WorldWideScience

Sample records for physiological estrogen-mediated dopamine

  1. Nongenomic mechanisms of physiological estrogen-mediated dopamine efflux

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2009-06-01

    Full Text Available Abstract Background Neurological diseases and neuropsychiatric disorders that vary depending on female life stages suggest that sex hormones may influence the function of neurotransmitter regulatory machinery such as the dopamine transporter (DAT. Results In this study we tested the rapid nongenomic effects of several physiological estrogens [estradiol (E2, estrone (E1, and estriol (E3] on dopamine efflux via the DAT in a non-transfected, NGF-differentiated, rat pheochromocytoma (PC12 cell model that expresses membrane estrogen receptors (ERs α, β, and GPR30. We examined kinase, ionic, and physical interaction mechanisms involved in estrogenic regulation of the DAT function. E2-mediated dopamine efflux is DAT-specific and not dependent on extracellular Ca2+-mediated exocytotic release from vesicular monoamine transporter vesicles (VMATs. Using kinase inhibitors we also showed that E2-mediated dopamine efflux is dependent on protein kinase C and MEK activation, but not on PI3K or protein kinase A. In plasma membrane there are ligand-independent associations of ERα and ERβ (but not GPR30 with DAT. Conditions which cause efflux (a 9 min 10-9 M E2 treatment cause trafficking of ERα (stimulatory to the plasma membrane and trafficking of ERβ (inhibitory away from the plasma membrane. In contrast, E1 and E3 can inhibit efflux with a nonmonotonic dose pattern, and cause DAT to leave the plasma membrane. Conclusion Such mechanisms explain how gender biases in some DAT-dependent diseases can occur.

  2. Nongenomic mechanisms of physiological estrogen-mediated dopamine efflux.

    Science.gov (United States)

    Alyea, Rebecca A; Watson, Cheryl S

    2009-06-16

    Neurological diseases and neuropsychiatric disorders that vary depending on female life stages suggest that sex hormones may influence the function of neurotransmitter regulatory machinery such as the dopamine transporter (DAT). In this study we tested the rapid nongenomic effects of several physiological estrogens [estradiol (E2), estrone (E1), and estriol (E3)] on dopamine efflux via the DAT in a non-transfected, NGF-differentiated, rat pheochromocytoma (PC12) cell model that expresses membrane estrogen receptors (ERs) alpha, beta, and GPR30. We examined kinase, ionic, and physical interaction mechanisms involved in estrogenic regulation of the DAT function. E2-mediated dopamine efflux is DAT-specific and not dependent on extracellular Ca2+-mediated exocytotic release from vesicular monoamine transporter vesicles (VMATs). Using kinase inhibitors we also showed that E2-mediated dopamine efflux is dependent on protein kinase C and MEK activation, but not on PI3K or protein kinase A. In plasma membrane there are ligand-independent associations of ERalpha and ERbeta (but not GPR30) with DAT. Conditions which cause efflux (a 9 min 10(-9) M E2 treatment) cause trafficking of ERalpha (stimulatory) to the plasma membrane and trafficking of ERbeta (inhibitory) away from the plasma membrane. In contrast, E1 and E3 can inhibit efflux with a nonmonotonic dose pattern, and cause DAT to leave the plasma membrane. Such mechanisms explain how gender biases in some DAT-dependent diseases can occur.

  3. Dopamine receptors - physiological understanding to therapeutic intervention potential

    NARCIS (Netherlands)

    Emilien, G; Maloteaux, JM; Hoogenberg, K; Cragg, S

    1999-01-01

    There are two families of dopamine (DA) receptors, called D(1) and D(2), respectively. The D(1) family consists of D(1)- and D(5)-receptor subtypes and the D(2) family consists of D(2)-, D(3)-, and D(4)-receptor subtypes. The amino acid sequences of these receptors show that they all belong to a lar

  4. Dopamine receptors - physiological understanding to therapeutic intervention potential

    NARCIS (Netherlands)

    Emilien, G; Maloteaux, JM; Hoogenberg, K; Cragg, S

    1999-01-01

    There are two families of dopamine (DA) receptors, called D(1) and D(2), respectively. The D(1) family consists of D(1)- and D(5)-receptor subtypes and the D(2) family consists of D(2)-, D(3)-, and D(4)-receptor subtypes. The amino acid sequences of these receptors show that they all belong to a lar

  5. Estrogen mediation of hormone responses to exercise.

    Science.gov (United States)

    Kraemer, Robert R; Francois, Michelle; Castracane, V Daniel

    2012-10-01

    The roles of estrogens extend from the regulation of reproduction to other functions involved in control of metabolism, fluid balance, as well as gastrointestinal, lung, and brain function, with a strong effect on other hormones that subsequently alter the physiology of multiple tissues. As such, alteration of endogenous estrogens across the menstrual cycle, or from oral contraception and estrogen replacement therapy, can affect these tissues. Due to the important effects that estrogens have on different tissues, there are many investigations concerning the effects of a human estrogenic environment on endocrine responses to exercise. The following review will describe the consequences of varying estrogen levels on pituitary, adrenal, gonadal, and endocrine function, followed by discussion of the outcomes of different estrogen levels on endocrine tissues in response to exercise, problems encountered for interpretation of findings, and recommended direction for future research. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance

    Directory of Open Access Journals (Sweden)

    Hasbi Ahmed

    2011-06-01

    Full Text Available Abstract Dopamine is an important catecholamine neurotransmitter modulating many physiological functions, and is linked to psychopathology of many diseases such as schizophrenia and drug addiction. Dopamine D1 and D2 receptors are the most abundant dopaminergic receptors in the striatum, and although a clear segregation between the pathways expressing these two receptors has been reported in certain subregions, the presence of D1-D2 receptor heteromers within a unique subset of neurons, forming a novel signaling transducing functional entity has been shown. Recently, significant progress has been made in elucidating the signaling pathways activated by the D1-D2 receptor heteromer and their potential physiological relevance.

  7. Predicting dopamine D2 receptor occupancy in humans using a physiology-based approach

    NARCIS (Netherlands)

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A.; Grimwood, Sarah; de Greef, Rik; Groothuis, Genoveva; Danhof, Meindert; Proost, Johannes

    2011-01-01

    Objectives: A hybrid physiology-based pharmacokinetic and pharmacodynamic model (PBPKPD) was used to predict the time course of dopamine receptor occupancy (D2RO) in human striatum following the administration of antipsychotic (AP) drugs, using in vitro and in silico information. Methods: A hybrid P

  8. Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function.

    Science.gov (United States)

    Abdallah, Luna; Bonasera, Stephen J; Hopf, F Woodward; O'Dell, Laura; Giorgetti, Marco; Jongsma, Minke; Carra, Scott; Pierucci, Massimo; Di Giovanni, Giuseppe; Esposito, Ennio; Parsons, Loren H; Bonci, Antonello; Tecott, Laurence H

    2009-06-24

    The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT(2C)R) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT(2C)Rs produces marked alterations in the activity and functional output of this pathway. 5-HT(2C)R mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of d-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D(1) receptor agonist SKF 81297. Differences in DSt D(1) or D(2) receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT(2C)Rs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt.

  9. Estrogens Mediate Cardiac Hypertrophy in a Stimulus-Dependent Manner

    Science.gov (United States)

    Haines, Christopher D.; Harvey, Pamela A.

    2012-01-01

    The incidence of cardiac hypertrophy, an established risk factor for heart failure, is generally lower in women compared with men, but this advantage is lost after menopause. Although it is widely believed that estrogens are cardioprotective, there are contradictory reports, including increased cardiac events in postmenopausal women receiving estrogens and enhanced cardiac protection from ischemic injury in female mice without estrogens. We exposed aromatase knockout (ArKO) mice, which produce no estrogens, to both pathologic and physiologic stimuli. This model allows an investigation into the effects of a complete, chronic lack of estrogens in male and female hearts. At baseline, female ArKO mice had normal-sized hearts but decreased cardiac function and paradoxically increased phosphorylation of many progrowth kinases. When challenged with the pathological stimulus, isoproterenol, ArKO females developed 2-fold more hypertrophy than wild-type females. In contrast, exercise-induced physiological hypertrophy was unaffected by the absence of estrogens in either sex, although running performance was blunted in ArKO females. Thus, loss of estrogen signaling in females, but not males, impairs cardiac function and sensitizes the heart to pathological insults through up-regulation of multiple hypertrophic pathways. These findings provide insight into the apparent loss of cardioprotection after menopause and suggest that caution is warranted in the long-term use of aromatase inhibitors in the setting of breast cancer prevention. PMID:22759381

  10. Sport physiology, dopamine and nitric oxide - Some speculations and hypothesis generation.

    Science.gov (United States)

    Landers, J G; Esch, Tobias

    2015-12-01

    Elite Spanish professional soccer players surprisingly showed a preponderance of an allele coding for nitric oxide synthase (NOS) that resulted in lower nitric oxide (NO) compared with Spanish endurance and power athletes and sedentary men. The present paper attempts a speculative explanation. Soccer is an "externally-paced" (EP) sport and team work dependent, requiring "executive function skills". We accept that time interval estimation skill is, in part, also an executive skill. Dopamine (DA) is prominent among the neurotransmitters with a role in such skills. Polymorphisms affecting dopamine (especially DRD2/ANKK1-Taq1a which leads to lower density of dopamine D2 receptors in the striatum, leading to increased striatal dopamine synthesis) and COMT val 158 met (which prolongs the action of dopamine in the cortex) feature both in the time interval estimation and the executive skills literatures. Our paper may be a pioneering attempt to stimulate empirical efforts to show how genotypes among soccer players may be connected via neurotransmitters to certain cognitive abilities that predict sporting success, perhaps also in some other externally-paced team sports. Graphing DA levels against time interval estimation accuracy and also against certain executive skills reveals an inverted-U relationship. A pathway from DA, via endogenous morphine and mu3 receptors on endothelia, to the generation of NO in tiny quantities has been demonstrated. Exercise up-regulates DA and this pathway. With somewhat excessive exercise, negative feedback from NO down-regulates DA, hypothetically keeping it near the peak of the inverted-U. Other research, not yet done on higher animals or humans, shows NO "fine-tuning" movement. We speculate that Caucasian men, playing soccer recreationally, would exemplify the above pattern and their nitric oxide synthase (NOS) would reflect the norm of their community, whereas professional players of soccer and perhaps other EP sports, with DA boosted by

  11. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH.

    Science.gov (United States)

    Hasanzadeh, Mohammad; Sadeghi, Sattar; Bageri, Leyla; Mokhtarzadeh, Ahad; Karimzadeh, Ayub; Shadjou, Nasrin; Mahboob, Soltanali

    2016-12-01

    A novel nanobiopolymer film was electrodeposited on the surface of glassy carbon through cyclic voltammetry from dopamine, β-cyclodextrin, and phosphate buffer solution in physiological pH (7.40). The electrochemical behavior of polydopamine-Beta-cyclodextrin modified glassy carbon electrode was investigated for electro-oxidation and determination of some amino acids (l-Cysteine, l-Tyrosine, l-Glycine, and l-Phenylalanine). The modified electrode was applied for selected amino acid detection at physiological pH using cyclic voltammetry, differential pulse voltammetry and chronoamperometry, chronocoulometery. The linear concentration range of the proposed sensor for the l-Glycine, l-Cysteine, l-Tyrosine, and l-Phenylalanine were 0.2-70, 0.06-0.2, 0.01-0.1, and 0.2-10μM, while low limit of quantifications were 0.2, 0.06, 0.01, and 0.2μM, respectively. The modified electrode shows many advantages as an amino acid sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, good sensitivity, short response time, and long term stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Jinlan Gao

    Full Text Available Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.

  13. Ventral tegmental area dopamine and GABA neurons: Physiological properties and expression of mRNA for endocannabinoid biosynthetic elements

    OpenAIRE

    Merrill, Collin B.; Friend, Lindsey N.; Newton, Scott T.; Hopkins, Zachary H.; Edwards, Jeffrey G.

    2015-01-01

    The ventral tegmental area (VTA) is involved in adaptive reward and motivation processing and is composed of dopamine (DA) and GABA neurons. Defining the elements regulating activity and synaptic plasticity of these cells is critical to understanding mechanisms of reward and addiction. While endocannabinoids (eCBs) that potentially contribute to addiction are known to be involved in synaptic plasticity mechanisms in the VTA, where they are produced is poorly understood. In this study, DA and ...

  14. Distinct Physiological Effects of Dopamine D4 Receptors on Prefrontal Cortical Pyramidal Neurons and Fast-Spiking Interneurons.

    Science.gov (United States)

    Zhong, Ping; Yan, Zhen

    2016-01-01

    Dopamine D4 receptor (D4R), which is strongly linked to neuropsychiatric disorders, such as attention-deficit hyperactivity disorder and schizophrenia, is highly expressed in pyramidal neurons and GABAergic interneurons in prefrontal cortex (PFC). In this study, we examined the impact of D4R on the excitability of these 2 neuronal populations. We found that D4R activation decreased the frequency of spontaneous action potentials (sAPs) in PFC pyramidal neurons, whereas it induced a transient increase followed by a decrease of sAP frequency in PFC parvalbumin-positive (PV+) interneurons. D4R activation also induced distinct effects in both types of PFC neurons on spontaneous excitatory and inhibitory postsynaptic currents, which drive the generation of sAP. Moreover, dopamine substantially decreased sAP frequency in PFC pyramidal neurons, but markedly increased sAP frequency in PV+ interneurons, and both effects were partially mediated by D4R activation. In the phencyclidine model of schizophrenia, the decreasing effect of D4R on sAP frequency in both types of PFC neurons was attenuated, whereas the increasing effect of D4R on sAP in PV+ interneurons was intact. These results suggest that D4R activation elicits distinct effects on synaptically driven excitability in PFC projection neurons versus fast-spiking interneurons, which are differentially altered in neuropsychiatric disorder-related conditions.

  15. Physiology

    Science.gov (United States)

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  16. Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice

    OpenAIRE

    Wang, Xiaoyan; Villar, Van Anthony M.; Armando, Ines; Eisner, Gilbert M.; Felder, Robin A.; Pedro A. Jose

    2008-01-01

    Dopamine is important in the pathogenesis of hypertension because of abnormalities in receptor-mediated regulation of renal sodium transport. Dopamine receptors are classified into D1-like (D1, D5) and D2-like (D2, D3, D4) subtypes, all of which are expressed in the kidney. Mice deficient in specific dopamine receptors have been generated to provide holistic assessment on the varying physiological roles of each receptor subtype. This review examines recent studies on these mutant mouse models...

  17. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  18. Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice.

    Science.gov (United States)

    Wang, Xiaoyan; Villar, Van Anthony M; Armando, Ines; Eisner, Gilbert M; Felder, Robin A; Jose, Pedro A

    2008-12-01

    Dopamine is important in the pathogenesis of hypertension because of abnormalities in receptor-mediated regulation of renal sodium transport. Dopamine receptors are classified into D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), D(4)) subtypes, all of which are expressed in the kidney. Mice deficient in specific dopamine receptors have been generated to provide holistic assessment on the varying physiological roles of each receptor subtype. This review examines recent studies on these mutant mouse models and evaluates the impact of individual dopamine receptor subtypes on blood pressure regulation.

  19. Renal dopamine receptors and hypertension.

    Science.gov (United States)

    Hussain, Tahir; Lokhandwala, Mustafa F

    2003-02-01

    Dopamine has been recognized as an important modulator of central as well as peripheral physiologic functions in both humans and animals. Dopamine receptors have been identified in a number of organs and tissues, which include several regions within the central nervous system, sympathetic ganglia and postganglionic nerve terminals, various vascular beds, the heart, the gastrointestinal tract, and the kidney. The peripheral dopamine receptors influence cardiovascular and renal function by decreasing afterload and vascular resistance and promoting sodium excretion. Within the kidney, dopamine receptors are present along the nephron, with highest density on proximal tubule epithelial cells. It has been reported that there is a defective dopamine receptor, especially D(1) receptor function, in the proximal tubule of various animal models of hypertension as well as in humans with essential hypertension. Recent reports have revealed the site of and the molecular mechanisms responsible for the defect in D(1) receptors in hypertension. Moreover, recent studies have also demonstrated that the disruption of various dopamine receptor subtypes and their function produces hypertension in rodents. In this review, we present evidence that dopamine and dopamine receptors play an important role in regulating renal sodium excretion and that defective renal dopamine production and/or dopamine receptor function may contribute to the development of various forms of hypertension.

  20. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber.

    Science.gov (United States)

    Mo, J W; Ogorevc, B

    2001-03-15

    Overoxidized poly-(1,2-phenylenediamine) (OPPD)-coated carbon fiber microelectrodes (CFMEs) exhibit, in combination with square-wave voltammetry (SWV) detection mode, the attractive ability to simultaneously measure low nM dopamine (DA) and mM ascorbate (AA) in a pH 7.4 medium. The PPD polymer film is electrodeposited onto a carbon fiber at a constant potential of 0.8 V versus Ag/AgCl using a solution containing sodium dodecylsulfate as the dopant. After overoxidation using cyclic voltammetry (CV) in the potential range from 0 to 2.2 V at a scan rate of 10 V/s, the resulting OPPD-CFME displays a high SWV current response to cationic DA at approximately 0.2 V and has a favorably low response to anionic AA at approximately 0.0 V vs Ag/AgCl. The preparation of the new OPPD-sensing film has been carefully studied and optimized. The OPPD properties and behavior were characterized using CV and SWV under various conditions and are discussed with respect to DA and AA detection. The linear calibration range for DA in the presence of 0.3 mM AA is 50 nM to 10 microM, with a correlation coefficient of 0.998 and a detection limit of 10 nM using 45-s accumulation. The detection limit for DA in the absence of AA was estimated to be 2 nM (S/N = 3). The linear range for AA in the presence of 100 nM DA is 0.2-2 mM, with a correlation coefficient of 0.999 and a detection limit of 80 microM. The reproducibilities of SWV measurements at OPPD-CFCMEs are 1.6% and 2.5% for 100 nM DA and 0.3 mM AA, respectively. Potential interfering agents, such as 3,4-dihydroxyphenylacetic acid, uric acid, oxalate, human serum proteins, and glucose, at their physiologically relevant or higher concentrations did not have any effect. These favorable features offer great promise for in vitro and in vivo application of the proposed OPPD-coated microprobe.

  1. Dopamine, hypertension and obesity.

    Science.gov (United States)

    Contreras, F; Fouillioux, C; Bolívar, A; Simonovis, N; Hernández-Hernández, R; Armas-Hernandez, M J; Velasco, M

    2002-03-01

    Dopamine, a neurotransmitter, precursor of noradrenaline, is responsible for cardiovascular and renal actions, such as increase in myocardial contractility and cardiac output, without changes in heart rate, producing passive and active vasodilatation, diuresis and natriuresis. These cardiovascular and renal actions take place through the interaction with dopamine receptors, D(1), D(2), D(3), D(4), and D(5). Recent findings point to the possibility of D(6) and D(7)receptors. Dopamine is known to influence the control of arterial pressure by influencing the central and peripheral nervous system and target organs such as kidneys and adrenal glands, in some types of hypertension. Although dopamine and its derivatives have been shown to have antihypertensive effects, these are still being studied; therefore it is important to explain some physiological and pharmacological aspects of dopamine, its receptors, and the clinical uses it could have in the treatment of arterial hypertension and more recently in obesity, based on evidence proving a clear association between obesity and the decrease in the expression of D(2) receptors in the brain of obese persons.

  2. Dopamine and anorexia nervosa.

    Science.gov (United States)

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes.

  3. Characterization of preclinical in vitro and in vivo ADME properties and prediction of human PK using a physiologically based pharmacokinetic model for YQA-14, a new dopamine D3 receptor antagonist candidate for treatment of drug addiction.

    Science.gov (United States)

    Liu, Fei; Zhuang, Xiaomei; Yang, Cuiping; Li, Zheng; Xiong, Shan; Zhang, Zhiwei; Li, Jin; Lu, Chuang; Zhang, Zhenqing

    2014-07-01

    YQA-14 is a novel and selective dopamine D3 receptor antagonist, with potential for the treatment of drug addiction. However, earlier compounds in its structural class tend to have poor oral bioavailability. The objectives of this study were to characterize the preclinical absorption, distribution, metabolism and excretion (ADME) properties and pharmacokinetics (PK) of YQA-14, then to simulate the clinical PK of YQA-14 using a physiologically based pharmacokinetics (PBPK) model to assess the likelihood of developing YQA-14 as a clinical candidate. For human PK prediction, PBPK models were first built in preclinical species, rats and dogs, for validation purposes. The model was then modified by input of human in vitro ADME data obtained from in vitro studies. The study data showed that YQA-14 is a basic lipophilic compound, with rapid absorption (Tmax ~ 1 h) in both rats and dogs. Liver microsomal clearances and in vivo clearances were moderate in rats and dogs consistent with the moderate bioavailability observed in both species. The PBPK models built for rats and dogs simulated the observed PK data well in both species. The PBPK model refined with human data predicted that YQA-14 would have a clearance of 8.0 ml/min/kg, a volume distribution of 1.7 l/kg and a bioavailability of 16.9%. These acceptable PK properties make YQA-14 an improved candidate for further research and development as a potential dopamine D3R antagonism for the treatment of drug addiction in the clinic.

  4. Dopamine, Affordance and Active Inference

    Science.gov (United States)

    Friston, Karl J.; Shiner, Tamara; FitzGerald, Thomas; Galea, Joseph M.; Adams, Rick; Brown, Harriet; Dolan, Raymond J.; Moran, Rosalyn; Stephan, Klaas Enno; Bestmann, Sven

    2012-01-01

    The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level. PMID:22241972

  5. Dopamine, affordance and active inference.

    Directory of Open Access Journals (Sweden)

    Karl J Friston

    2012-01-01

    Full Text Available The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order in which cues are presented. These simulations provide a (Bayes-optimal model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level.

  6. Presence and function of dopamine transporter (DAT in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    Directory of Open Access Journals (Sweden)

    Javier A Urra

    Full Text Available Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT, serotonin (SERT and norepinephrine (NET transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylaminostyryl]-N-methylpyridinium iodide (ASP(+, as substrate. In addition, we also showed that dopamine (1 mM treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909 and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  7. Presence and function of dopamine transporter (DAT) in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    Science.gov (United States)

    Urra, Javier A; Villaroel-Espíndola, Franz; Covarrubias, Alejandra A; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I

    2014-01-01

    Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP(+)), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  8. No dopamine cell loss or changes in cytoskeleton function in transgenic mice expressing physiological levels of wild type or G2019S mutant LRRK2 and in human fibroblasts.

    Science.gov (United States)

    Garcia-Miralles, Marta; Coomaraswamy, Janaky; Häbig, Karina; Herzig, Martin C; Funk, Natalja; Gillardon, Frank; Maisel, Martina; Jucker, Mathias; Gasser, Thomas; Galter, Dagmar; Biskup, Saskia

    2015-01-01

    Mutations within the LRRK2 gene have been identified in Parkinson's disease (PD) patients and have been implicated in the dysfunction of several cellular pathways. Here, we explore how pathogenic mutations and the inhibition of LRRK2 kinase activity affect cytoskeleton dynamics in mouse and human cell systems. We generated and characterized a novel transgenic mouse model expressing physiological levels of human wild type and G2019S-mutant LRRK2. No neuronal loss or neurodegeneration was detected in midbrain dopamine neurons at the age of 12 months. Postnatal hippocampal neurons derived from transgenic mice showed no alterations in the seven parameters examined concerning neurite outgrowth sampled automatically on several hundred neurons using high content imaging. Treatment with the kinase inhibitor LRRK2-IN-1 resulted in no significant changes in the neurite outgrowth. In human fibroblasts we analyzed whether pathogenic LRRK2 mutations change cytoskeleton functions such as cell adhesion. To this end we compared the adhesion characteristics of human skin fibroblasts derived from six PD patients carrying one of three different pathogenic LRRK2 mutations and from four age-matched control individuals. The mutant LRRK2 variants as well as the inhibition of LRRK2 kinase activity did not reveal any significant cell adhesion differences in cultured fibroblasts. In summary, our results in both human and mouse cell systems suggest that neither the expression of wild type or mutant LRRK2, nor the inhibition of LRRK2 kinase activity affect neurite complexity and cellular adhesion.

  9. No dopamine cell loss or changes in cytoskeleton function in transgenic mice expressing physiological levels of wild type or G2019S mutant LRRK2 and in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Marta Garcia-Miralles

    Full Text Available Mutations within the LRRK2 gene have been identified in Parkinson's disease (PD patients and have been implicated in the dysfunction of several cellular pathways. Here, we explore how pathogenic mutations and the inhibition of LRRK2 kinase activity affect cytoskeleton dynamics in mouse and human cell systems. We generated and characterized a novel transgenic mouse model expressing physiological levels of human wild type and G2019S-mutant LRRK2. No neuronal loss or neurodegeneration was detected in midbrain dopamine neurons at the age of 12 months. Postnatal hippocampal neurons derived from transgenic mice showed no alterations in the seven parameters examined concerning neurite outgrowth sampled automatically on several hundred neurons using high content imaging. Treatment with the kinase inhibitor LRRK2-IN-1 resulted in no significant changes in the neurite outgrowth. In human fibroblasts we analyzed whether pathogenic LRRK2 mutations change cytoskeleton functions such as cell adhesion. To this end we compared the adhesion characteristics of human skin fibroblasts derived from six PD patients carrying one of three different pathogenic LRRK2 mutations and from four age-matched control individuals. The mutant LRRK2 variants as well as the inhibition of LRRK2 kinase activity did not reveal any significant cell adhesion differences in cultured fibroblasts. In summary, our results in both human and mouse cell systems suggest that neither the expression of wild type or mutant LRRK2, nor the inhibition of LRRK2 kinase activity affect neurite complexity and cellular adhesion.

  10. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  11. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice.

    Science.gov (United States)

    Zeng, Chunyu; Armando, Ines; Luo, Yingjin; Eisner, Gilbert M; Felder, Robin A; Jose, Pedro A

    2008-02-01

    Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure.

  12. Dopamine receptor and hypertension.

    Science.gov (United States)

    Zeng, Chunyu; Eisner, Gilbert M; Felder, Robin A; Jose, Pedro A

    2005-01-01

    Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and reactive oxygen and by interacting with vasopressin, renin-angiotensin, and the sympathetic nervous system. Decreased renal dopamine production and/or impaired dopamine receptor function have been reported in hypertension. Disruption of any of the dopamine receptors (D(1), D(2), D(3), D(4), and D(5)) results in hypertension. In this paper, we review the mechanisms by which hypertension develops when dopamine receptor function is perturbed.

  13. Dopamine receptors and hypertension.

    Science.gov (United States)

    Banday, Anees Ahmad; Lokhandwala, Mustafa F

    2008-08-01

    Dopamine plays an important role in regulating renal function and blood pressure. Dopamine synthesis and dopamine receptor subtypes have been shown in the kidney. Dopamine acts via cell surface receptors coupled to G proteins; the receptors are classified via pharmacologic and molecular cloning studies into two families, D1-like and D2-like. Two D1-like receptors cloned in mammals, the D1 and D5 receptors (D1A and D1B in rodents), are linked to adenylyl cyclase stimulation. Three D2-like receptors (D2, D3, and D4) have been cloned and are linked mainly to adenylyl cyclase inhibition. Activation of D1-like receptors on the proximal tubules inhibits tubular sodium reabsorption by inhibiting Na/H-exchanger and Na/K-adenosine triphosphatase activity. Reports exist of defective renal dopamine production and/or dopamine receptor function in human primary hypertension and in genetic models of animal hypertension. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to hypertension. A primary defect in D1-like receptors and an altered signaling system in proximal tubules may reduce dopamine-mediated effects on renal sodium excretion. The molecular basis for dopamine receptor dysfunction in hypertension is being investigated, and may involve an abnormal posttranslational modification of the dopamine receptor.

  14. Corticosterone regulates both naturally occurring and cocaine-induced dopamine signaling by selectively decreasing dopamine uptake.

    Science.gov (United States)

    Wheeler, Daniel S; Ebben, Amanda L; Kurtoglu, Beliz; Lovell, Marissa E; Bohn, Austin T; Jasek, Isabella A; Baker, David A; Mantsch, John R; Gasser, Paul J; Wheeler, Robert A

    2017-10-01

    Stressful and aversive events promote maladaptive reward-seeking behaviors such as drug addiction by acting, in part, on the mesolimbic dopamine system. Using animal models, data from our lab and others show that stress and cocaine can interact to produce a synergistic effect on reward circuitry. This effect is also observed when the stress hormone corticosterone is administered directly into the nucleus accumbens (NAc), indicating that glucocorticoids act locally in dopamine terminal regions to enhance cocaine's effects on dopamine signaling. However, prior studies in behaving animals have not provided mechanistic insight. Using fast-scan cyclic voltammetry, we examined the effect of systemic corticosterone on spontaneous dopamine release events (transients) in the NAc core and shell in behaving rats. A physiologically relevant systemic injection of corticosterone (2 mg/kg i.p.) induced an increase in dopamine transient amplitude and duration (both voltammetric measures sensitive to decreases in dopamine clearance), but had no effect on the frequency of transient release events. This effect was compounded by cocaine (2.5 mg/kg i.p.). However, a second experiment indicated that the same injection of corticosterone had no detectable effect on the dopaminergic encoding of a palatable natural reward (saccharin). Taken together, these results suggest that corticosterone interferes with naturally-occurring dopamine uptake locally, and this effect is a critical determinant of dopamine concentration specifically in situations in which the dopamine transporter is pharmacologically blocked by cocaine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Dopamine and vascular dynamics control: present status and future perspectives.

    Science.gov (United States)

    Tayebati, Seyed Khosrow; Lokhandwala, Mustafa F; Amenta, Francesco

    2011-08-01

    The catecholamine dopamine is a precursors in the biosynthesis of norepinephrine and epinephrine as well as a neurotransmitter in the central nervous system. Besides of its well known role of brain neurotransmitter, dopamine exerts specific functions at the periphery, being those at the level of the cardiovascular system and the kidney the most relevant. In fact it plays a role of modulator of blood pressure, sodium balance, and renal and adrenal functions through an independent peripheral dopaminergic system. In vivo administration or in vitro application of dopamine or of dopamine receptor agonists induce vasodilatation in the cerebral, coronary, renal and mesenteric vascular beds and cause hypotension. Moreover, dopamine stimulates cardiac contractility and induces diuresis and natriuresis. Dopamine probably plays a role in the pathogenesis of arterial hypertension by regulating epithelial sodium transport, vascular smooth muscle contractility and production of reactive oxygen species and by interacting with the renin-angiotensin and sympathetic nervous systems. Dopamine exerts its actions via a class of cell surface receptors belonging to the rhodopsin-like family of G-protein coupled receptors. Dopamine receptors are classified into D1-like (D1 and D5) and D2-like (D2, D3 and D4) subtypes based on their structure and pharmacology. Each of the dopamine receptor subtypes can participate in the regulation of blood pressure by specific mechanisms. Some receptors regulate blood pressure by influencing the central and/or autonomic nervous system; others influence epithelial transport and regulate the secretion and receptors of several humeral agents. This paper outlines the biochemistry, anatomical localization and physiology of the different dopamine receptors involved in the regulation of blood pressure, the relationship between dopamine receptor subtypes and hypertension and possibilities of modulating pharmacologically vascular dopamine receptor function.

  16. Dopamine Agonists and Pathologic Behaviors

    Directory of Open Access Journals (Sweden)

    Brendan J. Kelley

    2012-01-01

    Full Text Available The dopamine agonists ropinirole and pramipexole exhibit highly specific affinity for the cerebral dopamine D3 receptor. Use of these medications in Parkinson’s disease has been complicated by the emergence of pathologic behavioral patterns such as hypersexuality, pathologic gambling, excessive hobbying, and other circumscribed obsessive-compulsive disorders of impulse control in people having no history of such disorders. These behavioral changes typically remit following discontinuation of the medication, further demonstrating a causal relationship. Expression of the D3 receptor is particularly rich within the limbic system, where it plays an important role in modulating the physiologic and emotional experience of novelty, reward, and risk assessment. Converging neuroanatomical, physiological, and behavioral science data suggest the high D3 affinity of these medications as the basis for these behavioral changes. These observations suggest the D3 receptor as a therapeutic target for obsessive-compulsive disorder and substance abuse, and improved understanding of D3 receptor function may aid drug design of future atypical antipsychotics.

  17. Dopamins renale virkninger

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    1990-01-01

    Dopamine is an endogenic catecholamine which, in addition to being the direct precursor of noradrenaline, has also an effect on peripheral dopaminergic receptors. These are localized mainly in the heart, splanchnic nerves and the kidneys. Dopamine is produced in the kidneys and the renal metaboli...... dialysis unnecessary in a number of patients on account of increased diuresis and natriuresis. The effect of GFR and the significance for the prognosis are not known....

  18. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area.

    Science.gov (United States)

    Roseberry, Aaron G

    2015-08-01

    Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active.

  19. A Physical Interaction between the Dopamine Transporter and DJ-1 Facilitates Increased Dopamine Reuptake.

    Directory of Open Access Journals (Sweden)

    Beryl Luk

    Full Text Available The regulation of the dopamine transporter (DAT impacts extracellular dopamine levels after release from dopaminergic neurons. Furthermore, a variety of protein partners have been identified that can interact with and modulate DAT function. In this study we show that DJ-1 can potentially modulate DAT function. Co-expression of DAT and DJ-1 in HEK-293T cells leads to an increase in [3H] dopamine uptake that does not appear to be mediated by increased total DAT expression but rather through an increase in DAT cell surface localization. In addition, through a series of GST affinity purifications and co-immunoprecipitations, we provide evidence that the DAT can be found in a complex with DJ-1, which involve distinct regions within both DAT and DJ-1. Using in vitro binding experiments we also show that this complex can be formed in part by a direct interaction between DAT and DJ-1. Co-expression of a mini-gene that can disrupt the DAT/DJ-1 complex appears to block the increase in [3H] dopamine uptake by DJ-1. Mutations in DJ-1 have been linked to familial forms of Parkinson's disease, yet the normal physiological function of DJ-1 remains unclear. Our study suggests that DJ-1 may also play a role in regulating dopamine levels by modifying DAT activity.

  20. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    Science.gov (United States)

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  1. A dopamine-secreting pheochromocytoma.

    Science.gov (United States)

    Yasunari, K; Kohno, M; Minami, M; Kano, H; Ohhira, M; Nakamura, K; Yoshikawa, J

    2000-01-01

    We describe a patient with pheochromocytoma, which secretes dopamine. He was admitted to hospital because of chronic diarrhea. After surgical resection of the tumor, dramatic cessation of the diarrhea and blood pressure elevation were observed. Decreased expression of dopamine beta-hydroxylase in the tumor was considered a possible mechanism of producing a pathophysiological concentration of dopamine. This case shows that excessive excretion of dopamine, a vasodilative hormone, may affect blood pressure.

  2. Neuronal release of endogenous dopamine from corpus of guinea pig stomach.

    Science.gov (United States)

    Shichijo, K; Sakurai-Yamashita, Y; Sekine, I; Taniyama, K

    1997-11-01

    Neuronal release of endogenous dopamine was identified in mucosa-free preparations (muscle layer including intramural plexus) from guinea pig stomach corpus by measuring tissue dopamine content and dopamine release and by immunohistochemical methods using a dopamine antiserum. Dopamine content in mucosa-free preparations of guinea pig gastric corpus was one-tenth of norepinephrine content. Electrical transmural stimulation of mucosa-free preparations of gastric corpus increased the release of endogenous dopamine in a frequency-dependent (3-20 Hz) manner. The stimulated release of dopamine was prevented by either removal of external Ca2+ or treatment with tetrodotoxin. Dopamine-immunopositive nerve fibers surrounding choline acetyltransferase-immunopositive ganglion cells were seen in the myenteric plexus of whole mount preparations of gastric corpus even after bilateral transection of the splanchnic nerve proximal to the junction with the vagal nerve (section of nerves between the celiac ganglion and stomach). Domperidone and sulpiride potentiated the stimulated release of acetylcholine and reversed the dopamine-induced inhibition of acetylcholine release from mucosa-free preparations. These results indicate that dopamine is physiologically released from neurons and from possible dopaminergic nerve terminals and regulates cholinergic neuronal activity in the corpus of guinea pig stomach.

  3. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  4. Understanding the physiology of schizophrenia.

    Science.gov (United States)

    Kirkpatrick, Brian

    2013-03-01

    The physiology of schizophrenia includes complex genetic and environmental interactions. Current treatment largely focuses on positive symptoms, but many patients with schizophrenia present with additional symptoms and conditions that hinder their social and occupational functioning. The study of the physiology of this disorder has expanded beyond dopamine dysfunction to include the glutamate, serotonin, and nicotinic/acetylcholine systems, as well as physiologic abnormalities such as diabetes and inflammation. Clinicians who understand these additional problem areas can incorporate them into their assessment and treatment plans for patients with schizophrenia. © Copyright 2013 Physicians Postgraduate Press, Inc.

  5. NEW DOPAMINE AGONISTS IN CARDIOVASCULAR THERAPY

    NARCIS (Netherlands)

    GIRBES, ARJ; VANVELDHUISEN, DJ; SMIT, AJ

    1992-01-01

    Dopamine, a naturally occurring catecholamine, has been extensively used in intensive care for many years. Dopamine stimulates different types of adrenergic receptors: alpha-1 and -2, beta-1 and -2, and dopamine-1 and -2. The renal effects of dopamine are the result of dopamine-1 receptor (DA1)

  6. NEW DOPAMINE AGONISTS IN CARDIOVASCULAR THERAPY

    NARCIS (Netherlands)

    GIRBES, ARJ; VANVELDHUISEN, DJ; SMIT, AJ

    1992-01-01

    Dopamine, a naturally occurring catecholamine, has been extensively used in intensive care for many years. Dopamine stimulates different types of adrenergic receptors: alpha-1 and -2, beta-1 and -2, and dopamine-1 and -2. The renal effects of dopamine are the result of dopamine-1 receptor (DA1) stim

  7. Reward-based hypertension control by a synthetic brain-dopamine interface.

    Science.gov (United States)

    Rössger, Katrin; Charpin-El Hamri, Ghislaine; Fussenegger, Martin

    2013-11-05

    Synthetic biology has significantly advanced the design of synthetic trigger-controlled devices that can reprogram mammalian cells to interface with complex metabolic activities. In the brain, the neurotransmitter dopamine coordinates communication with target neurons via a set of dopamine receptors that control behavior associated with reward-driven learning. This dopamine transmission has recently been suggested to increase central sympathetic outflow, resulting in plasma dopamine levels that correlate with corresponding brain activities. By functionally rewiring the human dopamine receptor D1 (DRD1) via the second messenger cyclic adenosine monophosphate (cAMP) to synthetic promoters containing cAMP response element-binding protein 1(CREB1)-specific cAMP-responsive operator modules, we have designed a synthetic dopamine-sensitive transcription controller that reversibly fine-tunes specific target gene expression at physiologically relevant brain-derived plasma dopamine levels. Following implantation of circuit-transgenic human cell lines insulated by semipermeable immunoprotective microcontainers into mice, the designer device interfaced with dopamine-specific brain activities and produced a systemic expression response when the animal's reward system was stimulated by food, sexual arousal, or addictive drugs. Reward-triggered brain activities were able to remotely program peripheral therapeutic implants to produce sufficient amounts of the atrial natriuretic peptide, which reduced the blood pressure of hypertensive mice to the normal physiologic range. Seamless control of therapeutic transgenes by subconscious behavior may provide opportunities for treatment strategies of the future.

  8. Dampened Amphetamine-Stimulated Behavior and Altered Dopamine Transporter Function in the Absence of Brain GDNF.

    Science.gov (United States)

    Kopra, Jaakko J; Panhelainen, Anne; Af Bjerkén, Sara; Porokuokka, Lauriina L; Varendi, Kärt; Olfat, Soophie; Montonen, Heidi; Piepponen, T Petteri; Saarma, Mart; Andressoo, Jaan-Olle

    2017-02-08

    Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum.SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are

  9. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  10. Growth of dopamine crystals

    Science.gov (United States)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  11. 5-HT6/7 receptor antagonists facilitate dopamine release in the cochlea via a GABAergic disinhibitory mechanism

    NARCIS (Netherlands)

    Doleviczenyi, Zoltan; Vizi, E. Sylvester; Gacsalyi, Istvan; Pallagi, Katalin; Volk, Balazs; Harsing, Laszlo G.; Halmos, Gyorgy; Lendvai, Balazs; Zelles, Tibor

    2008-01-01

    In humans, serotonin (5-HT) has been implicated in numerous physiological and pathological processes in the peripheral auditory system. Dopamine (DA), another transmitter of the lateral olivocochlear (LOC) efferents making synapses on cochlear nerve dendrites, controls auditory nerve activation and

  12. Nucleus Accumbens and Dopamine-Mediated Turning Behavior of the Rat: Role of Accumbal Non-dopaminergic Receptors

    NARCIS (Netherlands)

    Ikeda, H.; Kamei, J.; Koshikawa, N.; Cools, A.R.

    2012-01-01

    Accumbal dopamine plays an important role in physiological responses and diseases such as schizophrenia, Parkinson's disease, and depression. Since the nucleus accumbens contains different neurotransmitters, it is important to know how they interact with dopaminergic function: this is because

  13. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Seiji Hayashizaki; Shinobu Hirai; Yumi Ito; Yoshiko Honda; Yosefu Arime; Ichiro Sora; Haruo Okado; Tohru Kodama; Masahiko Takada

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  14. Nasal Physiology

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Physiology Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy ...

  15. Salsolinol modulation of dopamine neurons

    Directory of Open Access Journals (Sweden)

    Guiqin eXie

    2013-05-01

    Full Text Available Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens. However, the underlying neuronal mechanisms are unclear. Here we present an overview of some of the recent research on this topic. Electrophysiological studies reveal that dopaminergic neurons in the posterior ventral tegmental area (pVTA are a target of salsolinol. In acute brain slices from rats, salsolinol increases the excitability and accelerates the ongoing firing of dopamine neurons in the pVTA. Intriguingly, this action of salsolinol involves multiple pre- and post-synaptic mechanisms, including: (a depolarizing the membrane potential of dopamine neurons; (b activating mu opioid receptors on the GABAergic inputs to dopamine neurons, which decreases GABAergic activity and dopamine neurons are disinhibited; and (c enhancing presynaptic glutamatergic transmission onto dopamine neurons via activation of dopamine type 1 receptors, probably situated on the glutamatergic terminals. These novel mechanisms may contribute to the rewarding/reinforcing properties of salsolinol observed in vivo.

  16. The dopamine metabolite 3-methoxytyramine is a neuromodulator.

    Directory of Open Access Journals (Sweden)

    Tatyana D Sotnikova

    Full Text Available Dopamine (3-hydroxytyramine is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT, can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1. Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.

  17. Intrinsic vascular dopamine - a key modulator of hypoxia-induced vasodilatation in splanchnic vessels.

    Science.gov (United States)

    Pfeil, Uwe; Kuncova, Jitka; Brüggmann, Doerthe; Paddenberg, Renate; Rafiq, Amir; Henrich, Michael; Weigand, Markus A; Schlüter, Klaus-Dieter; Mewe, Marco; Middendorff, Ralf; Slavikova, Jana; Kummer, Wolfgang

    2014-04-15

    Dopamine not only is a precursor of the catecholamines noradrenaline and adrenaline but also serves as an independent neurotransmitter and paracrine hormone. It plays an important role in the pathogenesis of hypertension and is a potent vasodilator in many mammalian systemic arteries, strongly suggesting an endogenous source of dopamine in the vascular wall. Here we demonstrated dopamine, noradrenaline and adrenaline in rat aorta and superior mesenteric arteries (SMA) by radioimmunoassay. Chemical sympathectomy with 6-hydroxydopamine showed a significant reduction of noradrenaline and adrenaline, while dopamine levels remained unaffected. Isolated endothelial cells were able to synthesize and release dopamine upon cAMP stimulation. Consistent with these data, mRNAs coding for catecholamine synthesizing enzymes, i.e. tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase, and dopamine-β-hydroxylase were detected by RT-PCR in cultured endothelial cells from SMA. TH protein was detected by immunohistochemisty and Western blot. Exposure of endothelial cells to hypoxia (1% O2) increased TH mRNA. Vascular smooth muscle cells partially expressed catecholaminergic traits. A physiological role of endogenous vascular dopamine was shown in SMA, where D1 dopamine receptor blockade abrogated hypoxic vasodilatation. Experiments on SMA with endothelial denudation revealed a significant contribution of the endothelium, although subendothelial dopamine release dominated. From these results we conclude that endothelial cells and cells of the underlying vascular wall synthesize and release dopamine in an oxygen-regulated manner. In the splanchnic vasculature, this intrinsic non-neuronal dopamine is the dominating vasodilator released upon lowering of oxygen tension.

  18. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons.

    Science.gov (United States)

    Yapo, Cedric; Nair, Anu G; Clement, Lorna; Castro, Liliana R; Hellgren Kotaleski, Jeanette; Vincent, Pierre

    2017-08-07

    , our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  19. Dopamine Dynamics during Continuous Intracranial Self-Stimulation: Effect of Waveform on Fast-Scan Cyclic Voltammetry Data.

    Science.gov (United States)

    Rodeberg, Nathan T; Johnson, Justin A; Bucher, Elizabeth S; Wightman, R Mark

    2016-11-16

    The neurotransmitter dopamine is heavily implicated in intracranial self-stimulation (ICSS). Many drugs of abuse that affect ICSS behavior target the dopaminergic system, and optogenetic activation of dopamine neurons is sufficient to support self-stimulation. However, the patterns of phasic dopamine release during ICSS remain unclear. Early ICSS studies using fast-scan cyclic voltammetry (FSCV) rarely observed phasic dopamine release, which led to the surprising conclusion that it is dissociated from ICSS. However, several advances in the sensitivity (i.e., the use of waveforms with extended anodic limits) and analysis (i.e., principal component regression) of FSCV measurements have made it possible to detect smaller, yet physiologically relevant, dopamine release events. Therefore, this study revisits phasic dopamine release during ICSS using these tools. It was found that the anodic limit of the voltammetric waveform has a substantial effect on the patterns of dopamine release observed during continuous ICSS. While data collected with low anodic limits (i.e., +1.0 V) support the disappearance of phasic dopamine release observed in previous investigation, the use of high anodic limits (+1.3 V, +1.4 V) allows for continual detection of dopamine release throughout ICSS. However, the +1.4 V waveform lacks the ability to resolve narrowly spaced events, with the best balance of temporal resolution and sensitivity provided by the +1.3 V waveform. Ultimately, it is revealed that the amplitude of phasic dopamine release decays but does not fully disappear during continuous ICSS.

  20. Dopamine D(2) receptor function is compromised in the brain of the methionine sulfoxide reductase A knockout mouse.

    Science.gov (United States)

    Oien, Derek B; Ortiz, Andrea N; Rittel, Alexander G; Dobrowsky, Rick T; Johnson, Michael A; Levant, Beth; Fowler, Stephen C; Moskovitz, Jackob

    2010-07-01

    Previous research suggests that brain oxidative stress and altered rodent locomotor behavior are linked. We observed bio-behavioral changes in methionine sulfoxide reductase A knockout mice associated with abnormal dopamine signaling. Compromised ability of these knockout mice to reduce methionine sulfoxide enhances accumulation of sulfoxides in proteins. We examined the dopamine D(2)-receptor function and expression, which has an atypical arrangement and quantity of methionine residues. Indeed, protein expression levels of dopamine D(2)-receptor were higher in knockout mice compared with wild-type. However, the binding of dopamine D(2)-receptor agonist was compromised in the same fractions of knockout mice. Coupling efficiency of dopamine D(2)-receptors to G-proteins was also significantly reduced in knockout mice, supporting the compromised agonist binding. Furthermore, pre-synaptic dopamine release in knockout striatal sections was less responsive than control sections to dopamine D(2)-receptor ligands. Behaviorally, the locomotor activity of knockout mice was less responsive to the inhibitory effect of quinpirole than wild-type mice. Involvement of specific methionine residue oxidation in the dopamine D(2)-receptor third intracellular loop is suggested by in vitro studies. We conclude that ablation of methionine sulfoxide reductase can affect dopamine signaling through altering dopamine D(2)-receptor physiology and may be related to symptoms associated with neurological disorders and diseases.

  1. Dopamine D2 receptor function is compromised in the brain of the methionine sulfoxide reductase A knockout mouse

    Science.gov (United States)

    Oien, Derek B.; Ortiz, Andrea N.; Rittel, Alexander G.; Dobrowsky, Rick T.; Johnson, Michael A.; Levant, Beth; Fowler, Stephen C.; Moskovitz, Jackob

    2010-01-01

    Previous research suggests that brain oxidative stress and altered rodent locomotor behavior are linked. We observed bio-behavioral changes in methionine sulfoxide reductase A knockout mice associated with abnormal dopamine signaling. Compromised ability of these knockout mice to reduce methionine sulfoxide enhances accumulation of sulfoxides in proteins. We examined the dopamine D2-receptor function and expression, which has an atypical arrangement and quantity of methionine residues. Indeed, protein expression levels of dopamine D2-receptor were higher in knockout mice compared with wild-type. However, the binding of dopamine D2-receptor agonist was compromised in the same fractions of knockout mice. Coupling efficiency of dopamine D2-receptors to G-proteins was also significantly reduced in knockout mice, supporting the compromised agonist binding. Furthermore, pre-synaptic dopamine release in knockout striatal sections was less responsive than control sections to dopamine D2-receptor ligands. Behaviorally, the locomotor activity of knockout mice was less responsive to the inhibitory effect of quinpirole than wild-type mice. Involvement of specific methionine residue oxidation in the dopamine D2-receptor third intracellular loop is suggested by in vitro studies. We conclude that ablation of methionine sulfoxide reductase can affect dopamine signaling through altering dopamine D2-receptor physiology and may be related to symptoms associated with neurological disorders and diseases. PMID:20374422

  2. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  3. Pharmacological characterization of dopamine receptors in the rice striped stem borer, Chilo suppressalis.

