WorldWideScience

Sample records for physics facility progress

  1. Confinement Physics Research Facility/ZTH: A progress report

    International Nuclear Information System (INIS)

    Hammer, C.F.; Thullen, P.

    1989-01-01

    In October 1985 the Los Alamos National Laboratory's Controlled Thermonuclear Research (CTR) Division began the design and construction of the Confinement Physics Research Facility (CPRF) and the ZTH toroidal, reversed-field-pinch (RFP), plasma physics experiment. The CPRF is a facility which will provide the buildings, utilities, pulsed power system, control system and diagnostics needed to operate a magnetically confined fusion experiment, and ZTH will be the first experiment operated in the facility. The construction of CPRF/ZTH is scheduled for completion in the first quarter of 1993. 5 figs

  2. Progress at LAMPF [Los Alamos Meson Physics Facility]: Progress report, January-December 1986

    International Nuclear Information System (INIS)

    Allred, J.C.; Talley, B.

    1987-05-01

    Activities at LAMPF during the year of 1986 are summarized, including brief summaries of experiments in nuclear and particle physics, atomic and molecular physics, materials science, radiation-effects studies, biomedical research and instrumentation, nuclear chemistry, radioisotope production, and theory. The status of an advanced hadron facility currently under study is reported, as well as facility development and accelerator operations

  3. Progress at LAMPF (Los Alamos Meson Physics Facility): Progress report, January-December 1986

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.; Talley, B. (eds.)

    1987-05-01

    Activities at LAMPF during the year of 1986 are summarized, including brief summaries of experiments in nuclear and particle physics, atomic and molecular physics, materials science, radiation-effects studies, biomedical research and instrumentation, nuclear chemistry, radioisotope production, and theory. The status of an advanced hadron facility currently under study is reported, as well as facility development and accelerator operations. (LEW)

  4. Progress in hohlraum physics for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. D., E-mail: moody4@llnl.gov; Callahan, D. A.; Hinkel, D. E.; Amendt, P. A.; Baker, K. L.; Bradley, D.; Celliers, P. M.; Dewald, E. L.; Divol, L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Jones, O.; Haan, S. W.; Ho, D.; Hopkins, L. B.; Izumi, N.; Kalantar, D.; Kauffman, R. L.; Kilkenny, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

    2014-05-15

    Advances in hohlraums for inertial confinement fusion at the National Ignition Facility (NIF) were made this past year in hohlraum efficiency, dynamic shape control, and hot electron and x-ray preheat control. Recent experiments are exploring hohlraum behavior over a large landscape of parameters by changing the hohlraum shape, gas-fill, and laser pulse. Radiation hydrodynamic modeling, which uses measured backscatter, shows that gas-filled hohlraums utilize between 60% and 75% of the laser power to match the measured bang-time, whereas near-vacuum hohlraums utilize 98%. Experiments seem to be pointing to deficiencies in the hohlraum (instead of capsule) modeling to explain most of the inefficiency in gas-filled targets. Experiments have begun quantifying the Cross Beam Energy Transfer (CBET) rate at several points in time for hohlraum experiments that utilize CBET for implosion symmetry. These measurements will allow better control of the dynamic implosion symmetry for these targets. New techniques are being developed to measure the hot electron energy and energy spectra generated at both early and late time. Rugby hohlraums offer a target which requires little to no CBET and may be less vulnerable to undesirable dynamic symmetry “swings.” A method for detecting the effect of the energetic electrons on the fuel offers a direct measure of the hot electron effects as well as a means to test energetic electron mitigation methods. At higher hohlraum radiation temperatures (including near vacuum hohlraums), the increased hard x-rays (1.8–4 keV) may pose an x-ray preheat problem. Future experiments will explore controlling these x-rays with advanced wall materials.

  5. Progress at LAMPF [Los Alamos Meson Physics Facility], January-December 1987

    International Nuclear Information System (INIS)

    Poelakker, K.

    1988-09-01

    This report is the annual progress report of MP Division of the Los Alamos National Laboratory. Included are brief reports on research done at LAMPF by researchers from other institutions and other Los Alamos Divisions. These reports included the following topics: Nuclear and particle physics; Atomic and molecular physics; Materials science; Radiation-effects studies; Biomedical research and instrumentation; Nuclear chemistry; Radioisotope production and accelerator facilities development and operation

  6. Progress report, Physics Division

    International Nuclear Information System (INIS)

    1986-03-01

    This report reviews events and progress in the following areas: development of the TASCC facility; experimental and theoretical nuclear physics research; radionuclide standardization; condensed matter research; applied mathematics; and computer facility operation

  7. Progress at LAMPF: Clinton P. Anderson Meson Physics Facility. Progress report, January-June 1981

    International Nuclear Information System (INIS)

    Allred, J.C.

    1981-09-01

    Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions

  8. Progress at LAMPF: Clinton P. Anderson Meson Physics Facility. Progress report, July-December 1980

    International Nuclear Information System (INIS)

    Allred, J.C.

    1981-03-01

    Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report also includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions

  9. Progress at LAMPF: Clinton P. Anderson Meson Physics Facility. Progress report, January-June 1981

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C. (ed.)

    1981-09-01

    Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions.

  10. Progress at LAMPF [Los Alamos Meson Physics Facility], January--December 1989

    International Nuclear Information System (INIS)

    Poelakker, K.

    1990-12-01

    This report contains brief papers on research conducted at the lampf facility in the following areas: nuclear and particle physics; astrophysics; atomic and molecular physics; materials science; nuclear chemistry; radiation effects and radioisotope production

  11. Progress at LAMPF (Los Alamos Meson Physics Facility), January--December 1989

    Energy Technology Data Exchange (ETDEWEB)

    Poelakker, K. (ed.)

    1990-12-01

    This report contains brief papers on research conducted at the lampf facility in the following areas: nuclear and particle physics; astrophysics; atomic and molecular physics; materials science; nuclear chemistry; radiation effects and radioisotope production.

  12. Progress at LAMPF. Clinton P. Anderson Meson Physics Facility, July-December 1981

    International Nuclear Information System (INIS)

    Allred, J.C.

    1982-03-01

    Progress at LAMPF is the semiannual progress report of the MP Division of the Los Alamos National Laboratory. The report includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions

  13. Progress at LAMPF, Clinton P. Anderson Meson Physics Facility, January-December 1984

    International Nuclear Information System (INIS)

    Allred, J.C.

    1985-04-01

    Progress at LAMPF is the annual progress report of the MP Division of the Los Alamos National Laboratory. The report includes brief reports on research done at LAMPF by researchers from other institutions and Los Alamos divisions. Abstracts of separate sections of the report were prepared separately for the data base

  14. Physical protection of nuclear facilities. Quarterly progress report, July--September 1978. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, L.D. (ed.)

    1979-01-01

    Major activities during the fourth quarter of FY78 included (1) the vital area analysis of operational reactors and characterization of the Standardized Nuclear Unit Power Plant System (SNUPPS), (2) the algorithm development of a new pathfinding computer code, (3) the completion of contractor-supported work for the component generic data base, (4) the refinement of tests related to human parameters modeling, and (5) the addition of improvements to and demonstration of the Safeguards Automated Facility Evaluation (SAFE), Safeguards Network Analysis Procedure (SNAP), and Fixed-Site Neutralization Model (FSNM) methodologies.

  15. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  16. Federal Facility Agreement progress report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The (SRS) Federal Facility Agreement (FFA) was made effective by the US. Environmental Protection Agency Region IV (EPA) on August 16, 1993. To meet the reporting requirements in Section XXV of the Agreement, the FFA Progress Report was developed. The FFA Progress Report is the first of a series of quarterly progress reports to be prepared by the SRS. As such this report describes the information and action taken to September 30, 1993 on the SRS units identified for investigation and remediation in the Agreement. This includes; rubble pits, runoff basins, retention basin, seepage basin, burning pits, H-Area Tank 16, and spill areas.

  17. Federal Facility Agreement progress report

    International Nuclear Information System (INIS)

    1993-10-01

    The (SRS) Federal Facility Agreement (FFA) was made effective by the US. Environmental Protection Agency Region IV (EPA) on August 16, 1993. To meet the reporting requirements in Section XXV of the Agreement, the FFA Progress Report was developed. The FFA Progress Report is the first of a series of quarterly progress reports to be prepared by the SRS. As such this report describes the information and action taken to September 30, 1993 on the SRS units identified for investigation and remediation in the Agreement. This includes; rubble pits, runoff basins, retention basin, seepage basin, burning pits, H-Area Tank 16, and spill areas

  18. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  19. Progress report - physics division 1985 January 01 - June 30

    International Nuclear Information System (INIS)

    1985-08-01

    This report reviews progress made during the first half of 1985 in the following areas: development of the TASCC facility; experimental and theoretical nuclear physics research; accelerator physics; condensed matter physics; applied mathematics and computer facility operation

  20. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  1. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility: Annual progress report, [1987-1988

    International Nuclear Information System (INIS)

    1987-09-01

    This document constitutes the (1987 to 1988) progress report for the ongoing medium energy nuclear physics research program supported by the US Department of Energy with the University of Texas at Austin. A major part of the work has been and will continue to be associated with research done at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS), the External Proton Beam (EPB), and the new Neutron Time of Flight Facility (NTOF). Other research is done at the Fermi National Accelerator Laboratory (FNAL). The research focuses on (1) providing proton + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the proton + nucleus theoretical models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics. 182 refs., 71 figs., 5 tabs

  2. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy's Nuclear Physics program is a comprehensive program of interdependent experimental and theoretical investigation of atomic nuclei. Long range goals are an understanding of the interactions, properties, and structures of atomic nuclei and nuclear matter at the most elementary level possible and an understanding of the fundamental forces of nature by using nuclei as a proving ground. Basic ingredients of the program are talented and imaginative scientists and a diversity of facilities to provide the variety of probes, instruments, and computational equipment needed for modern nuclear research. Approximately 80% of the total Federal support of basic nuclear research is provided through the Nuclear Physics program; almost all of the remaining 20% is provided by the National Science Foundation. Thus, the Department of Energy (DOE) has a unique responsibility for this important area of basic science and its role in high technology. Experimental and theoretical investigations are leading us to conclude that a new level of understanding of atomic nuclei is achievable. This optimism arises from evidence that: (1) the mesons, protons, and neutrons which are inside nuclei are themselves composed of quarks and gluons and (2) quantum chromodynamics can be developed into a theory which both describes correctly the interaction among quarks and gluons and is also an exact theory of the strong nuclear force. These concepts are important drivers of the Nuclear Physics program

  3. Large facilities in physics

    International Nuclear Information System (INIS)

    Jacob, M.; Schopper, H.

    1995-01-01

    The papers presented at this conference dealt with the following topics: particle physics, computing and data transmission, nuclear and atomic physics and their new facets, condensed matter physics, fusion and plasma physics, astrophysics and astroparticle physics. The proceedings include the review talks, a report on the OECD Megascience Forum and summaries of the round-table discussions. figs., tabs., refs

  4. The Progress of Physics

    Science.gov (United States)

    Schuster, Arthur

    2015-10-01

    Introduction; 1. Scope of lectures. State of physics in 1875. Science of energy. Theory of gases. Elastic solid theory of light. Maxwell's theory of electricity. Training of students. Maxwell's view. Accurate measurement and discovery of Argon. German methods. Kirchhoff's laboratory. Wilhelm Weber's laboratory. The two laboratories of Berlin. Laboratory instruction at Manchester. Position of physics in mathematical tripos at Cambridge. Todhunter's views. The Cavendish laboratory. Spectrum analysis. The radiometer. Theory of vortex atom; 2. Action at a distance. Elastic solid of theory of light. Maxwell's theory of electrical action. Electro-magnetic theory. Verification of electromagnetic theory by Hertz. Electro-magnetic waves. Wireless telegraphy. First suggestion of molecular structure of electricity. Early experiments in the electric discharge through gases. Kathode rays. Works of Goldstein and Crookes. Hittorf's investigations. Own work on the discharge through gases. Ionization of gases. Magnetic deflexion of kathode rays. J. J. Thomson's experiments. Measurement of atomic charge; 3. Roentgen's discovery. Theories of Roentgen rays. Ionizing power of Roentgen rays. Conduction of electricity through ionized gases. Discovery of radio-activity. Discovery of radium. Magnetic deflexion of rays emitted by radio-active bodies. Discovery of emanations. Theory of radio-active change. Decay of the atom. Connexion between helium and the a ray. Helium produced by radium. Strutt's researches on helium accumulated in rocks. Electric inertia. Constitution of atom. J. J. Thomson's theory of Roentgen radiation. The Michelson-Morley experiment. Principle of relativity. The Zeeman effect. Other consequences of electron theory. Contrast between old and modern school of physics; 4. Observational sciences. Judgment affected by scale. Terrestrial magnetism. Existence of potential. Separation of internal and external causes. Diurnal variation. Magnetic storms. Their causes. Solar

  5. Progress report: physics division

    International Nuclear Information System (INIS)

    1980-11-01

    The isotope separator is being used to prepare targets of rare and expensive isotopes using natural element feedstock. Research in the Nuclear Physics branch included studies of gamma-ray muliplicities and intensities of gamma rays in the continuum feeding high spin states in 147 Gd, 6 Li parity non-conservation, and the 6 Li + 6 Li reaction. A catalogue of (n,γ) γ-rays has been compiled and submitted for publication, and a portable source for the calibration of gamma ray spectrometers has been developed. Construction of the superconducting cyclotron and development of the high current proton accelerator are continuing. The electron test accelerator is being used in experiments to investigate bremsstrahlung angular distributions. Fertile-to-fissile conversion work is being done at TRIUMF, and fusion blanket studies are being carried out at Chalk River. The Solid State Physics branch has carried out neutron scattering studies of solid Cs 2 , measurements of the structure factor for liquid 4 He, neutron powder diffraction studies of Mnsub(0.6) Znsub(0.4) Te, measurements of the transverse magnetic response in CsCoCl 3 , and analysis of structure data for UPd 3 . The Applied Mathematics and Computation branch has developed new face seal dynamics models. Expansion of the computing centre has been completed. (L.L.)

  6. Physics Division progress report for period ending June 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers. (WHK)

  7. Physics Division progress report for period ending June 30, 1981

    International Nuclear Information System (INIS)

    1981-11-01

    Progress is reported in detail in the following areas: Holifield Heavy-Ion Research Facility, nuclear physics, the UNISOR program, neutron physics, theoretical physics, the Nuclear Data Project, atomic and plasma physics, and high energy physics. Publications are listed. Separate abstracts were prepared for 34 papers

  8. Progress report physics division 1984 July 1 - December 31

    International Nuclear Information System (INIS)

    1985-02-01

    This report reviews progress made during the last half of 1984 in the following areas: development of the TASCC facility; experimental and theoretical nuclear physics research; development of the heavy-ion superconducting cyclotron, the high current proton accelerator and the electron test accelerator; condensed matter physics; applied mathematics and computer facility operation

  9. Progress report physics division 1984 January 1 - June 30

    International Nuclear Information System (INIS)

    1984-08-01

    This report reviews progress made during the first half of 1984 in the following areas: development of the TASCC facility; experimental and theoretical nuclear physics research; development of the heavy-ion superconducting cyclotron, the high current proton accelerator and the electron test accelerator; condensed matter physics; applied mathematics and computer facility operation

  10. Nuclear Physics Division progress report

    International Nuclear Information System (INIS)

    West, D.; Cookson, J.A.; Findlay, D.J.S.

    1984-06-01

    The 1983 progress report of the Nuclear Physics Division, UKAEA Harwell, is divided into four main topics. These are a) nuclear data and technology for nuclear power; b) nuclear studies; c) applications of nuclear and associated techniques, including ion beam techniques and moessbauer spectroscopy; and d) accelerator operation, maintenance and development. (U.K.)

  11. Progress in light cone physics

    International Nuclear Information System (INIS)

    Preparata, G.

    1973-01-01

    A very brief review is given of the progress made in the physics of the light cone in the past year. Included are the light cone expansion, gauge invariance and the consequences of precocious scaling near threshold, the light cone description of the muon pair experiment, light cone expansions, and the assessment and exploitation of analyticity properties in both mass and energy of light cone amplitudes. (U.S.)

  12. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1987-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1985 to September 30, 1986. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  13. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1986-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1984 to September 30, 1985. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the antiproton beams at CERN. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  14. Nuclear structure studies using the high resolution spectrometer at the Los Alamos Clinton P. Anderson Meson Physics Facility: Progress report, [1986-1987

    International Nuclear Information System (INIS)

    Hoffmann, G.W.

    1986-12-01

    A major part of the work done this past year was associated with research conducted at the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) and the External Proton Beam (EPB). The research focussed on (1) providing p + nucleus data which test nonrelativistic and relativistic models of the medium energy proton + nucleus interaction, (2) providing (p,p) and (p,n) data which are to be analyzed to provide new nuclear structure information (both ground state and excited state), (3) providing nucleon + nucleon data to aid in the systematic study of the fundamental nucleon-nucleon interaction, (4) developing and improving the pA models themselves, and (5) initiating new experimental programs whose goals are to search for new phenomena in nuclear physics

  15. Nuclear Physics Group progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1985-07-01

    This report summarises the work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period January-December 1984. Commissioning of the EN-tandem accelerator was completed. The first applications included the production of 13 N from a water target and the measurement of hydrogen depth profiles with a 19 F beam. Further equipment was built for tandem accelerator mass spectrometry but the full facility will not be ready until 1985. The nuclear microprobe on the 3 MV accelerator was used for many studies in archaeometry, metallurgy, biology and materials analysis

  16. Proceedings of progress in high energy physics

    International Nuclear Information System (INIS)

    Pauchy Hwang, W.Y.; Lee, S.C.; Lee, C.E.; Ernst, D.J.

    1991-01-01

    This book contains the proceedings of progress in high energy physics. Topics covered include: Particle Phenomology; Particles and Fields; Physics in 2 and 1 Dimensions; Cosmology, Astrophysics, and Gravitation; Some Perspertives on the Future of Particle Physics

  17. Progress towards a new Canadian irradiation-research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.

    1993-01-01

    As reported at the second meeting of the International Group on Research Reactors, Atomic Energy of Canada Limited (AECL) is evaluating its options for future irradiation facilities. During the past year significant progress has been made towards achieving consensus on the irradiation requirements for AECL's major research programs and interpreting those requirements in terms of desirable characteristics for experimental facilities in a research reactor. The next stage of the study involves identifying near-term and long-term options for irradiation-research facilities to meet the requirements. The near-term options include assessing the availability of the NRU reactor and the capabilities of existing research reactors. The long-term options include developing a new irradiation-research facility by adapting the technology base for the MAPLE-X10 reactor design. Because materials testing in support of CANDU power reactors dominates AECL's irradiation requirements, the new reactor concept is called the MAPLE Materials Testing Reactor (MAPLE-MTR). Parametric physics and engineering studies are in progress on alternative MAPLE-MTR configurations to assess the capabilities for the following types of test facilities: - fast-neutron sites, that accommodate materials-irradiation assemblies, - small-diameter vertical fuel test loops that accommodate multielement assemblies, - large-diameter vertical fuel test loops, each able to hold one or more CANDU fuel bundles, - horizontal test loops, each able to hold full-size CANDU fuel bundles or small-diameter multi-element assemblies, and - horizontal beam tubes

  18. Progress of highly charged atomic physics at IMP

    International Nuclear Information System (INIS)

    Ma, X; Zhu, X L; Liu, H P; Li, B; Wei, B R; Sha, S; Cao, S P; Chen, L F; Zhang, S F; Feng, W T; Zhang, D C; Qian, D B

    2007-01-01

    The progress of atomic physics researches at the Institute of Modern Physics (IMP) is reviewed, covering the studies on ion-atom/molecule collisions, ion-cluster interaction, negative ion formation, state-selective electron capture studied by COLTRIMS, as well as the progress of a new experimental area dedicated for atomic researches at moderate energies, and the advances of the cooler storage rings at the Heavy Ion Research Facility in Lanzhou (HIRFL). New opportunities to study collision dynamics from femto-second to atto-second regime are opened based on the present facilities and the on-going projects

  19. Physics department annual progress report

    International Nuclear Information System (INIS)

    Moeller, H.B.; Lebech, B.

    1980-12-01

    Research in the Physics Department at Risoe covers three main fields: solid-state physics, plasma physics, and meteorology. The principal activities in these fields are presented for the period from 1 January to 31 December 1980. (Auth.)

  20. Progress report, Physics Division, 1 October - 31 December, 1981

    International Nuclear Information System (INIS)

    1982-03-01

    The work of the Physics Division during the quarter is reviewed. Nuclear physics activities included parity violation experiments, mass difference measurements using the ISOL facility, studies of high spin state decays, and scattering length measurements. In accelerator physics, construction of the heavy-ion superconducting cyclotron continued and development of the fast intense neutron source and the high current proton accelerator progressed. Neutron scattering experiments were carried out on a number of solids. Work in applied mathematics and computation is also reviewed

  1. Physics Department annual progress report

    International Nuclear Information System (INIS)

    Moeller, H.B.; Lebech, B.

    1981-12-01

    Research in the Physics Department at Risoe covers three main fields: solid-state physics; plasma physics; meteorology. The principal activities in these fields are presented in this report, which covers the period from 1 January to 31 December 1981. Introductions to the work in each of the main fields are given in the respective sections of the report. (Auth.)

  2. Progress report, Physics and Health Sciences: Physics Section

    International Nuclear Information System (INIS)

    1990-04-01

    This report reviews the research and operational activities of the TASCC Division, the Physics Division, and the Fusion Office of Atomic Energy of Canada Ltd. Commissioning of the TASCC facilities continues; the cyclotron's 17 beams are routinely used in experiments. The MP tandem accelerator has operated at 15 MV. The Applied Neutron Diffraction for Industry group has shown that it is able to measure internal strain and temperature in engineering components. Work is continuing on a cold source to be installed in NRU at the same time as the third reactor vessel. Assembly of the DUALSPEC spectrometer has begun. Progress in understanding and developing the theory of quantum groups resulted in the discovery of a new structure, the twisted quantum group

  3. Progressive problems higher grade physics

    CERN Document Server

    Kennedy, William

    2001-01-01

    This book fully covers all three Units studied in Scotland's Higher Grade Physics course, providing a systematic array of problems (from the simplest to the most difficult) to lead variously abled pupils to examination success.

  4. Nuclear Physics division progress report

    International Nuclear Information System (INIS)

    Lees, E.W.; Longworth, G.; Scofield, C.J.

    1981-07-01

    Work undertaken by the Nuclear Physics Division of AERE, Harwell during 1980 is presented under the headings: (1) Nuclear Data and Technology for Nuclear Power. (2) Nuclear Studies. (3) Applications of Nuclear and Associated Techniques. (4) Accelerator Operation, Maintenance and Development. Reports, publications and conference papers presented during the period are given and members of staff listed. (U.K.)

  5. Theoretical Physics Division progress report

    International Nuclear Information System (INIS)

    1989-01-01

    The research areas covered in this report are solid state and quantum physics, theoretical metallurgy, fuel modelling and reactor materials, statistical physics and the theory of fluids. Attention is drawn to a number of items: (i) the application of theories of aerosol behaviour to the interpretation of conditions in the cover-gas space of a fast reactor; (ii) studies in non-linear dynamics, dynamical instabilities and chaotic behaviour covering for example, fluid behaviour in Taylor-Couette experiments, non-linear behaviour in electronic circuits and reaction-diffusion systems; (iii) the development of finite element computational techniques to describe the periodic behaviour of a system after a Hopf bifurcation and in simulating solidification processes; (iv) safety assessment of disposal concepts for low- and intermediate-level radioactive wastes. (U.K.)

  6. Nuclear Physics Group progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1985-02-01

    This report summarises the work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period January-December 1983. Commissioning of the EN-tandem electrostatic accelerator continued, with the first proton beam produced in June. Many improvements were made to the vacuum pumping and control systems. Applications of the nuclear microprobe on the 3MV accelerator continued at a good pace, with applications in archaeometry, dental research, studies of glass and metallurgy

  7. Physical security of nuclear facilities

    International Nuclear Information System (INIS)

    Dixon, H.

    1987-01-01

    A serious problem with present security systems at nuclear facilities is that the threats and standards prepared by the NRC and DOE are general, and the field offices are required to develop their own local threats and, on that basis, to prepared detailed specifications for security systems at sites in their jurisdiction. As a result, the capabilities of the systems vary across facilities. Five steps in particular are strongly recommended as corrective measures: 1. Those agencies responsible for civil nuclear facilities should jointly prepare detailed threat definitions, operational requirements, and equipment specifications to protect generic nuclear facilities, and these matters should be issued as policy. The agencies should provide sufficient detail to guide the design of specific security systems and to identify candidate components. 2. The DOE, NRC, and DOD should explain to Congress why government-developed security and other military equipment are not used to upgrade existing security systems and to stock future ones. 3. Each DOE and NRC facility should be assessed to determine the impact on the size of the guard force and on warning time when personnel-detecting radars and ground point sensors are installed. 4. All security guards and technicians should be investigated for the highest security clearance, with reinvestigations every four years. 5. The processes and vehicles used in intrafacility transport of nuclear materials should be evaluated against a range of threats and attack scenarios, including violent air and vehicle assaults. All of these recommendations are feasible and cost-effective. The appropriate congressional subcommittees should direct that they be implemented as soon as possible

  8. High energy physics: Progress report

    International Nuclear Information System (INIS)

    Phillips, G.C.; Roberts, J.B. Jr.; Bonner, B.E.

    1987-01-01

    Analysis of data on collision of protons with targets of He, Be, C, Al, Sn, and Pb continued. A jet signal has been clearly observed from all nuclei. A collaboration has been formed for carrying out an experiment studying the photoproduced jets from nuclei and propagation of quarks and gluons through nuclear matter. The production of lambda hyperons was studied using the primary polarized beam at BNL/AGS at 13.3 and 18.5 GeV/c. The effect of the proton beam polarization on the lambda production, A/sub N/ and spin transfer have been measured. A request was approved for additional polarized proton beam at the AGS to continue measurements of the spin transfer to hyperons. Progress is reported on an initial 200 GeV/c polarized beam-polarized target experiment. A collaborative experiment was approved for the saearch for exotic/hybrid mesons. Investigations in quantum field theories, especially quantum chromodynamics, were contined

  9. The Low Temperature Microgravity Physics Facility Project

    Science.gov (United States)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; hide

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  10. Progress report : Technical Physics Division

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.; Deshpande, R.Y.

    1978-01-01

    The research and development work carried out in the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, is reported. Some of the achievements are: (1) fabrication of mass spectrometers for heavy water analysis and lithium 6/7 isotope ratio measurement, (2) fabrication of electronic components for mass spectrometers, (3) growing of sodium iodide crystals for radiation detectors, (4) development of sandwich detectors comprising of NaI(Tl) and CaI(Na), (5) fabrication of mass spectrometer type leak detectors and (6) fabrication of the high vacuum components of the vacuum system of the variable energy cyclotron based at Calcutta. (M.G.B.)

  11. Health physics, 1991 progress report

    International Nuclear Information System (INIS)

    Wahl, L.

    1992-12-01

    At Los Alamos National Laboratory, radiation protection services are provided by HS-1, -4, and -12, and technical support is provided to Laboratory groups that work with significant quantities of fissile material by HS-6. The mission of all these groups is to protect Laboratory workers, the public, and the environment from radiation associated with Laboratory operations. In this report, 1991 radiation protection performance trends are presented. These data show that, in general, the collective external dose equivalent quantities from penetrating (gamma, x-ray, and neutron) radiation and from nonpenetrating (beta and low-energy photon) radiation decreased over most of 199 1. In general, the number of confirmed contaminations of skin and personal clothing increased in the first quarter of 1991 but decreased markedly in subsequent quarters. Finally, there were no confirmed intakes (through ingestion or inhalation) of radioactive material at eight facilities in all of 1991. The 1991 radiation protection activities of the Laboratory, conducted at both the Nevada Test Site and at Los Alamos, are presented and discussed. These activities include extemal dosimetry, internal dosimetry, radiation-monitoring instrumentation, sample analyses, workplace monitoring, radioactive air emissions management, nuclear criticality safety, radiological emergency response, radiological training, radiological audits and investigations, and radiological records. This report details routine activities, including any significant changes and improvements in 1991; additional activities, including special investigations, studies, and reviews; publications and presentations; and professional activities, including professional memberships, training received, and conferences attended

  12. Progress Towards Ignition on the National Ignition Facility

    Science.gov (United States)

    Edwards, John

    2012-10-01

    Since completion of the National Ignition Facility (NIF) construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been commissioned in pursuit of generating the conditions necessary to reach thermonuclear ignition in the laboratory via the inertial confinement approach. NIF's capabilities and infrastructure include over 50 X-ray, optical, and nuclear diagnostics systems and the ability to shoot cryogenic DT layered capsules. There are two main approaches to ICF: direct drive in which laser light impinges directly on a capsule containing a solid layer of DT fuel, and indirect drive in which the laser light is first converted to thermal X-rays. To date NIF has been conducting experiments using the indirect drive approach, injecting up to 1.8MJ of ultraviolet light (0.35 micron) into 1 cm scale cylindrical gold or gold-coated uranium, gas-filled hohlraums, to implode 1mm radius plastic capsules containing solid DT fuel layers. In order to achieve ignition conditions the implosion must be precisely controlled. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress toward this. Utilizing precision pulse-shaping experiments in early 2012 the NIC achieve fuel rhoR of approximately 1.2 gm/cm^2 with densities of around 600-800 g/cm^3 along with neutron yields within about a factor of 5 necessary to enter a regime in which alpha particle heating will become important. To achieve these results, experimental platforms were developed to carefully control key attributes of the implosion. This talk will review NIF's capabilities and the progress toward ignition, as well as the physics of ignition targets on NIF and on other facilities. Acknowledgement: this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Harvard University High Energy Physics progress report

    International Nuclear Information System (INIS)

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  14. Progress report : Plasma Physics Section

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Rohatgi, V.K.

    1975-08-01

    The activities of the plasma physics section of the Bhabha Atomic Research Centre, India over the last five years (1970-75) are reported. The R and D programme of the section has been divided into four cells mainly i.e., (i) Thermal plasma (ii) Relativistic Electron Beam (iii) Energetics and (iv) Electron beam technology. The salient features of the development activities carried out in these cells are outlined. In the Thermal plasma group, considerable research work has been done in (a) fundamental plasma studies, (b) industrial plasma technology and (c) open cycle MHD power generation project. The relativistic electron beam group is engaged in improving the technology to realize high power lasers, and pulsed thermonuclear fusion. The energetics programme is oriented to develop high voltage d.c. generators and pulse generators. The electron beam techniques developed here are routinely used for melting refractory and reactive metals. The technical know-how of the welding machines developed has been transfered to industries. Equipment developed by this section, such as, (1) electron beam furnace, (2) plasma cutting torch, (3) impulse magnet charger etc. are listed. (A.K.)

  15. Accelerator Physics Section progress report

    International Nuclear Information System (INIS)

    Coote, G.E.

