Their sympathetic and parasympathetic nervous activity did not differ before and after bathing. A significant difference was found between pre- and post-bathing anxiety, as evaluated by STAI (P mechanical bathing according to STAI evaluation and their verbal responses. The findings suggest that the method of bathing used in this study is safe and pain-relieving for terminal stage cancer patients. It is thus possible to provide safe and comfortable care for terminal stage cancer patients using mechanical baths. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. Design Optimization of Steering Mechanisms for Articulated Off-Road Vehicles Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Chen Zhou

    2018-02-01

    Full Text Available Two cylinders arranged symmetrically on a frame have become a major form of steering mechanism for articulated off-road vehicles (AORVs. However, the differences of stroke and arm lead to pressure fluctuation, vibration noise, and a waste of torque. In this paper, the differences of stroke and arm are reduced based on a genetic algorithm (GA. First, the mathematical model of the steering mechanism is put forward. Then, the difference of stroke and arm are optimized using a GA. Finally, a FW50GLwheel loader is used as an example to demonstrate the proposed GA-based optimization method, and its effectiveness is verified by means of automatic dynamic analysis of mechanical systems (ADAMS. The stroke difference of the steering hydraulic cylinders was reduced by 92% and the arm difference reached a decrease of 78% through GA optimization, in comparison with unoptimized structures. The simulation result shows that the steering mechanism optimized by GA behaved better than by previous methods.

  13. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  14. Nasal Physiology

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Physiology Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy ...

  15. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  16. Network-based integration of molecular and physiological data elucidates regulatory mechanisms underlying adaptation to high-fat diet

    NARCIS (Netherlands)

    Derous, D.; Kelder, T.; Schothorst, E.M. van; Erk, M. van; Voigt, A.; Klaus, S.; Keijer, J.; Radonjic, M.

    2015-01-01

    Health is influenced by interplay of molecular, physiological and environmental factors. To effectively maintain health and prevent disease, health-relevant relations need to be understood at multiple levels of biological complexity. Network-based methods provide a powerful platform for integration

  17. Children's Patterns of Emotional Reactivity to Conflict as Explanatory Mechanisms in Links between Interpartner Aggression and Child Physiological Functioning

    Science.gov (United States)

    Davies, Patrick T.; Sturge-Apple, Melissa L.; Cicchetti, Dante; Manning, Liviah G.; Zale, Emily

    2009-01-01

    Background: This paper examined children's fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Methods: Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children's emotional…

  18. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    Science.gov (United States)

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  19. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction

    Science.gov (United States)

    Engleman, Eric A.; Katner, Simon N.; Neal-Beliveau, Bethany S.

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH’s effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system–dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine

  20. Physiological Acoustics

    Science.gov (United States)

    Young, Eric D.

    The analysis of physiological sound in the peripheral auditory system solves three important problems. First, sound energy impinging on the head must be captured and presented to the transduction apparatus in the ear as a suitable mechanical signal; second, this mechanical signal needs to be transduced into a neural representation that can be used by the brain; third, the resulting neural representation needs to be analyzed by central neurons to extract information useful to the animal. This chapter provides an overview of some aspects of the first two of these processes. The description is entirely focused on the mammalian auditory system, primarily on human hearing and on the hearing of a few commonly used laboratory animals (mainly rodents and carnivores). Useful summaries of non-mammalian hearing are available [1]. Because of the large size of the literature, review papers are referenced wherever possible.

  1. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases.

    Science.gov (United States)

    Bettencourt, Conceição; Hensman-Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas-Gómez, Petra; García-Velázquez, Lizbeth Esmeralda; Alonso-Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J; Jones, Lesley

    2016-06-01

    The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome-wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single-nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10(-5) ). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10(-5) ) and all SCAs (p = 2.22 × 10(-4) ) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10(-5) ), all in the same direction as in the HD GWAS. We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983-990. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  2. Genetic Evidence for the Physiological Significance of the d-Tagatose 6-Phosphate Pathway of Lactose and d-Galactose Degradation in Staphylococcus aureus1

    Science.gov (United States)

    Bissett, Donald L.; Anderson, Richard L.

    1974-01-01

    Mutants of Staphylococcus aureus were isolated which were unable to utilize d-galactose or lactose, but which were able to utilize all other carbohydrates tested. Growth of the mutants on a peptone-containing medium was inhibited by d-galactose. Of those mutants selected for further study, one (tagI2) was missing d-galactose 6-phosphate isomerase, one (tagK3) was missing d-tagatose 6-phosphate kinase, and one (tagA4) was missing d-tagatose 1, 6-diphosphate aldolase. Each of these mutants accumulated the substrate of the missing enzyme intracellularly. Spontaneous revertants of each of the mutants simultaneously regained their ability to utilize d-galactose and lactose, lost their sensitivity to d-galactose, regained the missing enzymatic activities, and no longer accumulated intermediates of the d-tagatose 6-phosphate pathway. These data support our previous contention that the physiologically significant route for the metabolism of d-galactose and the d-galactosyl moiety of lactose in S. aureus is the d-tagatose 6-phosphate pathway. Furthermore, a mutant constitutive for all three enzymes of this pathway was isolated, indicating that the products of the tagI, tagK, and tagA genes are under common genetic control. This conclusion was supported by the demonstration that d-galactose 6-phosphate isomerase, d-tagatose 6-phosphate kinase, and d-tagatose 1, 6-diphosphate aldolase are coordinately induced in the parental strain. PMID:4277494

  3. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    2013-01-01

    Full Text Available Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.

  4. Optimal synthesis of four-bar steering mechanism using AIS and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Ettefagh, Mir Mohammad; Javash, Morteza Saeidi [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-06-15

    Synthesis of four-bar Ackermann steering mechanism was considered as an optimization problem for generating the best function between input and output links. The steering mechanism was designed through two heuristic optimization methods, namely, artificial immune system (AIS) algorithm and genetic algorithm (GA). The optimization was implemented using the two methods, length was selected as optimization parameter in the first method, whereas precision point distribution was considered in the second method. Two of the links in the first method had the same length to achieve a symmetric mechanism; one of these lengths was considered as optimization parameter. Five precision points were considered in the precision point distribution method, one of which was in the straight line condition, whereas the others were symmetric. The obtained results showed that the AIS algorithm can generate the closest function to the desired function in the first method. By contrast, GA can generate the closest function to the desired function with the least error in the second method.

  5. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    Science.gov (United States)

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Investigation of balancing problem for a planar mechanism using genetic algorithm

    International Nuclear Information System (INIS)

    Erkaya, Selcuk

    2013-01-01

    In this study, optimal balancing of a planar articulated mechanism is investigated to minimize the shaking force and moment fluctuations. Balancing of a four-bar mechanism is formulated as an optimization problem. On the other hand, an objective function based on the sub-components of shaking force and moment is constituted, and design variables consisting of kinematic and dynamic parameters are defined. Genetic algorithm is used to solve the optimization problem under the appropriate constraints. By using commercial simulation software, optimized values of design variables are also tested to evaluate the effectiveness of the proposed optimization process. This work provides a practical method for reducing the shaking force and moment fluctuations. The results show that both the structure of objective function and particularly the selection of weighting factors have a crucial role to obtain the optimum values of design parameters. By adjusting the value of weighting factor according to the relative sensitivity of the related term, there is a certain decrease at the shaking force and moment fluctuations. Moreover, these arrangements also decrease the initiative of mechanism designer on choosing the values of weighting factors.

  7. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions.

    Science.gov (United States)

    Wang, Qi; Liu, Jinge; Zhu, Hongyan

    2018-01-01

    Legumes are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia. The result of this symbiosis is to form nodules on the plant root, within which the bacteria can convert atmospheric nitrogen into ammonia that can be used by the plant. Establishment of a successful symbiosis requires the two symbiotic partners to be compatible with each other throughout the process of symbiotic development. However, incompatibility frequently occurs, such that a bacterial strain is unable to nodulate a particular host plant or forms nodules that are incapable of fixing nitrogen. Genetic and molecular mechanisms that regulate symbiotic specificity are diverse, involving a wide range of host and bacterial genes/signals with various modes of action. In this review, we will provide an update on our current knowledge of how the recognition specificity has evolved in the context of symbiosis signaling and plant immunity.

  8. Heterozygosity level and its relationship with genetic variability mechanisms in beans

    Directory of Open Access Journals (Sweden)

    Rita Carolina de Melo

    Full Text Available ABSTRACT Heterozygosity is an extremely important resource in early breeding programs using autogamous plants because it is usually associated with the presence of genetic variability. Induced mutation and artificial hybridization can increase distinctly the proportion of loci in heterozygosis. This study aimed to compare segregating and mutant populations and relate the mechanisms used to generate variability with their respective heterozygosity levels tested. The treatments mutant populations (M2, M3, M4, M5, M6 and M7, segregating populations (F4, F5 and F6 and lines (BRS Pérola and IPR Uirapuru were evaluated by multivariate analysis and compared by orthogonal contrasts. The canonical discriminant analysis revealed which response variables contributed to differentiate the treatments assessed. All orthogonal contrasts involving the mutant populations showed significant differences, except the contrast between M2 vs. M3, M4, M5, M6, M7. The orthogonal contrast between the mutant and segregating populations denotes a significant variation in the interest in genetic breeding. The traits stem diameter (1.41 and number of legumes per plant (2.72 showed the highest canonical weight in this contrast. Conversely, number of grains per plant (-3.58 approached the mutant and segregating populations. No significant difference was observed in the linear comparison of means F5 vs. F6. The traits are fixed early in the segregant populations, unlike the mutant populations. Comparatively, induced mutation provides more loci in heterozygosis than artificial hybridization. Selection pressure should vary according to the variability creation mechanism used at the beginning of the breeding program.

  9. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  10. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva

    Full Text Available BACKGROUND: Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS and acute myeloid leukaemia (AML. Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. METHODOLOGY/PRINCIPAL FINDINGS: Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+ cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3 and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1 and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. CONCLUSION: This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  11. Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.

    Science.gov (United States)

    Silva, Gabriela; Cardoso, Bruno A; Belo, Hélio; Almeida, António Medina

    2013-01-01

    Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action. Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+) cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1. This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

  12. Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of enterobacteria

    Directory of Open Access Journals (Sweden)

    Helen I. Zgurskaya

    2011-09-01

    Full Text Available TolC is an archetypal member of the Outer membrane Efflux Protein (OEP family. These proteins are involved in export of peptide and small molecule toxins across the outer membrane of Gram-negative bacteria. Genomes of some bacteria such as Pseudomonas species contain multiple copies of OEPs. In contrast, enterobacteria contain a single tolC gene, the product of which functions with multiple transporters. Inactivation of tolC has a major impact on enterobacterial physiology and virulence. Recent studies suggest that the role of TolC in physiology of enterobacteria is very broad and affects almost all aspects of cell adaptation to adverse enviroments. We review the current state of understanding TolC structure and present an integrated view of TolC function in enterobacteria. We propose that seemingly unrelated phenotypes of tolC mutants are linked together by a single most common condition – an oxidative damage to membranes.

  13. Comparative genetic screens in human cells reveal new regulatory mechanisms in WNT signaling

    Science.gov (United States)

    Lebensohn, Andres M; Dubey, Ramin; Neitzel, Leif R; Tacchelly-Benites, Ofelia; Yang, Eungi; Marceau, Caleb D; Davis, Eric M; Patel, Bhaven B; Bahrami-Nejad, Zahra; Travaglini, Kyle J; Ahmed, Yashi; Lee, Ethan; Carette, Jan E; Rohatgi, Rajat

    2016-01-01

    The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling β-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the β-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems. DOI: http://dx.doi.org/10.7554/eLife.21459.001 PMID:27996937

  14. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture.

    Science.gov (United States)

    Ashraf, Muhammad Arslan; Ashraf, Muhammad

    2016-04-01

    Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios

  15. [New theory of holistic integrative physiology and medicine. III: New insight of neurohumoral mechanism and pattern of control and regulation for core axe of respiration, circulation and metabolism].

    Science.gov (United States)

    Sun, Xing-guo

    2015-07-01

    Systemic mechanism of neurohumoral control and regulation for human is limited. We used the new theory of holistic integrative physiology and medicine to approach the mechanism and pattern of neurohumoral control and regulation for life. As the core of human life, there are two core axes of functions. The first one is the common goal of respiration and circulation to transport oxygen and carbon dioxide for cells, and the second one is the goal of gastrointestinal tract and circulation to transport energy material and metabolic product for cells. These two core axes maintain the metabolism. The neurohumoral regulation is holistically integrated and unified for all functions in human body. We simplified explain the mechanism of neurohumoral control and regulation life (respiration and circulation) as the example pattern of sound system. Based upon integrated regulation of life, we described the neurohumoral pattern to control respiration and circulation.

  16. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth.

    Science.gov (United States)

    Commandeur, Arno E; Styer, Aaron K; Teixeira, Jose M

    2015-01-01

    Uterine leiomyomas (fibroids) are highly prevalent benign smooth muscle tumors of the uterus. In the USA, the lifetime risk for women developing uterine leiomyomas is estimated as up to 75%. Except for hysterectomy, most therapies or treatments often provide only partial or temporary relief and are not successful in every patient. There is a clear racial disparity in the disease; African-American women are estimated to be three times more likely to develop uterine leiomyomas and generally develop more severe symptoms. There is also familial clustering between first-degree relatives and twins, and multiple inherited syndromes in which fibroid development occurs. Leiomyomas have been described as clonal and hormonally regulated, but despite the healthcare burden imposed by the disease, the etiology of uterine leiomyomas remains largely unknown. The mechanisms involved in their growth are also essentially unknown, which has contributed to the slow progress in development of effective treatment options. A comprehensive PubMed search for and critical assessment of articles related to the epidemiological, biological and genetic clues for uterine leiomyoma development was performed. The individual functions of some of the best candidate genes are explained to provide more insight into their biological function and to interconnect and organize genes and pathways in one overarching figure that represents the current state of knowledge about uterine leiomyoma development and growth. In this review, the widely recognized roles of estrogen and progesterone in uterine leiomyoma pathobiology on the basis of clinical and experimental data are presented. This is followed by fundamental aspects and concepts including the possible cellular origin of uterine fibroids. The central themes in the subsequent parts are cytogenetic aberrations in leiomyomas and the racial/ethnic disparities in uterine fibroid biology. Then, the attributes of various in vitro and in vivo, human syndrome

  17. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death*

    Science.gov (United States)

    Clementi, Emily A.; Marks, Laura R.; Duffey, Michael E.; Hakansson, Anders P.

    2012-01-01

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets. PMID:22700972

  18. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death.

    Science.gov (United States)

    Clementi, Emily A; Marks, Laura R; Duffey, Michael E; Hakansson, Anders P

    2012-08-03

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.

  19. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    Science.gov (United States)

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  20. Mechanisms of change: Testing how preventative interventions impact psychological and physiological stress functioning in mothers in neglectful families.

    Science.gov (United States)

    Toth, Sheree L; Sturge-Apple, Melissa L; Rogosch, Fred A; Cicchetti, Dante

    2015-11-01

    The present study applies a multilevel approach to an examination of the effect of two randomized preventive interventions with mothers in neglectful families who are also contending with elevated levels of impoverishment and ecological risk. Specifically, we examined how participation in either child-parent psychotherapy (CPP) or psychoeducational parenting intervention (PPI) was associated with reductions in maternal psychological parenting stress and in turn physiological stress system functioning when compared to mothers involved in standard community services as well as a demographic comparison group of nonmaltreating mothers. The resulting group sizes in the current investigation were 44 for CPP, 34 for PPI, 27 for community services, and 52 for nonmaltreating mothers. Mothers and their 13-month-old infants were randomly assigned to intervention group at baseline. Mothers completed assessments on stress within the parenting role at baseline and postintervention. Basal cortisol was sampled at postintervention and 1-year follow-up. Latent difference score analyses examined change in these constructs over time. Results suggested that mothers within the CPP intervention experienced significant declines in child-related parenting stress, while mothers in the PPI intervention reported declines in parent-related parenting stress. In turn, significant decreases in stress within the CPP mothers were further associated with adaptive basal cortisol functioning at 1-year postintervention. The results highlight the value of delineating how participation in preventive interventions aimed at ameliorating child maltreatment in neglectful families within the context of poverty may operate through improvements in psychological and physiological stress functioning. Findings are discussed with respect to the importance of multilevel assessments of intervention process and outcome.

  1. Mechanisms of Change: Testing how Preventative Interventions Impact Psychological and Physiological Stress Functioning in Mothers in Neglectful Families

    Science.gov (United States)

    Toth, Sheree L.; Sturge-Apple, Melissa L.; Rogosch, Fred A.; Cicchetti, Dante

    2015-01-01

    The present study applies a multilevel approach to an examination of the effect of two randomized preventative interventions with mothers in neglectful families who are also contending with elevated levels of impoverishment and ecological risk. Specifically, we examined how participation in either Child-Parent Psychotherapy (CPP) or Psychoeducational Parenting (PPI) interventions was associated with reductions in maternal psychological parenting stress and in turn physiological stress system functioning when compared to mothers involved in standard community services (CS) as well as a demographic comparison group of nonmaltreating mothers (NC). The resulting group sizes in the current investigation were: CPP (n = 44), PPI (n = 34), CS (n = 27), and NC (n = 52). Mothers and infants who were 13-months of age were randomly assigned to intervention group at baseline. Mothers completed assessments on stress within the parenting role at baseline and post-intervention. Basal cortisol was sampled at post-intervention and 1-year follow-up. Latent difference score analyses examined change in these constructs over time. Results suggested that mothers within the CPP intervention experienced significant declines in child-related parenting stress while mothers in the PPI intervention reported declines in parent-related parenting stress. In turn, significant decreases in stress within the CPP mothers were further associated with adaptive basal cortisol functioning at 1-year post-intervention. Results highlight the value of delineating how participation in preventtive interventions aimed at ameliorating child maltreatment in neglectful families within the context of poverty may operate through improvements in psychological and physiological stress functioning. Findings are discussed with respect to the importance of multi-level assessments of intervention process and outcome. PMID:26535951

  2. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2015-01-01

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  3. Endogenous Pyrogen Physiology.

    Science.gov (United States)

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  4. Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations.

    Science.gov (United States)

    Moysés-Oliveira, Mariana; Guilherme, Roberta Dos Santos; Dantas, Anelisa Gollo; Ueta, Renata; Perez, Ana Beatriz; Haidar, Mauro; Canonaco, Rosane; Meloni, Vera Ayres; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-05-01

    To map the X-chromosome and autosome breakpoints in women with balanced X-autosome translocations and primary amenorrhea, searching candidate genomic loci for female infertility. Retrospective and case-control study. University-based research laboratory. Three women with balanced X-autosome translocation and primary amenorrhea. Conventional cytogenetic methods, genomic array, array painting, fluorescence in situ hybridization, and quantitative reverse transcription-polymerase chain reaction. Karyotype, copy number variation, breakpoint mapping, and gene expression levels. All patients presented with breakpoints in the Xq13q21 region. In two patients, the X-chromosome breakpoint disrupted coding sequences (KIAA2022 and ZDHHC15 genes). Although both gene disruptions caused absence of transcription in peripheral blood, there is no evidence that supports the involvement of these genes with ovarian function. The ZDHHC15 gene belongs to a conserved syntenic region that encompasses the FGF16 gene, which plays a role in female germ line development. The break in the FGF16 syntenic block may have disrupted the interaction between the FGF16 promoter and its cis-regulatory element. In the third patient, although both breakpoints are intergenic, a gene that plays a role in the DAX1 pathway (FHL2 gene) flanks distally the autosome breakpoint. The FHL2 gene may be subject to position effect due to the attachment of an autosome segment in Xq21 region. The etiology of primary amenorrhea in balanced X-autosome translocation patients may underlie more complex mechanisms than interruption of specific X-linked candidate genes, such as position effect. The fine mapping of the rearrangement breakpoints may be a tool for identifying genetic pathogenic mechanisms for primary amenorrhea. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms.