    Science.gov (United States)

    Xu, Gang; Wu, Shun-Fan; Gu, Gui-Xiang; Teng, Zi-Wen; Ye, Gong-Yin; Huang, Jia

    2017-04-01

    Dopamine is an important neurotransmitter and neuromodulator in both vertebrates and invertebrates and is the most abundant monoamine present in the central nervous system of insects. A complement of functionally distinct dopamine receptors mediate the signal transduction of dopamine by modifying intracellular Ca(2+) and cAMP levels. In the present study, we pharmacologically characterized three types of dopamine receptors, CsDOP1, CsDOP2 and CsDOP3, from the rice striped stem borer, Chilo suppressalis. All three receptors show considerable sequence identity with orthologous dopamine receptors. The phylogenetic analysis also clusters the receptors within their respective groups. Transcript levels of CsDOP1, CsDOP2 and CsDOP3 were all expressed at high levels in the central nervous system, indicating their important roles in neural processes. After heterologous expression in HEK 293 cells, CsDOP1, CsDOP2 and CsDOP3 were dose-dependently activated by dopamine and synthetic dopamine receptor agonists. They can also be blocked by different series of antagonists. This study offers important information on three dopamine receptors from C. suppressalis that will provide the basis for forthcoming studies investigating their roles in behaviors and physiology, and facilitate the development of new insecticides for pest control.

  4. Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation.

    Science.gov (United States)

    Soden, Marta E; Jones, Graham L; Sanford, Christina A; Chung, Amanda S; Güler, Ali D; Chavkin, Charles; Luján, Rafael; Zweifel, Larry S

    2013-11-20

    The calcium-activated small conductance potassium channel SK3 plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing coupling between SK channels and NMDA receptors (NMDARs) and increasing permissiveness for burst firing. Consistent with enhanced excitability of dopamine neurons, hSK3Δ increased evoked calcium signals in dopamine neurons in vivo and potentiated evoked dopamine release. Specific expression of hSK3Δ led to deficits in attention and sensory gating and heightened sensitivity to a psychomimetic drug. Sensory-motor alterations and psychomimetic sensitivity were recapitulated in a mouse model of transient, reversible dopamine neuron activation. These results demonstrate the cell-autonomous effects of a human ion channel mutation on dopamine neuron physiology and the impact of activity pattern disruption on behavior.

  5. Dopamine, the kidney, and hypertension.

    Science.gov (United States)

    Harris, Raymond C; Zhang, Ming-Zhi

    2012-04-01

    There is increasing evidence that the intrarenal dopaminergic system plays an important role in the regulation of blood pressure, and defects in dopamine signaling appear to be involved in the development of hypertension. Recent experimental models have definitively demonstrated that abnormalities in intrarenal dopamine production or receptor signaling can predispose to salt-sensitive hypertension and a dysregulated renin-angiotensin system. In addition, studies in both experimental animal models and in humans with salt-sensitive hypertension implicate abnormalities in dopamine receptor regulation due to receptor desensitization resulting from increased G-protein receptor kinase 4 (GRK4) activity. Functional polymorphisms that predispose to increased basal GRK4 activity both decrease dopamine receptor activity and increase angiotensin II type 1 (AT1) receptor activity and are associated with essential hypertension in a number of different human cohorts.

  6. Neuropharmacology of novel dopamine modulators

    NARCIS (Netherlands)

    Beek, Erik Tomas te

    2014-01-01

    De neurotransmitter dopamine speelt een essentiële rol in diverse neurofysiologische functies en is betrokken bij de pathofysiologie van diverse neuropsychiatrische aandoeningen, waaronder de ziekte van Parkinson, schizofrenie, drugsverslaving en hyperprolactinemie. De huidige

  7. Salsolinol modulation of dopamine neurons

    OpenAIRE

    Guiqin eXie; Kresimir eKrnjevic; Jiang Hong Ye

    2013-01-01

    Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumbens. ...

  8. Salsolinol modulation of dopamine neurons

    OpenAIRE

    Xie, Guiqin; Krnjević, Krešimir; Ye, Jiang-Hong

    2013-01-01

    Salsolinol, a tetrahydroisoquinoline present in the human and rat brains, is the condensation product of dopamine and acetaldehyde, the first metabolite of ethanol. Previous evidence obtained in vivo links salsolinol with the mesolimbic dopaminergic (DA) system: salsolinol is self-administered into the posterior of the ventral tegmental area (pVTA) of rats; intra-VTA administration of salsolinol induces a strong conditional place preference and increases dopamine release in the nucleus accumb...

  9. Dopamine, the Kidney, and Hypertension

    OpenAIRE

    Raymond C. Harris; Zhang, Ming-Zhi

    2012-01-01

    There is increasing evidence that the intrarenal dopaminergic system plays an important role in the regulation of blood pressure, and defects in dopamine signaling appear to be involved in the development of hypertension. Recent experimental models have definitively demonstrated that abnormalities in intrarenal dopamine production or receptor signaling can predispose to salt-sensitive hypertension and a dysregulated renin-angiotensin system. In addition, studies in both experimental animal mo...

  10. Interval timing, dopamine, and motivation

    OpenAIRE

    Balcı, Fuat

    2014-01-01

    The dopamine clock hypothesis suggests that the dopamine level determines the speed of the hypothetical internal clock. However, dopaminergic function has also been implicated for motivation and thus the effect of dopaminergic manipulations on timing behavior might also be independently mediated by altered motivational state. Studies that investigated the effect of motivational manipulations on peak responding are reviewed in this paper. The majority of these studies show that a higher reward...

  11. Dynamic Nigrostriatal Dopamine Biases Action Selection.

    Science.gov (United States)

    Howard, Christopher D; Li, Hao; Geddes, Claire E; Jin, Xin

    2017-03-22

    Dopamine is thought to play a critical role in reinforcement learning and goal-directed behavior, but its function in action selection remains largely unknown. Here we demonstrate that nigrostriatal dopamine biases ongoing action selection. When mice were trained to dynamically switch the action selected at different time points, changes in firing rate of nigrostriatal dopamine neurons, as well as dopamine signaling in the dorsal striatum, were found to be associated with action selection. This dopamine profile is specific to behavioral choice, scalable with interval duration, and doesn't reflect reward prediction error, timing, or value as single factors alone. Genetic deletion of NMDA receptors on dopamine or striatal neurons or optogenetic manipulation of dopamine concentration alters dopamine signaling and biases action selection. These results unveil a crucial role of nigrostriatal dopamine in integrating diverse information for regulating upcoming actions, and they have important implications for neurological disorders, including Parkinson's disease and substance dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Tyrosine administration enhances dopamine synthesis and release in light-activated rat retina

    Science.gov (United States)

    Gibson, C. J.; Watkins, C. J.; Wurtman, R. J.

    1983-01-01

    Exposure of dark-adapted albino rats to light (350 lux) significantly elevated retinal levels of the dopamine metabolite dihydroxyphenyl acetic acid during the next hour; their return to a dark environment caused dihydroxyphenyl acetic acid levels to fall. Retinal dopamine levels were increased slightly by light exposure, suggesting that the increase in dihydroxyphenyl acetic acid reflected accelerated dopamine synthesis. Administration of tyrosine (100 mg/kg, i.p.) further elevated retinal dihydroxyphenyl acetic acid among light-exposed animals, but failed to affect dopamine release among animals in the dark. These observations show that a physiological stimulus - light exposure - can cause catecholaminergic neurons to become tyrosine-dependent; they also suggest that food consumption may affect neurotransmitter release within the retina.

  13. Dopamine and Huntington's disease.

    Science.gov (United States)

    Schwab, Laetitia C; Garas, Shady N; Garas, Shaady N; Drouin-Ouellet, Janelle; Mason, Sarah L; Stott, Simon R; Barker, Roger A

    2015-04-01

    Huntington's disease (HD) is an incurable, inherited, progressive neurodegenerative disorder that is defined by a combination of motor, cognitive and psychiatric features. Pre-clinical and clinical studies have demonstrated an important role for the dopamine (DA) system in HD with dopaminergic dysfunction at the level of both DA release and DA receptors. It is, therefore, not surprising that the drug treatments most commonly used in HD are anti-dopaminergic agents. Their use is based primarily on the belief that the characteristic motor impairments are a result of overactivation of the central dopaminergic pathways. While this is a useful starting place, it is clear that the behavior of the central dopaminergic pathways is not fully understood in this condition and may change as a function of disease stage. In addition, how abnormalities in dopaminergic systems may underlie some of the non-motor features of HD has also been poorly investigated and this is especially important given the greater burden these place on the patients' and families' quality of life. In this review, we discuss what is known about central dopaminergic pathways in HD and how this informs us about the mechanisms of action of the dopaminergic therapies used to treat it. By doing so, we will highlight some of the paradoxes that exist and how solving them may reveal new insights for improved treatment of this currently incurable condition, including the possibility that such drugs may even have effects on disease progression and pathogenesis.

  14. NEUROTRANSMITTERS AND IMMUNITY: 1. DOPAMINE

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2007-08-01

    Full Text Available Dopamine is one of the principal neurotransmitters in the central nervous system (CNC, and its neuronal pathways are involved in several key functions such as behavior (Hefco et al., 2003a,b, control of movement, endocrine regulation, immune response (Fiserova et al., 2002; Levite et al., 2001, Hritcu et al., 2006a,b,c, and cardiovascular function. Dopamine has at least five G-protein, coupled receptor subtypes, D1-D5, each arising from a different gene (Sibley et al., 1993. Traditionally, these receptors have been classified into D1-like (the D1 and D5 and D2-like (D2, D3 and D4 receptors subtypes, primarily according to their ability to stimulate or inhibit adenylate cyclase, respectively, and to their pharmacological characteristics (Seeman et al., 1993. Receptors for dopamine (particularly of D2 subclass are the primary therapeutic target in a number of neuropathological disorders including schizophrenia, Parkinson’s disease and Huntington’s chorea (Seeman et al., 1987. Neither dopamine by itself, nor dopaminergic agonists by themselves, has been shown to activate T cell function. Nevertheless, lymphocytes are most probably exposed to dopamine since the primary and secondary lymphoid organs of various mammals are markedly innervated, and contain nerve fibers which stain for tyrosine hydroxylase (Weihe et al., 1991, the enzyme responsible for dopamine synthesis. Moreover, cathecolamines and their metabolites are present in single lymphocytes and in extracts of T and B cell clones, and pharmacological inhibition of tyrosine hydroxylase reduces catecholamine levels, suggesting catecholamine synthesis by lymphocytes (Bergquist et al., 1994. The existence of putative dopamine receptors of D2, D3, D4 and D5 subtypes on immune cells has been proposed of several authors, primarily on the basis of dopaminergic ligand binding assays and specific mRNA expression as monitored by reverse transcription-PCR. Several experiments evoked the idea of a

  15. Role of mast cells in estrogen-mediated experimental endometriosis in rats%肥大细胞在雌激素介导的子宫内膜异位症中的作用机制研究

    Institute of Scientific and Technical Information of China (English)

    林开清; 朱丽波; 张信美; 林俊

    2015-01-01

    目的:探讨肥大细胞在雌激素介导的大鼠子宫内膜异位症模型中的作用及相关机制。方法:取健康雌性未孕SD大鼠24只,采用自体子宫内膜移植法建立大鼠腹壁子宫内膜异位症模型,按每天肌肉注射不同剂量雌激素将大鼠随机分成3组(每组8只):大剂量组(雌激素200μg/kg+双卵巢切除)、小剂量组(雌激素100μg/kg+双卵巢切除)、模型对照组(仅作子宫内膜移植)。分别于造模后2周及4周后处死各组4只大鼠,采集血液和病灶组织标本,测量各组子宫内膜异位症病灶的大小,并对病灶组织进行苏木素—伊红( HE)染色观察组织形态及角蛋白和波形蛋白免疫组织化学染色以鉴定造模是否成功。用甲苯胺蓝染色法检测各组大鼠病灶组织肥大细胞总数及脱颗粒肥大细胞数,酶联免疫吸附试验测定血清肿瘤坏死因子α水平,酶免疫分析法测定血清雌二醇水平,免疫组织化学染色法检测子宫内膜异位症病灶组织类胰蛋白酶、神经生长因子的表达水平。结果:两雌激素组2周和4周时血清雌二醇水平均大于模型对照组(均P<0.05),4周时大剂量组血清肿瘤坏死因子α浓度大于模型对照组( P<0.05);两雌激素组2周和4周病灶体积均大于模型对照组(均P<0.05);无论是2周还是4周,小剂量组甲苯胺蓝染色脱颗粒/肥大细胞总数比值均高于模型对照组(均P<0.05);4周时大剂量组神经生长因子的表达大于模型对照组( P<0.05)。结论:雌激素可促进子宫内膜异位症病灶的生长,其机制可能与激活肥大细胞脱颗粒相关,而后者可能与子宫内膜异位症模型大鼠血清肿瘤坏死因子α、神经生长因子水平升高有关。%Objective: To investigate the role of mast cells in the pathogenesis of estrogen-mediated experimental endometriosis in rats

  16. NOVEL FLUORESCENT PROBES FOR THE DOPAMINE TRANSPORTER

    DEFF Research Database (Denmark)

    Cha, J; Vægter, Christian Bjerggaard; Adkins, Erica

    To enable visualization of the dopamine transporter (DAT) through fluorescence technologies we have synthesized a novel series of fluorescently tagged analogs of cocaine. Previous structure-activity relationship (SAR) studies have demonstrated that the dopamine transporter (DAT) can tolerate...

  17. Dopamine regulates body size in Caenorhabditis elegans.

    Science.gov (United States)

    Nagashima, Takashi; Oami, Eitaro; Kutsuna, Natsumaro; Ishiura, Shoichi; Suo, Satoshi

    2016-04-01

    The nervous system plays a critical role in the regulation of animal body sizes. In Caenorhabditis elegans, an amine neurotransmitter, dopamine, is required for the tactile perception of food and food-dependent behavioral changes, while its role in development is unknown. In this study, we show that dopamine negatively regulates body size through a D2-like dopamine receptor, DOP-3, in C. elegans. Dopamine alters body size without affecting food intake or developmental rate. We also found that dopamine promotes egg-laying, although the regulation of body size by dopamine was not solely caused by this effect. Furthermore, dopamine negatively regulates body size through the suppression of signaling by octopamine and Gq-coupled octopamine receptors, SER-3 and SER-6. Our results demonstrate that dopamine and octopamine regulate the body size of C. elegans and suggest a potential role for perception in addition to ingestion of food for growth.

  18. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  19. NOVEL FLUORESCENT PROBES FOR THE DOPAMINE TRANSPORTER

    DEFF Research Database (Denmark)

    Cha, J; Vægter, Christian Bjerggaard; Adkins, Erica

    To enable visualization of the dopamine transporter (DAT) through fluorescence technologies we have synthesized a novel series of fluorescently tagged analogs of cocaine. Previous structure-activity relationship (SAR) studies have demonstrated that the dopamine transporter (DAT) can tolerate...

  20. Behavioural effects of chemogenetic dopamine neuron activation

    NARCIS (Netherlands)

    Boekhoudt, L

    2016-01-01

    Various psychiatric disorders, including schizophrenia, attention-deficit/hyperactivity disorder (ADHD) and major depressive disorder, have been associated with altered dopamine signalling in the brain. However, it remains unclear which specific changes in dopamine activity are related to specific p

  1. Dopamine controls neurogenesis in the adult salamander midbrain in homeostasis and during regeneration of dopamine neurons.

    Science.gov (United States)

    Berg, Daniel A; Kirkham, Matthew; Wang, Heng; Frisén, Jonas; Simon, András

    2011-04-08

    Appropriate termination of regenerative processes is critical for producing the correct number of cells in tissues. Here we provide evidence for an end-product inhibition of dopamine neuron regeneration that is mediated by dopamine. Ablation of midbrain dopamine neurons leads to complete regeneration in salamanders. Regeneration involves extensive neurogenesis and requires activation of quiescent ependymoglia cells, which express dopamine receptors. Pharmacological compensation for dopamine loss by L-dopa inhibits ependymoglia proliferation and regeneration in a dopamine receptor-signaling-dependent manner, specifically after ablation of dopamine neurons. Systemic administration of the dopamine receptor antagonist haloperidol alone causes ependymoglia proliferation and the appearance of excessive number of neurons. Our data show that stem cell quiescence is under dopamine control and provide a model for termination once normal homeostasis is restored. The findings establish a role for dopamine in the reversible suppression of neurogenesis in the midbrain and have implications for regenerative strategies in Parkinson's disease.

  2. Dopamine agents for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Junker, Anders Ellekær; Als-Nielsen, Bodil; Gluud, Christian

    2014-01-01

    BACKGROUND: Patients with hepatic encephalopathy may present with extrapyramidal symptoms and changes in basal ganglia. These changes are similar to those seen in patients with Parkinson's disease. Dopamine agents (such as bromocriptine and levodopa, used for patients with Parkinson's disease) have...... therefore been assessed as a potential treatment for patients with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of dopamine agents versus placebo or no intervention for patients with hepatic encephalopathy. SEARCH METHODS: Trials were identified through the Cochrane...... of the trials followed participants after the end of treatment. Only one trial reported adequate bias control; the remaining four trials were considered to have high risk of bias. Random-effects model meta-analyses showed that dopamine agents had no beneficial or detrimental effect on hepatic encephalopathy...

  3. Chaotic behavior in dopamine neurodynamics.

    Science.gov (United States)

    King, R; Barchas, J D; Huberman, B A

    1984-02-01

    We report the results of the dynamics of a model of the central dopaminergic neuronal system. In particular, for certain values of a parameter k, which monitors the efficacy of dopamine at the postsynaptic receptor, chaotic solutions of the dynamical equations appear--a prediction that correlates with the observed increased variability in behavior among schizophrenics, the rapid fluctuations in motor activity among Parkinsonian patients treated chronically with L-dopa, and the lability of mood in some patients with an affective disorder. Moreover our hypothesis offers specific results concerning the appearance or disappearance of erratic solutions as a function of k and the external input to the dopamine neuronal system.

  4. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4)

    DEFF Research Database (Denmark)

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L;

    2009-01-01

    . Our studies indicate that Drd4 is the dominant dopamine receptor gene expressed in the pineal gland. The gene is expressed in pinealocytes at levels which are approximately 100-fold greater than in other tissues, except the retina, in which transcript levels are similar. Pineal Drd4 expression...... and whether thyroid hormone controls expression of other genes in the pineal gland.......Dopamine plays diverse and important roles in vertebrate biology, impacting behavior and physiology through actions mediated by specific G-protein-coupled receptors, one of which is the dopamine receptor D4 (Drd4). Here we present studies on the >100-fold daily rhythm in rat pineal Drd4 expression...

  5. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  6. Physiological Networks: towards systems physiology

    Science.gov (United States)

    Bartsch, Ronny P.; Bashan, Amir; Kantelhardt, Jan W.; Havlin, Shlomo; Ivanov, Plamen Ch.

    2012-02-01

    The human organism is an integrated network where complex physiologic systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here, we develop a framework to probe interactions among diverse systems, and we identify a physiologic network. We find that each physiologic state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiologic states the network undergoes topological transitions associated with fast reorganization of physiologic interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate new dimensions to the field of systems physiology.

  7. Translational Modeling in Schizophrenia : Predicting Human Dopamine D2 Receptor Occupancy

    NARCIS (Netherlands)

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H

    2015-01-01

    OBJECTIVES: To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. METHODS: A hybrid PBPKPD model, previousl

  8. Dopamine Receptor Availability in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-01-01

    Full Text Available Striatal dopamine (D2 receptor availability was determined by iodobenzamide brain SPECT, before and 3 months after methylphenidate (MPH therapy, in 9 children (mean age, 9.8 years with attention deficit hyperactivity disorder (ADHD examined at Gazi University, Ankara, Turkey.

  9. Dopamine-sensitive signaling mediators modulate psychostimulant-induced ultrasonic vocalization behavior in rats.

    Science.gov (United States)

    Williams, Stacey N; Undieh, Ashiwel S

    2016-01-01

    The mesolimbic dopamine system plays a major role in psychostimulant-induced ultrasonic vocalization (USV) behavior in rodents. Within this system, psychostimulants elevate synaptic concentrations of dopamine thereby leading to exaggerated activation of postsynaptic dopamine receptors within the D1-like and D2-like subfamilies. Dopamine receptor stimulation activate several transmembrane signaling systems and cognate intracellular mediators; downstream activation of transcription factors then conveys the information from receptor activation to appropriate modulation of cellular and physiologic functions. We previously showed that cocaine-induced USV behavior was associated with enhanced expression of the neurotrophin BDNF. Like cocaine, amphetamine also increases synaptic dopamine levels, albeit primarily through facilitating dopamine release. Therefore, in the present study we investigated whether amphetamine and cocaine similarly activate dopamine-linked signaling cascades to regulate intracellular mediators leading to induction of USV behavior. The results show that amphetamine increased the emission of 50 kHz USVs and this effect was blocked by SCH23390, a D1 receptor antagonist. Similar to cocaine, amphetamine increased BDNF protein expression in discrete brain regions, while pretreatment with K252a, a trkB neurotrophin receptor inhibitor, significantly reduced amphetamine-induced USV behavior. Inhibition of cyclic-AMP/PKA signaling with H89 or inhibition of PLC signaling with U73122 significantly blocked both the acute and subchronic amphetamine-induced USV behavior. In contrast, pharmacologic inhibition of either pathway enhanced cocaine-induced USV behavior. Although cocaine and amphetamine similarly modulate neurotrophin expression and USV, the molecular mechanisms by which these psychostimulants differentially activate dopamine receptor subtypes or other monoaminergic systems may be responsible for the distinct aspects of behavioral responses.

  10. Modeling the interaction of binary and ternary mixtures of estradiol with bisphenol A and bisphenol A F in an in vitro estrogen mediated transcriptional activation assay (T47D-KBluc)

    Science.gov (United States)

    Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. For example, children have circulating E2concentrations rang...

  11. Antiferroptotic activity of non-oxidative dopamine.

    Science.gov (United States)

    Wang, Ding; Peng, Yingpeng; Xie, Yangchun; Zhou, Borong; Sun, Xiaofang; Kang, Rui; Tang, Daolin

    2016-11-25

    Dopamine is a neurotransmitter that has many functions in the nervous and immune systems. Ferroptosis is a non-apoptotic form of regulated cell death that is involved in cancer and neurodegenerative diseases. However, the role of dopamine in ferroptosis remains unidentified. Here, we show that the non-oxidative form of dopamine is a strong inhibitor of ferroptotic cell death. Dopamine dose-dependently blocked ferroptosis in cancer (PANC1 and HEY) and non-cancer (MEF and HEK293) cells following treatment with erastin, a small molecule ferroptosis inducer. Notably, dopamine reduced erastin-induced ferrous iron accumulation, glutathione depletion, and malondialdehyde production. Mechanically, dopamine increased the protein stability of glutathione peroxidase 4, a phospholipid hydroperoxidase that protects cells against membrane lipid peroxidation. Moreover, dopamine suppressed dopamine receptor D4 protein degradation and promoted dopamine receptor D5 gene expression. Thus, our findings uncover a novel function of dopamine in cell death and provide new insight into the regulation of iron metabolism and lipid peroxidation by neurotransmitters. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dopamine plasma clearance is increased in piglets compared to neonates during continuous dopamine infusion

    DEFF Research Database (Denmark)

    Rasmussen, Martin B; Gramsbergen, Jan Bert; Eriksen, Vibeke R

    2017-01-01

    AIM: Piglets models have often been used to study the effects of dopamine infusion on hypotension in neonates. However, piglets need higher doses of dopamine than neonates to increase blood pressure. We investigated whether this difference was due to interspecific difference in dopamine...... pharmacokinetics. METHODS: Arterial blood samples were drawn from six neonates admitted to the neonatal intensive care unit of Copenhagen University Hospital and 20 newborn piglets during continuous dopamine infusion. Furthermore, to estimate the piglet plasma dopamine half-life, blood samples were drawn at 2.......5-minute intervals after the dopamine infusion was discontinued. The plasma dopamine content was analysed by high-performance liquid chromatography with electrochemical detection. RESULTS: The dopamine displayed first-order kinetics in piglets and had a half-life of 2.5 minutes, while the median plasma...

  13. Modeling the Interaction of Binary and Ternary Mixtures of Estradiol with Bisphenol A and Bisphenol AF in an In Vitro Estrogen-Mediated Transcriptional Activation Assay (T47D-KBluc)

    OpenAIRE

    Bermudez, Dieldrich S.; Gray, Leon E.; Wilson, Vickie S.

    2010-01-01

    Exposure to xenoestrogens occurs against a backdrop to physiological levels of endogenous estrogens. Endogenous estrogen levels vary from low levels in early childhood to high levels during pregnancy and in young women. However, few studies have addressed how xenoestrogens interact with endogenous estrogens. The current study was designed to characterize the individual dose-response curves of estradiol-17β (E2), bisphenol A (BPA), tetrabromo-bisphenol A (TBBPA), and bisphenol AF (BPAF, 4,4'-h...

  14. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    Science.gov (United States)

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  15. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  16. Chaotic behavior in dopamine neurodynamics.

    OpenAIRE

    King, R; Barchas, J.D.; Huberman, B A

    1984-01-01

    We report the results of the dynamics of a model of the central dopaminergic neuronal system. In particular, for certain values of a parameter k, which monitors the efficacy of dopamine at the postsynaptic receptor, chaotic solutions of the dynamical equations appear--a prediction that correlates with the observed increased variability in behavior among schizophrenics, the rapid fluctuations in motor activity among Parkinsonian patients treated chronically with L-dopa, and the lability of moo...

  17. Actions of dopamine antagonists on stimulated striatal and limbic dopamine release: an in vivo voltammetric study.

    OpenAIRE

    Stamford, J. A.; Kruk, Z L; Millar, J.

    1988-01-01

    1. Fast cyclic voltammetry at carbon fibre microelectrodes was used to study the effects of several dopamine antagonists upon stimulated dopamine release in the rat striatum and nucleus accumbens. 2. In both nuclei, stimulated dopamine release was increased by D2-receptor-selective and mixed D1/D2-receptor antagonists. The D1-selective antagonist SCH 23390 had no effect. 3. Striatal and limbic dopamine release were elevated by cis- but not trans-flupenthixol. 4. The 'atypical' neuroleptics (c...

  18. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    Science.gov (United States)

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-09

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease.

  19. Reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Russman, S.E.; Ellis, David H.; Gee, George F.; Mirande, Claire M.

    1996-01-01

    Conclusions: Although the general pattern of avian physiology applies to cranes, we have identified many physiological mechanisms (e.g., effects of disturbance) that need further study. Studies with cranes are expensive compared to those done with domestic fowl because of the crane's larger size, low reproductive rate, and delayed sexual maturity. To summarize, the crane reproductive system is composed of physiological and anatomical elements whose function is controlled by an integrated neural-endocrine system. Males generally produce semen at a younger age than when females lay eggs. Eggs are laid in clutches of two (1 to 3), and females will lay additional clutches if the preceding clutches are removed. Both sexes build nests and incubate the eggs. Molt begins during incubation and body molt may be completed annually in breeding pairs. However, remiges are replaced sequentially over 2 to 3 years, or abruptly every 2 to 3 years in other species. Most immature birds replace their juvenal remiges over a 2 to 3 year period. Stress interferes with reproduction in cranes by reducing egg production or terminating the reproductive effort. In other birds, stress elevates corticosterone levels and decreases LHRH release. We know little about the physiological response of cranes to stress.

  20. Exercise physiology

    DEFF Research Database (Denmark)

    Kiens, Bente; Richter, Erik; Wojtaszewski, Jørgen

    2014-01-01

    The passing of Professor Bengt Saltin on September 12, 2014 truly marks the end of an era. As editor of the Journal of Applied Physiology and one of Bengt’s many collaborators and colleagues, I wanted the Journal to celebrate his many seminal contributions by means of an Editorial. Professor Bent...

  1. Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry

    Science.gov (United States)

    Jennings, Alistair; Tyurikova, Olga; Bard, Lucie; Zheng, Kaiyu; Semyanov, Alexey; Henneberger, Christian

    2016-01-01

    Whilst astrocytes in culture invariably respond to dopamine with cytosolic Ca2+ rises, the dopamine sensitivity of astroglia in situ and its physiological roles remain unknown. To minimize effects of experimental manipulations on astroglial physiology, here we monitored Ca2+ in cells connected via gap junctions to astrocytes loaded whole‐cell with cytosolic indicators in area CA1 of acute hippocampal slices. Aiming at high sensitivity of [Ca2+] measurements, we also employed life‐time imaging of the Ca2+ indicator Oregon Green BAPTA‐1. We found that dopamine triggered a dose‐dependent, bidirectional Ca2+ response in stratum radiatum astroglia, a jagged elevation accompanied and followed by below‐baseline decreases. The elevation depended on D1/D2 receptors and engaged intracellular Ca2+ storage and removal whereas the dopamine‐induced [Ca2+] decrease involved D2 receptors only and was sensitive to Ca2+ channel blockade. In contrast, the stratum lacunosum moleculare astroglia generated higher‐threshold dopamine‐induced Ca2+ responses which did not depend on dopamine receptors and were uncoupled from the prominent inhibitory action of dopamine on local perforant path synapses. Our findings thus suggest that a single neurotransmitter—dopamine—could either elevate or decrease astrocyte [Ca2+] depending on the receptors involved, that such actions are specific to the regional neural circuitry and that they may be causally uncoupled from dopamine actions on local synapses. The results also indicate that [Ca2+] elevations commonly detected in astroglia can represent the variety of distinct mechanisms acting on the microscopic scale. GLIA 2017;65:447–459 PMID:27896839

  2. Increased plasma dopamine in patients presenting with the pseudopheochromocytoma quandary: retrospective analysis of 10 years' experience.

    Science.gov (United States)

    Kuchel, O

    1998-10-01

    A retrospective analysis was made to determine alternative diagnoses in patients with predominantly hypertensive episodes who were suspected of having pheochromocytoma but in whom this diagnosis was eliminated. Analysis of a random university hospital population referred over a period of 10 years. Episodic clinical presentations of pheochromocytoma symptoms combined with a comparison of baseline and episodic radioenzymatically determined levels of plasma free norepinephrine and epinephrine were examined, together with prospective levels of plasma free and sulfated dopamine. Out of 63 patients presenting with episodes of palpitations, headaches, flushing, sweating and hyperventilation (associated with hypertension in 49 patients, with hypotension in six patients and with alternating hyper- and hypotension in eight patients), 14 were diagnosed as having idiopathic hypovolemia, nine as having mastocytosis, nine as having an adrenal tumor, four as having neurogenic hypertension and one each with cocaine abuse and reninoma. Both baseline and symptomatic levels of plasma free norepinephrine and epinephrine remained within physiological limits (exceeding them moderately in baroreceptor dysfunction only), but all subgroups had a mean episodic increase over baseline in plasma dopamine sulfate (mean+/-SEM 16.7+/-5.9 to 53.2+/-19 pmol/ml; P pheochromocytoma in hemodynamic instability and frequent flushing formed a heterogeneous group, with plasma norepinephrine and epinephrine usually within physiological limits but an overall mean threefold increase in dopamine sulfate concentrations. With the various diagnoses of idiopathic hypovolemia, mastocytosis, neurogenic, secondary hypertension and cocaine abuse eliminated as a cause of pheochromocytoma-like symptoms, at least half of these patients still had unexplained, predominantly emotionally or proprioreceptive stimulation-provoked, bouts of hypertension. Sympathetic arousal dominated by an increase in dopamine sulfate without

  3. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.

    Science.gov (United States)

    Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X

    2017-05-01

    The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D1 (D1 R) and D5 (D5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (ISC ), Western blot, immunohistochemistry and ELISA were used in human D5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in ISC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D5 R, but not D1 R, was observed in the duodenum of control rat. In human D5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal ISC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D5 R knock-down transgenic mice manifested a decreased basal ISC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  4. Blood-brain barrier permeability during dopamine-induced hypertension in fetal sheep.

    Science.gov (United States)

    Harris, A P; Robinson, R; Koehler, R C; Traystman, R J; Gleason, C A

    2001-07-01

    Dopamine is often used as a pressor agent in sick newborn infants, but an increase in arterial blood pressure could disrupt the blood-brain barrier (BBB), especially in the preterm newborn. Using time-dated pregnant sheep, we tested the hypothesis that dopamine-induced hypertension increases fetal BBB permeability and cerebral water content. Barrier permeability was assessed in nine brain regions, including cerebral cortex, caudate, thalamus, brain stem, cerebellum, and spinal cord, by intravenous injection of the small tracer molecule [(14)C]aminoisobutyric acid at 10 min after the start of dopamine or saline infusion. We studied 23 chronically catheterized fetal sheep at 0.6 (93 days, n = 10) and 0.9 (132 days, n = 13) gestation. Intravenous infusion of dopamine increased mean arterial pressure from 38 +/- 3 to 53 +/- 5 mmHg in 93-day fetuses and from 55 +/- 5 to 77 +/- 8 mmHg in 132-day fetuses without a decrease in arterial O(2) content. These 40% increases in arterial pressure are close to the maximum hypertension reported for physiological stresses at these ages in fetal sheep. No significant increases in the brain transfer coefficient of aminoisobutyric acid were detected in any brain region in dopamine-treated fetuses compared with saline controls at 0.6 or 0.9 gestation. There was also no significant increase in cortical water content with dopamine infusion at either age. We conclude that a 40% increase in mean arterial pressure during dopamine infusion in normoxic fetal sheep does not produce substantial BBB disruption or cerebral edema even as early as 0.6 gestation.

  5. Apo-ghrelin receptor (apo-GHSR1a Regulates Dopamine Signaling in the Brain

    Directory of Open Access Journals (Sweden)

    Andras eKern

    2014-08-01

    Full Text Available The orexigenic peptide hormone ghrelin is synthesized in the stomach and its receptor growth hormone secretagogue receptor (GHSR1a is expressed mainly in the central nervous system (CNS. In this review we confine our discussion to the physiological role of GHSR1a in the brain. Paradoxically, despite broad expression of GHSR1a in the CNS, other than trace amounts in the hypothalamus, ghrelin is undetectable in the brain. In our efforts to elucidate the function of the ligand-free ghrelin receptor (apo-GHSR1a we identified subsets of neurons that co-express GHSR1a and dopamine receptors. In this review we focus on interactions between apo-GHSR1a and dopamine-2 receptor (DRD2 and formation of GHSR1a:DRD2 heteromers in hypothalamic neurons that regulate appetite, and discuss implications for the treatment of Prader-Willi syndrome. GHSR1a antagonists of distinct chemical structures, a quinazolinone and a triazole, respectively enhance and inhibit dopamine signaling through GHSR1a:DRD2 heteromers by an allosteric mechanism. This finding illustrates a potential strategy for designing the next generation of drugs for treating eating disorders as well as psychiatric disorders caused by abnormal dopamine signaling. Treatment with a GHSR1a antagonist that enhances dopamine/DRD2 activity in GHSR1a:DRD2 expressing hypothalamic neurons has the potential to inhibit the uncontrollable hyperphagia associated with Prader-Willi syndrome. DRD2 antagonists are prescribed for treating schizophrenia, but these block dopamine signaling in all DRD2 expressing neurons and are associated with adverse side effects, including enhanced appetite and excessive weight gain. A GHSR1a antagonist of structural class that allosterically blocks dopamine/DRD2 action in GHSR1a:DRD2 expressing neurons would have no effect on neurons expressing DRD2 alone; therefore, the side effects of DRD2 antagonists would potentially be reduced thereby enhancing patient compliance.

  6. Intrarenal dopamine deficiency leads to hypertension and decreased longevity in mice.

    Science.gov (United States)

    Zhang, Ming-Zhi; Yao, Bing; Wang, Suwan; Fan, Xiaofeng; Wu, Guanqing; Yang, Haichun; Yin, Huiyong; Yang, Shilin; Harris, Raymond C

    2011-07-01

    In addition to its role as an essential neurotransmitter, dopamine serves important physiologic functions in organs such as the kidney. Although the kidney synthesizes dopamine through the actions of aromatic amino acid decarboxylase (AADC) in the proximal tubule, previous studies have not discriminated between the roles of extrarenal and intrarenal dopamine in the overall regulation of renal function. To address this issue, we generated mice with selective deletion of AADC in the kidney proximal tubules (referred to herein as ptAadc-/- mice), which led to selective decreases in kidney and urinary dopamine. The ptAadc-/- mice exhibited increased expression of nephron sodium transporters, decreased natriuresis and diuresis in response to l-dihydroxyphenylalanine, and decreased medullary COX-2 expression and urinary prostaglandin E2 excretion and developed salt-sensitive hypertension. They had increased renin expression and altered renal Ang II receptor (AT) expression, with increased AT1b and decreased AT2 and Mas expression, associated with increased renal injury in response to Ang II. They also exhibited a substantially shorter life span compared with that of wild-type mice. These results demonstrate the importance of the intrarenal dopaminergic system in salt and water homeostasis and blood pressure control. Decreasing intrarenal dopamine subjects the kidney to unbuffered responses to Ang II and results in the development of hypertension and a dramatic decrease in longevity.

  7. Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function.

    Science.gov (United States)

    Sagheddu, Claudia; Muntoni, Anna Lisa; Pistis, Marco; Melis, Miriam

    2015-01-01

    Evidence suggests that the endocannabinoid system has been conserved in the animal kingdom for 500 million years, and this system influences many critical behavioral processes including associative learning, reward signaling, goal-directed behavior, motor skill learning, and action-habit transformation. Additionally, the neurotransmitter dopamine has long been recognized to play a critical role in the processing of natural rewards, as well as of motivation that regulates approach and avoidance behavior. This motivational role of dopamine neurons is also based upon the evidence provided by several studies investigating disorders of dopamine pathways such as drug addiction and Parkinson's disease. From an evolutionary point of view, individuals engage in behaviors aimed at maximizing and minimizing positive and aversive consequences, respectively. Accordingly, those with the greatest fitness have a better potential to survival. Hence, deviations from fitness can be viewed as a part of the evolutionary process by means of natural selection. Given the long evolutionary history of both the endocannabinoid and dopaminergic systems, it is plausible that they must serve as fundamental and basic modulators of physiological functions and needs. Notably, endocannabinoids regulate dopamine neuronal activity and its influence on behavioral output. The goal of this chapter is to examine the endocannabinoid influence on dopamine signaling specifically related to (i) those behavioral processes that allow us to successfully adapt to ever-changing environments (i.e., reward signaling and motivational processes) and (ii) derangements from behavioral flexibility that underpin drug addiction.

  8. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    Science.gov (United States)

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Computational systems analysis of dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Zhen Qi

    Full Text Available A prominent feature of Parkinson's disease (PD is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.

  10. Going for broke: dopamine influences risky choice.

    Science.gov (United States)

    Moschak, Travis M; Carelli, Regina M

    2014-10-01

    Dopamine neurons track reward by increasing or decreasing their firing rate when a reward is present or absent. In this issue of Neuron, Stopper et al. (2014) demonstrate that artificially eliminating these dopamine bursts or dips can alter risky decision-making.

  11. The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution.

    Science.gov (United States)

    Vendelboe, Trine V; Harris, Pernille; Zhao, Yuguang; Walter, Thomas S; Harlos, Karl; El Omari, Kamel; Christensen, Hans E M

    2016-04-01

    The norepinephrine pathway is believed to modulate behavioral and physiological processes, such as mood, overall arousal, and attention. Furthermore, abnormalities in the pathway have been linked to numerous diseases, for example hypertension, depression, anxiety, Parkinson's disease, schizophrenia, Alzheimer's disease, attention deficit hyperactivity disorder, and cocaine dependence. We report the crystal structure of human dopamine β-hydroxylase, which is the enzyme converting dopamine to norepinephrine. The structure of the DOMON (dopamine β-monooxygenase N-terminal) domain, also found in >1600 other proteins, reveals a possible metal-binding site and a ligand-binding pocket. The catalytic core structure shows two different conformations: an open active site, as also seen in another member of this enzyme family [the peptidylglycine α-hydroxylating (and α-amidating) monooxygenase], and a closed active site structure, in which the two copper-binding sites are only 4 to 5 Å apart, in what might be a coupled binuclear copper site. The dimerization domain adopts a conformation that bears no resemblance to any other known protein structure. The structure provides new molecular insights into the numerous devastating disorders of both physiological and neurological origins associated with the dopamine system.

  12. In vivo imaging of dopamine transporter function in rat striatum using pinhole SPECT and 123I-beta-CIT coregistered with small animal MRI

    CERN Document Server

    Dierkes, K

    2001-01-01

    The aim of this study was to establish in vivo imaging of dopamine transporter function in a small animal model of Parkinson's disease using pinhole SPECT and 123I labeled beta-CIT. Since functional imaging of small animals can hardly be interpreted without localization to related anatomical structures, MRI-SPECT coregistration secondly was established as an inexpensive tool for in vivo monitoring of physiological and pathological alterations in striatal dopamine transporters using beta-CIT as an specific radionuclear ligand.

  13. Occupational physiology

    CERN Document Server

    Toomingas, Allan; Tornqvist, Ewa Wigaeus

    2011-01-01

    In a clear and accessible presentation, Occupational Physiology focuses on important issues in the modern working world. Exploring major public health problems-such as musculoskeletal disorders and stress-this book explains connections between work, well-being, and health based on up-to-date research in the field. It provides useful methods for risk assessment and guidelines on arranging a good working life from the perspective of the working individual, the company, and society as a whole.The book focuses on common, stressful situations in different professions. Reviewing bodily demands and r

  14. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  15. [Examination of the cause of changing solution color by mixing aminophylline and dopamine, the compatibility of which was indicated by the supplier].

    Science.gov (United States)

    Igarashi, Kazuhiko; Kawahara, Masami

    2014-01-01

    A case in which aminophylline solution was administered to a patient with congestive heart failure is reported and the problems caused by administration were solved by subsequent experiments. Dopamine solution was added from the side route using a mechanical pump, and mixed with aminophylline solution in the main route. Furosemide was administered after clamping and flushing the main route according to the supplier's information that indicated the compatibility of dopamine and aminophylline. However, the aminophylline solution turned black in color 3 h after furosemide administration. Several examinations were carried out to clarify the cause of the incompatibility in this case. The results showed that solutions with all possible combinations, including aminophylline and dopamine, turned black at 24 h after mixing, and the UV absorption at 430 nm increased from 0 to 0.28. UV absorption of the mixed solution increased in a dopamine dose-dependent manner in the range of 1.5-12 mg. When aminophylline was added to physiological saline or hypotonic electrolyte solution, the pH of each solution increased. These results suggested that degradation of dopamine to a melanin-like polymer under alkaline conditions caused the change in color of the solution. It is presumed that dopamine was inappropriately injected into aminophylline solution as the route was clamped tightly to shut out furosemide contamination. Aminophylline and dopamine are often co-administered to patients in critical condition. Thus, even if compatibility of aminophylline with dopamine is indicated by the supplier, they should be administered through separate routes.

  16. Dopamine modulation of GABAergic function enables network stability and input selectivity for sustaining working memory in a computational model of the prefrontal cortex.

    Science.gov (United States)

    Lew, Sergio E; Tseng, Kuei Y

    2014-12-01

    Dopamine modulation of GABAergic transmission in the prefrontal cortex (PFC) is thought to be critical for sustaining cognitive processes such as working memory and decision-making. Here, we developed a neurocomputational model of the PFC that includes physiological features of the facilitatory action of dopamine on fast-spiking interneurons to assess how a GABAergic dysregulation impacts on the prefrontal network stability and working memory. We found that a particular non-linear relationship between dopamine transmission and GABA function is required to enable input selectivity in the PFC for the formation and retention of working memory. Either degradation of the dopamine signal or the GABAergic function is sufficient to elicit hyperexcitability in pyramidal neurons and working memory impairments. The simulations also revealed an inverted U-shape relationship between working memory and dopamine, a function that is maintained even at high levels of GABA degradation. In fact, the working memory deficits resulting from reduced GABAergic transmission can be rescued by increasing dopamine tone and vice versa. We also examined the role of this dopamine-GABA interaction for the termination of working memory and found that the extent of GABAergic excitation needed to reset the PFC network begins to occur when the activity of fast-spiking interneurons surpasses 40 Hz. Together, these results indicate that the capability of the PFC to sustain working memory and network stability depends on a robust interplay of compensatory mechanisms between dopamine tone and the activity of local GABAergic interneurons.

  17. Dopamine-Secreting Paraganglioma in the Retroperitoneum.

    Science.gov (United States)

    Matsuda, Yusuke; Kimura, Noriko; Yoshimoto, Takanobu; Sekiguchi, Yoshihiro; Tomoishi, Junzo; Kasahara, Ichiro; Hara, Yoshihito; Ogawa, Yoshihiro

    2017-03-01

    Pheochromocytomas and paragangliomas, which exclusively produce dopamine, are very rare. Herein, we report for the first time a Japanese case of an exclusively dopamine-producing paraganglioma accompanied by detailed immunohistochemical analyses. A 70-year-old Japanese woman was referred to our hospital for functional examination of her left retroperitoneal mass. Her adrenal functions were normal, except for excessive dopamine secretion. After the tumorectomy, her dopamine level normalized. The histopathological diagnosis of the tumor was paraganglioma; this was confirmed by positive immunostaining of chromogranin A (CgA), tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), and succinate dehydrogenase gene subunit B (SDHB). However, the immunostaining of CgA in the tumor cells showed peculiar dot-like staining located corresponding to Golgi complex in the perinuclear area, rather than the diffuse cytoplasmic staining usually observed in epinephrine- or norepinephrine-producing functional pheochromocytomas and paragangliomas. The immunohistochemical results suggested that the tumor cells had sparse neuroendocrine granules in the cytoplasm, resulting in inhibition of catecholamine synthesis from dopamine to norepinephrine in neurosecretory granules. This may be the mechanism responsible for exclusive dopamine secretion in the present case.

  18. Insulin resistance impairs nigrostriatal dopamine function.

    Science.gov (United States)

    Morris, J K; Bomhoff, G L; Gorres, B K; Davis, V A; Kim, J; Lee, P-P; Brooks, W M; Gerhardt, G A; Geiger, P C; Stanford, J A

    2011-09-01

    Clinical studies have indicated a link between Parkinson's disease (PD) and Type 2 Diabetes. Although preclinical studies have examined the effect of high-fat feeding on dopamine function in brain reward pathways, the effect of diet on neurotransmission in the nigrostriatal pathway, which is affected in PD and parkinsonism, is less clear. We hypothesized that a high-fat diet, which models early-stage Type 2 Diabetes, would disrupt nigrostriatal dopamine function in young adult Fischer 344 rats. Rats were fed a high fat diet (60% calories from fat) or a normal chow diet for 12 weeks. High fat-fed animals were insulin resistant compared to chow-fed controls. Potassium-evoked dopamine release and dopamine clearance were measured in the striatum using in vivo electrochemistry. Dopamine release was attenuated and dopamine clearance was diminished in the high-fat diet group compared to chow-fed rats. Magnetic resonance imaging indicated increased iron deposition in the substantia nigra of the high fat group. This finding was supported by alterations in the expression of several proteins involved in iron metabolism in the substantia nigra in this group compared to chow-fed animals. The diet-induced systemic and basal ganglia-specific changes may play a role in the observed impairment of nigrostriatal dopamine function. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Transient Willis-Ekbom's disease (restless legs syndrome) during pregnancy may be caused by estradiol-mediated dopamine overmodulation.

    Science.gov (United States)

    Pereira, José Carlos; Rocha e Silva, Ingrid Ramos; Pradella-Hallinan, Márcia

    2013-02-01

    Willis-Ekbom's disease (WED), formerly called restless legs syndrome, is more common in pregnant than in non-pregnant women, implying that the physiological and biochemical changes during pregnancy influence its development. During pregnancy, many hormone levels undergo significant changes, and some hormones significantly increase in activity and can interfere with other hormones. For example, the steroid hormone estradiol interferes with the neuroendocrine hormone dopamine. During pregnancy, the activity of the thyroid axis is enhanced to meet the increased demand for thyroid hormones during this state. Dopamine is a neuroendocrine hormone that diminishes the levels of thyrotropin and consequently of thyroxine, and one of the roles of the dopaminergic system is to counteract the activity of thyroid hormones. When the activity of dopamine is not sufficient to modulate thyroid hormones, WED may occur. Robust evidence in the medical literature suggests that an imbalance between thyroid hormones and the dopaminergic system underpins WED pathophysiology. In this article, we present evidence that this imbalance may also mediate transient WED during pregnancy. It is possible that the main hormonal alteration responsible for transient WED of pregnancy is the excessive modulation of dopamine release in the pituitary stalk by estradiol. The reduced quantities of dopamine then cause decreased modulation of thyrotropin, leading to enhanced thyroid axis activity and subsequent WED symptoms. Iron deficiency may also be a predisposing factor for WED during pregnancy, as it can both diminish dopamine and increase thyroid hormone.

  20. Physiological Acoustics

    Science.gov (United States)

    Young, Eric D.

    The analysis of physiological sound in the peripheral auditory system solves three important problems. First, sound energy impinging on the head must be captured and presented to the transduction apparatus in the ear as a suitable mechanical signal; second, this mechanical signal needs to be transduced into a neural representation that can be used by the brain; third, the resulting neural representation needs to be analyzed by central neurons to extract information useful to the animal. This chapter provides an overview of some aspects of the first two of these processes. The description is entirely focused on the mammalian auditory system, primarily on human hearing and on the hearing of a few commonly used laboratory animals (mainly rodents and carnivores). Useful summaries of non-mammalian hearing are available [1]. Because of the large size of the literature, review papers are referenced wherever possible.