    1986-05-01

    This report summarizes the work of the Accelerator Physics Section of the Institute of Nuclear Sciences during the period January-December 1985. Applications of the EN-tandem accelerator included 13 N production for tracer experiments in plants and animals, hydrogen profiling with a 19 F beam and direct detection of heavy ions with a surface barrier detector. Preparations for accelerator mass spectrometry continued steadily, with the commissioning of the pulsed EHT supply which selects the isotope to be accelerated, routine detection of 14 C ions, and completion of a sputter ion source with an eight position target wheel. It was shown that the hydrogen content of a material could be derived from a simultaneous measurement of the transmission of neutrons and gamma rays from a neutron source or accelerator target. The 11 CO 2 produced at the 3 MV accelerator was used in two studies of translocation in a large number of plant species: the effects of small quantities of SO 2 in the air, and the effect of cooling a short length of the stem. The nuclear microprobe was applied to studies of carbon pickup during welding of stainless steel, determination of trace elements in soil and vegetation and the measurement of sodium depth profiles in obsidian - in particular the effect of rastering the incident proton beams

  16. Nuclear physics at multi-GeV hadron facilities

    International Nuclear Information System (INIS)

    Geesaman, D.F.

    1993-01-01

    The important contributions Multi-GeV hadron beam facilities can make to the field of Nuclear Physics have been recognized by the community for a decade. Such a facility has featured prominently in each NSAC planning exercise in this period. As Nuclear Physicists realize they must become more concerned with the quark structure of nuclei and the applications of Quantum Chromodynamics to many body systems, the need for experiments at such facilities has become more urgent. In this talk, I will present a personal view of some of the significant recent Nuclear Physics results with multi-GeV hadron facilities, the most important opportunities which can open up to us in the future, and demonstrate how our field must take advantage of these opportunities to progress. I will also report on the recent discussions in the community to make this possible

  17. Nuclear physics accelerator facilities of the world

    International Nuclear Information System (INIS)

    1991-12-01

    this report is intended to provide a convenient summary of the world's major nuclear physics accelerator facility with emphasis on those facilities supported by the US Department of Energy (DOE). Previous editions of this report have contained only DOE facilities. However, as the extent of global collaborations in nuclear physics grows, gathering summary information on the world's nuclear physics accelerator facilities in one place is useful. Therefore, the present report adds facilities operated by the National Science Foundation (NSF) as well as the leading foreign facilities, with emphasis on foreign facilities that have significant outside user programs. The principal motivation for building and operating these facilities is, of course, basic research in nuclear physics. The scientific objectives for this research were recently reviewed by the DOE/NSF Nuclear Science Advisory Committee, who developed a long range plan, Nuclei, Nucleons, and Quarks -- Nuclear Science in the 1990's. Their report begins as follows: The central thrust of nuclear science is the study of strongly interacting matter and of the forces that govern its structure and dynamics; this agenda ranges from large- scale collective nuclear behavior through the motions of individual nucleons and mesons, atomic nuclei, to the underlying distribution of quarks and gluons. It extends to conditions at the extremes of temperature and density which are of significance to astrophysics and cosmology and are conducive to the creation of new forms of strongly interacting matter; and another important focus is on the study of the electroweak force, which plays an important role in nuclear stability, and on precision tests of fundamental interactions. The present report provides brief descriptions of the accelerator facilities available for carrying out this agenda and their research programs

  18. Physics Division progress report, January 1, 1984-September 30, 1986

    International Nuclear Information System (INIS)

    Keller, W.E.

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center

  19. Physics Division progress report, January 1, 1984-September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Keller, W.E. (comp.)

    1987-10-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period January 1, 1984, through September 31, 1986. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the Nation's needs in defense and basic sciences: (1) defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; (2) laser physics and applications, especially to high-density plasmas; and (3) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission. A sampling of experimental systems of particular interest would include the relativistic electron-beam accelerator and its applications to high-energy-density plasmas; pulsed-power facilities; directed energy weapon devices such as free-electron lasers and neutral-particle-beam accelerators; high-intensity ultraviolet and x-ray beam lines at the National Synchrotron Light Source (at Brookhaven National Laboratory); the Aurora KrF ultraviolet laser system for projected use as an inertial fusion driver; antiproton physics facility at CERN; and several beam developments at the Los Alamos Meson Physics Facility for studying nuclear, condensed-matter, and biological physics, highlighted by progress in establishing the Los Alamos Neutron Scattering Center.

  20. Defense waste processing facility startup progress report

    International Nuclear Information System (INIS)

    Iverson, D.C.; Elder, H.H.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing

  1. Progress at the ESRF multilayer facility

    International Nuclear Information System (INIS)

    Morawe, Ch; Peffen, J Ch; Friedrich, K; Osterhoff, M

    2013-01-01

    The ESRF multilayer (ML) deposition facility is fully operational since 2009. By the end of 2011, almost 50 ML projects were completed using the new machine, bringing the total number to 143 since 1998. Thanks to the new equipment and its improved performance the throughput could be significantly increased. The ESRF upgrade project caused strong demands for new ML optics, in particular dynamically bent KB focusing devices requiring very precise and steeply graded ML coatings. Thanks to this technology, the ESRF nano-imaging end-station ID22NI now provides the users with spot sizes of the order of 50×50 nm 2 at a photon flux of 10 12 ph/s. Among various in-house research and development activities the study of stress evolution during thin film and ML growth will be highlighted. Additional projects involving a PhD student and a PostDoc fellow cover the fields of wave optical simulations using curved MLs and the exposure of ML based monochromators to the white beam.

  2. Polarized photon facilities - windows to new physics

    International Nuclear Information System (INIS)

    Sandorfi, A.M.

    1995-01-01

    The status of new and proposed sources of intermediate-energy polarized photons is reviewed. The N → δ transition is discussed as an example of new physics that can be addressed at these facilities through precision measurements of polarization observables

  3. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report presents the research programs and the technical developments carried out at the Nuclear Physics Department of Saclay from October 1, 1986 to September 30, 1987. The research programs concern the structure of nuclei and the general study of nuclear reaction mechanisms. Experiments use electromagnetic probes of the 700 Mev Saclay linear electron accelerator and hadronic probes, light polarised particles and heavy ions of the National Laboratories SATURNE and GANIL. The Nuclear Physics Department is also involved in development of accelerator technologies, especially in the field of superconducting cavities [fr

  4. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1981-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1979 to September 30, 1980. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories [fr

  5. Research in theoretical nuclear physics: Progress report

    International Nuclear Information System (INIS)

    1988-08-01

    In April 1988 we, along with the nuclear theory groups of Brookhaven and MIT, submitted a proposal to the Department of Energy for a national Institute of Theoretical Nuclear Physics. The primary areas of investigation proposed for this Institute are: Strong Interaction Physics--including (1) The physics of hadrons, (2) QCD and the nucleus, (3) QCD at finite temperatures and high density; nuclear astrophysics; nuclear structure and nuclear many-body theory; and nuclear tests of fundamental interactions. It is, of course, no coincidence that these are the main areas of activity of the three groups involved in this proposal and of our group in particular. Here, we will organize an outline of the progress made at Stony Brook during the past year along these lines. These four areas do not cover all of the activities of our group

  6. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1983-01-01

    The experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1981 to September 30, 1982 are presented. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories, in particular the SARA facility at Grenoble, the boosted tandem at Heidelberg and the secondary beams at CERN [fr

  7. High energy experimental physics: Progress report

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1988-01-01

    This report contains papers of high energy physics experiments and detector equipment design. Proposals are also given for future experiments. Some of the topics covered in this report are: high energy predictions for /bar char/pp and pp elastic scattering and total cross sections; D0 forward drift chambers; polarized beam facility; analyzing power measurment in inclusive pion production at high transverse momentum; Skyrme model for baryons; string models for color flux tubes; hadronic decays for the /tau/ lepton; and meson form factors in perturbative QCD

  8. Egyptian women in physics: Progress and challenges

    Science.gov (United States)

    Mohsen, M.; Hosni, Hala; Mohamed, Hadeer; Gadalla, Afaf; Kahil, Heba; Hashem, Hassan

    2015-12-01

    The present study shows a progressive increase in the number of female physicists as undergraduates and postgraduates in several governmental universities. For instance, in Ain Shams University, the percentage of women who selected physics as a major course of study increased from 7.2% in 2012 to 10.8% in 2013 and 15.7% in 2014. The study also provides the current gender distribution in the various positions among the teaching staff in seven governmental universities. The data supports the fact that female teaching assistants are increasing in these universities.

  9. The 1989 progress report: theoretical Physics

    International Nuclear Information System (INIS)

    Laval, G.

    1989-01-01

    The 1989 progress report of the laboratory of theoretical Physics of the Polytechnic School (France) is presented. The investigations reported concern the following subjects: the transport of a passive vector by a flow, the conformal field theories, the dynamics of wetting, the electromagnetic properties of composite materials, the neutrino oscillations, the heavy ion collision phenomenology, the laser-plasma interaction, the construction of a code for simulating the evolution of magnetohydrodynamic instabilities in plasmas. The published papers, the conferences and the Laboratory staff are listed [fr

  10. Progress report Physical and Environmental Sciences TASCC Division 1994 July 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The TASCC division of the Physics and Environmental Sciences releases this progress report to overview the research and instrumentation and facility development. The accelerator operation was smooth for the Tandem and rather difficult for the cyclotron. Progress has been made on all major development projects. A listing is included of all publications, reports, lectures and conference contributions. 14 tabs., 28 figs.

  11. Progress report Physical and Environmental Sciences TASCC Division 1994 July 1 to December 31

    International Nuclear Information System (INIS)

    1995-05-01

    The TASCC division of the Physics and Environmental Sciences releases this progress report to overview the research and instrumentation and facility development. The accelerator operation was smooth for the Tandem and rather difficult for the cyclotron. Progress has been made on all major development projects. A listing is included of all publications, reports, lectures and conference contributions. 14 tabs., 28 figs

  12. Physics detector simulation facility system software description

    International Nuclear Information System (INIS)

    Allen, J.; Chang, C.; Estep, P.; Huang, J.; Liu, J.; Marquez, M.; Mestad, S.; Pan, J.; Traversat, B.

    1991-12-01

    Large and costly detectors will be constructed during the next few years to study the interactions produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy of a proposed design will be determined by a detailed computer model of the detectors. Physics and detector simulations will be performed on the computer model using high-powered computing system at the Physics Detector Simulation Facility (PDSF). The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo calculations for the simulation of SSCL physics and detectors. The numerical calculations to be performed in each simulation are lengthy and detailed; they could require many more months per run on a VAX 11/780 computer and may produce several gigabytes of data per run. Consequently, a distributed computing environment of several networked high-speed computing engines is envisioned to meet these needs. These networked computers will form the basis of a centralized facility for SSCL physics and detector simulation work. Our computer planning groups have determined that the most efficient, cost-effective way to provide these high-performance computing resources at this time is with RISC-based UNIX workstations. The modeling and simulation application software that will run on the computing system is usually written by physicists in FORTRAN language and may need thousands of hours of supercomputing time. The system software is the ''glue'' which integrates the distributed workstations and allows them to be managed as a single entity. This report will address the computing strategy for the SSC

  13. Physical protection nuclear facilities against sabotage

    International Nuclear Information System (INIS)

    Hagemann, A.

    2001-01-01

    Full text: INFCIRC 225 Rev. 4 has introduced the Design Basis Threat, DBT, as a key element of the states physical protection system. The DBT is a definition which determines the level of physical protection of nuclear material during use, storage, transport and of nuclear facilities. It the basis for physical protection concepts and for the design of measures the operator or licensee has to provide. By this means it is also a definition of the responsibility for the physical protection which the operator accepts with the license. The new chapter designated to the physical protection against sabotage which has resulted also in the amendment of the title in INFCIRC 225 demonstrates the grown international concern about the potential consequences of sabotage. More than the physical protection against unauthorized removal the physical protection against sabotage has interfaces with the nuclear safety field. The basis of protection against sabotage therefore is much more based on the facility design-the safety design of the facility. Using the DBT the competent authority is in the position to determine the level of protection against sabotage and the remaining risk which has to be accepted. This risk of course depends on the real threat which is not known in advance. The acceptance of the remaining risk depends on both the assessment of the threat, its credibility and the potential consequences. There has been no serious act of sabotage in the past nor an attempt of. Despite of this the Harnun attack of the Japanese underground and some other recent terrorist activities could have given reasons to reconsider what threat might be credible. The German physical protection system has been developed since the increasing terrorist activities in the 1970s. From the beginning the protection against sabotage played an important role in the German system of physical protection. The requirements for the physical protection against unauthorized removal and against sabotage were

  14. Progress Toward Ignition on the National Ignition Facility

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    2011-01-01

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is ∼0.5 cm diameter by ∼1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a ∼2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer

  15. Health physics instrumentation - a progress report

    International Nuclear Information System (INIS)

    Maushart, R.

    1992-01-01

    Health Physics Instruments have changed rather dramatically in the past decade. On the one hand, technological innovations like Microprocessors, data storage facilities and imaging displays have altered shape, size and appearance of the classical devices, particularly the hand-held ones. On the other hand, instruments are increasingly being considered as an integral part of Radiation Protection procedures and organizations, supporting a smooth and reliable implementation of all necessary measures. This implies ease of operation, and extensive self-checking and performance control features. Since there are different categories of users with quite different degrees of motivation and training, the measuring instruments of the future will have to be adapted to specific types of users. Instruments for 'professional' radiation protection - for example in nuclear power plants and nuclear technology - will differ from instruments used in the radionuclide laboratory, where radiation protection will necessarily have to be done as a 'side-job'. (author)

  16. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  17. Plutonium Reclamation Facility incident response project progress report

    International Nuclear Information System (INIS)

    Austin, B.A.

    1997-01-01

    This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies

  18. Experimental Facilities Division. Progress report 1996-97

    International Nuclear Information System (INIS)

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD

  19. Plutonium Reclamation Facility incident response project progress report

    Energy Technology Data Exchange (ETDEWEB)

    Austin, B.A.

    1997-11-25

    This report provides status of Hanford activities in response to process deficiencies highlighted during and in response to the May 14, 1997, explosion at the Plutonium Reclamation Facility. This report provides specific response to the August 4, 1997, memorandum from the Secretary which requested a progress report, in 120 days, on activities associated with reassessing the known and evaluating new vulnerabilities (chemical and radiological) at facilities that have been shut down, are in standby, are being deactivated or have otherwise changed their conventional mode of operation in the last several years. In addition, this report is intended to provide status on emergency response corrective activities as requested in the memorandum from the Secretary on August 28, 1997. Status is also included for actions requested in the second August 28, 1997, memorandum from the Secretary, regarding timely notification of emergencies.

  20. Experimental Facilities Division progress report 1996--97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This progress report summarizes the activities of the Experimental Facilities Division (XFD) in support of the users of the Advanced Photon Source (APS), primarily focusing on the past year of operations. In September 1996, the APS began operations as a national user facility serving the US community of x-ray researchers from private industry, academic institutions, and other research organizations. The start of operations was about three months ahead of the baseline date established in 1988. This report is divided into the following sections: (1) overview; (2) user operations; (3) user administration and technical support; (4) R and D in support of view operations; (5) collaborative research; and (6) long-term strategic plans for XFD.

  1. Physics Division progress report for period ending September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

  2. Physics division progress report for period ending September 30 1991

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)

  3. Physics division progress report for period ending September 30 1991

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1992-03-01

    This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development

  4. Physics Division progress report for period ending September 30, 1983

    International Nuclear Information System (INIS)

    1983-12-01

    Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed

  5. Space Physics Data Facility Web Services

    Science.gov (United States)

    Candey, Robert M.; Harris, Bernard T.; Chimiak, Reine A.

    2005-01-01

    The Space Physics Data Facility (SPDF) Web services provides a distributed programming interface to a portion of the SPDF software. (A general description of Web services is available at http://www.w3.org/ and in many current software-engineering texts and articles focused on distributed programming.) The SPDF Web services distributed programming interface enables additional collaboration and integration of the SPDF software system with other software systems, in furtherance of the SPDF mission to lead collaborative efforts in the collection and utilization of space physics data and mathematical models. This programming interface conforms to all applicable Web services specifications of the World Wide Web Consortium. The interface is specified by a Web Services Description Language (WSDL) file. The SPDF Web services software consists of the following components: 1) A server program for implementation of the Web services; and 2) A software developer s kit that consists of a WSDL file, a less formal description of the interface, a Java class library (which further eases development of Java-based client software), and Java source code for an example client program that illustrates the use of the interface.

  6. Physical security of cut-and-cover underground facilities

    International Nuclear Information System (INIS)

    Morse, W.D.

    1998-01-01

    To aid designers, generic physical security objectives and design concepts for cut-and-cover underground facilities are presented. Specific aspects addressing overburdens, entryways, security doors, facility services, emergency egress, security response force, and human elements are discussed

  7. Experimental progress in positronium laser physics

    Science.gov (United States)

    Cassidy, David B.

    2018-03-01

    The field of experimental positronium physics has advanced significantly in the last few decades, with new areas of research driven by the development of techniques for trapping and manipulating positrons using Surko-type buffer gas traps. Large numbers of positrons (typically ≥106) accumulated in such a device may be ejected all at once, so as to generate an intense pulse. Standard bunching techniques can produce pulses with ns (mm) temporal (spatial) beam profiles. These pulses can be converted into a dilute Ps gas in vacuum with densities on the order of 107 cm-3 which can be probed by standard ns pulsed laser systems. This allows for the efficient production of excited Ps states, including long-lived Rydberg states, which in turn facilitates numerous experimental programs, such as precision optical and microwave spectroscopy of Ps, the application of Stark deceleration methods to guide, decelerate and focus Rydberg Ps beams, and studies of the interactions of such beams with other atomic and molecular species. These methods are also applicable to antihydrogen production and spectroscopic studies of energy levels and resonances in positronium ions and molecules. A summary of recent progress in this area will be given, with the objective of providing an overview of the field as it currently exists, and a brief discussion of some future directions.

  8. High energy experimental physics. Progress report and renewal proposal

    International Nuclear Information System (INIS)

    Rosen, J.; Miller, D.

    1985-01-01

    Technical progress is summarized for activities in these areas: study of charm particle production in hadronic collisions (data analysis); large-aperture multiparticle spectrometer; TEV I debuncher ring profile monitor; beta source monochromatizer; final reduction of data from pp and p anti p elastic scattering; high energy elastic scattering and cross section review; consequences of the Auberson-Kinoshita-Martin theorem for the nuclear slope parameter; planning and final design of the elastic scattering and total cross section experiment at the Tevatron Collider; a D-zero pp project and photoproduction experiment; lepton production in heavy-ion collisions; prompt gamma and massive lepton-pair production apparatus; and spin physics with the Fermilab polarized beam facility

  9. Irradiation facilities at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Sandberg, V.

    1990-01-01

    The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs

  10. NTES laser facility for physics experiments

    International Nuclear Information System (INIS)

    Christie, D.J.; Foley, R.J.; Frank, D.N.

    1989-01-01

    This paper discusses the following topics on the NTES laser facility: Mission Statement and Project Description; Experiment Area; High-Energy, Double-Pass Laser; Facilities; Laser Control and Data Acquisition; and Auxiliary Lasers

  11. Progress report physics division, 1983 July 1 - December 31

    International Nuclear Information System (INIS)

    1984-02-01

    This report summarizes work carried out during the last half of 1983 in the Physics Division of the Chalk River Nuclear Laboratories in the areas of superconducting cyclotron facility development, nuclear physics research, applied physics, solid state physics, and applied mathematics and computation

  12. Sustaining the Progress to Improve Physics Education

    Science.gov (United States)

    Abdul-Razzaq, Wathiq

    2010-01-01

    One of the problems we face in teaching introductory physics courses at the college level is that about 2/3 of students never had physics prior coming to college. Thus, many students find it very difficult to learn physics for the first time at the relatively fast-paced teaching of college physics courses. Sometimes the drop/failure/withdrawal…

  13. Physics Division progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1988-03-01

    The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. A major activity within the Division is operation of the Holifield Heavy Ion Research Facility as a national user facility. Highlights for this year, which include a record number of beam hours provided for research, are summarized. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen growth in the use of facilities that provide intermediate energies (GANIL) and ultrarelativistic beams (CERN). The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuclear structure research of this consortium is included. In addition to the Holifield Facility, the Division also operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as /open quotes/User Resources/close quotes/. The tandem continues a long history of supporting research in accelerator-based atomic physics. During this past year, new beam lines have been added to the ECR ion source to create user opportunities for atomic physics experiments with this unique device. These two facilities and the experimental programs in atomic physics are discussed. The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. Also included is the theory effort in support of the UNISOR structure program. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program and operation of an atomic physics data center. The nuclear physics program also operates a compilation and evaluation effort; this work is also described

  14. Physics Division progress report for period ending September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1988-03-01

    The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. A major activity within the Division is operation of the Holifield Heavy Ion Research Facility as a national user facility. Highlights for this year, which include a record number of beam hours provided for research, are summarized. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen growth in the use of facilities that provide intermediate energies (GANIL) and ultrarelativistic beams (CERN). The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. The experimental nuclear structure research of this consortium is included. In addition to the Holifield Facility, the Division also operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as /open quotes/User Resources/close quotes/. The tandem continues a long history of supporting research in accelerator-based atomic physics. During this past year, new beam lines have been added to the ECR ion source to create user opportunities for atomic physics experiments with this unique device. These two facilities and the experimental programs in atomic physics are discussed. The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. Also included is the theory effort in support of the UNISOR structure program. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program and operation of an atomic physics data center. The nuclear physics program also operates a compilation and evaluation effort; this work is also described.

  15. Texas Experimental Tokamak: A plasma research facility. Technical progress report, November 1, 1993--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A.J.

    1994-07-01

    The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics in order to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks and in particular to understand the role of turbulence. So that they can continue to study the physics that is most relevant to the fusion program, TEXT completed a significant device upgrade this year. The new capabilities of the device and new and innovative diagnostics were exploited in all main program areas including: (1) configuration studies; (2) electron cyclotron heating physics; (3) improved confinement modes; (4) edge physics/impurity studies; (5) central turbulence and transport; and (6) transient transport. Details of the progress in each of the research areas are described.

  16. Texas Experimental Tokamak: A plasma research facility. Technical progress report, November 1, 1993--October 31, 1994

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1994-07-01

    The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics in order to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks and in particular to understand the role of turbulence. So that they can continue to study the physics that is most relevant to the fusion program, TEXT completed a significant device upgrade this year. The new capabilities of the device and new and innovative diagnostics were exploited in all main program areas including: (1) configuration studies; (2) electron cyclotron heating physics; (3) improved confinement modes; (4) edge physics/impurity studies; (5) central turbulence and transport; and (6) transient transport. Details of the progress in each of the research areas are described

  17. Progress in preliminary studies at Ottana Solar Facility

    Science.gov (United States)

    Demontis, V.; Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Melis, T.; Musio, M.

    2016-05-01

    The fast increasing share of distributed generation from non-programmable renewable energy sources, such as the strong penetration of photovoltaic technology in the distribution networks, has generated several problems for the management and security of the whole power grid. In order to meet the challenge of a significant share of solar energy in the electricity mix, several actions aimed at increasing the grid flexibility and its hosting capacity, as well as at improving the generation programmability, need to be investigated. This paper focuses on the ongoing preliminary studies at the Ottana Solar Facility, a new experimental power plant located in Sardinia (Italy) currently under construction, which will offer the possibility to progress in the study of solar plants integration in the power grid. The facility integrates a concentrating solar power (CSP) plant, including a thermal energy storage system and an organic Rankine cycle (ORC) unit, with a concentrating photovoltaic (CPV) plant and an electrical energy storage system. The facility has the main goal to assess in real operating conditions the small scale concentrating solar power technology and to study the integration of the two technologies and the storage systems to produce programmable and controllable power profiles. A model for the CSP plant yield was developed to assess different operational strategies that significantly influence the plant yearly yield and its global economic effectiveness. In particular, precise assumptions for the ORC module start-up operation behavior, based on discussions with the manufacturers and technical datasheets, will be described. Finally, the results of the analysis of the: "solar driven", "weather forecasts" and "combined storage state of charge (SOC)/ weather forecasts" operational strategies will be presented.

  18. Theoretical high energy physics: Progress report, May 1, 1987-April 30, 1988

    International Nuclear Information System (INIS)

    Lee, T.D.

    1988-05-01

    This paper discusses the progress on High Energy Physics projects by the facility of Columbia University. Short discussions are given on the use of parallel computers for numerical simulation of lattice quantum chromodynamics; Soliton condensation; High Temperature superconductivity; New calculations techniques for non-Abelian gauge theories and other related topics

  19. Progress report - physical sciences - physics division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the Physics Division. Of special note within the period covered by this report was the successful acceleration of over 75 mA of protons to 600 keV in RFQ1 making it the highest current RFQ in the world. Our electron accelerator expertise has been recognized by the award of one of the R and D 100 awards for the IMPELA (10 MeV 50 kW) machine. Considerable activity was associated with bringing the new dual beam neutron spectrometer DUALSPEC to completion. This instrument has been jointly funded by AECL and NSERC through McMaster University and will be a central component of the national neutron scattering facility at NRU in the 1990's. A major effort was made with the writing of a Project Definition Document for installation of a cold neutron source at the most opportune time

  20. Elementary particle physics. Progress report, 1993 - 1995

    International Nuclear Information System (INIS)

    Izen, J.M.

    1997-10-01

    A brief summary is given for each of the following topics: (1) Beijing Spectrometer (BES) run history and plans; (2) BES physics topics; (3) UTD BES personnel; (4) UTD physics analysis of 4.03 GeV data; (5) BES software and data processing; (5) UTD computing upgrade; (6) PEPII b Factory; and (7) budget justification

  1. SuperB Progress Reports - Physics

    CERN Document Server

    O'Leary, B.; Ramon, M.; Pous, E.; De Fazio, F.; Palano, A.; Eigen, G.; Asgeirsson, D.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; Heinemeyer, S.; McElrath, B.; Andreassen, R.; Meadows, B.; Sokoloff, M.; Blanke, M.; Lesiak, T.; Shindou, T.; Ronga, F.; Baldini, W.; Bettoni, D.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Rama, M.; Bossi, F.; Guido, E.; Patrignani, C.; Tosi, S.; Davies, C.; Lunghi, E.; Haisch, U.; Hurth, T.; Westhoff, S.; Crivellin, A.; Hofer, L.; Goto, T.; Brown, David Nathan; Branco, G.C.; Zupan, J.; Herrero, M.; Rodriguez-Sanchez, A.; Simi, G.; Tackmann, F.J.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Lindemann, D.M.; Robertson, S.H.; Duling, B.; Gemmler, K.; Gorbahn, M.; Jager, S.; Paradisi, P.; Straub, D.M.; Bigi, I.; Asner, D.M.; Fast, J.E.; Kouzes, R.T.; Morandin, M.; Rotondo, M.; Ben-Haim, E.; Arnaud, N.; Burmistrov, L.; Kou, E.; Perez, A.; Stocchi, A.; Viaud, B.; Domingo, F.; Piccinini, F.; Manoni, E.; Batignani, G.; Cervelli, A.; Forti, F.; Giorgi, M.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Neri, N.; Walsh, J.; Bevan, A.; Bona, M.; Walker, C.; Weiland, C.; Lenz, A.; Gonzalez-Sprinberg, G.; Faccini, R.; Renga, F.; Polosa, A.; Silvestrini, L.; Virto, J.; Ciuchini, M.; Lubicz, V.; Tarantino, C.; Wilson, F.F.; Carpinelli, M.; Huber, T.; Mannel, T.; Graham, M.; Ratcliff, B.N.; Santoro, V.; Sekula, S.; Shougaev, K.; Soffer, A.; Shimizu, Y.; Gambino, P.; Mussa, R.; Nardecchia, M.; Stal, O.; Bernabeu, J.; Botella, F.; Jung, M.; Lopez March, N.; Martinez Vidal, F.; Oyanguren, A.; Pich, A.; Lozano, M.A.Sanchis; Vidal, J.; Vives, O.; Banerjee, S.; Roney, J.M.; Petrov, A.A.; Flood, K.

    2010-01-01

    SuperB is a high luminosity e+e- collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measure...

  2. Progress report 1986-1987 Department of Physics

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report 1986-1987 deals with the first two years operation of the TANDAR electrostatic accelerator and also describes the research work in the following fields: nuclear physics (nuclear structure, nuclear reactions, intermediate energies, applied nuclear physics); solid state physics (crystallography and phase transitions, Mossbauer spectroscopy, condensed matter theory, crystals growth, instrumentation); atomic physics and computational physics. Finally, the staff, a list of publications and activities related to international agencies is included [es

  3. Symmetry problems in particle physics: Progress report

    International Nuclear Information System (INIS)

    Kabir, P.K.; Fishbane, P.F.

    1988-01-01

    Progress is reported in the areas of family symmetry and the fermion mass matrix, consequences of heavy isosinglet fermions, and dynamics of confinement. Theorems were discovered relating the polarization of the transmitted neutrons after passage through a polarized medium to the initial polarization

  4. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  5. SuperB Progress Report for Physics

    International Nuclear Information System (INIS)

    O'Leary, B.; Matias, J.; Ramon, M.

    2012-01-01

    SuperB is a high luminosity e + e - collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B u,d,s , D and τ decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin 2 θ W . In addition to performing CP violation measurements at the Υ(4S) and φ(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over-constraints of the unitarity triangle through

  6. Physics Division progress report for period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported.

  7. Physics Division progress report for period ending September 30, 1988

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1989-03-01

    This report covers the research and development activities of the Physics Division for the 1988 fiscal year, beginning October 1, 1987, and ending September 30, 1988. The activities of this Division are concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. Operation of the Holifield Heavy Ion Research Facility as a national user facility continues to represent the single largest activity within the Division. This year saw the completion of the acceleration tube upgrade of the 25-MV tandem electrostatic accelerator and the achievement of record terminal potentials, operation for an experiment with 25 million volts on terminal, and successful tests with beam at 25.5 MV. The experimental nuclear physics program continues to be dominated by research utilizing heavy ions. These activities, while continuing to center largely on the Holifield Facility, have seen significant growth in the use of facilities that provide intermediate energies and especially ultrarelativistic beams. The UNISOR program, since its inception, has been intimately associated with the Division and, most particularly, with the Holifield Facility. In addition to the Holifield Facility, the Division operates two smaller facilities, the EN Tandem and the ECR Ion Source Facility, as ''User Resources.'' The efforts in theoretical physics, covering both nuclear and atomic physics, are presented. In addition to research with multicharged heavy ions from the ECR source, the effort on atomic physics in support of the controlled fusion program includes a plasma diagnostics development program. The concentration of this program on optical and laser technology is marked by the change in designation to the Laser and Electro-Optics Lab. A small, continuing effort in elementary particle physics, carried out in collaboration with the University of Tennessee, is reported

  8. Atomic physics center in 1972. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, D

    1973-12-31

    The activities of the Toulouse Atomic Physics Center in 1972 are presented. Each research group of the atomic physics section is dealt with separately: atomic collisions, afterglow in gases, dc discharges in medium and high pressure gases, electric arcs, the physics of dielectrics, transport of radiation in matter, stimulated electronic emission, and pn semiconductor junctions. Because of its size, the aerosol and atmospheric exchanges section was not divided into different research groups; the work carried out by this section is presented as a single overall account. (auth)

  9. Progress in Flavor Physics (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    We present a pedagogical introduction to quark flavor physics, within and beyond the Standard Model. Particular attention is devoted to the phenomenology of B and D decays, in view of recent and possible future results at the LHC experiments.