    Science.gov (United States)

    Failor, K C; Schmale, D G; Vinatzer, B A; Monteil, C L

    2017-12-01

    A growing body of circumstantial evidence suggests that ice nucleation active (Ice + ) bacteria contribute to the initiation of precipitation by heterologous freezing of super-cooled water in clouds. However, little is known about the concentration of Ice + bacteria in precipitation, their genetic and phenotypic diversity, and their relationship to air mass trajectories and precipitation chemistry. In this study, 23 precipitation events were collected over 15 months in Virginia, USA. Air mass trajectories and water chemistry were determined and 33 134 isolates were screened for ice nucleation activity (INA) at -8 °C. Of 1144 isolates that tested positive during initial screening, 593 had confirmed INA at -8 °C in repeated tests. Concentrations of Ice + strains in precipitation were found to range from 0 to 13 219 colony forming units per liter, with a mean of 384±147. Most Ice + bacteria were identified as members of known and unknown Ice + species in the Pseudomonadaceae, Enterobacteriaceae and Xanthomonadaceae families, which nucleate ice employing the well-characterized membrane-bound INA protein. Two Ice + strains, however, were identified as Lysinibacillus, a Gram-positive genus not previously known to include Ice + bacteria. INA of the Lysinibacillus strains is due to a nanometer-sized molecule that is heat resistant, lysozyme and proteinase resistant, and secreted. Ice + bacteria and the INA mechanisms they employ are thus more diverse than expected. We discuss to what extent the concentration of culturable Ice + bacteria in precipitation and the identification of a new heat-resistant biological INA mechanism support a role for Ice + bacteria in the initiation of precipitation.

  6. Use of mutagenesis, genetic mapping and next generation transcriptomics to investigate insecticide resistance mechanisms.

    Directory of Open Access Journals (Sweden)

    Predrag Kalajdzic

    Full Text Available Insecticide resistance is a worldwide problem with major impact on agriculture and human health. Understanding the underlying molecular mechanisms is crucial for the management of the phenomenon; however, this information often comes late with respect to the implementation of efficient counter-measures, particularly in the case of metabolism-based resistance mechanisms. We employed a genome-wide insertional mutagenesis screen to Drosophila melanogaster, using a Minos-based construct, and retrieved a line (MiT[w(-]3R2 resistant to the neonicotinoid insecticide Imidacloprid. Biochemical and bioassay data indicated that resistance was due to increased P450 detoxification. Deep sequencing transcriptomic analysis revealed substantial over- and under-representation of 357 transcripts in the resistant line, including statistically significant changes in mixed function oxidases, peptidases and cuticular proteins. Three P450 genes (Cyp4p2, Cyp6a2 and Cyp6g1 located on the 2R chromosome, are highly up-regulated in mutant flies compared to susceptible Drosophila. One of them (Cyp6g1 has been already described as a major factor for Imidacloprid resistance, which validated the approach. Elevated expression of the Cyp4p2 was not previously documented in Drosophila lines resistant to neonicotinoids. In silico analysis using the Drosophila reference genome failed to detect transcription binding factors or microRNAs associated with the over-expressed Cyp genes. The resistant line did not contain a Minos insertion in its chromosomes, suggesting a hit-and-run event, i.e. an insertion of the transposable element, followed by an excision which caused the mutation. Genetic mapping placed the resistance locus to the right arm of the second chromosome, within a ∼1 Mb region, where the highly up-regulated Cyp6g1 gene is located. The nature of the unknown mutation that causes resistance is discussed on the basis of these results.

  7. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

    Science.gov (United States)

    Mahajan, Anubha; Locke, Adam; Rayner, N William; Robertson, Neil; Scott, Robert A; Prokopenko, Inga; Scott, Laura J; Green, Todd; Sparso, Thomas; Thuillier, Dorothee; Yengo, Loic; Grallert, Harald; Wahl, Simone; Frånberg, Mattias; Strawbridge, Rona J; Kestler, Hans; Chheda, Himanshu; Eisele, Lewin; Gustafsson, Stefan; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Qi, Lu; Karssen, Lennart C; van Leeuwen, Elisabeth M; Willems, Sara M; Li, Man; Chen, Han; Fuchsberger, Christian; Kwan, Phoenix; Ma, Clement; Linderman, Michael; Lu, Yingchang; Thomsen, Soren K; Rundle, Jana K; Beer, Nicola L; van de Bunt, Martijn; Chalisey, Anil; Kang, Hyun Min; Voight, Benjamin F; Abecasis, Goncalo R; Almgren, Peter; Baldassarre, Damiano; Balkau, Beverley; Benediktsson, Rafn; Blüher, Matthias; Boeing, Heiner; Bonnycastle, Lori L; Borringer, Erwin P; Burtt, Noël P; Carey, Jason; Charpentier, Guillaume; Chines, Peter S; Cornelis, Marilyn C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Doney, Alex SF; Dorkhan, Mozhgan; Edkins, Sarah; Eriksson, Johan G; Esko, Tonu; Eury, Elodie; Fadista, João; Flannick, Jason; Fontanillas, Pierre; Fox, Caroline; Franks, Paul W; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Gottesman, Omri; Grant, George B; Grarup, Niels; Groves, Christopher J; Hassinen, Maija; Have, Christian T; Herder, Christian; Holmen, Oddgeir L; Hreidarsson, Astradur B; Humphries, Steve E; Hunter, David J; Jackson, Anne U; Jonsson, Anna; Jørgensen, Marit E; Jørgensen, Torben; Kerrison, Nicola D; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Kovacs, Peter; Kraft, Peter; Kravic, Jasmina; Langford, Cordelia; Leander, Karin; Liang, Liming; Lichtner, Peter; Lindgren, Cecilia M; Lindholm, Eero; Linneberg, Allan; Liu, Ching-Ti; Lobbens, Stéphane; Luan, Jian’an; Lyssenko, Valeriya; Männistö, Satu; McLeod, Olga; Meyer, Julia; Mihailov, Evelin; Mirza, Ghazala; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Navarro, Carmen; Nöthen, Markus M; Oskolkov, Nikolay N; Owen, Katharine R; Palli, Domenico; Pechlivanis, Sonali; Perry, John RB; Platou, Carl GP; Roden, Michael; Ruderfer, Douglas; Rybin, Denis; van der Schouw, Yvonne T; Sennblad, Bengt; Sigurðsson, Gunnar; Stančáková, Alena; Steinbach, Gerald; Storm, Petter; Strauch, Konstantin; Stringham, Heather M; Sun, Qi; Thorand, Barbara; Tikkanen, Emmi; Tonjes, Anke; Trakalo, Joseph; Tremoli, Elena; Tuomi, Tiinamaija; Wennauer, Roman; Wood, Andrew R; Zeggini, Eleftheria; Dunham, Ian; Birney, Ewan; Pasquali, Lorenzo; Ferrer, Jorge; Loos, Ruth JF; Dupuis, Josée; Florez, Jose C; Boerwinkle, Eric; Pankow, James S; van Duijn, Cornelia; Sijbrands, Eric; Meigs, James B; Hu, Frank B; Thorsteinsdottir, Unnur; Stefansson, Kari; Lakka, Timo A; Rauramaa, Rainer; Stumvoll, Michael; Pedersen, Nancy L; Lind, Lars; Keinanen-Kiukaanniemi, Sirkka M; Korpi-Hyövälti, Eeva; Saaristo, Timo E; Saltevo, Juha; Kuusisto, Johanna; Laakso, Markku; Metspalu, Andres; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Ripatti, Samuli; Salomaa, Veikko; Ingelsson, Erik; Boehm, Bernhard O; Bergman, Richard N; Collins, Francis S; Mohlke, Karen L; Koistinen, Heikki; Tuomilehto, Jaakko; Hveem, Kristian; Njølstad, Inger; Deloukas, Panagiotis; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; de Faire, Ulf; Hamsten, Anders; Illig, Thomas; Peters, Annette; Cauchi, Stephane; Sladek, Rob; Froguel, Philippe; Hansen, Torben; Pedersen, Oluf; Morris, Andrew D; Palmer, Collin NA; Kathiresan, Sekar; Melander, Olle; Nilsson, Peter M; Groop, Leif C; Barroso, Inês; Langenberg, Claudia; Wareham, Nicholas J; O’Callaghan, Christopher A; Gloyn, Anna L; Altshuler, David; Boehnke, Michael; Teslovich, Tanya M; McCarthy, Mark I; Morris, Andrew P

    2015-01-01

    We performed fine-mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in/near KCNQ1. “Credible sets” of variants most likely to drive each distinct signal mapped predominantly to non-coding sequence, implying that T2D association is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine-mapping implicated rs10830963 as driving T2D association. We confirmed that this T2D-risk allele increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D-risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease. PMID:26551672

  8. Genetic modulation of energy metabolism in birds through mitochondrial function

    NARCIS (Netherlands)

    Tieleman, B. Irene; Versteegh, Maaike A.; Fries, Anthony; Helm, Barbara; Dingemanse, Niels J.; Gibbs, H. Lisle; Williams, Joseph B.

    2009-01-01

    Despite their central importance for the evolution of physiological variation, the genetic mechanisms that determine energy expenditure in animals have largely remained unstudied. We used quantitative genetics to confirm that both mass-specific and whole-organism basal metabolic rate (BMR) were

  9. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach.

    Science.gov (United States)

    Zhi, Xiao-Yang; Jiang, Zhao; Yang, Ling-Ling; Huang, Ying

    2017-02-01

    The pangenome of a bacterial species population is formed by genetic reduction and genetic expansion over the long course of evolution. Gene loss is a pervasive source of genetic reduction, and (exogenous and endogenous) gene gain is the main driver of genetic expansion. To understand the genetic innovation and speciation of the family Corynebacteriaceae, which cause a wide range of serious infections in humans and animals, we analyzed the pangenome of this family, and reconstructed its phylogeny using a phylogenomics approach. Genetic variations have occurred throughout the whole evolutionary history of the Corynebacteriaceae. Gene loss has been the primary force causing genetic changes, not only in terms of the number of protein families affected, but also because of its continuity on the time series. The variation in metabolism caused by these genetic changes mainly occurred for membrane transporters, two-component systems, and metabolism related to amino acids and carbohydrates. Interestingly, horizontal gene transfer (HGT) not only caused changes related to pathogenicity, but also triggered the acquisition of antimicrobial resistance. The Darwinian theory of evolution did not adequately explain the effects of dispersive HGT and/or gene loss in the evolution of the Corynebacteriaceae. These findings provide new insight into the evolution and speciation of Corynebacteriaceae and advance our understanding of the genetic innovation in microbial populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    Science.gov (United States)

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  11. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Michelle R Jones

    2015-08-01

    Full Text Available Genome wide association studies (GWAS have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS, a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  12. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    Science.gov (United States)

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS.

  13. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  14. Asymmetrical interhemispheric connections develop in cat visual cortex after early unilateral convergent strabismus: Anatomy, physiology and mechanisms

    Directory of Open Access Journals (Sweden)

    Emmanuel eBui Quoc

    2012-01-01

    Full Text Available In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When the latter is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, such data are sparse and incomplete. Thus, little is known about the consequences of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non deviated eye. Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute in succession to the development of the callosal maps in visual cortex.

  15. Influence of gamma irradiation on natural mycoflora of poultry feed and effect on morphology, physiology and genetic of strains Aspergillus spp

    International Nuclear Information System (INIS)

    Ribeiro, Jessika Mara Martins

    2008-01-01

    Maize flour samples, soy crumb and feed were collected directly from the production line of a poultry farm in Avelar, RJ, and exposed to doses of 0,3.5, 0,8 and 15 kGy of gamma irradiation. Counting, isolation and identification of the contaminant mycoflora were performed before and after irradiation. The radiosensitivity of strains of reference of Aspergillus spp. was determined in CYA medium and in corn for doses ranging from 0 to 8 kGy. Comparison between the morphologies of control and irradiated strains were performed by using macroscopy, optical microscopy and transmission electron microscopy. Toxigenic profile determination and genetic evaluation by RAPD were also carried out. Higher doses have been found to reduce the number of active colonies, causing elimination of the mycoflora at 8 kGy. A larger radiosensitivity of yeasts was observed in comparison with filamentous fungi. A significant reduction in fungi population occurred at 3.5 kGy to levels below the limit that ensures the hygienic quality of ingredients and poultry feeds. The residual mycoflora was found to decrease with post-irradiation time and included mostly Cladosporium spp., Curvularia spp., Fusarium spp. and Aspergillus spp. and sterility of mycelium prevented further identification of the surviving species of Aspergillus spp. Differences in radioresistance were found among species of Aspergillus and the highest tolerance to radiation was observed for A. parasiticus. Initial morphologic changes were found to be more severe during the first isolation after irradiation than in later ones, with the fungi gradually recovering their normal growth rate. Ultrastructural changes in the irradiated strains were observed mostly in the plasmatic membrane and membranous organelles of nuclei and mitochondria. An increase in the rate of production of toxins by the irradiated strains has been found, however no significant alterations have been observed in their genotypes. Such findings apparently indicate

  16. The Physiological Mechanisms of Performance Enhancement with Sprint Interval Training Differ between the Upper and Lower Extremities in Humans

    DEFF Research Database (Denmark)

    Zinner, Christoph; Morales-Alamo, David; Ørtenblad, Niels

    2016-01-01

    To elucidate the mechanisms underlying the differences in adaptation of arm and leg muscles to sprint training, over a period of 11 days 16 untrained men performed six sessions of 4-6 × 30-s all-out sprints (SIT) with the legs and arms, separately, with a 1-h interval of recovery. Limb-specific V...

  17. Are mechanically sensitive regulators involved in the function and (patho)physiology of cerebral palsy-related contractures?

    Science.gov (United States)

    Pingel, Jessica; Suhr, Frank

    2017-08-01

    Skeletal muscle tissue is mechanosensitive, as it is able to sense mechanical impacts and to translate these into biochemical signals making the tissue adapt. Among its mechanosensitive nature, skeletal muscle tissue is the largest metabolic organ of the human body. Disturbances in skeletal muscle mechanosensing and metabolism cause and contribute to many diseases, i.e. muscular dystrophies/myopathies, cardiovascular diseases, COPD or diabetes mellitus type 2. A less commonly focused muscle-related disorder is clinically known as muscle contractures that derive from cerebral palsy (CP) conditions in young and adults. Muscle contractures are characterized by gradually increasing passive muscle stiffness resulting in complete fixation of joints. Different mechanisms have been identified in CP-related contractures, i.e. altered calcium handling, altered metabolism or altered titin regulation. The muscle-related extracellular matrix (ECM), specifically collagens, plays a role in CP-related contractures. Herein, we focus on mechanically sensitive complexes, known as costameres (Cstms), and discuss their potential role in CP-related contractures. We extend our discussion to the ECM due to the limited knowledge of its role in CP-related contractures. The aims of this review are (1) to summarize CP-related contracture mechanisms, (2) to raise novel hypotheses on the genesis of contractures with a focus on Cstms, and (3) to stimulate novel approaches to study CP-related contractures.

  18. Genetics of immune-mediated disorders : from genome-wide association to molecular mechanism

    NARCIS (Netherlands)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2014-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory

  19. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology.

    Science.gov (United States)

    Layé, Sophie; Nadjar, Agnès; Joffre, Corinne; Bazinet, Richard P

    2018-01-01

    Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  20. A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a target to generate β-carotene over-producing strains by genetic engineering.

    Science.gov (United States)

    Zhang, Yingtong; Navarro, Eusebio; Cánovas-Márquez, José T; Almagro, Lorena; Chen, Haiqin; Chen, Yong Q; Zhang, Hao; Torres-Martínez, Santiago; Chen, Wei; Garre, Victoriano

    2016-06-07

    Carotenoids are natural pigments with antioxidant properties that have important functions in human physiology and must be supplied through the diet. They also have important industrial applications as food colourants, animal feed additives and nutraceuticals. Some of them, such as β-carotene, are produced on an industrial scale with the use of microorganisms, including fungi. The mucoral Blakeslea trispora is used by the industry to produce β-carotene, although optimisation of production by molecular genetic engineering is unfeasible. However, the phylogenetically closely related Mucor circinelloides, which is also able to accumulate β-carotene, possesses a vast collection of genetic tools with which to manipulate its genome. This work combines classical forward and modern reverse genetic techniques to deepen the regulation of carotenoid synthesis and generate candidate strains for biotechnological production of β-carotene. Mutagenesis followed by screening for mutants with altered colour in the dark and/or in light led to the isolation of 26 mutants that, together with eight previously isolated mutants, have been analysed in this work. Although most of the mutants harboured mutations in known structural and regulatory carotenogenic genes, eight of them lacked mutations in those genes. Whole-genome sequencing of six of these strains revealed the presence of many mutations throughout their genomes, which makes identification of the mutation that produced the phenotype difficult. However, deletion of the crgA gene, a well-known repressor of carotenoid biosynthesis in M. circinelloides, in two mutants (MU206 and MU218) with high levels of β-carotene resulted in a further increase in β-carotene content to differing extents with respect to the crgA single-null strain; in particular, one strain derived from MU218 was able to accumulate up to 4 mg/g of β-carotene. The additive effect of crgA deletion and the mutations present in MU218 suggests the existence of a

  1. In-situ determination of the mechanical properties of gliding or non-motile bacteria by atomic force microscopy under physiological conditions without immobilization.

    Directory of Open Access Journals (Sweden)

    Samia Dhahri

    Full Text Available We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.

  2. In-Situ Determination of the Mechanical Properties of Gliding or Non-Motile Bacteria by Atomic Force Microscopy under Physiological Conditions without Immobilization

    Science.gov (United States)

    Dhahri, Samia; Ramonda, Michel; Marlière, Christian

    2013-01-01

    We present a study about AFM imaging of living, moving or self-immobilized bacteria in their genuine physiological liquid medium. No external immobilization protocol, neither chemical nor mechanical, was needed. For the first time, the native gliding movements of Gram-negative Nostoc cyanobacteria upon the surface, at speeds up to 900 µm/h, were studied by AFM. This was possible thanks to an improved combination of a gentle sample preparation process and an AFM procedure based on fast and complete force-distance curves made at every pixel, drastically reducing lateral forces. No limitation in spatial resolution or imaging rate was detected. Gram-positive and non-motile Rhodococcus wratislaviensis bacteria were studied as well. From the approach curves, Young modulus and turgor pressure were measured for both strains at different gliding speeds and are ranging from 20±3 to 105±5 MPa and 40±5 to 310±30 kPa depending on the bacterium and the gliding speed. For Nostoc, spatially limited zones with higher values of stiffness were observed. The related spatial period is much higher than the mean length of Nostoc nodules. This was explained by an inhomogeneous mechanical activation of nodules in the cyanobacterium. We also observed the presence of a soft extra cellular matrix (ECM) around the Nostoc bacterium. Both strains left a track of polymeric slime with variable thicknesses. For Rhodococcus, it is equal to few hundreds of nanometers, likely to promote its adhesion to the sample. While gliding, the Nostoc secretes a slime layer the thickness of which is in the nanometer range and increases with the gliding speed. This result reinforces the hypothesis of a propulsion mechanism based, for Nostoc cyanobacteria, on ejection of slime. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions. PMID:23593493

  3. Influence of the Mechanical Properties of Third-Generation Artificial Turf Systems on Soccer Players’ Physiological and Physical Performance and Their Perceptions

    Science.gov (United States)

    Sánchez-Sánchez, Javier; García-Unanue, Jorge; Jiménez-Reyes, Pedro; Gallardo, Ana; Burillo, Pablo; Felipe, José Luis; Gallardo, Leonor

    2014-01-01

    The aim of this research was to evaluate the influence of the mechanical properties of artificial turf systems on soccer players’ performance. A battery of perceptive physiological and physical tests were developed on four different structural systems of artificial turf (System 1: Compacted gravel sub-base without elastic layer; System 2: Compacted gravel sub-base with elastic layer; System 3: Asphalt sub-base without elastic layer; System 4: Asphalt sub-base with elastic layer). The sample was composed of 18 soccer players (22.44±1.72 years) who typically train and compete on artificial turf. The artificial turf system with less rotational traction (S3) showed higher total time in the Repeated Sprint Ability test in comparison to the systems with intermediate values (49.46±1.75 s vs 47.55±1.82 s (S1) and 47.85±1.59 s (S2); pperformance in jumping tests (countermovement jump and squat jump) and ball kicking to goal decreased after the RSA test in all surfaces assessed (pperformance deterioration (p>0.05). The physiological load was similar in all four artificial turf systems. However, players felt more comfortable on the harder and more rigid system (S4; visual analogue scale = 70.83±14.28) than on the softer artificial turf system (S2; visual analogue scale = 54.24±19.63). The lineal regression analysis revealed a significant influence of the mechanical properties of the surface of 16.5%, 15.8% and 7.1% on the mean time of the sprint, the best sprint time and the maximum mean speed in the RSA test respectively. Results suggest a mechanical heterogeneity between the systems of artificial turf which generate differences in the physical performance and in the soccer players’ perceptions. PMID:25354188

  4. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?