  1. Cellular regulation of the dopamine transporter

    DEFF Research Database (Denmark)

    Eriksen, Jacob

    2010-01-01

    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. DAT and its trafficking...... in heterologous cells and in cultured DA neurons. DAT has been shown to be regulated by the dopamine D2 receptor (D2R), the primary target foranti-psychotics, through a direct interaction. D2R is among other places expressed as an autoreceptor in DA neurons. Transient over-expression of DAT with D2R in HEK293...

  2. Turning skin into dopamine neurons

    Institute of Scientific and Technical Information of China (English)

    Malin Parmar; Johan Jakobsson

    2011-01-01

    The possibility to generate neurons from fibroblasts became a reality with the development of iPS technology a few years ago.By reprogramming somatic cells using transcription factor (TF) overexpression,it is possible to generate pluripotent stem cells that then can be differentiated into any somatic cell type including various subtypes of neurons.This raises the possibility of using donor-matched or even patientspecific cells for cell therapy of neurological disorders such as Parkinson's disease (PD),Huntington's disease and stroke.Supporting this idea,dopamine neurons,which are the cells dying in PD,derived from human iPS cells have been demonstrated to survive transplantation and reverse motor symptoms in animal models of PD [1].

  3. Gastrin stimulates renal dopamine production by increasing the renal tubular uptake of l-DOPA.

    Science.gov (United States)

    Jiang, Xiaoliang; Zhang, Yanrong; Yang, Yu; Yang, Jian; Asico, Laureano D; Chen, Wei; Felder, Robin A; Armando, Ines; Jose, Pedro A; Yang, Zhiwei

    2017-01-01

    Gastrin is a peptide hormone that is involved in the regulation of sodium balance and blood pressure. Dopamine, which is also involved in the regulation of sodium balance and blood pressure, directly or indirectly interacts with other blood pressure-regulating hormones, including gastrin. This study aimed to determine the mechanisms of the interaction between gastrin and dopamine and tested the hypothesis that gastrin produced in the kidney increases renal dopamine production to keep blood pressure within the normal range. We show that in human and mouse renal proximal tubule cells (hRPTCs and mRPTCs, respectively), gastrin stimulates renal dopamine production by increasing the cellular uptake of l-DOPA via the l-type amino acid transporter (LAT) at the plasma membrane. The uptake of l-DOPA in RPTCs from C57Bl/6J mice is lower than in RPTCs from normotensive humans. l-DOPA uptake in renal cortical slices is also lower in salt-sensitive C57Bl/6J than in salt-resistant BALB/c mice. The deficient renal cortical uptake of l-DOPA in C57Bl/6J mice may be due to decreased LAT-1 activity that is related to its decreased expression at the plasma membrane, relative to BALB/c mice. We also show that renal-selective silencing of Gast by the renal subcapsular injection of Gast siRNA in BALB/c mice decreases renal dopamine production and increases blood pressure. These results highlight the importance of renal gastrin in stimulating renal dopamine production, which may give a new perspective in the prevention and treatment of hypertension. Copyright © 2017 the American Physiological Society.

  4. Inhibition of dopamine transporter activity by G protein βγ subunits.

    Directory of Open Access Journals (Sweden)

    Jennie Garcia-Olivares

    Full Text Available Uptake through the Dopamine Transporter (DAT is the primary mechanism of terminating dopamine signaling within the brain, thus playing an essential role in neuronal homeostasis. Deregulation of DAT function has been linked to several neurological and psychiatric disorders including ADHD, schizophrenia, Parkinson's disease, and drug addiction. Over the last 15 years, several studies have revealed a plethora of mechanisms influencing the activity and cellular distribution of DAT; suggesting that fine-tuning of dopamine homeostasis occurs via an elaborate interplay of multiple pathways. Here, we show for the first time that the βγ subunits of G proteins regulate DAT activity. In heterologous cells and brain tissue, a physical association between Gβγ subunits and DAT was demonstrated by co-immunoprecipitation. Furthermore, in vitro pull-down assays using purified proteins established that this association occurs via a direct interaction between the intracellular carboxy-terminus of DAT and Gβγ. Functional assays performed in the presence of the non-hydrolyzable GTP analog GTP-γ-S, Gβγ subunit overexpression, or the Gβγ activator mSIRK all resulted in rapid inhibition of DAT activity in heterologous systems. Gβγ activation by mSIRK also inhibited dopamine uptake in brain synaptosomes and dopamine clearance from mouse striatum as measured by high-speed chronoamperometry in vivo. Gβγ subunits are intracellular signaling molecules that regulate a multitude of physiological processes through interactions with enzymes and ion channels. Our findings add neurotransmitter transporters to the growing list of molecules regulated by G-proteins and suggest a novel role for Gβγ signaling in the control of dopamine homeostasis.

  5. Signal amplification of dopamine using lanthanum hexacyanoferrate-modified electrode

    Indian Academy of Sciences (India)

    T Selvaraju; R Ramaraj

    2014-01-01

    A sensitive and selective electrochemical sensor has been developed using an electroactive polynuclear lanthanum hexacyanoferrate (LaHCF) complex with counter alkali cation (Na+) deposited on the glassy carbon (GC) electrode (GC/LaHCF). The GC/LaHCF-modified electrode is found to be an excellent transducer in mediating the oxidation of neurotransmitter molecule such as dopamine (DA) at physiological pH 7.2. Interestingly, the GC/LaHCF-modified electrode amplifies a 50-fold enhancement in the oxidation of DA signal compared to the bare GC electrode. Besides, the GC/LaHCF-modified electrode shows excellent selectivity in the voltammetric oxidation of DA in the presence of ascorbic acid (AA). Under optimal conditions, the GC/LaHCF modified electrode shows a linear relationship in DA oxidation between 0.1 × 10−6 and 1.0 × 10−6M with the detection limit of 1 × 10−8M (10 nM). Importantly, practical utility of the modified electrode is good in studying the real sample analysis such as dopamine hydrochloride injection assay.

  6. GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function.

    Science.gov (United States)

    Horvath, Tamas L; Erion, Derek M; Elsworth, John D; Roth, Robert H; Shulman, Gerald I; Andrews, Zane B

    2011-07-01

    Guanidinopropionic acid (GPA) increases AMPK activity, mitochondrial function and biogenesis in muscle and improves physiological function, for example during aging. Mitochondrial dysfunction is a major contributor to the pathogenesis of Parkinson's disease. Here we tested whether GPA prevents neurodegeneration of the nigrostriatal dopamine system in MPTP-treated mice. Mice were fed a diet of 1% GPA or normal chow for 4 weeks and then treated with either MPTP or saline. Indices of nigrostriatal function were examined by HPLC, immunohistochemistry, stereology, electron microscopy and mitochondrial respiration. MPTP intoxication decreased TH neurons in the SNpc of normal chow-fed mice; however GPA-fed mice remarkably exhibited no loss of TH neurons in the SNpc. MPTP caused a decrease in striatal dopamine of both normal chow- and GPA-fed mice, although this effect was significantly attenuated in GPA-fed mice. GPA-fed mice showed increased AMPK activity, mitochondrial respiration and mitochondrial number in nigrostriatal TH neurons, suggesting that the neuroprotective effects of GPA involved AMPK-dependent increases in mitochondrial function and biogenesis. MPTP treatment produced a decrease in mitochondrial number and volume in normal chow-fed mice but not GPA-fed mice. Our results show the neuroprotective properties of GPA in a mouse model of Parkinson's disease are partially mediated by AMPK and mitochondrial function. Mitochondrial dysfunction is a common problem in neurodegeneration and thus GPA may slow disease progression in other models of neurodegeneration. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The role of dopamine in the pursuit of nutritional value.

    Science.gov (United States)

    McCutcheon, James Edgar

    2015-12-01

    Acquiring enough food to meet energy expenditure is fundamental for all organisms. Thus, mechanisms have evolved to allow foods with high nutritional value to be readily detected, consumed, and remembered. Although taste is often involved in these processes, there is a wealth of evidence supporting the existence of taste-independent nutrient sensing. In particular, post-ingestive mechanisms arising from the arrival of nutrients in the gut are able to drive food intake and behavioural conditioning. The physiological mechanisms underlying these effects are complex but are believed to converge on mesolimbic dopamine signalling to translate post-ingestive sensing of nutrients into reward and reinforcement value. Discerning the role of nutrition is often difficult because food stimulates sensory systems and post-ingestive pathways in concert. In this mini-review, I discuss the various methods that may be used to study post-ingestive processes in isolation including sham-feeding, non-nutritive sweeteners, post-ingestive infusions, and pharmacological and genetic methods. Using this structure, I present the evidence that dopamine is sensitive to nutritional value of certain foods and examine how this affects learning about food, the role of taste, and the implications for human obesity.

  8. Delusions, superstitious conditioning and chaotic dopamine neurodynamics.

    Science.gov (United States)

    Shaner, A

    1999-02-01

    Excessive mesolimbic dopaminergic neurotransmission is closely related to the psychotic symptoms of schizophrenia. A mathematical model of dopamine neuron firing rates, developed by King and others, suggests a mechanism by which excessive dopaminergic transmission could produce psychotic symptoms, especially delusions. In this model, firing rates varied chaotically when the efficacy of dopaminergic transmission was enhanced. Such non-contingent changes in firing rates in mesolimbic reward pathways could produce delusions by distorting thinking in the same way that non-contingent reinforcement produces superstitious conditioning. Though difficult to test in humans, the hypothesis is testable as an explanation for a common animal model of psychosis--amphetamine stereotypy in rats. The hypothesis predicts that: (1) amphetamine will cause chaotic firing rates in mesolimbic dopamine neurons; (2) non-contingent brain stimulation reward will produce stereotypy; (3) non-contingent microdialysis of dopamine into reward areas will produce stereotypy; and (4) dopamine antagonists will block all three effects.

  9. DOPA, norepinephrine, and dopamine in rat tissues

    DEFF Research Database (Denmark)

    Eldrup, E; Richter, Erik; Christensen, N J

    1989-01-01

    We studied the effect of unilateral sympathectomy on rat quadriceps and gastrocnemius muscle concentrations of endogenous dihydroxyphenylalanine (DOPA), dopamine (DA), and norepinephrine (NE) and assessed the relationships between these catecholamines in several rat tissues. Catecholamines were...

  10. Space Physiology within an Exercise Physiology Curriculum

    Science.gov (United States)

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  11. Potassium physiology.

    Science.gov (United States)

    Thier, S O

    1986-04-25

    Potassium is the most abundant exchangeable cation in the body. It exists predominantly in the intracellular fluid at concentrations of 140 to 150 meq/liter and in the extracellular fluid at concentrations of 3.5 to 5 meq/liter. The maintenance of the serum potassium concentration is a complex bodily function and results from the balance between intake, excretion, and distribution between intracellular and extracellular space. Ingested potassium is virtually completely absorbed from and minimally excreted through the intestine under nonpathologic circumstances. Renal excretion of potassium, which is the major chronic protective mechanism against abnormalities in potassium balance, depends on filtration, reabsorption, and a highly regulated distal nephron secretory process. Factors regulating potassium secretion include prior potassium intake, intracellular potassium, delivery of sodium chloride and poorly reabsorbable anions to the distal nephron, the urine flow rate, hormones such as aldosterone and beta-catecholamines, and the integrity of the renal tubular cell. The maintenance of distribution between the inside and outside of cells depends on the integrity of the cell membrane and its pumps, osmolality, pH, and the hormones insulin, aldosterone, beta 2-catecholamines, alpha-catecholamines, and prostaglandins. Both distribution across cell membranes and/or renal excretion of potassium may be altered by pharmacologic agents such as diuretics, alpha- and beta-catechol antagonists and agonists, depolarizing agents, and digitalis. Problems with hypokalemia and hyperkalemia can be analyzed on the basis of potassium physiology and pharmacology; proper treatment depends on an accurate analysis.

  12. Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm.

    Science.gov (United States)

    Ye, Yizhou; Xi, Wang; Peng, Yueqing; Wang, Yizheng; Guo, Aike

    2004-08-01

    Dopamine is a major neuromodulator in both vertebrates and invertebrates and has profound effects on many physiological processes, including the regulation of attention. Most studies of the functions of dopamine use models with long-term blockade of dopamine release and few effects of transient blockade have yet been reported. The goal of the present study was to determine the role of dopamine in attention-like behavior in Drosophila by taking advantage of the fly's orientation behavior during flight. The examination of several different transgenic flies in a single-target visual attention paradigm showed that flies lost their orientation ability if dopamine release was blocked from the beginning of the development of dopaminergic neurons. This is similar to the attention loss in mammals. However, if the blockade of dopamine release was induced during the experimental procedure, flies performed normally. Statistical analysis of the behavioral assessment showed a significant difference between long-term and transient blockade. Using the RNA interference approach, we generated flies with down-regulated J-domain protein, which is a potential cochaperone in synaptic vesicle release, to make an alternative form of long-term dopamine-blockade mutant. Behavioral assays revealed that flies with permanent J-domain protein down-regulation specifically in dopaminergic neurons have an attention defect similar to that induced by long-term blockade of dopamine release. Furthermore, dopamine depletion beginning at eclosion also caused an attention deficit. Our results indicate that prolonged but not transient blockade of dopamine release impairs visual attention-like behavior in Drosophila.

  13. Dopamine versus noradrenaline in septic shock

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2011-10-01

    Full Text Available BackgroundThe ‘Surviving Sepsis’ Campaign guidelines recommend theuse of dopamine or noradrenaline as the first vasopressor inseptic shock. However, information that guides clinicians inchoosing between dopamine and noradrenaline as the firstvasopressor in patients with septic shock is limited.ObjectiveThis article presents a review of the literature regarding theuse of dopamine versus noradrenaline in patients with septicshock.ResultsTwo randomised controlled trials (RCT and two largeprospective cohort studies were analysed. RCT data showeddopamine was associated with increased arrhythmic events.One cohort study found dopamine was associated with higher30-day mortality. The other cohort study found noradrenalinewas associated with higher 28-day mortality.DiscussionData on the use of dopamine versus noradrenaline in patientswith septic shock is limited. Following the recent SOAP IIstudy, there is now strong evidence that the use of dopaminein septic shock is associated with significantly morecardiovascular adverse events, compared tonoradrenaline.ConclusionNoradrenaline should be used as the initial vasopressor inseptic shock to avoid the arrhythmic events associatedwith dopamine.

  14. Metabolism of N-acylated-dopamine.

    Directory of Open Access Journals (Sweden)

    Dominika Zajac

    Full Text Available N-oleoyl-dopamine (OLDA is a novel lipid derivative of dopamine. Its biological action includes the interaction with dopamine and the transient receptor potential vanilloid (TRPV1 receptors. It seems to be synthesized in a dopamine-like manner, but there has been no information on its degradation. The aim of the study was, therefore, to determine whether OLDA metabolism proceeds the way dopamine proper does. We addressed the issue by examining the occurrence of O-methylation of exogenously supplemented OLDA via catechol-O-methyltransferase (COMT under in vitro, ex vivo, and in vivo conditions using rat brain tissue. The results show that OLDA was methylated by COMT in all conditions studied, yielding the O-methylated derivative. The methylation was reversed by tolcapone, a potent COMT inhibitor, in a dose-dependent manner. We conclude that OLDA enters the metabolic pathway of dopamine. Methylation of OLDA may enhance its bioactive properties, such as the ability to interact with TRPV1 receptors.

  15. Optogenetics in Freely Moving Mammals: Dopamine and Reward.

    Science.gov (United States)

    Zhang, Feng; Tsai, Hsing-Chen; Airan, Raag D; Stuber, Garret D; Adamantidis, Antoine R; de Lecea, Luis; Bonci, Antonello; Deisseroth, Karl

    2015-08-03

    Brain reward systems play a central role in the cognitive and hedonic behaviors of mammals. Multiple neuron types and brain regions are involved in reward processing, posing fascinating scientific questions, and major experimental challenges. Using diverse approaches including genetics, electrophysiology, imaging, and behavioral analysis, a large body of research has focused on both normal functioning of the reward circuitry and on its potential significance in neuropsychiatric diseases. In this introduction, we illustrate a real-world application of optogenetics to mammalian behavior and physiology, delineating procedures and technologies for optogenetic control of individual components of the reward circuitry. We describe the experimental setup and protocol for integrating optogenetic modulation of dopamine neurons with fast-scan cyclic voltammetry, conditioned place preference, and operant conditioning to assess the causal role of well-defined electrical and biochemical signals in reward-related behavior.

  16. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate...

  17. Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Satoshi Suo

    Full Text Available Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system functions, including learning and drug addiction. In Caenorhabditis elegans, the amine neurotransmitter octopamine activates a CREB homolog, CRH-1, in cholinergic SIA neurons, whereas dopamine suppresses CREB activation by inhibiting octopamine signaling in response to food stimuli. However, the physiological role of this activation is unknown. In this study, the effect of dopamine, octopamine, and CREB on acetylcholine signaling was analyzed using the acetylcholinesterase inhibitor aldicarb. Mutants with decreased dopamine signaling exhibited reduced acetylcholine signaling, and octopamine and CREB functioned downstream of dopamine in this regulation. This study demonstrates that the regulation of CREB by amine neurotransmitters modulates acetylcholine release from the neurons of C. elegans.

  18. Regulation of blood pressure by dopamine receptors.

    Science.gov (United States)

    Jose, Pedro A; Eisner, Gilbert M; Felder, Robin A

    2003-01-01

    Dopamine is an important regulator of blood pressure. Its actions on renal hemodynamics, epithelial transport and humoral agents such as aldosterone, catecholamines, endothelin, prolactin, pro-opiomelanocortin, renin and vasopressin place it in central homeostatic position for regulation of extracellular fluid volume and blood pressure. Dopamine also modulates fluid and sodium intake via actions in the central nervous system and gastrointestinal tract, and by regulation of cardiovascular centers that control the functions of the heart, arteries and veins. Abnormalities in dopamine production and receptor function accompany a high percentage of human essential hypertension and several forms of rodent genetic hypertension. Some dopamine receptor genes and their regulators are in loci linked to hypertension in humans and in rodents. Furthermore, single nucleotide polymorphisms (SNPs) of genes that regulate dopamine receptors, alone or via the interaction with SNPs of genes that regulate the renin-angiotensin system, are associated with human essential hypertension. Each of the five dopamine receptor subtypes (D1, D2, D3, D4 and D5) participates in the regulation of blood pressure by mechanisms specific for the subtype. Some receptors (D2 and D5) influence the central and/or peripheral nervous system; others influence epithelial transport and regulate the secretion and receptors of several humoral agents (e.g., the D1, D3 and D4 receptors interact with the renin-angiotensin system). Modifications of the usual actions of the receptor can produce blood pressure changes. In addition, abnormal functioning of these dopamine receptor subtypes impairs their antioxidant function.

  19. Dopamine, behavioral economics, and effort

    Directory of Open Access Journals (Sweden)

    John D Salamone

    2009-09-01

    Full Text Available Abstract. There are numerous problems with the hypothesis that brain dopamine (DA systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  20. Addiction: Beyond dopamine reward circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  1. Immunomodulatory Effects Mediated by Dopamine

    Science.gov (United States)

    Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray

    2016-01-01

    Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960

  2. Dopamine, behavioral economics, and effort.

    Science.gov (United States)

    Salamone, John D; Correa, Merce; Farrar, Andrew M; Nunes, Eric J; Pardo, Marta

    2009-01-01

    There are numerous problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements). Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum) also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  3. Vascular dopamine-I receptors.

    Science.gov (United States)

    Yasunari, K; Kohno, M; Yokokawa, K; Horio, T; Kano, H; Takeda, T

    1995-06-01

    The modulation of dopamine DA1 receptors of cultured rat renal arterial smooth muscle cells by phorbol ester, glucocorticoid and sodium chloride was studied. The extent of [3H]Sch-23390 binding to phorbol ester-treated cell was increased without any change in the dissociation constant (Kd). At a concentration of 10 nmol/l, the synthetic glucocorticoid dexamethasone increased maximum receptor binding (Bmax) but had no effect on the Kd. 100 mmol/l sodium chloride did not change Bmax, but increased the Kd for DA1 receptor. The production of cAMP in response to DA1 receptor stimulation was enhanced without any change of the adenylate cyclase activity. The glucocorticoid effect on DA1 of arterial smooth muscle cells became apparent after hours of incubation in the presence of the steroid and was significantly inhibited by cycloheximide (10 micrograms/ml) and by the glucocorticoid receptor antagonist RU-38486, indicating that the effect required protein synthesis through glucocorticoid receptors. Treatment of cells with 1 mumol/l dexamethasone for 24 h increased basal and DA1-stimulated adenylate cyclase activity. Basal adenylate cyclase was decreased by sodium chloride in a dose-dependent manner. These results suggest differential control of DA1 receptors on vascular smooth muscle cells by protein kinase C, glucocorticoid or sodium chloride.

  4. Immunomodulatory Effects Mediated by Dopamine

    Directory of Open Access Journals (Sweden)

    Rodrigo Arreola

    2016-01-01

    Full Text Available Dopamine (DA, a neurotransmitter in the central nervous system (CNS, has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R and D2-like receptors (D2R, D3R, and D4R. The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS, there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.

  5. Genetic disruption of dopamine production results in pituitary adenomas and severe prolactinemia

    Science.gov (United States)

    Dopamine release from tuberoinfundibular dopamine neurons into the median eminence activates dopamine-D2 receptors in the pituitary gland where it inhibits lactotroph function. We have previously described genetic dopamine-deficient mouse models which lack the ability to synthesize dopamine. Because...

  6. [Human physiology: kidney].

    Science.gov (United States)

    Natochin, Iu V

    2010-01-01

    The content of human physiology as an independent part of current physiology is discussed. Substantiated is the point that subjects of human physiology are not only special sections of physiology where functions are inherent only in human (physiology of intellectual activity, speech, labor, sport), but also in peculiarities of functions, specificity of regulation of each of physiological systems. By the example of physiology of kidney and water-salt balance there are shown borders of norm, peculiarities of regulation in human, new chapters of renal physiology which have appeared in connection with achievements of molecular physiology.

  7. Oxytocin and dopamine stimulate ghrelin secretion by the ghrelin-producing cell line, MGN3-1 in vitro.

    Science.gov (United States)

    Iwakura, Hiroshi; Ariyasu, Hiroyuki; Hosoda, Hiroshi; Yamada, Go; Hosoda, Kiminori; Nakao, Kazuwa; Kangawa, Kenji; Akamizu, Takashi

    2011-07-01

    To understand the physiological role of ghrelin, it is crucial to study both the actions of ghrelin and the regulation of ghrelin secretion. Although ghrelin actions have been extensively revealed, the direct factors regulating ghrelin secretion by ghrelin-producing cells (X/A-like cells), however, is not fully understood. In this study, we examined the effects of peptide hormones and neurotransmitters on in vitro ghrelin secretion by the recently developed ghrelin-producing cell line MGN3-1. Oxytocin and vasopressin significantly stimulated ghrelin secretion by MGN3-1 cells. Because MGN3-1 cells express only oxytocin receptor mRNA, not vasopressin receptor mRNA, oxytocin is the likely regulator, with the effect of vasopressin mediated by a cross-reaction. We also discovered that dopamine stimulates ghrelin secretion from MGN3-1 cells in a similar manner to the previously known ghrelin stimulators, epinephrine and norepinephrine. MGN3-1 cells expressed mRNA encoding dopamine receptors D1a and D2. The dopamine receptor D1 agonist fenoldopam stimulated ghrelin secretion, whereas the D2, D3 agonist bromocriptine did not. Furthermore, the D1 receptor antagonist SKF83566 attenuated the stimulatory effect of dopamine. These results indicate that the stimulatory effect of dopamine on ghrelin secretion is mediated by the D1a receptor. In conclusion, we identified two direct regulators of ghrelin, oxytocin and dopamine. These findings will provide new direction for further studies seeking to further understand the regulation of ghrelin secretion, which will in turn lead to greater understanding of the physiological role of ghrelin.

  8. Role of dopamine in distal retina.

    Science.gov (United States)

    Popova, E

    2014-05-01

    Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.

  9. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R. [Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 (Israel)

    1996-09-01

    Human neuroblastoma NMB cells take up [{sup 3}H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [{sup 3}H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [{sup 3}H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996

  10. Estrogen-mediated Height Control in Girls with Marfan Syndrome.

    Science.gov (United States)

    Lee, Dong-Yun; Hyun, Hye Sun; Huh, Rimm; Jin, Dong-Kyu; Kim, Duk-Kyung; Yoon, Byung-Koo; Choi, DooSeok

    2016-02-01

    This study evaluated the efficacy of a stepwise regimen of estradiol valerate for height control in girls with Marfan syndrome. Eight girls with Marfan syndrome who had completed estrogen treatment for height control were included. Estradiol valerate was started at a dose of 2 mg/day, and then was increased. The projected final height was estimated using the initial height percentile (on a disease-specific growth curve for Korean Marfan syndrome [gcPFHt]), and the initial bone age (baPFHt). After the estrogen treatment, the projected final height was compared to the actual final height (FHt). The median baseline chronological and bone age were 10.0 and 10.5 years, respectively. After a median of 36.5 months of treatment, the median FHt (172.6 cm) was shorter than the median gcPFHt (181.0 cm) and baPFHt (175.9 cm). In the six patients who started treatment before the age of 11 years, the median FHt (171.8 cm) was shorter than the median gcPFHt (181.5 cm) and baPFHt (177.4 cm) after treatment. The median differences between the FHt and gcPFHt and baPFHt were 9.2 and 8.3 cm, respectively. In two patients started treatment after the age of 11, the differences between FHt and gcPFHt, and baPFHt after treatment were -4 and 1.4 cm, and -1.2 and 0 cm for each case, respectively. A stepwise increasing regimen of estradiol valerate may be an effective treatment for height control in girls with Marfan syndrome, especially when started under 11 years old.

  11. Endogenous Estrogen-Mediated Heme Oxygenase Regulation in Experimental Menopause

    Directory of Open Access Journals (Sweden)

    Anikó Pósa

    2015-01-01

    Full Text Available Estrogen deficiency is one of the main causes of age-associated diseases in the cardiovascular system. Female Wistar rats were divided into four experimental groups: pharmacologically ovariectomized, surgically ovariectomized, and 24-month-old intact aging animals were compared with a control group. The activity and expression of heme oxygenases (HO in the cardiac left ventricle, the concentrations of cardiac interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α, the myeloperoxidase (MPO activity in the cardiac left ventricle, and the effects of heme oxygenase blockade (by 24-hour and 1-hour pretreatment with tin-protoporphyrin IX, SnPP on the epinephrine and phentolamine-induced electrocardiogram ST segment changes in vivo were investigated. The cardiac HO activity and the expression of HO-1 and HO-2 were significantly decreased in the aged rats and after ovariectomy. Estrogen depletion was accompanied by significant increases in the expression of IL-6 and TNF-α. The aged and ovariectomized animals exhibited a significantly elevated MPO activity and a significant ST segment depression. After pretreatment with SnPP augmented ST segment changes were determined. These findings demonstrate that the sensitivity to cardiac ischemia in estrogen depletion models is associated with suppression of the activity and expression of the HO system and increases in the secretion of proinflammatory cytokines and biomarkers.

  12. The Antidepressant-like Effects of Estrogen-mediated Ghrelin

    Science.gov (United States)

    Wang, Pu; Liu, Changhong; Liu, Lei; Zhang, Xingyi; Ren, Bingzhong; Li, Bingjin

    2015-01-01

    Ghrelin, one of the brain-gut peptides, stimulates food-intake. Recently, ghrelin has also shown to play an important role in depression treatment. However, the mechanism of ghrelin’s antidepressant-like actions is unknown. On the other hand, sex differences in depression, and the fluctuation of estrogens secretion have been proved to play a key role in depression. It has been reported that women have higher level of ghrelin expression, and ghrelin can stimulate estrogen secretion while estrogen acts as a positive feedback mechanism to up-regulate ghrelin level. Ghrelin may be a potential regulator of reproductive function, and estrogen may have additional effect in ghrelin’s antidepressantlike actions. In this review, we summarize antidepressant-like effects of ghrelin and estrogen in basic and clinical studies, and provide new insight on ghrelin’s effect in depression. PMID:26412072

  13. Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in right heart failure after pulmonary regurgitation.

    Science.gov (United States)

    Hyldebrandt, Janus Adler; Agger, Peter; Sivén, Eleonora; Wemmelund, Kristian Borup; Heiberg, Johan; Frederiksen, Christian Alcaraz; Ravn, Hanne Berg

    2015-09-01

    Right ventricular failure (RVF) secondary to pulmonary regurgitation (PR) impairs right ventricular (RV) function and interrupts the interventricular relationship. There are few recommendations for the medical management of severe RVF after prolonged PR. PR was induced in 16 Danish landrace pigs by plication of the pulmonary valve leaflets. Twenty-three pigs served as controls. At reexamination the effect of milrinone, epinephrine, and dopamine was evaluated using biventricular conductance and pulmonary catheters. Seventy-nine days after PR was induced, RV end-diastolic volume index (EDVI) had increased by 33% (P = 0.006) and there was a severe decrease in the load-independent measurement of contractility (PRSW) (-58%; P = 0.003). Lower cardiac index (CI) (-28%; P dopamine further improved biventricular PRSW and CI equally in a dose-dependent manner. Systemic and pulmonary pressures were higher in the dopamine-treated animals compared with epinephrine-treated animals. None of the treatments improved stroke volume index (SVI) despite increases in contractility. Strong correlation was detected between SVI and LV-EDVI, but not SVI and biventricular contractility. In RVF due to PR, milrinone significantly improved CI, SvO2, and CVP and increased contractility in the RV. Epinephrine and dopamine had equal inotropic effect, but a greater vasopressor effect was observed for dopamine. SV was unchanged due to inability of both treatments to increase LV-EDVI. Copyright © 2015 the American Physiological Society.

  14. Multi-walled Carbon Nanotubes/Graphite Nanosheets Modified Glassy Carbon Electrode for the Simultaneous Determination of Acetaminophen and Dopamine.

    Science.gov (United States)

    Zhang, Susu; He, Ping; Zhang, Guangli; Lei, Wen; He, Huichao

    2015-01-01

    Graphite nanosheets prepared by thermal expansion and successive sonication were utilized for the construction of a multi-walled carbon nanotubes/graphite nanosheets based amperometric sensing platform to simultaneously determine acetaminophen and dopamine in the presence of ascorbic acid in physiological conditions. The synergistic effect of multi-walled carbon nanotubes and graphite nanosheets catalyzed the electrooxidation of acetaminophen and dopamine, leading to a remarkable potential difference up to 200 mV. The as-prepared modified electrode exhibited linear responses to acetaminophen and dopamine in the concentration ranges of 2.0 × 10(-6) - 2.4 × 10(-4) M (R = 0.999) and 2.0 × 10(-6) - 2.0 × 10(-4) M (R = 0.998), respectively. The detection limits were down to 2.3 × 10(-7) M for acetaminophen and 3.5 × 10(-7) M for dopamine (S/N = 3). Based on the simple preparation and prominent electrochemical properties, the obtained multi-walled carbon nanotubes/graphite nanosheets modified electrode would be a good candidate for the determination of acetaminophen and dopamine without the interference of ascorbic acid.

  15. Sleep patterns in congenital dopamine beta-hydroxylase deficiency

    OpenAIRE

    Tulen, Joke; Man in't Veld, A.; Mechelse, Karel; Boomsma, Frans

    1990-01-01

    textabstractSleep patterns of two young female patients with congenital dopamine beta-hydroxylase deficiency are described. In this orthostatic syndrome central and peripheral noradrenergic failure occurs as a result of impaired beta-hydroxylation of dopamine. Consequently, the levels of dopamine and its metabolites are elevated. The relative importance of noradrenaline deficit in the face of dopamine excess for sleep-regulatory mechanisms can be inferred from the sleep pattern of these patie...

  16. Cerebral vascular effects of hypovolemia and dopamine infusions

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole

    2012-01-01

    Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature.......Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature....

  17. Differential dopamine function in fibromyalgia.

    Science.gov (United States)

    Albrecht, Daniel S; MacKie, Palmer J; Kareken, David A; Hutchins, Gary D; Chumin, Evgeny J; Christian, Bradley T; Yoder, Karmen K

    2016-09-01

    Approximately 30 % of Americans suffer from chronic pain disorders, such as fibromyalgia (FM), which can cause debilitating pain. Many pain-killing drugs prescribed for chronic pain disorders are highly addictive, have limited clinical efficacy, and do not treat the cognitive symptoms reported by many patients. The neurobiological substrates of chronic pain are largely unknown, but evidence points to altered dopaminergic transmission in aberrant pain perception. We sought to characterize the dopamine (DA) system in individuals with FM. Positron emission tomography (PET) with [(18)F]fallypride (FAL) was used to assess changes in DA during a working memory challenge relative to a baseline task, and to test for associations between baseline D2/D3 availability and experimental pain measures. Twelve female subjects with FM and 11 female controls completed study procedures. Subjects received one FAL PET scan while performing a "2-back" task, and one while performing a "0-back" (attentional control, "baseline") task. FM subjects had lower baseline FAL binding potential (BP) in several cortical regions relative to controls, including anterior cingulate cortex. In FM subjects, self-reported spontaneous pain negatively correlated with FAL BP in the left orbitofrontal cortex and parahippocampal gyrus. Baseline BP was significantly negatively correlated with experimental pain sensitivity and tolerance in both FM and CON subjects, although spatial patterns of these associations differed between groups. The data suggest that abnormal DA function may be associated with differential processing of pain perception in FM. Further studies are needed to explore the functional significance of DA in nociception and cognitive processing in chronic pain.

  18. Dopamine, vesicular transporters, and dopamine receptor expression in rat major salivary glands.

    Science.gov (United States)

    Tomassoni, Daniele; Traini, Enea; Mancini, Manuele; Bramanti, Vincenzo; Mahdi, Syed Sarosh; Amenta, Francesco

    2015-09-01

    The localization of dopamine stores and the expression and localization of dopamine (DAT) and vesicular monoamine transporters (VMAT) type-1 and -2 and of dopamine D1-like and D2-like receptor subtypes were investigated in rat submandibular, sublingual, and parotid salivary glands by HPLC with electrochemical detection, as well as immunochemical and immunohistochemical techniques. Male Wistar rats of 2 mo of age were used. The highest dopamine levels were measured in the parotid gland, followed by the submandibular and sublingual glands. Western blot analysis revealed DAT, VMAT-1, VMAT-2, and dopamine receptors immunoreactivity in membrane preparations obtained from the three glands investigated. Immunostaining for dopamine and transporters was developed within striated ducts. Salivary glands processed for dopamine receptors immunohistochemistry developed an immunoreaction primarily in striated and excretory ducts. In the submandibular gland, acinar cells displayed strong immunoreactivity for the D2 receptor, while cells of the convoluted granular tubules were negative for both D1-like and D2-like receptors. Parotid glands acinar cells displayed the highest immunoreactivity for both D1 and D2 receptors compared with other salivary glands. The above localization of dopamine and dopaminergic markers investigated did not correspond closely with neuron-specific enolase (NSE) localization. This indicates that at least in part, catecholamine stores and dopaminergic markers are independent from glandular innervation. These findings suggest that rat major salivary glands express a dopaminergic system probably involved in salivary secretion. The stronger immunoreactivity for dopamine transporters and receptors in striated duct cells suggests that the dopaminergic system could regulate not only quality, but also volume and ionic concentration of saliva.

  19. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux.

    Science.gov (United States)

    Binda, Francesca; Dipace, Concetta; Bowton, Erica; Robertson, Sabrina D; Lute, Brandon J; Fog, Jacob U; Zhang, Minjia; Sen, Namita; Colbran, Roger J; Gnegy, Margaret E; Gether, Ulrik; Javitch, Jonathan A; Erreger, Kevin; Galli, Aurelio

    2008-10-01

    The soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein syntaxin 1A (SYN1A) interacts with and regulates the function of transmembrane proteins, including ion channels and neurotransmitter transporters. Here, we define the first 33 amino acids of the N terminus of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated fraction shows that the AMPH-induced increase in DAT/SYN1A association occurs at the plasma membrane. In a superfusion assay of DA efflux, cells overexpressing SYN1A exhibited significantly greater AMPH-induced DA release with respect to control cells. By combining the patch-clamp technique with amperometry, we measured DA release under voltage clamp. At -60 mV, a physiological resting potential, AMPH did not induce DA efflux in hDAT cells and DA neurons. In contrast, perfusion of exogenous SYN1A (3 microM) into the cell with the whole-cell pipette enabled AMPH-induced DA efflux at -60 mV in both hDAT cells and DA neurons. It has been shown recently that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by AMPH and regulates AMPH-induced DA efflux. Here, we show that AMPH-induced association between DAT and SYN1A requires CaMKII activity and that inhibition of CaMKII blocks the ability of exogenous SYN1A to promote DA efflux. These data suggest that AMPH activation of CaMKII supports DAT/SYN1A association, resulting in a mode of DAT capable of DA efflux.

  20. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-03-10

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  1. Two dopamine receptors play different roles in phase change of the migratory locust

    Directory of Open Access Journals (Sweden)

    Xiaojiao eGuo

    2015-03-01

    Full Text Available The migratory locust, Locusta migratoria, shows remarkable phenotypic plasticity at behavioral, physiological, and morphological levels in response to fluctuation in population density. Our previous studies demonstrated that dopamine (DA and the genes in the dopamine metabolic pathway mediate phase change in Locusta. However, the functions of different dopamine receptors in modulating locust phase change have not been fully explored. In the present study, DA concentration in the brain increased during crowding and decreased during isolation. The expression level of dopamine receptor 1 (Dop1 increased from 1 h to 4 h of crowding, but remained unchanged during isolation. Injection of Dop1 agonist SKF38393 into the brains of solitary locusts promoted gregarization, induced conspecific attraction-response and increased locomotion. RNAi knockdown of Dop1 and injection of antagonist SCH23390 in gregarious locusts induced solitary behavior, promoted the shift to repulsion-response and reduced locomotion. By contrast, the expression level of dopamine receptor 2 (Dop2 gradually increased during isolation, but remained stable during crowding. During the isolation of gregarious locusts, injection of Dop2 antagonist S(–-sulpiride or RNAi knockdown of Dop2 inhibited solitarization, maintained conspecific attraction-response and increased locomotion; by comparison, the isolated controls displayed conspecific repulsion-response and weaker motility. Activation of Dop2 in solitary locusts through injection of agonist, R(−-TNPA, did not affect their behavioral state. Thus, DA-Dop1 signaling in the brain of Locusta induced the gregariousness, whereas DA-Dop2 signaling mediated the solitariness. Our study demonstrated that Dop1 and Dop2 modulated locust phase change in two different directions. Further investigation of Locusta Dop1 and Dop2 functions in modulating phase change will improve our understanding of the molecular mechanism underlying phenotypic

  2. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Science.gov (United States)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  3. Direct Midbrain Dopamine Input to the Suprachiasmatic Nucleus Accelerates Circadian Entrainment.

    Science.gov (United States)

    Grippo, Ryan M; Purohit, Aarti M; Zhang, Qi; Zweifel, Larry S; Güler, Ali D

    2017-08-21

    Dopamine (DA) neurotransmission controls behaviors important for survival, including voluntary movement, reward processing, and detection of salient events, such as food or mate availability. Dopaminergic tone also influences circadian physiology and behavior. Although the evolutionary significance of this input is appreciated, its precise neurophysiological architecture remains unknown. Here, we identify a novel, direct connection between the DA neurons of the ventral tegmental area (VTA) and the suprachiasmatic nucleus (SCN). We demonstrate that D1 dopamine receptor (Drd1) signaling within the SCN is necessary for properly timed resynchronization of activity rhythms to phase-shifted light:dark cycles and that elevation of DA tone through selective activation of VTA DA neurons accelerates photoentrainment. Our findings demonstrate a previously unappreciated role for direct DA input to the master circadian clock and highlight the importance of an evolutionarily significant relationship between the circadian system and the neuromodulatory circuits that govern motivational behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sleep patterns in congenital dopamine beta-hydroxylase deficiency

    NARCIS (Netherlands)

    J.H.M. Tulen (Joke); A.J. Man in't Veld (A.); K. Mechelse (Karel); F. Boomsma (Frans)

    1990-01-01

    textabstractSleep patterns of two young female patients with congenital dopamine beta-hydroxylase deficiency are described. In this orthostatic syndrome central and peripheral noradrenergic failure occurs as a result of impaired beta-hydroxylation of dopamine. Consequently, the levels of dopamine an

  5. ORAL IBOPAMINE SUBSTITUTION IN PATIENTS WITH INTRAVENOUS DOPAMINE DEPENDENCE

    NARCIS (Netherlands)

    GIRBES, ARJ; MILNER, AR; MCCLOSKEY, BV; ZWAVELING, JH; VANVELDHUISEN, DJ; ZIJLSTRA, JG; LIE, KI

    1995-01-01

    In a prospective open study we evaluated whether intravenous dopamine infusions can be safely switched to enterally administered ibopamine in dopamine-dependent patients. Six patients defined as being clinically stable, normovolaemic, but dopamine dependent, i.e. with repeated inability to stop

  6. Human cognitive flexibility depends on dopamine D2 receptor signaling

    NARCIS (Netherlands)

    Holstein, M.G.A. van; Aarts, E.; Schaaf, M.E. van der; Geurts, D.E.M.; Verkes, R.J.; Franke, B.; Schouwenburg, M.R. van; Cools, R.

    2011-01-01

    RATIONALE: Accumulating evidence indicates that the cognitive effects of dopamine depend on the subtype of dopamine receptor that is activated. In particular, recent work with animals as well as current theorizing has suggested that cognitive flexibility depends on dopamine D2 receptor signaling.

  7. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... inhibition of dopamine transport by cocaine....

  8. Renal Dopamine Receptors, Oxidative Stress, and Hypertension

    OpenAIRE

    Ines Armando; Van Anthony Villar; Pedro A. Jose; Santiago Cuevas

    2013-01-01

    Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxi...

  9. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular

  10. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of dexamphetamine.

    NARCIS (Netherlands)

    Watanabe, S.; Aono, Y.; Fusa, K.; Takada, K.; Saigusa, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    Systemic administration of high doses of dexamphetamine induces a dopamine efflux that has its intracellular origin in both the vesicular, reserpine-sensitive dopamine pool and the cytosolic, alpha-methyl-para-tyrosine-sensitive, newly synthesized dopamine pool. It remains unknown whether locally

  11. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular dopami

  12. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of dexamphetamine.

    NARCIS (Netherlands)

    Watanabe, S.; Aono, Y.; Fusa, K.; Takada, K.; Saigusa, T.; Koshikawa, N.; Cools, A.R.

    2005-01-01

    Systemic administration of high doses of dexamphetamine induces a dopamine efflux that has its intracellular origin in both the vesicular, reserpine-sensitive dopamine pool and the cytosolic, alpha-methyl-para-tyrosine-sensitive, newly synthesized dopamine pool. It remains unknown whether locally ad

  13. The effects of dopamine synthesis inhibitors and dopamine antagonists on regeneration in the hydra Hydra attenuata.

    Science.gov (United States)

    Ostroumova, T V; Markova, L N

    2002-01-01

    The effects of catecholamine synthesis inhibitors (alpha-methyltyrosine, 3-iodotyrosine, and alpha-methyl-DOPA) and dopamine receptor blockers (haloperidol and spiperone) on the regeneration of apical, gastral, and basal fragments of the hydra Hydra attenuata were studied. These experiments showed that alpha-methyltyrosine and 3-iodotyrosine significantly inhibited regeneration but did not produce morphological anomalies. Alpha-Methyl-DOPA produce less inhibition of regeneration, but induced ectopic tentacles and outgrowths in gastral regenerates. Haloperidol and spiperone had no significant effect on the rate of regeneration but induced significant numbers of morphogenetic anomalies in gastral regenerates. Apical and basal regenerates, which retained their natural organizers (the head and base respectively) never yielded morphogenetic anomalies in the presence of either dopamine receptor blockers or dopamine synthesis inhibitors. The possible role of neurotransmitters. particularly dopamine, in morphogenesis in hydras is discussed.

  14. Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens.

    Science.gov (United States)

    Yorgason, Jordan T; Zeppenfeld, Douglas M; Williams, John T

    2017-02-22

    The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met(5)]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake.SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study

  15. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli.

    Science.gov (United States)

    Cone, Jackson J; Roitman, Jamie D; Roitman, Mitchell F

    2015-06-01

    Environmental stimuli that signal food availability hold powerful sway over motivated behavior and promote feeding, in part, by activating the mesolimbic system. These food-predictive cues evoke brief (phasic) changes in nucleus accumbens (NAc) dopamine concentration and in the activity of individual NAc neurons. Phasic fluctuations in mesolimbic signaling have been directly linked to goal-directed behaviors, including behaviors elicited by food-predictive cues. Food-seeking behavior is also strongly influenced by physiological state (i.e., hunger vs. satiety). Ghrelin, a stomach hormone that crosses the blood-brain barrier, is linked to the perception of hunger and drives food intake, including intake potentiated by environmental cues. Notwithstanding, whether ghrelin regulates phasic mesolimbic signaling evoked by food-predictive stimuli is unknown. Here, rats underwent Pavlovian conditioning in which one cue predicted the delivery of rewarding food (CS+) and a second cue predicted nothing (CS-). After training, we measured the effect of ghrelin infused into the lateral ventricle (LV) on sub-second fluctuations in NAc dopamine using fast-scan cyclic voltammetry and individual NAc neuron activity using in vivo electrophysiology in separate groups of rats. LV ghrelin augmented both phasic dopamine and phasic increases in the activity of NAc neurons evoked by the CS+. Importantly, ghrelin did not affect the dopamine nor NAc neuron response to the CS-, suggesting that ghrelin selectively modulated mesolimbic signaling evoked by motivationally significant stimuli. These data demonstrate that ghrelin, a hunger signal linked to physiological state, can regulate cue-evoked mesolimbic signals that underlie food-directed behaviors. Cues that predict food availability powerfully regulate food-seeking behavior. Here we show that cue-evoked changes in both nucleus accumbens (NAc) dopamine (DA) and NAc cell activity are modulated by intra-cranial infusions of the stomach

  16. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  17. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    Directory of Open Access Journals (Sweden)

    N. L. Rukavina Mikusic

    2016-01-01

    Full Text Available Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP and Ang-(1-7 may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7 was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7 and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7 stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7 on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7 was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7 on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7 enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  18. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney.

    Science.gov (United States)

    Rukavina Mikusic, N L; Kouyoumdzian, N M; Rouvier, E; Gironacci, M M; Toblli, J E; Fernández, B E; Choi, M R

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na(+), K(+)-ATPase inhibition. Present results show that CNP did not affect either (3)H-dopamine uptake in renal tissue or Na(+), K(+)-ATPase activity; meanwhile, Ang-(1-7) was able to increase (3)H-dopamine uptake and decreased Na(+), K(+)-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na(+), K(+)-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on (3)H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on (3)H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on (3)H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na(+), K(+)-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  19. Dopamine-melanin nanofilms for biomimetic structural coloration.

    Science.gov (United States)

    Wu, Tong-Fei; Hong, Jong-Dal

    2015-02-09

    This article describes the formation of dopamine-melanin thin films (50-200 nm thick) at an air/dopamine solution interface under static conditions. Beneath these films, spherical melanin granules formed in bulk liquid phase. The thickness of dopamine-melanin films at the interface relied mainly on the concentration of dopamine solution and the reaction time. A plausible mechanism underlining dopamine-melanin thin film formation was proposed based on the hydrophobicity of dopamine-melanin aggregates and the mass transport of the aggregates to the air/solution interface as a result of convective flow. The thickness of the interfacial films increased linearly with the dopamine concentration and the reaction time. The dopamine-melanin thin film and granules (formed in bulk liquid phase) with a double-layered structure were transferred onto a solid substrate to mimic the (keratin layer)/(melanin granules) structure present in bird plumage, thereby preparing full dopamine-melanin thin-film reflectors. The reflected color of the thin-film reflectors depended on the film thickness, which could be adjusted according to the dopamine concentration. The reflectance of the resulted reflectors exhibited a maximal reflectance value of 8-11%, comparable to that of bird plumage (∼11%). This study provides a useful, simple, and low-cost approach to the fabrication of biomimetic thin-film reflectors using full dopamine-melanin materials.

  20. Dopamine in heart failure and critical care

    NARCIS (Netherlands)

    Smit, AJ

    Dopamine is widely used in critical care to prevent renal function loss. Nevertheless sufficient evidence is still lacking of reduction in end points like mortality or renal replacement therapy. Dopaminergic treatment in chronic heart failure (CHF) has provided an example of unexpected adverse

  1. Dopamine in heart failure and critical care

    NARCIS (Netherlands)

    Smit, AJ

    2000-01-01

    Dopamine is widely used in critical care to prevent renal function loss. Nevertheless sufficient evidence is still lacking of reduction in end points like mortality or renal replacement therapy. Dopaminergic treatment in chronic heart failure (CHF) has provided an example of unexpected adverse outco

  2. Molecular model of the neural dopamine transporter

    Science.gov (United States)

    Ravna, Aina Westrheim; Sylte, Ingebrigt; Dahl, Svein G.

    2003-05-01

    The dopamine transporter (DAT) regulates the action of dopamine by reuptake of the neurotransmitter into presynaptic neurons, and is the main molecular target of amphetamines and cocaine. DAT and the Na+/H+ antiporter (NhaA) are secondary transporter proteins that carry small molecules across a cell membrane against a concentration gradient, using ion gradients as energy source. A 3-dimensional projection map of the E. coli NhaA has confirmed a topology of 12 membrane spanning domains, and was previously used to construct a 3-dimensional NhaA model with 12 trans-membrane α-helices (TMHs). The NhaA model, and site directed mutagenesis data on DAT, were used to construct a detailed 3-dimensional DAT model using interactive molecular graphics and empiric force field calculations. The model proposes a dopamine transport mechanism involving TMHs 1, 3, 4, 5, 7 and 11. Asp79, Tyr252 and Tyr274 were the primary cocaine binding residues. Binding of cocaine or its analogue, (-)-2β-carbomethoxy-3β-(4-fluorophenyl)tropane (CFT), seemed to lock the transporter in an inactive state, and thus inhibit dopamine transport. The present model may be used to design further experimental studies of the molecular structure and mechanisms of DAT and other secondary transporter proteins.