  10. Progress report: Physics Division, 1983 January 1 -June 30

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear physics studies carried out during the first half of 1983 are described. Work continues on the Tandem Accelerator Superconducting Cyclotron facility. Advances in computer facilities and the new 8 π spectrometer are reported. Crystal structure studies via neutron scattering are also outlined

  11. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M. (ed.)

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31.

  12. Progress report - Physical and Environmental Sciences - Physics Division, 1995 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1996-05-01

    This document is a Progress Report for the Physical and Environmental Sciences, Physics Division, for the period 1995 January 1 to December 31, at the Chalk River nuclear Labs. The condensed matter science group continued to operate a multi-faceted program involving collaborative basic and applied research with external scientists in the fields of materials science, physics, chemistry and biology. The Applied Neutron Diffraction for Industry (And) program gained strength with ever wider applications for the nuclear, aerospace, and manufacturing programs. Steps continued towards making neutron scattering facilities at NRU reactor more user friendly. The neutrino physics group, as part of the Sudbury Neutrino Observatory (SNO) Institute, collaborating with scientists from Canada, USA and UK. The accelerator physics group spent considerable effort working with materials and fuels scientists to show the value of accelerators as an out-reactor source of radiation. Specific research activities have included the demonstration of laser plasma deposition of diamond coating, which has potential application for high-wear components in reactors, and the study for a Free Electron Laser upgrade for the IMPELA accelerator. As a result of funding reduction all programs of the Division were dissolved as of 1997 March 31

  13. Physics Division progress report for period ending September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics. (LEW)

  14. Physics Division progress report for period ending September 30, 1985

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1986-04-01

    This report covers the research and development activities of the Physics Division for the 1985 fiscal year. The research activities were centered on experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The experimental nuclear physics program is dominated by heavy ion research. A major part of this effort is the responsibility for operating the Holifield Heavy Ion Research Facility as a national user facility. A major new activity described is the preparation for participation in an ultrarelativistic heavy ion experiment to be performed at CERN in 1986. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. Theory efforts associated with the UNISOR program are described, as well as smaller programs in applications and high-energy physics

  15. Progress report 1982-1983. Department of Physics

    International Nuclear Information System (INIS)

    1984-01-01

    Research and development activities of the Physics Department during the period 1982-1983 are described in the following fields: TANDAR (heavy ions accelerator, laboratories, nuclear facilities); nuclear physics (nuclear structure, nuclear reactions); solid state physics (vibrational spectroscopy, crystal structure and phase transformations, crystal growth, Mossbauer spectroscopy, theoretical solid state physics, geological applications); solar energy. Finally a list of publications and papers presented at meetings and conferences is included. (M.E.L.) [es

  16. Progress report 1982-1983. Department of Physics

    International Nuclear Information System (INIS)

    1984-01-01

    Research and development activities of the Physics Department during the period 1982-1983 are described in the following fields: TANDAR (heavy ions accelerator, laboratories, nuclear facilities); Nuclear Physics (nuclear structure, nuclear reactions); Solid State Physics (vibrational spectroscopy, crystal structure and phase transformations, crystal growth, Mossbauer spectroscopy, theoretical solid state physics, geological applications); Solar Energy. Finally a list of publications and papers presented at meetings and conferences is included. (M.E.L.) [es

  17. CP and B Physics: Progress and prospects

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1997-06-01

    This summary of the 2nd International Conference on B Physics and CP Violation (Honolulu, 24--27 March, 1997) contains, in addition to what is implied in the title, some extended remarks on the limitations of theory as well as speculations regarding nonperturbative enhancement of decay modes of the class b → s+ charmless hadrons

  18. Progress report April 1, to June 30, 1956. Physics Division

    International Nuclear Information System (INIS)

    1956-01-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from April 1, to June 30, 1956. It describes the research in nuclear physics, general physics; theoretical physics and electronics. The research areas covered in this report include nuclear reactions, nuclear decay, neutron capture gamma ray spectra, NRX production of plutonium and its higher isotopes, slow neutron spectrometry, neutron diffraction, gamma ray crystal spectrometry, theory of binary fission and analysis of neutron scattering data.

  19. Progress report April 1, to June 30, 1956. Physics Division

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1956-07-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from April 1, to June 30, 1956. It describes the research in nuclear physics, general physics; theoretical physics and electronics. The research areas covered in this report include nuclear reactions, nuclear decay, neutron capture gamma ray spectra, NRX production of plutonium and its higher isotopes, slow neutron spectrometry, neutron diffraction, gamma ray crystal spectrometry, theory of binary fission and analysis of neutron scattering data.

  20. Progress report, October 1 to December 31, 1959. Physics Division

    International Nuclear Information System (INIS)

    1959-01-01

    This is a progress report of the Physics Division at Chalk River Nuclear Laboratories from October 1, to December 31, 1959. It describes the research in nuclear physics, general physics, theoretical physics and electronics. The research areas covered in this report include nuclear structure, the tandem accelerator, particle detector development, developments in electronics, neutron decay, beta ray spectrometer, fission studies, electronics development and neutron transport theory.

  1. Progress in medical radiation physics. Vol. 1

    International Nuclear Information System (INIS)

    Orton, C.G.

    1982-01-01

    This book is the first of a series that will provide in-depth reviews of new developments in medical radiation physics. This volume is directed toward application scientists who are involved with research in this field. Six chapters review current topics in medical radiation physics. The first chapter reviews neutron dosimetry for biomedical applications. The second chapter briefly surveys current tissue inhomogeneity corrections in proton-beam treatment planning. Chapter three deals with anthropomorphic phantom materials. It includes a useful table of recommended tissue substitutes and information on manufacturing. The fourth chapter reviews applications of computed tomography (CT) in radiotherapy treatment planning. Chapter five is a short introduction to positron imaging. The last chapter describes optical methods for radiograph storage

  2. (Medium energy particle physics): Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1985-10-01

    Investigations currently carried out by the UCLA Particle Physics Research Group can be arranged into four programs: Pion-Nucleon Scattering; Tests of Charge Symmetry and Isospin Invariance; Light Nuclei (Strong Form Factors of /sup 3/H, /sup 3/He, /sup 4/He; Detailed Balance in pd /r reversible/ /gamma//sup 3/H; Interaction Dynamics); and Search for the Rare Decay /Mu//sup +/ /yields/ e/sup +/ + /gamma/ (MEGA). The general considerations which led to the choice of physics problems investigated by our group are given in the next section. We also outline the scope of the research being done which includes over a dozen experiments. The main body of this report details the research carried out in the past year, the status of various experiments, and new projects.

  3. Evaluation of physical facilities and processing operations of major ...

    African Journals Online (AJOL)

    ... of these abattoirs were evaluated based on their presence and functional status. ... of safe and wholesome meat and meat products for human consumption. Keywords: Abattoir, Butcher, Meat, Physical facilities, Public health, Standard ...

  4. Progress report: Physics Division, 1982 April 1 - June 30

    International Nuclear Information System (INIS)

    1982-08-01

    Nuclear physics studies that took place at Chalk River Nuclear Laboratories during the second quarter of 1982 are described, as well as work in solid state and theoretical physics. The MP Tandem accelerator was shut down to prepare for the installation of a superconducting cyclotron. Computer codes developed during the period and the operation of the computer facilities are described

  5. Low-energy antiprotons physics and the FLAIR facility

    International Nuclear Information System (INIS)

    Widmann, E

    2015-01-01

    FLAIR, the Facility for low-energy antiproton and ion research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the modularized start version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR. (paper)

  6. Physics division. Progress report, January 1, 1995--December 31, 1996

    International Nuclear Information System (INIS)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations

  7. Physics division. Progress report, January 1, 1995--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R. [eds.] [comps.] [and others

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  8. Texas Experimental Tokamak, a plasma research facility: Technical progress report

    International Nuclear Information System (INIS)

    Wootton, A.J.

    1995-08-01

    In the year just past, the authors made major progress in understanding turbulence and transport in both core and edge. Development of the capability for turbulence measurements throughout the poloidal cross section and intelligent consideration of the observed asymmetries, played a critical role in this work. In their confinement studies, a limited plasma with strong, H-mode-like characteristics serendipitously appeared and received extensive study though a diverted H-mode remains elusive. In the plasma edge, they appear to be close to isolating a turbulence drive mechanism. These are major advances of benefit to the community at large, and they followed from incremental improvements in diagnostics, in the interpretation of the diagnostics, and in TEXT itself. Their general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The work here demonstrates a continuing dedication to the problems of plasma transport which continue to plague the community and are an impediment to the design of future devices. They expect to show here that they approach this problem consistently, systematically, and effectively

  9. A Regulators Systematic Approach to Physical Protection for Nuclear Facilities

    International Nuclear Information System (INIS)

    Bayer, Stephan; Doulgeris, Nicholas; Leask, Andrew

    2004-01-01

    This paper outlines the framework for a physical protection regime which needs to be incorporated into the design and construction phases of nuclear facility. The need for physical protection considerations at the outset of the design of nuclear facilities is explained. It also discusses about the consequences of malicious activity and the management of risk. Various risk and consequences evaluations are undertaken, notably using design basis threat methodology. (author)

  10. Science driving facilities for particle physics

    CERN Multimedia

    2011-01-01

    This week, CERN played host to the 10th ICFA (International Committee for Future Accelerators) seminar, which brought together some 200 scientists, government agency representatives and lab directors from around the world to take the pulse of our field. ICFA seminars take place every three years, and this time the emphasis was on science as the driving force for facilities.   The theme of this year’s seminar could not have been more timely. With austerity the global norm, it is more important than ever for science to point the way to the facilities we need, and for the global community to ensure that those facilities are planned at the global level. The LHC is already a machine for the world, and although CERN’s Member States have carried the bulk of the cost, it would not have been possible without contributions from around the globe. In the US, Fermilab’s focus has moved away from the high-energy frontier to the intensity frontier, which is every bit as impor...

  11. Physics Division annual progress report, January 1-December 31, 1983

    International Nuclear Information System (INIS)

    Trela, W.J.

    1984-12-01

    The Physics Division is organized into three major research areas: Weapons Physics, Inertial Fusion Physics, and Basic Research. In Weapons Physics, new strategic defensive research initiatives were developed in response to President Reagan's speech in May 1983. Significant advances have been made in high-speed diagnostics including electro-optic technique, fiber-optic systems, and imaging. In Inertial Fusion, the 40-kJ Antares CO 2 laser facility was completed, and the 1- by 1- by 2-m-long large-aperture module amplifier (LAM) was constructed and operated. In Basic Research, our main emphasis was on development of the Weapons Neutron Research (WNR) facility as a world-class pulsed neutron research facility

  12. Applied Physics Division 1998 Progress Report

    International Nuclear Information System (INIS)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M.

    2001-01-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program

  13. Applied Physics Division 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Cecchini, M.; Crescentini, L; Ghezzi, L.; Kent, C.; Bottomei, M. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Applied physics Division

    1999-07-01

    This report outlines the 1998 research activities carried out by the Applied Physics Division of the Innovation Department of ENEA (Italian Agency for New Technologies, Energy and Environment). The fields addressed and discussed include: optical and electro-optical technologies (chaps. 1 and 2); accelerator technologies (chap. 3); diagnostic systems for science and engineering (chaps. 4 and 5); theory, modelling and computational methods (chaps. 6 and 7). The aim of the Applied Physics Division is to develop technologies and systems that can be directly applied by internal (ENEA) and external users in research (high-resolution spectroscopy, laser-generated soft-x-ray sources), production processes (laser material photoproduction, structural analysis), social, cultural and environmental sciences (laser remote sensing, modelling of ecosystems and population dynamics) and medicine (particle accelerator for radiotherapy). Most of the work in 1998 was performed by the division's laboratories at the Frascati, Casaccia and Bologna Research Centres of ENEA; some was done elsewhere in collaboration with other ENEA units, external laboratories and industries. A good share of the activities was carried out for international projects; in particular, the IV European Union Framework Program.

  14. Physics Division progress report for period ending September 30, 1990

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1991-03-01

    The activities of this Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The Holifield Heavy Ion Research Facility and its operation as a national user facility continued as the single largest activity within the Division. The experimental nuclear physics program continues to emphasize heavy ion studies, with much of the activity centered at the Holifield Facility. The work with heavy ions at ultrarelativistic energies continues at the CERN SPS. Studies at the Brookhaven AGS, particularly in preparation of future experiments at RHIC, have seen an increased emphasis. A major consortium has been formed to propose the design and construction of a dimuon detector as the basis for one the principal experiments for RHIC. Also included are results from the increasing effort in particle physics, including participation in the L* proposal for the SSC. The UNISOR program, since its inception, has been associated intimately with the Division and, most particularly, with the Holifield Facility. A major area of experimental research for the Division is atomic physics. This activity comprises two groups: one on accelerator-based atomic physics, centered primarily at the EN-tandem and the Holifield Facility, but extending this year to an experiment at ultrarelativistic energies at the CERN SPS; and one on atomic physics in support of fusion energy, based primarily at the ECR ion source facility. Included in this section is also a description of a new effort in multicharged ion-surface interactions, and details of a planned upgrade of the ECR source

  15. Physics Division progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1991-03-01

    The activities of this Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The Holifield Heavy Ion Research Facility and its operation as a national user facility continued as the single largest activity within the Division. The experimental nuclear physics program continues to emphasize heavy ion studies, with much of the activity centered at the Holifield Facility. The work with heavy ions at ultrarelativistic energies continues at the CERN SPS. Studies at the Brookhaven AGS, particularly in preparation of future experiments at RHIC, have seen an increased emphasis. A major consortium has been formed to propose the design and construction of a dimuon detector as the basis for one the principal experiments for RHIC. Also included are results from the increasing effort in particle physics, including participation in the L* proposal for the SSC. The UNISOR program, since its inception, has been associated intimately with the Division and, most particularly, with the Holifield Facility. A major area of experimental research for the Division is atomic physics. This activity comprises two groups: one on accelerator-based atomic physics, centered primarily at the EN-tandem and the Holifield Facility, but extending this year to an experiment at ultrarelativistic energies at the CERN SPS; and one on atomic physics in support of fusion energy, based primarily at the ECR ion source facility. Included in this section is also a description of a new effort in multicharged ion-surface interactions, and details of a planned upgrade of the ECR source.

  16. Progress report: Physics Division, 1982 January 1 to March 1

    International Nuclear Information System (INIS)

    1982-05-01

    The work of the Physics Division at Chalk River Nuclear Laboratories during the quarter is presented. Areas of interest include nuclear physics, neutron sources, the development of a superconducting cyclotron, high current proton accelerators and electron accelerators, diffraction studies and other solid state physics work in organic and inorganic substances, and computer codes. The operation of the MP tandem accelerator and the computer facilities is reviewed

  17. Plasma physics group progress report for 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Progress is reported on the continuing experimental programme on the Lt-3 tokamak, the completion of the new LT-4 tokamak and newly developed diagnostic techniques. Experimental work on LT-3 was generally aimed at invest-igating aspects of the disruptive instability. Magnetic probe measurements were made to obtain radial profiles of the toroidal electric field and an electrostatic probe was used to identify high frequency fluctuations in the plasma at the time of the disruption. Further measurements were also made of local variations in the poloidal magnetic field due to the development of tearing MHD modes. Some preliminary work was done in an investigation of the development of the plasma current profile as operating parameters were varied. During the initial operation of LT-4 (I) diagnostics were limited to standard electrical measurements, spectroscopic and magnetic field observations. Thomson scattering measurements are included in the longer term programme and a ruby laser system has been ordered. New diagnostic techniques used with LT-3 include a variation of the swept Langmuir probe and a method for abelisation of spectroscopic observations in toroidal geometry. (J.R.)

  18. Study of physical resistance of the disposal facility for accidental artificial event in LLW disposal facility

    International Nuclear Information System (INIS)

    Ogawa, Suihei; Irie, Masaaki; Uchida, Masahiro

    2013-11-01

    This report refer to results of examine what follows for structural stability evaluation for the LLW disposal facility in depth over general human activity in underground. Study of physically resistance on the facility for accidental artificial event, namely tunneling an operation facing the disposal facility in future. Physically resistance to excavation of tunneling etc. in disposal facility is studied based on supposing of Tunnel Boring Machine as an excavator, paying attention to reinforcement bar in concrete and steel plate of waste package, as feature of strength in these material differs from rock strength. And it is examined not only resistibility on excavation but also about hard situations of excavation in tunneling works, and namely give thorough consideration to critical quantity of cutting to reinforcement bar and steel plate that could keep resistibility on excavation based on tunneling velocity and limits time furthermore. It requests necessity of evaluation in consider with metal corrosion that status alteration on disposal facility is considered with on timescale. Period of keep on the physically resistance is estimated by velocity of metal corrosion consequently. The physically resistance is kept until metal corrosion reach remaining its material, giving a limits of the physically resistance on inside of facility. Main point of physically resistance in the report will be made the good use of a practice to physically resistance evaluation of in safety assessment. (author)

  19. Nuclear Physics Laboratory technical progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This contract supports broadly based experimental work in intermediate energy nuclear physics. The program includes pion- nucleon studies at TRIUMF and LAMPF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/NTOF. The first results of spin-transfer observables in the isovector (rvec p,rvec n) reaction are included in this report. Our data confirm the tentative result from (rvec p,rvec p) reactions that the nuclear isovector spin response shows neither longitudinal enhancement nor transverse quenching. Our program in quasifree scattering of high energy pions shows solid evidence of isoscalar enhancement of the nuclear nonspin response. We include several comparisons of the quasifree scattering of different probes. Results from our efforts in the design of accelerator RF cavities are also included in this report

  20. Physics Detector Simulation Facility (PDSF) architecture/utilization

    International Nuclear Information System (INIS)

    Scipioni, B.

    1993-05-01

    The current systems architecture for the SSCL's Physics Detector Simulation Facility (PDSF) is presented. Systems analysis data is presented and discussed. In particular, these data disclose the effectiveness of utilization of the facility for meeting the needs of physics computing, especially as concerns parallel architecture and processing. Detailed design plans for the highly networked, symmetric, parallel, UNIX workstation-based facility are given and discussed in light of the design philosophy. Included are network, CPU, disk, router, concentrator, tape, user and job capacities and throughput

  1. Progress and future directions for remediation of Hanford facilities and contaminated sites

    International Nuclear Information System (INIS)

    McClain, L.K.; Nemec, J.F.

    1996-01-01

    A great deal of physical progress is being made in the Hanford Environmental Restoration (ER) Project, which is responsible for the portion of work at Hanford that deals with contaminated soil and groundwater, and with inactive nuclear facilities. This work accounts for 10 to 15 percent of the Hanford site budget. (Other US Department of Energy [DOE] programs and contractors are responsible for the high-level liquid waste in underground storage tanks and the spent nuclear fuel). The project open-quotes closed the circleclose quotes on environmental restoration at Hanford this summer when the Environmental Restoration Disposal Facility (ERDF) went into operation and began receiving wastes being excavated from contaminated areas in Hanford's open-quotes 100 Areaclose quotes along the Columbia River. With this milestone event, environmental restoration at Hanford now has a clear path forward: (1) Waste areas along the Columbia River have been identified, volume estimates are being refined, and excavation has started. (2) The million-cubic-yard capacity ERDF is receiving waste from excavation in the 100 Area. (3) Deactivation of the N Reactor will be completed within a year. (4) Numerous other facilities in the 100 Area are being decommissioned, eliminating hazards and reducing the costs of surveillance and maintenance (S ampersand M). (5) A demonstration of long-term protective storage for one of the reactor blocks is in progress. (6) A comprehensive groundwater treatment strategy is in place. This paper describes the Hanford ER project, the progress being made, and the management techniques that are making the project successful

  2. Progress towards ignition on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Landen, O. L.; Moses, E. I.; Springer, P. T.; Benedetti, R.; Bernstein, L.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Dewald, E. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

    2013-07-15

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

  3. The 1989 progress report: Physics of the condensed matter

    International Nuclear Information System (INIS)

    Sapoval, B.

    1989-01-01

    The 1989 progress report of the laboratory of Condensed Matter Physics of the Polytechnic School (France) is presented. The laboratory research fields are the physics of semiconductors and the physics of disordered states. The 1989 main results were the determination of the fractal dimension of silicon aerogels by means of nuclear magnetic resonance and the observation of local vibrations of a fractal drum. The published papers, the conferences and Laboratory staff are listed [fr

  4. Progress report [of] Technical Physics Division

    International Nuclear Information System (INIS)

    Vijendran, P.; Deshpande, R.Y.

    1975-01-01

    Activities of the Technical Physics Division of the Bhabha Atomic Research Centre, Bombay, over the last few years are reported. This division is engaged in developing various technologies supporting the development of nuclear technology. The various fields in which development is actively being carried out are : (i) vacuum technology, (ii) mass spectrometry, (iii) crystal technology, (iv) cryogenics, and (v) magnet technology. For surface studies, the field emission microscope and the Auger electron spectrometer and other types of spectrometers have been devised and perfected. Electromagnets of requisite strength to be used in MHD programme and NMR instruments are being fabricated. Various crystals such as NaI(Tl), Ge, Fluorides, etc. required as windows and prisms in X and gamma-ray spectroscopy, have been grown. In the cryogenics field, expansion engines required for air liquefaction plants, vacuum insulated dewars, helium gas thermometers etc. have been constructed. In addition to the above, the Division provides consultancy and training to personnel from various institutions and laboratories. Equipment and systems perfected are transferred to commercial organizations for regular production. (A.K.)

  5. Physics Division progress report for period ending September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.B. (ed.)

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes.

  6. Physics Division progress report for period ending September 30, 1984

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1985-01-01

    The research activities of the Division are centered primarily in three areas: experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. The largest of these efforts, experimental nuclear physics, is dominated by the heavy ion research program. A major responsibility under this program is the operation of the Holifield Heavy Ion Research Facility as a national user facility. During the period of this report, the facility has begun routine operation for the experimental program. The experimental atomic physics program has two components: the accelerator-based studies of basic collisional phenomena and the studies in support of the controlled fusion program. Also associated with the fusion-related studies are a plasma diagnostics program and the operation of an atomic physics data center. The theoretical physics program, both nuclear and atomic, is covered. This program has benefited this year from the success of the VAX-AP computer system and from the increase in manpower provided by the ORNL/University of Tennessee Distinguished Scientist Program. Smaller programs in applications and high-energy physics are summarized. During the period of this report, we continued to explore possible future extensions of the Holifield Facility. We retain a strong interest in a relativistic heavy-ion collider in the 10 x 10 GeV/nuclear energy range. The ideas for such a facility, described in last year's report, have been modified to utilize the HHIRF 25 MV tandem accelerator as the first stage. Finally, the report concludes with some general information on publications, Division activities, and personnel changes

  7. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-08-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  8. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers [es

  9. The Physical Protection of Nuclear Material and Nuclear Facilities

    International Nuclear Information System (INIS)

    1999-06-01

    Physical protection against the theft or unauthorized diversion of nuclear materials and against the sabotage of nuclear facilities by individuals or groups has long been a matter of national and international concern. Although responsibility for establishing and operating a comprehensive physical protection system for nuclear materials and facilities within a State rests entirely with the Government of that State, it is not a matter of indifference to other States whether and to what extent that responsibility is fulfilled. Physical protection has therefore become a matter of international concern and co-operation. The need for international co-operation becomes evident in situations where the effectiveness of physical protection in one State depends on the taking by other States also of adequate measures to deter or defeat hostile actions against nuclear facilities and nuclear materials, particularly when such materials are transported across national frontiers

  10. Computerized health physics record system at a Canadian fabrication facility

    International Nuclear Information System (INIS)

    Thind, K.S.

    1984-01-01

    This poster session will describe the types of Health Physics data input into a Hewlett-Packard 3000 computer. The Health Physics data base at this facility includes the following: employee hours data, airborne uranium concentrations, external dosemetry (badge readings), internal dosemetry (bioassay) and environmental health physics (stack sample results) data. It will describe the types of outputs achievable in the form of various reports, such as: individual employee health physics report for a given period, a general health physics summary report for a given period, individual urinalysis report, local air concentration report and graphs. The use of this computerized health physics record system in the overall radiation protection program at this facility is discussed

  11. Progress report of the Nuclear Physics Department (1.10.1983 - 30.9.1984)

    International Nuclear Information System (INIS)

    1985-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1983 to September 20, 1984. These studies concern the structure of nuclei and the nuclear reaction mechanisms. The experiments have been carried at the 9 MV tandem Van de Graaff, the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the secondary beams at CERN [fr

  12. Progress report of the Nuclear Physics Department (1.10.1982 - 30.9.1983)

    International Nuclear Information System (INIS)

    1984-04-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1982 to September 30, 1983. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 9 MV tandem Van de Graaff, with the 700 MeV electron linac, at the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble and the secondary beams at CERN [fr

  13. Physical security technologies for weapons complex reconfiguration facilities

    International Nuclear Information System (INIS)

    Jaeger, C.D.

    1994-01-01

    Sandia National Laboratories was a member of the Weapons Complex Reconfiguration (WCR) Safeguards and Security (S ampersand S) team providing assistance to the Department of Energy's (DOE) Office of Weapons Complex Reconfiguration. The physical security systems in the new and upgraded facilities being considered for the WCR had to meet DOE orders and other requirements set forth in the WCR Programmatic Design Criteria (PDC), incorporate the latest physical security technologies using proven state-of-the-art systems and meet fundamental security principles. The outcome was to avoid costly retrofits and provide effective and comprehensive protection against current and projected threats with minimal impact on operations, costs and schedule. Physical security requirements for WCR facilities include: (1) reducing S ampersand S life-cycle costs, (2) where feasible automating S ampersand S functions to minimize operational costs, access to critical assets and exposure of people to hazardous environments, (3) increasing the amount of delay to outsider adversary attack, (4) compartmentalizing the facility to minimize the number of personnel requiring access to critical areas and (5) having reliable and maintainable systems. To be most effective against threats physical security must be integrated with facility operations, safety and other S ampersand S activities, such as material control and accountability, nuclear measurements and computer and information security. This paper will discuss the S ampersand S issues, requirements, technology opportunities and needs. Physical security technologies and systems considered in the design effort of the Weapons Complex Reconfiguration facilities will be reviewed

  14. Physics and detector simulation facility Type O workstation specifications

    International Nuclear Information System (INIS)

    Chartrand, G.; Cormell, L.R.; Hahn, R.; Jacobson, D.; Johnstad, H.; Leibold, P.; Marquez, M.; Ramsey, B.; Roberts, L.; Scipioni, B.; Yost, G.P.

    1990-11-01

    This document specifies the requirements for the front-end network of workstations of a distributed computing facility. This facility will be needed to perform the physics and detector simulations for the design of Superconducting Super Collider (SSC) detectors, and other computations in support of physics and detector needs. A detailed description of the computer simulation facility is given in the overall system specification document. This document provides revised subsystem specifications for the network of monitor-less Type 0 workstations. The requirements specified in this document supersede the requirements given. In Section 2 a brief functional description of the facility and its use are provided. The list of detailed specifications (vendor requirements) is given in Section 3 and the qualifying requirements (benchmarks) are described in Section 4

  15. Physics Division progress report, January 1, 1990--December 31, 1990

    International Nuclear Information System (INIS)

    Shera, E.B.; Hollen, G.Y.

    1991-07-01

    This report provides selected accounts of significant progress in research and development achieved by Physics Division personnel during the period January 1, 1990, through December 31, 1990. It also provides a general description of the goals and interests of the Division, very brief descriptions of projects in the Division, and a list of publications produced during this period. The report represents the three main areas of experimental research and development in which the Physics Division serves the needs of Los Alamos National Laboratory and the nation in defense and basic sciences: (1) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics; (2) laser physics and applications, especially to high-density plasmas; and (3) defense physics, including the development of diagnostic methods for weapons tests, weapons-related high energy-density physics, and programs supporting the Strategic Defense Initiative

  16. Physics Division progress report, October 1, 1986--September 30, 1987

    International Nuclear Information System (INIS)

    Shera, E.B.; Sowerwine, H.

    1989-05-01

    This report provides brief accounts of significant progress in development activities and research results achieved by Physics Division personnel during the period October 1, 1986 through September 30, 1987. These efforts are representative of the three main areas of experimental research and development in which the Physics Division serves Los Alamos National Laboratory's and the nation's needs in defense and basic sciences: defense physics, including the development of diagnostic methods for weapons tests, weapon-related high-energy-density physics, and programs supporting the Strategic Defense Initiative; laser physics and applications, especially to high-density plasmas; and fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics. Throughout the report, emphasis is placed on the design, construction, and application of a variety of advanced, often unique, instruments and instrument systems that maintain the Division's position at the leading edge of research and development in the specific fields germane to its mission

  17. Physics Division progress report, January 1, 1991--December 31, 1991

    International Nuclear Information System (INIS)

    Shera, E.B.; Hollen, G.Y.

    1992-06-01

    This report provides selected accounts of significant progress in research and development achieved by Physics Division personnel during the period January 1, 1991, through December 31, 1991. It also provides a general description of the goals and interests of the Division, very brief descriptions of projects in the Division, and a list of publications produced during this period. The report represents the three main areas of experimental research and development in which the Physics Division serves the needs of Los Alamos National Laboratory and the nation in defense and basic sciences: (1) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics; (2) laser physics and applications, especially to high-density plasmas; (3) defense physics, including the development of diagnostic methods for weapons tests, weapons-related high energy-density physics, and other programs

  18. Physical protection of facilities and special nuclear materials in france

    International Nuclear Information System (INIS)

    Jeanpierre, G.

    1980-01-01

    Physical protection of nuclear facilities and special nuclear materials is subject in France to a national governmental regulation which provides for the basic principles to be taken into account and the minimal level of protection deemed necessary. But the responsibility of implementation is left to the facility management and the resulting decentralization allows for maximum efficiency. All safeguards measures comply with the commitments taken at the international level by the French government

  19. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve ''control loops'' between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  20. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely-activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve (control loops) between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  1. Progress report, Physics and Health Sciences: Physics Section

    International Nuclear Information System (INIS)

    1990-01-01

    This report reviews the research and operational activities of the TASCC Division, the Physics Division, and the Fusion Office of Atomic Energy of Canada Ltd. TASCC, the 8π spectrometer, the on-line isotope separator, and the large scattering chamber completed their first year of operation with results including the discovery of the first nucleus, 153 Dy, to exhibit more than one superdeformed band. DUALSPEC, the double neutron spectrometer at the NRU reactor, should be commissioned in 1990. Investigations were carried out into the cold fusion phenomenon with negative results. Studies on food irradiation showed that the induced radioactivity is less than 0.25 percent of that already present. Substantial funding commitments have been made to the Sudbury Neutrino Observatory. Theoretical work on multiple scattering of heavy ions appears to be expandable to relativistic energies. Canadian contributions to the NET project have been endorsed and continue to grow

  2. Recent progress on the National Ignition Facility advanced radiographic capability

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P.; Bowers, M.; Chen, H.; Heebner, J.; Hermann, M.; Kalantar, D.; Martinez, D.