    Science.gov (United States)

    Ihsan, Mohammed; Watson, Greig; Abbiss, Chris R

    2016-08-01

    Intense training results in numerous physiological perturbations such as muscle damage, hyperthermia, dehydration and glycogen depletion. Insufficient/untimely restoration of these physiological alterations might result in sub-optimal performance during subsequent training sessions, while chronic imbalance between training stress and recovery might lead to overreaching or overtraining syndrome. The use of post-exercise cold water immersion (CWI) is gaining considerable popularity among athletes to minimize fatigue and accelerate post-exercise recovery. CWI, through its primary ability to decrease tissue temperature and blood flow, is purported to facilitate recovery by ameliorating hyperthermia and subsequent alterations to the central nervous system (CNS), reducing cardiovascular strain, removing accumulated muscle metabolic by-products, attenuating exercise-induced muscle damage (EIMD) and improving autonomic nervous system function. The current review aims to provide a comprehensive and detailed examination of the mechanisms underpinning acute and longer term recovery of exercise performance following post-exercise CWI. Understanding the mechanisms will aid practitioners in the application and optimisation of CWI strategies to suit specific recovery needs and consequently improve athletic performance. Much of the literature indicates that the dominant mechanism by which CWI facilitates short term recovery is via ameliorating hyperthermia and consequently CNS mediated fatigue and by reducing cardiovascular strain. In contrast, there is limited evidence to support that CWI might improve acute recovery by facilitating the removal of muscle metabolites. CWI has been shown to augment parasympathetic reactivation following exercise. While CWI-mediated parasympathetic reactivation seems detrimental to high-intensity exercise performance when performed shortly after, it has been shown to be associated with improved longer term physiological recovery and day to day

  5. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS - A novel mechanism of DNA radioprotection.

    Science.gov (United States)

    Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Christofidou-Solomidou, Melpo

    2016-09-01

    Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3'-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton (1)H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO(-) and radiation. Purine base chlorination by ClO(-) and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Chloride anions (Cl(-)) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by (1)H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO(-) or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO(-) generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl) and dichloro radical anions (Cl2¯)), which were trapped by SDG and its structural analog dopamine. We demonstrate that γ-radiation induces the generation of ACS in physiological solutions. SDG treatment scavenged

  6. Are mechanically sensitive regulators involved in the function and (patho)physiology of cerebral palsy-related contractures?

    DEFF Research Database (Denmark)

    Pingel, Jessica; Suhr, Frank

    2017-01-01

    mechanosensing and metabolism cause and contribute to many diseases, i.e. muscular dystrophies/myopathies, cardiovascular diseases, COPD or diabetes mellitus type 2. A less commonly focused muscle-related disorder is clinically known as muscle contractures that derive from cerebral palsy (CP) conditions in young...... role in CP-related contractures. The aims of this review are (1) to summarize CP-related contracture mechanisms, (2) to raise novel hypotheses on the genesis of contractures with a focus on Cstms, and (3) to stimulate novel approaches to study CP-related contractures....

  7. Genetic and epigenetic regulatory mechanisms of the oxytocin receptor gene (OXTR) and the (clinical) implications for social behavior.

    Science.gov (United States)

    Tops, Sanne; Habel, Ute; Radke, Sina

    2018-03-12

    Oxytocin and the oxytocin receptor (OXTR) play an important role in a large variety of social behaviors. The oxytocinergic system interacts with environmental cues and is highly dependent on interindividual factors. Deficits in this system have been linked to mental disorders associated with social impairments, such as autism spectrum disorder (ASD). This review focuses on the modulation of social behavior by alterations in two domains of the oxytocinergic system. We discuss genetic and epigenetic regulatory mechanisms and alterations in these mechanisms that were found to have clinical implications for ASD. We propose possible explanations how these alterations affect the biological pathways underlying the aberrant social behavior and point out avenues for future research. We advocate the need for integration studies that combine multiple measures covering a broad range of social behaviors and link these to genetic and epigenetic profiles. Copyright © 2018. Published by Elsevier Inc.

  8. The Physiological Mechanisms of Performance Enhancement with Sprint Interval Training Differ between the Upper and Lower Extremities in Humans

    Science.gov (United States)

    Zinner, Christoph; Morales-Alamo, David; Ørtenblad, Niels; Larsen, Filip J.; Schiffer, Tomas A.; Willis, Sarah J.; Gelabert-Rebato, Miriam; Perez-Valera, Mario; Boushel, Robert; Calbet, Jose A. L.; Holmberg, Hans-Christer

    2016-01-01

    To elucidate the mechanisms underlying the differences in adaptation of arm and leg muscles to sprint training, over a period of 11 days 16 untrained men performed six sessions of 4–6 × 30-s all-out sprints (SIT) with the legs and arms, separately, with a 1-h interval of recovery. Limb-specific VO2peak, sprint performance (two 30-s Wingate tests with 4-min recovery), muscle efficiency and time-trial performance (TT, 5-min all-out) were assessed and biopsies from the m. vastus lateralis and m. triceps brachii taken before and after training. VO2peak and Wmax increased 3–11% after training, with a more pronounced change in the arms (P training, VO2 during the two Wingate tests was increased by 52 and 6% for the arms and legs, respectively (P intensity, HR, VO2, VCO2, VE, and Vt were all lower during arm-cranking than leg-pedaling, and oxidation of fat was minimal, remaining so after training. Despite the higher relative intensity, fat oxidation was 70% greater during leg-pedaling (P = 0.017). The aerobic energy contribution in the legs was larger than for the arms during the Wingate tests, although VO2 for the arms was enhanced more by training, reducing the O2 deficit after SIT. The levels of muscle glycogen, as well as the myosin heavy chain composition were unchanged in both cases, while the activities of 3-hydroxyacyl-CoA-dehydrogenase and citrate synthase were elevated only in the legs and capillarization enhanced in both limbs. Multiple regression analysis demonstrated that the variables that predict TT performance differ for the arms and legs. The primary mechanism of adaptation to SIT by both the arms and legs is enhancement of aerobic energy production. However, with their higher proportion of fast muscle fibers, the arms exhibit greater plasticity. PMID:27746738

  9. Genome-Wide Association Analyses Highlight the Potential for Different Genetic Mechanisms for Litter Size Among Sheep Breeds

    Science.gov (United States)

    Xu, Song-Song; Gao, Lei; Xie, Xing-Long; Ren, Yan-Ling; Shen, Zhi-Qiang; Wang, Feng; Shen, Min; Eyϸórsdóttir, Emma; Hallsson, Jón H.; Kiseleva, Tatyana; Kantanen, Juha; Li, Meng-Hua

    2018-01-01

    Reproduction is an important trait in sheep breeding as well as in other livestock. However, despite its importance the genetic mechanisms of litter size in domestic sheep (Ovis aries) are still poorly understood. To explore genetic mechanisms underlying the variation in litter size, we conducted multiple independent genome-wide association studies in five sheep breeds of high prolificacy (Wadi, Hu, Icelandic, Finnsheep, and Romanov) and one low prolificacy (Texel) using the Ovine Infinium HD BeadChip, respectively. We identified different sets of candidate genes associated with litter size in different breeds: BMPR1B, FBN1, and MMP2 in Wadi; GRIA2, SMAD1, and CTNNB1 in Hu; NCOA1 in Icelandic; INHBB, NF1, FLT1, PTGS2, and PLCB3 in Finnsheep; ESR2 in Romanov and ESR1, GHR, ETS1, MMP15, FLI1, and SPP1 in Texel. Further annotation of genes and bioinformatics analyses revealed that different biological pathways could be involved in the variation in litter size of females: hormone secretion (FSH and LH) in Wadi and Hu, placenta and embryonic lethality in Icelandic, folliculogenesis and LH signaling in Finnsheep, ovulation and preovulatory follicle maturation in Romanov, and estrogen and follicular growth in Texel. Taken together, our results provide new insights into the genetic mechanisms underlying the prolificacy trait in sheep and other mammals, suggesting targets for selection where the aim is to increase prolificacy in breeding projects.

  10. The physiological mechanisms of performance enhancement with sprint interval training differ between the upper and lower extremities in humans.

    Directory of Open Access Journals (Sweden)

    Christoph Zinner

    2016-09-01

    Full Text Available To elucidate the mechanisms underlying the differences in adaptation of arm and leg muscles to sprint training, over a period of 11 days 16 untrained men performed six sessions of 4-6x30-sec all-out sprints (SIT with the legs and arms, separately, with a 1-h interval of recovery. Limb-specific VO2peak, sprint performance (two 30-sec Wingate tests with 4-min recovery, muscle efficiency and time-trial performance (TT, 5-min all-out were assessed and biopsies from the m. vastus lateralis and m. triceps brachii taken before and after training. VO2peak and Wmax increased 3-11% after training, with a more pronounced change in the arms (P < 0.05. Gross efficiency improved for the arms (+8.8%, P < 0.05, but not the legs (-0.6%. Wingate peak and mean power outputs improved similarly for the arms and legs, as did TT performance. After training, VO2 during the two Wingate tests was increased by 52% and 6% for the arms and legs, respectively (P < 0.001. In the case of the arms, VO2 was higher during the first than second Wingate test (64% vs. 44%, P < 0.05. During the TT, relative exercise intensity, HR, VO2, VCO2, VE, and Vt were all lower during arm-cranking than leg-pedaling, and oxidation of fat was minimal, remaining so after training. Despite the higher relative intensity, fat oxidation was 70% greater during leg-pedaling (P = 0.017. The aerobic energy contribution in the legs was larger than for the arms during the Wingate tests, although VO2 for the arms was enhanced more by training, reducing the O2 deficit after SIT. The levels of muscle glycogen, as well as the myosin heavy chain composition were unchanged in both cases, while the activities of 3-hydroxyacyl-CoA-dehydrogenase and citrate synthase were elevated only in the legs and capillarization enhanced in both limbs. Multiple regression analysis demonstrated that the variables that predict TT performance differ for the arms and legs. The primary mechanism of adaptation to SIT by both the arms

  11. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism

    International Nuclear Information System (INIS)

    Weinberger, D.R.; Berman, K.F.; Illowsky, B.P.

    1988-01-01

    We previously reported that compared with normals, patients with chronic schizophrenia have reduced regional cerebral blood flow (rCBF) in dorsolateral prefrontal cortex (DLPFC) during performance of the Wisconsin Card Sort Test (WCS), a DLPFC-related cognitive task, but not during nonprefrontal tasks, such as a simple number-matching (NM) test. We also found that unlike normals, patients failed to activate DLPFC during the WCS over their own baseline (NM) level. To explore the reproducibility of these findings, a new cohort of 16 medication-free patients underwent a series of xenon 133 inhalation rCBF studies under the following conditions: at rest, while performing the WCS, and while performing NM. The results confirmed our earlier findings. In addition, the concentrations in cerebrospinal fluid of homovanillic acid and 5-hydroxyindoleacetic acid correlated with prefrontal rCBF during the WCS but not during the NM test or at rest. The results show that behavior-specific hypofunction of DLPFC in schizophrenia is reproducible, and they implicate a monoaminergic mechanism

  12. Mechanism underlying the suppressor activity of retinoic acid on IL4-induced IgE synthesis and its physiological implication.

    Science.gov (United States)

    Seo, Goo-Young; Lee, Jeong-Min; Jang, Young-Saeng; Kang, Seung Goo; Yoon, Sung-Il; Ko, Hyun-Jeong; Lee, Geun-Shik; Park, Seok-Rae; Nagler, Cathryn R; Kim, Pyeung-Hyeun

    2017-12-01

    The present study extends an earlier report that retinoic acid (RA) down-regulates IgE Ab synthesis in vitro. Here, we show the suppressive activity of RA on IgE production in vivo and its underlying mechanisms. We found that RA down-regulated IgE class switching recombination (CSR) mainly through RA receptor α (RARα). Additionally, RA inhibited histone acetylation of germ-line ε (GL ε) promoter, leading to suppression of IgE CSR. Consistently, serum IgE levels were substantially elevated in vitamin A-deficient (VAD) mice and this was more dramatic in VAD-lecithin:retinol acyltransferase deficient (LRAT -/- ) mice. Further, serum mouse mast cell protease-1 (mMCP-1) level was elevated while frequency of intestinal regulatory T cells (Tregs) were diminished in VAD LRAT -/- mice, reflecting that deprivation of RA leads to allergic immune response. Taken together, our results reveal that RA has an IgE-repressive activity in vivo, which may ameliorate IgE-mediated allergic disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genetic control of dairy cow reproduction

    OpenAIRE

    Moore, Stephen

    2015-01-01

    The decline in dairy cow reproductive performance compromised the productivity and profitability of dairy production worldwide. The phenotypic performance of lactating cows with similar proportions of Holstein genes, similar genetic merit for milk production traits, but either good (Fert+) or poor (Fert-) genetic merit for fertility traits managed in a standardised environment was compared. The objective of this study was to elucidate the physiological mechanisms contributing to suboptimal re...

  14. Genetic variation shapes protein networks mainly through non-transcriptional mechanisms.

    Directory of Open Access Journals (Sweden)

    Eric J Foss

    2011-09-01

    Full Text Available Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.

  15. Physiological effects of mechanical pain stimulation at the lower back measured by functional near-infrared spectroscopy and capnography.

    Science.gov (United States)

    Holper, Lisa; Gross, Andrea; Scholkmann, Felix; Humphreys, B Kim; Meier, Michael L; Wolf, Ursula; Wolf, Martin; Hotz-Boendermaker, Sabina

    2014-03-01

    The aim was to investigate the effect of mechanical pain stimulation at the lower back on hemodynamic and oxygenation changes in the prefrontal cortex (PFC) assessed by functional near-infrared spectroscopy (fNIRS) and on the partial pressure of end-tidal carbon dioxide ( PetCO 2) measured by capnography. 13 healthy subjects underwent three measurements (M) during pain stimulation using pressure pain threshold (PPT) at three locations, i.e., the processus spinosus at the level of L4 (M1) and the lumbar paravertebral muscles at the level of L1 on the left (M2) and the right (M3) side. Results showed that only in the M2 condition the pain stimulation elicited characteristic patterns consisting of (1) a fNIRS-derived decrease in oxy- and total hemoglobin concentration and tissue oxygen saturation, an increase in deoxy-hemoglobin concentration, (2) a decrease in the PetCO 2 response and (3) a decrease in coherence between fNIRS parameters and PetCO 2 responses in the respiratory frequency band (0.2-0.5 Hz). We discuss the comparison between M2 vs. M1 and M3, suggesting that the non-significant findings in the two latter measurements were most likely subject to effects of the different stimulated tissues, the stimulated locations and the stimulation order. We highlight that PetCO 2 is a crucial parameter for proper interpretation of fNIRS data in experimental protocols involving pain stimulation. Together, our data suggest that the combined fNIRS-capnography approach has potential for further development as pain monitoring method, such as for evaluating clinical pain treatment.

  16. Host Genetics: Fine-Tuning Innate Signaling

    OpenAIRE

    Fellay, Jacques; Goldstein, David B.

    2007-01-01

    A polymorphism modulating innate immunity signal transduction has recently been shown to influence human susceptibility to many different infections, providing one more indication of the potential of host genetics to reveal physiological pathways and mechanisms that influence resistance to infectious diseases.

  17. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements.

    Science.gov (United States)

    Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng

    2010-03-31

    Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was

  18. Education and certification of genetic counselors.

    Science.gov (United States)

    Katsichti, L; Hadzipetros-Bardanis, M; Bartsocas, C S

    1999-01-01

    Genetic counseling is defined by the American Society of Human Genetics as a communication process which deals with the human problems associated with the occurrence, or risk of occurrence, of a genetic disorder in a family. The first graduate program (Master's degree) in genetic counseling started in 1969 at Sarah Lawrence College, NY, USA, while in 1979 the National Society of Genetic Counseling (NSGC) was established. Today, there are 29 programs in U.S.A. offering a Master's degree in Genetic Counseling, five programs in Canada, one in Mexico, one in England and one in S. Africa. Most of these graduate programs offer two year training, consisting of graduate courses, seminars, research and practical training. Emphasis is given in human physiology, biochemistry, clinical genetics, cytogenetics, molecular and biochemical genetics, population genetics and statistics, prenatal diagnosis, teratology and genetic counseling in relation to psychosocial and ethical issues. Certification for eligible candidates is available through the American Board of Medical Genetics (ABMG). Requirements for certification include a master's degree in human genetics, training at sites accredited by the ABMG, documentation of genetic counseling experience, evidence of continuing education and successful completion of a comprehensive ABMG certification examination. As professionals, genetic counselors should maintain expertise, should insure mechanisms for professional advancement and should always maintain the ability to approach their patients.

  19. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  20. Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism

    International Nuclear Information System (INIS)

    Rong Bao; Rui Xiaoting; Tao Ling

    2012-01-01

    In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.

  1. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations.