  3. Extracellular dopamine and alterations on dopamine transporter are related to reserpine toxicity in Caenorhabditis elegans.

    Science.gov (United States)

    Reckziegel, Patrícia; Chen, Pan; Caito, Sam; Gubert, Priscila; Soares, Félix Alexandre Antunes; Fachinetto, Roselei; Aschner, Michael

    2016-03-01

    Reserpine is used as an animal model of parkinsonism. We hypothesized that the involuntary movements induced by reserpine in rodents are induced by dopaminergic toxicity caused by extracellular dopamine accumulation. The present study tested the effects of reserpine on the dopaminergic system in Caenorhabditis elegans. Reserpine was toxic to worms (decreased the survival, food intake, development and changed egg laying and defecation cycles). In addition, reserpine increased the worms' locomotor rate on food and decreased dopamine levels. Morphological evaluations of dopaminergic CEP neurons confirmed neurodegeneration characterized by decreased fluorescence intensity and the number of worms with intact CEP neurons, and increased number of shrunken somas per worm. These effects were unrelated to reserpine's effect on decreased expression of the dopamine transporter, dat-1. Interestingly, the locomotor rate on food and the neurodegenerative parameters fully recovered to basal conditions upon reserpine withdrawal. Furthermore, reserpine decreased survival in vesicular monoamine transporter and dat-1 loss-of-function mutant worms. In addition, worms pre-exposed to dopamine followed by exposure to reserpine had decreased survival. Reserpine activated gst-4, which controls a phase II detoxification enzymes downstream of nuclear factor (erythroid-derived-2)-like 2. Our findings establish that the dopamine transporter, dat-1, plays an important role in reserpine toxicity, likely by increasing extracellular dopamine concentrations.

  4. Dopamine receptor in anterior byssus retractor muscle of Mytilus edulis.

    Science.gov (United States)

    Takayanagi, I; Murakami, H; Iwayama, Y; Yoshida, Y; Miki, S

    1981-04-01

    Effects of dopamine, N-methyl-, ethyl- and propyl-derivatives of dopamine, and alpha- and beta-adrenoceptor stimulants on catch contraction of anterior byssus retractor muscle of Mytilus edulis were tested. The test drugs except the beta-adrenoceptor stimulants relaxed catch contraction. Dopamine was most active and substitution of amino group in dopamine with ethyl and propyl decreased activity considerably. The concentration-curves of dopamine, its derivatives and norepinephrine shifted in parallel with application of haloperidol but were not influenced by the alpha- and beta-adrenoceptor antagonists. These results suggest that relaxation of catch contraction by catecholamines is mediated through a dopamine receptor. This muscle is considered to be suitable for a study of the dopamine receptor.

  5. Physiological effects in aromatherapy

    OpenAIRE

    2004-01-01

    The effects of aromas on humans are divided into physiological and psychological effects. The physiological effect acts directly on the physical organism, the psychological effect acts via the sense of smell or olfactory system, which in turn may cause a physiological effect. This paper reviews on the physiological effects which are used for the evaluation of the effects of aromas. Physiological parameters, i.e. heart rate blood pressure, electrodermal activity, electroencephalogram, slow pot...

  6. Renal Dopamine Receptors, Oxidative Stress, and Hypertension

    Directory of Open Access Journals (Sweden)

    Ines Armando

    2013-08-01

    Full Text Available Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxidant enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form (NADPH oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1, paraoxonase 2 (PON2, and heme oxygenase 2 (HO-2, all of which can inhibit NADPH oxidase activity. The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an overview of the protective roles of a specific dopamine receptor subtype on renal oxidative stress, the different mechanisms involved in this effect, and the role of oxidative stress and impairment of dopamine receptor function in the hypertension that arises from the genetic ablation of a specific dopamine receptor gene in mice.

  7. Renal dopamine receptors, oxidative stress, and hypertension.

    Science.gov (United States)

    Cuevas, Santiago; Villar, Van Anthony; Jose, Pedro A; Armando, Ines

    2013-08-27

    Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxidant enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1), paraoxonase 2 (PON2), and heme oxygenase 2 (HO-2), all of which can inhibit NADPH oxidase activity. The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an overview of the protective roles of a specific dopamine receptor subtype on renal oxidative stress, the different mechanisms involved in this effect, and the role of oxidative stress and impairment of dopamine receptor function in the hypertension that arises from the genetic ablation of a specific dopamine receptor gene in mice.

  8. Dopamine Receptors and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Shin Hisahara

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive extrapyramidal motor disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS. In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.

  9. Prefrontal and Striatal Glutamate Differently Relate to Striatal Dopamine: Potential Regulatory Mechanisms of Striatal Presynaptic Dopamine Function?

    Science.gov (United States)

    Gleich, Tobias; Deserno, Lorenz; Lorenz, Robert Christian; Boehme, Rebecca; Pankow, Anne; Buchert, Ralph; Kühn, Simone; Heinz, Andreas; Schlagenhauf, Florian; Gallinat, Jürgen

    2015-07-01

    Theoretical and animal work has proposed that prefrontal cortex (PFC) glutamate inhibits dopaminergic inputs to the ventral striatum (VS) indirectly, whereas direct VS glutamatergic afferents have been suggested to enhance dopaminergic inputs to the VS. In the present study, we aimed to investigate relationships of glutamate and dopamine measures in prefrontostriatal circuitries of healthy humans. We hypothesized that PFC and VS glutamate, as well as their balance, are differently associated with VS dopamine. Glutamate concentrations in the left lateral PFC and left striatum were assessed using 3-Tesla proton magnetic resonance spectroscopy. Striatal presynaptic dopamine synthesis capacity was measured by fluorine-18-l-dihydroxyphenylalanine (F-18-FDOPA) positron emission tomography. First, a negative relationship was observed between glutamate concentrations in lateral PFC and VS dopamine synthesis capacity (n = 28). Second, a positive relationship was revealed between striatal glutamate and VS dopamine synthesis capacity (n = 26). Additionally, the intraindividual difference between PFC and striatal glutamate concentrations correlated negatively with VS dopamine synthesis capacity (n = 24). The present results indicate an involvement of a balance in PFC and striatal glutamate in the regulation of VS dopamine synthesis capacity. This notion points toward a potential mechanism how VS presynaptic dopamine levels are kept in a fine-tuned range. A disruption of this mechanism may account for alterations in striatal dopamine turnover as observed in mental diseases (e.g., in schizophrenia). The present work demonstrates complementary relationships between prefrontal and striatal glutamate and ventral striatal presynaptic dopamine using human imaging measures: a negative correlation between prefrontal glutamate and presynaptic dopamine and a positive relationship between striatal glutamate and presynaptic dopamine are revealed. The results may reflect a regulatory role

  10. A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review

    Directory of Open Access Journals (Sweden)

    Rishi R. Parajuli

    2008-12-01

    Full Text Available Most of the current techniques for in vivo detection of dopamine exploit the ease of oxidation of this compound. The major problem during the detection is the presence of a high concentration of ascorbic acid that is oxidized at nearly the same potential as dopamine on bare electrodes. Furthermore, the oxidation product of dopamine reacts with ascorbic acid present in samples and regenerates dopamine again, which severely limits the accuracy of the detection. Meanwhile, the product could also form a melanin-like insulating film on the electrode surface, which decreases the sensitivity of the electrode. Various surface modifications on the electrode, new materials for making the electrodes, and new electrochemical techniques have been exploited to solve these problems. Recently we developed a new electrochemical detection method that did not rely on direct oxidation of dopamine on electrodes, which may naturally solve these problems. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The high affinity binding of dopamine to the boronic acid groups of the polymer affects the electrochemical properties of the polyaniline backbone, which act as the basis for the transduction mechanism of this non-oxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in a physiologically-relevant buffer, and the large surface area of the carbon nanotubes increased the density of the boronic acid receptors. The high sensitivity and selectivity of the sensor show excellent promise toward molecular diagnosis of Parkinson's disease. In this review, we will focus on the discussion of this novel detection approach, the new interferences in this detection approach, and how to

  11. The Caenorhabditis elegans D2-like dopamine receptor DOP-2 physically interacts with GPA-14, a Gαi subunit.

    Science.gov (United States)

    Pandey, Pratima; Harbinder, Singh

    2012-01-26

    Dopaminergic inputs are sensed on the cell surface by the seven-transmembrane dopamine receptors that belong to a superfamily of G-protein-coupled receptors (GPCRs). Dopamine receptors are classified as D1-like or D2-like receptors based on their homology and pharmacological profiles. In addition to well established G-protein coupled mechanism of dopamine receptors in mammalian system they can also interact with other signaling pathways. In C. elegans four dopamine receptors (dop-1, dop-2, dop-3 and dop-4) have been reported and they have been implicated in a wide array of behavioral and physiological processes. We performed this study to assign the signaling pathway for DOP-2, a D2-like dopamine receptor using a split-ubiquitin based yeast two-hybrid screening of a C. elegans cDNA library with a novel dop-2 variant (DOP-2XL) as bait. Our yeast two-hybrid screening resulted in identification of gpa-14, as one of the positively interacting partners. gpa-14 is a Gα coding sequence and shows expression overlap with dop-2 in C. elegans ADE deirid neurons. In-vitro pull down assays demonstrated physical coupling between dopamine receptor DOP-2XL and GPA-14. Further, we sought to determine the DOP-2 region necessary for GPA-14 coupling. We generated truncated DOP-2XL constructs and performed pair-wise yeast two-hybrid assay with GPA-14 followed by in-vitro interaction studies and here we report that the third intracellular loop is the key domain responsible for DOP-2 and GPA-14 coupling. Our results show that the extra-long C. elegans D2-like receptor is coupled to gpa-14 that has no mammalian homolog but shows close similarity to inhibitory G-proteins. Supplementing earlier investigations, our results demonstrate the importance of an invertebrate D2-like receptor's third intracellular loop in its G-protein interaction.

  12. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor.

    Science.gov (United States)

    Błasiak, Ewa; Łukasiewicz, Sylwia; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2017-04-01

    The human dopamine D2 receptor gene has three polymorphic variants that alter its amino acid sequence: alanine substitution by valine in position 96 (V96A), proline substitution by serine in position 310 (P310S) and serine substitution by cysteine in position 311 (S311C). Their functional role has never been the object of extensive studies, even though there is some evidence that their occurrence correlates with schizophrenia. The HEK293 cell line was transfected with dopamine D1 and D2 receptors (or genetic variants of the D2 receptor), coupled to fluorescent proteins which allowed us to measure the extent of dimerization of these receptors, using a highly advanced biophysical approach (FLIM-FRET). Additionally, Fluoro-4 AM was used to examine changes in the level of calcium release after ligand stimulation of cells expressing different combinations of dopamine receptors. Using FLIM-FRET experiments we have shown that in HEK 293 expressing dopamine receptors, polymorphic mutations in the D2 receptor play a role in dimmer formation with the dopamine D1 receptor. The association level of dopamine receptors is affected by ligand administration, with variable effects depending on polymorphic variant of the D2 dopamine receptor. We have found that the level of heteromer formation is reflected by calcium ion release after ligand stimulation and have observed variations of this effect dependent on the polymorphic variant and the ligand. The data presented in this paper support the hypothesis on the role of calcium signaling regulated by the D1-D2 heteromer which may be of relevance for schizophrenia etiology. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  14. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  15. The effects of dopamine on cardiogenic and endotoxin experimental shock.

    Science.gov (United States)

    Marchetti, G; Longo, T; Merlo, L; Noseda, V

    1973-01-01

    Studies on dogs show that dopamine improves cardiac performance and increases renal and mesenteric flow. This paper investigates the cardiovascular effects of dopamine on narcotized dogs. 0.2 ml. of mercury was administered into the circumflex branch of the left coronary artery of 2 groups of anesthetized dogs to induce myocardial infarction. 1-3 mg/lg of Eschrichia coli endotoxin was injected in 2 other groups of dogs to induce endotoxin shock. Dopamine was administered intravenousely in one group with cardiogenic shock and in the other group with endotoxin shock; noradrenaline was administered in the other 2 groups. Coronary resistances increased after induction of shock and declined towards normal after dopamine was injected. The effect of dopamine on mesenteric and renal resistance was not signficant. Noradrenaline's effect on cardiac performance was similar to that of dopamine, although unlike dopamine, it contributed to a significant increase of total peripheral, coronary, mesenteric, renal and femoral resistances. The effects of dopamine on the dog's hemodynamics were less evident in endotoxin than in cardiogenic shock on account of the fact that in endotoxin shock, circulatory blood volume declines to a higher extent than in cardiogenic shock, and greater blood alterations develop, mainly acidosis. In such conditions, dopamine alone will not help the hemodynamic parameters return to normal levels. Lotto et al. reports that in shocked humans with serious metabolic acidosis, dopamine is effective only when bicarbonate solutions are infused to adjust blood PH.

  16. Depression of vitamin B6 levels due to dopamine.

    Science.gov (United States)

    Weir, M R; Keniston, R C; Enriquez, J I; McNamee, G A

    1991-04-01

    Dopamine is a commonly used pressor agent. Frequently recognized side effects other than occasional reports of pedal gangrene respond to reduction of dose. Because a number of compounds interfere with vitamin B6 and dopamine toxicity in animals is modified by B6, we studied the dopamine-vitamin B6 interaction in rabbits. Six animals received 40 mg dopamine/kg and 10 mg pyridoxine injections; 6 received dopamine and saline. Dopamine administration led to an average fall of 20% (p = 0.04) in plasma pyridoxal 5'-phosphate (PLP) levels, which declined 42% by day 5. Three days later, a 25% decrease persisted (p = 0.03). Dopamine with pyridoxine caused a PLP rise of 65% (p = 0.007), but the post-study level was 28% lower than baseline (p = 0.04). We interpret our data to mean that dopamine reduced PLP levels during and 3 days after the study, and that dopamine appeared to increase the requirements for B6. We worry that dopamine given with other drugs, ie gentamicin, digoxin and theophylline which are frequently used in critical care settings, could aggravate alterations of requirements for or body stores of vitamin B6, creating B6 deficiency.

  17. Optical suppression of drug-evoked phasic dopamine release.

    Science.gov (United States)

    McCutcheon, James E; Cone, Jackson J; Sinon, Christopher G; Fortin, Samantha M; Kantak, Pranish A; Witten, Ilana B; Deisseroth, Karl; Stuber, Garret D; Roitman, Mitchell F

    2014-01-01

    Brief fluctuations in dopamine concentration (dopamine transients) play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc) of urethane-anesthetized rats. We targeted halorhodopsin (NpHR) specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA) of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre(+) rats). Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  18. Optical suppression of drug-evoked phasic dopamine release

    Directory of Open Access Journals (Sweden)

    James Edgar Mccutcheon

    2014-09-01

    Full Text Available Brief fluctuations in dopamine concentration (dopamine transients play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc of urethane-anesthetized rats. We targeted halorhodopsin (NpHR specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre+ rats. Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  19. Characterization of an Invertebrate-Type Dopamine Receptor of the American Cockroach, Periplaneta americana

    Directory of Open Access Journals (Sweden)

    Britta Troppmann

    2014-01-01

    Full Text Available We have isolated a cDNA coding for a putative invertebrate-type dopamine receptor (Peadop2 from P. americana brain by using a PCR-based strategy. The mRNA is present in samples from brain and salivary glands. We analyzed the distribution of the PeaDOP2 receptor protein with specific affinity-purified polyclonal antibodies. On Western blots, PeaDOP2 was detected in protein samples from brain, subesophageal ganglion, thoracic ganglia, and salivary glands. In immunocytochemical experiments, we detected PeaDOP2 in neurons with their somata being located at the anterior edge of the medulla bilaterally innervating the optic lobes and projecting to the ventro-lateral protocerebrum. In order to determine the functional and pharmacological properties of the cloned receptor, we generated a cell line constitutively expressing PeaDOP2. Activation of PeaDOP2-expressing cells with dopamine induced an increase in intracellular cAMP. In contrast, a C-terminally truncated splice variant of this receptor did not exhibit any functional property by itself. The molecular and pharmacological characterization of the first dopamine receptor from P. americana provides the basis for forthcoming studies focusing on the significance of the dopaminergic system in cockroach behavior and physiology.

  20. New copper(II) complexes with dopamine hydrochloride and vanillymandelic acid: Spectroscopic and thermal characterization

    Science.gov (United States)

    Mohamed, Gehad G.; Nour El-Dien, F. A.; El-Nahas, R. G.

    2011-10-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. The Cu(II) chelates with coupled products of dopamine hydrochloride (DO.HCl) and vanillymandelic acid (VMA) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical techniques namely IR, magnetic and UV-vis spectra are used to investigate the structure of these chelates. Cu(II) forms 1:1 (Cu:DO) and 1:2 (Cu:VMA) chelates. DO behave as a uninegative tridentate ligand in binding to the Cu(II) ion while VMA behaves as a uninegative bidentate ligand. IR spectra show that the DO is coordinated to the Cu(II) ion in a tridentate manner with ONO donor sites of the phenolic- OH, -NH and carbonyl- O, while VMA is coordinated with OO donor sites of the phenolic- OH and -NH. Magnetic moment measurements reveal the presence of Cu(II) chelates in octahedral and square planar geometries with DO and VMA, respectively. The thermal decomposition of Cu(II) complexes is studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  1. Physiological Information Database (PID)

    Science.gov (United States)

    EPA has developed a physiological information database (created using Microsoft ACCESS) intended to be used in PBPK modeling. The database contains physiological parameter values for humans from early childhood through senescence as well as similar data for laboratory animal spec...

  2. [Effect of dopamine on the portal pressure].

    Science.gov (United States)

    Benko, H; Peschl, L; Schüller, J; Neumayr, A

    1975-01-01

    1. An infusion of 3 gamma/kg/min dopamine causes a significant increase in the renal plasma flow and the glomerulum filtration rate. This dosage does not cause a change of the mean systolic and arterial pressure. This effect may also be observed in patients with hepatic cirrhosis. 2. The wedged hepatic vein pressure, an indicator for the portal pressure, only shows a slight increase (9,46 +/- 9,41%) as compared to the initial pressure produced by the mentioned dose. Measurements of the spleen pulpa pressure, which likewise indicates the portal pressure, showed an increase of pressure up to 100% due to pressing or coughing. 3. If in the case of bleeding oesophageal varices acute renal failure might develop, the advantage of the effect of dopamine in stimulating the blood flow through the kidneys may be considered more important than the minute danger of a slight increase of the portal pressure, which might provoke haemorrhage.

  3. Cellular regulation of the dopamine transporter

    DEFF Research Database (Denmark)

    Eriksen, Jacob

    2010-01-01

    -membrane spanning protein Tac, thereby creating an extracellular antibody epitope. Upon expression in HEK293 cells this TacDAT fusion protein displayed functional properties similar to the wild type transporter. In an ELISA based internalization assay, TacDAT intracellular accumulation was increased by inhibitors......The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. DAT and its trafficking...... to natively expressed transporter, DAT was visualized directly in cultured DA neurons using the fluorescent cocaine analog JHC 1-64. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little cololization was observed...

  4. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear......]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  5. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  6. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand......, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis...

  8. Dopamine in motivational control: rewarding, aversive, and alerting.

    Science.gov (United States)

    Bromberg-Martin, Ethan S; Matsumoto, Masayuki; Hikosaka, Okihide

    2010-12-09

    Midbrain dopamine neurons are well known for their strong responses to rewards and their critical role in positive motivation. It has become increasingly clear, however, that dopamine neurons also transmit signals related to salient but nonrewarding experiences such as aversive and alerting events. Here we review recent advances in understanding the reward and nonreward functions of dopamine. Based on this data, we propose that dopamine neurons come in multiple types that are connected with distinct brain networks and have distinct roles in motivational control. Some dopamine neurons encode motivational value, supporting brain networks for seeking, evaluation, and value learning. Others encode motivational salience, supporting brain networks for orienting, cognition, and general motivation. Both types of dopamine neurons are augmented by an alerting signal involved in rapid detection of potentially important sensory cues. We hypothesize that these dopaminergic pathways for value, salience, and alerting cooperate to support adaptive behavior.

  9. Dopamine neurons share common response function for reward prediction error.

    Science.gov (United States)

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  10. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA.

    Directory of Open Access Journals (Sweden)

    Guo-Xiang Ruan

    2008-10-01

    Full Text Available The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER

  11. Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus

    Science.gov (United States)

    Abdi, Azzedine; Mallet, Nicolas; Mohamed, Foad Y.; Sharott, Andrew; Dodson, Paul D.; Nakamura, Kouichi C.; Suri, Sana; Avery, Sophie V.; Larvin, Joseph T.; Garas, Farid N.; Garas, Shady N.; Vinciati, Federica; Morin, Stéphanie; Bezard, Erwan

    2015-01-01

    Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called “prototypic” and “arkypallidal” neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a “persistent” sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe. PMID:25926446

  12. Dopamine Dysfunction in DYT1 Dystonia

    Science.gov (United States)

    2015-07-01

    brains removed. Frontal cortex, caudate-putamen and ventral midbrain were micro- dissected based on anatomical landmarks. Samples of each region from the...is linked to DYT1 dystonia [6]. TorsinA is a member of AAA + ATPase superfamily [6], associated with chaperone like functions in multiple processes...mRNA and protein expression for the same receptor may not correlate with each other), it appears that dopamine receptor expression and function undergo

  13. Vascular dopamine-I receptors and atherosclerosis.

    Science.gov (United States)

    Yasunari, K; Kohno, M; Kano, H; Yokokawa, K; Minami, M; Yoshikawa, J

    1997-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation are believed to play key roles in atherosclerosis. To elucidate the role of vascular dopamine D1-like receptors in atherosclerosis, the effects of dopamine, specific D1-like agonists SKF 38,393, and YM 435 on platelet-derived growth factor (PDGF) BB-mediated VSMC migration, proliferation, and hypertrophy were studied. We observed that cells stimulated by 5 ng/ml PDGF BB showed increased migration, proliferation and hypertrophy. These effects were prevented by coincubation with dopamine, SKF 38,393, or YM 435 at 1-10 mumol/l, and this prevention was reversed by Sch 23,390 (1-10 mumol/l), a specific D1-like antagonist. These actions are mimicked by 1-10 mumol/l forskolin, a direct activator of adenylate cyclase and 8-bromocyclic AMP at 0.1-1 mmol/l. The actions are blocked by a specific protein kinase A (PKA) inhibitor N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinoline-sulfonamide (H 89), but are not blocked by its negative control, N-[2-(N-formyl-p-chlorocinnamylamino) ethyl]-5-isoquinoline sulfonamide (H 85). PDGF-BB (5 ng/ml)-mediated activation of phospholipase D (PLD), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activity were significantly suppressed by coincubation with dopamine. These results suggest that vascular D1-like receptor agonists inhibit migration, proliferation and hypertrophy of VSMC, possibly through PKA activation and suppression of activated PLD, PKC and MAPK activity.

  14. Chewing Over Physiology Integration

    Science.gov (United States)

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  15. Chewing Over Physiology Integration

    Science.gov (United States)

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  16. Safety out of control: dopamine and defence.

    Science.gov (United States)

    Lloyd, Kevin; Dayan, Peter

    2016-05-23

    We enjoy a sophisticated understanding of how animals learn to predict appetitive outcomes and direct their behaviour accordingly. This encompasses well-defined learning algorithms and details of how these might be implemented in the brain. Dopamine has played an important part in this unfolding story, appearing to embody a learning signal for predicting rewards and stamping in useful actions, while also being a modulator of behavioural vigour. By contrast, although choosing correct actions and executing them vigorously in the face of adversity is at least as important, our understanding of learning and behaviour in aversive settings is less well developed. We examine aversive processing through the medium of the role of dopamine and targets such as D2 receptors in the striatum. We consider critical factors such as the degree of control that an animal believes it exerts over key aspects of its environment, the distinction between 'better' and 'good' actual or predicted future states, and the potential requirement for a particular form of opponent to dopamine to ensure proper calibration of state values.

  17. Transdermal delivery of dopamine receptor agonists.

    Science.gov (United States)

    Reichmann, Heinz

    2009-12-01

    Conceptually, continuous dopaminergic stimulation is universally accepted to be the preferred therapeutic strategy to prevent or postpone dyskinesia in Parkinson's disease (PD). L-dopa has a short half-life of 2 hours and causes dyskinesia, whereas dopamine receptor agonists usually have a much longer half-life. Of the latter agents, cabergoline has the longest half-life of 68 hours and is ideal for the prevention of dyskinesia; but this is also true for other dopamine receptor agonists such as ropinirole or pramipexole, which have a shorter half-life of about 6-8 hours. Due to the possible development of valvular fibrosis, cabergoline is, however, only approved as a second-line treatment in PD, and patch technology has therefore gained major interest. So far, rotigotine is the only dopamine receptor agonist available as a patch. There is good evidence that once-daily patch usage provides patients with constant dopaminergic stimulation, and that patches are of equal potency to other oral non-ergot derivatives such as ropinirole and pramipexole. The disadvantages of patches are skin irritation and crystallization of the drug if not kept in the refrigerator. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Linking unfounded beliefs to genetic dopamine availability

    Science.gov (United States)

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  19. Linking unfounded beliefs to genetic dopamine availability

    Directory of Open Access Journals (Sweden)

    Katharina eSchmack

    2015-09-01

    Full Text Available Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity towards unfounded beliefs. 109 healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818 and rs4680, also known as val158met that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioural experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity towards unfounded beliefs, and that this effect was mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world.

  20. The Effects of Dopamine and Estrogen upon Cortical Parvalbumin Expression

    Science.gov (United States)

    2001-10-01

    positive interneurons because studies indicate that the parvalbumin containing subclass of GABAergic neurons are contacted by mesocortical dopamine fibers...that both dopamine and estrogen enhance the maturation of cortical interneurons that express the calcium binding protein, parvalbumin , in the developing... parvalbumin expression in the deep cortical layers in the in vivo model. Dopamine D1 and D2 receptors are located on parvalbumin containing interneurons

  1. Serotonin and dopamine protect from hypothermia/rewarming damage through the CBS/H2S pathway.

    Science.gov (United States)

    Talaei, Fatemeh; Bouma, Hjalmar R; Van der Graaf, Adrianus C; Strijkstra, Arjen M; Schmidt, Martina; Henning, Robert H

    2011-01-01

    Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H(2)S production by the endogenous enzyme cystathionine-β-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H(2)S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H(2)S and activation of CBS by Prydoxal 5'-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H(2)S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H(2)S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters.

  2. Serotonin and dopamine protect from hypothermia/rewarming damage through the CBS/H2S pathway.

    Directory of Open Access Journals (Sweden)

    Fatemeh Talaei

    Full Text Available Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H(2S production by the endogenous enzyme cystathionine-β-synthase (CBS and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR and increased H(2S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H(2S and activation of CBS by Prydoxal 5'-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H(2S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H(2S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters.

  3. Successful treatment of dopamine dysregulation syndrome with dopamine D2 partial agonist antipsychotic drug

    Directory of Open Access Journals (Sweden)

    Mizushima Jin

    2012-07-01

    Full Text Available Abstract Dopamine dysregulation syndrome (DDS consists of a series of complications such as compulsive use of dopaminergic medications, aggressive or hypomanic behaviors during excessive use, and withdrawal states characterized by dysphoria and anxiety, caused by long-term dopaminergic treatment in patients with Parkinson’s disease (PD. Although several ways to manage DDS have been suggested, there has been no established treatment that can manage DDS without deterioration of motor symptoms. In this article, we present a case of PD in whom the administration of the dopamine D2 partial agonistic antipsychotic drug aripiprazole improved DDS symptoms such as craving and compulsive behavior without worsening of motor symptoms. Considering the profile of this drug as a partial agonist at D2 receptors, it is possible that it exerts its therapeutic effect on DDS by modulating the dysfunctional dopamine system.

  4. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Jensen, Heidi Bisgaard; Larsen, M Andreas B; Mazier, Sonia

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational...... the pocket, including(2) Val152(3.46) to Ala or Ile, Ser422(8.60) to Ala and Asn157(3.51) to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [(3)H]dopamine uptake inhibition assays and/or [(3)H]CFT competition binding assay. A putative polar interaction of one...... with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine....

  5. Atypical Dopamine Uptake Inhibitors that Provide Clues About Cocaine's Mechanism at the Dopamine Transporter

    Science.gov (United States)

    Hauck Newman, Amy; Katz, Jonathan L.

    The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.

  6. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  7. Reinforcement signalling in Drosophila; dopamine does it all after all.

    Science.gov (United States)

    Waddell, Scott

    2013-06-01

    Reinforcement systems are believed to drive synaptic plasticity within neural circuits that store memories. Recent evidence from the fruit fly suggests that anatomically distinct dopaminergic neurons ultimately provide the key instructive signals for both appetitive and aversive learning. This dual role for dopamine overturns the previous model that octopamine signalled reward and dopamine punishment. More importantly, this anatomically segregated double role for dopamine in reward and aversion mirrors that emerging in mammals. Therefore, an antagonistic organization of distinct reinforcing dopaminegic neurons is a conserved feature of brains. It now seems crucial to understand how the dopaminergic neurons are controlled and what the released dopamine does to the underlying circuits to convey opposite valence.

  8. Dopamine regulates angiogenesis in normal dermal wound tissues.

    Directory of Open Access Journals (Sweden)

    Saurav Shome

    Full Text Available Cutaneous wound healing is a normal physiological process and comprises different phases. Among these phases, angiogenesis or new blood vessel formation in wound tissue plays an important role. Skin is richly supplied by sympathetic nerves and evidences indicate the significant role of the sympathetic nervous system in cutaneous wound healing. Dopamine (DA is an important catecholamine neurotransmitter released by the sympathetic nerve endings and recent studies have demonstrated the potent anti-angiogenic action of DA, which is mediated through its D(2 DA receptors. We therefore postulate that this endogenous catecholamine neurotransmitter may have a role in the neovascularization of dermal wound tissues and subsequently in the process of wound healing. In the present study, the therapeutic efficacy of D(2 DA receptor antagonist has been investigated for faster wound healing in a murine model of full thickness dermal wound. Our results indicate that treatment with specific D(2 DA receptor antagonist significantly expedites the process of full thickness normal dermal wound healing in mice by inducing angiogenesis in wound tissues. The underlined mechanisms have been attributed to the up-regulation of homeobox transcription factor HoxD3 and its target α5β1 integrin, which play a pivotal role in wound angiogenesis. Since D(2 DA receptor antagonists are already in clinical use for other disorders, these results have significant translational value from the bench to the bedside for efficient wound management along with other conventional treatment modalities.

  9. Dopamine Rebound-Excitation Theory: Putting Brakes on PTSD

    Directory of Open Access Journals (Sweden)

    Jason C Lee

    2016-09-01

    Full Text Available It is not uncommon for humans or animals to experience traumatic events in their lifetimes. However, the majority of individuals are resilient to long-term detrimental changes turning into anxiety and depression, such as post-traumatic stress disorder (PTSD. What underlying neural mechanism accounts for individual variability in stress resilience? Hyperactivity in fear circuits, such as the amygdalar system, is well-known to be the major pathophysiological basis for PTSD, much like a stuck accelerator. Interestingly, increasing evidence demonstrates that dopamine (DA – traditionally known for its role in motivation, reward prediction, and addiction– is also crucial in regulating fear learning and anxiety. Yet how DA neurons control stress resilience is unclear, especially given that DA neurons have multiple subtypes with distinct temporal dynamics. Here, we propose the Rebound-Excitation Theory, which posits that DA neurons’ rebound-excitation at the termination of fearful experiences serves as an important brake by providing intrinsic safety-signals to fear-processing neural circuits in a spatially and temporally controlled manner. We discuss how DA neuron rebound-excitation may be regulated by genetics and experiences, and how such physiological properties may be used as a brain-activity biomarker to predict and confer individual resilience to stress and anxiety.

  10. Physiological effects in aromatherapy

    Directory of Open Access Journals (Sweden)

    Tapanee Hongratanaworakit

    2004-01-01

    Full Text Available The effects of aromas on humans are divided into physiological and psychological effects. The physiological effect acts directly on the physical organism, the psychological effect acts via the sense of smell or olfactory system, which in turn may cause a physiological effect. This paper reviews on the physiological effects which are used for the evaluation of the effects of aromas. Physiological parameters, i.e. heart rate blood pressure, electrodermal activity, electroencephalogram, slow potential brain waves (contingent negativevariation, and eye blink rate or pupil functions, are used as indices for the measurement of the aroma effects

  11. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  12. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder

    DEFF Research Database (Denmark)

    Hamilton, P J; Campbell, N G; Sharma, S

    2013-01-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution...... at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first...

  13. Monitoring Dopamine Quinone-Induced Dopaminergic Neurotoxicity Using Dopamine Functionalized Quantum Dots.

    Science.gov (United States)

    Ma, Wei; Liu, Hui-Ting; Long, Yi-Tao

    2015-07-08

    Dopamine (DA) quinone-induced dopaminergic neurotoxicity is known to occur due to the interaction between DA quinone and cysteine (Cys) residue, and it may play an important a role in pathological processes associated with neurodegeneration. In this study, we monitored the interaction process of DA to form DA quinone and the subsequent Cys residue using dopamine functionalized quantum dots (QDs). The fluorescence (FL) of the QD bioconjugates changes as a function of the structure transformation during the interaction process, providing a potential FL tool for monitoring dopaminergic neurotoxicity.

  14. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning.

    Science.gov (United States)

    Parker, Jones G; Zweifel, Larry S; Clark, Jeremy J; Evans, Scott B; Phillips, Paul E M; Palmiter, Richard D

    2010-07-27

    During Pavlovian conditioning, phasic dopamine (DA) responses emerge to reward-predictive stimuli as the subject learns to anticipate reward delivery. This observation has led to the hypothesis that phasic dopamine signaling is important for learning. To assess the ability of mice to develop anticipatory behavior and to characterize the contribution of dopamine, we used a food-reinforced Pavlovian conditioning paradigm. As mice learned the cue-reward association, they increased their head entries to the food receptacle in a pattern that was consistent with conditioned anticipatory behavior. D1-receptor knockout (D1R-KO) mice had impaired acquisition, and systemic administration of a D1R antagonist blocked both the acquisition and expression of conditioned approach in wild-type mice. To assess the specific contribution of phasic dopamine transmission, we tested mice lacking NMDA-type glutamate receptors (NMDARs) exclusively in dopamine neurons (NR1-KO mice). Surprisingly, NR1-KO mice learned at the same rate as their littermate controls. To evaluate the contribution of NMDARs to phasic dopamine release in this paradigm, we performed fast-scan cyclic voltammetry in the nucleus accumbens of awake mice. Despite having significantly attenuated phasic dopamine release following reward delivery, KO mice developed cue-evoked dopamine release at the same rate as controls. We conclude that NMDARs in dopamine neurons enhance but are not critical for phasic dopamine release to behaviorally relevant stimuli; furthermore, their contribution to phasic dopamine signaling is not necessary for the development of cue-evoked dopamine or anticipatory activity in a D1R-dependent Pavlovian conditioning paradigm.

  15. The dopamine hypothesis of drug addiction and its potential therapeutic value.

    Directory of Open Access Journals (Sweden)

    Marco eDiana

    2011-11-01

    Full Text Available Dopamine (DA transmission is deeply affected by drugs of abuse, and alterations in DA function are involved in various phases of drug addiction and potentially exploitable therapeutically. In particular, basic studies have documented a reduction in the electrophysiological activity of DA neurons in alcohol, opiate, cannabinoid and other drug-dependent rats. Further, DA release in the Nacc is decreased in virtually all drug-dependent rodents. In parallel, these studies are supported by increments in intracranial self stimulation (ICSS thresholds during withdrawal from alcohol, nicotine, opiates, and other drugs of abuse, thereby suggesting a hypofunction of the neural substrate of ICSS. Accordingly, morphological evaluations fed into realistic computational analysis of the Medium Spiny Neuron (MSN of the Nucleus accumbens (Nacc, post-synaptic counterpart of DA terminals, show profound changes in structure and function of the entire mesolimbic system. In line with these findings, human imaging studies have shown a reduction of dopamine receptors accompanied by a lesser release of endogenous DA in the ventral striatum of cocaine, heroin and alcohol-dependent subjects, thereby offering visual proof of the ‘dopamine-impoverished’ addicted human brain.The reduction in physiological activity of the DA system leads to the idea that an increment in its activity, to restore pre-drug levels, may yield significant clinical improvements (reduction of craving, relapse and drug-seeking/taking. In theory, it may be achieved pharmacologically and/or with novel interventions such as Transcranial Magnetic Stimulation (TMS. Its anatomo-physiological rationale as a possible therapeutic aid in alcoholics and other addicts will be described and proposed as a theoretical framework to be subjected to experimental testing in human addicts.

  16. Facilitatory effect of dopamine on neuromuscular transmission mediated via dopamine D1-like receptors and prospective interaction with nicotine.

    Science.gov (United States)

    AlQot, H E; Elnozahi, N A; Mohy El-Din, M M; Bistawroos, A E; Abou Zeit-Har, M S

    2015-10-15

    The objective of this study is to probe the effects of dopamine and potential interactions with nicotine at the motor end plate. To accomplish this, we measured the amplitude of nerve-evoked muscle twitches of the isolated rat phrenic hemi-diaphragm preparation. Dopamine potentiated indirect muscle twitches in normal and gallamine-presensitized preparations amounting to a maximum of 31.14±0.71% and 69.23±1.96%, respectively. The dopamine-induced facilitation was well maintained in presence of 10 µM propranolol but greatly reduced in presence of 6 µM SCH 23390 or 3 µM dantrolene. In addition, SKF 81297 attained a plateau at 16 µM as opposed to 64 µM dopamine, with a percentage potentiation of 69.47±1.76. The facilitatory effect of dopamine was potentiated in nicotine treated rats. This study revealed for the first time that the facilitatory effect exerted by dopamine on neuromuscular transmission is mediated via the dopamine D1-like receptors. In addition, it highlighted the possible dependency of dopamine effects on intracellular calcium and signified potential interaction among dopamine and nicotine. Clinically, the findings generated by this study reveal potential targets for approaching motor deficit syndromes.

  17. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets.

  18. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex.

  19. Expression of dopamine receptors in the subthalamic nucleus of the rat: characterization using reverse transcriptase-polymerase chain reaction and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Flores, G.; Liang, J.J. [Instituto de Fisiologia, Universidad Autonoma de Puebla, Apartado postal 406, 72000 Puebla (Mexico); Sierra, A.; Martinez-Fong, D. [Departamento de Fisiologia, Biofisica y Neurociencias, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional de Mexico, Apartado postal 14-740, 07000 Mexico City (Mexico); Quirion, R. [McGill Center for Research in Schizophrenia, Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal (Canada); Aceves, J. [Departamento de Fisiologia, Biofisica y Neurociencias, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional de Mexico, Apartado postal 14-740, 07000 Mexico City (Mexico); Srivastava, L.K. [McGill Center for Research in Schizophrenia, Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal (Canada)

    1999-06-01

    We analysed the expression of dopamine receptor subtypes in the subthalamic nucleus by means of reverse transcriptase-polymerase chain reaction. We also studied, using autoradiography, all pharmacologically characterized dopamine receptors in four subregions of the subthalamic nucleus. For comparison, dopamine receptor subtypes were also evaluated in brain regions where they are more abundant and well characterized. The radioligands used were: [{sup 3}H]SCH-23390, [{sup 3}H]emonapride and [{sup 3}H]2-dipropylamino-7-hydroxy-1,2,3,4-tetrahydronaphthalene for dopamine D{sub 1}, D{sub 2} and D{sub 3} receptors, respectively; and [{sup 3}H]YM-09151-2 in the presence of raclopride for dopamine D{sub 4} receptors. Finally, we also evaluated the effect of unilateral 6-hydroxydopamine injection into the medial forebrain bundle on dopamine receptor levels expressed in the ipsilateral subthalamic nucleus. The lesion was estimated by decrease in the binding of [{sup 3}H]WIN-35428, a specific dopamine transporter label. D{sub 1}, D{sub 2} and D{sub 3} receptor messenger RNAs and binding sites were present in the subthalamic nucleus, but no messenger RNA for D{sub 4} receptors was found, although specific binding sites for these receptors were observed. As compared to the intact side, the 6-hydroxydopamine lesion did not change D{sub 1} receptors, increased D{sub 2} receptors, and decreased D{sub 3} receptors and the dopamine transporter. The results suggest that postsynaptic D{sub 1}, D{sub 2} or D{sub 3} receptors can mediate the effect of dopamine on subthalamic nucleus neuronal activity. D{sub 4} receptors would mediate exclusively presynaptic effects.These results reinforce the idea that dopamine receptors in the subthalamic nucleus may play an important role in the physiology of the basal ganglia and in the pathophysiology of Parkinson's disease. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux

    DEFF Research Database (Denmark)

    Binda, Francesca; Dipace, Concetta; Bowton, Erica

    2008-01-01

    of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated...

  1. Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in an animal model with right ventricular failure after pulmonary artery banding.

    Science.gov (United States)

    Hyldebrandt, Janus Adler; Sivén, Eleonora; Agger, Peter; Frederiksen, Christian Alcaraz; Heiberg, Johan; Wemmelund, Kristian Borup; Ravn, Hanne Berg

    2015-07-01

    Right ventricular (RV) failure due to chronic pressure overload is a main determinant of outcome in congenital heart disease. Medical management is challenging because not only contractility but also the interventricular relationship is important for increasing cardiac output. This study evaluated the effect of milrinone alone and in combination with epinephrine or dopamine on hemodynamics, ventricular performance, and the interventricular relationship. RV failure was induced in 21 Danish landrace pigs by pulmonary artery banding. After 10 wk, animals were reexamined using biventricular pressure-volume conductance catheters. The maximum pressure in the RV increased by 113% (P dopamine further increased CI and HR in a dose-dependent manner but without any significant differences between the two interventions. A more pronounced increase in biventricular contractility was observed in the dopamine-treated animals. LV volume was reduced in both the dopamine and epinephrine groups with increasing doses In the failing pressure overloaded RV, milrinone improved CI and increased contractility. Albeit additional dose-dependent effects of both epinephrine and dopamine on CI and contractility, neither of the interventions improved SVI due to reduced filling of the LV. Copyright © 2015 the American Physiological Society.

  2. Functional potencies of dopamine agonists and antagonists at human dopamine D₂ and D₃ receptors.

    Science.gov (United States)

    Tadori, Yoshihiro; Forbes, Robert A; McQuade, Robert D; Kikuchi, Tetsuro

    2011-09-01

    We measured the functional agonist potencies of dopamine agonists including antiparkinson drugs, and functional antagonist potencies of antipsychotics at human dopamine D(2) and D(3) receptors. In vitro pharmacological assessment included inhibition of forskolin-stimulated cAMP accumulation and the reversal of dopamine-induced inhibition in clonal Chinese hamster ovary cells expressing low and high densities of human dopamine D(2L) and D(2S) receptors (hD(2L)-Low, hD(2L)-High, hD(2S)-Low and hD(2S)-High, respectively) and human dopamine D(3) Ser-9 and D(3) Gly-9 receptors (hD(3)-Ser-9 and hD(3)-Gly-9, respectively). Cabergoline, bromocriptine, pergolide, (±)-7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT), talipexole, pramipexole, R-(+)-trans-3,4,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-olhydrochloride (PD128907) and ropinirole behaved as dopamine D(2) and D(3) receptor full agonists and showed higher potencies in hD(2L)-High and hD(2S)-High compared to hD(2L)-Low and hD(2S)-Low. In hD(3)-Ser-9 and hD(3)-Gly-9 compared to hD(2L)-Low and hD(2S)-Low, dopamine, ropinirole, PD128907, and pramipexole potencies were clearly higher; talipexole and 7-OH-DPAT showed slightly higher potencies; pergolide showed slightly lower potency; and, cabergoline and bromocriptine potencies were lower. Aripiprazole acted as an antagonist in hD(2L)-Low; a low intrinsic activity partial agonist in hD(2S)-Low; a moderate partial agonist in hD(3)-Ser-9 and hD(3)-Gly-9; a robust partial agonist in hD(2L)-High; and a full agonist in hD(2S)-High. Amisulpride, sulpiride and perphenazine behaved as preferential antagonists; and chlorpromazine and asenapine behaved as modest preferential antagonists; whereas fluphenazine, haloperidol, and blonanserin behaved as non-preferential antagonists in hD(2S)-Low and hD(2S)-High compared to hD(3)-Ser-9 and hD(3)-Gly-9. These findings may help to elucidate the basis of therapeutic benefit observed with these drugs, with

  3. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease.

    Directory of Open Access Journals (Sweden)

    Tatyana D Sotnikova

    2005-08-01

    Full Text Available Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs.

  4. Mesolimbic dopamine and its neuromodulators in obesity and binge eating.

    Science.gov (United States)

    Naef, Lindsay; Pitman, Kimberley A; Borgland, Stephanie L

    2015-12-01

    Obesity has reached epidemic prevalence, and much research has focused on homeostatic and nonhomeostatic mechanisms underlying overconsumption of food. Mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), is a key substrate for nonhomeostatic feeding. The goal of the present review is to compare changes in mesolimbic dopamine function in human obesity with diet-induced obesity in rodents. Additionally, we will review the literature to determine if dopamine signaling is altered with binge eating disorder in humans or binge eating modeled in rodents. Finally, we assess modulation of dopamine neurons by neuropeptides and peripheral peptidergic signals that occur with obesity or binge eating. We find that while decreased dopamine concentration is observed with obesity, there is inconsistency outside the human literature on the relationship between striatal D2 receptor expression and obesity. Finally, few studies have explored how orexigenic or anorexigenic peptides modulate dopamine neuronal activity or striatal dopamine in obese models. However, ghrelin modulation of dopamine neurons may be an important factor for driving binge feeding in rodents.

  5. Hub and switches: endocannabinoid signalling in midbrain dopamine neurons.

    Science.gov (United States)

    Melis, Miriam; Pistis, Marco

    2012-12-05

    The last decade has provided a wealth of experimental data on the role played by lipids belonging to the endocannabinoid family in several facets of physiopathology of dopamine neurons. We currently suggest that these molecules, being intimately connected with diverse metabolic and signalling pathways, might differently affect various functions of dopamine neurons through activation not only of surface receptors, but also of nuclear receptors. It is now emerging how dopamine neurons can regulate their constituent biomolecules to compensate for changes in either internal functions or external conditions. Consequently, dopamine neurons use these lipid molecules as metabolic and homeostatic signal detectors, which can dynamically impact cell function and fitness. Because dysfunctions of the dopamine system underlie diverse neuropsychiatric disorders, including schizophrenia and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Particularly, because dopamine neurons are critical in controlling incentive-motivated behaviours, the involvement of endocannabinoid molecules in fine-tuning dopamine cell activity opened new avenues in both understanding and treating drug addiction. Here, we review recent advances that have shed new light on the understanding of differential roles of endocannabinoids and their cognate molecules in the regulation of the reward circuit, and discuss their anti-addicting properties, particularly with a focus on their potential engagement in the prevention of relapse.

  6. Modafinil-Induced Increases in Brain Dopamine Levels

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-04-01

    Full Text Available The acute effects of modafinil on extracellular dopamine and on dopamine transporters in the male human brain were measured by PET study in 10 healthy subjects at Brookhaven National Laboratory and National Institute on Drug Abuse, Bethesda, MD.

  7. Nucleus accumbens dopamine receptors in the consolidation of spatial memory.

    NARCIS (Netherlands)

    Mele, A.; Avena, M.; Roullet, P.; Leonibus, E. de; Mandillo, S.; Sargolini, F.; Coccurello, R.; Oliverio, A.

    2004-01-01

    Nucleus accumbens dopamine is known to play an important role in motor activity and in behaviours governed by drugs and natural reinforcers, as well as in non-associative forms of learning. At the same time, activation of D1 and D2 dopamine receptors has been suggested to promote intracellular event

  8. Opening the black box: dopamine, predictions, and learning.

    Science.gov (United States)

    Eshel, Neir; Tian, Ju; Uchida, Naoshige

    2013-09-01

    Dopamine neurons are thought to promote learning by signaling prediction errors, that is, the difference between actual and expected outcomes. Whether these signals are sufficient for associative learning, however, remains untested. A recent study used optogenetics in a classic behavioral paradigm to confirm the role of dopamine prediction errors in learning.

  9. Conformational changes in dopamine transporter intracellular regions upon cocaine binding and dopamine translocation.

    Science.gov (United States)

    Dehnes, Yvette; Shan, Jufang; Beuming, Thijs; Shi, Lei; Weinstein, Harel; Javitch, Jonathan A

    2014-07-01

    The dopamine transporter (DAT), a member of the neurotransmitter:sodium symporter family, mediates the reuptake of dopamine at the synaptic cleft. DAT is the primary target for psychostimulants such as cocaine and amphetamine. We previously demonstrated that cocaine binding and dopamine transport alter the accessibility of Cys342 in the third intracellular loop (IL3). To study the conformational changes associated with the functional mechanism of the transporter, we made cysteine substitution mutants, one at a time, from Phe332 to Ser351 in IL3 of the background DAT construct, X7C, in which 7 endogenous cysteines were mutated. The accessibility of the 20 engineered cysteines to polar charged sulfhydryl reagents was studied in the absence and presence of cocaine or dopamine. Of the 11 positions that reacted with methanethiosulfonate ethyl ammonium, as evidenced by inhibition of ligand binding, 5 were protected against this inhibition by cocaine and dopamine (S333C, S334C, N336C, M342C and T349C), indicating that reagent accessibility is affected by conformational changes associated with inhibitor and substrate binding. In some of the cysteine mutants, transport activity is disrupted, but can be rescued by the presence of zinc, most likely because the distribution between inward- and outward-facing conformations is restored by zinc binding. The experimental data were interpreted in the context of molecular models of DAT in both the inward- and outward-facing conformations. Differences in the solvent accessible surface area for individual IL3 residues calculated for these states correlate well with the experimental accessibility data, and suggest that protection by ligand binding results from the stabilization of the outward-facing configuration. Changes in the residue interaction networks observed from the molecular dynamics simulations also revealed the critical roles of several positions during the conformational transitions. We conclude that the IL3 region of DAT

  10. Dopamine agonist: pathological gambling and hypersexuality.

    Science.gov (United States)

    2008-10-01

    (1) Pathological gambling and increased sexual activity can occur in patients taking dopaminergic drugs. Detailed case reports and small case series mention serious familial and social consequences. The frequency is poorly documented; (2) Most affected patients are being treated for Parkinson's disease, but cases have been reported among patients prescribed a dopamine agonist for restless legs syndrome or pituitary adenoma; (3) Patients treated with this type of drug, and their relatives, should be informed of these risks so that they can watch for changes in behaviour. If such disorders occur, it may be necessary to reduce the dose or to withdraw the drug or replace it with another medication.