    2016-01-08

    The National Ignition Facility (NIF) is a megajoule (million-joule)-class laser and experimental facility built for Stockpile Stewardship and High Energy Density (HED) science research [1]. Up to several times a day, 192 laser pulses from NIF's 192 laser beamlines converge on a millimeter-scale target located at the center of the facility's 10-meter diameter target chamber. The carefully synchronized pulses, typically a few nanoseconds (billionths of a second) in duration and co-times to better than 20 picoseconds (trillionths of a second), a deliver a combined energy of up to 1.8 megajoules and a peak power of 500 terawatts (trillion watts). Furthermore, this drives temperatures inside the target to tens of millions of degrees and pressures to many billion times greater than Earth's atmosphere.

  3. Theoretical aspects of electroweak and other interactions in medium energy nuclear physics. Interim progress report

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1994-01-01

    Significant progress has been made in the current project year in the development of chiral soliton model and its applications to the electroweak structure of the nucleon and the Delta (1232) resonance. Further progress also has been made in the application of the perturbative QCD (pQCD) and the study of physics beyond the standard model. The postdoctoral associate and the graduate student working towards his Ph.D. degree have both made good progress. The review panel of the DOE has rated this program as a ''strong, high priority'' one. A total of fifteen research communications -- eight journal papers and, conference reports and seven other communications -- have been made during the project year so far. The principal investigator is a member of the Physics Advisory Committee of two nuclear accelerator facilities

  4. Work in Progress : Learner-Centered Online Learning Facility

    NARCIS (Netherlands)

    Pantic, M.; Zwitserloot, R.; De Weerdt, M.M.

    2006-01-01

    This paper describes a novel, learner-centered technology for authoring web lectures. Besides seamless integration of video and audio feeds, Microsoft PowerPoint slides, and web-pages, the proposed Online Learning Facility (OLF) also facilitates online interactive testing and review of covered

  5. Progress report. Physics and Health sciences, Physics Section (1988 January 01-June 30)

    International Nuclear Information System (INIS)

    1988-08-01

    A report on the progress made in the Physics and Health Sciences Physics Section between January 01 and June 30 1988 was compiled. This document contains an overview of operations and research carried out by the nuclear physics branch, the TASCC operations branch, and the cyclotron group. In addition, a general discussion of the tandem and cyclotron operations for this period was presented

  6. Institute for Radiation Research and Nuclear Physics. Progress report 1990

    International Nuclear Information System (INIS)

    Strohmaier, B.

    1990-01-01

    In this progress report all of the abstracts - except two - are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) radionuclide metrology (5) applications of nuclear methods and (6) nuclear information processing. (botek)

  7. Progress report, Physics Division, July 1 to September 30, 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Progress in the Physics Division, Chalk River Nuclear Laboratories, is reported for the period July 1 to September 30, 1976. Operation of the MP Tandem accelerator is described. Design highlights are provided for a proposed superconcucting cyclotron. Elastic and inelastic scattering experiments, many conducted in cooperation with other laboratories, are summarized. Activities of the Chalk River computation centre are also described. (O.T.)

  8. Progress report, Physics Division, October 1 to December 31, 1976

    International Nuclear Information System (INIS)

    1977-02-01

    A summary is given of the CRNL MP Tandem operation, research activities covering the range of nuclear and solid state physics, progress in CdTe detector technology, and mathematics and computation applied to the overall CRNL research program. (E.C.B.)

  9. Institute for Radiation Research and Nuclear Physics. Progress report 1990

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, B [comp.

    1991-12-31

    In this progress report all of the abstracts - except two - are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) radionuclide metrology (5) applications of nuclear methods and (6) nuclear information processing. (botek).

  10. Institute for Radiation Research and Nuclear Physics. Progress report 1991

    International Nuclear Information System (INIS)

    Strohmaier, B.

    1991-01-01

    In this progress report all of the abstracts are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) applications of nuclear methods and (5) environmental investigations. (botek)

  11. Institute for Radiation Research and Nuclear Physics. Progress report 1991

    Energy Technology Data Exchange (ETDEWEB)

    Strohmaier, B [comp.

    1992-12-31

    In this progress report all of the abstracts are of INIS interest. The topics of the branch sessions are (1) theoretical particle physics (2) nuclear reactions (3) evaluation of nuclear data (4) applications of nuclear methods and (5) environmental investigations. (botek).

  12. Federal Facility Agreement Annual Progress Report for FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.

    1999-08-04

    This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement.

  13. Federal Facility Agreement Annual Progress Report for Fiscal Year 1998

    International Nuclear Information System (INIS)

    Palmer, E.

    1999-01-01

    This FFA Annual Progress Report has been developed to summarize the information for activities performed during the Fiscal Year 1998 (October 1, 1997, to September 30, 1998) and activities planned for Fiscal Year 1999 by U.S. EPA, SCDHEC, and SRS at those units and areas identified for remediation in the Agreement

  14. Theoretical Physics Division progress report October 1978 -September 1979

    International Nuclear Information System (INIS)

    1980-03-01

    A progress report of the Theoretical Physics Division of the Atomic Energy Research Establishment, Harwell for the year October 1978 to September 1979 is presented. The sections include: (1) Nuclear, atomic and molecular physics (nuclear theory, atomic theory, nuclear power applications). (2) Theory of fluids (statistical mechanics, mathematical physics, computational fluid mechanics). (3) Radiation damage and theoretical metallurgy. (4) Theory of solid state materials (point defects and point-defect determined processes, surface studies, non-destructive examination). A bibliography is given of reports and publications written by the division during the period. (UK)

  15. Data bank for nuclear-physical studies in educational facilities

    International Nuclear Information System (INIS)

    Boboshin, I.N.; Varlamov, V.V.; Ishkhanov, B.S.; Kapitonov, I.M.; Lenskaya, N.A.; Surgutanov, V.V.; Khoronenko, A.A.; Chernyaev, A.P.

    1986-01-01

    Purposes and tasks of nuclear data Centers of the USSR Ministry of Education are discussed in short. Files of both bibliographic and factographic nuclear-physical data widely used with the Centres to provide the state organizations and scientists, first of all educational facilities, with nuclear data to increase effectiveness of fundamental and applied investigations and educational process are described

  16. Physics at high luminosity muon colliders and a facility overview

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    Physics potentials at future colliders including high luminosity μ + μ - colliders are discussed. Luminosity requirement, estimates for Muon collider energies of interest (0.1 TeV to 100 TeV) are calculated. Schematics and an overview of Muon Collider facility concept are also included

  17. Centralization and Decentralization of Schools' Physical Facilities Management in Nigeria

    Science.gov (United States)

    Ikoya, Peter O.

    2008-01-01

    Purpose: This research aims to examine the difference in the availability, adequacy and functionality of physical facilities in centralized and decentralized schools districts, with a view to making appropriate recommendations to stakeholders on the reform programmes in the Nigerian education sector. Design/methodology/approach: Principals,…

  18. Progress in developing the concept for the irradiation research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Bishop, W.E.; Gillespie, G.E.; Zeng, Y.

    1996-04-01

    At the 16th annual Canadian Nuclear Society conference, AECL presented the case for replacing the NRU reactor with an Irradiation Research Facility (IRF) to test CANDU fuels and materials and to perform advanced materials research using neutrons. AECL developed a cost estimate of $500 million for the reference IRF concept, and estimated that it would require 87 months to complete. AECL has initiated a pre-project program to develop the IRF concept and to minimize uncertainties related to feasibility and licensability, and to examine options for reducing the overall project cost before project implementation begins. (author) 10 refs., 2 figs

  19. Summary of the progress of reactor physics in Japan reviewing the activities related to NEA Committee on Reactor Physics

    International Nuclear Information System (INIS)

    Hirota, Jitsuya

    1984-09-01

    The progress of fast and thermal reactor physics, fusion neutronics and shielding researches in these twenty years can be clearly recognized in the reviews of reactor physics activities in Japan which had been perpared by the Special Committee on Reactor Physics: the joint committee under Atomic Energy Society of Japan and JAERI. Many topics of those discussed at the NEACRP meetings concerned fast reactor physics. Information exchange on the topics such as adjustment of group cross sections by integral data, central worth discrepancy, sodium void effect and heterogeneous core stimulated the researches in Japan. And achievements in Japan including those in the JAERI Fast Critical Facility FCA were reported and contributed largely to the international co-operation. In addition, the contribution from Japan was also made concerning a study of fusion blanket. Among various specialists' meetings recommended by NEACRP, those on nuclear data and benchmarks for reactor shielding were often held since 1973 and helpful to the progress of shielding researches in Japan. The Third Specialists' Meeting on Reactor Noise (SMORN-III) was held in Tokyo in 1981, indicating the recent progress in safety-related applications of reactor noise analysis. The NEACRP benchmark tests were quite useful to the progress of reactor physics in Japan, which included the benchmark calculations of BWR lattice cell, key parameters and burn-up characteristics of a large LMFBR, FBR and PWR shielding, and so on. It may be noted that the benchmark test on reactor noise analysis methods was successfully conducted by Japan in connection with SMORN-III. In addition, the co-operation was positively made to the compilation of light water lattice data, and the preparation of reviews on actinide production and burn-up, and blanket physics. (J.P.N.)

  20. Progress report of the innovated KIST ion beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joonkon; Eliades, John A.; Yu, Byung-Yong; Lim, Weon Cheol; Chae, Keun Hwa; Song, Jonghan, E-mail: jonghansong@gmail.com

    2017-01-15

    The Korea Institute of Science and Technology (KIST, Seoul, Republic of (S.) Korea) ion beam facility consists of three electrostatic accelerators: a 400 kV single ended ion implanter, a 2 MV tandem accelerator system and a 6 MV tandem accelerator system. The 400 kV and 6 MV systems were purchased from High Voltage Engineering Europa (HVEE, Netherlands) and commissioned in 2013, while the 2 MV system was purchased from National Electrostatics Corporation (NEC, USA) in 1995. These systems are used to provide traditional ion beam analysis (IBA), isotope ratio analysis (ex. accelerator mass spectrometry, AMS), and ion implantation/irradiation for domestic industrial and academic users. The main facility is the 6 MV HVEE Tandetron system that has an AMS line currently used for {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36} Cl, {sup 41}Ca and {sup 129}I analyses, and three lines for IBA that are under construction. Here, these systems are introduced with their specifications and initial performance results.

  1. Progress in implementing the Federal Facility Compliance Act

    International Nuclear Information System (INIS)

    Bubar, P.; Stone, M.E.

    1994-01-01

    Hazardous waste and hazardous components of mixed waste require treatment prior to disposal, in accordance with the Resource Conservation and Recovery Act as amended by the Federal Facility Compliance Act. The primary driver for the United States Department of Energy's mixed waste management strategy is the Federal Facility Compliance Act. This Act requires each site generating or storing mixed waste to prepare a treatment plan addressing all mixed waste at the site, with a schedule for treatment capacity construction, and milestones for treating waste when known treatment technologies exist. As of this writing, the Department has published conceptual site treatment plans identifying the technical on-site options and options at other Department or commercial sites. It is now finalizing the Mixed Waste Inventory and Technology Report required by the Act, providing additional detail on its waste streams and treatment capabilities. Now the Department, at its sites, is in the difficult process of winnowing down treatment options in conjunction with the States, with input from the public and other interested parties. Many technical questions, policy and funding issues, and equity concerns among the States must be addressed to enable the Department to propose its preferred treatment options by August 1994

  2. Physics division. Progress report for period ending September 30, 1995

    International Nuclear Information System (INIS)

    Ball, S.J.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, 69 As and 70 As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as 17,18 F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research

  3. Physics division. Progress report for period ending September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J. [ed.

    1997-04-01

    This report covers the research and development activities of the Physics Division for the 1995 and 1996 fiscal years, beginning October 1, 1994, and ending September 30, 1996. The activities of the Division continue to be concentrated in the areas of experimental nuclear physics, experimental atomic physics, and theoretical nuclear and atomic physics. In addition, there are smaller programs in plasma diagnostics and data compilation and evaluation. During the period of this report, there has been considerable success in bringing the Holifield Radioactive Ion Beam Facility (HRIBF) into routine operation. The budgets of the nuclear physics portion of the Division have increased each year in nearly all areas, and several new members have been added to the Division research and development staff. On August 30, 1996, the HRIBF successfully accelerated its first radioactive ion beams, {sup 69}As and {sup 70}As. Prior to this, the heart of the facility, the RIB injector system, was completed, including installation of a remote handling system for the target/ion source assembly. Target and ion source development is likely to be the technical key to success of the HRIBF. We have expanded our efforts in those development areas. Of special note is the development of highly permeable composite targets which have now been shown to allow release of difficult-to-produce radioactive ions such as {sup 17,18}F. A summary of the HRIBF work is provided in Chapter 1, along with supporting activities of the Joint Institute for Heavy Ion Research.

  4. International physical protection self-assessment tool for chemical facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig R.; Burdick, Brent A.; Stiles, Linda L.; Lindgren, Eric Richard

    2010-09-01

    This report is the final report for Laboratory Directed Research and Development (LDRD) Project No.130746, International Physical Protection Self-Assessment Tool for Chemical Facilities. The goal of the project was to develop an exportable, low-cost, computer-based risk assessment tool for small to medium size chemical facilities. The tool would assist facilities in improving their physical protection posture, while protecting their proprietary information. In FY2009, the project team proposed a comprehensive evaluation of safety and security regulations in the target geographical area, Southeast Asia. This approach was later modified and the team worked instead on developing a methodology for identifying potential targets at chemical facilities. Milestones proposed for FY2010 included characterizing the international/regional regulatory framework, finalizing the target identification and consequence analysis methodology, and developing, reviewing, and piloting the software tool. The project team accomplished the initial goal of developing potential target categories for chemical facilities; however, the additional milestones proposed for FY2010 were not pursued and the LDRD funding therefore was redirected.

  5. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  6. Physical Activity Prevents Progression for Cognitive Impairment and Vascular Dementia

    DEFF Research Database (Denmark)

    Verdelho, Ana; Madureira, Sofia; Ferro, José M

    2012-01-01

    BACKGROUND AND PURPOSE: We aimed to study if physical activity could interfere with progression for cognitive impairment and dementia in older people with white matter changes living independently. METHODS: The LADIS (Leukoaraiosis and Disability) prospective multinational European study evaluates....... Physical activity was recorded during the clinical interview. MRI was performed at entry and at the end of the study. RESULTS: Six hundred thirty-nine subjects were included (74.1±5 years old, 55% women, 9.6±3.8 years of schooling, 64% physically active). At the end of follow-up, 90 patients had dementia...... (vascular dementia, 54; Alzheimer disease with vascular component, 34; frontotemporal dementia, 2), and 147 had cognitive impairment not dementia. Using Cox regression analysis, physical activity reduced the risk of cognitive impairment (dementia and not dementia: β=-0.45, P=0.002; hazard ratio, 0.64; 95...

  7. Progress in organic and physical chemistry structures and mechanisms

    CERN Document Server

    Zaikov, Gennady E; Lobanov, Anton V

    2013-01-01

    Progress in Organic and Physical Chemistry: Structures and Mechanisms provides a collection of new research in the field of organic and physical properties, including new research on: The physical principles of the conductivity of electrical conducting polymer compounds The dependence on constants of electromagnetic interactions upon electron spacial-energy characteristics Effects of chitosan molecultural weight on rehological behavior of chitosan modified nanoclay at hight hydrated state Bio-structural energy criteria of functional states in normal and pathological conditions Potentiometric study on the international between devalent cations and sodium carboxylates in aqueous solutions Structural characteristic changes in erythrocyte membranes of mice bearing Alzheimer's-like disease caused by the olfactory bulbetomy This volume is intended to provide an overview of new studies and research for engineers, faculty, researchers, and upper-level students in the field of organic and physical chemistry.

  8. Physics Detector Simulation Facility Phase II system software description

    International Nuclear Information System (INIS)

    Scipioni, B.; Allen, J.; Chang, C.; Huang, J.; Liu, J.; Mestad, S.; Pan, J.; Marquez, M.; Estep, P.

    1993-05-01

    This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment

  9. Progress report, Physics Division, July 1 to September 30, 1975

    International Nuclear Information System (INIS)

    1975-10-01

    Progress in the Physics Division, CRNL, for the period July 1 to September 30, 1975 is reported. Operation of the MP tandem accelerator and design studies for a superconducting heavy ion cyclotron are summarized. Research on nuclear reactions and radioisotope decay is reported. Studies of neutron scattering on liquid helium and properties of ferromagnetic alloys are presented. A summary of computing centre operations is also provided. (O.T.)

  10. The 1989 progress report: High Energy Nuclear Physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1989-01-01

    The 1989 progress report of the laboratory of High-Energy Nuclear Physics, of the Polytechnic School (France) is presented. The investigations are performed in the fields of: bosons (W + , W - , Z 0 gauge and Higgs), supersymmetrical particles, new quarks and leptons, quark-gluon plasma, nucleon instability, the neutrino's mass. The 1989 most important event was the LEP start-up. New techniques for accelerating charged particles are studied. The published papers, the conferences and the Laboratory staff are listed [fr

  11. Handbook on interdisciplinary use of European nuclear physics facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This handbook is intended to collect together, in an accessible way, the most pertinent information which might be needed by anyone contemplating the use of nuclear physics accelerators for research in other disciplines, or for industrial, biomedical, solid-state or other applications. Information for the publication was supplied by each laboratory represented here, and this was edited and supplemented where it was thought necessary, by additional material, often derived from the facilities' web-sites. The reader will find for each facility a technical description concerning the accelerator itself and its experimental equipment, followed by a 'what can be made there' section. 'at a glance' page contains a summary of contact names and addresses, transport, access and accommodation offered that will be of a great use for prospective user. 26 facilities in 12 European countries (Belgium, Finland, France, Germany, Italy, Norway, Poland, Portugal, Spain, Sweden, Switzerland and The Netherlands) are presented.

  12. Handbook on interdisciplinary use of European nuclear physics facilities

    International Nuclear Information System (INIS)

    2004-01-01

    This handbook is intended to collect together, in an accessible way, the most pertinent information which might be needed by anyone contemplating the use of nuclear physics accelerators for research in other disciplines, or for industrial, biomedical, solid-state or other applications. Information for the publication was supplied by each laboratory represented here, and this was edited and supplemented where it was thought necessary, by additional material, often derived from the facilities' web-sites. The reader will find for each facility a technical description concerning the accelerator itself and its experimental equipment, followed by a 'what can be made there' section. 'at a glance' page contains a summary of contact names and addresses, transport, access and accommodation offered that will be of a great use for prospective user. 26 facilities in 12 European countries (Belgium, Finland, France, Germany, Italy, Norway, Poland, Portugal, Spain, Sweden, Switzerland and The Netherlands) are presented

  13. Security Culture in Physical Protection of Nuclear Material and Facility

    International Nuclear Information System (INIS)

    Susyanta-Widyatmaka; Koraag, Venuesiana-Dewi; Taswanda-Taryo

    2005-01-01

    In nuclear related field, there are three different cultures: safety, safeguards and security culture. Safety culture has established mostly in nuclear industries, meanwhile safeguards and security culture are relatively new and still developing. The latter is intended to improve the physical protection of material and nuclear facility. This paper describes concept, properties and factors affecting security culture and interactions among these cultures. The analysis indicates that anybody involving in nuclear material and facility should have strong commitment and awareness of such culture to establish it. It is concluded that the assessment of security culture outlined in this paper is still preliminary for developing and conduction rigorous security culture implemented in a much more complex facility such as nuclear power plant

  14. Handbook on interdisciplinary use of European nuclear physics facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This handbook is intended to collect together, in an accessible way, the most pertinent information which might be needed by anyone contemplating the use of nuclear physics accelerators for research in other disciplines, or for industrial, biomedical, solid-state or other applications. Information for the publication was supplied by each laboratory represented here, and this was edited and supplemented where it was thought necessary, by additional material, often derived from the facilities' web-sites. The reader will find for each facility a technical description concerning the accelerator itself and its experimental equipment, followed by a 'what can be made there' section. 'at a glance' page contains a summary of contact names and addresses, transport, access and accommodation offered that will be of a great use for prospective user. 26 facilities in 12 European countries (Belgium, Finland, France, Germany, Italy, Norway, Poland, Portugal, Spain, Sweden, Switzerland and The Netherlands) are presented.

  15. EDITORIAL: 'Key issues' articles in Reports on Progress in Physics

    Science.gov (United States)

    Greene, Laura H.

    2007-03-01

    The Editorial Board of Reports on Progress in Physics has commissioned a series of short articles from world leaders on key physics issues in their field. These essays may raise the key issues, or ask open questions or may even suggest wild ideas. Basically, they give world leading physicists the opportunity to write what they think about the key issues in their field, free from the usual requirement to provide the fair and balanced presentations of the subject normally found in articles in Reports on Progress in Physics. We believe that the readers of the journal will be interested to learn about these exciting ideas. Just as Hilbert's famous paper of 1900 set the agenda for the next century or more in mathematics, so we hope that this series of papers will define the key issues and open questions in physics for the 21st Century and that the articles will be widely cited and downloaded. The first of these articles—'Insights from simulations of star formation' by Richard B Larson (Yale University, USA)—is published in the current issue. We trust that readers will find this article and its successors in the series to appear through 2007 and beyond entertaining and stimulating.

  16. [Safeguards for the physical protection of nuclear materials and facilities

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-01-01

    Testimony is given on the subject of safeguards for the physical protection of nuclear materials and facilities, particularly during transportation. The ERDA nation-wide safe-secure transportation system and the Safe-Secure Trailer are described. The nationwide ERDA voice communication system is also described. Development of hardware and systems is discussed. The use of adversary simulation for evaluating protection systems is mentioned

  17. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  18. Design and evaluation of physical protection systems of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    An, Jin Soo; Lee, Hyun Chul; Hwang, In Koo; Kwack, Eun Ho; Choi, Yung Myung

    2001-06-01

    Nuclear material and safety equipment of nuclear facilities are required to be protected against any kind of theft or sabotage. Physical protection is one of the measures to prevent such illegally potential threats for public security. It should cover all the cases of use, storage, and transportation of nuclear material. A physical protection system of a facility consists of exterior intrusion sensors, interior intrusion sensors, an alarm assessment and communication system, entry control systems, access delay equipment, etc. The design of an effective physical protection system requires a comprehensive approach in which the designers define the objective of the system, establish an initial design, and evaluate the proposed design. The evaluation results are used to determine whether or not the initial design should be modified and improved. Some modelling techniques are commonly used to analyse and evaluate the performance of a physical protection system. Korea Atomic Energy Research Institute(KAERI) has developed a prototype of software as a part of a full computer model for effectiveness evaluation for physical protection systems. The input data elements for the prototype, contain the type of adversary, tactics, protection equipment, and the attributes of each protection component. This report contains the functional and structural requirements defined in the development of the evaluation computer model.

  19. The ELI–NP facility for nuclear physics

    International Nuclear Information System (INIS)

    Ur, C.A.; Balabanski, D.; Cata-Danil, G.; Gales, S.; Morjan, I.; Tesileanu, O.; Ursescu, D.; Ursu, I.; Zamfir, N.V.

    2015-01-01

    Extreme Light Infrastructure–Nuclear Physics (ELI–NP) is aiming to use extreme electromagnetic fields for nuclear physics research. The facility, currently under construction at Magurele–Bucharest, will comprise a high power laser system and a very brilliant gamma beam system. The technology involved in the construction of both systems is at the limits of the present-day’s technological capabilities. The high power laser system will consist of two 10 PW lasers and it will produce intensities of up to 10 23 –10 24 W/cm 2 . The gamma beam, produced via Compton backscattering of a laser beam on a relativistic electron beam, will be characterized by a narrow bandwidth (<0.5%) and tunable energy of up to almost 20 MeV. The research program of the facility covers a broad range of key topics in frontier fundamental physics and new nuclear physics. A particular attention is given to the development of innovative applications. In the present paper an overview of the project status and the overall performance characteristics of the main research equipment will be given. The main fundamental physics and applied research topics proposed to be studied at ELI–NP will also be briefly reviewed

  20. Progress report, Physics Division, 1 October - 31 December, 1979

    International Nuclear Information System (INIS)

    1980-02-01

    Kinemetic shifts have been measured in the β-delayed α-decay of 20 Na in order to deduce β-ν angular correlations. Analysis of the data is in progress. In a significant advance in techniques to measure quadrupole moments of isomeric states, the electric field gradient experienced by 147 Gd isomers was determined in a target of single-crystal gadolinium using Coulomb excitation. Commissioning of the Alvarez accelerator for the High Current Test Facility continues. The Alvarez tank has been cleaned, reasssembled with some modifications and subjected to initial steps of rf conditioning. A successful test was made of the radiation processing facility. A current of 6 mA was accelerated to 4 MeV and allowed to pass through a 0.75 mm stainless steel window into the fast-flowing cooling water. Conversion measurements were carried out with 19-element thorium and 7- and 37-element uranium targets. Preliminary data for distributions of characteristic radioactive products have been extracted for the 7-element target. Operations of the MP Tandem Accelerator and the main site computing facility are also summarized. (OT)

  1. Physics Department. Annual progress report 1 January - 31 December 1990

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1991-01-01

    Research in the Physics Department covers the field of condensed matter physics. The principal activities of the department are presented in this Progress Report for the period from 1 January to 31 December 1990. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applie nature. In the field high T c superconductors neutron and X-ray diffraction are used both for studying the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses of the materials. (author) 9 tabs., 79 ills., 104 refs

  2. The physical protection of nuclear material and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States.

  3. The physical protection of nuclear material and nuclear facilities

    International Nuclear Information System (INIS)

    1999-06-01

    The latest review (1993) of this document was of limited scope and resulted in changes to the text of INFCIRC/225/Rev.2 designed to make the categorization table in that document consistent with the categorization table contained in the Convention on Physical Protection of Nuclear Materials. Consequently, a comprehensive review of INFCIRC/225 has not been conducted since 1989. Consequently, a meeting of national experts was convened from 2-5 June 1998 and from 27-29 October 1998 for a thorough review of INFCIRC/225/Rev.3. The revised document reflects the recommendations of the national experts to improve the structure and clarity of the document and to take account of improved technology and current international and national practices. In particular, a chapter has been added which provides specific recommendations related to sabotage of nuclear facilities and nuclear material. As a result of this addition, the title has been changed to 'The Physical Protection of Nuclear Material and Nuclear Facilities'. The recommendations presented in this IAEA document reflect a broad consensus among Member States on the requirements which should be met by systems for the physical protection of nuclear materials and facilities. It is hoped that they will provide helpful guidance for Member States

  4. Physics Department. Annual progress report 1 January - 31 December 1989

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Juul Rasmussen, J.; Lebech, B.

    1990-02-01

    Research in the Physics Department covers two main fields: condensed matter physics and plasma physics. The principal activites in these fields are presented in this Progress Report covering the period from 1 January to 31 December 1989. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applied nature. The discovery of the high Tc superconductors in 1986 has opened an important new research area, where neutron and x-ray diffraction are used to elucidate the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses used in producing the materials. The plasma physics research is partly experimental and partly theoretical. The plasma physics programme is also of a wide scope ranging from fundamental studies of wave propagation, instabilities, solitons and turbulence in plasmas to refuelling a fusion reactor by deuterium-tritium pellets. (author) 4 tabs., 66 ills., 71 refs

  5. Physics Department annual progress report 1 January - 31 December 1982

    International Nuclear Information System (INIS)

    1983-09-01

    Research in the Physics Department at Risoe National Laboratory covers three main fields: condensed matter physics, plasma physics and meteorology. The report is a progress report describing the principal activities in these fields for the period from 1 January to 31 December 1982. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons, X-rays, and synchrotron X-ray radiation. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. The plasma physics research is partly experimental and partly theoretical. A study of pellet-plasma interaction is of applied nature and aimed at assessing the possibilities of refuelling a fusion reactor by shooting deuterium-tritium pellets into the plasma. A study of the fundamental physics of plasmas deals with investigations of wave propagation properties, instabilities, solitons, turbulence, etc. The research and applied work within meteorology lies within micrometereology and the subjects range from surface energy balance studies, over studies of the general structure of atmospheric coherence and boundary layer response to change in surface elevation, to specific studies of turbulent dispersion and deposition of airborne material. As part of the applied work within meteorology and wind energy, the test station for small windmills tests and licences windmills for the Danish market and offers consulting assistance for the Danish windmill manufacturers. (Auth.)

  6. Learning to cooperate is essential for progress in physics

    Science.gov (United States)

    Dickau, Jonathan J.

    2012-06-01

    At the 10th Frontiers of Fundamental Physics symposium, Gerard't Hooft stated that, for some of the advances we hope to see in Physics during the future, there must be a great deal of cooperation between physicists from different disciplines, as well as mathematicians, programmers, technologists, and others. This requires us to evolve a new mindset; however, as so much of our past progress has come out of a fiercely competitive process - especially since a critical review of our ideas about reality remains essential to making clear progress and checking our progress. We must also address the fact that some frameworks appear incompatible, as with relativity and quantum mechanics, whose unification remains distant despite years of attempts to find a quantum gravity theory. I explore the idea that playful exploration, using both left-brained and right-brained approaches to learning, allows us to resolve conflicting ideas by taking advantage of innate human developmental and learning strategies and brain structure. It may thus foster the kind of interdisciplinary cooperation we are hoping to see.

  7. Progress in developing new commercial LLRW disposal facilities and DOE assistance

    International Nuclear Information System (INIS)

    Tait, T.D.; Hinschberger, S.T.

    1988-01-01

    This paper reports state and regional progress in developing new commercial low-level radioactive waste disposal facilities. Specifically the paper addresses DOE determination of state and regional compliance with the 1988 milestone requirements of the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). In addition, the paper summarizes the assistance provided by the Department of Energy (DOE) to the states and regions in their efforts to develop new disposal facilities as mandated in the LLRWPAA

  8. Progress report 1986. Laboratory of high energy nuclear physics

    International Nuclear Information System (INIS)

    1987-01-01

    A study of hadron structure using neutrino interactions; high energy photon interactions; a search for gluinos; a spectrometer for the study of quark fusion and structure functions; measurement of the real part of the pp - scattering amplitude at 546 GeV; measurement of photon production in the fragmentation region of pp - interactions at 630 GeV; investigation of very high energy nucleus-nucleus interactions: the quagma; an experience on nucleon stability; as well as high energy nuclear physics research facilities are described [fr

  9. Integration of radiation and physical safety in large radiator facilities

    International Nuclear Information System (INIS)

    Lima, P.P.M.; Benedito, A.M.; Lima, C.M.A.; Silva, F.C.A. da

    2017-01-01

    Growing international concern about radioactive sources after the Sept. 11, 2001 event has led to a strengthening of physical safety. There is evidence that the illicit use of radioactive sources is a real possibility and may result in harmful radiological consequences for the population and the environment. In Brazil there are about 2000 medical, industrial and research facilities with radioactive sources, of which 400 are Category 1 and 2 classified by the - International Atomic Energy Agency - AIEA, where large irradiators occupy a prominent position due to the very high cobalt-60 activities. The radiological safety is well established in these facilities, due to the intense work of the authorities in the Country. In the paper the main aspects on radiological and physical safety applied in the large radiators are presented, in order to integrate both concepts for the benefit of the safety as a whole. The research showed that the items related to radiation safety are well defined, for example, the tests on the access control devices to the irradiation room. On the other hand, items related to physical security, such as effective control of access to the company, use of safety cameras throughout the company, are not yet fully incorporated. Integration of radiation and physical safety is fundamental for total safety. The elaboration of a Brazilian regulation on the subject is of extreme importance

  10. Progress in physics basis and its impact on ITER

    International Nuclear Information System (INIS)

    Shimada, M.; Campbell, D.; Stambaugh, R.; Ide, S.; Kamada, Y.; Leonard, A.; Polevoi, A.; Mukhovatov, V.; Costley, A.E.; Gribov, Y.; Oikawa, T.; Sugihara, M.; Asakura, N.; Donne, A.J.H.; Doyle, E.J.; Federici, G.; Kukushkin, A.S.; Gormezano, C.; Gruber, O.; Houlberg, W.; Lipschultz, B.; Medvedev, S.