    Science.gov (United States)

    Rigsby, C M; Showalter, D N; Herms, D A; Koch, J L; Bonello, P; Cipollini, D

    2015-07-01

    Emerald ash borer, Agrilus planipennis Fairmaire, an Asian wood-boring beetle, has devastated ash (Fraxinus spp.) trees in North American forests and landscapes since its discovery there in 2002. In this study, we collected living larvae from EAB-resistant Manchurian ash (Fraxinus mandschurica), and susceptible white (Fraxinus americana) and green (Fraxinus pennsylvanica) ash hosts, and quantified the activity and production of selected detoxification, digestive, and antioxidant enzymes. We hypothesized that differences in larval physiology could be used to infer resistance mechanisms of ash. We found no differences in cytochrome P450, glutathione-S-transferase, carboxylesterase, sulfotransferase, and tryptic BApNAase activities between larvae feeding on different hosts. Despite this, Manchurian ash-fed larvae produced a single isozyme of low electrophoretic mobility that was not produced in white or green ash-fed larvae. Additionally, larvae feeding on white and green ash produced two serine protease isozymes of high electrophoretic mobility that were not observed in Manchurian ash-fed larvae. We also found lower activity of β-glucosidase and higher activities of monoamine oxidase, ortho-quinone reductase, catalase, superoxide dismutase, and glutathione reductase in Manchurian ash-fed larvae compared to larvae that had fed on susceptible ash. A single isozyme was detected for both catalase and superoxide dismutase in all larval groups. The activities of the quinone-protective and antioxidant enzymes are consistent with the resistance phenotype of the host species, with the highest activities measured in larvae feeding on resistant Manchurian ash. We conclude that larvae feeding on Manchurian ash could be under quinone and oxidative stress, suggesting these may be potential mechanisms of resistance of Manchurian ash to EAB larvae, and that quinone-protective and antioxidant enzymes are important counter-adaptations of larvae for dealing with these resistance

  2. Blue eyes in lemurs and humans: same phenotype, different genetic mechanism

    DEFF Research Database (Denmark)

    Bradley, Brenda J; Pedersen, Anja; Mundy, Nicholas I

    2009-01-01

    Almost all mammals have brown or darkly-pigmented eyes (irises), but among primates, there are some prominent blue-eyed exceptions. The blue eyes of some humans and lemurs are a striking example of convergent evolution of a rare phenotype on distant branches of the primate tree. Recent work...... on humans indicates that blue eye color is associated with, and likely caused by, a single nucleotide polymorphism (rs12913832) in an intron of the gene HERC2, which likely regulates expression of the neighboring pigmentation gene OCA2. This raises the immediate question of whether blue eyes in lemurs might...... have a similar genetic basis. We addressed this by sequencing the homologous genetic region in the blue-eyed black lemur (Eulemur macaco flavifrons; N = 4) and the closely-related black lemur (Eulemur macaco macaco; N = 4), which has brown eyes. We then compared a 166-bp segment corresponding...

  3. Physiologic mechanisms in radiation resistance

    International Nuclear Information System (INIS)

    Reichard, S.M.

    1976-01-01

    Some topics discussed are as follows: role of the reticuloendothelial system in the regeneration of the hematopoietic system; uptake of colloidal agents by liver and spleen cells following graded doses of x radiation; effects of x radiation on peritoneal macrophages of rats; stimulation of phagocytic activity of the reticuloendothelial system by estrogens, serum albumin, and bacterial endotoxins; and sequestration of particulate material within the reticuloendothelial organs following x irradiation

  4. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions.

    Science.gov (United States)

    Sameith, Katrin; Amini, Saman; Groot Koerkamp, Marian J A; van Leenen, Dik; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip; van Hooff, Sander R; Benschop, Joris J; Lenstra, Tineke L; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P; Kemmeren, Patrick

    2015-12-23

    Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.

  5. Eliciting Autoimmunity to Ovarian Tumors in Mice by Genetic Disruption of T Cell Tolerance Mechanisms

    National Research Council Canada - National Science Library

    Nelson, Brad H

    2005-01-01

    Research in the fields of basic immunology and autoimmunity has identified several distinct mechanisms through which immune tolerance is established and maintained in the normal host, and additional...

  6. Regulatory Physiology

    Science.gov (United States)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  7. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  8. Mechanisms of population heterogeneity among molting common mergansers on Kodiak Island, Alaska: Implications for genetic assessments of migratory connectivity

    Science.gov (United States)

    Pearce, John M.; Zwiefelhofer, Denny; Maryanski, Nate

    2009-01-01

    Quantifying population genetic heterogeneity within nonbreeding aggregations can inform our understanding of patterns of site fidelity, migratory connectivity, and gene flow between breeding and nonbreeding areas. However, characterizing mechanisms that contribute to heterogeneity, such as migration and dispersal, is required before site fidelity and migratory connectivity can be assessed accurately. We studied nonbreeding groups of Common Mergansers (Mergus merganser) molting on Kodiak Island, Alaska, from 2005 to 2007, using banding data to assess rates of recapture, mitochondrial (mt) DNA to determine natal area, and nuclear microsatellite genotypes to assess dispersal. Using baseline information from differentiated mtDNA haplogroups across North America, we were able to assign individuals to natal regions and document population genetic heterogeneity within and among molting groups. Band-recovery and DNA data suggest that both migration from and dispersal among natal areas contribute to admixed groups of males molting on Kodiak Island. A lack of differentiation in the Common Merganser's nuclear, bi-parentally inherited DNA, observed across North America, implies that dispersal can mislead genetic assessments of migratory connectivity and assignments of nonbreeding individuals to breeding areas. Thus multiple and independent data types are required to account for such behaviors before accurate assessments of migratory connectivity can be made.

  9. Physiological pseudomyopia.

    Science.gov (United States)

    Jones, R

    1990-08-01

    Objective refraction through plus fogging lenses and base-in prisms revealed that normally accommodation is not completely relaxed when the stimulus to accommodation is zero. The myopic shift in the refractive error due to this focus error of accommodation was defined as physiological pseudomyopia. Two previously established features of accommodation are responsible for this behavior: (1) accommodation acts as a proportional control system for steady-state responses; and (2) the rest focus of accommodation is nonzero. It is proposed that the hyperopic shift in refraction observed in cycloplegia is the result of elimination of physiological pseudomyopia.

  10. Physiology of Sedentary Behavior and Its Relationship to Health Outcomes

    Science.gov (United States)

    Thyfault, John P; Du, Mengmeng; Kraus, William E; Levine, James A; Booth, Frank W

    2014-01-01

    Purpose This paper reports on the findings and recommendations of the “Physiology of Sedentary Behavior and its Relationship to Health Outcomes” group, a part of a larger workshop entitled Sedentary Behavior: Identifying Research Priorities sponsored by the National Heart, and Lung and Blood Institute and the National Institute on Aging, which aimed to establish sedentary behavior research priorities. Methods The discussion within our workshop lead to the formation of critical physiological research objectives related to sedentary behaviors, that if appropriately researched would greatly impact our overall understanding of human health and longevity. Results and Conclusions Primary questions are related to physiological “health outcomes” including the influence of physical activity vs. sedentary behavior on function of a number of critical physiological systems (aerobic capacity, skeletal muscle metabolism and function, telomeres/genetic stability, and cognitive function). The group also derived important recommendations related to the “central and peripheral mechanisms” that govern sedentary behavior and how energy balance has a role in mediating these processes. General recommendations for future sedentary physiology research efforts include that studies of sedentary behavior, including that of sitting time only, should focus on the physiological impact of a “lack of human movement” in contradistinction to the effects of physical movement and that new models or strategies for studying sedentary behavior induced adaptations and links to disease development are needed to elucidate underlying mechanism(s). PMID:25222820

  11. Chronobiologic study in the domestic duck. II. Physiological mechanism of the chronobiologic action of visible light on the gonads of the male duck

    Energy Technology Data Exchange (ETDEWEB)

    Benoit, J M

    1978-04-01

    The physiological mechanism of the gonad-stimulant effect of light rays on the pre-pubertal duck testis, is the basis of any chronobiological study of this effect. The light stimulates the chain formed by the retina, the optic nerve, the hypothalamus and the anterior part of the pituitary. This chain includes 2 photo-receptors, a superficial one, the retina and a deep one, the hypothalamus. The retina is here only sensitive to orange and red rays. Consequently an autonomic retina intervenes instead of the visual retina. The hypothalamus, on the other hand, is sensitive to all visible rays when they are brought directly in contact with it through a quartz rod placed in the orbit which has been previously emptied. The hypothalamus, which is thus enlightened directly is more than a hundred times more sensitive than the retina. This great sensitivity allows normal stimulation by the most penetrating rays in the orbital region. Ultra-violet and infrared rays are inactive on the autonomic retina and on the hypothalamus. The neuro-secretory cells of the latter, stimulated directly or indirectly, secrete hormones which via the axones reach a capillary network covering the median eminence, then, by series of portal veins, the anterior part of the pituitary, the corresponding cells of which secrete various hormones, which through the systemic circulation reach the corresponding target organs and in particular the gonads. It is thus a neuro-hormonal mechanism which the external factor light brings into play to stimulate various functions of the autonomic life of the organism.

  12. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  13. Physiology Flies with Time.

    Science.gov (United States)

    Sehgal, Amita

    2017-11-30

    The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Exercise physiology

    DEFF Research Database (Denmark)

    Kiens, Bente; Richter, Erik; Wojtaszewski, Jørgen

    2014-01-01

    The passing of Professor Bengt Saltin on September 12, 2014 truly marks the end of an era. As editor of the Journal of Applied Physiology and one of Bengt’s many collaborators and colleagues, I wanted the Journal to celebrate his many seminal contributions by means of an Editorial. Professor Bent...

  15. Cancer genetics meets biomolecular mechanism-bridging an age-old gulf.

    Science.gov (United States)

    González-Sánchez, Juan Carlos; Raimondi, Francesco; Russell, Robert B

    2018-02-01

    Increasingly available genomic sequencing data are exploited to identify genes and variants contributing to diseases, particularly cancer. Traditionally, methods to find such variants have relied heavily on allele frequency and/or familial history, often neglecting to consider any mechanistic understanding of their functional consequences. Thus, while the set of known cancer-related genes has increased, for many, their mechanistic role in the disease is not completely understood. This issue highlights a wide gap between the disciplines of genetics, which largely aims to correlate genetic events with phenotype, and molecular biology, which ultimately aims at a mechanistic understanding of biological processes. Fortunately, new methods and several systematic studies have proved illuminating for many disease genes and variants by integrating sequencing with mechanistic data, including biomolecular structures and interactions. These have provided new interpretations for known mutations and suggested new disease-relevant variants and genes. Here, we review these approaches and discuss particular examples where these have had a profound impact on the understanding of human cancers. © 2018 Federation of European Biochemical Societies.

  16. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    2014-01-01

    Full Text Available An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs, a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER, and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large

  17. Vestigialization of an Allosteric Switch: Genetic and Structural Mechanisms for the Evolution of Constitutive Activity in a Steroid Hormone Receptor

    Science.gov (United States)

    Bridgham, Jamie T.; Keay, June; Ortlund, Eric A.; Thornton, Joseph W.

    2014-01-01

    An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs), a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors) activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER), and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become “stuck” in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large-effect mutations

  18. Characterization of resistance mechanisms and genetic relatedness of carbapenem-resistant Acinetobacter baumannii isolated from blood, Italy.

    Science.gov (United States)

    Migliavacca, Roberta; Espinal, Paula; Principe, Luigi; Drago, Monica; Fugazza, Giulia; Roca, Ignasi; Nucleo, Elisabetta; Bracco, Silvia; Vila, Jordi; Pagani, Laura; Luzzaro, Francesco

    2013-02-01

    The aim of this study was to characterize the resistance mechanisms and genetic relatedness of 21 carbapenem-resistant Acinetobacter baumannii blood isolates collected in Italy during a 1-year multicenter prospective surveillance study. Genes coding for carbapenemase production were identified by polymerase chain reaction (PCR) and sequencing. Pulsed-field gel electrophoresis (PFGE), multiplex PCRs for group identification, and multilocus sequence typing (MLST) were used to determine genetic relationships. Carbapenem resistance was consistently related to the production of oxacillinases, mostly the plasmid-mediated OXA-58 enzyme. Strains producing the OXA-23 enzyme (chromosomally mediated) were also detected. Seven PFGE clones were identified, some of which being related to international (ICL- I and ICL-II) or national clonal lineages. Multiplex PCRs identified 4 different groups (group 2 being dominant), further distinguishable in 6 sequence types by MLST. The heterogeneity of profiles highlights the diffusion of international and national clonal lineages in Italy. Continuous surveillance is needed for monitoring the spread of these worrisome strains equipped with multiple drug resistance mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    Science.gov (United States)

    Monette, M.Y.; Yada, T.; Matey, V.; McCormick, S.D.

    2010-01-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4??gl-1 Al), acid and low Al (LAl: pH 5.4, 11??gl-1 Al), acid and moderate Al (MAl: pH 5.3, 42??gl-1 Al), and acid and high Al (HAl: pH 5.4, 56??gl-1 Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na+/K+-ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl- channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al exposure. We propose that when smolts are

  20. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    International Nuclear Information System (INIS)

    Monette, Michelle Y.; Yada, Takashi; Matey, Victoria; McCormick, Stephen D.

    2010-01-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4 μg l -1 Al), acid and low Al (LAl: pH 5.4, 11 μg l -1 Al), acid and moderate Al (MAl: pH 5.3, 42 μg l -1 Al), and acid and high Al (HAl: pH 5.4, 56 μg l -1 Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24 h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na + /K + -ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl - channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time-course and severity of Al exposure. We propose

  1. Discovery of chemical oscillatory layering in adarce from Rehai, Tengchong, Yunnan and its genetic mechanism

    International Nuclear Information System (INIS)

    Wang Jianghai; Dong Jinquan

    1994-01-01

    Based on characteristics of mineral assemblages and compositions of sinter in several typical region, Western Yunnan, it is recognized that rhythmic compositional layering is widespread in sinter. According to self-organization theory and fluid dynamic experiments completed by predecessors, the authors have studied dynamic features of fluids in thermo-chamber; and concluded that in which double-diffusive convection layering would imperatively take place on the basis of estimation of dynamic parameters and determination of differences between RT and R0. Finally, a two-stage genetic model has been put forward for explaining the rhythmic layering in sinter, i.e. :1) double-diffusive convection of fluid in chambers was induced by the gradients of temperature and concentration; and 2) the rising of layered fluids and the precipitation of the chemical material occurred. Obviously, rhythmic layering in sinter is a typical self-organizational phenomenon

  2. CNS autoimmune disease after Streptococcus pyogenes infections: animal models, cellular mechanisms and genetic factors

    Science.gov (United States)

    Cutforth, Tyler; DeMille, Mellissa MC; Agalliu, Ilir; Agalliu, Dritan

    2016-01-01

    Streptococcus pyogenes infections have been associated with two autoimmune diseases of the CNS: Sydenham’s chorea (SC) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus infections (PANDAS). Despite the high frequency of pharyngeal streptococcus infections among children, only a small fraction develops SC or PANDAS. This suggests that several factors in combination are necessary to trigger autoimmune complications: specific S. pyogenes strains that induce a strong immune response toward the host nervous system; genetic susceptibility that predispose children toward an autoimmune response involving movement or tic symptoms; and multiple infections of the throat or tonsils that lead to a robust Th17 cellular and humoral immune response when untreated. In this review, we summarize the evidence for each factor and propose that all must be met for the requisite neurovascular pathology and behavioral deficits found in SC/PANDAS. PMID:27110222

  3. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    DEFF Research Database (Denmark)

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti

    2011-01-01

    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown...... the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture...... underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working...

  4. Genetic or mechanical sexing system for the Mediterranean fruit fly, Ceratitis capitata (Wied.)

    International Nuclear Information System (INIS)

    Walder, J.M.M.

    1990-01-01

    A black puparium, monofactorial mutant was isolated in 1983 from a laboratory colony of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). The mutant was used to construct a genetic sexing strain based on pupal sorting. Translocations were induced in wild male adults, 48 hours old, by gamma radiation (55 Gy; 60 Co). These males were crossed to black pupae females and produced two pupal sorting strains (T-44 and T-213) in 1987. These strains were lost after six generations. In another series of translocation inductions the strain T-87B was screened. Rearing the strain for eight generations in the laboratory provided no indication of instability in the strain. T-87B is now being mass reared. (author). 16 refs, 4 tabs

  5. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    Science.gov (United States)

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C.A.; Patsopoulos, Nikolaos A.; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E.; Edkins, Sarah; Gray, Emma; Booth, David R.; Potter, Simon C.; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D’alfonso, Sandra; Blackburn, Hannah; Boneschi, Filippo Martinelli; Liddle, Jennifer; Harbo, Hanne F.; Perez, Marc L.; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P.; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T.; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J.; Barcellos, Lisa F.; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E.; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P.; Brassat, David; Broadley, Simon A.; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M.; Cavalla, Paola; Celius, Elisabeth G.; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B.; Cozen, Wendy; Cree, Bruce A.C.; Cross, Anne H.; Cusi, Daniele; Daly, Mark J.; Davis, Emma; de Bakker, Paul I.W.; Debouverie, Marc; D’hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F.A.; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N.; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G.; Kilpatrick, Trevor J.; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S.; Leone, Maurizio A.; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R.; Link, Jenny; Liu, Jianjun; Lorentzen, Åslaug R.; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L.; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L.; Ramsay, Patricia P.; Reunanen, Mauri; Reynolds, Richard; Rioux, John D.; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P.; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A.; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J.; Sellebjerg, Finn; Selmaj, Krzysztof W.; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M.A.; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C.; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M.; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A.; Tronczynska, Ewa; Casas, Juan P.; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S.; Wang, Kai; Mathew, Christopher G.; Wason, James; Palmer, Colin N.A.; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C.; Yaouanq, Jacqueline; Viswanathan, Ananth C.; Zhang, Haitao; Wood, Nicholas W.; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R.; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J.; De Jager, Philip L.; Peltonen, Leena; Stewart, Graeme J.; Hafler, David A.; Hauser, Stephen L.; McVean, Gil; Donnelly, Peter; Compston, Alastair

    2011-01-01

    Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis. PMID:21833088

  6. Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code

    DEFF Research Database (Denmark)

    Yadavalli, Srujana S; Ibba, Michael

    2013-01-01

    Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms...

  7. Genetics of mechanisms controlling responses to two major pathogens in broiler and layer chickens

    DEFF Research Database (Denmark)

    Hamzic, Edin

    The objective of this thesis was to improve the understanding of molecular mechanisms controlling the response to two major pathogens, Eimeria maxima (coccidiosis) and infectious bronchitis virus (IBV), in broiler and layer chickens, respectively. Breeding for the improved response to the two...

  8. Uncovering the molecular mechanisms of human cytomegalovirus immunoevasins US2 and US11 using genetic screens

    NARCIS (Netherlands)

    van de Weijer, M.L.

    2017-01-01

    During millions of years, the evolutionary arms race between viruses and their hosts has resulted in mutual adaptation. The host has equipped itself with an extensive arsenal of antiviral mechanisms to defend itself against these intruders, while viruses have developed strategies to counter, evade

  9. Environmental physiology

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. Subject areas include: the effects of environmental pollutants on homeostasis of the hematopoietic system; pollutant effects on steroid metabolism; pollutant effects on pulmonary macrophages; effects of toxic gases on lung cells; the development of immunological methods for assessing lung damage at the cellular level; the response of erythropoietin concentration to various physiological changes; and the study of actinide metabolism in monkey skeletons

  10. Genetics of human hydrocephalus

    Science.gov (United States)

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human

  11. Physiologic Evaluation of Ventilation Perfusion Mismatch and Respiratory Mechanics at Different Positive End-expiratory Pressure in Patients Undergoing Protective One-lung Ventilation.

    Science.gov (United States)

    Spadaro, Savino; Grasso, Salvatore; Karbing, Dan Stieper; Fogagnolo, Alberto; Contoli, Marco; Bollini, Giacomo; Ragazzi, Riccardo; Cinnella, Gilda; Verri, Marco; Cavallesco, Narciso Giorgio; Rees, Stephen Edward; Volta, Carlo Alberto

    2018-03-01

    Arterial oxygenation is often impaired during one-lung ventilation, due to both pulmonary shunt and atelectasis. The use of low tidal volume (VT) (5 ml/kg predicted body weight) in the context of a lung-protective approach exacerbates atelectasis. This study sought to determine the combined physiologic effects of positive end-expiratory pressure and low VT during one-lung ventilation. Data from 41 patients studied during general anesthesia for thoracic surgery were collected and analyzed. Shunt fraction, high V/Q and respiratory mechanics were measured at positive end-expiratory pressure 0 cm H2O during bilateral lung ventilation and one-lung ventilation and, subsequently, during one-lung ventilation at 5 or 10 cm H2O of positive end-expiratory pressure. Shunt fraction and high V/Q were measured using variation of inspired oxygen fraction and measurement of respiratory gas concentration and arterial blood gas. The level of positive end-expiratory pressure was applied in random order and maintained for 15 min before measurements. During one-lung ventilation, increasing positive end-expiratory pressure from 0 cm H2O to 5 cm H2O and 10 cm H2O resulted in a shunt fraction decrease of 5% (0 to 11) and 11% (5 to 16), respectively (P ventilation, high positive end-expiratory pressure levels improve pulmonary function without increasing high V/Q and reduce driving pressure.