  11. Novos agonistas dopaminérgicos

    Directory of Open Access Journals (Sweden)

    MATTOS JAMES PITÁGORAS DE

    1999-01-01

    Full Text Available Apresentamos breve revisão da literatura sobre os agonistas dopaminérgicos. Referimos os cinco receptores conhecidos e onde estão localizados, as vantagens e as desvantagens de sua utilização nos pacientes com a doença de Parkinson.Introduzidos com o objetivo principal de controlar as limitações da levodopa, aumentando a janela terapêutica, analisamos a farmacocinética, a eficácia e os efeitos colaterais da cabergolina, do ropinirole e do pramipexole.

  12. Dopamine encoding of Pavlovian incentive stimuli diminishes with extended training.

    Science.gov (United States)

    Clark, Jeremy J; Collins, Anne L; Sanford, Christina Akers; Phillips, Paul E M

    2013-02-20

    Dopamine is highly implicated both as a teaching signal in reinforcement learning and in motivating actions to obtain rewards. However, theoretical disconnects remain between the temporal encoding properties of dopamine neurons and the behavioral consequences of its release. Here, we demonstrate in rats that dopamine evoked by Pavlovian cues increases during acquisition, but dissociates from stable conditioned appetitive behavior as this signal returns to preconditioning levels with extended training. Experimental manipulation of the statistical parameters of the behavioral paradigm revealed that this attenuation of cue-evoked dopamine release during the postasymptotic period was attributable to acquired knowledge of the temporal structure of the task. In parallel, conditioned behavior became less dopamine dependent after extended training. Thus, the current work demonstrates that as the presentation of reward-predictive stimuli becomes anticipated through the acquisition of task information, there is a shift in the neurobiological substrates that mediate the motivational properties of these incentive stimuli.

  13. Label-free dopamine imaging in live rat brain slices.

    Science.gov (United States)

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission free imaging of native molecules in live tissue.

  14. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    Science.gov (United States)

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  15. Surface functionalization of polyamide fiber via dopamine polymerization

    Science.gov (United States)

    Kuang, Xiao-Hui; Guan, Jin-Ping; Tang, Ren-Cheng; Chen, Guo-Qiang

    2017-09-01

    The oxidative polymerization of dopamine for the functional surface modification of textile fibers has drawn great attention. In this work, the functionalization of polyamide fiber via dopamine polymerization was studied with the aim of the fabrication of hydrophilic and antistatic surface. The conditions of dopamine application were first discussed in the absence of specific oxidants in terms of the apparent color depth of polyamide fiber. Dopamine concentration, pH and time were found to exert great impact on color depth. The highest color depth was achieved at pH 8.5. In the process of modification, polydopamine was deposited onto the surface of polyamide fiber. The modified polyamide fiber displayed a yellowish brown color with excellent wash and light color fastness, and exhibited good hydrophilic, UV protection and antistatic effects. A disadvantage of the present approach was the slow rate of dopamine polymerization and functionalization.

  16. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J;

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  17. Reactive oxygen species and dopamine receptor function in essential hypertension.

    Science.gov (United States)

    Zeng, Chunyu; Villar, Van Anthony M; Yu, Peiying; Zhou, Lin; Jose, Pedro A

    2009-04-01

    Essential hypertension is a major risk factor for stroke, myocardial infarction, and heart and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones and humoral factors. However, the mechanisms leading to impaired dopamine receptor function in hypertension states are not clear. Compelling experimental evidence indicates a role of reactive oxygen species (ROS) in hypertension, and there are increasing pieces of evidence showing that in conditions associated with oxidative stress, which is present in hypertensive states, dopamine receptor effects, such as natriuresis, diuresis, and vasodilation, are impaired. The goal of this review is to present experimental evidence that has led to the conclusion that decreased dopamine receptor function increases ROS activity and vice versa. Decreased dopamine receptor function and increased ROS production, working in concert or independent of each other, contribute to the pathogenesis of essential hypertension.

  18. The effects of Δ(9)-tetrahydrocannabinol on the dopamine system.

    Science.gov (United States)

    Bloomfield, Michael A P; Ashok, Abhishekh H; Volkow, Nora D; Howes, Oliver D

    2016-11-17

    The effects of Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, are a pressing concern for global mental health. Patterns of cannabis use are changing drastically owing to legalization, the availability of synthetic analogues (commonly termed spice), cannavaping and an emphasis on the purported therapeutic effects of cannabis. Many of the reinforcing effects of THC are mediated by the dopamine system. Owing to the complexity of the cannabinoid-dopamine interactions that take place, there is conflicting evidence from human and animal studies concerning the effects of THC on the dopamine system. Acute THC administration causes increased dopamine release and neuron activity, whereas long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of THC.

  19. [Multiple Dopamine Signals and Their Contributions to Reinforcement Learning].

    Science.gov (United States)

    Matsumoto, Masayuki

    2016-10-01

    Midbrain dopamine neurons are activated by reward and sensory cue that predicts reward. Their responses resemble reward prediction error that indicates the discrepancy between obtained and expected reward values, which has been thought to play an important role as a teaching signal in reinforcement learning. Indeed, pharmacological blockade of dopamine transmission interferes with reinforcement learning. Recent studies reported, however, that not all dopamine neurons transmit the reward-related signal. They found that a subset of dopamine neurons transmits signals related to non-rewarding, salient experiences such as aversive stimulations and cognitively demanding events. How these signals contribute to animal behavior is not yet well understood. This article reviews recent findings on dopamine signals related to rewarding and non-rewarding experiences, and discusses their contributions to reinforcement learning.

  20. Carbon Dot Based Sensing of Dopamine and Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Upama Baruah

    2014-01-01

    Full Text Available We demonstrate carbon dot based sensor of catecholamine, namely, dopamine and ascorbic acid. Carbon dots (CDs were prepared from a green source: commercially available Assam tea. The carbon dots prepared from tea had particle sizes of ∼0.8 nm and are fluorescent. Fluorescence of the carbon dots was found to be quenched in the presence of dopamine and ascorbic acid with greater sensitivity for dopamine. The minimum detectable limits were determined to be 33 μM and 98 μM for dopamine and ascorbic acid, respectively. The quenching constants determined from Stern-Volmer plot were determined to be 5 × 10−4 and 1 × 10−4 for dopamine and ascorbic acid, respectively. A probable mechanism of quenching has been discussed in the paper.

  1. Characterization of pre- and postsynaptic dopamine receptors in Lymnaea.

    Science.gov (United States)

    Audesirk, T E

    1989-01-01

    1. The effects of dopamine and several synthetic agonists and antagonists were studied using two identified neurons of the snail Lymnaea stagnalis. 2. In both the buccal-2 (B-2) neurons and the pedal giant (RPeD1) neuron dopamine elicited a hyperpolarizing response at least partly due to potassium efflux. RPeD1 is itself dopaminergic, implicating autoreceptors in its response to dopamine. 3. The following agents were tested: agonists--LY171555, pergolide, SKF38393, (-)-3-PPP, R(-)NPA and dopamine; antagonists--SCH23390, sulpiride, and metaclopramide. Dibutyryl cAMP was applied to determine whether the response is cAMP-mediated. 4. Results indicate that the pharmacological profiles of dopamine receptors on these neurons are inconsistent with those of either D-1, D-2 or autoreceptors in mammals.

  2. Arithmetic and local circuitry underlying dopamine prediction errors.

    Science.gov (United States)

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-09-10

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area while mice engaged in classical conditioning. Here we demonstrate, by manipulating the temporal expectation of reward, that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA (γ-aminobutyric acid) neurons in the ventral tegmental area reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction-error calculations. Finally, bilaterally stimulating ventral tegmental area GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors.

  3. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  4. The association of the dopamine transporter gene and the dopamine receptor 2 gene with delirium: a meta-analysis.

    NARCIS (Netherlands)

    Munster, B.C. van; Rooij, S.E.J.A. de; Yazdanpanah, M.; Tienari, P.J.; Pitkala, K.H.; Osse, R.J.; Adamis, D.; Smit, O.; Steen, M.S. van der; Houten, M. van; Rahkonen, T.; Sulkava, R.; Laurila, J.V.; Strandberg, T.E.; Tulen, J.H.M.; Zwang, L.; Macdonald, A.J.D.; Treloar, A.; Sijbrands, E.J.G.; Zwinderman, A.H.; Korevaar, J.C.

    2010-01-01

    Delirium is the most common neuropsychiatric syndrome in elderly ill patients. Previously, associations between delirium and the dopamine transporter gene (solute carrier family 6, member 3 (SLC6A3)) and dopamine receptor 2 gene (DRD2) were found. The aim of this study was to validate whether marker

  5. Advances in physiological computing

    CERN Document Server

    Fairclough, Stephen H

    2014-01-01

    This edited collection will provide an overview of the field of physiological computing, i.e. the use of physiological signals as input for computer control. It will cover a breadth of current research, from brain-computer interfaces to telemedicine.

  6. Phun Week: Understanding Physiology

    Science.gov (United States)

    Limson, Mel; Matyas, Marsha Lakes

    2009-01-01

    Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn…

  7. Physiology of sport.

    Science.gov (United States)

    Maughan, Ron

    2007-07-01

    The elite athlete represents the extreme of the human gene pool, where genetic endowment is developed by an intensive training programme. Sport encompasses many different activities, calling for different physical and mental attributes. Understanding the physiology of exercise provides insights into normal physiological function.

  8. Physiological changes in pregnancy

    OpenAIRE

    SOMA-PILLAY, Priya; Catherine, Nelson-Piercy; Tolppanen, Heli; Mebazaa, Alexandre

    2016-01-01

    Abstract Physiological changes occur in pregnancy to nurture the developing foetus and prepare the mother for labour and delivery. Some of these changes influence normal biochemical values while others may mimic symptoms of medical disease. It is important to differentiate between normal physiological changes and disease pathology. This review highlights the important changes that take place during normal pregnancy.

  9. Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human α-synuclein.

    Science.gov (United States)

    Lam, Hoa A; Wu, Nanping; Cely, Ingrid; Kelly, Rachel L; Hean, Sindalana; Richter, Franziska; Magen, Iddo; Cepeda, Carlos; Ackerson, Larry C; Walwyn, Wendy; Masliah, Eliezer; Chesselet, Marie-Françoise; Levine, Michael S; Maidment, Nigel T

    2011-07-01

    Overexpression or mutation of α-synuclein (α-Syn), a protein associated with presynaptic vesicles, causes familial forms of Parkinson's disease in humans and is also associated with sporadic forms of the disease. We used in vivo microdialysis, tissue content analysis, behavioral assessment, and whole-cell patch clamp recordings from striatal medium-sized spiny neurons (MSSNs) in slices to examine dopamine transmission and dopaminergic modulation of corticostriatal synaptic function in mice overexpressing human wild-type α-Syn under the Thy1 promoter (α-Syn mice). Tonic striatal extracellular dopamine and 3-methoxytyramine levels were elevated in α-Syn mice at 6 months of age, prior to any reduction in total striatal tissue content, and were accompanied by an increase in open-field activity. Dopamine clearance and amphetamine-induced dopamine efflux were unchanged. The frequency of MSSN spontaneous excitatory postsynaptic currents (sEPSCs) was lower in α-Syn mice. Amphetamine reduced sEPSC frequency in wild types (WTs) but produced no effect in α-Syn mice. Furthermore, whereas quinpirole reduced and sulpiride increased sEPSC frequency in WT mice, they produced the opposite effects in α-Syn mice. These observations indicate that overexpression of α-Syn alters dopamine efflux and D2 receptor modulation of corticostriatal glutamate release at a young age. At 14 months of age, the α-Syn mice presented with significantly lower striatal tissue dopamine and tyrosine hydroxylase content relative to WT littermates, accompanied by an L-DOPA-reversible sensory motor deficit. Together, these data further validate this transgenic mouse line as a slowly progressing model of Parkinson's disease and provide evidence for early dopamine synaptic dysfunction prior to loss of striatal dopamine. Copyright © 2011 Wiley-Liss, Inc.

  10. Palmitoylation mechanisms in dopamine transporter regulation.

    Science.gov (United States)

    Rastedt, Danielle E; Vaughan, Roxanne A; Foster, James D

    2017-10-01

    The neurotransmitter dopamine (DA) plays a key role in several biological processes including reward, mood, motor activity and attention. Synaptic DA homeostasis is controlled by the dopamine transporter (DAT) which transports extracellular DA into the presynaptic neuron after release and regulates its availability to receptors. Many neurological disorders such as schizophrenia, bipolar disorder, Parkinson disease and attention-deficit hyperactivity disorder are associated with imbalances in DA homeostasis that may be related to DAT dysfunction. DAT is also a target of psychostimulant and therapeutic drugs that inhibit DA reuptake and lead to elevated dopaminergic neurotransmission. We have recently demonstrated the acute and chronic modulation of DA reuptake activity and DAT stability through S-palmitoylation, the linkage of a 16-carbon palmitate group to cysteine via a thioester bond. This review summarizes the properties and regulation of DAT palmitoylation and describes how it serves to affect various transporter functions. Better understanding of the role of palmitoylation in regulation of DAT function may lead to identification of therapeutic targets for modulation of DA homeostasis in the treatment of dopaminergic disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex.

  12. Kinetic Diversity of Striatal Dopamine: Evidence from a Novel Protocol for Voltammetry.

    Science.gov (United States)

    Walters, Seth H; Robbins, Elaine M; Michael, Adrian C

    2016-05-18

    In vivo voltammetry reveals substantial diversity of dopamine kinetics in the rat striatum. To substantiate this kinetic diversity, we evaluate the temporal distortion of dopamine measurements arising from the diffusion-limited adsorption of dopamine to voltammetric microelectrodes. We validate two mathematical procedures for correcting adsorptive distortion, both of which substantiate that dopamine's apparent kinetic diversity is not an adsorption artifact.

  13. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons

    Science.gov (United States)

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg

    2014-01-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological

  14. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.

    Science.gov (United States)

    Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C; Striessnig, Joerg; Liss, Birgit

    2014-08-01

    Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson's disease. Their selective loss causes the major motor symptoms of Parkinson's disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson's disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca(2+) channels both contribute to Parkinson's disease pathology. L-type Ca(2+) channel blockers protect SN DA neurons from degeneration in Parkinson's disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson's disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson's disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson's disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson's disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic

  15. Role of dopamine agonists in Parkinson's disease: an update.

    Science.gov (United States)

    Bonuccelli, Ubaldo; Pavese, Nicola

    2007-10-01

    At present, dopamine agonists play an important role in antiparkinsonian therapy since they were proved effective in the management of both advanced- and early-stage Parkinson's disease. In the latter, they are often regarded as first-choice medication to delay the introduction of levodopa therapy. Despite sharing the capacity to directly stimulate dopamine receptors, dopamine agonists show different pharmacological properties as they act on different subsets of dopamine receptors. This, in theory, provides the advantage of obtaining a different antiparkinsonian activity or safety profile with each agent. However, there is very little evidence that any of the marketed dopamine agonists should be consistently preferred in the management of patients with Parkinson's disease. Pergolide and cabergoline are now considered a second-line choice after the proven association with valvular fibrosis. Transdermal administration (rotigotine) and subcutaneous infusion (apomorphine) of dopamine receptor agonists are now available alternatives to oral administration and provide continuous dopaminergic stimulation. Continuous subcutaneous apomorphine infusion during waking hours leads to a large reduction in daily 'off' time, dyskinesias and levodopa daily dose. Almost all currently used dopamine agonists are able to provide neuroprotective effects towards dopaminergic neurons during in vitro and in vivo experiments. This neuroprotection may be the result of different mechanisms including antioxidation, scavenging of free radicals, suppression of lipid peroxidation and inhibition of apoptosis. However, the disease-modifying effect of these agents in Parkinson's disease remains to be ascertained.

  16. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  17. Dopamine function and the efficiency of human movement.

    Science.gov (United States)

    Gepshtein, Sergei; Li, Xiaoyan; Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard

    2014-03-01

    To sustain successful behavior in dynamic environments, active organisms must be able to learn from the consequences of their actions and predict action outcomes. One of the most important discoveries in systems neuroscience over the last 15 years has been about the key role of the neurotransmitter dopamine in mediating such active behavior. Dopamine cell firing was found to encode differences between the expected and obtained outcomes of actions. Although activity of dopamine cells does not specify movements themselves, a recent study in humans has suggested that tonic levels of dopamine in the dorsal striatum may in part enable normal movement by encoding sensitivity to the energy cost of a movement, providing an implicit "motor motivational" signal for movement. We investigated the motivational hypothesis of dopamine by studying motor performance of patients with Parkinson disease who have marked dopamine depletion in the dorsal striatum and compared their performance with that of elderly healthy adults. All participants performed rapid sequential movements to visual targets associated with different risk and different energy costs, countered or assisted by gravity. In conditions of low energy cost, patients performed surprisingly well, similar to prescriptions of an ideal planner and healthy participants. As energy costs increased, however, performance of patients with Parkinson disease dropped markedly below the prescriptions for action by an ideal planner and below performance of healthy elderly participants. The results indicate that the ability for efficient planning depends on the energy cost of action and that the effect of energy cost on action is mediated by dopamine.

  18. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Emese Prandovszky

    Full Text Available The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

  19. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.

    Science.gov (United States)

    Fernández, Ana C Rossi; Castellani, Norberto J

    2017-08-05

    The role of noncovalent interactions in the adsorption of biological molecules on graphene is a subject of fundamental interest regarding the use of graphene as a material for sensing and drug delivery. The adsorption of dopamine on regular graphene and graphene with monovacancies (GV) is theoretically studied within the framework of density functional theory. Several adsorption modes are considered, and notably those in which the dopamine molecule is oriented parallel or quasi-parallel to the surface are the more stable. The adsorption of dopamine on graphene implies an attractive interaction of a dispersive nature that competes with Pauli repulsion between the occupied π orbitals of the dopamine ring and the π orbitals of graphene. If dopamine adsorbs at the monovacancy in the A-B stacking mode, a hydrogen bond is produced between one of the dopamine hydroxy groups and one carbon atom around the vacancy. The electronic charge redistribution due to adsorption is consistent with an electronic drift from the graphene or GV surface to the dopamine molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Striatal dopamine release codes uncertainty in pathological gambling.

    Science.gov (United States)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka; Møller, Arne; Doudet, Doris Jeanne; Gjedde, Albert

    2012-10-30

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors.

  1. Good riddance to dopamine: roles for the dopamine transporter in synaptic function and dopamine-associated brain disorders.

    Science.gov (United States)

    Gowrishankar, Raajaram; Hahn, Maureen K; Blakely, Randy D

    2014-07-01

    The neurotransmitter dopamine (DA) plays a critical role in CNS circuits that provide for attention, executive function, reward responses, motivation and movement. DA is inactivated by the cocaine- and amphetamine-sensitive DA transporter (DAT), a protein that also provides a pathway for non-vesicular DA release. After a brief review of DAT function and psychostimulant actions, we consider the importance DAT in relation to the distinct firing patterns of DA neurons that permit awareness of novelty and reward. Finally, we review recent efforts to gather direct support for DAT-linked disorders, with a specific focus on DAT mutations recently identified in subjects with ADHD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The Role of Dopamine in Normal Rodent Motor Cortex: Physiological Effects and Structural Correlates

    Science.gov (United States)

    1999-04-05

    portions of the dendritic arbors of these 32 neurons . The dendritic labeling made it possible to classify these neurons as multipolar . Figure 1 A is a... neurons . These neurons exhibited extensive dendritic labeling and were predominantly multipolar in shape. Examples are shown in Figure 6 A-B. In each...Immunohistochemistry and in situ hybridization were used to determine the laminar distnbution and morphology of neurons that contain the protein and

  3. Methamphetamine Regulation of Firing Activity of Dopamine Neurons.

    Science.gov (United States)

    Lin, Min; Sambo, Danielle; Khoshbouei, Habibeh

    2016-10-05

    Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca(2+) homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca(2+)-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane.

  4. Dopamine does not limit fetal cerebrovascular responses to hypoxia.

    Science.gov (United States)

    Mayock, Dennis E; Bennett, Rachel; Robinson, Roderick D; Gleason, Christine A

    2007-01-01

    Dopamine is used clinically to stabilize mean arterial blood pressure (MAP) in sick infants. One goal of this therapeutic intervention is to maintain adequate cerebral blood flow (CBF) and perfusion pressure. High-dose intravenous dopamine has been previously demonstrated to increase cerebrovascular resistance (CVR) in near-term fetal sheep. We hypothesized that this vascular response might limit cerebral vasodilatation during acute isocapnic hypoxia. We studied nine near-term chronically catheterized unanesthetized fetal sheep. Using radiolabeled microspheres to measure fetal CBF, we calculated CVR at baseline, during fetal hypoxia, and then with the addition of an intravenous dopamine infusion at 2.5, 7.5, and 25 microg.kg(-1).min(-1) while hypoxia continued. During acute isocapnic fetal hypoxia, CBF increased 73.0 +/- 14.1% and CVR decreased 38.9 +/- 4.9% from baseline. Dopamine infusion at 2.5 and 7.5 microg.kg(-1).min(-1), begun during hypoxia, did not alter CVR or MAP, but MAP increased when dopamine infusion was increased to 25 microg.kg(-1).min(-1). Dopamine did not alter CBF or affect the CBF response to hypoxia at any dose. However, CVR increased at a dopamine infusion rate of 25 microg.kg(-1).min(-1). This increase in CVR at the highest dopamine infusion rate is likely an autoregulatory response to the increase in MAP, similar to our previous findings. Therefore, in chronically catheterized unanesthetized near-term fetal sheep, dopamine does not alter the expected cerebrovascular responses to hypoxia.

  5. Current drug treatments targeting dopamine D3 receptor.

    Science.gov (United States)

    Leggio, Gian Marco; Bucolo, Claudio; Platania, Chiara Bianca Maria; Salomone, Salvatore; Drago, Filippo

    2016-09-01

    Dopamine receptors (DR) have been extensively studied, but only in recent years they became object of investigation to elucidate the specific role of different subtypes (D1R, D2R, D3R, D4R, D5R) in neural transmission and circuitry. D1-like receptors (D1R and D5R) and D2-like receptors (D2R, D2R and D4R) differ in signal transduction, binding profile, localization in the central nervous system and physiological effects. D3R is involved in a number of pathological conditions, including schizophrenia, Parkinson's disease, addiction, anxiety, depression and glaucoma. Development of selective D3R ligands has been so far challenging, due to the high sequence identity and homology shared by D2R and D3R. As a consequence, despite a rational design of selective DR ligands has been carried out, none of currently available medicines selectively target a given D2-like receptor subtype. The availability of the D3R ligand [(11)C]-(+)-PHNO for positron emission tomography studies in animal models as well as in humans, allows researchers to estimate the expression of D3R in vivo; displacement of [(11)C]-(+)-PHNO binding by concurrent drug treatments is used to estimate the in vivo occupancy of D3R. Here we provide an overview of studies indicating D3R as a target for pharmacological therapy, and a review of market approved drugs endowed with significant affinity at D3R that are used to treat disorders where D3R plays a relevant role.

  6. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations

    Science.gov (United States)

    Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus

    2017-01-01

    Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509

  7. Fetal cardiovascular physiology.

    Science.gov (United States)

    Rychik, J

    2004-01-01

    The cardiovascular system of the fetus is physiologically different than the adult, mature system. Unique characteristics of the myocardium and specific channels of blood flow differentitate the physiology of the fetus from the newborn. Conditions of increased preload and afterload in the fetus, such as sacrococcygeal teratoma and twin-twin transfusion syndrome, result in unique and complex pathophysiological states. Echocardiography has improved our understanding of human fetal cadiovasvular physiology in the normal and diseased states, and has expanded our capability to more effectively treat these disease processes.

  8. Dopamine release from serotonergic nerve fibers is reduced in L-DOPA-induced dyskinesia

    Science.gov (United States)

    Nevalainen, Nina; af Bjerkén, Sara; Lundblad, Martin; Gerhardt, Greg A.; Strömberg, Ingrid

    2011-01-01

    L-DOPA (3,4-dihydroxyphenyl-L-alanine) is the most commonly used treatment for symptomatic control in patients with Parkinson’s disease. Unfortunately, most patients develop severe side effects, such as dyskinesia, upon chronic L-DOPA treatment. The patophysiology of dyskinesia is unclear, however, involvement of serotonergic nerve fibers in converting L-DOPA to dopamine has been suggested. Therefore, potassium-evoked dopamine release was studied after local application of L-DOPA in the striata of normal, dopamine- and dopamine/serotonin-lesioned L-DOPA naïve, and dopamine-denervated chronically L-DOPA-treated dyskinetic rats using in vivo chronoamperometry. The results revealed that local L-DOPA administration into normal and intact hemisphere of dopamine-lesioned L-DOPA naïve animals significantly increased the potassium-evoked dopamine release. L-DOPA application also increased the dopamine peak amplitude in the dopamine-depleted L-DOPA naïve striatum, although these dopamine levels were several-folds lower than in the normal striatum, while no increased dopamine release was found in the dopamine/serotonin-denervated striatum. In dyskinetic animals, local L-DOPA application did not affect the dopamine release, resulting in significantly attenuated dopamine levels compared to those measured in L-DOPA naïve dopamine-denervated striatum. To conclude, L-DOPA is most likely converted to dopamine in serotonergic nerve fibers in the dopamine-depleted striatum, but the dopamine release is several-fold lower than in normal striatum. Furthermore, L-DOPA loading does not increase the dopamine release in dyskinetic animals as found in L-DOPA naïve animals, despite similar density of serotonergic innervation. Thus, the dopamine overflow produced from the serotonergic nerve fibers appears not to be the major cause of dyskinetic behavior. PMID:21534956

  9. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Science.gov (United States)

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  10. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Directory of Open Access Journals (Sweden)

    Mengia-Seraina Rioult-Pedotti

    Full Text Available Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA, leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  11. Acrylamide increases dopamine levels by affecting dopamine transport and metabolism related genes in the striatal dopaminergic system.

    Science.gov (United States)

    Pan, Xiaoqi; Guo, Xiongxiong; Xiong, Fei; Cheng, Guihong; Lu, Qing; Yan, Hong

    2015-07-01

    Dopaminergic system dysfunction is proved to be a possible mechanism in acrylamide (ACR) -induced neurotoxicity. The neurotransmitter dopamine (DA) has an increasingly important role in the dopaminergic system. Thus, the goal of this study is to evaluate effects of ACR on dopamine and its metabolite levels, dopamine transport and metabolic gene expression in dopaminergic neurons. Male Sprague-Dawley (SD) rats were dosed orally with ACR at 0 (saline), 20, 30, and 40 mg/kg/day for 20 days. Splayed hind limbs, reduced tail flick time and abnormal gait which preceded other neurologic parameters were observed in the above rats. ACR significantly increased dopamine levels, decreased 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) contents in an area dependent manner in rat striatum. Immunohistochemical staining of the striatum revealed that the number of tyrosine hydroxylase (TH) positive cells significantly increased, while monoamine oxidase (MAO) positive cells were drastically reduced, which was consistent with changes in their mRNA and protein expressions. In addition, dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) expression levels were both down-regulated in the striatum. These results suggest that dopamine levels increase significantly in response to ACR, presumably due to changes in the dopamine transport and metabolism related genes expression in the striatal dopaminergic neurons.

  12. Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake.

    Science.gov (United States)

    Yuan, Yaxia; Quizon, Pamela M; Sun, Wei-Lun; Yao, Jianzhuang; Zhu, Jun; Zhan, Chang-Guo

    2016-06-02

    HIV-1 Tat plays an important role in HIV-associated neurocognitive disorders (HAND) by disrupting neurotransmission including dopamine uptake by human dopamine transporter (hDAT). Previous studies have demonstrated that HIV-1 Tat directly binds to hDAT and some amino-acid mutations that attenuate the hDAT-Tat binding also significantly decreased dopamine uptake activity of hDAT. This combined computational-experimental study demonstrates that histidine-547 (H547) of hDAT plays a crucial role in the hDAT-Tat binding and dopamine uptake by hDAT, and that the H547A mutation can not only considerably attenuate Tat-induced inhibition of dopamine uptake, but also significantly increase the Vmax of hDAT for dopamine uptake. The finding of such an unusual hDAT mutant capable of both increasing the Vmax of hDAT for dopamine uptake and disrupting the hDAT-Tat binding may provide an exciting knowledge basis for development of novel concepts for therapeutic treatment of the HAND.

  13. Reproduction, physiology and biochemistry

    Science.gov (United States)

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  14. Poly(N-isopropylacrylamide)/poly(dopamine) capsules.

    Science.gov (United States)

    Zhang, Yan; Teo, Boon M; Goldie, Kenneth N; Städler, Brigitte

    2014-05-20

    Polymer capsules are an interesting concept considered in nanobiotechnology. Approaches that facilitate their assembly remain sought after. Poly(dopamine) (PDA) has been considered and successfully applied in this context. We recently demonstrated that PDA could be copolymerized with different types of poly(N-isopropylacrylamide) (pNiPAAm) to assemble mixed films on planar substrates. Herein, we transferred this approach onto colloidal substrates and characterized the film thickness depending on the film composition and template particles size. While the membrane of capsules assembled using 5 μm template particles exhibited strong dependency on the film composition, smaller templates led to capsules with similar membrane thickness. We then compared the permeability of different capsules using fluorescently labeled dextran and fluorescein. We found that the permeability of capsules was heavily dependent on the polymer composition and the template particle size. These fundamental findings contribute to the potential of these capsules, assembled in one-step, for biomedical applications.

  15. Role of Dopamine Signaling in Drug Addiction.

    Science.gov (United States)

    Chen, Wan; Nong, Zhihuan; Li, Yaoxuan; Huang, Jianping; Chen, Chunxia; Huang, Luying

    2017-01-01

    Addiction is a chronic, relapsing disease of the brain that includes drug-induced compulsive seeking behavior and consumption of drugs. Dopamine (DA) is considered to be critical in drug addiction due to reward mechanisms in the midbrain. In this article, we review the major animal models in addictive drug experiments in vivo and in vitro. We discuss the relevance of the structure and pharmacological function of DA receptors. To improve the understanding of the role of DA receptors in reward pathways, specific brain regions, including the Ventral tegmental area, Nucleus accumbens, Prefrontal cortex, and Habenula, are highlighted. These factors contribute to the development of novel therapeutic targets that act at DA receptors. In addiction, the development of neuroimaging method will increase our understanding of the mechanisms underlying drug addiction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Whole organic electronic synapses for dopamine detection

    Science.gov (United States)

    Giordani, Martina; Di Lauro, Michele; Berto, Marcello; Bortolotti, Carlo A.; Vuillaume, Dominique; Gomes, Henrique L.; Zoli, Michele; Biscarini, Fabio

    2016-09-01

    A whole organic artificial synapse has been fabricated by patterning PEDOT:PSS electrodes on PDMS that are biased in frequency to yield a STP response. The timescale of the STP response is shown to be sensitive to the concentration of dopamine, DA, a neurotransmitter relevant for monitoring the development of Parkinson's disease and potential locoregional therapies. The sensitivity of the sensor towards DA has been validated comparing signal variation in the presence of DA and its principal interfering agent, ascorbic acid, AA. The whole organic synapse is biocompatible, soft and flexible, and is attractive for implantable devices aimed to real-time monitoring of DA concentration in bodily fluids. This may open applications in chronic neurodegenerative diseases such as Parkinson's disease.

  17. Dopamine function in Lesch-Nyhan disease.

    Science.gov (United States)

    Nyhan, W L

    2000-01-01

    Lesch-Nyhan disease is a disorder of purine metabolism resulting from mutations in the gene for hypoxanthine guanine phosphoribosyl transferase on the X chromosome. It is characterized by hyperuricemia and all of its consequences, as in gout; but in addition, patients have impressive disease of the central nervous system. This includes spasticity, involuntary movements, and retardation of motor development. The behavioral phenotype is best remembered by self-injurious biting behavior with attendant destruction of tissue. The connection between aberrant metabolism of purines and these neurologic and behavioral features of the disease is not clear. Increasing evidence points to imbalance of neurotransmitters. There is increased excretion of the serotonin metabolite 5-hydroxyindoleacetic acid in the urine. There are decreased quantities and activities of a number of dopaminergic functions. Positron emission tomography scanning has indicated deficiency in the dopamine transporter. PMID:10852837

  18. Dopamine Signaling in reward-related behaviors

    Directory of Open Access Journals (Sweden)

    Ja-Hyun eBaik

    2013-10-01

    Full Text Available Dopamine (DA regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DAmesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural rewards such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  19. Prefrontal cortex, dopamine, and jealousy endophenotype.

    Science.gov (United States)

    Marazziti, Donatella; Poletti, Michele; Dell'Osso, Liliana; Baroni, Stefano; Bonuccelli, Ubaldo

    2013-02-01

    Jealousy is a complex emotion characterized by the perception of a threat of loss of something that the person values,particularly in reference to a relationship with a loved one, which includes affective, cognitive, and behavioral components. Neural systems and cognitive processes underlying jealousy are relatively unclear, and only a few neuroimaging studies have investigated them. The current article discusses recent empirical findings on delusional jealousy, which is the most severe form of this feeling, in neurodegenerative diseases. After reviewing empirical findings on neurological and psychiatric disorders with delusional jealousy, and after considering its high prevalence in patients with Parkinson's disease under dopamine agonist treatment, we propose a core neural network and core cognitive processes at the basis of (delusional) jealousy, characterizing this symptom as possible endophenotype. In any case,empirical investigation of the neural bases of jealousy is just beginning, and further studies are strongly needed to elucidate the biological roots of this complex emotion.

  20. Dopamine signaling in reward-related behaviors.

    Science.gov (United States)

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  1. Physiological mechanisms of prosociality.

    Science.gov (United States)

    Miller, Jonas G

    2017-08-12

    Psychophysiological perspectives can provide unique insights into the nature and motivations of children's prosociality and inform our understanding of individual differences. Here, I review current research on prosociality involving some of the most common physiological measures in developmental psychology, including cortisol, various sympathetic nervous system measures, and high-frequency heart rate variability. The literature has been quite mixed, in part because the link between physiology and prosociality is context-dependent and person-dependent. However, recent advances are refining our understanding of the basic physiological mechanisms of prosociality. Resting physiology that contributes to a balance of regulation and vigilance prepares children to effectively cope with future social challenges, like noticing and attending to the needs of others. Experiencing some arousal is an important aspect of empathy-related responding, but physiological patterns of both heightened and hypoarousal can undermine prosociality. Physiological flexibility in response to others' needs may support emotional and behavioral flexibility important for prosociality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Luczak, Teresa [Department of Physical Chemistry, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, PL-60-780 Poznan (Poland)

    2008-08-01

    A dopamine polymer film was electrogenerated on the bare gold template from a 5 x 10{sup -3} M dopamine solution in phosphate buffer at pH 7 and next subjected to overoxidation in 0.1 M sodium hydroxide solution. The overoxidized dopamine polymer film obtained shows good permeability to cationic species and was used for quantitative determination of dopamine. A linear relationship between dopamine concentration and current response was obtained in the range of 1 x 10{sup -6} M to 6 x 10{sup -4} M with the detection limit 2 x 10{sup -7} M. The results have shown that using the overoxidized dopamine film it is possible to perform electrochemical analysis of dopamine without interference of ascorbic and uric acids, which is the major limitation in dopamine determination. The modified electrode shows good selectivity, sensitivity, reproducibility and high stability. (author)

  3. Both stimulatory and inhibitory effects of dietary 5-hydroxytryptophan and tyrosine are found on urinary excretion of serotonin and dopamine in a large human population

    Directory of Open Access Journals (Sweden)

    George J Trachte

    2009-04-01

    Full Text Available George J Trachte1, Thomas Uncini2, Marty Hinz31Department of Physiology and Pharmacology, University of MN Medical School Duluth, Duluth, MN, USA; 2Chief Medical Examiner, St. Louis County, Hibbing, MN, USA; 3Clinical Research, NeuroResearch Clinics, Inc., Duluth, MN, USA Abstract: Amino acid precursors of dopamine and serotonin have been administered for decades to treat a variety of clinical conditions including depression, anxiety, insomnia, obesity, and a host of other illnesses. Dietary administration of these amino acids is designed to increase dopamine and serotonin levels within the body, particularly the brain. Convincing evidence exists that these precursors normally elevate dopamine and serotonin levels within critical brain tissues and other organs. However, their effects on urinary excretion of neurotransmitters are described in few studies and the results appear equivocal. The purpose of this study was to define, as precisely as possible, the influence of both 5-hydroxytryptophan (5-HTP and tyrosine on urinary excretion of serotonin and dopamine in a large human population consuming both 5-HTP and tyrosine. Curiously, only 5-HTP exhibited a marginal stimulatory influence on urinary serotonin excretion when 5-HTP doses were compared to urinary serotonin excretion; however, a robust relationship was observed when alterations in 5-HTP dose were compared to alterations in urinary serotonin excretion in individual patients. The data indicate three statistically discernible components to 5-HTP responses, including inverse, direct, and no relationships between urinary serotonin excretion and 5-HTP doses. The response to tyrosine was more consistent but primarily yielded an unexpected reduction in urinary dopamine excretion. These data indicate that the urinary excretion pattern of neurotransmitters after consumption of their precursors is far more complex than previously appreciated. These data on urinary neurotransmitter excretion might

  4. Quantitation of dopamine, serotonin and adenosine content in a tissue punch from a brain slice using capillary electrophoresis with fast-scan cyclic voltammetry detection.

    Science.gov (United States)

    Fang, Huaifang; Pajski, Megan L; Ross, Ashley E; Venton, B Jill

    2013-01-01

    Methods to determine neurochemical concentrations in small samples of tissue are needed to map interactions among neurotransmitters. In particular, correlating physiological measurements of neurotransmitter release and the tissue content in a small region would be valuable. HPLC is the standard method for tissue content analysis but it requires microliter samples and the detector often varies by the class of compound being quantified; thus detecting molecules from different classes can be difficult. In this paper, we develop capillary electrophoresis with fast-scan cyclic voltammetry detection (CE-FSCV) for analysis of dopamine, serotonin, and adenosine content in tissue punches from rat brain slices. Using field-amplified sample stacking, the limit of detection was 5 nM for dopamine, 10 nM for serotonin, and 50 nM for adenosine. Neurotransmitters could be measured from a tissue punch as small as 7 µg (7 nL) of tissue, three orders of magnitude smaller than a typical HPLC sample. Tissue content analysis of punches in successive slices through the striatum revealed higher dopamine but lower adenosine content in the anterior striatum. Stimulated dopamine release was measured in a brain slice, then a tissue punch collected from the recording region. Dopamine content and release had a correlation coefficient of 0.71, which indicates much of the variance in stimulated release is due to variance in tissue content. CE-FSCV should facilitate measurements of tissue content in nanoliter samples, leading to a better understanding of how diseases or drugs affect dopamine, serotonin, and adenosine content.

  5. Effects of dopamine depletion on LFP oscillations in striatum are task- and learning-dependent and selectively reversed by L-DOPA.

    Science.gov (United States)

    Lemaire, Nuné; Hernandez, Ledia F; Hu, Dan; Kubota, Yasuo; Howe, Mark W; Graybiel, Ann M

    2012-10-30

    A major physiologic sign in Parkinson disease is the occurrence of abnormal oscillations in cortico-basal ganglia circuits, which can be normalized by L-DOPA therapy. Under normal circumstances, oscillatory activity in these circuits is modulated as behaviors are learned and performed, but how dopamine depletion affects such modulation is not yet known. We here induced unilateral dopamine depletion in the sensorimotor striatum of rats and then recorded local field potential (LFP) activity in the dopamine-depleted region and its contralateral correspondent as we trained the rats on a conditional T-maze task. Unexpectedly, the dopamine depletion had little effect on oscillations recorded in the pretask baseline period. Instead, the depletion amplified oscillations across delta (~3 Hz), theta (~8 Hz), beta (~13 Hz), and low-gamma (~48 Hz) ranges selectively during task performance times when each frequency band was most strongly modulated, and only after extensive training had occurred. High-gamma activity (65-100 Hz), in contrast, was weakened independent of task time or learning stage. The depletion also increased spike-field coupling of fast-spiking interneurons to low-gamma oscillations. L-DOPA therapy normalized all of these effects except those at low gamma. Our findings suggest that the task-related and learning-related dynamics of LFP oscillations are the primary targets of dopamine depletion, resulting in overexpression of behaviorally relevant oscillations. L-DOPA normalizes these dynamics except at low-gamma, linked by spike-field coupling to fast-spiking interneurons, now known to undergo structural changes after dopamine depletion and to lack normalization of spike activity following l-DOPA therapy.

  6. Sensitive detection of dopamine via leucodopaminechrome on polyacrylic acid-coated ceria nanorods

    Science.gov (United States)

    Sheng, Weiqin; Zheng, Liang; Liu, Yan; Zhao, Xueqin; Weng, Jian; Zhang, Yang

    2017-09-01

    The major hurdle in detection of dopamine (DA) by electro-analysis is the presence of physiological interferents with a similar oxidation potential of DA. The conventional method is to enlarge the difference of their oxidation potentials. Here, we report an unconventional method to detect DA via leucodopaminechrome on CeO2 nanorods. Leucodopaminechrome is produced from the cyclization of dopamine-quinone, a product of two-electron oxidation of DA. Thus, its concentration is proportional to the DA concentration. Determining DA is demonstrated by measuring the reduction current of leucodopaminechrome on CeO2 nanorods. CeO2 nanorods demonstrate high electrocatalytic activity for reduction of leucodopaminechrome with a low potential at -0.27 V. The low detection potential of leucodopaminechrome can avoid the interference from ascorbic acid (AA) and uric acid (UA). Therefore, detecting DA via leucodopaminechrome is an effective method to avoid interference from AA and UA, and the suggested biosensor also displays good reproducibility and stability.

  7. Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb.

    Science.gov (United States)

    Vaaga, Christopher E; Yorgason, Jordan T; Williams, John T; Westbrook, Gary L

    2017-03-01

    In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABAA receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D2 and GABAB receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells.NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs. Copyright © 2017 the American Physiological Society.

  8. Temperature dependence of electrical properties of mixture of exogenous neurotransmitters dopamine and epinephrine

    Science.gov (United States)

    Patki, Mugdha; Patil, Vidya

    2016-05-01

    Neurotransmitters are chemical messengers that support the communication between the neurons. In vitro study of exogenous neurotransmitters Dopamine and Epinephrine and their mixture, carried out to learn about their electrical properties being dielectric constant and conductivity amongst others. Dielectric constant and conductivity of the selected neurotransmitters are found to increase with temperature. As a result, the time constant of the system increases with temperature. This change leads to increase in the time taken by the synapse to transport the action potential. The correlation between physical properties of exogenous neurotransmitters and psychological and physiological behaviour of human being may be understood with the help of current study. The response time of Epinephrine is in microseconds whereas response time of Dopamine is in milliseconds. The response time for both the neurotransmitters and their mixture is found to be increasing with temperature indicating the symptoms such as depression, apathy, chronic fatigue and low physical energy with no desire to exercise the body, which are observed during the fever.

  9. Modulating dopamine release by optogenetics in transgenic mice reveals terminal dopaminergic dynamics.

    Science.gov (United States)

    Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V

    2015-07-01

    Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context.

  10. Molecular profiling of midbrain dopamine regions in cocaine overdose victims

    National Research Council Canada - National Science Library

    Tang, Wen‐Xue; Fasulo, Wendy H; Mash, Deborah C; Hemby, Scott E

    2003-01-01

    .... To evaluate whether the alterations in gene expression in cocaine overdose victims are associated with specific dopamine populations in the midbrain, cDNA arrays and western blotting were used...

  11. Interaction of size-selected gold nanoclusters with dopamine

    Science.gov (United States)

    Montone, Georgia R.; Hermann, Eric; Kandalam, Anil K.

    2016-12-01

    We present density functional theory based results on the interaction of size-selected gold nanoclusters, Au10 and Au20, with dopamine molecule. The gold clusters interact strongly with the nitrogen site of dopamine, thereby forming stable gold-dopamine complexes. Our calculations further show that there is no site specificity on the planar Au10 cluster with all the edge gold atoms equally preferred. On the other hand, in the pyramidal Au20 cluster, the vertex metal atom is the most active site. As the size increased from Au10 to Au20, the interaction strength has shown a declining trend. The effect of aqueous environment on the interaction strengths were also studied by solvation model. It is found that the presence of solvent water stabilizes the interaction between the metal cluster and dopamine molecule, even though for Au10 cluster the energy ordering of the isomers changed from that of the gas-phase.

  12. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD

    DEFF Research Database (Denmark)

    Hansen, Freja H; Skjørringe, Tina; Yasmeen, Saiqa

    2014-01-01

    Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we......-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake...... experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine...

  13. Queen Pheromone Modulates Brain Dopamine Function in Worker Honey Bees

    National Research Council Canada - National Science Library

    Kyle T. Beggs; Kelly A. Glendining; Nicola M. Marechal; Vanina Vergoz; Ikumi Nakamura; Keith N. Slessor; Alison R. Mercer

    2007-01-01

    .... But how does this pheromone operate at the cellular level? This study reveals that QMP has profound effects on dopamine pathways in the brain, pathways that play a central role in behavioral regulation and motor control...

  14. Electroconvulsive therapy (ECT) in Parkinson's disease: ECS and dopamine enhancement.

    Science.gov (United States)

    Cumper, Samantha K; Ahle, Gabriella M; Liebman, Lauren S; Kellner, Charles H

    2014-06-01

    In addition to its effects in major psychiatric illness, electroconvulsive therapy (ECT) is known to have a beneficial effect on the core motor symptoms of Parkinson's disease (PD). This effect is believed to be mediated via dopamine in the striatum. Electroconvulsive shock (ECS), the animal analogue of ECT, is the model in which investigators have sought to elucidate the specific dopaminergic mechanisms by which ECT exerts its therapeutic effect in PD. Electroconvulsive shock has been given to intact animals as well as to animals with neurotoxic lesions that create parkinsonism. In this paper, we selectively review the electroconvulsive shock literature on dopamine in the striatum. Electroconvulsive shock, and by extension, ECT, is associated with increased dopamine release and modulation of dopamine receptors. Better understanding of how ECT works to enhance dopaminergic systems in the brain could help to make it a more accepted treatment for PD.

  15. Neuropeptide physiology in helminths.

    Science.gov (United States)

    Mousley, Angela; Novozhilova, Ekaterina; Kimber, Michael J; Day, Tim A

    2010-01-01

    Parasitic worms come from two distinct, distant phyla, Nematoda (roundworms) and Platyhelminthes (flatworms). The nervous systems of worms from both phyla are replete with neuropeptides and there is ample physiological evidence that these neuropeptides control vital aspects of worm biology. In each phyla, the physiological evidence for critical roles for helminth neuropeptides is derived from both parasitic and free-living members. In the nematodes, the intestinal parasite Ascaris suum and the free-living Caenorhabditis elegans have yielded most of the data; in the platyhelminths, the most physiological data has come from the blood fluke Schistosoma mansoni. FMRFamide-like peptides (FLPs) have many varied effects (excitation, relaxation, or a combination) on somatic musculature, reproductive musculature, the pharynx and motor neurons in nematodes. Insulin-like peptides (INSs) play an essential role in nematode dauer formation and other developmental processes. There is also some evidence for a role in somatic muscle control for the somewhat heterogeneous grouping ofpeptides known as neuropeptide-like proteins (NLPs). In platyhelminths, as in nematodes, FLPs have a central role in somatic muscle function. Reports of FLP physiological action in platyhelminths are limited to a potent excitation of the somatic musculature. Platyhelminths are also abundantly endowed with neuropeptide Fs (NPFs), which appear absent from nematodes. There is not yet any data linking platyhelminth NPF to any particular physiological outcome, but this neuropeptide does potently and specifically inhibit cAMP accumulation in schistosomes. In nematodes and platyhelminths, there is an abundance of physiological evidence demonstrating that neuropeptides play critical roles in the biology of both free-living and parasitic helminths. While it is certainly true that there remains a great deal to learn about the biology of neuropeptides in both phyla, physiological evidence presently available points

  16. Could dopamine agonists aid in drug development for anorexia nervosa?

    Science.gov (United States)

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  17. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Science.gov (United States)

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  18. Dopamine and glucose, obesity and Reward Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Kenneth eBlum

    2014-09-01

    Full Text Available Obesity and many well described eating disorders are accurately considered a global epidemic. The consequences of Reward Deficiency Syndrome, a genetic and epigenetic phenomena that involves the interactions of powerful neurotransmitters, are impairments of brain reward circuitry, hypodopaminergic function and abnormal craving behavior. Numerous sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Important facts which could translate to potential therapeutic targets espoused in this review include: 1 brain dopamine (DA production and use is stimulated by consumption of alcohol in large quantities or carbohydrates bingeing; 2 in the mesolimbic system the enkephalinergic neurons are in close proximity, to glucose receptors; 3 highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; 4 blood glucose and cerebrospinal fluid concentrations of homovanillic acid, the dopamine metabolite, are significantly correlated and 5 2-deoxyglucose the glucose analogue, in pharmacological doses associates with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and human fMRI support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and DA-modulated reward circuits are involved in pathologic eating behaviors. Treatment for addiction to glucose and drugs alike, based on a consensus of neuroscience research, should incorporate dopamine agonist therapy, in contrast to current theories and practices that use dopamine antagonists. Until now, powerful dopamine-D2 agonists have failed clinically, due to chronic down regulation of D2 receptors instead, consideration of novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of

  19. Reactive Oxygen Species and Dopamine Receptor Function in Essential Hypertension

    OpenAIRE

    ZENG, Chunyu; Villar, Van Anthony M.; Yu, Peiying; Zhou, Lin; Pedro A. Jose

    2009-01-01

    Essential hypertension is a major risk factor for stroke, myocardial infarction, and heart and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones and humoral factors. However, the mechanisms leading to impaired dopamine receptor function in hypertension states are not clear. Compelling experimental evidence indicates a role of reactive oxygen species (ROS) in hypertension, a...