    2005-01-01

    This paper summarises recent progress in the physics basis and its impact on the expected performance of ITER. Significant progress has been made in many outstanding issues and in the development of hybrid and steady state operation scenarios, leading to increased confidence of achieving ITER's goals. Experiments show that tailoring the current profile can improve confinement over the standard H-mode and allow an increase in beta up to the no-wall limit at safety factors ∼ 4. Extrapolation to ITER suggests that at the reduced plasma current of ∼ 12MA, high Q > 10 and long pulse (>1000 s) operation is possible with benign ELMs. Analysis of disruption scenarios has been performed based on guidelines on current quench rates and halo currents, derived from the experimental database. With conservative assumptions, estimated electromagnetic forces on the in-vessel components are below the design target values, confirming the robustness of the ITER design against disruption forces. (author)

  11. High Energy Physics Group. Annual progress report, fiscal year 1983

    International Nuclear Information System (INIS)

    1983-01-01

    Perhaps the most significant progress during the past twelve months of the Hawaii experimental program, aside from publication of results of earlier work, has been the favorable outcome of several important proposals in which a substantial fraction of our group is involved: the Mark II detector as first-up at the SLC, and DUMAND's Stage I approval, both by DOE review panels. When added to Fermilab approval of two neutrino bubble-chamber experiments at the Tevatron, E632 and E646, the major part of the Hawaii experimental program for the next few years is now well determined. Noteworthy in the SLAC/SLC/Mark II effort is the progress made in developing silicon microstrip detectors with microchip readout. Results from the IMB(H) proton decay experiment at the Morton Salt Mine, although not detecting proton decay, set the best lower limit on the proton's lifetime. Similarly the Very High Energy Gamma Ray project is closely linked with DUMAND, at least in principle, since these gammas are expected to arise from pi-zero decay, while the neutrinos come from charged meson decay. Some signal has been seen from Cygnus X-3, and other candidates are being explored. Preparations for upgrading the Fermilab 15' Bubble Chamber have made substantial progress. Sections of the Progress Report are devoted to VAX computer system improvements, other hardware and software improvements, travel in support of physics experiments, publications and other public reports, and last analysis of data still being gleaned from experimental data taken in years past (PEP-14 and E546, E388). High energy physics theoretical research is briefly described

  12. Progress report: Physics Division, 1 July to 30 September 1981

    International Nuclear Information System (INIS)

    1981-11-01

    The work of the Physics Division during the quarter is reviewed. Nuclear physics activities included investigations of beta-delayed proton decay, lifetime measurements using the ISOL facility, radiocarbron dating experiments, studies of high spin states, and crystal blocking measurements for fission fragments from 16 O bombardment of 197 Au. Construction of the haavy ion superconducting cyclotron and development of the high current proton accelerator continued. Neutron diffraction studies were carried out on a number of compounds, low-frequency soliton modes were observed in a magnetic chain compound, vacancy formation energy in thorium metal was measured, and the size of a collision cascade initiated by a single ion passing through condensed matter was calculated. Work in applied mathematics and computation is reviewed

  13. Progress Report 1980-1981. Department of Physics

    International Nuclear Information System (INIS)

    1982-01-01

    The period covered by this report is outstanding because of the spectacular progress made in the construction of the TANDAB facility. In January 1980, the excavation work had just started; by December 1981 the column structure was standing in the interior of the 35m high pressure vessel and the injector was being readied at its definitive location 56m above ground. During 1980 there was a vigorous local drive to meet the schedule for the column installation as agreed with NEC. The main and service towers reached the top at 73m at a fast pace by using nonstop sliding forms. Previously the pressure tank had been finished and tested to a maximum 18 kg/cm 2 pressure in record time. Shortly afterwards the two spherical storage vessels for the SF 6 gas were completed. At present, most of the work is being geared to complete the gas handling system and start the high voltage tests. On the occasion of the T hird International Conference on Electrostatic Accelerator Technology , we were awarded the distinction of being selected as hosts for the next conference in 1985. We hope that our accelerator will be well ahead in the running stage by then. It is also possible that the adjacent office building originally planned will also be ready for the conference. The training program which was initiated in 1977 with the purpose of supplementing adequately the research staff needed for an efficient use of the TANDAR is near completion now. This program has involved a dozen young physicists who have finished or are finishing their theses. Most of them have had the opportunity to get experience abroad. Now that the program is almost completed we can be very satisfied with the results. In this connection we wish to acknowledge the collaboration of those groups abroad which have been willing to host the young graduates in Oxford, Muenchen, Goettingen, Heidelberg, Stony Brook, Oak Ridge, Seattle, Berkeley and Rehovot. We keep high expectations on the returns of this program which should

  14. Progress report - physical sciences TASCC division 1990 July 01 - December 31

    International Nuclear Information System (INIS)

    1991-05-01

    A completely new administrative structure of AECL Research was implemented on 1990 July 1. All of the basic physics programs, together with accelerator physics, radiation applications and most of the chemistry programs of AECL, have been placed in a new organizational unit called Physical Sciences. This unit also includes the management of the National Fusion Program. The research programs of Physical Sciences are grouped into three divisions: Chemistry, Physics and TASCC. Progress in each division will henceforth be reported on a twice-yearly basis. This report is the first of the new series to be issued by the TASCC Division. During the period covered by this report, the operation of the superconducting cyclotron has matured considerably, with over 30 accelerated ion beams more-or-less routinely available for a wide variety of nuclear physics experiments. The TASCC team, together with all the engineers, trades-people and other staff members who contributed to the design, constructed and commissioning of the Tandem Accelerator Superconducting Cyclotron facility, are to be heartily congratulated on bringing it to its present highly successful state in an unusually short period of time. In conjunction with our many outside collaborators, we are now engaged on exciting experiments in several areas of nuclear physics research, as reported in the following pages. We are well on the way to the establishment of a truly National Centre for Nuclear Physics research in Canada

  15. The 1989 progress report: Physics of the Ionized Media

    International Nuclear Information System (INIS)

    Gresillon, D.; Virmont, J.

    1989-01-01

    The 1989 progress report of the laboratory of Physics of the Ionized Media of the Polytechnic School (France) is presented. The research projects were carried out in the following fields: plasma waves localization, wave beatings, collective scattering, fluctuation and transport in magnetic fusion plasmas, the construction of ALTAIR (French acronym for local analysis of anomalous transport by infrared), sources of negative ion beams, z-pinch and laser plasma diagnostics, computer codes on plasma dynamics. The published papers, the conferences and the Laboratory staff are listed [fr

  16. Non-European facilities for elementary particle physics research

    International Nuclear Information System (INIS)

    Mann, A.K.

    1983-01-01

    The facilities we now employ in high energy physics cover a broad spectrum of particle energies and intensities and provide therefore a multiplicity of probes with which to study the behavior of elementary particles. In general, the goal has been to achieve ever higher particle energies and intensities, with emphasis on energy, and to develop more versatile and more sensitive detectors with which to study the resultant particle-particle interactions. Most energy regimes that have been explored have yielded new, fundamental information which often becomes clearer and more easily developed when particle energies are further increased. In this talk I shall try to delineate the nature of those facilities in Canada, Japan and the U.S.A. It is useful, I believe, to begin with a brief discussion of the funding and management of facilities in those countries and a short summary of recent history. The main body of the talk concentrates on the present, planned and contemplated facilities of the major non-European accelerator laboratories, and address briefly the status of accelerator development. The concluding section will summarize the salient features of the discussion. (author)

  17. Annual progress report of the Department of Solid State Physics

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1992-01-01

    Research in the department covers the field of condensed matter physics. The principal activities of the department are presented in the Progress Report covering the period from 1 January to 31 December 1991. The condensed matter physics research is predominantly experimental utilizing diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy femions, high T c superconductivity, phase transitions in model systems to studies of precipitation phenomena and nano-scale structures in various materials. The major interest of the department is in basic research, but projects of more applied nature are often taken up, prompted by the applicability of the developed technique and expertise. (au) 2 tabs., 94 ills., 82 refs

  18. Self-organization of progress across the century of physics

    Science.gov (United States)

    Perc, Matjaž

    2013-04-01

    We make use of information provided in the titles and abstracts of over half a million publications that were published by the American Physical Society during the past 119 years. By identifying all unique words and phrases and determining their monthly usage patterns, we obtain quantifiable insights into the trends of physics discovery from the end of the 19th century to today. We show that the magnitudes of upward and downward trends yield heavy-tailed distributions, and that their emergence is due to the Matthew effect. This indicates that both the rise and fall of scientific paradigms is driven by robust principles of self-organization. Data also confirm that periods of war decelerate scientific progress, and that the later is very much subject to globalisation.

  19. The Physics Perspectives at the Future Accelerator Facility FAIR

    CERN Document Server

    Stroth, J

    2004-01-01

    The physics perspective of the approved future international accelerator Facility for Anti-proton and Ion Research (FAIR) near Darmstadt, Germany will be outlined. The physics programme will comprise many body aspects of matter ranging from macroscopic system like highly correlated plasmas down to the properties of baryons and nuclear matter at high baryon densities. Through fragmentation of intense ion beams investigations with beams of short-lived radioactive nuclei far from stability will be possible. The addressed physics questions concern nuclear structure at the drip-lines, areas of astrophysics and nucleo-synthesis in supernovae and other stellar processes, as well as tests of fundamental symmetry. The structure of baryons and their limits of their existence is the interest of the two large experimental set-ups PANDA and CBM. Finally QED will be studied in extremely strong field effects and also the interaction of ions with matter. The future facility will feature a double-ring synchrotron SIS100/300 a...

  20. Present status of refining and conversion facility dismantling. Progress in first half of 2010FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Tanaka, Yoshio; Takahashi, Nobuo; Tokuyasu, Takashi

    2011-06-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008, and all equipments in radiation controlled area will be dismantled by the 2011 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in first half year of 2010FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room / each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  1. Present status of refining and conversion facility dismantling. Progress in latter half of 2010FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Tanaka, Yoshio; Takahashi, Nobuo; Tokuyasu, Takashi

    2011-09-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008. Equipments in radiation controlled area (excluding ventilating equipment and liquid waste treatment equipment) will be dismantled by the 2011 fiscal year, and ventilating equipment and liquid waste treatment equipment will be dismantled by the 2014 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in latter half year of 2010FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room / each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  2. Present status of refining and conversion facility dismantling. Progress in first half of 2009FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Tanaka, Yoshio; Takahashi, Nobuo; Tokuyasu, Takashi

    2010-03-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008, and all equipments in radiation controlled area will be dismantled by the 2011 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in first half year of 2009FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room / each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  3. Present status of refining and conversion facility dismantling. Progress in latter half of 2008FY

    International Nuclear Information System (INIS)

    Kado, Kazumi; Sugitsue, Noritake; Morimoto, Yasuyuki; Ikegami, Sohei; Takahashi, Nobuo; Tokuyasu, Takashi

    2010-01-01

    The Refining and Conversion Facility located in the Ningyo-toge Environmental Engineering Center had the natural uranium conversion process and reprocessed uranium conversion process. The construction of this facility was started in 1979 and completed in October 1981. Dismantling of equipments in radiation controlled area of this facility was started from 2008, and all equipments in radiation controlled area will be dismantled by the 2011 fiscal year. This report describes the master plan of this decommissioning and shows as the progress in latter half year of 2008FY, the actual time schedule, the method of decommissioning, the decommissioning progress appearance with photographs, work rates of each room/each worker class, and the quantity of dismantled materials and secondary wastes. (author)

  4. Future neutrino oscillation facilities: physics priorities and open issues

    International Nuclear Information System (INIS)

    Blondel, Alain

    2006-01-01

    The recent discovery that neutrinos have masses opens a wide new field of experimentation. Accelerator-made neutrinos are essential in this program. Ideas for future facilities include Superbeam, Beta-beam, or Neutrino Factory, each associated with one or several options for detector systems. We now begin a 'scoping study' aimed at determining a set of key R and D projects enabling the community to propose an ambitious accelerator neutrino program at the turn of this decade. As an introduction to this study, a set of physics priorities, a summary of the perceived virtues and shortcomings of the various options, and a number of open questions are presented

  5. Physical protection of nuclear materials and facilities in CEA

    International Nuclear Information System (INIS)

    Garnier-Gratia, M.-H.; Jorda, A.

    2001-01-01

    Full text: CEA (Commissariat a l'Energie Atomique), as nuclear operator, is responsible for the control and protection of their nuclear materials. Inside CEA, DCS (Central Security Division) is in charge of the security matters, DCS defines the CEA strategy in this field, especially in physical protection. The paper will present the physical protection strategy of CEA. DCS defines the rules and methods; the operators have to apply in order to fulfill the security objectives of CEA. CEA has to provide the regulatory authority with documents proving that it is in accordance with the requirements of the 25th July 1980 law and 12th May 1981 decree. It has to implement all the necessary means in order to achieve the results requested by the regulatory authority. All these arrangements are described in the 'license and control file'. This file should specify the facility safeguards and physical protection system. Accounting measures are also described. In this file, the petitioner has to justify its capacity for holding nuclear materials and for exercising authorized activities on them. So the organization and the installed means have to be described in this authorization file. For physical protection, containment, surveillance and physical protection measures are presented: Containment measures must prevent the unauthorized or unjustified movements of nuclear material in the framework of the authorized activities; Surveillance measures must guarantee the integrity of the containment, check that no material is exiting by an abnormal channel; Physical protection measures for the materials, the premises and the facilities are intended to protect them against malevolent actions by means of security systems. The Central Security Division has established guidelines to provide guidance to the nuclear materials holders in writing such files. Each holding unit has to establish a 'license and control file' and each CEA site establishes a 'site license and control file

  6. Recent LAMPF [Los Alamos Meson Physics Facility] research using muons

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1987-01-01

    In addition to the core programs in nuclear and particle physics, diverse experiments have been carried out that address interdisciplinary and applied topics at the Los Alamos Meson Physics Facility (LAMPF). These include muon-spin-relaxation experiments to study magnetic dynamics in spin glasses and electronic structure in heavy-fermion superconductors; muon channeling experiments to provide information on pion stopping sites in crystals; tomographic density reconstruction studies using proton energy loss; and radiation-effects experiments to explore microstructure evolution and to characterize materials for fusion devices and high-intensity accelerators. Finally, the catalysis of the d-t fusion reaction using negative muons has been extensively investigated with some surprising results including a stronger than linear dependence of the mesomolecular formation rate on target density and the observation of 150 fusions per muon under certain conditions. Recent results in those programs involving pions and muons interacting with matter are discussed

  7. Radiological Research Accelerator Facility. Progress report, April 1-November 30, 1986

    International Nuclear Information System (INIS)

    1986-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. The experiments run at RARAF are described, and center on neutron dosimetry, mutagenesis, and neutron-induced oncogenic transformations as well as survival of exposed cells. Accelerator utilization, operation, and development of facilities are reviewed

  8. General Physics Section. Progress Report Fiscal Year 1969/70

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J

    1970-12-15

    This report contains information regarding that part of the work performed at the General Physics Section of AB Atomenergi during the period July 1969 - July 1970, which has been supported by grants from the Swedish Board of Technical Development (STU). For projects still in progress the current status is described, for terminated projects, or distinguishable parts thereof, a summary is given. Where available, reports describing the work are listed. A substantial part of our resources has been concentrated on the physics of energy conversion: Investigation of recombination processes in a pulsed helium discharge; Theoretical and experimental investigation of MHD gas flow; Isotopic battery in the muW-range. Our section's interest in nuclear dosimetry and the general aspects of metrology has been manifested in two additional projects: Application of mass spectrometry on He in solids to analysis, nuclear physics and material technology; Servo system filter. As general information it can be added that other, not STU-supported, activities of the section are material dosimetry for irradiation monitoring and a fairly broad range of radiation shielding activities

  9. Advanced teaching labs in physics - celebrating progress; challenges ahead

    Science.gov (United States)

    Peterson, Richard

    A few examples of optical physics experiments may help us first reflect on significant progress on how advanced lab initiatives may now be more effectively developed, discussed, and disseminated - as opposed to only 10 or 15 years back. Many cooperative developments of the last decade are having profound impacts on advanced lab workers and students. Central to these changes are the programs of the Advanced Laboratory Physics Association (ALPhA) (Immersions, BFY conferences), AAPT (advlab-l server, ComPADRE, apparatus competitions, summer workshops/sessions), APS (Reichert Award, FEd activities and sessions), and the Jonathan F. Reichert Foundation (ALPhA support and institution matched equipment grants for Immersion participants). Broad NSF support has helped undergird several of these initiatives. Two of the most significant challenges before this new advanced lab community are (a) to somehow enhance funding opportunities for teaching equipment and apparatus in an era of minimal NSF equipment support, and (b) to help develop a more complementary relationship between research-based advanced lab pedagogies and the development of fresh physics experiments that help enable the mentoring and experimental challenge of our students.

  10. General Physics Section. Progress Report Fiscal Year 1969/70

    International Nuclear Information System (INIS)

    Braun, J.

    1970-12-01

    This report contains information regarding that part of the work performed at the General Physics Section of AB Atomenergi during the period July 1969 - July 1970, which has been supported by grants from the Swedish Board of Technical Development (STU). For projects still in progress the current status is described, for terminated projects, or distinguishable parts thereof, a summary is given. Where available, reports describing the work are listed. A substantial part of our resources has been concentrated on the physics of energy conversion: Investigation of recombination processes in a pulsed helium discharge; Theoretical and experimental investigation of MHD gas flow; Isotopic battery in the μW-range. Our section's interest in nuclear dosimetry and the general aspects of metrology has been manifested in two additional projects: Application of mass spectrometry on He in solids to analysis, nuclear physics and material technology; Servo system filter. As general information it can be added that other, not STU-supported, activities of the section are material dosimetry for irradiation monitoring and a fairly broad range of radiation shielding activities

  11. Recent progress of Geant4 electromagnetic physics for calorimeter simulation

    Science.gov (United States)

    Incerti, S.; Ivanchenko, V.; Novak, M.

    2018-02-01

    We report on recent progress in the Geant4 electromagnetic (EM) physics sub-packages. New interfaces and models introduced recently in Geant4 10.3 are already used in LHC applications and may be useful for any type of simulation. Additional developments for EM physics are available with the new public version Geant4 10.4 (December, 2017). Important developments for calorimetry applications were carried out for the modeling of single and multiple scattering of charged particles. Corrections to scattering of positrons and to sampling of displacement have recently been added to the Geant4 default Urban model. The fully theory-based Goudsmit-Saunderson (GS) model for electron/positron multiple scattering was recently reviewed and a new improved version is available in Geant4 10.4. For testing purposes for novel calorimeters we provide a configuration of electron scattering based on the GS model or on the single scattering model (SS) instead of the Urban model. In addition, the GS model with Mott corrections enabled is included in the option4 EM physics constructor. This EM configuration provides the most accurate results for scattering of electrons and positrons.

  12. Advancement adopted for physical protection system at BARC facilities Tarapur

    International Nuclear Information System (INIS)

    Jaroli, Manish; Ameta, Rohit; Patil, V.H.; Dubey, K.

    2015-01-01

    Considering the prevailing security situation and threat perception to the nuclear installations in particular, it has become essential to strengthen security system at BARC Tarapur in an effective manner to avert any attempt of sabotage and to ensure smooth functioning of security and safety of the nuclear installations. International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) have provided various security guides for the physical protection system (PPS) for nuclear installations and there has been advancement in physical and personnel protection system due to evolution of new technologies. In line with this, latest technologies have been adopted in PPS for BARC facilities, Tarapur recently. This includes state of art RFID card based access control, visitor and contractor management system, electronic key management system. Digital signature based biometric visitor and contractor management system; Digital signature based leave management system; Distress alarm system (DAS); Guard tour monitoring system (GTMS); Secure network access system (SNAS) as well as multilayered access control system at plant level. This will strengthen the surveillance and monitoring of personnel and visitors at BARC facilities. (author)

  13. Vulnerability Analysis of Physical Protection System at Hypothetical Facility

    International Nuclear Information System (INIS)

    Jung, Won Moog; Lee, Ho Jin; Yu, Dong Han; Min, Gyung Sik

    2006-01-01

    Since the 9/11 event in the U.S.A, International terror possibilities has been increasing for nuclear facilities including nuclear power plants(NPPs). It is necessary to evaluate the performance of an existing physical protection system(PPS) at nuclear facilities based on such malevolent acts. A PPS is a complex configuration of detection, delay, and response elements. Detection, delay, and response elements are all important to the analysis and evaluation of a PPS and its effectiveness. Methods are available to analyze a PPS and evaluate its effectiveness. Sandia National Laboratory(SNL) in the U.S.A was developed a System Analysis of Vulnerability to Intrusion (SAVI) computer code for evaluating the effectiveness of PPS against outsider threats. This study presents the vulnerability analysis of the PPS at hypothetical facility using SAVI code that the basic input parameters are from PPS of Hanaro Research Reactor at Korea Atomic Energy Research Institution. It is understand that PPS of research reactor and critical assemblies are deficient that that of NPP and nuclear materials of RRCAS are compact to transport For analysis, first, the site-specific Adversary Sequence Diagrams(ASDs) of the PPS is constructed. It helps to understand the functions of the existing PPS composed of physical areas and Protection Elements(PEs). Then, the most vulnerable path of an ASD as a measure of effectiveness is determined. The results in the analysis can used to suggest the possible PPS upgrades to the most vulnerable paths for the system like research reactor

  14. Progress in high-energy cosmic ray physics

    Science.gov (United States)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  15. High energy physics at Tufts University. Progress report

    International Nuclear Information System (INIS)

    1976-09-01

    In the past year the Bubble Chamber Group has been involved in a wide range of activities in experimental high energy physics. Beam momenta varying from 2.9 to 300 GeV/c; bubble chambers including the FNAL 30-inch, BNL 80-inch, ANL 12-foot and FNAL 15-foot; targets which include hydrogen, deuterium, hydrogen with downstream plate, and deuterium with downstream spark chambers; beam particles including K - , anti p and p--one is still waiting for neutrinos--were used. A search was made for exotic particles and charmed particles, continued to study strange baryons and mesons, probed the dimensions of the ''fireball,'' and studied multiplicities and correlations in high energy collisions. The following progress in each of the activities which have taken place is summarized. A list of publications is included

  16. Progress report, physics and health sciences, physics section, 1986 January 01 - June 30

    International Nuclear Information System (INIS)

    1986-08-01

    The two progress reports PR-PHS-P-1 (AECL-9262) and PR-PHS-HS-1 (AECL-9263) are continuations of the former series in Physics, PR-P-142, (AECL-9103) and in Health Sciences, PH-HS-20 (AECL-9102). The new series have been initiated to take into account the reorganization of the Research Company effective 1986 February 1. It is intended to issue the reports semi-annually on June 30 and December 31 covering the previous six months. The new series cover the same areas as before except that the Accelerator Physics Branch and the Mathematics and Computation Branch activities are no longer included in Physics, and the activities of the Medical Biophysics Branch at Whiteshell are now included in Health Sciences. The latest progress report on the Medical Biophysics work appeared in the WNRE report PR-WHS-73. This report (AECL-9262) covers the research, business and commercial activities of Nuclear Physics, TASCC Operations, Neutron and Solid State Physics, Theoretical Physics and the Fusion Office

  17. Nuclear Physics Group progress report January - June 1977

    International Nuclear Information System (INIS)

    McCallum, G.J.

    1978-01-01

    In a very short time a proton microprobe and its associated beam scanning systems have been developed. Further improvements are necessary but a very useful facility should be available in the coming year. A research contract on 'depth profiling employing nuclear techniques' has been awarded to a group in the Physics Department of Victoria University of Wellington. This should strengthen the links between the nuclear physics groups at the University and the Institute. Discussions with anthropologists from Auckland and Otago Universities have revealed two areas where the Group could provide useful assistance - firstly in the development of cheap transportable X-ray fluoresence apparatus, and secondly the determination of hydration layers for obsidian dating. Work associated with both projects has been initiated. The accelerator has been used principally for the production of 11 C and 13 N. Interest is being shown by a number of groups in the 10 minute half-life nitrogen-13 isotope. Work on the nuclear magnetic relaxation times of various organs and the blood of mice at various stages during the development of cancer has been concluded and measurements have commenced on human blood samples, both normal and pathological

  18. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  19. Physics Division progress report, January 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hollen, G.Y.; Schappert, G.T. [comp.

    1994-07-01

    This report discusses its following topics: Recent Weapons-Physics Experiments on the Pegasus II Pulsed Power Facility; Operation of a Large-Scale Plasma Source Ion Implantation Experiment; Production of Charm and Beauty Mesons at Fermilab Sudbury Neutrino Observatory; P-Division`s Essential Role in the Redirected Inertial Confinement Fusion Program; Trident Target Physics Program; Comparative Studies of Brain Activation with Magnetocephalography and Functional Magnetic Resonance Imaging; Cellular Communication, Interaction of G-Proteins, and Single-Photon Detection; Nuclear Magnetic Resonance Studies of Oxygen-doped La{sub 2}CuO{sub 4+{delta}} Thermoacoustic Engines; A Shipborne Raman Water-Vapor Lidar for the Central Pacific Experiment; Angara-5 Pinch Temperature Verification with Time-resolved Spectroscopy; Russian Collaborations on Megagauss Magnetic Fields and Pulsed-Power Applications; Studies of Energy Coupling from Underground Explosions; Trapping and Cooling Large Numbers of Antiprotons: A First Step Toward the Measurement of Gravity on Antimatter; and Nuclear-Energy Production Without a Long-Term High-Level Waste Stream.

  20. Elementary particle physics. Progress report, July 1992--October 1994

    International Nuclear Information System (INIS)

    Izen, J.M.

    1994-10-01

    The University of Texas at Dallas (UTD) is participating in two e + e - , experiments, Beijing Spectrometer (BES) and BABAR, the PEP-11 B Factory detector. The UTD group consists of Profs. Joseph M. Izen and Xinchou Lou, seven Ph.D. students. A post-doc is requested to join them in this work. BES explores the physics of the τ-charm threshold region. Associated production of τ and charmed mesons allow for absolute branching fraction measurements with good control of backgrounds. BES is uniquely positioned to study the leptonic and hadronic decays of quarkonia. The Beijing Electron Positron Collider (BEPC) delivers luminosities an order of magnitude higher than earlier facilities. BES and BEPC will be upgraded following the 1994-5 run, and will resume data taking in Fall, 1996 with an improved detector and a Three-fold increase in luminosity. The raison d'etre of BABAR is the exploration of CP violation in the B meson system. An asymmetric storage ring is required to observe the time-dependence of the CP asymmetry. Other BABAR physics includes measurements of CKM matrix elements, rare B decays, penguin diagrams, B s decays, and precision measurements of τ and D meson decays. The scheduled BABAR turn-on in 1999 provides the UTD group with a natural evolution with continuous physics during this period. Professors Joseph M. Izen and Xinchou Lou are leading the BES and BABAR program at UTD. Both have specialized in e + e - collider experiments and share 22 years of experience at the SPEAR, BEPC, CESR, PETRA, SLC and LEP rings

  1. [High energy physics]. Progress report, October 1984-June 1985

    International Nuclear Information System (INIS)

    Nauenberg, U.

    1985-01-01

    The tagged-photon beam effort consists of Fermilab experiments E516 (photoproduction) and E691 (charm photoproduction). Most of the work of this period was devoted to bringing E691 into operation and collecting data. Progress in the Fermilab broad-band neutral beam program included setting up the production data analysis for E400 (hadronic charm production), and design, prototyping, procurement and fabrication of the electromagnetic calorimeter for E687 (photoproduction at the Tevatron). The electron-positron effort at SLAC included data-taking and physics analysis with MAC, fabrication of a trigger/vertex drift chamber for the Mark II upgrade, and prototype studies for SLD. The theory group carried out a broad program of research in many branches of particle physics. Studies included formal work in supergravity, supersymmetry phenomenology, lattice gauge theory approaches to hadronization, investigations of the behavior of the quark-gluon plasma in the early Universe, in heavy ion collisions, and on the lattice, and a first look at the real-time behavior of quantum systems out of thermal equilibrium. A program in laboratory-based gravity research came under the support of this contract as of April 1, 1985. The principal effort is a test of the equivalence of inertial and passive gravitational mass (Eotvos experiment) of high sensitivity in a cryogenic system

  2. Recent progress and new challenges in isospin physics with heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Li Baoan [Department of Physics, Texas A and M University-Commerce, Commerce, TX 75429-3011 (United States)], E-mail: Bao-An_Li@Tamu-Commerce.edu; Chen Liewen [Institute of Theoretical Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: Lwchen@Sjtu.edu.cn; Ko, Che Ming [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843-3366 (United States)], E-mail: Ko@Comp.tamu.edu

    2008-08-15

    The ultimate goal of studying isospin physics via heavy-ion reactions with neutron-rich, stable and/or radioactive nuclei is to explore the isospin dependence of in-medium nuclear effective interactions and the equation of state of neutron-rich nuclear matter, particularly the isospin-dependent term in the equation of state, i.e., the density dependence of the symmetry energy. Because of its great importance for understanding many phenomena in both nuclear physics and astrophysics, the study of the density dependence of the nuclear symmetry energy has been the main focus of the intermediate-energy heavy-ion physics community during the last decade, and significant progress has been achieved both experimentally and theoretically. In particular, a number of phenomena or observables have been identified as sensitive probes to the density dependence of nuclear symmetry energy. Experimental studies have confirmed some of these interesting isospin-dependent effects and allowed us to constrain relatively stringently the symmetry energy at sub-saturation densities. The impact of this constrained density dependence of the symmetry energy on the properties of neutron stars have also been studied, and they were found to be very useful for the astrophysical community. With new opportunities provided by the various radioactive beam facilities being constructed around the world, the study of isospin physics is expected to remain one of the forefront research areas in nuclear physics. In this report, we review the major progress achieved during the last decade in isospin physics with heavy ion reactions and discuss future challenges to the most important issues in this field.