  12. Dissecting molecular and physiological response mechanisms to high solar radiation in cyanic and acyanic leaves: a case study on red and green basil.

    Science.gov (United States)

    Tattini, Massimiliano; Sebastiani, Federico; Brunetti, Cecilia; Fini, Alessio; Torre, Sara; Gori, Antonella; Centritto, Mauro; Ferrini, Francesco; Landi, Marco; Guidi, Lucia

    2017-04-01

    Photosynthetic performance and the expression of genes involved in light signaling and the biosynthesis of isoprenoids and phenylpropanoids were analysed in green ('Tigullio', TIG) and red ('Red Rubin', RR) basil. The aim was to detect the physiological and molecular response mechanisms to high sunlight. The attenuation of blue-green light by epidermal anthocyanins was shown to evoke shade-avoidance responses with consequential effects on leaf morpho-anatomical traits and gas exchange performance. Red basil had a lower mesophyll conductance, partially compensated by the less effective control of stomatal movements, in comparison with TIG. Photosynthesis decreased more in TIG than in RR in high sunlight, because of larger stomatal limitations and the transient impairment of PSII photochemistry. The methylerythritol 4-phosphate pathway promoted above all the synthesis and de-epoxidation of violaxanthin-cycle pigments in TIG and of neoxanthin and lutein in RR. This enabled the green leaves to process the excess radiant energy effectively, and the red leaves to optimize light harvesting and photoprotection. The greater stomatal closure observed in TIG than in RR was due to enhanced abscisic acid (ABA) glucose ester deglucosylation and reduced ABA oxidation, rather than to superior de novo ABA synthesis. This study shows a strong competition between anthocyanin and flavonol biosynthesis, which occurs at the level of genes regulating the oxidation of the C2-C3 bond in the dihydro-flavonoid skeleton. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    Science.gov (United States)

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  14. Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms

    Science.gov (United States)

    Gallo, Eduardo F; Posner, Jonathan

    2016-01-01

    Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by developmentally inappropriate levels of inattention and hyperactivity or impulsivity. The heterogeneity of its clinical manifestations and the differential responses to treatment and varied prognoses have long suggested myriad underlying causes. Over the past decade, clinical and basic research efforts have uncovered many behavioural and neurobiological alterations associated with ADHD, from genes to higher order neural networks. Here, we review the neurobiology of ADHD by focusing on neural circuits implicated in the disorder and discuss how abnormalities in circuitry relate to symptom presentation and treatment. We summarise the literature on genetic variants that are potentially related to the development of ADHD, and how these, in turn, might affect circuit function and relevant behaviours. Whether these underlying neurobiological factors are causally related to symptom presentation remains unresolved. Therefore, we assess efforts aimed at disentangling issues of causality, and showcase the shifting research landscape towards endophenotype refinement in clinical and preclinical settings. Furthermore, we review approaches being developed to understand the neurobiological underpinnings of this complex disorder including the use of animal models, neuromodulation, and pharmaco-imaging studies. PMID:27183902

  15. Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease.

    Science.gov (United States)

    Shooshtari, Parisa; Huang, Hailiang; Cotsapas, Chris

    2017-07-06

    Genome-wide association studies in autoimmune and inflammatory diseases (AID) have uncovered hundreds of loci mediating risk. These associations are preferentially located in non-coding DNA regions and in particular in tissue-specific DNase I hypersensitivity sites (DHSs). While these analyses clearly demonstrate the overall enrichment of disease risk alleles on gene regulatory regions, they are not designed to identify individual regulatory regions mediating risk or the genes under their control, and thus uncover the specific molecular events driving disease risk. To do so we have departed from standard practice by identifying regulatory regions which replicate across samples and connect them to the genes they control through robust re-analysis of public data. We find significant evidence of regulatory potential in 78/301 (26%) risk loci across nine autoimmune and inflammatory diseases, and we find that individual genes are targeted by these effects in 53/78 (68%) of these. Thus, we are able to generate testable mechanistic hypotheses of the molecular changes that drive disease risk. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Mechanism of Inflammation in Age-Related Macular Degeneration: An Up-to-Date on Genetic Landmarks

    Directory of Open Access Journals (Sweden)

    Francesco Parmeggiani

    2013-01-01

    Full Text Available Age-related macular degeneration (AMD is the most common cause of irreversible visual impairment among people over 50 years of age, accounting for up to 50% of all cases of legal blindness in Western countries. Although the aging represents the main determinant of AMD, it must be considered a multifaceted disease caused by interactions among environmental risk factors and genetic backgrounds. Mounting evidence and/or arguments document the crucial role of inflammation and immune-mediated processes in the pathogenesis of AMD. Proinflammatory effects secondary to chronic inflammation (e.g., alternative complement activation and heterogeneous types of oxidative stress (e.g., impaired cholesterol homeostasis can result in degenerative damages at the level of crucial macular structures, that is photoreceptors, retinal pigment epithelium, and Bruch’s membrane. In the most recent years, the association of AMD with genes, directly or indirectly, involved in immunoinflammatory pathways is increasingly becoming an essential core for AMD knowledge. Starting from the key basic-research notions detectable at the root of AMD pathogenesis, the present up-to-date paper reviews the best-known and/or the most attractive genetic findings linked to the mechanisms of inflammation of this complex disease.

  17. Warfarin resistance associated with genetic polymorphism of VKORC1: linking clinical response to molecular mechanism using computational modeling.

    Science.gov (United States)

    Lewis, Benjamin C; Nair, Pramod C; Heran, Subash S; Somogyi, Andrew A; Bowden, Jeffrey J; Doogue, Matthew P; Miners, John O

    2016-01-01

    The variable response to warfarin treatment often has a genetic basis. A protein homology model of human vitamin K epoxide reductase, subunit 1 (VKORC1), was generated to elucidate the mechanism of warfarin resistance observed in a patient with the Val66Met mutation. The VKORC1 homology model comprises four transmembrane (TM) helical domains and a half helical lid domain. Cys132 and Cys135, located in the N-terminal end of TM-4, are linked through a disulfide bond. Two distinct binding sites for warfarin were identified. Site-1, which binds vitamin K epoxide (KO) in a catalytically favorable orientation, shows higher affinity for S-warfarin compared with R-warfarin. Site-2, positioned in the domain occupied by the hydrophobic tail of KO, binds both warfarin enantiomers with similar affinity. Displacement of Arg37 occurs in the Val66Met mutant, blocking access of warfarin (but not KO) to Site-1, consistent with clinical observation of warfarin resistance.

  18. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    Science.gov (United States)

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  19. Conservation physiology of marine fishes

    DEFF Research Database (Denmark)

    Jørgensen, Christian; Peck, Myron A.; Antognarelli, Fabio

    2012-01-01

    At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology...... to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity...

  20. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity

    International Nuclear Information System (INIS)

    Gorinova, N.; Nedkovska, M.; Todorovska, E.; Simova-Stoilova, L.; Stoyanova, Z.; Georgieva, K.; Demirevska-Kepova, K.; Atanassov, A.; Herzig, R.

    2007-01-01

    The response of tobacco plants (Nicotiana tabacum L.)-non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L. - to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 μM CdCl 2 resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 μM CdCl 2 led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. - Genetic transformation of Nicotiana tabacum L. by metallothionein gene improved phytoaccumulation of cadmium

  1. In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis

    DEFF Research Database (Denmark)

    Colman, Michael A; Ni, Haibo; Liang, Bo

    2017-01-01

    and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were...... provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results...

  2. Toward a Predictive Framework for Convergent Evolution: Integrating Natural History, Genetic Mechanisms, and Consequences for the Diversity of Life.

    Science.gov (United States)

    Agrawal, Anurag A

    2017-08-01

    A charm of biology as a scientific discipline is the diversity of life. Although this diversity can make laws of biology challenging to discover, several repeated patterns and general principles govern evolutionary diversification. Convergent evolution, the independent evolution of similar phenotypes, has been at the heart of one approach to understand generality in the evolutionary process. Yet understanding when and why organismal traits and strategies repeatedly evolve has been a central challenge. These issues were the focus of the American Society of Naturalists Vice Presidential Symposium in 2016 and are the subject of this collection of articles. Although naturalists have long made inferences about convergent evolution and its importance, there has been confusion in the interpretation of the pattern of convergence. Does convergence primarily indicate adaptation or constraint? How often should convergence be expected? Are there general principles that would allow us to predict where and when and by what mechanisms convergent evolution should occur? What role does natural history play in advancing our understanding of general evolutionary principles? In this introductory article, I address these questions, review several generalizations about convergent evolution that have emerged over the past 15 years, and present a framework for advancing the study and interpretation of convergence. Perhaps the most important emerging conclusion is that the genetic mechanisms of convergent evolution are phylogenetically conserved; that is, more closely related species tend to share the same genetic basis of traits, even when independently evolved. Finally, I highlight how the articles in this special issue further develop concepts, methodologies, and case studies at the frontier of our understanding of the causes and consequences of convergent evolution.

  3. Genetical, cytological and physiological studies on the induced mutants with special regard to effective methods for obtaining useful mutants in perennial woody plant

    International Nuclear Information System (INIS)

    Kukimura, H.; Ikeda, F.; Fujita, H.; Maeta, T.; Nakajima, K.; Katagiri, K.; Nakahira, K.; Somegou, M.

    1976-01-01

    The plants studied included apple trees, cryptomeria (japanese cedar) and mulberry. In apple, dwarf and compact types of mutants from cv. Fuji were found to be graft incompatible on Maruba-kaido(Malus prunifolia) rootstock. In Sunki mandarin(Citrus sunki), the number of nucellar embryo per seed was affected by gamma-irradiation, and morphological mutants from nucellar seedlings were obtained at high rate by irradiation at floral bud stage with 2kR exposure. In Cryptomeria, re-irradiated waxless mutants by gamma-rays showed very high rate of somatic mutation when compared to other morphological mutants. Pollen sterility and pollen shaped PMC were found in the most of gamma-induced-mutants. Mutants forming pollen shaped PMC had a genetical tendency of continuous male flower bud formation for a longer term. With mulberry, time of sprouting of induced mutants differed from the originals. Ability of root initiation of semi-softwood cuttings in morphological mutants were tested. Cytochimera induction were found at considerably high rate when actively growing diploid plants were irradiated by gamma-rays. Eight kinds of cytochimeras were induced. Frequency of 2-4-4 was extremely high(approx. 50%), then 4-2-2 and 2-4-2 chimeras followed. Seven kinds were induced by semi-acute irradiation(200R/h), while 4 kinds by acute irradiation(5kR/h). By breeding test it was cleared that the elongate and entire leaf was sexually transmissible, whereas the 'dwarf' was not obvious and the 'marginally curledleaf' was not transmissible. Pyronin-methylgreen staining method proved to be useful in some morphological mutants to distinguish the histo-genetical differences which exist in the shoot apex.

  4. Occupational physiology

    CERN Document Server

    Toomingas, Allan; Tornqvist, Ewa Wigaeus

    2011-01-01

    In a clear and accessible presentation, Occupational Physiology focuses on important issues in the modern working world. Exploring major public health problems-such as musculoskeletal disorders and stress-this book explains connections between work, well-being, and health based on up-to-date research in the field. It provides useful methods for risk assessment and guidelines on arranging a good working life from the perspective of the working individual, the company, and society as a whole.The book focuses on common, stressful situations in different professions. Reviewing bodily demands and r

  5. Physiology insights

    DEFF Research Database (Denmark)

    Watanabe, Richard M; Hansen, Torben

    2016-01-01

    In recent years, the search for genetic determinants of type 2 diabetes has resulted in identification of numerous type 2 diabetes-associated loci as well as a number of loci associating with related prediabetic traits. These findings have illuminated new biological pathways contributing to the p......In recent years, the search for genetic determinants of type 2 diabetes has resulted in identification of numerous type 2 diabetes-associated loci as well as a number of loci associating with related prediabetic traits. These findings have illuminated new biological pathways contributing...... insulin levels. Combined, these loci only account for a fraction of the observed familial clustering of type 2 diabetes and only up to about 10 % of the variation in prediabetic quantitative traits. Improved methods are needed to dig deeper into a biological understanding of the pathophysiology of type 2...

  6. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Monette, Michelle Y., E-mail: michelle.monette@yale.edu [Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA 01003 (United States); USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376 (United States); Yada, Takashi [Freshwater Fisheries Research Department, National Research Institute of Fisheries Science, Nikko (Japan); Matey, Victoria [Department of Biology, San Diego State University, San Diego, CA 92182 (United States); McCormick, Stephen D. [Organismic and Evolutionary Biology Program, University of Massachusetts, Amherst, MA 01003 (United States); USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376 (United States)

    2010-08-01

    We examined the physiological, molecular, and cellular mechanisms of impaired ion regulation in Atlantic salmon, Salmo salar, smolts following acute acid and aluminum (Al) exposure. Smolts were exposed to: control (pH 6.5, 3.4 {mu}g l{sup -1} Al), acid and low Al (LAl: pH 5.4, 11 {mu}g l{sup -1} Al), acid and moderate Al (MAl: pH 5.3, 42 {mu}g l{sup -1} Al), and acid and high Al (HAl: pH 5.4, 56 {mu}g l{sup -1} Al) for two and six days. At each time-point, smolts were sampled directly from freshwater treatment tanks and after a 24 h seawater challenge. Exposure to acid/MAl and acid/HAl led to accumulation of gill Al, substantial alterations in gill morphology, reduced gill Na{sup +}/K{sup +}-ATPase (NKA) activity, and impaired ion regulation in both freshwater and seawater. Exposure to acid/MAl for six days also led to a decrease in gill mRNA expression of the apical Cl{sup -} channel (cystic fibrosis transmembrane conductance regulator I), increased apoptosis upon seawater exposure, an increase in the surface expression of mitochondria-rich cells (MRCs) within the filament epithelium of the gill, but reduced abundance of gill NKA-positive MRCs. By contrast, smolts exposed to acid and the lowest Al concentration exhibited minor gill Al accumulation, slight morphological modifications in the gill, and impaired seawater tolerance in the absence of a detectable effect on freshwater ion regulation. These impacts were accompanied by decreased cell proliferation, a slight increase in the surface expression of MRCs within the filament epithelium, but no impact on gill apoptosis or total MRC abundance was observed. However, MRCs in the gills of smolts exposed to acid/LAl exhibited morphological alterations including decreased size, staining intensity, and shape factor. We demonstrate that the seawater tolerance of Atlantic salmon smolts is extremely sensitive to acute exposure to acid and low levels of Al, and that the mechanisms underlying this depend on the time

  7. Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas.

    Science.gov (United States)

    Lewis, Thomas A; Leach, Lynne; Morales, Sergio; Austin, Paula R; Hartwell, Hadley J; Kaplan, Benjamin; Forker, Cynthia; Meyer, Jean-Marie

    2004-02-01

    The bacterial metabolite and transition metal chelator pyridine-2,6-dithiocarboxylic acid (PDTC), promotes a novel and effective means of dechlorination of the toxic and carcinogenic pollutant, carbon tetrachloride. Pyridine-2,6-dithiocarboxylic acid has been presumed to act as a siderophore in the Pseudomonas strains known to produce it. To explore further the physiological function of PDTC production, we have examined its regulation, the phenotype of PDTC-negative (pdt) mutants, and envelope proteins associated with PDTC in P. putida strain DSM 3601. Aspects of the regulation of PDTC production and outer membrane protein composition were consistent with siderophore function. Pyridine-2,6-dithiocarboxylic acid production was coordinated with production of the well-characterized siderophore pyoverdine; exogenously added pyoverdine led to decreased PDTC production, and added PDTC led to decreased pyoverdine production. Positive regulation of a chromosomal pdtI-xylE transcriptional fusion, and of a 66 kDa outer membrane protein (IROMP), was seen in response to exogenous PDTC. Tests with transition metal chelators indicated that PDTC could provide a benefit under conditions of metal limitation; the loss of PDTC biosynthetic capacity caused by a pdtI transposon insertion resulted in increased sensitivity to 1,10-phenanthroline, a chelator that has high affinity for a range of divalent transition metals (e.g. Fe(2+), Cu(2+), Zn(2+)). Exogenously added PDTC could also suppress a phenotype of pyoverdine-negative (Pvd-) mutants, that of sensitivity to EDDHA, a chelator with higher affinity and specificity for Fe(3+). Measurement of 59Fe incorporation showed uptake from 59Fe:PDTC by DSM 3601 grown in low-iron medium, but not by cells grown in high iron medium, or by the pdtI mutant, which did not show expression of the 66 kDa envelope protein. These data verified a siderophore function for PDTC, and have implicated it in the uptake of transition metals in addition to iron.

  8. Genetic Analysis of Yield and Physiological Traits in Sunflower (Helianthus annuus L. under Irrigation and Drought Stress

    Directory of Open Access Journals (Sweden)

    Azam POURMOHAMMAD

    2014-06-01

    Full Text Available Implementing appropriate breeding strategies for sunflower, alongside dependable information on heritability and gene effects upon yield and related traits under drought conditions, are all necessary. Thirty sunflower hybrids were produced by line × tester cross of six male-sterile and five restorer lines. Their hybrids were evaluated in three levels of irrigation, as follows: (1 non-stressed plots, irrigated at regular intervals (W1; (2 mild water stress (W2, irrigated from the beginning of the button stage (R4 to seed filling initiation (R6; (3 severe water stress (W3 started from the beginning of button stage (R4 to physiological maturity. Based on observations and specific methods for determination, canopy temperatures, chlorophyll index, relative water content and proline content, were studied by additive effects, under the different irrigation conditions. Canopy temperatures,chlorophyll index, relative water content, leaf water potential, proline content and yield were controlled by additive effects under mild stressed conditions. Under severe stress conditions however, canopy temperatures, leaf water potential and proline content were controlled by additive effects, while chlorophyll index and relative water content were controlled by both additive and dominant effects, as seed yield was mainly influenced by the dominant effects. The narrow sense heritability ranged from 47-97% for all traits, except for chlorophyll fluorescence. Yield correlated positively with chlorophyll index and relative water content, and negatively with canopy temperature and leaf water potential. Therefore, under drought stressed conditions in breeding programs, canopy temperatures, chlorophyll index and relative water content can be reliable criteria for the selection of tolerant genotypes with prospect to higher yields.

  9. Children’s Patterns of Emotional Reactivity to Conflict as Explanatory Mechanisms in Links Between Interpartner Aggression and Child Physiological Functioning

    Science.gov (United States)

    Davies, Patrick T.; Sturge-Apple, Melissa L.; Cicchetti, Dante; Manning, Liviah G.; Zale, Emily

    2009-01-01

    Background This paper examined children’s fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Methods Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children’s emotional reactivity were derived from maternal surveys and a semi-structured interview. Cortisol levels and cardiac indices of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activity were used to assess toddler physiological functioning. Results Results indicated that toddler exposure to interparental aggression was associated with greater cortisol levels and PNS activity and diminished SNS activity. Toddler angry emotional reactivity mediated associations between interparental aggression and cortisol and PNS functioning. Fearful emotional reactivity was a mediator of the link between interparental aggression and SNS functioning. Conclusions The results are interpreted within conceptualizations of how exposure and reactivity to family risk organizing individual differences in physiological functioning. PMID:19744183

  10. Mechanisms of Resistance to Endocrine Therapy in Breast Cancer: Focus on Signaling Pathways, miRNAs and Genetically Based Resistance

    Science.gov (United States)

    García-Becerra, Rocío; Santos, Nancy; Díaz, Lorenza; Camacho, Javier

    2013-01-01

    Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients. PMID:23344024

  11. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse.