  20. Dopamine and Reward: The Anhedonia Hypothesis 30 years on

    OpenAIRE

    Wise, Roy A.

    2008-01-01

    The anhedonia hypothesis – that brain dopamine plays a critical role in the subjective pleasure associated with positive rewards – was intended to draw the attention of psychiatrists to the growing evidence that dopamine plays a critical role in the objective reinforcement and incentive motivation associated with food and water, brain stimulation reward, and psychomotor stimulant and opiate reward. The hypothesis called to attention the apparent paradox that neuroleptics, drugs used to treat ...

  1. Dopamine Increases a Value-Independent Gambling Propensity

    OpenAIRE

    Rigoli, Francesco; Rutledge, Robb B.; Chew, Benjamin; Ousdal, Olga T; Dayan, Peter; Dolan, Raymond J.

    2016-01-01

    Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine's role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We sho...

  2. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Directory of Open Access Journals (Sweden)

    Rothmond Debora A

    2012-02-01

    Full Text Available Abstract Background Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5, catechol-O-methyltransferase, and monoamine oxidase (A and B in the developing human DLPFC (6 weeks -50 years. Results Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p O-methyltransferase (p = 0.024 were significantly higher in neonates and infants as was catechol-O-methyltransferase protein (32 kDa, p = 0.027. In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002 and dopamine D1 receptor protein expression increased throughout development (p Conclusions We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.

  3. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Directory of Open Access Journals (Sweden)

    Guido eFrank

    2014-11-01

    Full Text Available Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  4. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological

  5. Antibacterial surfaces through dopamine functionalization and silver nanoparticle immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Liao Yuan [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Yaqin; Feng Xiaoxia [College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China); Xu Fujian; Zhang Liqun [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-06-01

    Immobilization of silver nanoparticles on the dopamine functionalized polyimide (PI) films was carried out by photo-induced silver ion-reduction under atmosphere conditions. The dopamine has been successfully deposited on the PI surface in mild aqueous environments. The effects of pH, dopamine concentration and reaction time on the dopamine polymerization were investigated. The water contact angles of the poly(dopamine) functionalized PI films reduced remarkably in comparison with that of the pristine PI film. The chemical composition and structure of the UV-induced deposited-silver on the modified PI films were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The topography of the modified PI films was investigated by scanning electron microscope (SEM). The deposited poly(dopamine) layer acted as binding sites for the silver ions. The silver-plated PI films showed good antibacterial activity due to that biofilm formation was inhibited on the polymeric surfaces in contact with bacteria.

  6. Purity and Enrichment of Laser-Microdissected Midbrain Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Amanda L. Brown

    2013-01-01

    Full Text Available The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT and the vesicular monoamine transporter type 2 (Vmat2, average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65 expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells.

  7. Differential effects of dopamine-directed treatments on cognition

    Directory of Open Access Journals (Sweden)

    Ashby FG

    2015-07-01

    Full Text Available F Gregory Ashby, Vivian V Valentin, Stella S von Meer Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA Abstract: Dopamine, a prominent neuromodulator, is implicated in many neuropsychiatric disorders. It has wide-ranging effects on both cortical and subcortical brain regions and on many types of cognitive tasks that rely on a variety of different learning and memory systems. As neuroscience and behavioral evidence for the existence of multiple memory systems and their corresponding neural networks accumulated, so did the notion that dopamine’s role is markedly different depending on which memory system is engaged. As a result, dopamine-directed treatments will have different effects on different types of cognitive behaviors. To predict what these effects will be, it is critical to understand: which memory system is mediating the behavior; the neural basis of the mediating memory system; the nature of the dopamine projections into that system; and the time course of dopamine after its release into the relevant brain regions. Consideration of these questions leads to different predictions for how changes in brain dopamine levels will affect automatic behaviors and behaviors mediated by declarative, procedural, and perceptual representation memory systems. Keywords: dopamine, cognition, memory systems, learning

  8. Dopamine in the medial amygdala network mediates human bonding

    Science.gov (United States)

    Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M.; Dickerson, Bradford C.; Catana, Ciprian; Barrett, Lisa Feldman

    2017-01-01

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers’ dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the “medial amygdala network”) that supports social functioning. We also measured the mothers’ behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother’s infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted. PMID:28193868

  9. Levodopa therapy: consequences of the nonphysiologic replacement of dopamine.

    Science.gov (United States)

    Chase, T N

    1998-05-01

    Normal motor function is dependent on the highly regulated synthesis and release of the transmitter dopamine by neurons projecting from the substantia nigra to the corpus striatum. Parkinson's disease involves the progressive degeneration of these neurons. Its core symptoms are a direct consequence of a striatal insufficiency of intrasynaptic dopamine. Levodopa, the standard of care for the treatment of PD, acts after its conversion to dopamine by restoring striatal dopaminergic transmission. However, there are significant differences between the normally functioning dopamine system and the restoration of function provided by standard levodopa treatment. Increasing clinical and preclinical evidence suggests that the intermittent stimulation of dopamine receptors resulting from current therapeutic regimens contributes to the response complications that ultimately affect most parkinsonian patients. It now appears that chronic nonphysiologic stimulation of dopaminergic receptors on striatal GABAergic neurons activates characteristic signaling pathways, leading to a potentiation of the synaptic efficacy of adjacent glutamatergic receptors of the N-methyl-D-aspartate (NMDA) subtype. As a result, function of these GABAergic efferent neurons changes in ways that favor the appearance of motor complications. Conceivably, use of dopaminomimetic replacement strategies that provide more continuous dopamine receptor stimulation will act to prevent or alleviate these disabling complications. A number of promising approaches to achieving this goal are now under development.

  10. Modeling influences of dopamine on synchronization behavior of striatum.

    Science.gov (United States)

    Çakir, Yüksel

    2017-10-06

    A network model of striatum that comprises medium spiny neurons (MSNs) and fast spiking interneurons (FSIs) is constructed following the work of Humphries et al. (2009). The dynamic behavior of striatum microcircuit is investigated using a dopamine-modulated modified Izhikevich neuron model. The influences of dopamine on the synchronization behavior of the striatal microcircuit and the dependence on receptor type are investigated with and without time delay. To investigate the role of two types of dopamine receptors, D1 and D2, on the overall activity of the striatum microcircuit, the activities of two groups are considered as disconnected and connected. When the connection exists between D1 and D2 sub-networks with zero dopamine and time delay, neuronal activity decreases because of an inhibitory effect of the connected neurons of the other sub-network. In the presence of dopamine, an increase in the activity of D1 type MSNs and quiescent behavior of D2 type MSNs are observed when the time delay is zero. However, the diversity in synchronization of D1 and D2 type MSNs is observed for different synaptic time delays and synaptic strengths in the case that dopamine is present.

  11. Somatostatin and dopamine receptor regulation of pituitary somatotroph adenomas.

    Science.gov (United States)

    Ben-Shlomo, Anat; Liu, Ning-Ai; Melmed, Shlomo

    2017-02-01

    Somatostatin and dopamine receptors are expressed in normal and tumoral somatotroph cells. Upon receptor stimulation, somatostatin and the somatostatin receptor ligands octreotide, lanreotide, and pasireotide, and to a lesser extent, dopamine and the dopamine analogs bromocriptine and cabergoline, suppress growth hormone (GH) secretion from a GH-secreting pituitary somatotroph adenoma. Somatostatin and dopamine receptors are Gαi-protein coupled that inhibit adenylate cyclase activity and cAMP production and reduce intracellular calcium concentration and calcium flux oscillations. Although their main action on somatotroph cells is acute inhibition of GH secretion, they also may inhibit GH production and possibly somatotroph proliferation. These receptors have been reported to create complexes that exhibit functions distinct from that of receptor monomers. Somatostatin suppression of GH is mediated mainly by somatostatin receptor subtype 2 and to a lesser extent by SST5. Human somatostatin receptor subtype 5 has also been shown to harbor mutations associated with GH levels, somatotroph tumor behavior, and somatostatin receptor ligand (SRL) responsiveness. Reviewing current knowledge of somatostatin and dopamine receptor expression and signaling in normal and tumoral somatotroph cells offers insights into mechanisms underlying SRL and dopamine agonist effectiveness in patients with acromegaly.

  12. An Overview of the Association between Schizotypy and Dopamine

    Directory of Open Access Journals (Sweden)

    Christine eMohr

    2014-12-01

    Full Text Available Schizotypy refers to a constellation of personality traits that are believed to mirror the subclinical expression of schizophrenia in the general population. Evidence from pharmacological studies indicates that dopamine is involved in the aetiology of schizophrenia. Based on the assumption of a continuum between schizophrenia and schizotypy, researchers have begun investigating the association between dopamine and schizotypy using a wide range of methods. In this article, we review published studies on this association from the following areas of work: (1 Experimental investigations of the interactive effects of dopaminergic challenges and schizotypy on cognition, motor control and behaviour, (2 dopaminergically supported cognitive functions, (3 studies of associations between schizotypy and polymorphisms in genes involved in dopaminergic neurotransmission, and (4 molecular imaging studies of the association between schizotypy and markers of the dopamine system. Together, data from these lines of evidence suggest that dopamine is important to the expression and experience of schizotypy and associated behavioural biases. An important observation is that the experimental designs, methods, and manipulations used in this research are highly heterogeneous. Future studies are required to replicate individual observations, to enlighten the link between dopamine and different schizotypy dimensions (positive, negative, cognitive disorganisation, and to guide the search for solid dopamine-sensitive behavioural markers. Such studies are important in order to clarify inconsistencies between studies. More work is also needed to identify differences between dopaminergic alterations in schizotypy compared to the dysfunctions observed in schizophrenia.

  13. Dopamine D4 receptors: significance for molecular psychiatry at the millennium.

    Science.gov (United States)

    Tarazi, F I; Baldessarini, R J

    1999-11-01

    Extraordinary progress has been made in the molecular, genetic, anatomical, and pharmacological characterization of dopamine D4 receptors in animal and human brain. Clarification of the neurochemical and physiological roles of these cerebral receptors is emerging. Postmortem neuropathological studies have inconsistently linked D4 receptors to psychotic disorders, and genetic studies have failed to sustain conclusive associations between D4 receptors and schizophrenia. However, associations are emerging between D4 receptors and other neuropsychiatric disorders, including attention deficit hyperactivity disorder, mood disorders, and Parkinson's disease, as well as specific personality traits such as novelty-seeking. Selective D4 agonists and antagonists have been developed as useful experimental probes. D4antagonists, so far, have proved ineffective in treatment of schizophrenia, but testing in a broader range of disorders may yield clinically useful drugs. D4 receptors appear to have broad implications for the pathophysiology of neuropsychiatric illnesses and their improved treatment.

  14. Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance.

    Science.gov (United States)

    Rubí, Blanca; Maechler, Pierre

    2010-12-01

    In peripheral tissues, dopamine is released from neuronal cells and is synthesized within specific parenchyma. Dopamine released from sympathetic nerves predominantly contributes to plasma dopamine levels. Despite growing evidence for peripheral source and action of dopamine and the widespread expression of dopamine receptors in peripheral tissues, most studies have focused on functions of dopamine in the central nervous system. Symptoms of several brain disorders, including schizophrenia, Parkinson's disease, attention-deficit hyperactivity disorder, and depression, are alleviated by pharmacological modulation of dopamine transmission. Regarding systemic disorders, the role of dopamine is still poorly understood. Here we describe the pioneering and recent evidence for functional roles of peripheral dopamine. Peripheral and central dopamine systems are sensitive to environmental stress, such as a high-fat diet, suggesting a basis of covariance of peripheral and central actions of dopaminergic agents. Given the extended use of such medications, it is crucial to better understand the integrated effects of dopamine in the whole organism. Delineation of peripheral and central dopaminergic mechanisms would facilitate targeted and safer use of drugs modulating dopamine action. We discuss the increasing evidence for a link between peripheral dopamine and obesity. This review also describes the recently uncovered protective actions of dopamine on energy metabolism and proliferation in tumoral cells.

  15. Controlled delivery of dopamine hydrochloride using surface modified carbon dots for neuro diseases.

    Science.gov (United States)

    Khan, M Shahnawaz; Pandey, Sunil; Talib, Abou; Bhaisare, Mukesh Lavkush; Wu, Hui-Fen

    2015-10-01

    Delivery of therapeutic agents using water-soluble, highly biocompatible Carbon dots (C-dots) is an efficient strategy to control drug release under physiological milieu. Dopamine hydrochloride (DA), the most important inotropic vasopressor agent used in neurological diseases. In our study DA is anchored to water-soluble carbon dots for controlled release under mimicked in vitro physiological conditions. The tenure of the DA release at pH 7.4 was greatly extended to 60 h for C-dots-DA, in comparison with the control DA alone. The statistical calculation was used to comprehend the release pattern of the DA, which exhibited the pattern of Hixson-Crowell model of release. In order to understand the impact of the C-dots-DA conjugate under physiological conditions, Neuro 2A cells were taken under consideration. The conjugate C-dots-DA was found to be biocompatible against Neuro 2A cells. The survival rate was found to be 74% at maximum concentration of 9 μg mL(-1). In vivo toxicity was studied using thin section of tissues after staining with Hematoxyline and Eosin Yellow (H&E). As per microscopic observations, conjugates did not inflict any anatomical distortions or hostile effects on tissues. Body weight of mice was also taken into consideration after injecting 20 μg mL(-1) of nano-conjugates via tail vein. The impact of nano-conjugate on body weight was found to be negligible after 45 days of observation.

  16. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice

    OpenAIRE

    ZENG, Chunyu; Armando, Ines; Luo, Yingjin; Eisner, Gilbert M.; Felder, Robin A.; Pedro A. Jose

    2007-01-01

    Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D1-like (D1 and D5) and D2-like (D2, D3, and D4) subtypes based on their structure and pharmacology. In recent years, mice deficient i...

  17. Dopamine reuptake transporter (DAT) "inverse agonism"--a novel hypothesis to explain the enigmatic pharmacology of cocaine.

    Science.gov (United States)

    Heal, David J; Gosden, Jane; Smith, Sharon L

    2014-12-01

    The long held view is cocaine's pharmacological effects are mediated by monoamine reuptake inhibition. However, drugs with rapid brain penetration like sibutramine, bupropion, mazindol and tesofensine, which are equal to or more potent than cocaine as dopamine reuptake inhibitors, produce no discernable subjective effects such as drug "highs" or euphoria in drug-experienced human volunteers. Moreover they are dysphoric and aversive when given at high doses. In vivo experiments in animals demonstrate that cocaine's monoaminergic pharmacology is profoundly different from that of other prescribed monoamine reuptake inhibitors, with the exception of methylphenidate. These findings led us to conclude that the highly unusual stimulant profile of cocaine and related compounds, eg methylphenidate, is not mediated by monoamine reuptake inhibition alone. We describe the experimental findings which suggest cocaine serves as a negative allosteric modulator to alter the function of the dopamine reuptake transporter (DAT) and reverse its direction of transport. This results in a firing-dependent, retro-transport of dopamine into the synaptic cleft. The proposed mechanism of cocaine is, therefore, different from other small molecule negative allostereric modulators of the monoamine reuptake transporters, eg SoRI-6238, which merely reduce the rate of inward transport. Because the physiological role of DAT is to remove dopamine from the synapse and the action of cocaine is the opposite of this, we have postulated that cocaine's effect is analogous to an inverse agonist. If this hypothesis is validated then cocaine is the prototypical compound that exemplifies a new class of monoaminergic drugs; DAT "inverse agonists". This article is part of the Special Issue entitled 'CNS Stimulants'.

  18. Human physiology in space

    Science.gov (United States)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  19. Circadian physiology of metabolism.

    Science.gov (United States)

    Panda, Satchidananda

    2016-11-25

    A majority of mammalian genes exhibit daily fluctuations in expression levels, making circadian expression rhythms the largest known regulatory network in normal physiology. Cell-autonomous circadian clocks interact with daily light-dark and feeding-fasting cycles to generate approximately 24-hour oscillations in the function of thousands of genes. Circadian expression of secreted molecules and signaling components transmits timing information between cells and tissues. Such intra- and intercellular daily rhythms optimize physiology both by managing energy use and by temporally segregating incompatible processes. Experimental animal models and epidemiological data indicate that chronic circadian rhythm disruption increases the risk of metabolic diseases. Conversely, time-restricted feeding, which imposes daily cycles of feeding and fasting without caloric reduction, sustains robust diurnal rhythms and can alleviate metabolic diseases. These findings highlight an integrative role of circadian rhythms in physiology and offer a new perspective for treating chronic diseases in which metabolic disruption is a hallmark.

  20. Plant Physiology and Development

    DEFF Research Database (Denmark)

    Taiz, Lincoln; Zeiger, Eduardo; Møller, Ian Max

    Physiology and Development. As before, Unit III begins with updated chapters on Cell Walls and Signals and Signal Transduction. The latter chapter has been expanded to include a discussion of major signaling molecules, such as calcium ions and plant hormones. A new, unified chapter entitled Signals from......Throughout its twenty-two year history, the authors of Plant Physiology have continually updated the book to incorporate the latest advances in plant biology and implement pedagogical improvements requested by adopters. This has made Plant Physiology the most authoritative, comprehensive......, and widely used upper-division plant biology textbook. In the Sixth Edition, the Growth and Development section (Unit III) has been reorganized and expanded to present the complete life cycle of seed plants from germination to senescence. In recognition of this enhancement, the text has been renamed Plant...

  1. Dopamine and T cells: dopamine receptors and potent effects on T cells, dopamine production in T cells, and abnormalities in the dopaminergic system in T cells in autoimmune, neurological and psychiatric diseases.

    Science.gov (United States)

    Levite, M

    2016-01-01

    Dopamine, a principal neurotransmitter, deserves upgrading to 'NeuroImmunotransmitter' thanks to its multiple, direct and powerful effects on most/all immune cells. Dopamine by itself is a potent activator of resting effector T cells (Teffs), via two independent ways: direct Teffs activation, and indirect Teffs activation by suppression of regulatory T cells (Tregs). The review covers the following findings: (i) T cells express functional dopamine receptors (DRs) D1R-D5R, but their level and function are dynamic and context-sensitive, (ii) DR membranal protein levels do not necessarily correlate with DR mRNA levels, (iii) different T cell types/subtypes have different DR levels and composition and different responses to dopamine, (iv) autoimmune and pro-inflammatory T cells and T cell leukaemia/lymphoma also express functional DRs, (v) dopamine (~10(-8) M) activates resting/naive Teffs (CD8(+) >CD4(+) ), (vi) dopamine affects Th1/Th2/Th17 differentiation, (vii) dopamine inhibits already activated Teffs (i.e. T cells that have been already activated by either antigen, mitogen, anti-CD3 antibodies cytokines or other molecules), (viii) dopamine inhibits activated Tregs in an autocrine/paracrine manner. Thus, dopamine 'suppresses the suppressors' and releases the inhibition they exert on Teffs, (ix) dopamine affects intracellular signalling molecules and cascades in T cells (e.g. ERK, Lck, Fyn, NF-κB, KLF2), (x) T cells produce dopamine (Tregs>Teffs), can release dopamine, mainly after activation (by antigen, mitogen, anti-CD3 antibodies, PKC activators or other), uptake extracellular dopamine, and most probably need dopamine, (xi) dopamine is important for antigen-specific interactions between T cells and dendritic cells, (xii) in few autoimmune diseases (e.g. multiple sclerosis/SLE/rheumatoid arthritis), and neurological/psychiatric diseases (e.g. Parkinson disease, Alzheimer's disease, Schizophrenia and Tourette), patient's T cells seem to have abnormal DRs

  2. Activation of ventral tegmental area dopamine neurons produces wakefulness through dopamine D2-like receptors in mice.

    Science.gov (United States)

    Oishi, Yo; Suzuki, Yoshiaki; Takahashi, Koji; Yonezawa, Toshiya; Kanda, Takeshi; Takata, Yohko; Cherasse, Yoan; Lazarus, Michael

    2017-01-25

    A growing body of evidence suggests that dopamine plays a role in sleep-wake regulation, but the dopamine-producing brain areas that control sleep-wake states are unclear. In this study, we chemogenetically activated dopamine neurons in the ventral midbrain of mice to examine the role of these neurons in sleep-wake regulation. We found that activation of dopamine neurons in the ventral tegmental area (VTA), but not in the substantia nigra, strongly induced wakefulness, although both cell populations expressed the neuronal activity marker c-Fos after chemogenetic stimulation. Analysis of the pattern of behavioral states revealed that VTA activation increased the duration of wakefulness and decreased the number of wakefulness episodes, indicating that wakefulness was consolidated by VTA activation. The increased wakefulness evoked by VTA activation was completely abolished by pretreatment with the dopamine D2/D3 receptor antagonist raclopride, but not by the D1 receptor antagonist SCH23390. These findings indicate that the activation of VTA dopamine neurons promotes wakefulness via D2/D3 receptors.

  3. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions

    Directory of Open Access Journals (Sweden)

    Carmine Tomasetti

    2017-01-01

    Full Text Available Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of “synapse-based” psychiatric therapeutic strategies.

  4. Abnormal modulation of reward versus punishment learning by a dopamine D2-receptor antagonist in pathological gamblers

    NARCIS (Netherlands)

    Janssen, L.K.; Sescousse, G.; Hashemi, M.M.; Timmer, M.H.; Huurne, N.P. Ter; Geurts, D.E.M.; Cools, R.

    2015-01-01

    RATIONALE: Pathological gambling has been associated with dopamine transmission abnormalities, in particular dopamine D2-receptor deficiency, and reversal learning deficits. Moreover, pervasive theoretical accounts suggest a key role for dopamine in reversal learning. However, there is no empirical

  5. Donor Preconditioning After the Onset of Brain Death With Dopamine Derivate n-Octanoyl Dopamine Improves Early Posttransplant Graft Function in the Rat.

    Science.gov (United States)

    Li, S; Korkmaz-Icöz, S; Radovits, T; Ruppert, M; Spindler, R; Loganathan, S; Hegedűs, P; Brlecic, P; Theisinger, B; Theisinger, S; Höger, S; Brune, M; Lasitschka, F; Karck, M; Yard, B; Szabó, G

    2017-07-01

    Heart transplantation is the therapy of choice for end-stage heart failure. However, hemodynamic instability, which has been demonstrated in brain-dead donors (BDD), could also affect the posttransplant graft function. We tested the hypothesis that treatment of the BDD with the dopamine derivate n-octanoyl-dopamine (NOD) improves donor cardiac and graft function after transplantation. Donor rats were given a continuous intravenous infusion of either NOD (0.882 mg/kg/h, BDD+NOD, n = 6) or a physiological saline vehicle (BDD, n = 9) for 5 h after the induction of brain death by inflation of a subdural balloon catheter. Controls were sham-operated (n = 9). In BDD, decreased left-ventricular contractility (ejection fraction; maximum rate of rise of left-ventricular pressure; preload recruitable stroke work), relaxation (maximum rate of fall of left-ventricular pressure; Tau), and increased end-diastolic stiffness were significantly improved after the NOD treatment. Following the transplantation, the NOD-treatment of BDD improved impaired systolic function and ventricular relaxation. Additionally, after transplantation increased interleukin-6, tumor necrosis factor TNF-α, NF-kappaB-p65, and nuclear factor (NF)-kappaB-p105 gene expression, and increased caspase-3, TNF-α and NF-kappaB protein expression could be significantly downregulated by the NOD treatment compared to BDD. BDD postconditioning with NOD through downregulation of the pro-apoptotic factor caspase-3, pro-inflammatory cytokines, and NF-kappaB may protect the heart against the myocardial injuries associated with brain death and ischemia/reperfusion. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  6. Effects of dopamine D2 receptor partial agonist antipsychotic aripiprazole on dopamine synthesis in human brain measured by PET with L-[β-11C]DOPA.

    Directory of Open Access Journals (Sweden)

    Hiroshi Ito

    Full Text Available Dopamine D(2 receptor partial agonist antipsychotic drugs can modulate dopaminergic neurotransmission as functional agonists or functional antagonists. The effects of antipsychotics on presynaptic dopaminergic functions, such as dopamine synthesis capacity, might also be related to their therapeutic efficacy. Positron emission tomography (PET was used to examine the effects of the partial agonist antipsychotic drug aripiprazole on presynaptic dopamine synthesis in relation to dopamine D(2 receptor occupancy and the resulting changes in dopamine synthesis capacity in healthy men. On separate days, PET studies with [(11C]raclopride and L-[β-(11C]DOPA were performed under resting condition and with single doses of aripiprazole given orally. Occupancy of dopamine D(2 receptors corresponded to the doses of aripiprazole, but the changes in dopamine synthesis capacity were not significant, nor was the relation between dopamine D(2 receptor occupancy and these changes. A significant negative correlation was observed between baseline dopamine synthesis capacity and changes in dopamine synthesis capacity by aripiprazole, indicating that this antipsychotic appears to stabilize dopamine synthesis capacity. The therapeutic effects of aripiprazole in schizophrenia might be related to such stabilizing effects on dopaminergic neurotransmission responsivity.

  7. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  8. The Face of Physiology

    Directory of Open Access Journals (Sweden)

    Paul White

    2008-10-01

    Full Text Available This article explores the relationship between the physiology of the emotions and the display of character in Victorian Britain. Charles Bell and others had begun to link certain physiological functions, such as respiration, with the expression of feelings such as fear, regarding the heart and other internal organs as instruments by which the emotions were made visible. But a purely functional account of the emotions, which emerged through the development of reflex physiology during the second half of the century, would dramatically alter the nature of feelings and the means of observing them. At the same time, instinctual or acquired sympathy, which had long underpinned the accurate reading of expressions, became a problem to be surmounted by new 'objectively'. Graphic recording instruments measuring a variety of physiological functions and used with increasing frequency in clinical diagnostics became of fundamental importance for tracing the movement of feelings during the period prior to the development of cinematography. They remained, in the form of devices such as the polygraph, a crucial and controversial means of measuring affective states, beneath the potentially deceptive surface of the body.

  9. Starting Physiology: Bioelectrogenesis

    Science.gov (United States)

    Baptista, Vander

    2015-01-01

    From a Cartesian perspective of rational analysis, the electric potential difference across the cell membrane is one of the fundamental concepts for the study of physiology. Unfortunately, undergraduate students often struggle to understand the genesis of this energy gradient, which makes the teaching activity a hard task for the instructor. The…

  10. Physiology of Sleep.

    Science.gov (United States)

    Carley, David W; Farabi, Sarah S

    2016-02-01

    IN BRIEF Far from a simple absence of wakefulness, sleep is an active, regulated, and metabolically distinct state, essential for health and well-being. In this article, the authors review the fundamental anatomy and physiology of sleep and its regulation, with an eye toward interactions between sleep and metabolism.

  11. Integrative Physiology of Fasting.

    Science.gov (United States)

    Secor, Stephen M; Carey, Hannah V

    2016-03-15

    Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.

  12. Dopamine and renal function and blood pressure regulation.

    Science.gov (United States)

    Armando, Ines; Villar, Van Anthony M; Jose, Pedro A

    2011-07-01

    Dopamine is an important regulator of systemic blood pressure via multiple mechanisms. It affects fluid and electrolyte balance by its actions on renal hemodynamics and epithelial ion and water transport and by regulation of hormones and humoral agents. The kidney synthesizes dopamine from circulating or filtered L-DOPA independently from innervation. The major determinants of the renal tubular synthesis/release of dopamine are probably sodium intake and intracellular sodium. Dopamine exerts its actions via two families of cell surface receptors, D1-like receptors comprising D1R and D5R, and D2-like receptors comprising D2R, D3R, and D4R, and by interactions with other G protein-coupled receptors. D1-like receptors are linked to vasodilation, while the effect of D2-like receptors on the vasculature is variable and probably dependent upon the state of nerve activity. Dopamine secreted into the tubular lumen acts mainly via D1-like receptors in an autocrine/paracrine manner to regulate ion transport in the proximal and distal nephron. These effects are mediated mainly by tubular mechanisms and augmented by hemodynamic mechanisms. The natriuretic effect of D1-like receptors is caused by inhibition of ion transport in the apical and basolateral membranes. D2-like receptors participate in the inhibition of ion transport during conditions of euvolemia and moderate volume expansion. Dopamine also controls ion transport and blood pressure by regulating the production of reactive oxygen species and the inflammatory response. Essential hypertension is associated with abnormalities in dopamine production, receptor number, and/or posttranslational modification.

  13. Dopamine and Effort-Based Decision Making

    Directory of Open Access Journals (Sweden)

    Irma Triasih Kurniawan

    2011-06-01

    Full Text Available Motivational theories of choice focus on the influence of goal values and strength of reinforcement to explain behavior. By contrast relatively little is known concerning how the cost of an action, such as effort expended, contributes to a decision to act. Effort-based decision making addresses how we make an action choice based on an integration of action and goal values. Here we review behavioral and neurobiological data regarding the representation of effort as action cost, and how this impacts on decision making. Although organisms expend effort to obtain a desired reward there is a striking sensitivity to the amount of effort required, such that the net preference for an action decreases as effort cost increases. We discuss the contribution of the neurotransmitter dopamine (DA towards overcoming response costs and in enhancing an animal’s motivation towards effortful actions. We also consider the contribution of brain structures, including the basal ganglia (BG and anterior cingulate cortex (ACC, in the internal generation of action involving a translation of reward expectation into effortful action.

  14. Pathway-Specific Dopamine Abnormalities in Schizophrenia.

    Science.gov (United States)

    Weinstein, Jodi J; Chohan, Muhammad O; Slifstein, Mark; Kegeles, Lawrence S; Moore, Holly; Abi-Dargham, Anissa

    2017-01-01

    In light of the clinical evidence implicating dopamine in schizophrenia and the prominent hypotheses put forth regarding alterations in dopaminergic transmission in this disease, molecular imaging has been used to examine multiple aspects of the dopaminergic system. We review the imaging methods used and compare the findings across the different molecular targets. Findings have converged to suggest early dysregulation in the striatum, especially in the rostral caudate, manifesting as excess synthesis and release. Recent data showed deficit extending to most cortical regions and even to other extrastriatal subcortical regions not previously considered to be "hypodopaminergic" in schizophrenia. These findings yield a new topography for the dopaminergic dysregulation in schizophrenia. We discuss the dopaminergic innervation within the individual projection fields to provide a topographical map of this dual dysregulation and explore potential cellular and circuit-based mechanisms for brain region-dependent alterations in dopaminergic parameters. This refined knowledge is essential to better guide translational studies and efforts in early drug development. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Biophysically realistic minimal model of dopamine neuron

    Science.gov (United States)

    Oprisan, Sorinel

    2008-03-01

    We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.

  16. Avian reproductive physiology

    Science.gov (United States)

    Gee, G.F.; Gibbons, Edward F.; Durrant, Barbara S.; Demarest, Jack

    1995-01-01

    Knowledge of the many physiological factors associated with egg production , fertility, incubation, and brooding in nondomestic birds is limited. Science knows even less about reproduction in most of the 238 endangered or threatened birds. This discussion uses studies of nondomestic and, when necessary, domestic birds to describe physiological control of reproduction. Studies of the few nondomestic avian species show large variation in physiological control of reproduction. Aviculturists, in order to successfully propagate an endangered bird, must understand the bird's reproductive peculiarities. First, investigators can do studies with carefully chosen surrogate species, but eventually they need to confirm the results in the target endangered bird. Studies of reproduction in nondomestic birds increased in the last decade. Still, scientists need to do more comparative studies to understand the mechanisms that control reproduction in birds. New technologies are making it possible to study reproductive physiology of nondomestic species in less limiting ways. These technologies include telemetry to collect information without inducing stress on captives (Howey et al., 1987; Klugman, 1987), new tests for most of the humoral factors associated with reproduction, and the skill to collect small samples and manipulate birds without disrupting the physiological mechanisms (Bercovitz et al., 1985). Managers are using knowledge from these studies to improve propagation in zoological parks, private and public propagation facilities, and research institutions. Researchers need to study the control of ovulation, egg formation, and oviposition in the species of nondomestic birds that lay very few eggs in a season, hold eggs in the oviduct for longer intervals, or differ in other ways from the more thoroughly studied domestic birds. Other techniques that would enhance propagation for nondomestlc birds include tissue culture of cloned embryonic cells, cryopreservation of embryos

  17. Physiological attributes of triathletes.

    Science.gov (United States)

    Suriano, R; Bishop, D

    2010-05-01

    Triathlons of all distances can be considered endurance events and consist of the individual disciplines of swimming, cycling and running which are generally completed in this sequential order. While it is expected that elite triathletes would possess high values for submaximal and maximal measures of aerobic fitness, little is known about how these values compare with those of single-sport endurance athletes. Earlier reviews, conducted in the 1980s, concluded that triathletes possessed lower V(O2(max)) values than other endurance athletes. An update of comparisons is of interest to determine if the physiological capacities of elite triathletes now reflect those of single-sport athletes or whether these physiological capacities are compromised by the requirement to cross-train for three different disciplines. It was found that although differences in the physiological attributes during swimming, cycling and running are evident among triathletes, those who compete at an international level possess V(O2(max)) values that are indicative of success in endurance-based individual sports. Furthermore, various physiological parameters at submaximal workloads have been used to describe the capacities of these athletes. Only a few studies have reported the lactate threshold among triathletes with the majority of studies reporting the ventilatory threshold. Although observed differences among triathletes for both these submaximal measures are complicated by the various methods used to determine them, the reported values for triathletes are similar to those for trained cyclists and runners. Thus, from the limited data available, it appears that triathletes are able to obtain similar physiological values as single-sport athletes despite dividing their training time among three disciplines.

  18. Dopamine and norepinephrine responses to film-induced sexual arousal in sexually functional and sexually dysfunctional women.

    Science.gov (United States)

    Meston, C M; McCall, K M

    2005-01-01

    This study was designed to assess potential differences between sexually functional and dysfunctional women in dopamine (DA) and norepinephrine (NE) responses to erotic stimuli. Blood levels of homovanillic acid (HVA; the major metabolite of DA) and NE were taken during the showing of a nonsexual and a sexual film from 9 women with female sexual arousal disorder and hypoactive sexual desire disorder and from 13 sexually functional women. We assessed sexual arousal subjectively using a self-report scale and physiologically using a vaginal photoplethysmograph. HVA levels significantly decreased in sexually functional and dysfunctional women during the erotic versus during the neutral film. NE levels were not significantly different for either group of women during the neutral and erotic films. Sexually dysfunctional women had significantly higher levels of NE during both the neutral and erotic films compared with functional women. Subjective or physiological arousal differences between neutral and erotic films were not significantly different between functional and dysfunctional women.

  19. Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake.

    Science.gov (United States)

    Castro-Hernández, Javier; Afonso-Oramas, Domingo; Cruz-Muros, Ignacio; Salas-Hernández, Josmar; Barroso-Chinea, Pedro; Moratalla, Rosario; Millan, Mark J; González-Hernández, Tomás

    2015-02-01

    The dopamine (DA) transporter (DAT), a membrane glycoprotein expressed in dopaminergic neurons, clears DA from extracellular space and is regulated by diverse presynaptic proteins like protein kinases, α-synuclein, D2 and D3 autoreceptors. DAT dysfunction is implicated in Parkinson's disease and depression, which are therapeutically treated by dopaminergic D2/D3 receptor (D2/D3R) agonists. It is, then, important to improve our understanding of interactions between D3R and DAT. We show that prolonged administration of pramipexole (0.1mg/kg/day, 6 to 21 days), a preferential D3R agonist, leads to a decrease in DA uptake in mouse striatum that reflects a reduction in DAT affinity for DA in the absence of any change in DAT density or subcellular distribution. The effect of pramipexole was absent in mice with genetically-deleted D3R (D3R(-/-)), yet unaffected in mice genetically deprived of D2R (D2R(-/-)). Pramipexole treatment induced a physical interaction between D3R and DAT, as assessed by co-immunoprecipitation and in situ proximity ligation assay. Furthermore, it promoted the formation of DAT dimers and DAT association with both D2R and α-synuclein, effects that were abolished in D3R(-/-) mice, yet unaffected in D2R(-/-) mice, indicating dependence upon D3R. Collectively, these data suggest that prolonged treatment with dopaminergic D3 agonists provokes a reduction in DA reuptake by dopaminergic neurons related to a hitherto-unsuspected modification of the DAT interactome. These observations provide novel insights into the long-term antiparkinson, antidepressant and additional clinical actions of pramipexole and other D3R agonists.

  20. Trophic factors differentiate dopamine neurons vulnerable to Parkinson's disease.

    Science.gov (United States)

    Reyes, Stefanie; Fu, Yuhong; Double, Kay L; Cottam, Veronica; Thompson, Lachlan H; Kirik, Deniz; Paxinos, George; Watson, Charles; Cooper, Helen M; Halliday, Glenda M

    2013-03-01

    Recent studies suggest a variety of factors characterize substantia nigra neurons vulnerable to Parkinson's disease, including the transcription factors pituitary homeobox 3 (Pitx3) and orthodenticle homeobox 2 (Otx2) and the trophic factor receptor deleted in colorectal cancer (DCC), but there is limited information on their expression and localization in adult humans. Pitx3, Otx2, and DCC were immunohistochemically localized in the upper brainstem of adult humans and mice and protein expression assessed using relative intensity measures and online microarray data. Pitx3 was present and highly expressed in most dopamine neurons. Surprisingly, in our elderly subjects no Otx2 immunoreactivity was detected in dopamine neurons, although Otx2 gene expression was found in younger cases. Enhanced DCC gene expression occurred in the substantia nigra, and higher amounts of DCC protein characterized vulnerable ventral nigral dopamine neurons. Our data show that, at the age when Parkinson's disease typically occurs, there are no significant differences in the expression of transcription factors in brainstem dopamine neurons, but those most vulnerable to Parkinson's disease rely more on the trophic factor receptor DCC than other brainstem dopamine neurons.

  1. Conformation and interactions of dopamine hydrochloride in solution

    Energy Technology Data Exchange (ETDEWEB)

    Callear, Samantha K.; Imberti, Silvia [ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Johnston, Andrew; McLain, Sylvia E. [Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom)

    2015-01-07

    The aqueous solution of dopamine hydrochloride has been investigated using neutron and X-ray total scattering data together with Monte-Carlo based modelling using Empirical Potential Structure Refinement. The conformation of the protonated dopamine molecule is presented and the results compared to the conformations found in crystal structures, dopamine-complexed protein crystal structures and predicted from theoretical calculations and pharmacophoric models. It is found that protonated dopamine adopts a range of conformations in solution, highlighting the low rotational energy barrier between different conformations, with the preferred conformation being trans-perpendicular. The interactions between each of the species present (protonated dopamine molecules, water molecules, and chloride anions) have been determined and are discussed with reference to interactions observed in similar systems both in the liquid and crystalline state, and predicted from theoretical calculations. The expected strong hydrogen bonds between the strong hydrogen bond donors and acceptors are observed, together with evidence of weaker CH hydrogen bonds and π interactions also playing a significant role in determining the arrangement of adjacent molecules.

  2. Dopamine in plasma - a biomarker for myofascial TMD pain?

    Science.gov (United States)

    Dawson, Andreas; Stensson, Niclas; Ghafouri, Bijar; Gerdle, Björn; List, Thomas; Svensson, Peter; Ernberg, Malin

    2016-12-01

    Dopaminergic pathways could be involved in the pathophysiology of myofascial temporomandibular disorders (M-TMD). This study investigated plasma levels of dopamine and serotonin (5-HT) in patients with M-TMD and in healthy subjects. Fifteen patients with M-TMD and 15 age- and sex-matched healthy subjects participated. The patients had received an M-TMD diagnosis according to the Research Diagnostic Criteria for TMD. Perceived mental stress, pain intensity (0-100-mm visual analogue scale), and pressure pain thresholds (PPT, kPa) over the masseter muscles were assessed; a venous blood sample was taken. Dopamine in plasma differed significantly between patients with M-TMD (4.98 ± 2.55 nM) and healthy controls (2.73 ± 1.24 nM; P dopamine in plasma correlated significantly with present pain intensity (r = 0.53, n = 14, P dopamine might be involved in modulating peripheral pain. This finding, in addition to reports in other studies, suggests that dopaminergic pathways could be implicated in the pathophysiology of M-TMD but also in other chronic pain conditions. More research is warranted to elucidate the role of peripheral dopamine in the pathophysiology of chronic pain.

  3. Does human presynaptic striatal dopamine function predict social conformity?

    Science.gov (United States)

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  4. Three dopamine pathways induce aversive odor memories with different stability.

    Directory of Open Access Journals (Sweden)

    Yoshinori Aso

    Full Text Available Animals acquire predictive values of sensory stimuli through reinforcement. In the brain of Drosophila melanogaster, activation of two types of dopamine neurons in the PAM and PPL1 clusters has been shown to induce aversive odor memory. Here, we identified the third cell type and characterized aversive memories induced by these dopamine neurons. These three dopamine pathways all project to the mushroom body but terminate in the spatially segregated subdomains. To understand the functional difference of these dopamine pathways in electric shock reinforcement, we blocked each one of them during memory acquisition. We found that all three pathways partially contribute to electric shock memory. Notably, the memories mediated by these neurons differed in temporal stability. Furthermore, combinatorial activation of two of these pathways revealed significant interaction of individual memory components rather than their simple summation. These results cast light on a cellular mechanism by which a noxious event induces different dopamine signals to a single brain structure to synthesize an aversive memory.

  5. Donor dopamine treatment limits pulmonary oedema and inflammation in lung allografts subjected to prolonged hypothermia

    NARCIS (Netherlands)

    Hanusch, Christine; Nowak, Kai; Toerlitz, Patrizia; Gill, Ishar S.; Song, Hui; Rafat, Neysan; Brinkkoetter, Paul T.; Leuvenink, Henri G.; Van Ackern, Klaus C.; Yard, Benito A.; Beck, Grietje C.

    2008-01-01

    Background. Endothelial barrier dysfunction severely compromises organ function after reperfusion. Because dopamine pretreatment improves hypothermia mediated barrier dysfunction, we tested the hypothesis that dopamine treatment of lung allografts positively affects tissue damage associated with hyp

  6. Dopamine receptor expression and function in the normal and pathological hypothalamus-pituitary-adrenal axis

    NARCIS (Netherlands)

    R. Pivonello (Rosario)

    2005-01-01

    markdownabstract__Abstract__ Dopamine is the predominant catecholamine neurotransmitter in the human central nervous system, where it controls a variety of functions including cognition, emotion, locomotor activity, food intake and endocrine regulation. Dopamine also plays multiple roles in

  7. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    Science.gov (United States)

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  8. Dopamine-2 receptor blockade does not affect the ocular hypotensive action of timolol.

    OpenAIRE

    Mekki, Q A; Turner, P

    1988-01-01

    We have shown that metoclopramide, a dopamine-2 antagonist, failed to antagonise the ocular hypotensive action of timolol. The practical implication of combining dopamine agonists with beta-adrenoceptor antagonists in the treatment of glaucoma is discussed.

  9. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    Science.gov (United States)

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  10. Working memory capacity predicts dopamine synthesis capacity in the human striatum.

    NARCIS (Netherlands)

    Cools, R.; Gibbs, S.E.; Miyakawa, A.; Jagust, W.; D'Esposito, M.

    2008-01-01

    Evidence from psychopharmacological research has revealed that dopamine receptor agents have opposite effects on cognitive function depending on baseline levels of working memory capacity. These contrasting effects have been interpreted to reflect differential baseline levels of dopamine. Here we de

  11. Working memory capacity predicts dopamine synthesis capacity in the human striatum.

    NARCIS (Netherlands)

    Cools, R.; Gibbs, S.E.; Miyakawa, A.; Jagust, W.; D'Esposito, M.

    2008-01-01

    Evidence from psychopharmacological research has revealed that dopamine receptor agents have opposite effects on cognitive function depending on baseline levels of working memory capacity. These contrasting effects have been interpreted to reflect differential baseline levels of dopamine. Here we

  12. Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteine self-assembled monolayer.

    Science.gov (United States)

    Liu, Ting; Li, Meixian; Li, Qianyuan

    2004-07-01

    Voltammetric behavior of dopamine (DA) on a gold electrode modified with the self-assembled monolayer (SAM) of N-acetylcysteine has been investigated, and one pair of well-defined redox peaks of dopamine is obtained at the SAM modified gold electrode. The oxidation peak current increases linearly with the concentration of dopamine in the range of 1.0x10 (-6)to 2.0x10 (-4)moll(-1). The detection limit is 8.0x10(-7)moll(-1). This method will be applicable to the determination of dopamine in injection of dopamine hydrochloride, and the good recovery of dopamine is obtained. Furthermore, The SAM modified gold electrode can resolve well the voltammetric responses of dopamine and ascorbic acid (AA), so it can also be applied to the determination of dopamine in the presence of ascorbic acid.

  13. Tuna comparative physiology.

    Science.gov (United States)

    Graham, Jeffrey B; Dickson, Kathryn A

    2004-11-01

    Thunniform swimming, the capacity to conserve metabolic heat in red muscle and other body regions (regional endothermy), an elevated metabolic rate and other physiological rate functions, and a frequency-modulated cardiac output distinguish tunas from most other fishes. These specializations support continuous, relatively fast swimming by tunas and minimize thermal barriers to habitat exploitation, permitting niche expansion into high latitudes and to ocean depths heretofore regarded as beyond their range.

  14. Effect of carboxylate compounds on the electrochemical behavior of dopamine at a mercury electrode

    OpenAIRE

    Winter, Eduardo; Carvalho,Rosangela M. de; Kubota,Lauro T.; Rath,Susanne

    2003-01-01

    The electrochemical oxidation of dopamine leads to deposition of polymeric films on the surfaces of solid state electrodes, decreasing the electrode activity. With a mercury electrode, the oxidation of dopamine occurs in the potential region of mercury oxidation. However, in the presence of carboxylic compounds the cyclic voltammogram of dopamine is different and presents a new electroactive product resulting from the oxidation of dopamine. This work describes preliminary results for the elec...

  15. Melanin Made by Dopamine Oxidation: Thin Films and Interactions with Polyelectrolyte Multilayers

    OpenAIRE

    Bernsmann, Falk

    2014-01-01

    The spontaneous oxidation of dopamine in slightly alkaline solutions was investigated on the basis of the work of Lee and others [Science, 318:426-430, 2007], and the reaction product was identified as dopamine-melanin. The ability of melanin to covalently bind amine functional groups was confirmed by quantification of the corresponding binding sites on dopamine-melanin aggregates. Furthermore it is possible to redissolve dopamine-melanin aggregates in strongly alkaline solutions. The obtaine...

  16. Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina

    DEFF Research Database (Denmark)

    Klitten, Laura L; Rath, Martin F; Coon, Steven L

    2008-01-01

    Levels of dopamine and melatonin exhibit diurnal rhythms in the rat retina. Dopamine is high during daytime adapting the retina to light, whereas melatonin is high during nighttime participating in the adaptation of the retina to low light intensities. Dopamine inhibits the synthesis of melatonin....... The sharp increase of Drd4 expression at a specific postnatal time suggests that dopamine is involved in retinal development....

  17. Reward-based hypertension control by a synthetic brain–dopamine interface

    OpenAIRE

    Rossger, K.; Charpin-El Hamri, G.; Fussenegger, M

    2013-01-01

    Essential activities such as feeding and reproduction as well as social, emotional, and mental behavior are reinforced by the brain’s reward system. Pleasure status directly correlates with dopamine levels released in the brain. Because dopamine leaks into the bloodstream via the sympathetic nervous system, brain and blood dopamine levels are interrelated. We designed a synthetic dopamine sensor-effector device that enables engineered human cells, insulated by immunoprotective microcontainers...

  18. Dopamine Receptor Antagonists Enhance Proliferation and Neurogenesis of Midbrain Lmx1a-expressing Progenitors

    OpenAIRE

    Eva Hedlund; Laure Belnoue; Spyridon Theofilopoulos; Carmen Salto; Chris Bye; Clare Parish; Qiaolin Deng; Banafsheh Kadkhodaei; Johan Ericson; Ernest Arenas; Thomas Perlmann; András Simon

    2016-01-01

    Degeneration of dopamine neurons in the midbrain causes symptoms of the movement disorder, Parkinson disease. Dopamine neurons are generated from proliferating progenitor cells localized in the embryonic ventral midbrain. However, it remains unclear for how long cells with dopamine progenitor character are retained and if there is any potential for reactivation of such cells after cessation of normal dopamine neurogenesis. We show here that cells expressing Lmx1a and other progenitor markers ...

  19. Neonatal cardiovascular physiology.

    Science.gov (United States)

    Hines, Michael H

    2013-11-01

    The pediatric surgeon deals with a large number and variety of congenital defects in neonates that frequently involve early surgical intervention and care. Because the neonatal cardiac physiology is unique, starting with the transition from fetal circulation and including differences in calcium metabolism and myocardial microscopic structure and function, it serves the pediatric surgeon well to have a sound understanding of these principles and how they directly and indirectly affect their plans and treatments. In addition, many patients will have associated congenital heart disease that can also dramatically influence not only the surgical and anesthetic care but also the timing and planning of procedures. Finally, the pediatric surgeon is often called upon to treat conditions and complications associated with complex congenital heart disease such as feeding difficulties, bowel perforations, and malrotation in heterotaxy syndromes. In this article, we will review several unique aspects of neonatal cardiac physiology along with the basic physiology of the major groups of congenital heart disease to better prepare the training and practicing pediatric surgeon for care of these complex and often fragile patients.