  3. Projects at the component development and integration facility. Quarterly technical progress report, April 1, 1994--June 30, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY94. The CDIF is a major Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; and Spray Casting Project

  4. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Science.gov (United States)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  5. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    International Nuclear Information System (INIS)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; Edstrom, Dean; Harms, Elvin

    2017-01-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  6. Progress report - Physics and Health Sciences - Physics Section - 1986 July 01 - December 31

    International Nuclear Information System (INIS)

    1987-02-01

    This progress report of the Physics section of Chalk River Nuclear Laboratories highlights work on major equipment: 1) Tandem Accelerator Superconducting Cyclotron (TASCC), 2) Isotope Separator On Line (ISOL), 3) Spectrometer Array for Particles Produced in Heavy Ion Reactions (SAPPHIRE), and 4) The Double Neutron Spectrometer for neutron scattering (DUALSPEC). Theoretical physics work includes fractal theory, non-topological soliton model of the nucleons, meson currents in relativistic shell model theories and supergravity. Progress of the Sudbury Neutrino Observatory (SNO) and the National Fusion Program (NFP) is discussed. Two commercial aspects are included; the formation of Shar-Buc Enterprises, the first spin-off business of the Research Company and the Applied Neutron Diffraction for Industry (ANDI), a major commercial activity

  7. Nuclear physics and High Energy Physics Institute: 1988 to 1989 progress report

    International Nuclear Information System (INIS)

    1990-01-01

    The 1988 to 1989 progress report of the Nuclear Physics and High Energy Physics National Institute (France) is presented. The main objectives of the Institute research programs are the identification of the fundamental components of matter, the study of the properties and interactions between quarks and leptons. The results and the experiments presented are: Z O event at LEP, hadron spectroscopy, CP violation, standard model, sixth quark, heavy ions at CERN, thermistocle experiment, high spin, exotic nuclei. The research and developments concerning instruments are also reported [fr

  8. Perceptions of Important Characteristics of Physical Activity Facilities: Implications for Engagement in Walking, Moderate and Vigorous Physical Activity.

    Science.gov (United States)

    Heinrich, Katie M; Haddock, Christopher K; Jitnarin, Natinee; Hughey, Joseph; Berkel, LaVerne A; Poston, Walker S C

    2017-01-01

    Although few United States adults meet physical activity recommendations, those that do are more likely to access to physical activity facilities. Additionally, vigorous exercisers may be more likely to utilize a nearby physical activity facility, while light-to-moderate exercisers are less likely to do so. However, it is unclear what characteristics of those facilities are most important as well as how those characteristics are related to activity intensity. This study examined relationships between self-reported leisure-time physical activities and the use of and perceived characteristics of physical activity facilities. Data were from a cross-sectional study in a major metropolitan area. Participants ( N  = 582; ages 18-74, mean age = 45 ± 14.7 years) were more likely to be female (69.9%), Caucasian (65.6%), married (51.7%), and have some college education (72.8%). Household surveys queried leisure-time physical activity, regular physical activity facility use, and importance ratings for key facility characteristics. Leisure-time physical activity recommendations were met by 41.0% of participants and 50.9% regularly used a physical activity facility. Regular facility use was positively associated with meeting walking ( p  = 0.036), moderate ( p  importance on facility quality ( p  = 0.022), variety of physical activity options offered ( p  = 0.003), and availability of special equipment and resources ( p  = 0.01). The facility characteristics of low or free cost ( p  = 0.02) and offering childcare ( p  = 0.028) were barriers for walking, and being where friends and family like to go were barriers for moderate leisure-time physical activity ( p  = 0.013). Findings offer insights for structuring interventions using the social ecological model as well as for improving existing physical activity facilities.

  9. Progress and problems in the Formerly Utilized Sites Remedial Action Program and Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Fiore, J.J.; Turi, G.P.

    1988-01-01

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established in 1974 to identify, evaluate, and as appropriate, conduct remedial actions at sites used in the early years of nuclear energy development by the Manhattan Engineer District and the Atomic Energy Commission (AEC). This program currently has 29 sites and is evaluating 350 other sites for possible inclusion in the program. Another remedial action program in the Department of Energy's (DOE) Division of Facility and Site Decommissioning Projects is the Surplus Facilities Management Program (SFMP). The SFMP involves the safe management, decontamination and disposal of surplus DOE contaminated facilities which were not related to defense activities. There are currently 33 projects at 15 different sites in the program. These two programs have made steady progress over the last 10 or so years in cleaning up sites so that they can be reused or released for unrestricted use. Work has been completed at 8 of the FUSRAP sites and three of the SFMP sites

  10. Fast Breeder Blanket Facility. Quarterly progress report, July 1, 1978--September 30, 1978

    International Nuclear Information System (INIS)

    Clikeman, F.M.

    1978-09-01

    This quarterly progress report summarizes work done at Purdue University's Fast Breeder Blanket Facility for the Department of Energy during the months July to September 1978. The summary includes reports on the models and methods used to characterize the FBBF facility. Using the reported models and calculational methods and computer codes a new cross section set has been generated, self-shielded for 300 0 K for use in all FBBF calculations using the 2DB computer code. The summary includes reports of the reproducability of foil activation data and measurements of the azmuthal symmetry of the facility. The status of the development of technique for the experimental measurements and preliminary foil activation measurements are also reviewed

  11. Health physics manual of good practices for accelerator facilities

    International Nuclear Information System (INIS)

    Casey, W.R.; Miller, A.J.; McCaslin, J.B.; Coulson, L.V.

    1988-04-01

    It is hoped that this manual will serve both as a teaching aid as well as a useful adjunct for program development. In the context of application, this manual addresses good practices that should be observed by management, staff, and designers since the achievement of a good radiation program indeed involves a combined effort. Ultimately, radiation safety and good work practices become the personal responsibility of the individual. The practices presented in this manual are not to be construed as mandatory rather they are to be used as appropriate for the specific case in the interest of radiation safety. As experience is accrued and new data obtained in the application of this document, ONS will update the guidance to assure that at any given time the guidance reflects optimum performance consistent with current technology and practice.The intent of this guide therefore is to: define common health physics problems at accelerators; recommend suitable methods of identifying, evaluating, and managing accelerator health physics problems; set out the established safety practices at DOE accelerators that have been arrived at by consensus and, where consensus has not yet been reached, give examples of safe practices; introduce the technical literature in the accelerator health physics field; and supplement the regulatory documents listed in Appendix D. Many accelerator health physics problems are no different than those at other kinds of facilities, e.g., ALARA philosophy, instrument calibration, etc. These problems are touched on very lightly or not at all. Similarly, this document does not cover other hazards such as electrical shock, toxic materials, etc. This does not in any way imply that these problems are not serious. 160 refs

  12. Associations between Moderate-to-Vigorous Physical Activity and Neighbourhood Recreational Facilities: The Features of the Facilities Matter

    Directory of Open Access Journals (Sweden)

    Ka Yiu Lee

    2014-12-01

    Full Text Available Objectives: To examine the associations between objectively-assessed moderate-to-vigorous physical activity (MVPA and perceived/objective measures of neighbourhood recreational facilities categorized into indoor or outdoor, public, residential or commercial facilities. The associations between facility perceptions and objectively-assessed numbers of recreational facilities were also examined. Method: A questionnaire was used on 480 adults to measure local facility perceptions, with 154 participants wearing ActiGraph accelerometers for ≥4 days. The objectively-assessed number of neighbourhood recreational facilities were examined using direct observations and Geographical Information System data. Results: Both positive and negative associations were found between MVPA and perceived/objective measures of recreational facilities. Some associations depended on whether the recreational facilities were indoor or outdoor, public or residential facilities. The objectively-assessed number of most public recreational facilities was associated with the corresponding facility perceptions, but the size of effect was generally lower than for residential recreational facilities. Conclusions: The objectively-assessed number of residential outdoor table tennis courts and public indoor swimming pools, the objectively-assessed presence of tennis courts and swimming pools, and the perceived presence of bike lanes and swimming pools were positive determinants of MVPA. It is suggested to categorize the recreational facilities into smaller divisions in order to identify unique associations with MVPA.

  13. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  14. Progress report. Physics and Health Sciences, Physics Section (1987 January 01-June 30)

    International Nuclear Information System (INIS)

    1987-12-01

    This report covers the third semi-annual period since the Research Company was reorganized. A highlight of the period was the first peer review of all the activities in Physics and Health Sciences by external examiners. The review was conducted in April by three separate Technical Review Committees (TRC) one for each of the three main areas: health sciences, nuclear physics and condensed matter physics. In all cases the TRCs gave strong support to our programs under the following mandate. To assess research programs with respect to (a) their quality, and (b) their relevance to Canada. The programs by the Nuclear Physics TRC reviewed were: heavy ion reaction studies; gamma-ray studies of high spin states; exotic nuclei and weak interactions; neutron and neutrino physics; TASCC operation and development; and theoretical physics. The programs reviewed by the Condensed Matter TRC were: liquid helium; amorphous ice; orientationally disordered solids; structural phase transitions; low dimensional systems; actinide magnetism and heavy fermion superconductors; molecular biophysics; applied neutron diffraction (ANDI); and theoretical solid state physics. A mechanism for the evaluation of the strategy for the National Fusion Program has been developed and the process is under way. The successful completion of the 8-pi spectrometer by Chalk River and the Universities of Montreal and McMaster, plus the vigorous and highly successful experimental program in progress on it were the outstanding achievement of the period. Good progress is being made in the detailing of a program in heavy ion nuclear reactions, and the specification of equipment for that program have been made. Some difficulties with the new Vivirad resistors for the MP tandem were encountered, however the manufacturer now seems to have solved the problem

  15. Nuclear physics research at the University of Richmond. Progress report, November 1, 1994 - October 31, 1995

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1995-01-01

    Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive η photoproduction in nuclei and electroproduction of the Λ, Λ*(1520), and f 0 (975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the φ meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments

  16. GENIUS - a new facility of non-accelerator particle physics

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    2001-01-01

    The GENIUS (Germanium in Liquid Nitrogen Underground Setup) project has been proposed in 1997 [1] as first third generation double beta decay project, with a sensitivity aiming down to a level of an effective neutrino mass of ∼ 0.01 - 0.001 eV. Such sensitivity has been shown to be indispensable to solve the question of the structure of the neutrino mass matrix which cannot be solved by neutrino oscillation experiments alone [2]. It will allow broad access also to many other topics of physics beyond the Standard Model of particle physics at the multi-TeV scale. For search of cold dark matter GENIUS will cover almost the full range of the parameter space of predictions of SUSY for neutralinos as dark matter [3,4]. Finally, GENIUS has the potential to be the first real-time detector for low-energy (pp and 7 Be) solar neutrinos [6,5]. A GENIUS-Test Facility has just been funded and will come into operation by end of 2001

  17. Fusion plasma physics research on the H-1 national facility

    International Nuclear Information System (INIS)

    Harris, J.

    1998-01-01

    Full text: Australia has a highly leveraged fusion plasma research program centred on the H-1 National Facility device at the ANU. H-1 is a heliac, a novel helical axis stellarator that was experimentally pioneered in Australia, but has a close correlation with the worldwide research program on toroidal confinement of fusion grade plasma. Experiments are conducted on H-1 by university researchers from the Australian Fusion Research Group (comprising groups from the ANU, the Universities of Sydney, Western Sydney, Canberra, New England, and Central Queensland University) under the aegis of AINSE; the scientists also collaborate with fusion researchers from Japan and the US. Recent experiments on H-1 have focused on improved confinement modes that can be accessed at very low powers in H-1, but allow the study of fundamental physics effects seen on much larger machines at higher powers. H-1 is now being upgraded in magnetic field and heating power, and will be able to confine hotter plasmas beginning in 1999, offering greatly enhanced research opportunities for Australian plasma scientists and engineers, with substantial spillover of ideas from fusion research into other areas of applied physics and engineering

  18. Seismic vulnerability study Los Alamos Meson Physics Facility (LAMPF)

    International Nuclear Information System (INIS)

    Salmon, M.; Goen, L.K.

    1995-01-01

    The Los Alamos Meson Physics Facility (LAMPF), located at TA-53 of Los Alamos National Laboratory (LANL), features an 800 MeV proton accelerator used for nuclear physics and materials science research. As part of the implementation of DOE Order 5480.25 and in preparation for DOE Order 5480.28, a seismic vulnerability study of the structures, systems, and components (SSCs) supporting the beam line from the accelerator building through to the ends of die various beam stops at LAMPF has been performed. The study was accomplished using the SQUG GIP methodology to assess the capability of the various SSCs to resist an evaluation basis earthquake. The evaluation basis earthquake was selected from site specific seismic hazard studies. The goals for the study were as follows: (1) identify SSCs which are vulnerable to seismic loads; and (2) ensure that those SSCs screened during die evaluation met the performance goals required for DOE Order 5480.28. The first goal was obtained by applying the SQUG GIP methodology to those SSCS represented in the experience data base. For those SSCs not represented in the data base, information was gathered and a significant amount of engineering judgment applied to determine whether to screen the SSC or to classify it as an outlier. To assure the performance goals required by DOE Order 5480.28 are met, modifications to the SQUG GIP methodology proposed by Salmon and Kennedy were used. The results of this study ire presented in this paper

  19. Progress report, Physics Division, October 1 to December 31, 1978

    International Nuclear Information System (INIS)

    1979-01-01

    Several experiments are in progress to measure parity violation in strong interactions. The g-factors of eight high-spin isomeric states in four gadolinium isotopes have been added to the previously determined spin and parity data. Existing data on neutron-capture M1 γ-ray widths have been analyzed to deduce the position and spreading width of the M1 giant resonance in heavy nuclei. Solutions to long-standing differences between experimental and theoretical values for the thermal neutron capture cross sections of 1 H and 3 He are being sought in the framework of a more complete meson exchange theory. The standards group has submitted a value to the Bureau International des Poids et Mesures (BIPM) in a major international comparison of the measurement of the activity of 134 Cs. Development of the Fast Intense Neutron Source and the superconducting cyclotron continues. Preliminary design work is complete and component fabrication is underway for a preaccelerator suitable for accelerator breeder applications. Development is continuing on a multi-aperture duoPIGatron ion source with beam current and emittance suitable for a high current accelerator. In fertile-to-fissile conversion experiments at TRIUMF, the relative counting efficiencies of the β detectors used for proton beam monitoring and for neutron absorption rate measurement have been re-determined. Fusion studies included a preliminary study of anomalous energy loss mechanisms for high density relativistic electron beams ineracting with matter, and calculations to develop reliable neutronic evaluaton of fusion breeder blanket assemblies. Operations of the MP tandem accelerator and the main site computing facility are also summarized. (OST)

  20. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    Energy Technology Data Exchange (ETDEWEB)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the

  1. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    International Nuclear Information System (INIS)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-01-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  2. Annual progress report for 1982 of Theoretical Reactor Physics Section

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Kumar, Vinod

    1983-01-01

    The progress of work done in the Theoretical Reactor Physics Section of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1982 is reported in the form of write-ups and summaries. The main thrust of the work has been to master the neutronic design technology of four different types of nuclear reactor types, namely, pressurized heavy water reactors, boiling light water reactors, pressurized light water reactors and fast breeder reactors. The development work for the neutronic analysis, fuel design, and fuel management of the BWR type reactors of the Tarapur Atomic Power Station has been completed. A new reactor simulator system for PHWR design analysis and core follow-up was completed. Three dimensional static analysis codes based on nodal and finite element methods for the design work of larger size (500-750 MWe) reactors have been developed. Space link kinetics codes in one, two and three dimensions for above-mentioned reactor systems have been written and validated. Fast reactor core disruptive analysis codes have been developed. In the course of R and D work concerning various types of reactor projects, investigations were also carried in the allied areas of Monte Carlo techniques, integral transform methods, path integral methods, high spin states in heavy nuclei and a hydrodynamics model for a laser driven fusion system. (M.G.B.)

  3. Progress report of a research program in computational physics

    International Nuclear Information System (INIS)

    Guralnik, G.S.

    1990-01-01

    Task D's research is focused on the understanding of elementary particle physics through the techniques of quantum field theory. We make intensive use of computers to aid our research. During the last year we have made significant progress in understanding the weak interactions through the use of Monte Carlo methods as applied to the equations of quenched lattice QCD. We have launched a program to understand full (not quenched) lattice QCD on relatively large lattices using massively parallel computers. Because of our awareness that Monte Carlo methods might not be able to give a good solution to field theories with the computer power likely to be available to us for the forseeable future we have launched an entirely different numerical approach to study these problems. This ''Source Galerkin'' method is based on an algebraic approach to the field theoretic equations of motion and is (somewhat) related to variational and finite element techniques applied to a source rather than a coordinate space. The results for relatively simple problems are sensationally good. In particular, fermions can be treated in a way which allows them to retain their status as independent dynamical entities in the theory. 8 refs

  4. High energy physics studies progress report. Part I. Experimental program

    International Nuclear Information System (INIS)

    1977-01-01

    The experimental program of research, including Assembly of an experiment at Fermilab E-351 to measure decay lifetimes, with tagged emulsion, of charmed particles produced by high energy neutrinos will continue. A data-taking run will take place in the coming fiscal year. Participation in the neutrino experiment E-310, Fermilab-Harvard-Pennsylvania-Rutgers-Wisconsin, will also continue. Data analysis from several experiments performed in the recent past at the ZGS ANL is in progress and will be pursued. These experiments are, E-397, E-420 and E-428 performed with the Charged and Neutral Spectrometer, and E-347 with the Σ/sub β/ Spectrometer. Plans are in the making to collaborate with a polarized proton experiment at the ZGS. New approaches to ''third generation'' neutrino experiments at Fermilab are being discussed by the whole high energy group. Ideas of pursuing experiments at the AGS-BNL with the Σ/sub β/ Spectrometer are explored. The theoretical research program covers topics of current interest in particle theory which will be investigated in the coming year; namely, the role of instantons in quantum chromodynamics, Higgs Lagrangian involving scalar fields, phenomenology of neutrino physics and in particular the nature of trimuon production, higher order symmetries like SU(3) x U(1) SU(5) and SU(6), dynamics of high energy diffractive scattering, classical solutions to the gauge field theories

  5. PANDORA, a new facility for interdisciplinary in-plasma physics

    Science.gov (United States)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  6. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    International Nuclear Information System (INIS)

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-01-01

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-micros risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001

  7. PANDORA, a new facility for interdisciplinary in-plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, D.; Gammino, S. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Musumarra, A. [INFN-Laboratori Nazionali del Sud, Catania (Italy); University of Catania, Department of Physics and Astronomy, Catania (Italy); Leone, F. [INFN-Laboratori Nazionali del Sud, Catania (Italy); University of Catania, Department of Physics and Astronomy, Catania (Italy); INAF-OACT, Catania (Italy); Romano, F.P. [INFN-Laboratori Nazionali del Sud, Catania (Italy); CNR-IBAM, Catania (Italy); Galata, A. [INFN-Laboratori Nazionali di Legnaro, Legnaro (Italy); Massimi, C. [University of Bologna, Department of Physics and Astronomy, Bologna (Italy); INFN-Bologna, Bologna (Italy)

    2017-07-15

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as {sup 7}Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment (e.g., determination of solar neutrino flux and {sup 7}Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Lande factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry. (orig.)

  8. Chapter 7: Diagnostics [Progress in the ITER Physics Basis (PIPB)

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Costley, A.E.; Barnsley, R.

    2007-01-01

    In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements-time and spatial resolutions, etc-will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R and D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. The starting point in the development of diagnostics for ITER is to define the measurement requirements and develop their justification. It is necessary to include all the plasma parameters needed to support the basic and advanced operation (including active control) of the device, machine protection and also those needed to support the physics programme. Once the requirements are defined, the appropriate (combination of) diagnostic techniques can be selected and their implementation onto the tokamak can be developed. The selected list of diagnostics is an important guideline for identifying dedicated research and development needs in the area of ITER diagnostics. This paper gives a comprehensive overview of recent progress in the field of ITER diagnostics with emphasis on the implementation issues. After a discussion of the measurement requirements for plasma parameters in ITER and their justifications, recent progress in the field of

  9. Physics at the proposed National Underground Science Facility

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1983-01-01

    The scientific, technical, and financial reasons for building a National Underground Science Facility are discussed. After reviewing examples of other underground facilities, we focus on the Los Alamos proposal and the national for its choice of site

  10. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  11. Progress report, Physics Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are described in nuclear physics (operation of the MP tandem accelerator, nuclear structure and decay), accelerator and applied physics, solid state physics, detectors, and mathematical computation. (E.C.B.)

  12. Progress report, Physics Division, April 1 to June 30, 1976

    International Nuclear Information System (INIS)

    1976-08-01

    Preliminary results are reported on research covering such broad topics as nuclear physics, MP tandem operation, neutron and solid state physics, theoretical physics, and mathematical support of the programs described. (E.C.B.)

  13. Progress report, Physics Division, July 1 to September 30, 1977

    International Nuclear Information System (INIS)

    1977-10-01

    Research results are reported from the fields of nuclear and theoretical physics, neutron and solid state physics, accelerator physics, and mathematics and computation in support of these fields of endeavour. (E.C.B.)

  14. Radiation physics, biophysics and radiation biology. Progress report for October 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Rossi, H.H.; Hall, E.J.

    1980-07-01

    Separate abstracts were prepared for 31 of the 32 papers presented in this progress report. The other paper is represented by an abstract only and deals with field shaping and recalibration of x-ray facilities

  15. Progress report, Physics Division, July 1 to September 30, 1979

    International Nuclear Information System (INIS)

    1979-10-01

    Preparations are underway to use the intense electron beam produced by the Electron Test Accelerator for an experiment to test for violation of parity conservation in strong interactons. Using a capture γ-ray technique, the thermal neutron capture cross section of 90 Zr has been found to be significantly smaller than previous literature values. Commissioning of the Fast Intense Neutron Source to increase source strength has continued with some delay caused by the failure of the target rotating vacuum seal. The superconducting cyclotron program passed from full-scale test to construction phase. Design work is continuing and component fabrication has been started on a preaccelerator suitable for accelerator breeder applications. Development is continuing on a multi-aperture duoPIGatron ion source suitable for a high current accelerator. In fertile-to-fissile conversion experiments at TRIUMF, all of the neutron flux data taken previously at a proton energy of 480 MeV have been re-assessed. Experiments in solid state physics included (a) using small-angle scattering techniques for examination of detergent micelles in D 2 O solution, (b) the nature of phase transitions in two specimen antifluorites, (c) phonons in a large single crystal of deuterated ammonia, (d) vacancy formation energy in type 316 stainless steel by positron annihilation, (e) theoretical studies of the depth distribution of heavy-ion recoils. Possible improvements in the characteristics of CdTe detectors by introduction of hydrogen are being investigated. Operations of the MP Tandem accelerator and the main site computing facility are summarized. (OST)

  16. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al 3 Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs

  17. Progress report - Physical Sciences, Physical Division 1993 July 1 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M

    1994-05-01

    The progress report on the Physical Sciences, Physics Division, is split into Accelerator Physics and Neutron and Condensed Matter Science Branch. The Accelerator Physics Group in collaboration with Fuel Channel Components Branch has undertaken a unique series of experiments to prove the feasibility of using high energy electron beams for out-reactor irradiation of bulk samples of pressure-tube materials. The Neutron and Condensed Matter Branch, has among other topics, been involved with the Sudbury Neutrino Observatory project. It is part of an international collaboration including Canada, United States, and the United Kingdom. The project involves the use of heavy water to detect particles called neutrinos that are emitted from the centre of the sun and from exploding stars. Results from the Molecular Physics program include a study of the differing structures of ice grown in an electric field. Atomic Ordering in the new intermetallics Al{sub 3} Ti-X was extensively investigated in the Materials Science program. In the theory program a code to calculate the multiphonon expansion of the incoherent scattering function was written and it was applied in the analysis of phonon density of states for amorphous and crystalline ice. Further calculations were made to develop improved understanding of superconductivity and a theory for the conductivity of vortex cores was proposed. 3 tabs., 15 figs.

  18. Progress report - physical sciences - physics division 1991 January 01 - June 30

    International Nuclear Information System (INIS)

    1991-09-01

    This is the second in the new series of reports for the Physics Division since the creation of the Physical Sciences Unit in 1990. This report has been subdivided into three self-contained sections covering the activities in the branches for Accelerator Physics, Neutron and Solid State Physics and Theoretical Physics. It is noteworthy that the RFQ1 program with the original vanes has come to a successful conclusion having accelerated 79 mA of protons to 600 keV. The new vanes to achieve a high energy of 1.2 MeV have now been installed and will form the basis for the low energy end of high current proton accelerator development. The progress in the neutron scattering program has been hampered by the NRU reactor being down for repairs since January 1991. Nevertheless a very successful opening ceremony was held to mark the completion of the new DUALSPEC spectrometers and several workshops have been held to promote the understanding of neutron scattering

  19. High temperature facility for atomic physics studies. Final report

    International Nuclear Information System (INIS)

    1978-01-01

    The results of a program designed to develop a laser heated plasma sample for atomic physics studies in the 30 to 100 eV range of electron temperature and the 3 x 10 17 to 10 18 cm -3 range in electron density are presented. The approach used was discussed in detail in Mathematical Sciences Northwest, Inc., (MSNW) Proposal 1660, that is, the laser breakdown mode of heating in a slow solenoid. An extensive rework of the plasma sample facility was done in order to use this mode of heating. Specifically, a new solenoid magnet was constructed to allow higher field operation and the plasma chamber was modified to allow the use of puff filling orifices and small bore tube liners. The vacuum system and focussing optics were changed to allow the use of an on-axis Cassagranian system capable of focussing the laser radiation to a nearly diffraction limited spot as is necessary when heating through a small aperture. The 10 liter CO 2 laser optics were charged to an unstable oscillator configuration and additional windows were provided into the optical cavity for alignment purposes

  20. Physics and engineering assessments of spherical torus component test facility

    International Nuclear Information System (INIS)

    Peng, Y.-K.M.; Neumeyer, C.A.; Kessel, C.; Rutherford, P.; Mikkelsen, D.; Bell, R.; Menard, J.; Gates, D.; Schmidt, J.; Synakowski, E.; Grisham, L.; Fogarty, P.J.; Strickler, D.J.; Burgess, T.W.; Tsai, J.; Nelson, B.E.; Sabbagh, S.; Mitarai, O.; Cheng, E.T.; El-Guebaly, L.

    2005-01-01

    A broadly based study of the fusion engineering and plasma science conditions of a Component Test Facility (CTF), using the Spherical Torus or Spherical Tokamak (ST) configuration, have been carried out. The chamber systems testing conditions in a CTF are characterized by high fusion neutron fluxes Γ n > 4.4x10 13 n/s/cm 2 , over size scales > 10 5 cm 2 and depth scales > 50 cm, delivering > 3 accumulated displacement per atom (dpa) per year. The desired chamber conditions can be provided by a CTF with R 0 1.2 m, A = 1.5, elongation ∼ 3.2, I p ∼ 9 MA, B T ∼ 2.5 T, producing a driven fusion burn using 36 MW of combined neutral beam and RF power. Relatively robust ST plasma conditions are adequate, which have been shown achievable [4] without active feedback manipulation of the MHD modes. The ST CTF will test the single-turn, copper alloy center leg for the toroidal field coil without an induction solenoid and neutron shielding, and require physics data on solenoid-free plasma current initiation, ramp-up, and sustainment to multiple MA level. A new systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of lowercost CTF devices to suit a variety of fusion engineering science test missions. (author)

  1. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  2. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988, this system called 'Common utilization of JAERI facilities' so far was changed to 'Joint research utilizing JAERI facilities', and by evaluating more positively the function of the General Research Center for Nuclear Energy, it has been emphasized to promote and coordinate the joint research among universities centering around the utilization of JAERI facilities. The total number of the research subjects in fiscal year 1988 reached 138, but the results of 120 of them are collected in this book. General joint research is the standard form of the utilization of various facilities that JAERI has opened to common utilization. Cooperation research is to be carried out by concluding research cooperation contracts between university researchers and JAERI researchers, and the facilities which are not opened to common utilization can be used. In the general joint research, the utilization of irradiation such as activation analysis, radiochemistry, irradiation effect, neutron diffraction and so on and the research using beams are mostly carried out, but in the cooperation research, reactor engineering, reactor materials,, nuclear physics measurement and so on are the main subjects. The total number of visitors in one year was 3829 man-day. (K.I.)

  3. Research accomplishments in particle physics: Annual progress report

    International Nuclear Information System (INIS)

    1988-01-01

    This document presents our report of the research accomplishments of Boston University researchers in six projects in high energy physics research: Colliding Beams Physics; Proton Decay; Monopole Detection with MACRO; Precision Muon G-2 Experiment; Accelerator Design Physics; and Theoretical Physics

  4. Physics Division progress report for period ending September 30, 1989

    International Nuclear Information System (INIS)

    Livingston, A.B.

    1990-03-01

    This report discusses topics in the following areas: Holifield heavy ion research; Experimental Nuclear physics; The Uniser program; Experimental Atomic Physics; Theoretical Physics; Laser and electro-optics lab; High Energy Physics; compilations and evaluations; and accelerator design and development. (FI)

  5. Physics Division annual progress report for period ending December 31, 1978. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report contains information on the Holifield Heavy-Ion Research Facility, nuclear physics, nuclear physics with neutrons, theoretical physics, the Nuclear Data Project, accelerator-based atomic physics, magnetic fusion energy-applied physics research, electron spectroscopy, and high-energy physics, as well as lists of publications, papers presented at meetings, and other general information. Sixty-two items containing significant information were abstracted and indexed individually. (RWR)

  6. Progress report - physics and health sciences - physics section 1990 January 01 - June 30

    International Nuclear Information System (INIS)

    Hardy, J.C.

    1990-10-01

    This is the ninth semi-annual report on the Physics section of Physics and Health Sciences. Major areas of discussion include: nuclear physics, accelerator physics, general physics, neutron's solid state physics, theoretical physics and fusion

  7. User's guide for evaluating physical security capabilities of nuclear facilities by the EASI method

    International Nuclear Information System (INIS)

    Bennett, H.A.

    1977-06-01

    This handbook is a guide for evaluating physical security of nuclear facilities using the ''Estimate of Adversary Sequence Interruption (EASI)'' method and a hand-held programmable calculator. The handbook is intended for use by personnel at facilities where special nuclear materials are used, processed, or stored. It may also be used as a design aid for such facilities by potential licensees

  8. Research in elementary particle physics at the University of Florida: Annual progress report

    International Nuclear Information System (INIS)

    1988-01-01

    This is a progress report on the Elementary Particle Physics program at the University of Florida. The program has five tasks covering a broad range of topics in theoretical and experimental high energy physics: Theoretical Elementary Particle Physics, Experimental High Energy Physics, Axion Search, Detector Development, and Computer Requisition

  9. Experimental medium energy physics: Annual progress report June 1987--May 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This report discusses progress in experimental medium energy physics at Carnegie Mellon University. Some of the topics covered are: search for the ξ(2230); hyperon-antihyperon production studies; relativistic proton-nucleus and heavy ion-nucleus collisions; H dibaryon physics; hypernuclear physics research; pion physics; H particle experiment design and development; and electron scattering

  10. Particle accelerators and the progress of particle physics

    CERN Document Server

    Mangano, Michelangelo

    2016-01-01

    The following sections are included: •The Standard Model of fundamental interactions •Accelerators, and the experimental path towards the standard model •Complementarity and synergy of different accelerator facilities •The future challenges

  11. Research in high energy theoretical physics: Progress report

    International Nuclear Information System (INIS)

    Clavelli, L.J.; Harms, B.C.; Jones, S.T.