    Science.gov (United States)

    Cross, Sarah J; Lotfipour, Shahrdad; Leslie, Frances M

    2017-03-01

    Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.

  12. About the Genetic Mechanisms of Apatites: A Survey on the Methodological Approaches

    Directory of Open Access Journals (Sweden)

    Linda Pastero

    2017-08-01

    Full Text Available Apatites are properly considered as a strategic material owing to the broad range of their practical uses, primarily biomedical but chemical, pharmaceutical, environmental and geological as well. The apatite group of minerals has been the subject of a huge number of papers, mainly devoted to the mass crystallization of nanosized hydroxyapatite (or carboapatite as a scaffold for osteoinduction purposes. Many wet and dry methods of synthesis have been proposed. The products have been characterized using various techniques, from the transmission electron microscopy to many spectroscopic methods like IR and Raman. The experimental approach usually found in literature allows getting tailor made micro- and nano- crystals ready to be used in a wide variety of fields. Despite the wide interest in synthesis and characterization, little attention has been paid to the relationships between bulk structure and corresponding surfaces and to the role plaid by surfaces on the mechanisms involved during the early stages of growth of apatites. In order to improve the understanding of their structure and chemical variability, close attention will be focused on the structural complexity of hydroxyapatite (HAp, on the richness of its surfaces and their role in the interaction with the precursor phases, and in growth kinetics and morphology.

  13. Development of enhanced radioprotectors - Biochemical and molecular genetical approaches on the radioprotective mechanism of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Eun Ju; Hong, Jung A [Kyunghee University, Seoul (Korea)

    2000-04-01

    To identify radio-protective agent candidate among medicinal plants and to elucidate the mechanism of action of the candidate material by using modern biochemical and molecular biological methods, we screened radio-protective activity among 48 medicinal plants. Seven samples showed above 20% protective activities against oxidative cell damage: Euryale ferox, Glycyrrhiza uralensis, Salvia miltiorrhiza, Eucomia ulmoides, Paeonia suffruticosa, Spirodela polyrrhiza, and Nelumbo nucifera. We also screened for oxidative stress sensitizing activity among other 51 medicinal plants. Among those samples, 11 samples showed good sensitizing effect; Melia azedarach, Agastache rugosa, Catalpa ovata, Prunus persica, Sinomenium acutum, Pulsatilla koreana, Oldenlandia diffusa, Anthriscus sylvestris, Schizandra chinensis, Gleditsia sinensis, and Cridium officinale. We also reported the radio-protective effect of DTT. The treatment of DTT increased cell survival after gamma-irradiation, decreased in the frequencies of micronucleus, and reduction in DNA fragmentation and apoptotic cells. Induction of apoptosis after UV-C irradiation was revealed by the changes in the relative cell death, increase in the relative amount of apoptotic cells, and the induction of DNA fragmentation. 165 refs., 9 figs., 8 tabs. (Author)

  14. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    International Nuclear Information System (INIS)

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C.

    1989-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals

  15. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  16. Genetic-and-epigenetic Interspecies Networks for Cross-talk Mechanisms in Human Macrophages and Dendritic Cells During MTB Infection

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Li

    2016-10-01

    Full Text Available Tuberculosis is caused by Mycobacterium tuberculosis (Mtb infection. Mtb is one of the oldest human pathogens, and evolves mechanisms implied in human evolution. The lungs are the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in the lungs, such as macrophages (Mϕs and dendritic cells (DCs, are the most important defense against Mtb infection. There have been several studies discussing the functions of Mϕs and DCs during Mtb infection, but the genome-wide pathways and networks are still incomplete. Furthermore, the immune response induced by Mϕs and DCs varies. Therefore, we analyzed the cross-talk genome-wide genetic-and-epigenetic interspecies networks (GWGEINs between Mϕs vs. Mtb and DCs vs. Mtb to determine the varying mechanisms of both the host and pathogen as it relates to Mϕs and DCs during early Mtb infection.First, we performed database mining to construct candidate cross-talk GWGEIN between human cells and Mtb. Then we constructed dynamic models to characterize the molecular mechanisms, including intraspecies gene/microRNA (miRNA regulation networks (GRNs, intraspecies protein-protein interaction networks (PPINs, and the interspecies PPIN of the cross-talk GWGEIN. We applied a system identification method and a system order detection scheme to dynamic models to identify the real cross-talk GWGEINs using the microarray data of Mϕs, DCs and Mtb.After identifying the real cross-talk GWGEINs, the principal network projection (PNP method was employed to construct host-pathogen core networks (HPCNs between Mϕs vs. Mtb and DCs vs. Mtb during infection process. Thus, we investigated the underlying cross-talk mechanisms between the host and the pathogen to determine how the pathogen counteracts host defense mechanisms in Mϕs and DCs during Mtb H37Rv early infection. Based on our findings, we propose Rv1675c as a potential drug target because of its important defensive

  17. Effect of Dursban 480 EC (chlorpyrifos) and Talstar 10 EC (bifenthrin) on the physiological and genetic diversity of microorganisms in soil.

    Science.gov (United States)

    Medo, Juraj; Maková, Jana; Kovácsová, Silvia; Majerčíková, Kamila; Javoreková, Soňa

    2015-01-01

    This investigation was undertaken to determine the impact of the insecticides Dursban 480 EC (with organophosphate compound chlorpyrifos as the active ingredient) and Talstar 10 EC (with pyrethroid bifenthrin as the active ingredient) on the respiration activity and microbial diversity in a sandy loam luvisol soil. The insecticides were applied in two doses: the maximum recommended dose for field application (15 mg kg(-1) for Dursban 480 EC and 6 mg kg(-1) for Talstar 10 EC) and a 100-fold higher dose for extrapolation of their effect. Bacterial and fungal genetic diversity was analysed in soil samples using PCR DGGE and the functional diversity (catabolic potential) was studied using BIOLOG EcoPlates at 1, 3, 7, 14, 28, 56 and 112 days after insecticide application. Five bacterial groups (α, β, γ proteobacteria, firmibacteria and actinomycetes) and five groups of fungi or fungus-like microorganisms (Ascomycota, Basidiomycota, Chytridiomycota, Oomycota and Zygomycota) were analysed using specific primer sets. This approach provides high resolution of the analysis covering majority of microorganisms in the soil. Only the high-dose Dursban 480 EC significantly changed the community of microorganisms. We observed its negative effect on α- and γ-proteobacteria, as the number of OTUs (operational taxonomic units) decreased until the end of incubation. In the β-proteobacteria group, initial increase of OTUs was followed by strong decrease. Diversity in the firmibacteria, actinomycetes and Zygomycota groups was minimally disturbed by the insecticide application. Dursban 480 EC, however, both positively and negatively affected certain species. Among negatively affected species Sphingomonas, Flavobacterium or Penicillium were detected, but Achromobacter, Luteibacter or Aspergillus were supported by applied insecticide. The analysis of BIOLOG plates using AWCD values indicated a significant increase in metabolic potential of microorganisms in the soil after the high

  18. A New Model of Master of Philosophy in Physiological Sciences.

    Science.gov (United States)

    Ahmad, H R; Arain, F M; Khan, N A

    2016-01-01

    The objectives of Master of Philosophy (MPhil) in Physiological Sciences are: 1) to describe the new ways in which anatomy, biochemistry and physiology on one hand, and microbiology, pathology and pharmacology on other hand meet their functional requirements through multidisciplinary integrated concepts; 2) to elucidate relationships between cell biology, molecular biology and molecular genetics by connecting dots of how cell functions are driven by molecules and being controlled by genes. This forms the basis of cell, molecular and genetics [CMG] module upon which 7 multidisciplinary modules of Physiological Sciences follow; 3) these 24 credit hours provide the physiological basis for PhD studies as well as faculty development to enhance learning abilities of medical student; 4) the modules constitute Cardio- Respiratory Physiological Sciences, GI and Renal Physiological Sciences, Neurosciences, Endo-Reproductive Physiological Sciences.; 5) it has integrated microbiology, pathology and pharmacology in a unique way through CMG of microbes leading to associated pathology and mechanisms of prescribed drugs; 6) it has additional synopsis and thesis friendly course work leading to comprehensive examinations; 7) the year two deals with research work of 6 credit hours leading to defense of thesis; 8) The MPhil in Physiological Sciences is fundamentally different from what is being offered elsewhere. It prepares and offers a good spring board to dovetail PhD studies as well as faculty and institutional development. This is the first study that deals with innovative programmes in research, learning and education in the field of physiological sciences. This broad-based MPhil would make its recipients competent, critical, confident and productive learner. This is a completely unique design of a curriculum that has no comparable examples elsewhere. Our mission is to educate graduate students in the field of Physiological Sciences such that they have a complete grasp over the

  19. Space Physiology within an Exercise Physiology Curriculum

    Science.gov (United States)

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  20. Bone morphogenetic protein-4 and transforming growth factor-beta1 mechanisms in acute valvular response to supra-physiologic hemodynamic stresses.

    Science.gov (United States)

    Sun, Ling; Sucosky, Philippe

    2015-06-26

    To explore ex vivo the role of bone morphogenetic protein-4 (BMP-4) and transforming growth factor-beta1 (TGF-β1) in acute valvular response to fluid shear stress (FSS) abnormalities. Porcine valve leaflets were subjected ex vivo to physiologic FSS, supra-physiologic FSS magnitude at normal frequency and supra-physiologic FSS frequency at normal magnitude for 48 h in a double-sided cone-and-plate bioreactor filled with standard culture medium. The role of BMP-4 and TGF-β1 in the valvular response was investigated by promoting or inhibiting the downstream action of those cytokines via culture medium supplementation with BMP-4 or the BMP antagonist noggin, and TGF-β1 or the TGF-β1 inhibitor SB-431542, respectively. Fresh porcine leaflets were used as controls. Each experimental group consisted of six leaflet samples. Immunostaining and immunoblotting were performed to assess endothelial activation in terms of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expressions, paracrine signaling in terms of BMP-4 and TGF-β1 expressions and extracellular matrix (ECM) remodeling in terms of cathepsin L, cathepsin S, metalloproteinases (MMP)-2 and MMP-9 expressions. Immunostained images were quantified by normalizing the intensities of positively stained regions by the number of cells in each image while immunoblots were quantified by densitometry. Regardless of the culture medium, physiologic FSS maintained valvular homeostasis. Tissue exposure to supra-physiologic FSS magnitude in standard medium stimulated paracrine signaling (TGF-β1: 467% ± 22% vs 100% ± 6% in fresh controls, BMP-4: 258% ± 22% vs 100% ± 4% in fresh controls; P 0.05). Supra-physiologic FSS frequency had no effect on endothelial activation and paracrine signaling regardless of the culture medium but TGF-β1 silencing attenuated FSS-induced ECM degradation via MMP-9 downregulation (MMP-9: 302% ± 182% vs 100% ± 42% in fresh controls; P > 0.05). Valvular tissue is sensitive

  1. Integrated physiological, biochemical and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature

    Directory of Open Access Journals (Sweden)

    Boghireddy eSailaja

    2015-11-01

    Full Text Available In changing climate, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical and molecular level is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in eleven popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS, antioxidants, and photosynthesis were studied at vegetative and reproductive phases which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified which will be important resource to develop high temperature tolerant rice cultivars. Interestingly, Nagina22 emerged as best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activity, lesser reduction in net photosynthetic rate (PN, high transpiration rate (E and other photosynthetic/ fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Further, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant and Vandana (susceptible at flowering phase, strengthening the fact that N22 performs better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes which are needed to be characterized to address the challenges of future climate extreme conditions.

  2. Genetical pressures and social organization in small mammal populations

    International Nuclear Information System (INIS)

    Berry, R.J.

    1978-01-01

    Inherited variation is often useful for detecting and measuring ecological pressures in natural populations. For example, changes in allele and genotypic frequencies at the gene locus controlling the haemoglobin β chain in Mus musculus samples trapped on an isolated Welsh island have provided information about different mechanisms of death at different times of year and about the influence of social structure on genetical constitution. Notwithstanding, considerable caution has to be exercised in interpreting genetical changes, since detectable varients are often no more than linked markers of physiologically important gene loci, while habitat, deme, or ageing differences may be obscured in pooled data, such as are represented by concepts like overall allozymic heterozygosity. For these reasons, genetical studies on wild populations are likely to be most profitable when the contribution of individual genes to physiological or behavioral traits can be analyzed; it is at this level that genetics and ecology properly complement each other

  3. Hyperinsulinemic Hypoglycemia ? The Molecular Mechanisms

    OpenAIRE

    Nessa, Azizun; Rahman, Sofia A.; Hussain, Khalid

    2016-01-01

    Under normal physiological conditions, pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5–5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretio...

  4. Involvement of genetic variants associated with primary open-angle glaucoma in pathogenic mechanisms and family history of glaucoma.

    Science.gov (United States)

    Mabuchi, Fumihiko; Sakurada, Yoichi; Kashiwagi, Kenji; Yamagata, Zentaro; Iijima, Hiroyuki; Tsukahara, Shigeo

    2015-03-01

    To investigate the associations between the non-intraocular pressure (IOP)-related genetic variants (genetic variants associated with vulnerability of the optic nerve independent of IOP) and primary open-angle glaucoma (POAG), including normal-tension glaucoma (NTG) and high-tension glaucoma (HTG), and between the non-IOP-related genetic variants and a family history of glaucoma. Case-control study. Japanese patients with NTG (n = 213) and HTG (n = 212) and 191 control subjects were genotyped for 5 non-IOP-related genetic variants predisposing to POAG near the SRBD1, ELOVL5, CDKN2B/CDKN2B-AS1, SIX1/SIX6, and ATOH7 genes. The load of these genetic variants was compared between the control subjects and patients with NTG or HTG and between the POAG patients with and without a family history of glaucoma. The total number of POAG risk alleles and the product of the odds ratios (POAG risk) of these genetic variants were significantly larger (P product of the odds ratios increased (P = .012 and P = .047, respectively). Non-IOP-related genetic variants contribute to the pathogenesis of HTG as well as NTG. A positive family history of glaucoma in cases of POAG is thought to reflect the influence of genetic variants predisposing to POAG. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder ( Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Eg Nielsen, Einar; Grønkjær, P.

    2007-01-01

    with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic...

  6. Relationship among the repair mechanisms and the genetic recombination; Relacion entre los mecanismos de reparacion y la recombinacion genetica

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara D, D [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1987-12-15

    In accordance with the previous reports of the Project BZ87 of the Department of Radiobiology, a dependent stimulation of the system exists in E.coli SOS, of the recombination of the bacteriophage Lambda whose genetic material has not been damaged. This stimulation is not due to the increase of the cellular concentration of the protein RecA and the mechanism but probable for which we find that it is carried out, it is through a cooperation among the product of the gene rec N of E. coli and the system Net of recombination of Lambda. The gene recN belongs to the group of genes SOS and its expression is induced when damaging the bacterial DNA where it intervenes in the repair of breaks of the double helix of the molecule (Picksley et, 1984). If the repair of breaks of this type is a factor that limits the speed with which it happens the recombination among viral chromosomes, then the biggest readiness in the protein RecN, due to the induction of the functions SOS, would facilitate the repair of such ruptures. In this new project it is to enlarge the knowledge about this phenomenon, it was, on one hand of corroborating in a way but he/she specifies the relationship between the recombinogenic response of Lambda and the System SOS of E. coli and for the other one to determine the effect that has the inhibition of the duplication of the DNA on the stimulation of the viral recombination. Everything it with the idea of making it but evident and to be able to use it as a system of genotoxic agents detection in E. coli. (Author)

  7. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay

    KAUST Repository

    Montes, Iratxe; Zarraonaindia, Iratxe; Iriondo, Mikel; Grant, W. Stewart; Manzano, Carmen; Cotano, Unai; Conklin, Darrell; Irigoien, Xabier; Estonba, Andone

    2016-01-01

    Morphometry and otolith microchemistry point to the existence of two populations of the European anchovy (Engraulis encrasicolus) in the Bay of Biscay: one in open seawaters, and a yet unidentified population in coastal waters. To test this hypothesis, we assembled a large number of samples from the region, including 587 juveniles and spawning adults from offshore and coastal waters, and 264 fish from other locations covering most of the species’ European range. These samples were genotyped for 456 exonic SNPs that provide a robust way to decipher adaptive processes in these populations. Two genetically differentiated populations of anchovy inhabit the Bay of Biscay with different population dynamics: (1) a large offshore population associated with marine waters included in the wide-shelf group, and (2) a coastal metapopulation adapted to estuarine environments in the Bay of Biscay and North Sea included in the narrow-shelf group. Transcriptome analysis identified neutral and adaptive evolutionary processes underlying differentiation between these populations. Reduced gene flow between offshore and coastal populations in the Bay of Biscay appears to result from divergence between two previously isolated gene pools adapted to contrasting habitats and now in secondary contact. Eleven molecular markers appear to mark divergent selection between the ecotypes, and a majority of these markers are associated with salinity variability. Ecotype differences at two outlier genes, TSSK6 and basigin, may hinder gamete compatibility between the ecotypes and reinforce reproductive isolation. Additionally, possible convergent evolution between offshore and coastal populations in the Bay of Biscay has been detected for the syntaxin1B-otoferlin gene system, which is involved in the control of larval buoyancy. Further study of exonic markers opens the possibility of understanding the mechanisms of adaptive divergence between European anchovy populations. © 2016, Springer

  8. Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay

    KAUST Repository

    Montes, Iratxe

    2016-09-13

    Morphometry and otolith microchemistry point to the existence of two populations of the European anchovy (Engraulis encrasicolus) in the Bay of Biscay: one in open seawaters, and a yet unidentified population in coastal waters. To test this hypothesis, we assembled a large number of samples from the region, including 587 juveniles and spawning adults from offshore and coastal waters, and 264 fish from other locations covering most of the species’ European range. These samples were genotyped for 456 exonic SNPs that provide a robust way to decipher adaptive processes in these populations. Two genetically differentiated populations of anchovy inhabit the Bay of Biscay with different population dynamics: (1) a large offshore population associated with marine waters included in the wide-shelf group, and (2) a coastal metapopulation adapted to estuarine environments in the Bay of Biscay and North Sea included in the narrow-shelf group. Transcriptome analysis identified neutral and adaptive evolutionary processes underlying differentiation between these populations. Reduced gene flow between offshore and coastal populations in the Bay of Biscay appears to result from divergence between two previously isolated gene pools adapted to contrasting habitats and now in secondary contact. Eleven molecular markers appear to mark divergent selection between the ecotypes, and a majority of these markers are associated with salinity variability. Ecotype differences at two outlier genes, TSSK6 and basigin, may hinder gamete compatibility between the ecotypes and reinforce reproductive isolation. Additionally, possible convergent evolution between offshore and coastal populations in the Bay of Biscay has been detected for the syntaxin1B-otoferlin gene system, which is involved in the control of larval buoyancy. Further study of exonic markers opens the possibility of understanding the mechanisms of adaptive divergence between European anchovy populations. © 2016, Springer

  9. The mechanisms underlying sexual differentiation of behavior and physiology in mammals and birds: relative contributions of sex steroids and sex chromosomes

    Directory of Open Access Journals (Sweden)

    Fumihiko eMaekawa

    2014-08-01

    Full Text Available From a classical viewpoint, sex-specific behavior and physiological functions as well as the brain structures of mammals such as rats and mice, have been thought to be influenced by perinatal sex steroids secreted by the gonads. Sex steroids have also been thought to affect the differentiation of the sex-typical behavior of a few members of the avian order Galliformes, including the Japanese quail and chickens, during their development in ovo. However, recent mammalian studies that focused on the artificial shuffling or knockout of the sex-determining gene, Sry, have revealed that sex chromosomal effects may be associated with particular types of sex-linked differences such as aggression levels, social interaction, and autoimmune diseases, independently of sex steroid-mediated effects. In addition, studies on naturally occurring, rare phenomena such as gynandromorphic birds and experimentally constructed chimeras in which the composition of sex chromosomes in the brain differs from that in the other parts of the body, indicated that sex chromosomes play certain direct roles in the sex-specific differentiation of the gonads and the brain. In this article, we review the relative contributions of sex steroids and sex chromosomes in the determination of brain functions related to sexual behavior and reproductive physiology in mammals and birds.