  20. The evolution of dopamine systems in chordates

    Directory of Open Access Journals (Sweden)

    Kei eYamamoto

    2011-03-01

    Full Text Available Dopamine (DA neurotransmission in the central nervous system (CNS is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory-motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2 revealed new populations of DA synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g. teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain-hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates.

  1. The evolution of dopamine systems in chordates.

    Science.gov (United States)

    Yamamoto, Kei; Vernier, Philippe

    2011-01-01

    Dopamine (DA) neurotransmission in the central nervous system (CNS) is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters, and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory-motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2) revealed new populations of DA-synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina, and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g., teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain-hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates.

  2. Alternative time representation in dopamine models.

    Science.gov (United States)

    Rivest, François; Kalaska, John F; Bengio, Yoshua

    2010-02-01

    Dopaminergic neuron activity has been modeled during learning and appetitive behavior, most commonly using the temporal-difference (TD) algorithm. However, a proper representation of elapsed time and of the exact task is usually required for the model to work. Most models use timing elements such as delay-line representations of time that are not biologically realistic for intervals in the range of seconds. The interval-timing literature provides several alternatives. One of them is that timing could emerge from general network dynamics, instead of coming from a dedicated circuit. Here, we present a general rate-based learning model based on long short-term memory (LSTM) networks that learns a time representation when needed. Using a naïve network learning its environment in conjunction with TD, we reproduce dopamine activity in appetitive trace conditioning with a constant CS-US interval, including probe trials with unexpected delays. The proposed model learns a representation of the environment dynamics in an adaptive biologically plausible framework, without recourse to delay lines or other special-purpose circuits. Instead, the model predicts that the task-dependent representation of time is learned by experience, is encoded in ramp-like changes in single-neuron activity distributed across small neural networks, and reflects a temporal integration mechanism resulting from the inherent dynamics of recurrent loops within the network. The model also reproduces the known finding that trace conditioning is more difficult than delay conditioning and that the learned representation of the task can be highly dependent on the types of trials experienced during training. Finally, it suggests that the phasic dopaminergic signal could facilitate learning in the cortex.

  3. Compulsive eating and weight gain related to dopamine agonist use.

    Science.gov (United States)

    Nirenberg, Melissa J; Waters, Cheryl

    2006-04-01

    Dopamine agonists have been implicated in causing compulsive behaviors in patients with Parkinson's disease (PD). These have included gambling, hypersexuality, hobbyism, and other repetitive, purposeless behaviors ("punding"). In this report, we describe 7 patients in whom compulsive eating developed in the context of pramipexole use. All of the affected patients had significant, undesired weight gain; 4 had other comorbid compulsive behaviors. In the 5 patients who lowered the dose of pramipexole or discontinued dopamine agonist treatment, the behavior remitted and no further weight gain occurred. Physicians should be aware that compulsive eating resulting in significant weight gain may occur in PD as a side-effect of dopamine agonist medications such as pramipexole. Given the known risks of the associated weight gain and obesity, further investigation is warranted.

  4. Dorsal striatal dopamine, food preference and health perception in humans.

    Science.gov (United States)

    Wallace, Deanna L; Aarts, Esther; Dang, Linh C; Greer, Stephanie M; Jagust, William J; D'Esposito, Mark

    2014-01-01

    To date, few studies have explored the neurochemical mechanisms supporting individual differences in food preference in humans. Here we investigate how dorsal striatal dopamine, as measured by the positron emission tomography (PET) tracer [(18)F]fluorometatyrosine (FMT), correlates with food-related decision-making, as well as body mass index (BMI) in 16 healthy-weight to moderately obese individuals. We find that lower PET FMT dopamine synthesis binding potential correlates with higher BMI, greater preference for perceived "healthy" foods, but also greater healthiness ratings for food items. These findings further substantiate the role of dorsal striatal dopamine in food-related behaviors and shed light on the complexity of individual differences in food preference.

  5. Plasma functionalized surface of commodity polymers for dopamine detection

    Science.gov (United States)

    Fabregat, Georgina; Osorio, Joaquin; Castedo, Alejandra; Armelin, Elaine; Buendía, Jorge J.; Llorca, Jordi; Alemán, Carlos

    2017-03-01

    We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1-2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  6. Developmental origins of brain disorders: roles for dopamine

    Directory of Open Access Journals (Sweden)

    Kelli M Money

    2013-12-01

    Full Text Available Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders.

  7. Striatal dopamine, reward, and decision making in schizophrenia.

    Science.gov (United States)

    Deserno, Lorenz; Schlagenhauf, Florian; Heinz, Andreas

    2016-03-01

    Elevated striatal dopamine function is one of the best-established findings in schizophrenia. In this review, we discuss causes and consequences of this striata! dopamine alteration. We first summarize earlier findings regarding striatal reward processing and anticipation using functional neuroimaging. Secondly, we present a series of recent studies that are exemplary for a particular research approach: a combination of theory-driven reinforcement learning and decision-making tasks in combination with computational modeling and functional neuroimaging. We discuss why this approach represents a promising tool to understand underlying mechanisms of symptom dimensions by dissecting the contribution of multiple behavioral control systems working in parallel. We also discuss how it can advance our understanding of the neurobiological implementation of such functions. Thirdly, we review evidence regarding the topography of dopamine dysfunction within the striatum. Finally, we present conclusions and outline important aspects to be considered in future studies.

  8. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    Science.gov (United States)

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  9. The Anorexigenic Peptide Neuromedin U (NMU Attenuates Amphetamine-Induced Locomotor Stimulation, Accumbal Dopamine Release and Expression of Conditioned Place Preference in Mice.

    Directory of Open Access Journals (Sweden)

    Daniel Vallöf

    Full Text Available Amphetamine dependence, besides its substantial economical consequence, is a serious cause of mortality and morbidity. By investigations of the neurochemical correlates through which addictive drugs, such as amphetamine, activate the mesoaccumbal dopamine system unique targets for treatment of drug addiction can be identified. This reward link consists of a dopamine projection from the ventral tegmental area to the nucleus accumbens (NAc suggesting that these brain areas are important for reward. The physiological function of gut-brain peptides has expanded beyond food intake modulation and involves regulation of drug reinforcement. A novel candidate for reward regulation is the anorexigenic peptide neuromedin U (NMU. We therefore investigated the effects of intracerebroventricular (icv administration of NMU on amphetamine's well-documented effects on the mesoaccumbal dopamine system, i.e. locomotor stimulation and accumbal dopamine release in mice. In addition, the effect of accumbal NMU administration on locomotor activity was examined. The effect of NMU, icv or intra-NAc, on the expression of conditioned place preference (CPP was elucidated. Firstly, we showed that icv administration of NMU attenuate the amphetamine-induced locomotor stimulation, accumbal dopamine release and expression of CPP in mice. Secondly, we found that a lower dose of NMU (icv reduce the amphetamine-induced locomotor stimulation in mice. Thirdly, we demonstrated that NMU administration into the NAc block the ability of amphetamine to cause a locomotor stimulation in mice. However, accumbal NMU administration did not attenuate the amphetamine-induced expression of CPP in mice. Our novel data suggest that central NMU signalling is involved in development of amphetamine dependence.

  10. Dopamine D1 Receptor Immunoreactivity on Fine Processes of GFAP-Positive Astrocytes in the Substantia Nigra Pars Reticulata of Adult Mouse

    Science.gov (United States)

    Nagatomo, Katsuhiro; Suga, Sechiko; Saitoh, Masato; Kogawa, Masahito; Kobayashi, Kazuto; Yamamoto, Yoshio; Yamada, Katsuya

    2017-01-01

    Substantia nigra pars reticulata (SNr), the major output nucleus of the basal ganglia, receives dopamine from dendrites extending from dopaminergic neurons of the adjacent nucleus pars compacta (SNc), which is known for its selective degeneration in Parkinson's disease. As a recipient for dendritically released dopamine, the dopamine D1 receptor (D1R) is a primary candidate due to its very dense immunoreactivity in the SNr. However, the precise location of D1R remains unclear at the cellular level in the SNr except for that reported on axons/axon terminals of presumably striatal GABAergic neurons. To address this, we used D1R promotor-controlled, mVenus-expressing transgenic mice. When cells were acutely dissociated from SNr of mouse brain, prominent mVenus fluorescence was detected in fine processes of glia-like cells, but no such fluorescence was detected from neurons in the same preparation, except for the synaptic bouton-like structure on the neurons. Double immunolabeling of SNr cells dissociated from adult wild-type mice brain further revealed marked D1R immunoreactivity in the processes of glial fibrillary acidic protein (GFAP)-positive astrocytes. Such D1R imunoreactivity was significantly stronger in the SNr astrocytes than that in those of the visual cortex in the same preparation. Interestingly, GFAP-positive astrocytes dissociated from the striatum demonstrated D1R immunoreactivity, either remarkable or minimal, similarly to that shown in neurons in this nucleus. In contrast, in the SNr and visual cortex, only weak D1R immunoreactivity was detected in the neurons tested. These results suggest that the SNr astrocyte may be a candidate recipient for dendritically released dopamine. Further study is required to fully elucidate the physiological roles of divergent dopamine receptor immunoreactivity profiles in GFAP-positive astrocytes. PMID:28203148

  11. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  12. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration.

    Science.gov (United States)

    Bass, Caroline E; Grinevich, Valentina P; Gioia, Dominic; Day-Brown, Jonathan D; Bonin, Keith D; Stuber, Garret D; Weiner, Jeff L; Budygin, Evgeny A

    2013-01-01

    There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA) dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2) on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  13. Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine A2A and dopamine D2 receptors for the potential treatment of Parkinson's disease.

    Science.gov (United States)

    Jörg, Manuela; May, Lauren T; Mak, Frankie S; Lee, Kiew Ching K; Miller, Neil D; Scammells, Peter J; Capuano, Ben

    2015-01-22

    A relatively new strategy in drug discovery is the development of dual acting ligands. These molecules are potentially able to interact at two orthosteric binding sites of a heterodimer simultaneously, possibly resulting in enhanced subtype selectivity, higher affinity, enhanced or modified physiological response, and reduced reliance on multiple drug administration regimens. In this study, we have successfully synthesized a series of classical heterobivalent ligands as well as a series of more integrated and "drug-like" dual acting molecules, incorporating ropinirole as a dopamine D2 receptor agonist and ZM 241385 as an adenosine A2A receptor antagonist. The best compounds of our series maintained the potency of the original pharmacophores at both receptors (adenosine A2A and dopamine D2). In addition, the integrated dual acting ligands also showed promising results in preliminary blood-brain barrier permeability tests, whereas the classical heterobivalent ligands are potentially more suited as pharmacological tools.

  14. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Donald A., E-mail: dafox@uh.edu [College of Optometry, University of Houston, Houston, TX (United States); Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX (United States); Hamilton, W. Ryan [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Johnson, Jerry E. [Department of Natural Sciences, University of Houston-Downtown, Houston, TX (United States); Xiao, Weimin [College of Optometry, University of Houston, Houston, TX (United States); Chaney, Shawntay; Mukherjee, Shradha [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Miller, Diane B.; O' Callaghan, James P. [Toxicology and Molecular Biology Branch, Health Effects Research Laboratory, Centers for Disease Control and Prevention-NIOSH, Morgantown, WV USA (United States)

    2011-11-15

    -Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased the number of TH-immunoreactive dopaminergic amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure selectively decreased dopaminergic, but not GABAergic, glycinergic or cholinergic, amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased retinal dopamine content, its metabolites and dopamine utilization Black-Right-Pointing-Pointer A decrease in dopamine can alter ERG amplitudes, circadian rhythms, dark/light adaptation and spatial contrast sensitivity.

  15. An indirect action of dopamine on the rat fundus strip mediated by 5-hydroxytryptamine

    NARCIS (Netherlands)

    Sonneville, P.F.

    Dopamine in a concentration of 10−7 molar produces a contraction of the rat stomach fundus preparation. This effect is blocked by the 5-HT antagonist methysergide. Repeated exposure to dopamine results in tachyphylaxis, but the sensitivity to dopamine can be restored by incubating the tissue with

  16. Heterogeneity in Dopamine Neuron Synaptic Actions Across the Striatum and Its Relevance for Schizophrenia.

    Science.gov (United States)

    Chuhma, Nao; Mingote, Susana; Kalmbach, Abigail; Yetnikoff, Leora; Rayport, Stephen

    2017-01-01

    Brain imaging has revealed alterations in dopamine uptake, release, and receptor levels in patients with schizophrenia that have been resolved on the scale of striatal subregions. However, the underlying synaptic mechanisms are on a finer scale. Dopamine neuron synaptic actions vary across the striatum, involving variations not only in dopamine release but also in dopamine neuron connectivity, cotransmission, modulation, and activity. Optogenetic studies have revealed that dopamine neurons release dopamine in a synaptic signal mode, and that the neurons also release glutamate and gamma-aminobutyric acid as cotransmitters, with striking regional variation. Fast glutamate and gamma-aminobutyric acid cotransmission convey discrete patterns of dopamine neuron activity to striatal neurons. Glutamate may function not only in a signaling role at a subset of dopamine neuron synapses, but also in mediating vesicular synergy, contributing to regional differences in loading of dopamine into synaptic vesicles. Regional differences in dopamine neuron signaling are likely to be differentially involved in the schizophrenia disease process and likely determine the subregional specificity of the action of psychostimulants that exacerbate the disorder, and antipsychotics that ameliorate the disorder. Elucidating dopamine neuron synaptic signaling offers the potential for achieving greater pharmacological specificity through intersectional pharmacological actions targeting subsets of dopamine neuron synapses. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Reliance on habits at the expense of goal-directed control following dopamine precursor depletion

    NARCIS (Netherlands)

    de Wit, S.; Standing, H.R.; DeVito, E.E.; Robinson, O.J.; Ridderinkhof, K.R.; Robbins, T.W.; Sahakian, B.J.

    2012-01-01

    Rationale Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus-response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not

  18. Reducing Ventral Tegmental Dopamine D2 Receptor Expression Selectively Boosts Incentive Motivation

    NARCIS (Netherlands)

    De Jong, Johannes W.; Roelofs, Theresia J M; Mol, Frédérique M U; Hillen, Anne E J; Meijboom, Katharina E.; Luijendijk, Mieneke C M; Van Der Eerden, Harrie A M; Garner, Keith M.; Vanderschuren, Louk J M J; Adan, Roger A H

    2015-01-01

    Altered mesolimbic dopamine signaling has been widely implicated in addictive behavior. For the most part, this work has focused on dopamine within the striatum, but there is emerging evidence for a role of the auto-inhibitory, somatodendritic dopamine D2 receptor (D2R) in the ventral tegmental area

  19. Dopamine concentration in blood platelets is elevated in patients with head and neck paragangliomas

    NARCIS (Netherlands)

    Osinga, Thamara E.; van der Horst-Schrivers, Anouk N A; van Faassen, Martijn; Kerstens, Michiel N; Dullaart, Robin P F; Peters, Marloes A M; van der Laan, Bernard F A M; de Bock, Geertruida H; Links, Thera P; Kema, Ido P

    2015-01-01

    BACKGROUND: Plasma 3-methoxytyramine (3-MT), a metabolite of dopamine, is elevated in up to 28% of patients with head and neck paragangliomas (HNPGLs). As free dopamine is incorporated in circulating platelets, we determined dopamine concentration in platelets in patients with a HNPGL. METHODS: A si

  20. Agonist signalling properties of radiotracers used for imaging of dopamine D-2/3 receptors

    NARCIS (Netherlands)

    van Wieringen, Jan-Peter; Michel, Martin C.; Janssen, Henk M.; Janssen, Anton G.; Elsinga, Philip H.; Booij, Jan

    2014-01-01

    Background: Dopamine D-2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists ar

  1. Research Review: Dopamine Transfer Deficit: A Neurobiological Theory of Altered Reinforcement Mechanisms in ADHD

    Science.gov (United States)

    Tripp, Gail; Wickens, Jeff R.

    2008-01-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer…

  2. PHARMACOLOGICAL ASPECTS OF R-(+)-7-OH-DPAT, A PUTATIVE DOPAMINE D-3 RECEPTOR-LIGAND

    NARCIS (Netherlands)

    DAMSMA, G; BOTTEMA, T; WESTERINK, BHC; TEPPER, PG; DIJKSTRA, D; PUGSLEY, TA; MACKENZIE, RG; HEFFNER, TG; WIKSTROM, H

    1993-01-01

    The R-(+)-isomer of 7-hydroxy-2-(N,N-di-n-propylamino)tetralin (7-OH-DPAT) bound with a more than 200-fold higher affinity to cloned human dopamine D-3 receptors (K-i=0.57 nM) than to dopamine D-2 receptors; the corresponding S-(-)-enantiomer had considerably less affinity for both dopamine receptor

  3. An indirect action of dopamine on the rat fundus strip mediated by 5-hydroxytryptamine

    NARCIS (Netherlands)

    Sonneville, P.F.

    1968-01-01

    Dopamine in a concentration of 10−7 molar produces a contraction of the rat stomach fundus preparation. This effect is blocked by the 5-HT antagonist methysergide. Repeated exposure to dopamine results in tachyphylaxis, but the sensitivity to dopamine can be restored by incubating the tissue with 5-

  4. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors

    Science.gov (United States)

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-01-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release. PMID:26211731

  5. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine

    DEFF Research Database (Denmark)

    Farjami, Elahe; Campos, Rui; Nielsen, Jesper Sejrup

    2013-01-01

    , including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine...

  6. The crystal structure of human dopamine  β-hydroxylase at 2.9 Å resolution

    DEFF Research Database (Denmark)

    Vendelboe, Trine Vammen; Harris, Pernille; Zhao, Y.

    2016-01-01

    , Alzheimer’s disease, attention deficit hyperactivity disorder, and cocaine dependence. We report the crystal structure of human dopamine β-hydroxylase, which is the enzyme converting dopamine to norepinephrine. The structure of the DOMON (dopamine β-monooxygenase N-terminal) domain, also found in >1600...

  7. Dopamine-induced cyclic AMP increase in canine myocardium, kidney and superior mesenteric artery.

    Directory of Open Access Journals (Sweden)

    Kazuno,Hiroshi

    1982-04-01

    Full Text Available The effect of dopamine on cyclic AMP levels in tissue slices of canine myocardium and kidney, and in chopped superior mesenteric arterial wall was investigated to identify dopamine receptors. Tissues were incubated in modified Krebs-Henseleit Ringer bicarbonate solution at 37 degrees C for 20 min with test drugs, after 20-min preincubation. In the presence of 3-isobutyl-1-methylxanthine (IBMX, dopamine and apomorphine caused dose-dependent increases in cyclic AMP levels in the myocardium, kidney and superior mesenteric artery. Phentolamine significantly intensified the cyclic AMP-increasing effect of dopamine in the superior mesenteric artery, but it did not influence the cyclic AMP increase caused by dopamine or apomorphine in the myocardium and kidney. Propranolol markedly blocked the effect of dopamine on cyclic AMP levels in all tissues studied. Haloperidol slightly inhibited the effect of dopamine and completely blocked the effect of apomorphine in the myocardium and kidney. These data suggest that dopamine increases cyclic AMP levels by activating predominantly beta-adrenergic receptors and partly dopamine receptors in the canine myocardium, kidney and superior mesenteric artery. The present results also suggest that dopamine acts not only on beta-adrenergic and dopamine receptors but also on alpha-adrenergic receptors in the superior mesenteric artery. Contrary to the activation of beta-adrenergic and dopamine receptors, the activation of alpha-adrenergic receptors resulted in a decrease in cyclic AMP levels in this tissue.

  8. No association between striatal dopamine transporter binding and body mass index

    DEFF Research Database (Denmark)

    van de Giessen, Elsmarieke; Hesse, Swen; Caan, Matthan W A

    2013-01-01

    Dopamine is one among several neurotransmitters that regulate food intake and overeating. Thus, it has been linked to the pathophysiology of obesity and high body mass index (BMI). Striatal dopamine D(2) receptor availability is lower in obesity and there are indications that striatal dopamine...... transporter (DAT) availability is also decreased. In this study, we tested whether BMI and striatal DAT availability are associated....

  9. PET neuroimaging of extrastriatal dopamine receptors and prefrontal cortex functions.

    Science.gov (United States)

    Takahashi, Hidehiko

    2013-12-01

    The role of prefrontal dopamine D1 receptors in prefrontal cortex (PFC) functions, including working memory, is widely investigated. However, human (healthy volunteers and schizophrenia patients) positron emission tomography (PET) studies about the relationship between prefrontal D1 receptors and PFC functions are somewhat inconsistent. We argued that several factors including an inverted U-shaped relationship between prefrontal D1 receptors and PFC functions might be responsible for these inconsistencies. In contrast to D1 receptors, relatively less attention has been paid to the role of D2 receptors in PFC functions. Several animal and human pharmacological studies have reported that the systemic administration of D2 receptor agonist/antagonist modulates PFC functions, although those studies do not tell us which region(s) is responsible for the effect. Furthermore, while prefrontal D1 receptors are primarily involved in working memory, other PFC functions such as set-shifting seem to be differentially modulated by dopamine. PET studies of extrastriatal D2 receptors including ours suggested that orchestration of prefrontal dopamine transmission and hippocampal dopamine transmission might be necessary for a broad range of normal PFC functions. In order to understand the complex effects of dopamine signaling on PFC functions, measuring a single index related to basic dopamine tone is not sufficient. For a better understanding of the meanings of PET indices related to neurotransmitters, comprehensive information (presynaptic, postsynaptic, and beyond receptor signaling) will be required. Still, an interdisciplinary approach combining molecular imaging techniques with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders and their innovative drug developments.

  10. Encoding of aversion by dopamine and the nucleus accumbens

    Directory of Open Access Journals (Sweden)

    James Edgar Mccutcheon

    2012-09-01

    Full Text Available Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc and the dopamine projection to it are considered an integral part of the brain’s reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias towards reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area (VTA and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus – intraoral infusion of sucrose – has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion versus reward.

  11. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    Science.gov (United States)

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-01-09

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role

  12. Encoding of aversion by dopamine and the nucleus accumbens.

    Science.gov (United States)

    McCutcheon, James E; Ebner, Stephanie R; Loriaux, Amy L; Roitman, Mitchell F

    2012-01-01

    Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward.

  13. Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan.

    Science.gov (United States)

    Pokinko, Matthew; Grant, Alanna; Shahabi, Florence; Dumont, Yvan; Manitt, Colleen; Flores, Cecilia

    2017-03-27

    Adolescence is a period during which the medial prefrontal cortex (mPFC) undergoes significant remodeling. The netrin-1 receptor, deleted in colorectal cancer (DCC), controls the extent and organization of mPFC dopamine connectivity during adolescence and in turn directs mPFC functional and structural maturation. Dcc haploinsufficiency leads to increased mPFC dopamine input, which causes improved cognitive processing and resilience to behavioral effects of stimulant drugs of abuse. Here we examine the effects of Dcc haploinsufficiency on the dynamic expression of dopamine receptors in forebrain targets of C57BL6 mice. We conducted quantitative receptor autoradiography experiments with [(3)H]SCH-23390 or [(3)H]raclopride to characterize D1 and D2 receptor expression in mPFC and striatal regions in male Dcc haploinsufficient and wild-type mice. We generated autoradiograms at early adolescence (PND21±1), mid-adolescence (PND35±2), and adulthood (PND75±15). C57BL6 mice exhibit overexpression and pruning of D1, but not D2, receptors in striatal regions, and a lack of dopamine receptor pruning in the mPFC. We observed age- and region-specific differences in D1 and D2 receptor density between Dcc haploinsufficient and wild-type mice. Notably, neither group shows the typical pattern of mPFC dopamine receptor pruning in adolescence, but adult haploinsufficient mice show increased D2 receptor density in the mPFC. These results show that DCC receptors contribute to the dynamic refinement of D1 and D2 receptor expression in striatal regions across adolescence. The age-dependent expression of dopamine receptor in C57BL6 mice shows marked differences from previous characterizations in rats.

  14. Seasonal effects on human striatal presynaptic dopamine synthesis.

    Science.gov (United States)

    Eisenberg, Daniel P; Kohn, Philip D; Baller, Erica B; Bronstein, Joel A; Masdeu, Joseph C; Berman, Karen F

    2010-11-01

    Past studies in rodents have demonstrated circannual variation in central dopaminergic activity as well as a host of compelling interactions between melatonin--a scotoperiod-responsive neurohormone closely tied to seasonal adaptation--and dopamine in the striatum and in midbrain neuronal populations with striatal projections. In humans, seasonal effects have been described for dopaminergic markers in CSF and postmortem brain, and there exists a range of affective, psychotic, and substance abuse disorders that have been associated with both seasonal symptomatic fluctuations and dopamine neurotransmission abnormalities. Together, these data indirectly suggest a potentially crucial link between circannual biorhythms and central dopamine systems. However, seasonal effects on dopamine function in the living, healthy human brain have never been tested. For this study, 86 healthy adults underwent (18)F-DOPA positron emission tomography scanning, each at a different time throughout the year. Striatal regions of interest (ROIs) were evaluated for differences in presynaptic dopamine synthesis, measured by the kinetic rate constant, K(i), between fall-winter and spring-summer scans. Analyses comparing ROI average K(i) values showed significantly greater putamen (18)F-DOPA K(i) in the fall-winter relative to the spring-summer group (p = 0.038). Analyses comparing voxelwise K(i) values confirmed this finding and evidenced intrastriatal localization of seasonal effects to the caudal putamen (p rate corrected), a region that receives dopaminergic input predominantly from the substantia nigra. These data are the first to directly demonstrate a seasonal effect on striatal presynaptic dopamine synthesis and merit future research aimed at elucidating underlying mechanisms and implications for neuropsychiatric disease and new treatment approaches.

  15. The Dopaminergic System in Peripheral Blood Lymphocytes: From Physiology to Pharmacology and Potential Applications to Neuropsychiatric Disorders

    OpenAIRE

    Buttarelli, Francesca R.; Fanciulli, Alessandra; Pellicano, Clelia; Pontieri, Francesco E.

    2011-01-01

    Besides its action on the nervous system, dopamine (DA) plays a role on neural-immune interactions. Here we review the current evidence on the dopaminergic system in human peripheral blood lymphocytes (PBL). PBL synthesize DA through the tyrosine-hydroxylase/DOPA-decarboxylase pathway, and express DA receptors and DA transporter (DAT) on their plasma membrane. Stimulation of DA receptors on PBL membrane contributes to modulate the development and initiation of immune responses under physiolog...

  16. Patterned Poly(dopamine) Films for Enhanced Cell Adhesion.

    Science.gov (United States)

    Chen, Xi; Cortez-Jugo, Christina; Choi, Gwan H; Björnmalm, Mattias; Dai, Yunlu; Yoo, Pil J; Caruso, Frank

    2017-01-18

    Engineered materials that promote cell adhesion and cell growth are important in tissue engineering and regenerative medicine. In this work, we produced poly(dopamine) (PDA) films with engineered patterns for improved cell adhesion. The patterned films were synthesized via the polymerization of dopamine at the air-water interface of a floating bed of spherical particles. Subsequent dissolution of the particles yielded free-standing PDA films with tunable geometrical patterns. Our results show that these patterned PDA films significantly enhance the adhesion of both cancer cells and stem cells, thus showing promise as substrates for cell attachment for various biomedical applications.

  17. A choreography of nicotinic receptors directs the dopamine neuron routine.

    Science.gov (United States)

    Ungless, Mark A; Cragg, Stephanie J

    2006-06-15

    Modulation of the mesocorticolimbic dopamine system by nicotinic acetylcholine receptors (nAChRs) is thought to play an important role in both health and addiction. However, a clear understanding of how these receptors regulate in vivo firing activity has been elusive. In this issue of Neuron, Mameli-Engvall and colleagues report an impressive and thought-provoking series of in vivo experiments combining single-unit recordings from dopamine neurons with nAChR subunit deletions and region-specific lentiviral subunit re-expression.

  18. Expression, purification and characterization of human Dopamine ß-monooxygenase

    DEFF Research Database (Denmark)

    Vendelboe, Trine Vammen

    This thesis deals with expression, purification and characterization of the copper containing enzyme dopamine ß-monooxygenase (DBM). DBM is an ascorbate dependent protein that requires Cu in the active site in order to be functional. DBM is made of four domains; An Nterminal DOMON domain, the two...... others, one of the reasons why these proteins are considered to follow the same mechanism. DBM converts dopamine (DA) into Norepinphrine (NE). Both substrate and product functions as neurotransmitters and the levels of these are involved in many different disorders such as depression and hypertension...

  19. Dopamine natriuresis in salt-repleted, water-loaded humans

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Olsen, M H; Bonde, J

    1997-01-01

    The purpose of the present study was to define the dose-response relationship between exogenous dopamine and systemic haemodynamics, renal haemodynamics, and renal excretory function at infusion rates in the range 0 to 12.5 microg kg(-1) min(-1) in normal volunteers.......The purpose of the present study was to define the dose-response relationship between exogenous dopamine and systemic haemodynamics, renal haemodynamics, and renal excretory function at infusion rates in the range 0 to 12.5 microg kg(-1) min(-1) in normal volunteers....

  20. Diet-induced obesity: dopamine transporter function, impulsivity and motivation.

    Science.gov (United States)

    Narayanaswami, V; Thompson, A C; Cassis, L A; Bardo, M T; Dwoskin, L P

    2013-08-01

    A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. Striatal D2-receptor density was determined by in vitro kinetic analysis of [(3)H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [(3)H]dopamine uptake, methamphetamine-evoked [(3)H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [(3)H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that

  1. Discovery of dopamine D₄ receptor antagonists with planar chirality.

    Science.gov (United States)

    Sanna, Fabrizio; Ortner, Birgit; Hübner, Harald; Löber, Stefan; Tschammer, Nuska; Gmeiner, Peter

    2013-04-01

    Employing the D4 selective phenylpiperazine 2 as a lead compound, planar chiral analogs with paracyclophane substructure were synthesized and evaluated for their ability to bind and activate dopamine receptors. The study revealed that the introduction of a [2.2]paracyclophane moiety is tolerated by dopamine receptors of the D2 family. Subtype selectivity for D4 and ligand efficacy depend on the absolute configuration of the test compounds. Whereas the achiral single-layered lead 2 and the double-layered paracyclophane (R)-3 showed partial agonist properties, the enantiomer (S)-3 behaved as a neutral antagonist.

  2. Carbon nanotube nanoweb-bioelectrode for highly selective dopamine sensing.

    Science.gov (United States)

    Zhao, Jie; Zhang, Weimin; Sherrell, Peter; Razal, Joselito M; Huang, Xu-Feng; Minett, Andrew I; Chen, Jun

    2012-01-01

    A highly sensitive and selective dopamine sensor was fabricated with the unique 3D carbon nanotube nanoweb (CNT-N) electrode. The as-synthesised CNT-N was modified by oxygen plasma to graft functional groups in order to increase selective electroactive sites at the CNT sidewalls. This electrode was characterized physically and electrochemically using HRSEM, Raman, FT-IR, and cyclic voltammetry (CV). Our investigations indicated that the O(2)-plasma treated CNT-N electrode could serve as a highly sensitive biosensor for the selective sensing of dopamine (DA, 1 μM to 20 μM) in the presence of ascorbic acid (AA, 1000 μM).

  3. Dopamine natriuresis in salt-repleted, water-loaded humans

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Olsen, M H; Bonde, J

    1997-01-01

    The purpose of the present study was to define the dose-response relationship between exogenous dopamine and systemic haemodynamics, renal haemodynamics, and renal excretory function at infusion rates in the range 0 to 12.5 microg kg(-1) min(-1) in normal volunteers.......The purpose of the present study was to define the dose-response relationship between exogenous dopamine and systemic haemodynamics, renal haemodynamics, and renal excretory function at infusion rates in the range 0 to 12.5 microg kg(-1) min(-1) in normal volunteers....

  4. Expression, purification and characterization of human Dopamine ß-monooxygenase

    DEFF Research Database (Denmark)

    Vendelboe, Trine Vammen

    This thesis deals with expression, purification and characterization of the copper containing enzyme dopamine ß-monooxygenase (DBM). DBM is an ascorbate dependent protein that requires Cu in the active site in order to be functional. DBM is made of four domains; An Nterminal DOMON domain, the two...... others, one of the reasons why these proteins are considered to follow the same mechanism. DBM converts dopamine (DA) into Norepinphrine (NE). Both substrate and product functions as neurotransmitters and the levels of these are involved in many different disorders such as depression and hypertension...

  5. The First Negative Allosteric Modulator for Dopamine D2 and D3 Receptors, SB269652 May Lead to a New Generation of Antipsychotic Drugs.

    Science.gov (United States)

    Rossi, Mario; Fasciani, Irene; Marampon, Francesco; Maggio, Roberto; Scarselli, Marco

    2017-06-01

    D2 and D3 dopamine receptors belong to the largest family of cell surface proteins in eukaryotes, the G protein-coupled receptors (GPCRs). Considering their crucial physiologic functions and their relatively accessible cellular locations, GPCRs represent one of the most important classes of therapeutic targets. Until recently, the only strategy to develop drugs regulating GPCR activity was through the identification of compounds that directly acted on the orthosteric sites for endogenous ligands. However, many efforts have recently been made to identify small molecules that are able to interact with allosteric sites. These sites are less well-conserved, therefore allosteric ligands have greater selectivity on the specific receptor. Strikingly, the use of allosteric modulators can provide specific advantages, such as an increased selectivity for GPCR subunits and the ability to introduce specific beneficial therapeutic effects without disrupting the integrity of complex physiologically regulated networks. In 2010, our group unexpectedly found that N-[(1r,4r)-4-[2-(7-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-1H-indole-2-carboxamide (SB269652), a compound supposed to interact with the orthosteric binding site of dopamine receptors, was actually a negative allosteric modulator of D2- and D3-receptor dimers, thus identifying the first allosteric small molecule acting on these important therapeutic targets. This review addresses the progress in understanding the molecular mechanisms of interaction between the negative modulator SB269652 and D2 and D3 dopamine receptor monomers and dimers, and surveys the prospects for developing new dopamine receptor allosteric drugs with SB269652 as the leading compound. U.S. Government work not protected by U.S. copyright.

  6. Simultaneous radioenzymatic assay of dopamine and dihydroxyphenylacetic acid: an index of in vivo dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.H.; Wooten, G.F.

    1981-03-01

    The relative brain tissue concentrations of dopamine (DA) and its deaminated metabolite, dihydroxyphenylacetic acid (DOPAC), appears to be a reliable index of the functional activity of dopaminergic neurons. In order to apply this approach to the assessment of dopaminergic neuronal activity in small regions of brain, we have developed a sensitive radioenzymatic assay for simultaneous measurement of DA and DOPAC. The sensitivity of the assay for DA is approximately 10 pg and for DOPAC 100 pg. In addition, the assay is highly specific, simple, and relatively inexpensive. The concurrent estimation of tissue DA and DOPAC concentrations seems to be a reliable means of evaluating the rate of DA turnover or release in behavioral, electrical stimulation, and certain drug paradigms. However, the release or turnover of DA as induced by D-amphetamine (and perhaps other indirectly-acting dopaminemimetic drugs) cannot be meaningfully assessed by measurement of DA and DOPAC alone.

  7. [{sup 11}]Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Joanna S. E-mail: fowler@bnl.gov; Volkow, Nora D.; Wang, Gene-Jack; Gatley, S. John; Logan, Jean

    2001-07-01

    Cocaine was initially labeled with carbon-11 in order to track the distribution and pharmacokinetics of this powerful stimulant and drug of abuse in the human brain and body. It was soon discovered that [{sup 11}C]cocaine was not only useful for measuring cocaine pharmacokinetics and its relationship to behavior but that it is also a sensitive radiotracer for dopamine transporter (DAT) availability. Measures of DAT availability were facilitated by the development of a graphical analysis method (Logan Plot) for reversible systems which streamlined kinetic analysis. This expanded the applications of [{sup 11}C]cocaine to studies of DAT availability in the human brain and allowed the first comparative measures of the degree of DAT occupancy by cocaine and another stimulant drug methylphenidate. This article will summarize preclinical and clinical research with [{sup 11}C]cocaine.

  8. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    Science.gov (United States)

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn.

  9. Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits.

    Science.gov (United States)

    Bisagno, Veronica; González, Betina; Urbano, Francisco J

    2016-07-01

    In this review we describe how highly addictive psychostimulants such as cocaine and methamphetamine actions might underlie hypoexcitabilty in frontal cortical areas observed in clinical and preclinical models of psychostimulant abuse. We discuss new mechanisms that describe how increments on synaptic dopamine release are linked to reduce calcium influx in both pre and postsynaptic compartments on medial PFC networks, therefore modulating synaptic integration and information. Sustained DA neuromodulation by addictive psychostimulants can "lock" frontal cortical networks in deficient states. On the other hand, other psychostimulants such as modafinil and methylphenidate are considered pharmacological neuroenhancement agents that are popular among healthy people seeking neuroenhancement. More clinical and preclinical research is needed to further clarify mechanisms of actions and physiological effects of cognitive enhancers which show an opposite pattern compared to chronic effect of addictive psychostimulants: they appear to increase cortical excitability. In conclusion, studies summarized here suggest that there is frontal cortex hypoactivity and deficient inhibitory control in drug-addicted individuals. Thus, additional research on physiological effects of cognitive enhancers like modafinil and methylphenidate seems necessary in order to expand current knowledge on mechanisms behind their therapeutic role in the treatment of addiction and other neuropsychiatric disorders.

  10. 多巴胺D2受体的同源模建研究%Homology modeling of Dopamine D2 receptor

    Institute of Scientific and Technical Information of China (English)

    芮亚然; 刘维国; 李冬玲; 张严

    2012-01-01

    Dopamine (DA) is the most abundant catecholaminergic neurotransmitter in the brain.It controls a variety of physiological functions of the central nervous system by Dopamine receptor, and Dopamine D2 receptor has been associated with a variety of neuropathological diseases, such as drug addiction, schizophrenia. Parkinson's disease. But so Tar. the structure of Dopamine D2 receptor is not available, which limited the design and development of relevenl drugs in this paper, the homology model of Dopamine D2 receptor was developed by using the Dopamine D3 receptor (JPBL) as template, which has (he highest sequence identity to D2 receptor. After Optimization and molecular dynamics simulation, the refined model structure was obtained. The final refined model was assessed by Profile-3D and Ramachamlran plot programs, then verified by docking with stepholidine(SPD). The results show that the Dopamine D2 model which we built is reasonable and reliable.%多巴胺是大脑中含量最丰富的儿茶酚胺类神经递质,主要通过多巴胺受体调控中枢神经系统的多种生理功能,其中多巴胺D2受体与药物成瘾、精神分裂症、帕金森病等多种疾病的发生相关.然而多巴胺D2受体的晶体结构至今尚未解析出来,给相关疾病的药物设计与开发带来困难.本文采用同源模建的方法,用目前与多巴胺D2受体同源性最高的多巴胺D3受体(3PBL)作为模板,构建多巴胺D2受体的三维结构.经过优化和分子动力学模拟,用Profile-3D和Ramachandran plot对模型进行评估,然后用多巴胺D2受体拮抗剂千金藤啶碱(stepholidine,SPD)进行对接验证,证明构建的多巴胺D2受体模型合理、可靠.

  11. Intranasal dopamine reduces in vivo [123I]FP-CIT binding to striatal dopamine transporter: correlation with behavioral changes and evidence for Pavlovian conditioned dopamine response

    Directory of Open Access Journals (Sweden)

    Maria A de Souza Silva

    2016-04-01

    Full Text Available Purpose: Dopamine (DA, which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA, nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We hypothesized that, based on the finding of increased extracellular DA in the striatum induced by application of IN-DA, binding of [123I]FP-CIT to the DAT should be decreased due to competition at the receptor.Methods: Rats were administered intranasal application of 3 mg/kg IN-DA and vehicle (VEH, with IN-DA injection either preceding or following VEH. Then motor and exploratory behaviors (traveled distance, velocity, center time, sitting, rearing, head-shoulder motility, grooming were assessed for 30 min in an open field prior to administration of [123I]FP-CIT. DAT binding after IN-DA and VEH was measured with small animal SPECT two hours following administration of the radioligand. Results: 1 After IN-DA application, striatal DAT binding was significantly lower as compared to VEH, indicating that the nasally delivered dopamine had central action and increased DA levels comparable to that found previously with L-DOPA administration. 2 DAT binding in response to intranasal VEH was lower when IN-DA application preceded VEH treatment. This finding is suggestive of Pavlovian conditioning of DA at the level of the DAT, since the DA treatment modified (decreased the binding in response to the subsequent VEH treatment. VEH treatment also reduced motor and exploratory behaviors more when applied before, as compared to when it followed IN-DA application, also indicative of behavioral Pavlovian conditioning akin to that found upon application of various psychostimulant

  12. Putting Desire on a Budget: Dopamine and Energy Expenditure, Reconciling Reward and Resources

    Directory of Open Access Journals (Sweden)

    Jeff A Beeler

    2012-07-01

    Full Text Available Accumulating evidence indicates integration of dopamine function with metabolic signals, highlighting a potential role for dopamine in energy balance, frequently construed as modulating reward in response to homeostatic state. Though its precise role remains controversial, the reward perspective of dopamine has dominated investigation of motivational disorders, including obesity. In the hypothesis outlined here, we suggest instead that the primary role of dopamine in behavior is to modulate activity to adapt behavioral energy expenditure to the prevailing environmental energy conditions, with the role of dopamine in reward and motivated behaviors derived from its primary role in energy balance. Dopamine has long been known to modulate activity, exemplified by psychostimulants that act via dopamine. More recently, there has been nascent investigation into the role of dopamine in modulating voluntary activity, with some investigators suggesting that dopamine may serve as a final common pathway that couples energy sensing to regulated voluntary energy expenditure. We suggest that interposed between input from both the internal and external world, dopamine modulates behavioral energy expenditure along two axes: a conserve-expend axis that regulates generalized activity and an explore-exploit axes that regulates the degree to which reward value biases the distribution of activity. In this view, increased dopamine does not promote consumption of tasty food. Instead increased dopamine promotes energy expenditure and exploration while decreased dopamine favors energy conservation and exploitation. This hypothesis provides a mechanistic interpretation to an apparent paradox: the well-established role of dopamine in food seeking and the findings that low dopaminergic functions are associated with obesity. Our hypothesis provides an alternative perspective on the role of dopamine in obesity and reinterprets the ‘reward deficiency hypothesis’ as a

  13. Effects of dopamine antagonists on methamphetamine-induced dopamine release in high and low alcohol preference rats.

    Science.gov (United States)

    Nishiguchi, Minori; Kinoshita, Hiroshi; Kasuda, Shogo; Takahashi, Montonori; Yamamura, Takehiko; Matsui, Kiyoshi; Ouchi, Harumi; Minami, Takako; Hishida, Shigeru; Nishio, Hajime

    2010-03-01

    The authors have previously shown that high alcohol preference rats (HAP) have a significantly higher sensitivity than low alcohol preference rats (LAP) for methamphetamine (MAP). In this study, changes in dopamine and serotonin release induced by MAP (1 mg/kg, intraperitoneally) after pre-treatment with D1 and D2 receptor antagonists were examined in the striatum of rats with different alcohol preferences to elucidate differences in receptor levels between the two rat strains. D1 receptor antagonist SCH23390 or D2 receptor antagonist haloperidol were administrated intracerebroventricularly 10 min before MAP stimulation. This study investigated the effect of methamphetamine-induced dopamine and serotonin release in striatum using microdialysis of freely moving rats coupled to ECD-HPLC. With haloperidol treatment both strains of rats showed a significantly greater maximum increase on MAP-induced dopamine release compared with respective control rats. However, after SCH23390 treatment only HAP rats showed a significantly greater increase in dopamine release compared with controls. SCH23390 blocks mainly D1 receptors only in the post-synaptic membrane, whereas haloperidol blocks D2 receptors in both the pre-synaptic and post-synaptic membranes. The MAP-induced increase in dopamine release following haloperidol pre-treatment was greater than SCH23390 pre-treatment in both strains. This result indicates that D2 receptors (autoreceptors) in the pre-synaptic membrane were blocked, leading to the elimination of the feedback function that regulates dopamine release. These data suggested that alcohol preference is associated with the action of MAP, and the dopaminergic mechanism, specifically the D1 system in the striatum, might have a different pathway dependent on alcohol preference.

  14. Dopamine system: Manager of neural pathways

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2013-12-01

    Full Text Available There are a growing number of roles that midbrain dopamine (DA neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1 the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs. The DA system can be viewed as the manager of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2 there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to maintain a certain level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb, the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations.

  15. Dopamine receptor ligands. Part 18: (1) modification of the structural skeleton of indolobenzazecine-type dopamine receptor antagonists.

    Science.gov (United States)

    Robaa, Dina; Enzensperger, Christoph; Abul Azm, Shams El Din; El Khawass, El Sayeda; El Sayed, Ola; Lehmann, Jochen

    2010-03-25

    On the basis of the D(1/5)-selective dopamine antagonist LE 300 (1), an indolo[3,2-f]benzazecine derivative, we changed the annulation pattern of the heterocycles. The target compounds represent novel heterocyclic ring systems. The most constrained indolo[4,3a,3-ef]benzazecine 2 was inactive, but the indolo[4,3a,3-fg]benzazacycloundecene 3 showed antagonistic properties (functional Ca(2+) assay) with nanomolar affinities (radioligand binding) for all dopamine receptor subtypes, whereas the indolo[2,3-f]benzazecine 4 displayed a selectivity profile similar to 3 but with decreased affinities.

  16. Tuberoinfundibular transport of intrahypothalamic-administered dopamine in normo- and hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Sim, M.K.

    1988-01-01

    The dopamine transport system in the tuberoinfundibular tract of the spontaneously hypertensive (SHR), Wistar Kyoto (WKY) and Sprague-Dawley (SD) rats was investigated. The results show that the rate of dopamine transport in this tract is strain-specific. SD rats transported twice as much dopamine (in 30 minutes) as WKY and SHR. The dopamine transport system in the SHR, being at par with that of the WKY, remained intact. These findings suggest that hypertension and the alleged reduced central dopaminergic activity in the SHR is not related to the transport of dopamine in the tuberoinfundibular tract.

  17. Dosage-dependent effect of dopamine D2 receptor activation on motor cortex plasticity in humans.

    Science.gov (United States)

    Fresnoza, Shane; Stiksrud, Elisabeth; Klinker, Florian; Liebetanz, David; Paulus, Walter; Kuo, Min-Fang; Nitsche, Michael A

    2014-08-06

    The neuromodulator dopamine plays an important role in synaptic plasticity. The effects depend on receptor subtypes, affinity, concentration level, and the kind of neuroplasticity induced. In animal experiments, dopamine D2-like receptor stimulation revealed partially antagonistic effects on plasticity, which might be explained by dosage dependency. In humans, D2 receptor block abolishes plasticity, and the D2/D3, but predominantly D3, receptor agonist ropinirol has a dosage-dependent nonlinear affect on plasticity. Here we aimed to determine the specific affect of D2 receptor activation on neuroplasticity in humans, because physiological effects of D2 and D3 receptors might differ. Therefore, we combined application of the selective D2 receptor agonist bromocriptine (2.5, 10, and 20 mg or placebo medication) with anodal and cathodal transcranial direct current stimulation (tDCS), which induces nonfocal plasticity, and with paired associative stimulation (PAS) generating a more focal kind of plasticity in the motor cortex of healthy humans. Plasticity was monitored by transcranial magnetic stimulation-induced motor-evoked potential amplitudes. For facilitatory tDCS, bromocriptine prevented plasticity induction independent from drug dosage. However, its application resulted in an inverted U-shaped dose-response curve on inhibitory tDCS, excitability-diminishing PAS, and to a minor degree on excitability-enhancing PAS. These data support the assumption that modulation of D2-like receptor activity exerts a nonlinear dose-dependent effect on neuroplasticity in the human motor cortex that differs from predominantly D3 receptor activation and that the kind of plasticity-induction procedure is relevant for its specific impact.

  18. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.

    Science.gov (United States)

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-03-15

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also

  19. Dopamine transporter SPECT in patients with Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Hamano, Tadanori; Tsuchida, Tatsuro; Hirayama, Mikio; Fujiyama, Jiro; Mutoh, Tatsuro; Yonekura, Yoshiharu; Kuriyama, Masaru [Fukui Medical Univ., Matsuoka (Japan)

    2000-03-01

    The major neuropathological feature in Parkinson's disease (PD) is severe degeneration of the dopamine (DA) neurons in the substantia nigra. Dopamine transporter (DAT) is an important protein in the regulation of DA neurotransmission. It has been reported that PD patients show a loss of DAT in striatum. We report here the findings of single photon emission computed tomography (SPECT) of the DAT with 2{beta}-carboxymethoxy-3{beta}-(4[{sup 123}I]iodophenyl)tropane ([{sup 123}I]{beta}-CIT) to investigate striatal DAT in 10 patients with PD, one patient with vascular parkinsonism (VP), and one patient with dystonia syndrome. Patients were evaluated using the Webster rating scale. Specific/nondisplaceable striatal binding ratio (V3'') was obtained in each case. In PD patients, the uptake of [{sup 123}I]{beta}-CIT was reduced, especially in the tail of putamen compared with caudate nucleus. Even in the early stage of PD, the uptake of {beta}-CIT was reduced not only in the severely affected side, but also in the mildly disturbed side of the brain. Putamen caudate ratio was generally low in PD patients. In VP patient, the uptake was reduced, but putamen caudate ratio was not decreased. V3'' values showed significant correlation with the severity of clinical symptoms such as self-care, facies, posture, gait, speech, and Hoehn-Yahr's stage. On the other hand, V3'' values were not significantly correlated with the degree of tremor, seborrhea, and duration of the illness. In conclusion, we found that SPECT of the [{sup 123}I]{beta}-CIT is a useful method for the diagnosis in the patients presenting parkinsonism, and for the clinico-physiological estimation of parkinsonian symptoms such as self-care, facies, posture, gait, and speech. (author)

  20. Insights into the modulation of dopamine transporter function by amphetamine, orphenadrine and cocaine binding

    Directory of Open Access Journals (Sweden)

    Mary Hongying Cheng

    2015-06-01

    Full Text Available Human dopamine transporter (hDAT regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of dopamine (DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing and inward-facing states of DAT. hDAT is a target for addictive drugs such as cocaine, amphetamine (AMPH and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH, an anticholinergic agent and anti-PD drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT-drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH and cocaine, and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition towards a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the outward-facing open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine.