    1987-01-01

    This paper briefly discusses many papers submitted in theoretical High Energy Physics by the Physics Department of the University of Alabama. Most papers cover superstring theory, parity violations, and particle decay

  12. Designing a Physical Security System for Risk Reduction in a Hypothetical Nuclear Facility

    International Nuclear Information System (INIS)

    Saleh, A.A.; Abd Elaziz, M.

    2017-01-01

    Physical security in a nuclear facility means detection, prevention and response to threat, the ft, sabotage, unauthorized access and illegal transfer involving radioactive and nuclear material. This paper proposes a physical security system designing concepts to reduce the risk associated with variant threats to a nuclear facility. This paper presents a study of the unauthorized removal and sabotage in a hypothetical nuclear facility considering deter, delay and response layers. More over, the study involves performing any required upgrading to the security system by investigating the nuclear facility layout and considering all physical security layers design to enhance the weakness for risk reduction

  13. Progress report 1984-1985. Department of Physics

    International Nuclear Information System (INIS)

    1986-04-01

    The Department of Physics of the National Atomic Energy Commission reports on the advances and achievements performed during 1984-1985 within its three divisions: (1) Tandar Project; (2) Nuclear Physics (Nuclear Structure, Nuclear Reactions Intermediate Energies) and (3) Solid State Physics (Vibrational Spectroscopy, Cristallography and Phase transitions, Moessbauer Spectroscopy, Theoretical Solid State Physics, Crystal growth). Finally, a list of publications made by the personnel during said period, is included. (M.E.L.)

  14. Progress report 1984-1985. Department of Physics

    International Nuclear Information System (INIS)

    1986-04-01

    The Department of Physics of the National Atomic Energy Commission reports on the advances and achievements performed during 1984-1985, within its three divisions: 1) Tandar Project; 2) Nuclear Physics (Nuclear Structure, Nuclear Reactions Intermediate Energies) and 3) Solid State Physics (Vibrational Spectroscopy, Cristallography and Phase transitions, Moessbauer Spectroscopy, Theoretical Solid State Physics, Crystal growth). Finally, a list of publications made by the personnel during said period, is included. (M.E.L.) [es

  15. Progress during ten years of National Laboratory for High Energy Physics

    International Nuclear Information System (INIS)

    1981-01-01

    Ten years have elapsed since the birth of the National Laboratory for High Energy Physics. For the growth to the present status, the researchers concerned, the Science Council of Japan, the Ministry of Education, the National Diet and many enterprises, all contributed greatly. The proton synchrotron was completed as scheduled, and its performance largely exceeded the initial target. The results of the common utilization experiments started in 1977 have been obtained successively, and the applied research other than the field of elementary particles also has advanced along the right line steadily, such as booster utilization facility and radiated beam experiment facility. In this year, the construction of the Tristan project has been started, and the pet name ''KEK'' is internationally well known now. The 21st century is said to be the age of elementary particles, and the mission and responsibility put on the researchers concerned will be heavier. In this book, the progress of the KEK during ten years is reviewed, and many persons who took part in the establishment of the KEK contributed their memoirs. Also, the round-table talk held on this occasion, the history of each research group, the future plans, the results of researches and the related materials are described. (Kako, I.)

  16. Physics department annual progress report 1 January - 31 December 1978

    International Nuclear Information System (INIS)

    Moller, H.B.; Lebech, B.

    1978-12-01

    Research in the Physics Department at Riso covers three main fields: Solid-state physics, Plasma physics, Meteorology. The principal activities in these fields are presented in this report that covers the period from 1 January to 31 December 1978. (Auth.)

  17. Annual progress report for 1985 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.

    1986-01-01

    This report presents a resume of the work done in the Theoretical Physics Division during the calender year, 1985. The topics covered are described by their brief summaries. The main fields of the work were : (a) physics design of the 500 MWe PHWR and related developmental studies, (b) reactor physics work related to Rajasthan, Narora and Tarapur stations, (c) laser fusion studies, (d) mathematical physics studies on Monte-Carlo method, transport equation and Fokker-Planck Equation and (e) theoretical physics studies related to Feynman path integrals and quantum optics. The lists of research publications and Trombay Colloquia organised are also appended. (author)

  18. Proceedings of RIKEN BNL Research Center Workshop: Progress in High-pT Physics at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bazilevsky, A.; Bland, L.; Vogelsang, W.

    2010-03-17

    This volume archives the presentations at the RIKEN BNL Research Center workshop 'Progress in High-PT Physics at RHIC', held at BNL in March 2010. Much has been learned from high-p{sub T} physics after 10 years of RHIC operations for heavy-ion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment. The first morning saw review talks on the theory of RHIC high-p{sub T} physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spin program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data. The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE. On the final day of the workshop, the focus shifted toward forward and small-x physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future. The workshop has been a great success

  19. Joint Actinide Shock Physics Experimental Research (JASPER) Facility Update

    International Nuclear Information System (INIS)

    Conrad, C. H.; Miller, J.; Cowan, M.; Martinez, M.; Whitcomb, B.

    2003-01-01

    The JASPER Facility utilizes a Two-Stage Light Gas Gun to conduct equation-of-state(EOS) experiments on plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and control interfaces and containment. The containment systems that were developed for this project will be presented

  20. Planning Facilities for Athletics, Physical Education and Recreation. Revised.

    Science.gov (United States)

    American Alliance for Health, Physical Education, Recreation and Dance (AAHPERD).

    This revised edition includes new material recommended by a panel of experts in the field of recreational planning. The following topics are covered: (1) the planning process; (2) indoor facilities; (3) outdoor facilities; (4) indoor and outdoor swimming pools; (5) encapsulated spaces and stadiums; (6) service areas; (7) recreation and park…

  1. Coal-fired MHD test progress at the Component Development and Integration Facility

    International Nuclear Information System (INIS)

    Hart, A.T.; Rivers, T.J.; Alsberg, C.M.; Filius, K.D.

    1992-01-01

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. In the fall of 1984, a 50-MW t , pressurized, slag rejecting coal-fired combustor (CFC) replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the test hardware, and current controls were installed in the spring of 1990. In the fall of 1990, the slag rejector was installed. MSE test hardware activities included installing the final workhorse channel and modifying the coalfired combustor by installing improved design and proof-of-concept (POC) test pieces. This paper discusses the involvement of this hardware in test progress during the past year. Testing during the last year emphasized the final workhorse hardware testing. This testing will be discussed. Facility modifications and system upgrades for improved operation and duration testing will be discussed. In addition, this paper will address long-term testing plans

  2. Progress in control and data acquisition for the ITER neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, Adriano, E-mail: adriano.luchetta@igi.cnr.it [Consorzio RFX, Euratom-ENEA Association, Padova (Italy); Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton [Consorzio RFX, Euratom-ENEA Association, Padova (Italy); Paolucci, Francesco; Sartori, Filippo [Fusion for Energy, Barcelona (Spain); Barbato, Paolo; Capobianco, Roberto; Breda, Mauro; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico [Consorzio RFX, Euratom-ENEA Association, Padova (Italy)

    2013-10-15

    Highlights: ► An ion source experiment, referred to as SPIDER, is under construction in the ITER neutral beam test facility. ► The progress in designing and testing the SPIDER control and data acquisition system is reported. ► An original approach is proposed in using ITER CODAC and non-ITER CODAC technology. -- Abstract: SPIDER, the ion source test bed in the ITER neutral beam test facility, is under construction and its operation is expected to start in 2014. Control and data acquisition for SPIDER are undergoing final design. SPIDER CODAS, as the control and data acquisition system is referred to, is requested to manage 25 plant units, to acquire 1000 analogue signals with sampling rates ranging from a few S/s to 10 MS/s, to acquire images with up to 100 frames per second, to operate with long pulses lasting up to 1 h, and to sustain 200 MB/s data throughput into the data archive with an annual data storage amount of up to 50 TB. SPIDER CODAS software architecture integrates three open-source software frameworks each addressing specific system requirements. Slow control exploits the synergy among EPICS and Siemens S7 programmable controllers. Data handling is by MDSplus a data-centric framework that is geared towards the collection and organization of scientific data. Diagnostics based on imaging drive the design of data throughput and archive size. Fast control is implemented by using MARTe, a data-driven, object-oriented, real-time environment. The paper will describe in detail the progress of the system hardware and software architecture and will show how the software frameworks interact to provide the functions requested by SPIDER CODAS. The paper will focus on how the performance requirements can be met with the described SPIDER CODAS architecture, describing the progress achieved by carrying out prototyping activities.

  3. Progress in control and data acquisition for the ITER neutral beam test facility

    International Nuclear Information System (INIS)

    Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Capobianco, Roberto; Breda, Mauro; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico

    2013-01-01

    Highlights: ► An ion source experiment, referred to as SPIDER, is under construction in the ITER neutral beam test facility. ► The progress in designing and testing the SPIDER control and data acquisition system is reported. ► An original approach is proposed in using ITER CODAC and non-ITER CODAC technology. -- Abstract: SPIDER, the ion source test bed in the ITER neutral beam test facility, is under construction and its operation is expected to start in 2014. Control and data acquisition for SPIDER are undergoing final design. SPIDER CODAS, as the control and data acquisition system is referred to, is requested to manage 25 plant units, to acquire 1000 analogue signals with sampling rates ranging from a few S/s to 10 MS/s, to acquire images with up to 100 frames per second, to operate with long pulses lasting up to 1 h, and to sustain 200 MB/s data throughput into the data archive with an annual data storage amount of up to 50 TB. SPIDER CODAS software architecture integrates three open-source software frameworks each addressing specific system requirements. Slow control exploits the synergy among EPICS and Siemens S7 programmable controllers. Data handling is by MDSplus a data-centric framework that is geared towards the collection and organization of scientific data. Diagnostics based on imaging drive the design of data throughput and archive size. Fast control is implemented by using MARTe, a data-driven, object-oriented, real-time environment. The paper will describe in detail the progress of the system hardware and software architecture and will show how the software frameworks interact to provide the functions requested by SPIDER CODAS. The paper will focus on how the performance requirements can be met with the described SPIDER CODAS architecture, describing the progress achieved by carrying out prototyping activities

  4. Perceptions of Important Characteristics of Physical Activity Facilities: Implications for Engagement in Walking, Moderate and Vigorous Physical Activity

    Directory of Open Access Journals (Sweden)

    Katie M. Heinrich

    2017-11-01

    Full Text Available BackgroundAlthough few United States adults meet physical activity recommendations, those that do are more likely to access to physical activity facilities. Additionally, vigorous exercisers may be more likely to utilize a nearby physical activity facility, while light-to-moderate exercisers are less likely to do so. However, it is unclear what characteristics of those facilities are most important as well as how those characteristics are related to activity intensity.PurposeThis study examined relationships between self-reported leisure-time physical activities and the use of and perceived characteristics of physical activity facilities.MethodsData were from a cross-sectional study in a major metropolitan area. Participants (N = 582; ages 18–74, mean age = 45 ± 14.7 years were more likely to be female (69.9%, Caucasian (65.6%, married (51.7%, and have some college education (72.8%. Household surveys queried leisure-time physical activity, regular physical activity facility use, and importance ratings for key facility characteristics.ResultsLeisure-time physical activity recommendations were met by 41.0% of participants and 50.9% regularly used a physical activity facility. Regular facility use was positively associated with meeting walking (p = 0.036, moderate (p < 0.001, and vigorous (p < 0.001 recommendations. Vigorous exercisers were more likely to use a gym/fitness center (p = 0.006 and to place higher importance on facility quality (p = 0.022, variety of physical activity options offered (p = 0.003, and availability of special equipment and resources (p = 0.01. The facility characteristics of low or free cost (p = 0.02 and offering childcare (p = 0.028 were barriers for walking, and being where friends and family like to go were barriers for moderate leisure-time physical activity (p = 0.013.ConclusionFindings offer insights for structuring interventions using the social ecological

  5. Evaluation of physical facilities and processing operations of major ...

    African Journals Online (AJOL)

    ADEYEYE

    abattoirs were as a result of failure to enforce the use of standard facilities in carrying out abattoir operations and general maintenance ... incinerator, chemical treatment and disposal. Sub- .... Veterinary laboratory .... sustainable food security.

  6. European facilities for accelerator neutrino physics: Perspectives for the decade to come

    International Nuclear Information System (INIS)

    Battistoni, R.; Mezzetto, M.; Migliozzi, P.; Terranova, F.

    2010-01-01

    Very soon a new generation of reactor and accelerator neutrino oscillation experiments -Double Chooz, Daya Bay, Reno and T 2 K- will seek for oscillation signals generated by the mixing parameter θ13. The knowledge of this angle is a fundamental milestone to optimize further experiments aimed at detecting C P violation in the neutrino sector. Leptonic C P violation is a key phenomenon that has profound implications in particle physics and cosmology but it is clearly out of reach for the aforementioned experiments. Since late 90s', a world-wide activity is in progress to design facilities that can access C P violation in neutrino oscillation and perform high-precision measurements of the lepton counterpart of the Cabibbo-Kobayashi-Maskawa matrix. In this paper the status of these studies will be summarized, focusing on the options that are best suited to exploit existing European facilities (firstly CERN and the INFN Gran Sasso Laboratories) or technologies where Europe has a world leadership. Similar considerations will be developed in more exotic scenarios -beyond the standard framework of flavor oscillation among three active neutrinos- that might appear plausible in the occurrence of anomalous results from post-MiniBooNE experiments or the CNGS.

  7. Annual progress report for 1983 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Menon, S.V.G.

    1984-01-01

    A resume of the work done in the Theoretical Physics Division of the Bhadha Atomic Research Centre, Bombay, during the calendar year 1983 is reported in the form of individual summaries. The main thrust of the work has been in the field of particle transport theory, reactor physics and reactor safety. (M.G.B)

  8. Annual progress report for 1984 of Theoretical Physics Division

    International Nuclear Information System (INIS)

    Rastogi, B.P.; Menon, S.V.G.; Jain, R.P.

    1985-01-01

    This report presents a resume of the work done in the Theoretical Physics Division of the Bhabha Atomic Research Centre, Bombay, during the calendar year 1984. The report is divided into two parts, namely, Nuclear Technology and Mathematical Physics. The topics covered are described by brief summaries. A list of research publications and papers presented in symposia/workshops is also included. (author)

  9. Women in Physics in the Netherlands: Progress and Developments

    NARCIS (Netherlands)

    Rudolf, Petra; de Graaf, Noortje; Koornstra, Renée-Andrée; van Tijn, Paula; Kool, Dorien

    The visibility of women and the awareness of a healthy gender balance in physics in the Netherlands have clearly improved over the last few years. Initiatives to promote women and their possibilities to pursue a career in physics are plentiful and commendable. Nevertheless, the numbers do not yet

  10. Joint Actinide Shock Physics Experimental Research (JASPER) Facility Overview

    International Nuclear Information System (INIS)

    Konrad, C.H.; Braddy, R.W.; Martinez, Mark

    2001-01-01

    The JASPER Facility will utilize a Two-Stage Light Gas Gun to conduct equation-of-state (EOS) experiments of plutonium and other special nuclear materials. The overall facility will be discussed with emphasis on the Two-Stage Light Gas Gun characteristics and mission. The primary and secondary containment systems that were developed for this project will be presented. Primary gun diagnostics and timing will also be discussed

  11. The environment and urban adolescents' use of recreational facilities for physical activity: a qualitative study.

    Science.gov (United States)

    Ries, Amy V; Gittelsohn, Joel; Voorhees, Carolyn C; Roche, Kathleen M; Clifton, Kelly J; Astone, Nan M

    2008-01-01

    Investigate environmental factors influencing the use of recreational facilities for physical activity by urban African-American adolescents. Qualitative in-depth interviews and direct observation. Two public high schools and 24 public recreational facilities in Baltimore, Maryland. Forty-eight African-American adolescents aged 14 to 18 years. Data from 48 in-depth interviews and 26 observations were coded using NVivo software and analyzed using the constant comparative method. Facility use is influenced by characteristics of the physical, social, organizational, and economic environments. Adolescents are attracted to low-cost, well-maintained facilities that offer preferred activities and that are within close proximity to home. Adolescents with limited access to facilities use alternative play spaces, like the streets or vacant lots, where they risk injury from falling or being hit by a car. They are drawn to facilities where they find active adolescents, and they avoid those where young people are engaged in drug or gang activity. Concerns about facility safety largely determine use, particularly for adolescent girls. Previous research points to the importance of increasing facility availability as a means of promoting physical activity, particularly in minority communities in which availability is disproportionately limited. This study shows that, while availability is important, additional facility characteristics should be considered when using environmental change to promote facility use for physical activity.

  12. Distribution of physical activity facilities in Scotland by small area measures of deprivation and urbanicity

    Directory of Open Access Journals (Sweden)

    Ogilvie David

    2010-10-01

    Full Text Available Abstract Background The aim of this study was to examine the distribution of physical activity facilities by area-level deprivation in Scotland, adjusting for differences in urbanicity, and exploring differences between and within the four largest Scottish cities. Methods We obtained a list of all recreational physical activity facilities in Scotland. These were mapped and assigned to datazones. Poisson and negative binomial regression models were used to investigate associations between the number of physical activity facilities relative to population size and quintile of area-level deprivation. Results The results showed that prior to adjustment for urbanicity, the density of all facilities lessened with increasing deprivation from quintiles 2 to 5. After adjustment for urbanicity and local authority, the effect of deprivation remained significant but the pattern altered, with datazones in quintile 3 having the highest estimated mean density of facilities. Within-city associations were identified between the number of physical activity facilities and area-level deprivation in Aberdeen and Dundee, but not in Edinburgh or Glasgow. Conclusions In conclusion, area-level deprivation appears to have a significant association with the density of physical activity facilities and although overall no clear pattern was observed, affluent areas had fewer publicly owned facilities than more deprived areas but a greater number of privately owned facilities.

  13. The relationship between sports facility accessibility and physical activity among Korean adults

    Directory of Open Access Journals (Sweden)

    Sang Ah Lee

    2016-08-01

    Full Text Available Abstract Background The benefits of physical activity on physical and mental health are well known. The accessibility of sports facilities is reported to have considerable association with the amount of physical activity a person participates in. Therefore, we investigated the association between subjectively assessed accessibility of sports facilities and physical activity among Korean adults. Methods We obtained data from the 2012 Community Health Survey. Physical activity was measured based on weekly metabolic equivalent task (MET hours according to the International Physical Activity Questionnaire (IPAQ. Sociodemographic, economic, and health variables were used as covariates in a logistic regression model. Results A total 201,723 participants were included in this study. Participants with easy access to sports facilities participated in physical activity more often than those without easy access (OR = 1.16, 95 % CI 1.13–1.20. More physical activity was generally observed if participants had a history of depression or if participants were among the white-collar or urban subgroups. Conclusion Our results showed that the accessibility of sports facilities is associated with physical activity. Therefore, it is crucial to consider the accessibility of sports facilities when promoting an environment conducive to physical activity or designing programs for enhancing physical activity.

  14. High Energy Physics progress report, 1985-1986

    International Nuclear Information System (INIS)

    1986-01-01

    Progress is reported for experiments addressing: hadron-nucleus collisions, charm production from pp collisions at 400 and 800 GeV/c, radial excitation of rho, direct photon and charmonium production, and search for a quark-gluon plasma in proton-antiproton collisions at 2 TeV

  15. Physical protection of nuclear facilities and materials. Safeguards and the role of the IAEA in physical protection

    International Nuclear Information System (INIS)

    Smolej, M.

    1999-01-01

    The physical protection and security of nuclear facilities and materials concerns utilities, manufactures, the general public, and those who are responsible for licensing and regulating such facilities. The requirements and process to ensure an acceptable physical protection and security system have been evolutionary in nature. This paper reviews the first step of such process: the State's safeguards system and the international safeguards system of the International Atomic Energy Agency (IAEA), including the relationship between these two safeguards systems. The elements of these systems that are reviewed include the State System of Accounting for and Control of Nuclear Material, physical protection measures, and containment and surveillance measures. In addition, the interactions between the State, the facility operator, and the IAEA are described. The paper addresses the IAEA safeguards system, including material accountancy and containment and surveillance; the State safeguards system, including material control and accountancy, and physical protection; the role of the IAEA in physical protection; a summary of safeguards system interactions.(author)

  16. Progress in the realization of the PRIMA neutral beam test facility

    Science.gov (United States)

    Toigo, V.; Boilson, D.; Bonicelli, T.; Piovan, R.; Hanada, M.; Chakraborty, A.; Agarici, G.; Antoni, V.; Baruah, U.; Bigi, M.; Chitarin, G.; Dal Bello, S.; Decamps, H.; Graceffa, J.; Kashiwagi, M.; Hemsworth, R.; Luchetta, A.; Marcuzzi, D.; Masiello, A.; Paolucci, F.; Pasqualotto, R.; Patel, H.; Pomaro, N.; Rotti, C.; Serianni, G.; Simon, M.; Singh, M.; Singh, N. P.; Svensson, L.; Tobari, H.; Watanabe, K.; Zaccaria, P.; Agostinetti, P.; Agostini, M.; Andreani, R.; Aprile, D.; Bandyopadhyay, M.; Barbisan, M.; Battistella, M.; Bettini, P.; Blatchford, P.; Boldrin, M.; Bonomo, F.; Bragulat, E.; Brombin, M.; Cavenago, M.; Chuilon, B.; Coniglio, A.; Croci, G.; Dalla Palma, M.; D'Arienzo, M.; Dave, R.; De Esch, H. P. L.; De Lorenzi, A.; De Muri, M.; Delogu, R.; Dhola, H.; Fantz, U.; Fellin, F.; Fellin, L.; Ferro, A.; Fiorentin, A.; Fonnesu, N.; Franzen, P.; Fröschle, M.; Gaio, E.; Gambetta, G.; Gomez, G.; Gnesotto, F.; Gorini, G.; Grando, L.; Gupta, V.; Gutierrez, D.; Hanke, S.; Hardie, C.; Heinemann, B.; Kojima, A.; Kraus, W.; Maeshima, T.; Maistrello, A.; Manduchi, G.; Marconato, N.; Mico, G.; Moreno, J. F.; Moresco, M.; Muraro, A.; Muvvala, V.; Nocentini, R.; Ocello, E.; Ochoa, S.; Parmar, D.; Patel, A.; Pavei, M.; Peruzzo, S.; Pilan, N.; Pilard, V.; Recchia, M.; Riedl, R.; Rizzolo, A.; Roopesh, G.; Rostagni, G.; Sandri, S.; Sartori, E.; Sonato, P.; Sottocornola, A.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Tardocchi, M.; Thakkar, A.; Umeda, N.; Valente, M.; Veltri, P.; Yadav, A.; Yamanaka, H.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zaupa, M.

    2015-08-01

    The ITER project requires additional heating by two neutral beam injectors, each accelerating to 1 MV a 40 A beam of negative deuterium ions, to deliver to the plasma a power of about 17 MW for one hour. As these requirements have never been experimentally met, it was recognized as necessary to setup a test facility, PRIMA (Padova Research on ITER Megavolt Accelerator), in Italy, including a full-size negative ion source, SPIDER, and a prototype of the whole ITER injector, MITICA, aiming to develop the heating injectors to be installed in ITER. This realization is made with the main contribution of the European Union, through the Joint Undertaking for ITER (F4E), the ITER Organization and Consorzio RFX which hosts the Test Facility. The Japanese and the Indian ITER Domestic Agencies (JADA and INDA) participate in the PRIMA enterprise; European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache and others are also cooperating. Presently, the assembly of SPIDER is on-going and the MITICA design is being completed. The paper gives a general overview of the test facility and of the status of development of the MITICA and SPIDER main components at this important stage of the overall development; then it focuses on the latest and most critical issues, regarding both physics and technology, describing the identified solutions.

  17. Hanford Federal Facility Agreement and Consent Order, quarterly progress report, March 31, 1992

    International Nuclear Information System (INIS)

    1992-05-01

    This is the twelfth quarterly report as required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1990), established between the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology). The Tri-Party Agreement sets the plan and schedule for achieving regulatory compliance and cleanup of waste sites at the Hanford Site. This report covers progress for the quarter that ended March 31, 1992. Topics covered under technical status include: disposal of tank wastes; cleanup of past-practice units; permitting and closure of treatment, storage, and disposal units; and other tri-party agreement activities and issues

  18. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  19. The quality management journey: the progress of health facilities in Australia.

    Science.gov (United States)

    Carr, B J

    1994-12-01

    Many facilities in Australia have taken the Total Quality Management (TQM) step. The objective of this study was to examine progress of adopted formal quality systems in health. Sixty per cent of organizations surveyed have adopted formal systems. Of these, Deming adherents are the most common, followed by eclectic choices. Only 35% considered the quality transition as reasonably easy. There was no relationship between accreditation and formal quality systems identified. The most common improvement techniques were: flow charts, histograms, and cause and effect diagrams. Quality practitioners are happy to use several tools exceptionally well rather than have many tools at their disposal. The greatest impediment to the adoption of quality was the lack of top management support. This study did not support the view that clinicians are not readily actively supporting quality initiatives. Total Quality Management is not a mature concept; however, Chief Executive Officers are assured that rewards will be realized over time.

  20. Physics Division progress report, Special 50th anniversary issue, January 1, 1992--December 31, 1992

    International Nuclear Information System (INIS)

    Shera, E.B.; Hollen, G.Y.

    1993-01-01

    This special anniversary issue of the Physics Division progress report presents a series of articles that describe the missions and projects of the past and present Physics Division Leaders during their respective tenures. The report also includes selected accounts of significant progress in research and development achieved by Physics Division personnel during the period January 1, 1992, through December 31, 1992, a general description of the goals and interests of the Division, and a list of publications produced during this period. The report represents the three main areas of experimental research and development in which the Physics Division serves the needs of Los Alamos National Laboratory and the nation in defense and basic sciences: (1) fundamental research in nuclear and particle physics, condensed-matter physics, and biophysics; (2) laser physics and applications, especially to high-density plasmas; and (3) defense physics, including the development of diagnostic methods for weapons tests, weapons-related high energy-density physics, and other programs

  1. Keynote address: One hundred years of nuclear physicsProgress ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... being planned for the future make the prospects for research in this field ... matter at high energies and densities; observation of behaviour of nuclei ... This value is similar to the ones reported in string theory, atomic physics.

  2. Progress report of Applied Physics Division. July 1984 - June 1985

    International Nuclear Information System (INIS)

    2004-01-01

    The activities of the Division during 1984/85 were again directed towards the general program objectives of the past two years. A shift in emphasis resulted in some organization changes. The increased importance of nuclear safeguards research in the Government's support for the International Atomic Energy Agency program has prompted a re-arrangement of the nuclear physics and science activities. Dr JR. Bird holds the responsibility for the Nuclear Science Section comprising the Nuclear Applications Group, Biomedical and Reactor Applications Group and the Neutron Scattering Group. The newly formed Safeguards and Nuclear Physics Section is headed by Dr J.W. Boldeman and includes the Safeguards Group and Nuclear Physics Group. The organization of the remainder of the Division is unchanged. The work on the electronic properties of hydrogen in silicon has been particularly rewarding and the plasma physics studies received recognition with an IAEA sponsored workshop on Compact Torus Research held in Sydney in March 1985 (author)

  3. Theoretical Physics Division progress report October 1979 - September 1980

    International Nuclear Information System (INIS)

    1981-04-01

    Research at Harwell on nuclear, atomic and molecular physics, the theory of fluids, radiation damage, safety studies, point defects and point defect determined processes, surface studies and nondestructive examination are described. (U.K.)

  4. Basic research in theoretical high energy physics. Progress report

    International Nuclear Information System (INIS)

    Adler, S.L.

    1984-01-01

    Activities in numerous areas of basic research in theoretical high energy physics are listed, and some highlights are given. Areas of research include statistical mechanics, quantum field theory, lattice gauge theories, and quantum gravity. 81 references

  5. Progress report of Applied Physics Division. July 1984 - June 1985

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The activities of the Division during 1984/85 were again directed towards the general program objectives of the past two years. A shift in emphasis resulted in some organization changes. The increased importance of nuclear safeguards research in the Government's support for the International Atomic Energy Agency program has prompted a re-arrangement of the nuclear physics and science activities. Dr JR. Bird holds the responsibility for the Nuclear Science Section comprising the Nuclear Applications Group, Biomedical and Reactor Applications Group and the Neutron Scattering Group. The newly formed Safeguards and Nuclear Physics Section is headed by Dr J.W. Boldeman and includes the Safeguards Group and Nuclear Physics Group. The organization of the remainder of the Division is unchanged. The work on the electronic properties of hydrogen in silicon has been particularly rewarding and the plasma physics studies received recognition with an IAEA sponsored workshop on Compact Torus Research held in Sydney in March 1985 (author)

  6. Research in theoretical nuclear physics. Annual progress report No. 18

    International Nuclear Information System (INIS)

    1986-01-01

    Research programs in four major areas are described: the structure of the nucleon and the nucleon-nucleon interaction, strangeness, and strange baryons; the equation of state of dense matter with specific concern both for the problems of stellar collapse and supernova explosions and of relativistic heavy-ion collisions, nuclear structure physics; and relativistic effects in nuclear particularly heavy ion reactions and quark matter physics. New research efforts in many-body theory are also described

  7. Physics Department annual progress report 1 January - 31 December 1983

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Lebech, B.

    1984-03-01

    Research in the Physics Department at Risoe National Laboratory covers three main fields: Condensed Matter Physics, Plasma Physics and Meteorology. The principal activities in these fields for the period from 1 January to 31 December 1983 are described. The condensed matters physics research is predominantly experimental utilising diffraction of neutrons and X-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. The plasma physics research is partly experimental and partly theoretical. A study of pellet-plasma interaction is of applied nature and aimed at assessing the possibilities of refuelling a fusion reactor by shooting deuterium-tritium pellets into the plasma. A study of the fundamental physics of plasmas deals with investigations of wave propagation properties, instabilities, solitons, turbulence, etc. The research and applied work within meteorology lies within micrometeorology and the subjects range from surface energy balance studies, over studies of the general structure of atmospheric coherence and boundary layer response to change in surface elevation, to specific studies of turbulent dispersion and deposition of airborne material. As part of the applied work within meteorology and wind energy, the test station for small windmills tests and licences windmills for the Danish market and offers consulting assistance for the Danish windmill manufacturers. (Auth.)

  8. The radiological research accelerator facility. Progress report, December 1, 1995--November 30, 1996

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1996-08-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory (RRL) - of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. RARAF was conceived in the mid-1960s by Drs. Victor P. Bond of Brookhaven National Laboratory (BNL) and Harald H. Rossi of Columbia University as a research resource dedicated to radiobiology and radiological physics and was officially established on January 1, 1967. The RARAF Van de Graaff accelerator originally served as the injector for the Cosmotron, a 2-GeV accelerator operated at BNL in the 1950s and early 1960s. The immediate aim was to provide a source of monoenergetic neutrons for studies in radiation biology, dosimetry, and microdosimetry. In other major projects the energetic ions produced were utilized directly. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and returned to operation. This report contains the following information on RARAF: RARAF user's guide; scientific advisory committee; research using RARAF; accelerator utilization and operation; and development of the facilities

  9. Performance-assessment progress for the Rozan low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Smietanski, L.; Mitrega, J.; Frankowski, Z. [Polish Geological Institute, Warsaw (Poland)] [and others

    1995-12-31

    The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangered unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.