  10. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.

    Science.gov (United States)

    Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F

    2017-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x

  11. Plant aquaporins: roles in plant physiology.

    Science.gov (United States)

    Li, Guowei; Santoni, Véronique; Maurel, Christophe

    2014-05-01

    Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Towards mosquito sterile insect technique programmes: Exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes

    Czech Academy of Sciences Publication Activity Database

    Gilles, J. R. L.; Schetelig, M. F.; Scolari, F.; Marec, František; Capurro, M.L.; Franz, G.; Bourtzis, K.

    132S, č. 1 (2014), S178-S187 ISSN 0001-706X R&D Projects: GA ČR GA523/09/2106 Grant - others:Deutsche Forschungsgemeinschalft(DE) SCHE 1833/1 Institutional support: RVO:60077344 Keywords : female elimination * vector control * genetic sexing strains (GSS) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.270, year: 2014 http://www.sciencedirect.com/science/article/pii/S0001706X13002209?via=ihub

  13. Noradrenergic mechanisms and high blood pressure maintenance in genetic hypertension: The role of Gi proteins and voltage-dependent calcium channels

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Pintérová, Mária; Líšková, Silvia; Dobešová, Zdenka; Kuneš, Jaroslav

    2007-01-01

    Roč. 29, č. 4 (2007), s. 229-229 ISSN 1064-1963. [International symposium on SHR /12./. 20.10.2006-21.10.2006, Kyoto] R&D Projects: GA MZd(CZ) NR7786 Institutional research plan: CEZ:AV0Z50110509 Keywords : genetic hypertension * noradrenergic mechanisms * Gi proteins * voltage-dependent calcium channels Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  14. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT∗3A, TPMT∗2): Mechanisms for the genetic polymorphism of TPMT activity

    OpenAIRE

    Tai, Hung-Liang; Krynetski, Eugene Y.; Schuetz, Erin G.; Yanishevski, Yuri; Evans, William E.

    1997-01-01

    TPMT is a cytosolic enzyme that catalyzes the S-methylation of aromatic and heterocyclic sulfhydryl compounds, including medications such as mercaptopurine and thioguanine. TPMT activity exhibits autosomal codominant genetic polymorphism, and patients inheriting TPMT deficiency are at high risk of potentially fatal hematopoietic toxicity. The most prevalent mutant alleles associated with TPMT deficiency in humans have been cloned and characterized (TPMT∗2 and TPMT∗3A), but the mechanisms for ...

  15. No Genetic Tradeoffs between Hygienic Behaviour and Individual Innate Immunity in the Honey Bee, Apis mellifera

    OpenAIRE

    Harpur, Brock A.; Chernyshova, Anna; Soltani, Arash; Tsvetkov, Nadejda; Mahjoorighasrodashti, Mohammad; Xu, Zhixing; Zayed, Amro

    2014-01-01

    Many animals have individual and social mechanisms for combating pathogens. Animals may exhibit short-term physiological tradeoffs between social and individual immunity because the latter is often energetically costly. Genetic tradeoffs between these two traits can also occur if mutations that enhance social immunity diminish individual immunity, or vice versa. Physiological tradeoffs between individual and social immunity have been previously documented in insects, but there has been no stu...

  16. Starting physiology: bioelectrogenesis.

    Science.gov (United States)

    Baptista, Vander

    2015-12-01

    From a Cartesian perspective of rational analysis, the electric potential difference across the cell membrane is one of the fundamental concepts for the study of physiology. Unfortunately, undergraduate students often struggle to understand the genesis of this energy gradient, which makes the teaching activity a hard task for the instructor. The topic of bioelectrogenesis encompasses multidisciplinary concepts, involves several mechanisms, and is a dynamic process, i.e., it never turns off during the lifetime of the cell. Therefore, to improve the transmission and acquisition of knowledge in this field, I present an alternative didactic model. The design of the model assumes that it is possible to build, in a series of sequential steps, an assembly of proteins within the membrane of an isolated cell in a simulated electrophysiology experiment. Initially, no proteins are inserted in the membrane and the cell is at a baseline energy state; the extracellular and intracellular fluids are at thermodynamic equilibrium. Students are guided through a sequence of four steps that add key membrane transport proteins to the model cell. The model is simple at the start and becomes progressively more complex, finally producing transmembrane chemical and electrical gradients. I believe that this didactic approach helps instructors with a more efficient tool for the teaching of the mechanisms of resting membrane potential while helping students avoid common difficulties that may be encountered when learning this topic. Copyright © 2015 The American Physiological Society.

  17. Physiology of bile secretion.

    Science.gov (United States)

    Esteller, Alejandro

    2008-10-07

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bile-duct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.

  18. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory.

    Science.gov (United States)

    Di Giulio, Massimo

    2016-06-21

    I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the

  19. Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation.

    Science.gov (United States)

    Wan, Liyun; Li, Bei; Pandey, Manish K; Wu, Yanshan; Lei, Yong; Yan, Liying; Dai, Xiaofeng; Jiang, Huifang; Zhang, Juncheng; Wei, Guo; Varshney, Rajeev K; Liao, Boshou

    2016-01-01

    Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts ( Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as "peanut seed coat crack and brown color mutant line ( pscb )." The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin) , and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color.

  20. Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation

    Science.gov (United States)

    Wan, Liyun; Li, Bei; Pandey, Manish K.; Wu, Yanshan; Lei, Yong; Yan, Liying; Dai, Xiaofeng; Jiang, Huifang; Zhang, Juncheng; Wei, Guo; Varshney, Rajeev K.; Liao, Boshou

    2016-01-01

    Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts (Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as “peanut seed coat crack and brown color mutant line (pscb).” The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin), and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color. PMID

  1. Effects of exercise on tumor physiology and metabolism.

    Science.gov (United States)

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism. Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous different transplantable, chemically induced or genetic tumor models. We propose 4 emerging mechanistic effects of exercise, including (1) vascularization and blood perfusion, (2) immune function, (3) tumor metabolism, and (4) muscle-to-cancer cross-talk, and discuss these in details. In conclusion, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental intervention studies are still needed to verify the cause-effect relationship between these mechanisms and the control of tumor growth.

  2. Plant physiological responses to hydrologically mediated changes in nitrogen supply on a boreal forest floodplain: a mechanism explaining the discrepancy in nitrogen demand and supply

    Science.gov (United States)

    Lina Koyama; Knut. Kielland

    2011-01-01

    A discrepancy between plant demand and soil supply of nitrogen (N) has been observed in early successional stages of riparian vegetation in interior Alaska. We hypothesized that a hydrologically mediated N supply serves as a mechanism to balance this apparent deficiency of plant N supply. To test this hypothesis, we conducted a tracer experiment and measured the...

  3. Molecular and physiological manifestations and measurement of aging in humans.

    Science.gov (United States)

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. FROM PHYSIOLOGICAL TO PATHOLOGICAL METEOSENSITIVITY

    Directory of Open Access Journals (Sweden)

    M. I. Yabluchanskiy

    2013-12-01

    Full Text Available This paper is dedicated to the problem of physiological and pathological meteosensitivity (meteodependency or meteopathy.We introduce and discuss the definition for individual meteodependency, define factors, mechanisms, clinical signs, diagnosis, and approaches to prophylaxy and treatment of individual pathological meteosensitivity.

  5. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  6. Arabidopsis and the Genetic Potential for the Phytoremediation of Toxic Elemental and Organic Pollutants

    OpenAIRE

    Cobbett, Christopher S.; Meagher, Richard B.

    2002-01-01

    In a process called phytoremediation, plants can be used to extract, detoxify, and/or sequester toxic pollutants from soil, water, and air. Phytoremediation may become an essential tool in cleaning the environment and reducing human and animal exposure to potential carcinogens and other toxins. Arabidopsis has provided useful information about the genetic, physiological, and biochemical mechanisms behind phytoremediation, and it is an excellent model genetic organism to test foreign gene expr...

  7. Barley-Puccinia rusts: a model system to study the genetics, evolution and mechanisms of nonhost immunity in plants

    NARCIS (Netherlands)

    Jafary, H.

    2006-01-01

    The genetic basis of nonhost resistance is one of the most intriguing questions in the field of infectious diseases. The inheritance is very hard to study, since it typically requires interspecific crosses between host and nonhost species. Until now, mutagenesis and transformation have lead to

  8. On the Genetics of Avian Personalities: mechanism and structure of behavioural strategies in the great tit (Parus major)

    NARCIS (Netherlands)

    Oers, C.H.J. van

    2003-01-01

    The need for evolutionary studies on quantitative traits that integrate genetics, development and fitness consequences is increasing. Due to the complexity, coherence and variability of behavioural traits, evolutionary biologists are therefore more and more attracted to the study of behaviour. The

  9. Genetics of regular exercise and sedentary behaviors.

    Science.gov (United States)

    de Geus, Eco J C; Bartels, Meike; Kaprio, Jaakko; Lightfoot, J Timothy; Thomis, Martine

    2014-08-01

    Studies on the determinants of physical activity have traditionally focused on social factors and environmental barriers, but recent research has shown the additional importance of biological factors, including genetic variation. Here we review the major tenets of this research to arrive at three major conclusions: First, individual differences in physical activity traits are significantly influenced by genetic factors, but genetic contribution varies strongly over age, with heritability of leisure time exercise behavior ranging from 27% to 84% and heritability of sedentary behaviors ranging from 9% to 48%. Second, candidate gene approaches based on animal or human QTLs or on biological relevance (e.g., dopaminergic or cannabinoid activity in the brain, or exercise performance influencing muscle physiology) have not yet yielded the necessary evidence to specify the genetic mechanisms underlying the heritability of physical activity traits. Third, there is significant genetic modulation of the beneficial effects of daily physical activity patterns on strength and endurance improvements and on health-related parameters like body mass index. Further increases in our understanding of the genetic determinants of sedentary and exercise behaviors as well as the genetic modulation of their effects on fitness and health will be key to meaningful future intervention on these behaviors.

  10. Interactive Effect of UVR and Phosphorus on the Coastal Phytoplankton Community of the Western Mediterranean Sea: Unravelling Eco-Physiological Mechanisms.

    Directory of Open Access Journals (Sweden)

    Presentación Carrillo

    Full Text Available Some of the most important effects of global change on coastal marine systems include increasing nutrient inputs and higher levels of ultraviolet radiation (UVR, 280-400 nm, which could affect primary producers, a key trophic link to the functioning of marine food webs. However, interactive effects of both factors on the phytoplankton community have not been assessed for the Mediterranean Sea. An in situ factorial experiment, with two levels of ultraviolet solar radiation (UVR+PAR vs. PAR and nutrients (control vs. P-enriched, was performed to evaluate single and UVR×P effects on metabolic, enzymatic, stoichiometric and structural phytoplanktonic variables. While most phytoplankton variables were not affected by UVR, dissolved phosphatase (APAEX and algal P content increased in the presence of UVR, which was interpreted as an acclimation mechanism of algae to oligotrophic marine waters. Synergistic UVR×P interactive effects were positive on photosynthetic variables (i.e., maximal electron transport rate, ETRmax, but negative on primary production and phytoplankton biomass because the pulse of P unmasked the inhibitory effect of UVR. This unmasking effect might be related to greater photodamage caused by an excess of electron flux after a P pulse (higher ETRmax without an efficient release of carbon as the mechanism to dissipate the reducing power of photosynthetic electron transport.

  11. Responses of fruit physiology and virgin oil quality to cold storage of mechanically harvested ‘Arbequina’ olives cultivated in hedgerow

    Directory of Open Access Journals (Sweden)

    Yousfi, K.

    2013-12-01

    Full Text Available The increase in olive fruit production (Olea europaea L. cv. ‘Arbequina’, due to the increasing use of super-intensive cultivation and the need for a rapid fruit processing will force the industry to make a considerable investment in machinery for processing in order to maintain the level of quality of virgin olive oil (VOO. This work aims to study how the storage temperature affects the physiology of the olive and the quality of the oil, in order to use fruit storage as a cheaper and more versatile alternative to the increase in processing capacity. ‘Arbequina’ fruit did not present symptoms of chilling injury during 15 days of cold-storage. Postharvest decay, de-greening, softening, respiration and ethylene production of the olive fruit increased in direct relationship as the storage temperature increased. These facts determined a proportional deterioration of the free acidity and the sensory quality of the VOOs. Furthermore, the contents of tocopherols and of the main phenolic compounds in the VOO exhibited a reduction during fruit storage according to the increase in the temperature used. Storage at 2 °C preserved the integrity of the olive to maintain the best “Extra” level of VOO quality for a period of 12 days.El aumento de la producción de aceituna (Olea europaea L. cv. ‘Arbequina’, debido al uso creciente del cultivo superintensivo y la necesidad de un rápido procesamiento del fruto forzará a la industria a hacer una considerable inversión en maquinaria para el procesado, para mantener el nivel de calidad del aceite de oliva virgen (AOV. Este trabajo pretende estudiar cómo la temperatura de almacenamiento afecta a la fisiología de la aceituna y a la calidad del aceite, en orden de usar la conservación del fruto como una alternativa más barata y versátil al aumento de la capacidad de procesamiento. La aceituna ‘Arbequina’ no presentó síntomas de daños por frío durante 15 días de frigoconservación. La

  12. The physiology mechanisms on drought tolerance and adaptation of biological soil crust moss Bryum argenteum and Didymodon vinealis in Tenger Desert

    Science.gov (United States)

    Zhao, X.; Shi, Y.; Chen, C.; Jia, R.; Li, X.

    2012-04-01

    Bryum argenteum Hedw. and Didymodon vinealis Brid are two dominant moss species in the restored vegetation area in Tenger Desert, which sampled from biological soil crusts and where is an extreme drought regions. We found that they resorted to different osmotic adjustment strategies to mitigate osmotic stress. Under the gradual drought stress, both Bryum argenteum and Didymodon vinealis accumulated K+ and soluble sugar such as sucrose and trehalose. Their glycine betaine contents both decreased, while their proline content had no significant change. With enhanced drought stress, Bryum argenteum's Na+ content was low and decreased significantly, whereas Didymodon vinealis's Na+ content increased sharply and reached to a high level. We found the different of the mechanism of between active oxygen scavenging on Enzymatic and non - enzymatic system in two species moss of Bryum argenteum Hedw and Didymodon vinealis Brid under extreme drought stress. The result showed that two species of Moss of SOD activity gradually enhanced, and they have the material basis for effectively eliminates in vivo of Superoxide free radical. POD in Didymodon nigrescen and CAT in Bryum argeneum are major resistance o oxidative stress effects. The content of GSH rise with the stress also enhanced. The mechanism of finding Bryum argenteum Hedw and Didymodon vinealis Brid tolerance of dehydration ability were focus on different direction, but they are all given positive response to stress and enhance resistance. We investigated the responses of signal transduction substances to gradual drought stress in Didymodon vinealis and Bryum argenteum. The results suggested that: under gradual drought stress, the activities of TP H+-ATPase and PM H+-ATPase of Didymodon vinealis and Bryum argenteum both increased, resulting in their increase of K+ contents and turgor pressures, and triggered biosynthesis of signal transduction substances. ABA had no obvious effect in signal transduction of Bryum argenteum

  13. Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mehrdad Mahdavi Jafari

    2017-06-01

    Full Text Available Among artificial intelligence approaches, artificial neural networks (ANNs and genetic algorithm (GA are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN and genetic algorithm (GA were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall carbon nanotubes (MWCNTs through modeling of nanocomposite characteristics. After examination the different ANN architectures an optimal structure of the model, i.e. 6-18-1, is obtained with 1.52% mean absolute error and R2 = 0.987. The proposed structure was used as fitting function for genetic algorithm. The results of GA simulation predicted that the combination sintering temperature 346 °C, sintering time 0.33 h, compact pressure 284.82 MPa, milling time 19.66 h and vial speed 310.5 rpm give the optimum hardness, (i.e., 87.5 micro Vickers in the composite with 0.53 wt% CNT. Also, sensitivity analysis shows that the sintering time, milling time, compact pressure, vial speed and amount of MWCNT are the significant parameter and sintering time is the most important parameter. Comparison of the predicted values with the experimental data revealed that the GA–ANN model is a powerful method to find the optimal conditions for preparing of Al6061-MWCNT.

  14. Genetic variant for behavioral regulation factor of executive function and its possible brain mechanism in attention deficit hyperactivity disorder.

    Science.gov (United States)

    Sun, Xiao; Wu, Zhaomin; Cao, Qingjiu; Qian, Ying; Liu, Yong; Yang, Binrang; Chang, Suhua; Yang, Li; Wang, Yufeng

    2018-05-16

    As a childhood-onset psychiatric disorder, attention deficit hyperactivity disorder (ADHD) is complicated by phenotypic and genetic heterogeneity. Lifelong executive function deficits in ADHD are described in many literatures and have been proposed as endophenotypes of ADHD. However, its genetic basis is still elusive. In this study, we performed a genome-wide association study of executive function, rated with Behavioral Rating Inventory of Executive Function (BRIEF), in ADHD children. We identified one significant variant (rs852004, P = 2.51e-08) for the overall score of BRIEF. The association analyses for each component of executive function found this locus was more associated with inhibit and monitor components. Further principle component analysis and confirmatory factor analysis provided an ADHD-specific executive function pattern including inhibit and monitor factors. SNP rs852004 was mainly associated with the Behavioral Regulation factor. Meanwhile, we found the significant locus was associated with ADHD symptom. The Behavioral Regulation factor mediated its effect on ADHD symptom. Functional magnetic resonance imaging (fMRI) analyses further showed evidence that this variant affected the activity of inhibition control related brain regions. It provided new insights for the genetic basis of executive function in ADHD.

  15. A Preliminary Study on the Pattern, the Physiological Bases and the Molecular Mechanism of the Adductor Muscle Scar Pigmentation in Pacific Oyster Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Wenchao Yu

    2017-09-01

    Full Text Available The melanin pigmentation of the adductor muscle scar and the outer surface of the shell are among attractive features and their pigmentation patterns and mechanism still remains unknown in the Pacific oyster Crassostrea gigas. To study these pigmentation patterns, the colors of the adductor muscle scar vs. the outer surface of the shell on the same side were compared. No relevance was found between the colors of the adductor muscle scars and the corresponding outer surface of the shells, suggesting that their pigmentation processes were independent. Interestingly, a relationship between the color of the adductor muscle scars and the dried soft-body weight of Pacific oysters was found, which could be explained by the high hydroxyl free radical scavenging capacity of the muscle attached to the black adductor muscle scar. After the transcriptomes of pigmented and unpigmented adductor muscles and mantles were studied by RNAseq and compared, it was found that the retinol metabolism pathway were likely to be involved in melanin deposition on the adductor muscle scar and the outer surface of the shell, and that the different members of the tyrosinase or Cytochrome P450 gene families could play a role in the independent pigmentation of different organs.

  16. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin

    Science.gov (United States)

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-xian; Reiter, Russel J.; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. PMID:25225478

  17. Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant.