  1. The role of the dopamine D1 receptor in social cognition : Studies using a novel genetic rat model

    NARCIS (Netherlands)

    Homberg, Judith R.; Olivier, Jocelien D A; VandenBroeke, Marie; Youn, Jiun; Ellenbroek, Arabella K.; Karel, Peter; Shan, Ling; Van Boxtel, Ruben; Ooms, Sharon; Balemans, Monique; Langedijk, Jacqueline; Muller, Mareike; Vriend, Gert; Cools, Alexander R.; Cuppen, Edwin; Ellenbroek, Bart A.

    2016-01-01

    Social cognitionisan endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 recept

  2. Vasogenic shock physiology

    Directory of Open Access Journals (Sweden)

    Sotiria Gkisioti

    2011-01-01

    Full Text Available Sotiria Gkisioti, Spyros D MentzelopoulosDepartment of Intensive Care Medicine, University of Athens Medical School, Evaggelismos General Hospital, Athens, GreeceAbstract: Shock means inadequate tissue perfusion by oxygen-carrying blood. In vasogenic shock, this circulatory failure results from vasodilation and/or vasoplegia. There is vascular hyporeactivity with reduced vascular smooth muscle contraction in response to α1 adrenergic agonists. Considering vasogenic shock, one can understand its utmost importance, not only because of its association with sepsis but also because it can be the common final pathway for long-lasting, severe shock of any cause, even postresuscitation states. The effective management of any patient in shock requires the understanding of its underlying physiology and pathophysiology. Recent studies have provided new insights into vascular physiology by revealing the interaction of rather complicated and multifactorial mechanisms, which have not been fully elucidated yet. Some of these mechanisms, such as the induction of nitric oxide synthases, the activation of adenosine triphosphate-sensitive potassium channels, and vasopressin deficiency, have gained general acceptance and are considered to play an important role in the pathogenesis of vasodilatory shock. The purpose of this review is to provide an update on the pathogenesis of vasogenic shock.Keywords: nitric oxide synthases, KATP channels, vasopressin, H2S, vasoplegic syndrome

  3. Physiology of bile secretion

    Institute of Scientific and Technical Information of China (English)

    Alejandro Esteller

    2008-01-01

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment,in different situations,results in the syndrome of cholestasis.The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed.Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane.This review summarizes recent data on the molecular determinants of this primary bile formation.The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bileduct epithelial cells (cholangiocytes) as bile passes through bile ducts.The mechanisms of fluid and solute transport in cholangiocytes will also be discussed.In contrast to hepatocytes where secretion is constant and poorly controlled,cholangiocyte secretion is regulated by hormones and nerves.A short section dedicated to these regulatory mechanisms of bile secretion has been included.The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.

  4. Dopamine transporters are involved in the onset of hypoxia-induced dopamine efflux in striatum as revealed by in vivo microdialysis.

    Science.gov (United States)

    Orset, Cyrille; Parrot, Sandrine; Sauvinet, Valérie; Cottet-Emard, Jean-Marie; Bérod, Anne; Pequignot, Jean-Marc; Denoroy, Luc

    2005-06-01

    Although many studies have revealed alterations in neurotransmission during ischaemia, few works have been devoted to the neurochemical effects of mild hypoxia, a situation encountered during life in altitude or in several pathologies. In that context, the present work was undertaken to determine the in vivo mechanisms underlying the striatal dopamine efflux induced by mild hypoxaemic hypoxia. For that purpose, the extracellular concentrations of dopamine and its metabolite 3,4-dihydroxyphenyl acetic acid were simultaneously measured using brain microdialysis during acute hypoxic exposure (10% O(2), 1h) in awake rats. Hypoxia induced a +80% increase in dopamine. Application of the dopamine transporters inhibitor, nomifensine (10 microM), just before the hypoxia prevented the rise in dopamine during the early part of hypoxia; in contrast the application of nomifensine after the beginning of hypoxia, failed to alter the increase in dopamine. Application of the voltage-dependent Na(+) channel blocker tetrodotoxin abolished the increase in dopamine, whether administered just before or after the beginning of hypoxia. These data show that the neurochemical mechanisms of the dopamine efflux may change over the course of the hypoxic exposure, dopamine transporters being involved only at the beginning of hypoxia.

  5. Evidence for distinct sodium-, dopamine-, and cocaine-dependent conformational changes in transmembrane segments 7 and 8 of the dopamine transporter

    DEFF Research Database (Denmark)

    Norregaard, Lene; Loland, Claus Juul; Gether, Ulrik

    2003-01-01

    . Inhibitors such as cocaine did not alter the effect of MTSET in M371C. The protection of M371C inactivation by dopamine required Na+. Because dopamine binding is believed to be Na+-independent, this suggests that dopamine induces a transport-associated conformational change that decreases the reactivity of M......371C with MTSET. In contrast to M371C, cocaine decreased the reaction rate of A399C with MTSET, whereas dopamine had no effect. The protection by cocaine can either reflect that Ala-399 lines the cocaine binding crevice or that cocaine induces a conformational change that decreases the reactivity of A...

  6. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  7. Enhanced striatal dopamine release during food stimulation in binge eating disorder.

    Science.gov (United States)

    Wang, Gene-Jack; Geliebter, Allan; Volkow, Nora D; Telang, Frank W; Logan, Jean; Jayne, Millard C; Galanti, Kochavi; Selig, Peter A; Han, Hao; Zhu, Wei; Wong, Christopher T; Fowler, Joanna S

    2011-08-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [(11)C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  8. Influence of dopamine as noradrenaline precursor on the secretory function of the bovine corpus luteum in vitro.

    OpenAIRE

    Kotwica, J.; Skarzynski, D.; Bogacki, M.; Miszkiel, G.

    1996-01-01

    1. Dopamine is assumed to affect the ovary function after its conversion into noradrenaline (NA). 2. To study this bovine luteal slices from 11-14 days of the oestrous cycle were preincubated for 24 h to recover beta-receptors and next they were incubated for 1, 2 or 4 h with (a) different doses of dopamine; (b) dopamine together with a beta-antagonist (propranolol) or with a dopamine receptor blocker (droperidol); (c) dopamine with a dopamine-beta-hydroxylase inhibitor. 3. Dopamine stimulate...

  9. Imaging of dopamine release induced by pharmacologic and nonpharmacologic stimulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

  10. Dorsal striatal dopamine, food preference and health perception in humans

    NARCIS (Netherlands)

    Wallace, D.L.; Aarts, E.; Dang, L.C.; Greer, S.M.; Jagust, W.J.; D'Esposito, M.

    2014-01-01

    To date, few studies have explored the neurochemical mechanisms supporting individual differences in food preference in humans. Here we investigate how dorsal striatal dopamine, as measured by the positron emission tomography (PET) tracer [(18)F]fluorometatyrosine (FMT), correlates with food-related

  11. Dopamine-induced silica-polydopamine hybrids with controllable morphology.

    Science.gov (United States)

    Ho, Chia-Che; Ding, Shinn-Jyh

    2014-04-01

    Novel silica-polydopamine hybrids, with controllable morphology, are facilely fabricated in an emulsion system consisting of tetraethyl orthosilicate, dopamine, water, and NaOH under weakly basic conditions (pH 8.5-10). An increase in initial pH favors the formation of nano-structured spherical silica-PDA hybrids from a flocculated structure.

  12. Dopamine and Impulse Control Disorders in Parkinson's Disease

    NARCIS (Netherlands)

    Weintraub, Daniel

    2008-01-01

    There is an increasing awareness that impulse control disorders (ICDs), including compulsive gambling, buying, sexual behavior, and eating, can occur as a complication of Parkinson's disease (PD). In addition, other impulsive or compulsive disorders have been reported to occur, including dopamine dy

  13. Dopamine and impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Weintraub, Daniel

    2008-12-01

    There is an increasing awareness that impulse control disorders (ICDs), including compulsive gambling, buying, sexual behavior, and eating, can occur as a complication of Parkinson's disease (PD). In addition, other impulsive or compulsive disorders have been reported to occur, including dopamine dysregulation syndrome (DDS) and punding. Case reporting and prospective studies have reported an association between ICDs and the use of dopamine agonists (DAs), particularly at greater dosages, whereas dopamine dysregulation syndrome has been associated with greater dosages of levodopa or short-acting DAs. Data suggest that risk factors for an ICD may include male sex, younger age or younger age at PD onset, a pre-PD history of ICD symptoms, personal or family history of substance abuse or bipolar disorder, and a personality style characterized by impulsiveness. Although psychiatric medications are used clinically in the treatment of ICDs, there is no empiric evidence supporting their use in PD. Therefore, management for clinically significant ICD symptoms should consist of modifications to dopamine replacement therapy, particularly DAs, and there is emerging evidence that such management is associated with an overall improvement in ICD symptomatology. It is important that PD patients be aware that DA use may lead to the development of an ICD, and that clinicians monitor patients as part of routine clinical care. As empirically validated treatments for ICDs are emerging, it will be important to examine their efficacy and tolerability in individuals with cooccurring PD and ICDs.

  14. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  15. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism

    Science.gov (United States)

    The common parasite Toxoplasma gondii induces behavioral alterations in its hosts including phenotypes increasing the likelihood of its transmission in rodents and reports of psychobehavioral alterations in humans. We have found that elevated levels of dopamine are associated with the encysted stage...

  16. Association of Dopamine D2 Receptor Gene with Creative Ideation

    Science.gov (United States)

    Yu, Qi; Zhang, Shun; Zhang, Jinghuan H.

    2017-01-01

    Although several studies suggest that dopamine D2 receptor (DRD2) gene may contribute to creativity, the relationship between DRD2 and creativity still needs to be further validated. To further test the relevance of DRD2 and creativity, this study explored the association between DRD2 and creative ideation in 483 unrelated healthy Chinese…

  17. Extrastriatal dopamine D2-receptor availability in social anxiety disorder.

    Science.gov (United States)

    Plavén-Sigray, Pontus; Hedman, Erik; Victorsson, Pauliina; Matheson, Granville J; Forsberg, Anton; Djurfeldt, Diana R; Rück, Christian; Halldin, Christer; Lindefors, Nils; Cervenka, Simon

    2017-05-01

    Alterations in the dopamine system are hypothesized to influence the expression of social anxiety disorder (SAD) symptoms. However, molecular imaging studies comparing dopamine function between patients and control subjects have yielded conflicting results. Importantly, while all previous investigations focused on the striatum, findings from activation and blood flow studies indicate that prefrontal and limbic brain regions have a central role in the pathophysiology. The objective of this study was to investigate extrastriatal dopamine D2-receptor (D2-R) availability in SAD. We examined 12 SAD patients and 16 healthy controls using positron emission tomography and the high-affinity D2-R radioligand [(11)C]FLB457. Parametric images of D2-R binding potential were derived using the Logan graphical method with cerebellum as reference region. Two-tailed one-way independent ANCOVAs, with age as covariate, were used to examine differences in D2-R availability between groups using both region-based and voxel-wise analyses. The region-based analysis showed a medium effect size of higher D2-R levels in the orbitofrontal cortex (OFC) in patients, although this result did not remain significant after correction for multiple comparisons. The voxel-wise comparison revealed elevated D2-R availability in patients within OFC and right dorsolateral prefrontal cortex after correction for multiple comparisons. These preliminary results suggest that an aberrant extrastriatal dopamine system may be part of the disease mechanism in SAD. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. The potential role of dopamine D₃ receptor neurotransmission in cognition.

    Science.gov (United States)

    Nakajima, Shinichiro; Gerretsen, Philip; Takeuchi, Hiroyoshi; Caravaggio, Fernando; Chow, Tiffany; Le Foll, Bernard; Mulsant, Benoit; Pollock, Bruce; Graff-Guerrero, Ariel

    2013-08-01

    Currently available treatments have limited pro-cognitive effects for neuropsychiatric disorders, such as schizophrenia, Parkinson's disease and Alzheimer's disease. The primary objective of this work is to review the literature on the role of dopamine D₃ receptors in cognition, and propose dopamine D₃ receptor antagonists as possible cognitive enhancers for neuropsychiatric disorders. A literature search was performed to identify animal and human studies on D₃ receptors and cognition using PubMed, MEDLINE and EMBASE. The search terms included "dopamine D₃ receptor" and "cognition". The literature search identified 164 articles. The results revealed: (1) D₃ receptors are associated with cognitive functioning in both healthy individuals and those with neuropsychiatric disorders; (2) D₃ receptor blockade appears to enhance while D₃ receptor agonism seems to impair cognitive function, including memory, attention, learning, processing speed, social recognition and executive function independent of age; and (3) D₃ receptor antagonists may exert their pro-cognitive effect by enhancing the release of acetylcholine in the prefrontal cortex, disinhibiting the activity of dopamine neurons projecting to the nucleus accumbens or prefrontal cortex, or activating CREB signaling in the hippocampus. These findings suggest that D₃ receptor blockade may enhance cognitive performance in healthy individuals and treat cognitive dysfunction in individuals with a neuropsychiatric disorder. Clinical trials are needed to confirm these effects.

  19. Potential dopamine-1 receptor stimulation in hypertension management.

    Science.gov (United States)

    Asghar, Mohammad; Tayebati, Seyed K; Lokhandwala, Mustafa F; Hussain, Tahir

    2011-08-01

    The role of dopamine receptors in blood pressure regulation is well established. Genetic ablation of both dopamine D1-like receptor subtypes (D1, D5) and D2-like receptor subtypes (D2, D3, D4) results in a hypertensive phenotype in mice. This review focuses on the dopamine D1-like receptor subtypes D1 and D5 (especially D1 receptors), as they play a major role in regulating sodium homeostasis and blood pressure. Studies mostly describing the role of renal dopamine D1-like receptors are included, as the kidneys play a pivotal role in the maintenance of sodium homeostasis and the long-term regulation of blood pressure. We also attempt to describe the interaction between D1-like receptors and other proteins, especially angiotensin II type 1 and type 2 receptors, which are involved in the maintenance of sodium homeostasis and blood pressure. Finally, we discuss a new concept of renal D1 receptor regulation in hypertension that involves oxidative stress mechanisms.

  20. Raised dopamine metabolites in a case of malignant paraganglioma.

    OpenAIRE

    Florkowski, C M; Fairlamb, D. J.; Freeth, M G; Taylor, S.A.; A. Taylor; Weinkove, C.; Jacobs, A. G.

    1990-01-01

    This paper describes the case of a malignant retroperitoneal paraganglioma with extensive metastases. The patient presented with a supraclavicular mass and an absence of hypertension. Exclusively raised dopamine metabolites were detected which may be a marker of a malignant process and account for the lack of hypertension.

  1. Dopamine and reward: the anhedonia hypothesis 30 years on.

    Science.gov (United States)

    Wise, Roy A

    2008-10-01

    The anhedonia hypothesis--that brain dopamine plays a critical role in the subjective pleasure associated with positive rewards--was intended to draw the attention of psychiatrists to the growing evidence that dopamine plays a critical role in the objective reinforcement and incentive motivation associated with food and water, brain stimulation reward, and psychomotor stimulant and opiate reward. The hypothesis called to attention the apparent paradox that neuroleptics, drugs used to treat a condition involving anhedonia (schizophrenia), attenuated in laboratory animals the positive reinforcement that we normally associate with pleasure. The hypothesis held only brief interest for psychiatrists, who pointed out that the animal studies reflected acute actions of neuroleptics whereas the treatment of schizophrenia appears to result from neuroadaptations to chronic neuroleptic administration, and that it is the positive symptoms of schizophrenia that neuroleptics alleviate, rather than the negative symptoms that include anhedonia. Perhaps for these reasons, the hypothesis has had minimal impact in the psychiatric literature. Despite its limited heuristic value for the understanding of schizophrenia, however, the anhedonia hypothesis has had major impact on biological theories of reinforcement, motivation, and addiction. Brain dopamine plays a very important role in reinforcement of response habits, conditioned preferences, and synaptic plasticity in cellular models of learning and memory. The notion that dopamine plays a dominant role in reinforcement is fundamental to the psychomotor stimulant theory of addiction, to most neuroadaptation theories of addiction, and to current theories of conditioned reinforcement and reward prediction. Properly understood, it is also fundamental to recent theories of incentive motivation.

  2. Homeostatic plasticity of striatal neurons intrinsic excitability following dopamine depletion.

    Directory of Open Access Journals (Sweden)

    Karima Azdad

    Full Text Available The striatum is the major input structure of basal ganglia and is involved in adaptive control of behaviour through the selection of relevant informations. Dopaminergic neurons that innervate striatum die in Parkinson disease, leading to inefficient adaptive behaviour. Neuronal activity of striatal medium spiny neurons (MSN is modulated by dopamine receptors. Although dopamine signalling had received substantial attention, consequences of dopamine depletion on MSN intrinsic excitability remain unclear. Here we show, by performing perforated patch clamp recordings on brain slices, that dopamine depletion leads to an increase in MSN intrinsic excitability through the decrease of an inactivating A-type potassium current, I(A. Despite the large decrease in their excitatory synaptic inputs determined by the decreased dendritic spines density and the increase in minimal current to evoke the first EPSP, this increase in intrinsic excitability resulted in an enhanced responsiveness to their remaining synapses, allowing them to fire similarly or more efficiently following input stimulation than in control condition. Therefore, this increase in intrinsic excitability through the regulation of I(A represents a form of homeostatic plasticity allowing neurons to compensate for perturbations in synaptic transmission and to promote stability in firing. The present observations show that this homeostatic ability to maintain firing rates within functional range also occurs in pathological conditions, allowing stabilizing neural computation within affected neuronal networks.

  3. Potencial de abuso de drogas dopaminérgicas

    OpenAIRE

    Focchi Guilherme R de Azevedo; Scivoletto Sandra; Marcolin Marco Antônio

    2000-01-01

    Os autores fazem uma revisão do potencial de abuso de substâncias que atuam no sistema dopaminérgico, analisando possíveis etiologias e alertando para a necessidade da prescrição cautelosa dessas substâncias, sobretudo em pacientes com antecedente de abuso de outras substâncias psicoativas.

  4. Effect of desipramine on dopamine receptor binding in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Suhara, Tetsuya (National Institute of Radiological Sciences, Chiba (Japan) Jikei Univ., Tokyo (Japan)); Inoue, Osamu; Kobayasi, Kaoru (National Institute of Radiological Sciences, Chiba (Japan))

    1990-01-01

    Effect of desipramine on the in vivo binding of {sup 3}H-SCH23390 and {sup 3}H-N-methylspiperone ({sup 3}H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of {sup 3}H-SCH23390 or 45 min after injection of {sup 3}H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.

  5. Increased dopamine tone during meditation-induced change of consciousness

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Bertelsen, Camilla; Piccini, Paola

    2002-01-01

    This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized by a dep......This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized...... by a depressed level of desire for action, associated with decreased blood flow in prefrontal, cerebellar and subcortical regions, structures thought to be organized in open loops subserving executive control. In the striatum, dopamine modulates excitatory glutamatergic synapses of the projections from...... the frontal cortex to striatal neurons, which in turn project back to the frontal cortex via the pallidum and ventral thalamus. The present study was designed to investigate whether endogenous dopamine release increases during loss of executive control in meditation. Participants underwent two 11C...

  6. Antipsychotic Induced Dopamine Supersensitivity Psychosis: A Comprehensive Review.

    Science.gov (United States)

    Yin, John; Barr, Alasdair M; Ramos-Miguel, Alfredo; Procyshyn, Ric M

    2017-01-01

    Chronic prescription of antipsychotics seems to lose its therapeutic benefits in the prevention of recurring psychotic symptoms. In many instances, the occurrence of relapse from initial remission is followed by an increase in dose of the prescribed antipsychotic. The current understanding of why this occurs is still in its infancy, but a controversial idea that has regained attention recently is the notion of iatrogenic dopamine supersensitivity. Studies on cell cultures and animal models have shown that long-term antipsychotic use is linked to both an upregulation of dopamine D2-receptors in the striatum and the emergence of enhanced receptor affinity to endogenous dopamine. These findings have been hypothesized to contribute to the phenomenon known as dopamine supersensitivity psychosis (DSP), which has been clinically typified as the foundation of rebound psychosis, drug tolerance, and tardive dyskinesia. The focus of this review is the update of evidence behind the classification of antipsychotic induced DSP and an investigation of its relationship to treatment resistance. Since antipsychotics are the foundation of illness management, a greater understanding of DSP and its prevention may greatly affect patient outcomes.

  7. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  8. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    Science.gov (United States)

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase.

  9. Chorein Sensitive Dopamine Release from Pheochromocytoma (PC12 Cells

    Directory of Open Access Journals (Sweden)

    Sabina Honisch

    2015-12-01

    Full Text Available Background: Chorein, a protein supporting activation of phosphoinositide 3 kinase (PI3K, participates in the regulation of actin polymerization and cell survival. A loss of function mutation of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A leads to chorea-acanthocytosis (ChAc, a neurodegenerative disorder with simultaneous erythrocyte akanthocytosis. In blood platelets chorein deficiency has been shown to compromise expression of vesicle-associated membrane protein 8 (VAMP8 and thus degranulation. The present study explored whether chorein is similarly involved in VAMP8 expression and dopamine release of pheochromocytoma (PC12 cells. Methods: Chorein was down-regulated by silencing in PC12 cells. Transmission electron microscopy was employed to quantify the number of vesicles, RT-PCR to determine transcript levels, Western blotting to quantify protein expression and ELISA to determine dopamine release. Results: Chorein silencing significantly reduced the number of vesicles, VAMP8 transcript levels and VAMP8 protein abundance. Increase of extracellular K+ from 5 mM to 40 mM resulted in marked stimulation of dopamine release, an effect significantly blunted by chorein silencing. Conclusions: Chorein deficiency down-regulates VAMP8 expression, vesicle numbers and dopamine release in pheochromocytoma cells.

  10. Dopamine and Impulse Control Disorders in Parkinson's Disease

    NARCIS (Netherlands)

    Weintraub, Daniel

    2008-01-01

    There is an increasing awareness that impulse control disorders (ICDs), including compulsive gambling, buying, sexual behavior, and eating, can occur as a complication of Parkinson's disease (PD). In addition, other impulsive or compulsive disorders have been reported to occur, including dopamine

  11. Dopamine control of LH release in the tench (Tinca tinca).

    Science.gov (United States)

    Podhorec, Peter; Socha, Magdalena; Sokolowska-Mikolajczyk, Miroslawa; Policar, Tomas; Svinger, Viktor W; Drozd, Borek; Kouril, Jan

    2012-01-01

    Tench (Tinca tinca) is apparently the only known member of the Cyprinidae in which ovulation is stimulated following administration of a low dose of GnRH analogue (GnRHa) without a dopamine inhibitor. This study evaluated LH release effectiveness of the most commonly used GnRHa and clarified whether LH secretion followed by ovulation is subject to inhibitory dopaminergic control in tench. Fish were intraperitoneally injected with three types of GnRHa, GnRHa with dopamine inhibitor metoclopramide (combined treatment), or the dopamine inhibitor metoclopramide alone. LH concentrations at five sampling times (0, 6, 12, 24, and 33 h) together with ovulation success and fecundity index were recorded. The combined treatment triggered an almost immediate LH release peak with a gradual decline, and resulted in a high ovulation rate. In contrast to the combined treatment, an application of GnRHa alone at 10 μg kg(-1) induced gradual increase of LH concentrations with peaks close to ovulation time, and with high ovulation success. Significant differences in LH concentrations at 6 and 12h and no differences in ovulation success were found between the combined and the GnRHa alone treatments. Metoclopramide alone induced a small increase in LH with no ovulation. The study presents clear evidence of dopaminergic control of LH release in tench, with a high ovulation rate obtained after application of GnRHa alone or in combination with dopamine inhibitor.

  12. Prefrontal D1 dopamine signaling is required for temporal control.

    Science.gov (United States)

    Narayanan, Nandakumar S; Land, Benjamin B; Solder, John E; Deisseroth, Karl; DiLeone, Ralph J

    2012-12-11

    Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.

  13. The dopamine theory of addiction: 40 years of highs and lows.

    Science.gov (United States)

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.

  14. [Effects of dopamine and adenosine on regulation of water-electrolyte exchange in Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2014-01-01

    Dopamine and adenosine both regulate transport of sodium chloride in the renal tubules in mammals. We have studied the effect of dopamine and adenosine on spontaneous activity of contractile vacuole of Amoeba proteous. Both substances stimulated contractile vacuole. The effect of dopamine was suppressed by D2 receptor antagonist, haloperidol, but not by D1 antagonist, SCH 39166. Adenylate cyclase inhibitor, 2.5-dideoxyadenosine, suppressed the effect of dopamine, but not of adenosine. Inhibitor of protein kinase C, staurosporine, in contrast, blocked the effect of adenosine, but not dopamine. Notably, dopamine opposed effect of adenosine and vice versa. These results suggest that similar effects of dopamine and adenosine could be mediated by different intracellulare mechanisms.

  15. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise.

    Science.gov (United States)

    Felger, Jennifer C; Miller, Andrew H

    2012-08-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Preparation of Micro-biosensor and Its Application in Monitoring in vivo Change of Dopamine

    Institute of Scientific and Technical Information of China (English)

    QIAO Xian; DING Hong; WANG Zhifang

    2005-01-01

    The self-made high sensitivity and selectivity micro-biosensor was applied to monitor the change of dopamine in cerebral nucleus in rats in vivo. The micro-biosensor was prepared and used to detect dopamine level in vitro and monitor the dynamic change of dopamine in different cerebral nucleus in vivo. The results showed the lowest concentration of dopamine that could be detected by the biosensor was 32.5 nmol/L. Its positive peak was significantly different from that of AA, 5-HTP and E. The biosensor could keep working for monitoring the dopamine concentration in the cerebral tissue for more than 10 h. It was concluded that the microsensor has high sensitivity and selectivity to dopamine and can be used to dynamically monitor the change of dopamine in vivo.

  17. Organization of Monosynaptic Inputs to the Serotonin and Dopamine Neuromodulatory Systems

    Directory of Open Access Journals (Sweden)

    Sachie K. Ogawa

    2014-08-01

    Full Text Available Serotonin and dopamine are major neuromodulators. Here, we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR. We found that inputs to DR and MR serotonin neurons are spatially shifted in the forebrain, and MR serotonin neurons receive inputs from more medial structures. Then, we compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA and substantia nigra pars compacta (SNc. We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons apart from the striatum, which preferentially targets dopamine neurons. Our results suggest three major input streams: a medial stream regulates MR serotonin neurons, an intermediate stream regulates DR serotonin and VTA dopamine neurons, and a lateral stream regulates SNc dopamine neurons. These results provide fundamental organizational principles of afferent control for serotonin and dopamine.

  18. Network Physiology: Mapping Interactions Between Networks of Physiologic Networks

    Science.gov (United States)

    Ivanov, Plamen Ch.; Bartsch, Ronny P.

    The human organism is an integrated network of interconnected and interacting organ systems, each representing a separate regulatory network. The behavior of one physiological system (network) may affect the dynamics of all other systems in the network of physiologic networks. Due to these interactions, failure of one system can trigger a cascade of failures throughout the entire network. We introduce a systematic method to identify a network of interactions between diverse physiologic organ systems, to quantify the hierarchical structure and dynamics of this network, and to track its evolution under different physiologic states. We find a robust relation between network structure and physiologic states: every state is characterized by specific network topology, node connectivity and links strength. Further, we find that transitions from one physiologic state to another trigger a markedly fast reorganization in the network of physiologic interactions on time scales of just a few minutes, indicating high network flexibility in response to perturbations. This reorganization in network topology occurs simultaneously and globally in the entire network as well as at the level of individual physiological systems, while preserving a hierarchical order in the strength of network links. Our findings highlight the need of an integrated network approach to understand physiologic function, since the framework we develop provides new information which can not be obtained by studying individual systems. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.

  19. Dopamine and glucose, obesity, and reward deficiency syndrome.

    Science.gov (United States)

    Blum, Kenneth; Thanos, Panayotis K; Gold, Mark S

    2014-01-01

    Obesity as a result of overeating as well as a number of well described eating disorders has been accurately considered to be a world-wide epidemic. Recently a number of theories backed by a plethora of scientifically sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Our laboratory has published on the concept known as Reward Deficiency Syndrome (RDS) which is a genetic and epigenetic phenomena leading to impairment of the brain reward circuitry resulting in a hypo-dopaminergic function. RDS involves the interactions of powerful neurotransmitters and results in abnormal craving behavior. A number of important facts which could help translate to potential therapeutic targets espoused in this focused review include: (1) consumption of alcohol in large quantities or carbohydrates binging stimulates the brain's production of and utilization of dopamine; (2) in the meso-limbic system the enkephalinergic neurons are in close proximity, to glucose receptors; (3) highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; (4) a significant correlation between blood glucose and cerebrospinal fluid concentrations of homovanillic acid the dopamine metabolite; (5) 2-deoxyglucose (2DG), the glucose analog, in pharmacological doses is associated with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and fMRI in humans support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and for the most part, implicate the involvement of DA-modulated reward circuits in pathologic eating behaviors. Based on a consensus of neuroscience research treatment of both glucose and drug like cocaine, opiates should incorporate dopamine agonist therapy in contrast to current theories and practices that utilizes dopamine antagonistic therapy. Considering that up until now clinical utilization

  20. Dopamine Modulates the Functional Organization of the Orbitofrontal Cortex.

    Science.gov (United States)

    Kahnt, Thorsten; Tobler, Philippe N

    2017-02-08

    Neuromodulators such as dopamine can alter the intrinsic firing properties of neurons and may thereby change the configuration of larger functional circuits. The primate orbitofrontal cortex (OFC) receives dopaminergic input from midbrain nuclei, but the role of dopamine in the OFC is still unclear. Here we tested the idea that dopaminergic activity changes the pattern of connectivity between the OFC and the rest of the brain and thereby reconfigures functional networks in the OFC. To this end, we combined double-blind, placebo-controlled pharmacology [D2 receptor (D2R) antagonist amisulpride] in humans with resting-state functional magnetic resonance imaging and clustering methods. In the placebo group, we replicated previously observed parcellations of the OFC into two and six subregions based on connectivity patterns with the rest of the brain. Most importantly, while the twofold clustering did not differ significantly between groups, blocking D2Rs significantly changed the composition of the sixfold parcellation, suggesting a dopamine-dependent reconfiguration of functional OFC subregions. Moreover, multivariate decoding analyses revealed that amisulpride changed the whole-brain connectivity patterns of individual OFC subregions. In particular, D2R blockade shifted the balance of OFC connectivity from associative areas in the temporal and parietal lobe toward functional connectivity with the frontal cortex. In summary, our results suggest that dopamine alters the composition of functional OFC circuits, possibly indicating a broader role for neuromodulators in the dynamic reconfiguration of functional brain networks.SIGNIFICANCE STATEMENT A key role of any neuromodulator may be the reconfiguration of functional brain circuits. Here we test this idea with regard to dopamine and the organization of functional networks in the orbitofrontal cortex (OFC). We show that blockade of dopamine D2 receptors has profound effects on the functional connectivity patterns of

  1. Bitropic D3 Dopamine Receptor Selective Compounds as Potential Antipsychotics.

    Science.gov (United States)

    Luedtke, Robert R; Rangel-Barajas, Claudia; Malik, Mahinder; Reichert, David E; Mach, R H

    2015-01-01

    Neuropsychiatric disorders represent a substantial social and health care issue. The National Institutes of Health estimates that greater than 2 million adults suffer from neuropsychiatric disorders in the USA. These individuals experience symptoms that can include auditory hallucinations, delusions, unrealistic beliefs and cognitive dysfunction. Although antipsychotic medications are available, suboptimal therapeutic responses are observed for approximately one-third of patients. Therefore, there is still a need to explore new pharmacotherapeutic strategies for the treatment of neuropsychiatric disorders. Many of the medications that are used clinically to treat neuropsychiatric disorders have a pharmacological profile that includes being an antagonist at D2-like (D2, D3 and D4) dopamine receptor subtypes. However, dopamine receptor subtypes are involved in a variety of neuronal circuits that include movement coordination, cognition, emotion, affect, memory and the regulation of prolactin. Consequently, antagonism at D2-like receptors can also contribute to some of the adverse side effects associated with the long-term use of antipsychotics including the a) adverse extrapyramidal symptoms associated with the use of typical antipsychotics and b) metabolic side effects (weight gain, hyperglycemia, increased risk of diabetes mellitus, dyslipidemia and gynecomastia) associated with atypical antipsychotic use. Preclinical studies suggest that D3 versus D2 dopamine receptor selective compounds might represent an alternative strategy for the treatment of the symptoms of schizophrenia. In this review we discuss a) how bitropic Nphenylpiperazine D3 dopamine receptor selective compounds have been developed by modification of the primary (orthosteric) and secondary (allosteric or modulatory) pharmacophores to optimize D3 receptor affinity and D2/D3 binding selectivity ratios and b) the functional selectivity of these compounds. Examples of how these compounds might be

  2. The treatment of Parkinson's disease with dopamine agonists

    Directory of Open Access Journals (Sweden)

    Frank, Wilhelm

    2008-06-01

    Full Text Available Parkinson’s disease is a chronic degenerative organic disease with unknown causes. A disappearance of cells with melanin in the substantia nigra is considered as biological artefact of the disease, which causes a degenerative loss of neurons in the corpus striatum of mesencephalon. This structure produces also the transmitter substance dopamine. Due to this disappearance of cells dopamine is not produced in a sufficient quantity which is needed for movement of the body. The questions of this report are concerned the efficiency and safety of a treatment with dopamine agonists. Furthermore the cost-effectiveness is investigated as well as ethic questions. The goal is to give recommendation for the use of dopamine agonists to the German health system. A systematic literature search was done. The identified studies have different methodological quality and investigate different hypothesis and different outcome criteria. Therefore a qualitative method of information synthesis was chosen. Since the introduction of L-Dopa in the 1960´s it is considered as the most effective substance to reduce all the cardinal symptoms of Parkinson disease. This substance was improved in the course of time. Firstly some additional substances were given (decarbonxylase inhibitors, catechol-o-transferase inhibitors (COMT-inhibitors, monoaminoxydase-inhibitors (MAO-inhibitors and NMDA-antagonists (N-Methyl-d-aspartat-antagonists. In the practical therapy of Parkinson dopamine agonists play an important role, because they directly use the dopamine receptors. The monotherapy of Parkinson disease is basically possible and is used in early stages of the disease. Clinical practise has shown, that an add on therapy with dopamine agonists can led to a reduction of the dose of L-dopa and a reduction of following dyskinesia. The studies for effectiveness include studies for the initial therapy, monotherapy and add-on-therapy. Basically there is a good effectiveness of dopamine

  3. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    Science.gov (United States)

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  4. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway.

    Directory of Open Access Journals (Sweden)

    Tertia D Purves-Tyson

    Full Text Available Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase, breakdown (catechol-O-methyl transferase; monoamine oxygenase, transport [vesicular monoamine transporter (VMAT, dopamine transporter (DAT] and receptors (DRD1-D5] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen

  5. Dopamine neuron stimulating actions of a GDNF propeptide.

    Directory of Open Access Journals (Sweden)

    Luke H Bradley

    Full Text Available BACKGROUND: Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF, have shown great promise for protection and restoration of damaged or dying dopamine neurons in animal models and in some Parkinson's disease (PD clinical trials. However, the delivery of neurotrophic factors to the brain is difficult due to their large size and poor bio-distribution. In addition, developing more efficacious trophic factors is hampered by the difficulty of synthesis and structural modification. Small molecules with neurotrophic actions that are easy to synthesize and modify to improve bioavailability are needed. METHODS AND FINDINGS: Here we present the neurobiological actions of dopamine neuron stimulating peptide-11 (DNSP-11, an 11-mer peptide from the proGDNF domain. In vitro, DNSP-11 supports the survival of fetal mesencephalic neurons, increasing both the number of surviving cells and neuritic outgrowth. In MN9D cells, DNSP-11 protects against dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA-induced cell death, significantly decreasing TUNEL-positive cells and levels of caspase-3 activity. In vivo, a single injection of DNSP-11 into the normal adult rat substantia nigra is taken up rapidly into neurons and increases resting levels of dopamine and its metabolites for up to 28 days. Of particular note, DNSP-11 significantly improves apomorphine-induced rotational behavior, and increases dopamine and dopamine metabolite tissue levels in the substantia nigra in a rat model of PD. Unlike GDNF, DNSP-11 was found to block staurosporine- and gramicidin-induced cytotoxicity in nutrient-deprived dopaminergic B65 cells, and its neuroprotective effects included preventing the release of cytochrome c from mitochondria. CONCLUSIONS: Collectively, these data support that DNSP-11 exhibits potent neurotrophic actions analogous to GDNF, making it a viable candidate for a PD therapeutic. However, it likely signals through pathways that do not

  6. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    Science.gov (United States)

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Developmental imaging genetics: linking dopamine function to adolescent behavior

    Science.gov (United States)

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-01-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to noninvasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. PMID:24139694

  8. Altered dopamine signaling in naturally occurring maternal neglect.

    Directory of Open Access Journals (Sweden)

    Stephen C Gammie

    Full Text Available BACKGROUND: Child neglect is the most common form of child maltreatment, yet the biological basis of maternal neglect is poorly understood and a rodent model is lacking. METHODOLOGY/PRINCIPAL FINDINGS: The current study characterizes a population of mice (MaD1 which naturally exhibit maternal neglect (little or no care of offspring at an average rate of 17% per generation. We identified a set of risk factors that can predict future neglect of offspring, including decreased self-grooming and elevated activity. At the time of neglect, neglectful mothers swam significantly more in a forced swim test relative to nurturing mothers. Cross-fostered offspring raised by neglectful mothers in turn exhibit increased expression of risk factors for maternal neglect and decreased maternal care as adults, suggestive of possible epigenetic contributions to neglect. Unexpectedly, offspring from neglectful mothers elicited maternal neglect from cross-fostered nurturing mothers, suggesting that factors regulating neglect are not solely within the mother. To identify a neurological pathway underlying maternal neglect, we examined brain activity in neglectful and nurturing mice. c-Fos expression was significantly elevated in neglectful relative to nurturing mothers in the CNS, particularly within dopamine associated areas, such as the zona incerta (ZI, ventral tegmental area (VTA, and nucleus accumbens. Phosphorylated tyrosine hydroxylase (a marker for dopamine production was significantly elevated in ZI and higher in VTA (although not significantly in neglectful mice. Tyrosine hydroxylase levels were unaltered, suggesting a dysregulation of dopamine activity rather than cell number. Phosphorylation of DARPP-32, a marker for dopamine D1-like receptor activation, was elevated within nucleus accumbens and caudate-putamen in neglectful versus nurturing dams. CONCLUSIONS/SIGNIFICANCE: These findings suggest that atypical dopamine activity within the maternal brain

  9. Characterization of dopamine D1 receptor agonists in vivo- Implications for the treatment of schizophrenia and Parkinson s disease

    OpenAIRE

    Isacson, Ruben

    2008-01-01

    Dopamine is fundamental in human behavior for movement, cognition and reward. A dysfunctional dopamine system is implicated in several neurological and psychiatric disorders such as Parkinson s disease and schizophrenia. Dopamine mediates its effects through five receptors. Dopamine D2 receptors are well studied and successful drug targets in the treatment of Parkinson s disease and schizophrenia. The functional role of dopamine D1 receptors is not fully understood and the c...

  10. Dopamine-induced amylase secretion from rat parotid salivary gland in vitro: an effect mediated via noradrenergic and cholinergic nerves.

    OpenAIRE

    Hata, F.; Ishida, H.; Kondo, E

    1986-01-01

    The effect of dopamine on amylase secretion by rat parotid tissue was examined in vitro. Dopamine induced marked amylase secretion from the tissue in a dose-dependent manner. Its EC50 value was about 4 microM and the maximal response was obtained at a concentration of 100 microM. The dopamine-induced secretion was inhibited by the dopamine-antagonists haloperidol, (+)-butaclamol and spiroperidol. Atropine reduced the dopamine-induced secretion significantly, and physostigmine enhanced the sec...

  11. Single Cell Physiology

    Science.gov (United States)

    Neveu, Pierre; Sinha, Deepak Kumar; Kettunen, Petronella; Vriz, Sophie; Jullien, Ludovic; Bensimon, David

    The possibility to control at specific times and specific places the activity of biomolecules (enzymes, transcription factors, RNA, hormones, etc.) is opening up new opportunities in the study of physiological processes at the single cell level in a live organism. Most existing gene expression systems allow for tissue specific induction upon feeding the organism with exogenous inducers (e.g., tetracycline). Local genetic control has earlier been achieved by micro-injection of the relevant inducer/repressor molecule, but this is an invasive and possibly traumatic technique. In this chapter, we present the requirements for a noninvasive optical control of the activity of biomolecules and review the recent advances in this new field of research.

  12. [Physiology of the neuropeptides].

    Science.gov (United States)

    García-López, M J; Martínez-Martos, J M; Mayas, M D; Carrera, M P; Ramírez- Expósito, M J

    In the present review, the characteristics of mammalian neuropeptides have been studied. Neuropeptides are widely distributed not only in the nervous system but also in the periphery. They are synthesised by neurons as large precursor molecules (pre propeptides) which have to be cleaved and modified in order to form the mature neuropeptides. Neuropeptides may exert actions as neurotransmitters, neuromodulators and/or neurohormones. In the neurons, they coexist with classic transmitters and often with other peptides. After their releasing, they bind to especific receptors to exert their action in the target cell. Most of these receptors belongs to a family of G protein coupled receptors. Finally, peptidases are the enzymes involved in the degradation of neuropeptides. Conclusions. In the last years, the number of known neuropeptides and the understanding of their functions have been increased. With these data, present investigations are looking for the treatment of different pathologies associated with alterations in the physiology of neuropeptides.

  13. Dopamine receptor repertoire of human granulosa cells

    Directory of Open Access Journals (Sweden)

    Kunz Lars

    2007-10-01

    Full Text Available Abstract Background High levels of dopamine (DA were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs derived from women undergoing in vitro fertilization (IVF are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality. Methods Cells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4 were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system. Results We found members of the two DA receptor families (D1- and D2 -like associated with different signaling pathways in human GCs, namely D1 (as expected and D5 (both are Gs coupled and linked to cAMP increase and D2, D4 (Gi/Gq coupled and linked to IP3/DAG. D3 was not found. The presence of the trophic hormone hCG (10 IU/ml in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR or protein levels (immunocytochemistry/Western blotting of D1,2,4,5 DA receptors. Expression of prototype receptors for the two families, D1 and D2, was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S. Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed

  14. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  15. Network Physiology reveals relations between network topology and physiological function

    CERN Document Server

    Bashan, Amir; Kantelhardt, Jan W; Havlin, Shlomo; Ivanov, Plamen Ch; 10.1038/ncomms1705

    2012-01-01

    The human organism is an integrated network where complex physiologic systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here, we develop a framework to probe interactions among diverse systems, and we identify a physiologic network. We find that each physiologic state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiologic states the network undergoes topological transitions associated with fast reorganization of physiologic interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.

  16. Mathematical model of dopamine autoreceptors and uptake inhibitors and their influence on tonic and phasic dopamine signaling

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Hounsgaard, Jørn Dybkjær

    2013-01-01

    Dopamine (DA) D2-like autoreceptors are an important component of the DA system, but their influence on postsynaptic DA signaling is not well understood. They are, directly or indirectly, involved in drug abuse and in treatment of schizophrenia and attention deficit hyperactive disorder: DA...

  17. Dopamine as a novel antioxidative agent for rat vascular smooth muscle cells through dopamine D(1)-like receptors.

    Science.gov (United States)

    Yasunari, K; Kohno, M; Kano, H; Minami, M; Yoshikawa, J

    2000-05-16

    To elucidate the roles of vascular D(1)-like receptors in atherosclerosis, the effects of the specific D(1)-like agonists on platelet-derived growth factor (PDGF)-BB-mediated oxidative stress in vascular smooth muscle cells (VSMCs) were studied. Immunohistochemical studies demonstrated the coexistence of D(1A) and D(1B) dopamine receptors in VSMCs. Western blotting revealed a band of approximately 70 kDa for D(1A) and D(1B) dopamine receptors. VSMCs stimulated by PDGF-BB exhibited increased oxidative stress directly measured by flow cytometry. These effects were prevented by dopamine, SKF 38393, or YM 435, and this prevention was reversed by Sch 23390. These effects were blocked by a specific protein kinase A (PKA) inhibitor, N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide (H 89). The PDGF-BB-mediated increase in oxidative stress of VSMCs was significantly suppressed by the indirect phospholipase D (PLD) inhibitor suramin or the specific protein kinase C (PKC) inhibitor calphostin C. Both antisense but neither sense nor scrambled oligonucleotides to D(1A) and D(1B) receptors inhibited dopamine-induced suppression of increase in oxidative stress of VSMCs induced by PDGF-BB. These findings suggest that vascular D(1)-like receptors (D(1A) and D(1B) receptors) inhibit any increase in oxidative stress of VSMCs, possibly through activation of PKA and suppression of PLD and PKC.

  18. History of the discovery of the antipsychotic dopamine D2 receptor: a basis for the dopamine hypothesis of schizophrenia.

    Science.gov (United States)

    Madras, Bertha K

    2013-01-01

    The 1975 publication of Seeman et al. (Proc Nat Acad Sci, USA), reporting the discovery of the antipsychotic receptor in the brain, is a classic example of translational medicine research. In searching for a pathophysiological mechanism of psychosis, the team sought to identify sites that bound the antipsychotic drug haloperidol. Their criterion was that haloperidol bound to the site at one to two nanomoles per liter, corresponding to haloperidol concentrations found in spinal fluid or plasma water in treated patients. They requested de novo synthesis of tritiated haloperidol, and it readily detected specific haloperidol binding sites in brain striatum. With dopamine binding the haloperidol-labeled sites with higher potency than other neurotransmitters, the sites were named antipsychotic/dopamine receptors (now designated dopamine D2 receptors). Most significantly, they found that all antipsychotics bound these sites at concentrations and with a rank order of potencies that were directly related to the mean daily antipsychotic dose taken by patients with schizophrenia. Their findings enabled screening for new antipsychotics, initiated D2 receptor measurements in brain of living patients, and determination of minimum occupancy (65%) of D2 receptors for antipsychotic benefit. The collective work is generally viewed as providing a fundamental basis for the dopamine hypothesis of schizophrenia.

  19. Network physiology reveals relations between network topology and physiological function

    OpenAIRE

    Bashan, Amir; Bartsch, Ronny P.; Kantelhardt, Jan W.; Havlin, Shlomo; Ivanov, Plamen Ch.

    2012-01-01

    The human organism is an integrated network where complex physiological systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here we develop a framework to probe interactions among diverse systems, and we identify a physiological network. We find that each physiological state is...

  20. New Repeat Polymorphism in the AKT1 Gene Predicts Striatal Dopamine D2/D3 Receptor Availability and Stimulant-Induced Dopamine Release in the Healthy Human Brain.

    Science.gov (United States)

    Shumay, Elena; Wiers, Corinde E; Shokri-Kojori, Ehsan; Kim, Sung Won; Hodgkinson, Colin A; Sun, Hui; Tomasi, Dardo; Wong, Christopher T; Weinberger, Daniel R; Wang, Gene-Jack; Fowler, Joanna S; Volkow, Nora D

    2017-05-10

    The role of the protein kinase Akt1 in dopamine neurotransmission is well recognized and has been implicated in schizophrenia and psychosis. However, the extent to which variants in the AKT1 gene influence dopamine neurotransmission is not well understood. Here we investigated the effect of a newly characterized variant number tandem repeat (VNTR) polymorphism in AKT1 [major alleles: L- (eight repeats) and H- (nine repeats)] on striatal dopamine D2/D3 receptor (DRD2) availability and on dopamine release in healthy volunteers. We used PET and [(11)C]raclopride to assess baseline DRD2 availability in 91 participants. In 54 of these participants, we also measured intravenous methylphenidate-induced dopamine release to measure dopamine release. Dopamine release was quantified as the difference in specific binding of [(11)C]raclopride (nondisplaceable binding potential) between baseline values and values following methylphenidate injection. There was an effect of AKT1 genotype on DRD2 availability at baseline for the caudate (F(2,90) = 8.2, p = 0.001) and putamen (F(2,90) = 6.6, p = 0.002), but not the ventral striatum (p = 0.3). For the caudate and putamen, LL showed higher DRD2 availability than HH; HL were in between. There was also a significant effect of AKT1 genotype on dopamine increases in the ventral striatum (F(2,53) = 5.3, p = 0.009), with increases being stronger in HH > HL > LL. However, no dopamine increases were observed in the caudate (p = 0.1) or putamen (p = 0.8) following methylphenidate injection. Our results provide evidence that the AKT1 gene modulates both striatal DRD2 availability and dopamine release in the human brain, which could account for its association with schizophrenia and psychosis. The clinical relevance of the newly characterized AKT1 VNTR merits investigation.SIGNIFICANCE STATEMENT The AKT1 gene has been implicated in schizophrenia and psychosis. This association is likely to reflect modulation of dopamine signaling by Akt1 kinase