    Science.gov (United States)

    Saiki, Shin-Taro; Ishida, Atsushi; Yoshimura, Kenichi; Yazaki, Kenichi

    2017-06-07

    Drought-induced tree die-off related to climate change is occurring worldwide and affects the carbon stocks and biodiversity in forest ecosystems. Hydraulic failure and carbon starvation are two commonly proposed mechanisms for drought-induced tree die-off. Here, we show that inhibited branchlet respiration and soil-to-leaf hydraulic conductance, likely caused by cell damage, occur prior to hydraulic failure (xylem embolism) and carbon starvation (exhaustion of stored carbon in sapwood) in a drought-tolerant woody species, Rhaphiolepis wrightiana Maxim. The ratio of the total leaf area to the twig sap area was used as a health indicator after drought damage. Six adult trees with different levels of tree health and one dead adult tree were selected. Two individuals having the worst and second worst health among the six live trees died three months after our study was conducted. Soil-to-leaf hydraulic conductance and leaf gas exchange rates decreased linearly as tree health declined, whereas xylem cavitation and total non-structural carbon remained unchanged in the branchlets except in the dead and most unhealthy trees. Respiration rates and the number of living cells in the sapwood decreased linearly as tree health declined. This study is the first report on the importance of dehydration tolerance and respiration maintenance in living cells.

  18. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  19. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin.

    Science.gov (United States)

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-Xian; Reiter, Russel J; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-02-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. From Physiology to Prevention: Further remarks on a physiological imperative

    Directory of Open Access Journals (Sweden)

    B Jouanjean

    2012-05-01

    Full Text Available Physiology, is the fundamental and functional expression of life. It is the study of all the representative functions of Man in all his capacities, and in particular, his capacity to work. It is very possible to establish a link between a physiological and physiopathological state, the capacity of work and the economy, which can be understood as the articulation between the physiological capacities of Man and the production of work. If these functions are innately acquired by Man they are likewise maintained by regulatory functions throughout life. The stability of these regulatory mechanisms represent the state of good health. The management of this state, constitutes Primary Prevention where both chronic and acute physiopathology defines an alteration in these regulatory mechanisms. We deduce from this reasoning that a tripartite management adapted to the physiological situation is viable and that by choosing parameters specific to individual and collective behavior, it is possible to inject, and combine, at each level and to each demand in order to budget a healthcare system in a more balanced and equitable way. 

  1. Conservation physiology of animal migration

    Science.gov (United States)

    Lennox, Robert J.; Chapman, Jacqueline M.; Souliere, Christopher M.; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D.; Cooke, Steven J.

    2016-01-01

    Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains

  2. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  3. Bone Conduction: Anatomy, Physiology, and Communication

    National Research Council Canada - National Science Library

    Henry, Paula; Letowski, Tomasz R

    2007-01-01

    .... This report combines results of an extensive literature review of the anatomy and physiology of human hearing, theories behind the mechanisms of bone conduction transmission, devices for use in bone...

  4. An evaluation of instruments for scoring physiological and behavioral cues of pain, non-pain related distress, and adequacy of analgesia and sedation in pediatric mechanically ventilated patients: A systematic review.

    Science.gov (United States)

    Dorfman, Tamara L; Sumamo Schellenberg, Elizabeth; Rempel, Gwen R; Scott, Shannon D; Hartling, Lisa

    2014-04-01

    Advancing technology allows for successful treatment of children with life-threatening illnesses. Effectively assessing and optimally treating a child's distress during their stay in the Pediatric Intensive Care Unit (PICU) is paramount. Objective measures of distress in mechanically ventilated pediatric patients are increasingly available but few have been evaluated. The objectives of this systematic review were to identify available instruments appropriate for measuring physiological and behavioral cues of pain, non-pain related distress, and adequacy of analgesia and sedation in mechanically ventilated pediatric patients, and evaluate these instruments in terms of their psychometric properties. A systematic review of original and validation reports of objective instruments to measure pain and non-pain related distress, and adequacy of analgesia and sedation in mechanically ventilated PICU patients was undertaken. A comprehensive search was conducted in 10 databases from January 1970 to June 2011. Reference lists of relevant articles were reviewed to identify additional articles. Studies were included in the review if they met pre-established eligibility criteria. Two independent reviewers reviewed studies for inclusion, assessed quality, and extracted data. Twenty-five articles were included, identifying 15 instruments. The instruments had different foci including: assessing pain, non-pain related distress, and sedation (n=2); assessing pain exclusively (n=4); assessing sedation exclusively (n=7), assessing sedation in mechanically ventilated muscle relaxed PICU patients (n=1); and assessing delirium in mechanically ventilated PICU patients (n=1). The Comfort Scale demonstrated the greatest clinical utility in the assessment of pain, non-pain related distress, and sedation in mechanically ventilated pediatric patients. Modified FLACC and the MAPS are more appropriate, however, for the assessment of procedural pain and other brief painful events. More work is

  5. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  6. Molecular genetics

    International Nuclear Information System (INIS)

    Parkinson, D.R.; Krontiris, T.G.

    1986-01-01

    In this chapter the authors review new findings concerning the molecular genetics of malignant melanoma in the context of other information obtained from clinical, epidemiologic, and cytogenetic studies in this malignancy. These new molecular approaches promise to provide a more complete understanding of the mechanisms involved in the development of melanoma, thereby suggesting new methods for its treatment and prevention

  7. Focus on the emerging new fields of network physiology and network medicine

    Science.gov (United States)

    Ivanov, Plamen Ch; Liu, Kang K. L.; Bartsch, Ronny P.

    2016-10-01

    Despite the vast progress and achievements in systems biology and integrative physiology in the last decades, there is still a significant gap in understanding the mechanisms through which (i) genomic, proteomic and metabolic factors and signaling pathways impact vertical processes across cells, tissues and organs leading to the expression of different disease phenotypes and influence the functional and clinical associations between diseases, and (ii) how diverse physiological systems and organs coordinate their functions over a broad range of space and time scales and horizontally integrate to generate distinct physiologic states at the organism level. Two emerging fields, network medicine and network physiology, aim to address these fundamental questions. Novel concepts and approaches derived from recent advances in network theory, coupled dynamical systems, statistical and computational physics show promise to provide new insights into the complexity of physiological structure and function in health and disease, bridging the genetic and sub-cellular level with inter-cellular interactions and communications among integrated organ systems and sub-systems. These advances form first building blocks in the methodological formalism and theoretical framework necessary to address fundamental problems and challenges in physiology and medicine. This ‘focus on’ issue contains 26 articles representing state-of-the-art contributions covering diverse systems from the sub-cellular to the organism level where physicists have key role in laying the foundations of these new fields.

  8. Chewing Over Physiology Integration

    Science.gov (United States)

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  9. Plant Physiology in Greenhouses

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2015-01-01

    Since 2004 Ep Heuvelink and Tijs Kierkels have been writing a continuing series of plant physiology articles for the Dutch horticultural journal Onder Glas and the international edition In Greenhouses. The book Plant Physiology in Greenhouses consists of 50 of their plant physiology articles. The

  10. Physiological and molecular characterization of cowpea [Vigna ...

    African Journals Online (AJOL)

    Diaga Diouf

    Cowpea, Vigna unguiculata (L.) Walp. presents phenotypical variabilities and in order to study the genetic diversity of cultivated Senegalese varieties, two experimental approaches were used. First, a physiological characterization based on nitrogen fixation was used to assess cowpea breeding lines. Inoculation with two ...

  11. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  12. Estrogens and Androgens in Skeletal Physiology and Pathophysiology.

    Science.gov (United States)

    Almeida, Maria; Laurent, Michaël R; Dubois, Vanessa; Claessens, Frank; O'Brien, Charles A; Bouillon, Roger; Vanderschueren, Dirk; Manolagas, Stavros C

    2017-01-01

    Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution. Copyright © 2017 the American Physiological Society.

  13. Translational physiology: from molecules to public health.

    Science.gov (United States)

    Seals, Douglas R

    2013-07-15

    The term 'translational research' was coined 20 years ago and has become a guiding influence in biomedical research. It refers to a process by which the findings of basic research are extended to the clinical research setting (bench to bedside) and then to clinical practice and eventually health policy (bedside to community). It is a dynamic, multidisciplinary research approach. The concept of translational physiology applies the translational research model to the physiological sciences. It differs from the traditional areas of integrative and clinical physiology by its broad investigative scope of basic research to community health. Translational physiology offers exciting opportunities, but presently is under-developed and -utilized. A key challenge will be to expand physiological research by extending investigations to communities of patients and healthy (or at risk) individuals. This will allow bidirectional physiological investigation throughout the translational continuum: basic research observations can be studied up to the population level, and mechanisms can be assessed by 'reverse translation' in clinical research settings and preclinical models based on initial observations made in populations. Examples of translational physiology questions, experimental approaches, roadblocks and strategies for promotion are discussed. Translational physiology provides a novel framework for physiology programs and an investigational platform for physiologists to study function from molecular events to public health. It holds promise for enhancing the completeness and societal impact of our work, while further solidifying the critical role of physiology in the biomedical research enterprise.

  14. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  15. Antimicrobial Resistance Mechanisms and Genetic Diversity of Multidrug-Resistant Acinetobacter baumannii Isolated from a Teaching Hospital in Malaysia.

    Science.gov (United States)

    Biglari, Shirin; Hanafiah, Alfizah; Mohd Puzi, Shaliawani; Ramli, Ramliza; Rahman, Mostafizur; Lopes, Bruno Silvester

    2017-07-01

    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-bla OXA-23 and ISAba1-bla ADC and had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the bla OXA-51-like genes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.

  16. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    2015-05-01

    Full Text Available Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.

  17. Identification of Brucella melitensis Rev.1 vaccine-strain genetic markers: Towards understanding the molecular mechanism behind virulence attenuation.

    Science.gov (United States)

    Issa, Mohammad Nouh; Ashhab, Yaqoub

    2016-09-22

    Brucella melitensis Rev.1 is an avirulent strain that is widely used as a live vaccine to control brucellosis in small ruminants. Although an assembled draft version of Rev.1 genome has been available since 2009, this genome has not been investigated to characterize this important vaccine. In the present work, we used the draft genome of Rev.1 to perform a thorough genomic comparison and sequence analysis to identify and characterize the panel of its unique genetic markers. The draft genome of Rev.1 was compared with genome sequences of 36 different Brucella melitensis strains from the Brucella project of the Broad Institute of MIT and Harvard. The comparative analyses revealed 32 genetic alterations (30 SNPs, 1 single-bp insertion and 1 single-bp deletion) that are exclusively present in the Rev.1 genome. In silico analyses showed that 9 out of the 17 non-synonymous mutations are deleterious. Three ABC transporters are among the disrupted genes that can be linked to virulence attenuation. Out of the 32 mutations, 11 Rev.1 specific markers were selected to test their potential to discriminate Rev.1 using a bi-directional allele-specific PCR assay. Six markers were able to distinguish between Rev.1 and a set of control strains. We succeeded in identifying a panel of 32 genome-specific markers of the B. melitensis Rev.1 vaccine strain. Extensive in silico analysis showed that a considerable number of these mutations could severely affect the function of the associated genes. In addition, some of the discovered markers were able to discriminate Rev.1 strain from a group of control strains using practical PCR tests that can be applied in resource-limited settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Association of genetic variation in cannabinoid mechanisms and gastric motor functions and satiation in overweight and obesity.

    Science.gov (United States)

    Vazquez-Roque, M I; Camilleri, M; Vella, A; Carlson, P; Laugen, J; Zinsmeister, A R

    2011-07-01

    The endocannabinoid system is associated with food intake. We hypothesized that genes regulating cannabinoids are associated with obesity. Genetic variations in fatty acid amide hydroxylase (FAAH) and cannabinoid receptor 1 (CNR1) are associated with satiation and gastric motor function. In 62 overweight or obese adults of European ancestry, single nucleotide polymorphisms of rs806378 (nearest gene CNR1) and rs324420 (nearest gene FAAH) were genotyped and the associations with gastric emptying (GE) of solids and liquids, gastric volume (GV), and satiation [maximum tolerated volume (MTV) and symptoms after Ensure(®) nutrient drink test] were explored using a dominant genetic model, with gender and BMI as covariates. rs806378 CC genotype was associated with reduced fasting GV (210.2±11.0mL for CC group compared to 242.5±11.3mL for CT/TT group, P=0.031) and a modest, non-significant association with GE of solids (P=0.17). rs324420 genotype was not associated with alterations in gastric motor functions; however, there was a difference in the Ensure(®) MTV (1174.6±37.2mL for CC group compared to 1395.0±123.1mL for CA/AA group, P=0.046) suggesting higher satiation with CC genotype. Our data suggest that CNR1 and FAAH are associated with altered gastric functions or satiation that may predispose to obesity. © 2011 Blackwell Publishing Ltd.

  19. Fifth workshop on seedling physiology and growth problems in oak plantings (abstracts).

    Science.gov (United States)

    Janette R. Thompson; Richard C. Schultz; J.W. Van Sambeek

    1993-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 30 abstracts.

  20. Neuronal glycogen synthesis contributes to physiological aging.

    Science.gov (United States)

    Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J

    2014-10-01

    Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Fatigue in Persian Gulf Syndrome - Physiologic Mechanisms

    National Research Council Canada - National Science Library

    Haller, Ronald

    2000-01-01

    ...)Veterans matched for age, height and weight. Serum OK, incidence of elevated OK, and muscle histology and fatigue rate and level of oxygen uptake relative to 02 delivery during forearm exercise were similar in both groups...

  2. physiological mechanisms for potato dormancy release

    African Journals Online (AJOL)

    ACSS

    of deep dormancy, during which potato seeds do not germinate after ... dormancy period and sprouting behaviour are major criteria ... develop once sprouting begins; such as changes ...... an example of plant information processing. Plant Cell ...

  3. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education.

    Science.gov (United States)

    Abram, Sean R; Hodnett, Benjamin L; Summers, Richard L; Coleman, Thomas G; Hester, Robert L

    2007-06-01

    We have developed Quantitative Circulatory Physiology (QCP), a mathematical model of integrative human physiology containing over 4,000 variables of biological interactions. This model provides a teaching environment that mimics clinical problems encountered in the practice of medicine. The model structure is based on documented physiological responses within peer-reviewed literature and serves as a dynamic compendium of physiological knowledge. The model is solved using a desktop, Windows-based program, allowing students to calculate time-dependent solutions and interactively alter over 750 parameters that modify physiological function. The model can be used to understand proposed mechanisms of physiological function and the interactions among physiological variables that may not be otherwise intuitively evident. In addition to open-ended or unstructured simulations, we have developed 30 physiological simulations, including heart failure, anemia, diabetes, and hemorrhage. Additional stimulations include 29 patients in which students are challenged to diagnose the pathophysiology based on their understanding of integrative physiology. In summary, QCP allows students to examine, integrate, and understand a host of physiological factors without causing harm to patients. This model is available as a free download for Windows computers at http://physiology.umc.edu/themodelingworkshop.

  4. Genetic algorithms coupled with quantum mechanics for refinement of force fields for RNA simulation: a case study of glycosidic torsions in the canonical ribonucleosides.

    Science.gov (United States)

    Kato, Rodrigo B; Silva, Frederico T; Pappa, Gisele L; Belchior, Jadson C

    2015-01-28

    We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy. Quantum-mechanical (QM) calculations are carried out for the isolated canonical ribonucleosides (adenosine, guanosine, cytidine and uridine) that are taken as reference data. In this particular study, the dihedral and electrostatic energies are reparametrized in order to test the proposed approach, i.e., GA coupled with QM calculations. Overall, RMSE comparison with recent published results for ribonucleosides energies shows an improvement, on average, of 50%. Finally, the new reparametrized potential energy function is used to determine the spatial structure of RNA (PDB code ) that was not taken into account in the parametrization process. This structure was improved about 82% comparable with previously published results.

  5. Mechanism of the negative force-frequency relationship in physiologically intact rat ventricular myocardium. Studies by intracellular Ca2+ monitor with iodo-1 and by 31P-nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Morii, Isao; Kihara, Yasuki; Sasayama, Shigetake; Konishi, Takashi; Inubushi, Toshiro.

    1996-01-01

    We studied the subcellular mechanisms of the negative force-frequency relationship in rat myocardium by measuring intracellular Ca 2+ transients by indo-1 fluorometry and intracellular pH (pH i ) and phosphate compounds with 31 P-nuclear magnetic resonance (NMR). The data were compared with those from guinea pig hearts, which show a positive force-frequency relationship. By increasing the pacing rate from 3 Hz to 5 Hz, the peak positive first derivative of left ventricular pressure (LVdP/dt) in rat heart decreased by 10±1% (n=6). In contrast to this negative inotropic response, simultaneously measured peak Ca 2+ transients increased by 6±1%. Guinea pig heart (n=6) showed an increase in peak positive LVdP/dt (33±1%) which was associated with an increase in peak Ca 2+ transients (8±1%). Under equivalent experimental conditions in an NMR spectrometer, this increase in the pacing rate did not affect intracellular levels of phosphate compounds in either rat (n=6) or guinea pig heart (n=6). In contrast, pH i showed a decrease of 0.031±0.006 pH units in rat heart, while no changes were observed in guinea pig heart. These results suggest that in physiological rat myocardium, pH i is susceptible to changes in the stimulus frequency and may affect the Ca 2+ -responsiveness of contractile proteins, which results in the negative force-frequency relationship. (author)

  6. Human physiological models of insomnia.

    Science.gov (United States)

    Richardson, Gary S

    2007-12-01

    Despite the wide prevalence and important consequences of insomnia, remarkably little is known about its pathophysiology. Available models exist primarily in the psychological domain and derive from the demonstrated efficacy of behavioral treatment approaches to insomnia management. However, these models offer little specific prediction about the anatomic or physiological foundation of chronic primary insomnia. On the other hand, a growing body of data on the physiology of sleep supports a reasonably circumscribed overview of possible pathophysiological mechanisms, as well as the development of physiological models of insomnia to guide future research. As a pragmatic step, these models focus on primary insomnia, as opposed to comorbid insomnias, because the latter is by its nature a much more heterogeneous presentation, reflecting the effects of the distinct comorbid condition. Current understanding of the regulation of sleep and wakefulness in mammalian brain supports four broad candidate areas: 1) disruption of the sleep homeostat; 2) disruption of the circadian clock; 3) disruption of intrinsic systems responsible for the expression of sleep states; or 4) disruption (hyperactivity) of extrinsic systems capable of over-riding normal sleep-wake regulation. This review examines each of the four candidate pathophysiological mechanisms and the available data in support of each. While studies that directly test the viability of each model are not yet available, descriptive data on primary insomnia favor the involvement of dysfunctional extrinsic stress-response systems in the pathology of primary chronic insomnia.

  7. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells.

    Science.gov (United States)

    Hanada, Katsuhiro; Yamaoka, Yoshio

    2014-10-01

    Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; Svensgaard, Jesper; Christensen, Svend

    2015-01-01

    Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non-invasive ph......Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non......-invasive phenotyping, the large-scale analyses of the underlying physiological mechanisms lag behind. The external phenotype is determined by the sum of the complex interactions of metabolic pathways and intracellular regulatory networks that is reflected in an internal, physiological, and biochemical phenotype......, ultimately enabling the in silico assessment of responses under defined environments with advanced crop models. This will allow generation of robust physiological predictors also for complex traits to bridge the knowledge gap between genotype and phenotype for applications in breeding, precision farming...

  9. Advances in physiological computing

    CERN Document Server

    Fairclough, Stephen H

    2014-01-01

    This edited collection will provide an overview of the field of physiological computing, i.e. the use of physiological signals as input for computer control. It will cover a breadth of current research, from brain-computer interfaces to telemedicine.

  10. Phun Week: Understanding Physiology