  10. Sustainable data policy for a data production facility: a work in (continual) progress

    Science.gov (United States)

    Ketcham, R. A.

    2017-12-01

    The University of Texas High-Resolution X-Ray Computed Tomography Facility (UTCT) has been producing volumetric data and data products of geological and other scientific specimens and engineering materials for over 20 years. Data volumes, both in terms of the size of individual data sets and overall facility production, have progressively grown and fluctuated near the upper boundary of what can be managed by contemporary workstations and lab-scale servers and network infrastructure, making data policy a preoccupation for our entire history. Although all projects have been archived since our first day of operation, policies on which data to keep (raw, reconstructed after corrections, processed) have varied, and been periodically revisited in consideration of the cost of curation and the likelihood of revisiting and reprocessing data when better techniques become available, such as improved artifact corrections or iterative tomographic reconstruction. Advances in instrumentation regularly make old data obsolete and more advantageous to reacquire, but the simple act of getting a sample to a scanning facility is a practical barrier that cannot be overlooked. In our experience, the main times that raw data have been revisited using improved processing to improve image quality were predictable, high-impact charismatic projects (e.g., Archaeopteryx, A. Afarensis "Lucy"). These cases actually provided the impetus for development of the new techniques (ring and beam hardening artifact reduction), which were subsequently incorporated into our data processing pipeline going forward but were rarely if ever retroactively applied to earlier data sets. The only other times raw data have been reprocessed were when reconstruction parameters were inappropriate, due to unnoticed sample features or human error, which are usually recognized fairly quickly. The optimal data retention policy thus remains an open question, although erring on the side of caution remains the default

  11. Progress on establishing guidelines for National Ignition Facility (NIF) experiments to extend debris shield lifetime

    International Nuclear Information System (INIS)

    Tobin, M.; Eder, D.; Braun, D.; MacGowan, B.

    2002-01-01

    The survivability of the debris shields on the National Ignition Facility (NIF) are a key factor for the affordable operation of the facility. The improvements required over Nova debris shields are described. Estimates of debris shield lifetimes in the presence of target emissions with 4-8 J/cm 2 laser fluences indicate lifetimes that may contribute unacceptably to operations costs for NIF. We are developing detailed suggested guidance for target and experiment designers for NIF to assist in minimizing the damage to, and therefore the cost of, maintaining NIF debris shields. The guidance suggests a target mass quantity that as particulate on the debris shields (300 mg) may be within current operating budgets. It also suggests the amount of material that should become shrapnel on a shot (10 mg). Finally, it suggests the level of non-volatile residue (NVR) that would threaten the sol-gel coatings on the debris shields (1 μg/cm 2 ). We review the experimentation on the Nova chamber that included measuring quantities of particulate on debris shields by element and capturing shrapnel pieces in aerogel samples mounted in the chamber. We also describe computations of X-ray emissions from a likely NIF target and the associated ablation expected from this X-ray exposure on supporting target hardware. We describe progress in assessing the benefits of a pre-shield and the possible impact on the guidance for target experiments on NIF. Plans for possible experimentation on Omega and other facilities to improve our understanding of target emissions and their impacts are discussed. Our discussion of planned future work provides a forum to invite possible collaboration with the IFE community

  12. Report on progress of researches by common utilization of nuclear facilities, for fiscal 1980

    International Nuclear Information System (INIS)

    1981-01-01

    The common utilization of the facilities in the Japan Atomic Energy Research Institute by universities has been carried out for 20 years, and it contributed very much to the progress of the basic researches on atomic energy and the training of the persons concerned to atomic energy. This report is to be published, summarizing the results of researches carried out actively in 1980. The total number of the subjects in the common utilization of reactors and others was 126, and the total number of visitors during one year was 3356 man-day. 19 cold rooms and 6 hot rooms were leased from the JAERI as the university open laboratory, and Ge(Li) semiconductor detectors, multiple pulse height analyzers, gas chromatography, spectrophotometers, Moessbauer effect measuring equipments, X-ray diffraction equipments and others are installed. A minicomputer was installed in 1978, and preparation is in progress so as to be available as a new correlation measuring equipment. A pure Ge semiconductor detector and a 4000-channel multiple pulse height analyzer were additionally installed in 1980. The state of RI management and radiation control in the open laboratory is reported. The abstracts of the research reports are provided. (Kako, I.)

  13. Health physics manual of good practices for tritium facilities

    International Nuclear Information System (INIS)

    Blauvelt, R.K.; Deaton, M.R.; Gill, J.T.

    1991-12-01

    The purpose of this document is to provide written guidance defining the generally accepted good practices in use at Department of Energy (DOE) tritium facilities. A open-quotes good practiceclose quotes is an action, policy, or procedure that enhances the radiation protection program at a DOE site. The information selected for inclusion in this document should help readers achieve an understanding of the key radiation protection issues at tritium facilities and provide guidance as to what characterizes excellence from a radiation protection point of view. The ALARA (As Low as Reasonable Achievable) program at DOE sites should be based, in part, on following the good practices that apply to their operations

  14. Physics department annual progress report, 1 Jan - 31 Dec 1975

    International Nuclear Information System (INIS)

    Bjeerum Moeller, H.; Lebech, B.

    1975-12-01

    The principal activities in the fields of solid-state physics (neutron scattering), plasma physics, nuclear spectroscopy and meteorology are presented. The main experimental and theoretical work in solid-state physics has involved: investigation of the static and dynamic properties of magnetic solids; studies of various kinds of phase transitions in solids and liquid-like systems; electronic energy band calculations of metals; and investigations of the structure and lattice dynamics of molecular crystals and adsorbed monolayers. The work of the plasma physics section is centered on technology of interest for future fusion reactors and on basic plasma physics. The technological aspects of plasma phsics are undertaken with one of the possible refuelling schemes for fusion reactors in mind. The main object of the basic research is investigations of waves and instabilites in a relatively cold steady state plasma. The activites in the field of nuclear spectroscopy have concerned an attempt to form the 236 U fission isomer with thermal neutrons and studies of the fine structure in the mass distribution for fission fragments. The meteorology section is primarily engaged in studies of the planetary boundary layer. (B.R.H.)

  15. Progress of the DUPIC fuel compatibility analysis (I) - reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Jeong, Chang Joon; Roh, Gyu Hong; Rhee, Bo Wook; Park, Jee Won

    2003-12-01

    Since 1992, the direct use of spent pressurized water reactor fuel in CANada Deuterium Uranium (CANDU) reactors (DUPIC) has been studied as an alternative to the once-through fuel cycle. The DUPIC fuel cycle study is focused on the technical feasibility analysis, the fabrication of DUPIC fuels for irradiation tests and the demonstration of the DUPIC fuel performance. The feasibility analysis was conducted for the compatibility of the DUPIC fuel with existing CANDU-6 reactors from the viewpoints of reactor physics, reactor safety, fuel cycle economics, etc. This study has summarized the intermediate results of the DUPIC fuel compatibility analysis, which includes the CANDU reactor physics design requirements, DUPIC fuel core physics design method, performance of the DUPIC fuel core, regional overpower trip setpoint, and the CANDU primary shielding. The physics analysis showed that the CANDU-6 reactor can accommodate the DUPIC fuel without deteriorating the physics design requirements by adjusting the fuel management scheme if the fissile content of the DUPIC fuel is tightly controlled.

  16. Present and future neutrino physics research at the Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Sanders, G.H.

    1988-01-01

    The Los Alamos Meson Physics Facility is currently the site of two neutrino experiments. A measurement of elastic scattering of electron-neutrinos on electrons is providing confirmation of the destructive interference between the weak neutral and charged currents predicted in the standard electroweak theory. A search for the appearance of /bar/ν//sub e/ is being carried out at the LAMPF beam stop, as well. The status of this experiment is described. A major new initiative is being undertaken to measure neutrino-electron scattering in a large water Cerenkov detector. This meaurement will be precise enough to provide, in combination with the meaurements to be performed at the new generation of high-energy electron-positron colliers, the first experimental study of the standard electrowak theory at the level of one-loop radiative corrections. The detector will also be a vehicle for neutrino-oscillation searches, measurement of neutrinos from supernovae, and other fundamental physics. The apparatus will consist of a neutrino production target and shield surrounded by a water Cerenkov detector. The fiducial volume of water will be approximately 7000 tons, viewed by approximately 13000 20 cm diameter photomultiplier tubes. 11 refs., 6 figs

  17. Physical activity in relation to development and progression of myopia

    DEFF Research Database (Denmark)

    Suhr Thykjær, Anne; Lundberg, Kristian; Grauslund, Jakob

    2017-01-01

    . The objective of this study was to make a systematic review regarding the correlation between physical activity and myopia. A total of 263 papers were identified in a systematic database search of PubMed/Medline and Embase. Five steps of screening removed studies of a low evidence quality and animal studies......On a global scale, myopia is one of the most common causes of visual impairment. Given the increasing prevalence of myopia, it is vital to understand the pathogenesis and to identify potential interventions. Some studies have described physical activity as a potential correlation for myopia....... Studies included had refractive error and physical activity (as measured by questionnaires, accelerometers and cycle ergometers) as separate, well-defined outcomes. Nine studies (six cross-sectional, two cohorts and one case-control study) with a total of 17 634 subjects were included. Six studies...

  18. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    International Nuclear Information System (INIS)

    Apostolakis, J; Burkhardt, H; Ivanchenko, V N; Asai, M; Bagulya, A; Grichine, V; Brown, J M C; Chikuma, N; Cortes-Giraldo, M A; Elles, S; Jacquemier, J; Guatelli, S; Incerti, S; Kadri, O; Maire, M; Urban, L; Pandola, L; Sawkey, D; Toshito, T; Yamashita, T

    2015-01-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed. (paper)

  19. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1981-08-01

    The objectives, basic research programs, recent results and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. A synopsis of research carried out last year is given. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research

  20. Theoretical high energy physics research. Technical progress report

    International Nuclear Information System (INIS)

    Rosner, J.L.

    1985-01-01

    The research activities summarized include: neutral heavy leptons, unusual DESY and CERN events, exotic fermions in superstring models, magnetic monopoles, nonleptonic hyperon decays, heavy quark spectroscopy, supersymmetric quantum mechanics and inverse scattering, SU(3) breaking and the H dibaryon, P-wave mesons with one heavy quark, CP violation, magnetic moments of baryons, dynamical mass generation, lattice gauge theories that include fermions, modification of quantum mechanics to include a fundamental length, speculation concerning physics near the Planck scale, novel physics possibilities of hadron colliders, inclusive structure functions in e + e - colliders especially at the Z 0 resonance, and global structure of supermanifolds. 103 refs

  1. 42 CFR 9.4 - Physical facility policies and design.

    Science.gov (United States)

    2010-10-01

    ....edu; or view it online at http://oacu.od.nih.gov/regs/guide/guidex.htm. You may inspect a copy at NIH... required to develop disaster and escaped animal contingency plans? The sanctuary facility must prepare disaster and escaped animal contingency plans outlining simple and easy to follow plans for dealing with...

  2. Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Baker, W.H.; Wittman, R.S.; Amos, C.N.

    1993-01-01

    The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility

  3. Wills Plasma Physics Department annual progress report 1982

    International Nuclear Information System (INIS)

    1982-01-01

    Progress in the experimental program using the research tokamak TORTUS is presented. The main thrust of the program is the study of the characteristics of hydromagnetic waves in tokamak plasmas and in the use of such waves in r.f. heating. Work on runaway electron production, on wave propagation in collisional plasmas and on hydromagnetic shock wave studies is reported. Diagnostic techniques and equipment described include a laser interferometer system and techniques based on the observation of resonance fluorescence and near-resonant scattering of a laser beam from atomic species in a plasma

  4. Radiation physics, biophysics and radiation biology. Progress report, October 1, 1980-September 30, 1981

    International Nuclear Information System (INIS)

    1981-07-01

    Separate abstracts were prepared for the 29 papers in this progress report which deal with radiobiological physics, the biological effects of ionizing radiations, and the modification of these effects by chemical and pharmacological agents

  5. Study of high-energy physics underground. Technical progress report

    International Nuclear Information System (INIS)

    Lande, K.

    1983-10-01

    The status of the Large Area Liquid Scintillation Detector now under construction in the Homestake Mine is given. The physics goals are discussed including searches for massive magnetic monpoles, atmospheric neutrinos, and neutrino bursts from collapsing stars. The construction status and detector electronics are described. Also, solar neutrino detection with a liquid scintillator stack is discussed

  6. Nuclear Physics Group progress report January - December 1982

    International Nuclear Information System (INIS)

    Coote, G.E.

    1983-08-01

    The work of the Nuclear Physics Group of the Institute of Nuclear Sciences during the period July-December 1981 is described. Installation of the EN-tandem electrostatic accelerator proceeded to the voltage test stage. Highlights of the research programme included nuclear microprobe studies of bone and teeth, and depth profiling of sodium in hydrated obsidian

  7. Progress report, Physics Division, April 1 to June 30, 1975

    International Nuclear Information System (INIS)

    1975-08-01

    The operation and research purposes of the Chalk River MP tandem accelerator are described. Besides programs in nuclear and solid state physics, research is carried out on improved radiation detectors and mathematical support of on-going programs. (E.C.B.)

  8. Physics department annual progress report, 1 Jan - 31 Dec 1976

    International Nuclear Information System (INIS)

    Bjerrum Moeller, H.; Lebech, B.

    1976-12-01

    The principal activities in the fields of solid-state physics (neutron scattering), plasma physics and meteorology are presented in this report that covers the period 1 January to 31 December 1976. In addition, research on nuclear spectroscopy was carried out up until March 31, 1976. The experimental and theoretical work in solid-state physics is roughly divided into the following main subject fields: investigations of the dynamic and static properties of magnetic and superconducting solids; studies of various kinds of phase transitions in magnetic and molecular systems; and investigations of the dynamic and static properties of molecular crystals and adsorbed monolayers. The main object of basic research in plasma physics is to investigate waves and instabilities in a relatively cold steady state plasma (produced in a Q-machine). Turbulence, ion cyclotron waves, and ion-acoustic waves in the presence of electron plasma waves are the chief phenomena investigated. Work on nuclear spectroscopy was concentrated on problems relating to fission. The meteorology section is primarily engaged in studies of the planetary boundary layer. (B.R.H.)

  9. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  10. The Ignition Physics Campaign on NIF: Status and Progress

    International Nuclear Information System (INIS)

    Edwards, M. J.

    2016-01-01

    We have made significant progress in ICF implosion performance on NIF since the 2011 IFSA. Employing a 3-shock, high adiabat CH (“High-Foot”) design, total neutron yields have increased 10-fold to 6.3 x10 15 (a yield of ∼ 17 kJ, which is greater than the energy invested in the DT fuel ∼ 12kJ). At that level, the yield from alpha self-heating is essentially equivalent to the compression yield, indicating that we are close to the alpha self-heating regime. Low adiabat, 4-shock High Density Carbon (HDC) capsules have been imploded in conventional gas-filled hohlraums, and employing a 6 ns, 2-shock pulse, HDC capsules were imploded in near-vacuum hohlraums with overall coupling ∼ 98%. Both the 4- and 2-shock HDC capsules had very low mix and high yield over simulated performance. Rugby holraums have demonstrated uniform x-ray drive with minimal Cross Beam Energy Transfer (CBET), and we have made good progress in measuring and modelling growth of ablation front hydro instabilities. (paper)

  11. Research in high energy elementary particle physics: Annual progress report, [March 1, 1986-February 29, 1988

    International Nuclear Information System (INIS)

    Field, R.; Ramond, P.; Thorn, C.; Avery, P.; Walker, J.; Tanner, D.; Sikivie, P.; Sullivan, N.; Majeswki, S.

    1988-01-01

    This is a progress report covering the period March 1, 1986 through February 29, 1988 for the High Energy Physics program at the University of Florida (DOE Florida Demonstration Project grant FG05-86-ER40272). Our research program covers a braod range of topics in theoretical and experimental physics and includes detector development and an Axion search. Included in this report is a summary of our program and a discussion of the research progress

  12. Atomic physics at the future facility for antiproton and ion research: a status report

    International Nuclear Information System (INIS)

    Gumberidze, A

    2013-01-01

    The new international accelerator Facility for Antiproton and Ion Research (FAIR) which is currently under construction in Darmstadt has key features that offer a wide range of exciting new opportunities in the field of atomic physics and related fields. The facility will provide highest intensities of relativistic beams of both stable and unstable heavy nuclei, in combination with the strong electromagnetic fields generated by high-power lasers, thus allowing to widen atomic physics research into completely new domains. In the current contribution, a short overview of the SPARC (Stored Particle Atomic physics Research Collaboration) research programme at the FAIR facility is given. Furthermore, we present the current strategy for the realization of the envisioned SPARC physics programme at the modularized start version of the FAIR facility. (paper)

  13. Intervention to promote physical health in staff within mental health facilities and the impact on patients' physical health

    DEFF Research Database (Denmark)

    Hjorth, Peter; Davidsen, Annette S; Kilian, Reinhold

    2016-01-01

    of an intervention programme for improving physical health in staff working in longtermpsychiatric treatment facilities. Furthermore, the paper measured the association betweenstaff’s changes in physical health and the patients’ changes in physical health. Methods: Thestudy was a cluster randomized controlled 12......-month intervention study, and the interventionwas active awareness on physical health. Results: In the intervention group the staff reducedtheir waist circumference by 2.3 cm (95% CI: 0.3–4.4) when controlling for gender, age andcigarette consumption. In the control group, the staff changed their waist...... blood pressure was seen. Indications that staff acted aspositive role models for the patients’ physical health were seen....

  14. Status of the Tau-Charm Facility and highlights of its physics program

    International Nuclear Information System (INIS)

    Schindler, R.H.

    1990-02-01

    In this paper I will first discuss the history and current status of the Tau-Charm Facility. I will then focus on the unique aspects of the heavy meson and tau physics program of such a facility, which motivates its construction and operation in the mid-1090's

  15. Progress report, Physics and Health Sciences: Health Sciences Section

    International Nuclear Information System (INIS)

    1990-04-01

    This report reviews the activities of the Dosimetric Research, Environmental Research, and Radiation Biology Branches of Atomic Energy of Canada Ltd. Radiation protection and the risk of carcinogenesis is covered in a topical review. A five-year study on the relative biological effectiveness of tritium beta rays in a mammalian tumor system has just been completed. Research in hydrogeology continues, and support is growing for establishing an international facility at Chalk River. A sediment probe was demonstrated in mapping major zones of groundwater and organic solute upwelling on the bottom of Puget Sound. Evidence was found that saline springs in the Nipigon Basin originate in nearby sedimentary rocks and not from Precambrian crystalline formations. The experimental portion of a study on the carcinogenic effects of inhaled uranium ore dust will be carried out for the Atomic Energy Control Board

  16. Progress report of Applications of Nuclear Physics. July 1994 - June 1995

    International Nuclear Information System (INIS)

    2004-01-01

    The objectives of the Applications of Nuclear Physics Program Area are: The development and promotion of research programs on national nuclear science facilities such as charged particle accelerators and neutron beam instruments thereby encouraging strategic research in nuclear science and technology at ANSTO, in tertiary institutions and industrial research and development laboratories; Participation in and management of Australian use of international neutron scattering, synchrotron radiation and high energy physics facilities to assist graduate training in the Universities and to foster Australian benefits ,from developments in high technology; The maintenance of expertise in fundamental nuclear and atomic processes relevant to nuclear science and technology including neutron physics, ion interactions, radiation standards, dosimetry and laser enrichment; Expansion of the use of accelerator mass spectromety both nationally and internationally to make major contributions in the understanding and remediation of severe environmental problems such as the greenhouse effect; The application of charged particle beams and ionizing radiation to industrial. biological nad environmental problems; The exploitation of neutron scattering techniques in the development of new materials, drugs, biological substances and complex chemicals. The research activities of the Applications of Nuclear Physics Pro-ram Area are organized into several large projects: Accelerator Applications, Accelerator Mass Spectrometry, Neutron Scattering, International Science (incorporating High Energy Physics and Synchrotron Radiation Research), Radiation Technology and Standards. In addition, there were a number of other supporting projects. An important aspect of the activities of the Program Area, as will be clear from the objectives listed above, is the development and improvement of the larger experimental facilities within the Program Area. Considerable progress has been made in the development

  17. Health physics considerations at a neutron therapy facility cyclotron

    International Nuclear Information System (INIS)

    Kleck, J.H.; Krueger, D.J.; Mc Laughlin, J.E.; Smathers, J.B.

    1987-01-01

    The U.C.L.A. Neutron Therapy Facility (NTF) is one of four such facilities in the United States currently involved in NCI sponsored trials of neutron therapy and reflects the present interest in the use of high energy neutron beams for treating certain types of human cancers. The NTF houses a CP-45 negative ion cyclotron which accelerates a 46 MeV proton beam for production of neutrons from a beryllium target. In addition to patient treatment, the NTF is involved in the production of positron emitting radioisotopes for diagnostic use in Positron Emission Tomography (PET). The activation of therapy treatment collimators, positron and neutron target systems, and a high and rapidly varying external radiation environment in a clinical setting have contributed to the need for a comprehensive radiation control program in which patient care is balanced with the maintenance of occupational exposures to ALARA levels

  18. Health physics manual of good practices for tritium facilities

    Energy Technology Data Exchange (ETDEWEB)

    Blauvelt, R.K.; Deaton, M.R.; Gill, J.T. [and others

    1991-12-01

    The purpose of this document is to provide written guidance defining the generally accepted good practices in use at Department of Energy (DOE) tritium facilities. A {open_quotes}good practice{close_quotes} is an action, policy, or procedure that enhances the radiation protection program at a DOE site. The information selected for inclusion in this document should help readers achieve an understanding of the key radiation protection issues at tritium facilities and provide guidance as to what characterizes excellence from a radiation protection point of view. The ALARA (As Low as Reasonable Achievable) program at DOE sites should be based, in part, on following the good practices that apply to their operations.

  19. UCLA Particle Physics Research Group annual progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.

    1983-11-01

    The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end

  20. Problems and progress in radiation physics of semiconductors

    International Nuclear Information System (INIS)

    Vinetskij, V.L.

    1982-01-01

    A survey of the current status of radiation physics of semiconductors comprises the analysis of some new problems and poses the statement of concern. The essential difference between the probability of interstitial-vacancy pair occurrence W(T) in elastic collisions and the generally accepted step distribution with a typical ''threshold'' energy Tsub(d) is indicated. The role of diffusion and reaction evolution of primary defects leading to specific properties of the cluster formation process is shown. Special features of defect formation in spatially inhomogeneous semiconductors, in particular for elastic stresses present, are described. Among most important advances in the radiation physics of semiconductors there are the discovery of non-activation motion of the ''extra'' atom in silicon, the observation of a low activation energy value for the vacancy diffusion, the understanding of subthreshold mechanism of defect formation and radiation-induced diffusion, the effects of laser annealing of defects and oriented crystallization

  1. Progress report, Physics Division: 1982 October 1 - December 31

    International Nuclear Information System (INIS)

    1983-02-01

    Research activities in nuclear physics included use of a new transient field apparatus to measure spin rotation in Yb-162, study of the interference effect in thermal neutron radiative capture reaction in C-12, and analysis of the results of photo-fission measurements on U-238. In accelerator and applied physics, work has continued on the heavy-ion superconducting cyclotron and the electron test accelerator, and on the development of a high current proton accelerator. Data was compiled on thermal neutron cross sections of the elements and measurements were made of total neutron yields from (p,xn) reactions on Cu, Fe and Th targets. Investigations in solid state physics included neutron scattering studies of red blood cells and CsCoBr 3 , magnetic and phonon properties of USn 3 , and positron annihilation measurements on FeAl. In applied mathematics and computation, work was carried out on coolant boiling and heat transfer in Slowpoke-III, and the MARC code was applied to analysis of pump seal deformations and to temperature distribution around cracks in Bruce pressure tubes

  2. Progress report. [Research in theoretical nuclear and subnuclear physics

    International Nuclear Information System (INIS)

    1997-01-01

    Sergei Ananyan has completed one nice piece of nuclear physics on 'Electroweak Processes Involving (0 + 0) Excitations in Nuclei' and has written this work up for publication. He is well into his main thesis problem on weak axial vector exchange currents and already has some very interesting new results. Bryan Barmore is now finishing numerical calculations on the problem of radiating meson fields in relativistic heavy ion collisions. Gary Prezeau has just started on the problem of chiral QHD with vector mesons. Gary should finish his Ph.D. in 1998. A PC has been purchased for the group through CEBAF and they are now tied into the CEBAF computer system., They have organized a Nuclear Theory Study Group in the Department and last year they worked through the books on 'Computational Nuclear Physics.' Next year they will run a series on effective field theories and chiral perturbation theory. Tod Bachman just completed a senior thesis on relativistic Hartree calculations of the newly-found doubly magic nuclei 100 Sn and 132 Sn. The book on 'Theoretical Nuclear and Subnuclear Physics' has now been published by Oxford Press. Also included here is the proposal for renewal of the contract

  3. Engineering Physics Division progress report period ending May 31, 1982

    International Nuclear Information System (INIS)

    1982-07-01

    Progress is described in the following areas: nuclear cross sections and related quantities; methods for generating and validating multigroup cross-section libraries; methods for reactor and shield analysis; methods for sensitivity and uncertainty analysis; integral experiments and nuclear analyses (integral experiments supporting fusion reactor designs, nuclear analyses supporting fusion reactor designs, high-energy particle transport calculations, integral experiments supporting gas-cooled fast breeder reactor designs, nuclear analyses supporting gas-cooled reactor designs, nuclear analyses supporting utilization of light-water reactors, and integral experiment analyses supporting surveillance dosimetry improvement program); energy economics modeling and analysis; safety and reliability assessments for nuclear power reactors; and information analysis and distribution. Publications and papers presented are listed

  4. Engineering Physics Division progress report period ending May 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Progress is described in the following areas: nuclear cross sections and related quantities; methods for generating and validating multigroup cross-section libraries; methods for reactor and shield analysis; methods for sensitivity and uncertainty analysis; integral experiments and nuclear analyses (integral experiments supporting fusion reactor designs, nuclear analyses supporting fusion reactor designs, high-energy particle transport calculations, integral experiments supporting gas-cooled fast breeder reactor designs, nuclear analyses supporting gas-cooled reactor designs, nuclear analyses supporting utilization of light-water reactors, and integral experiment analyses supporting surveillance dosimetry improvement program); energy economics modeling and analysis; safety and reliability assessments for nuclear power reactors; and information analysis and distribution. Publications and papers presented are listed. (WHK)

  5. Research program in computational physics: [Progress report for Task D

    International Nuclear Information System (INIS)

    Guralnik, G.S.

    1987-01-01

    Studies are reported of several aspects of the purely gluonic sector of QCD, including methods for efficiently generating gauge configurations, properties of the standard Wilson action and improved actions, and properties of the pure glue theory itself. Simulation of quantum chromodynamics in the ''quenched approximation'', in which the back reaction of quarks upon gauge fields is neglected, is studied with fermions introduced on the lattice via both Wilson and staggered formulations. Efforts are also reported to compute QCD matrix elements and to simulate QCD theory beyond the quenched approximation considering the effect of the quarks on the gauge fields. Work is in progress toward improving the algorithms used to generate the gauge field configurations and to compute the quark propagators. Implementation of lattice QCD on a hypercube is also reported

  6. Progress Report for Period Ending December 1961. Department of Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Tell, B [ed.

    1962-08-15

    This is the second Progress Report from the Department for Reactor Physics of Aktiebolaget Atomenergi, which is issued for the information of institutions and persons interested in the progress of the work. In this report the activities of the General Physics Section have been included, since this section nowadays belongs to the department. This is merely an informal progress report, and the results and data presented must be taken as preliminary. Final results will be submitted for publication either in the regular technical journals or as monographs in the series AE-reports.

  7. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    International Nuclear Information System (INIS)

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of 3 H and 3 He. Special attention is given to the eta meson, its production using photons, electrons, π ± , and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4π acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us

  8. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  9. Wind Energy and Atmospheric Physics Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems....... The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danishand international organisations on wind energy and atmospheric environmental impact. A sum......-mary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members....

  10. Total cross-section measurements progress in nuclear physics

    CERN Document Server

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  11. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. (eds.)

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  12. Annual progress report 2000. Wind Energy and Atmospheric Physics Dept.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  13. [Medium energy physics at Syracuse University: Technical progress report

    International Nuclear Information System (INIS)

    Souder, P.A.

    1986-01-01

    The primary focus of research has been an experiment at the MIT-Bates Linear Accelerator Center to measure the spin-dependence of elastic scattering of electrons from carbon. The Syracuse University Medium Energy Physics Group is also part of a collaboration which will measure the tensor polarization of deuterons scattered by electrons. Finally, analysis has been completed for an experiment at LAMPF in which the first observation of the exotic ion μ + e - e - was made. 17 refs., 18 figs., 2 tabs

  14. Experimental Physics Division of the Los Alamos Project. Progress report No. 4

    Energy Technology Data Exchange (ETDEWEB)

    1943-09-01

    Included in this semi-monthly report written in 1943 are progress with neutron beams, neutron absorption in enriched materials, equipment operation and maintenance reports of the cyclotron neutron source facility, and instrumentation maintenance activities of individuals in the cyclotron group. (GHT)

  15. Progress report, Physics Division, 1 January - 31 March, 1980

    International Nuclear Information System (INIS)

    1980-05-01

    Measurements of g-factors by the enhanced transient magentic field method but using cooled Gd instead of iron as the ferromagnet were begun. The method shows great promise for improved performance. The ISOL on-line isotope separator is operating well. During the quarter it was used for branching ratio studies in the beta-decay of 20 Na and for on-line tests of new targets. Changes to the vacuum manifold, plumbing lines and rf window have led to overall improved operation of the Alvarez accelerator. A vacuum failure in one of the drift tubes has caused a delay in the beam testing program. Analysis of conversion yield data for uranium and throium targets is proceeding. Characteristic differences have been found in the radial distributions of fission products and of conversion products, the latter being broader for both targets than the former. Good agreement was obtained in neutronics calculations of the spatial variation of neutron threshold, fission and capture reaction rates and overall neutron balance with experiments done at AWRE on a large thorium metal assembly with central 14 MeV neutron source. Operations of the MP Tandem Accelerator and the main site computing facilities is also summarized. (OT)

  16. Progress report, Physics Division, January 1 to March 31, 1979

    International Nuclear Information System (INIS)

    1979-06-01

    Lifetimes of certain analogue levels in 30 Si and 30 P have been determined by Doppler shift attenuation. Studies of 'inverse' reactions using 595 MeV 138 Xe bombarding 24 Mg targets have led to information on intrinsic quadrupole moments of levels up to spin 22 + . The external thermal neutron beam facility at NRU reactor has been fitted with a much more powerful computer system permitting rapid on-line data analysis. A new formalism for describing the interaction between two nucleons in terms of the 'color' of their constituent quarks is being attempted. Development of a Fast Intense Neutron Source and the superconducting cyclotron continues. All of the major components except the high voltage power supply have been obtained for construction of a pre-accelerator suitable for spallation breeder applications. Stable operation of a mult-aperture duoPIGatron ion source has been attained. Commissioning of the Alvarez accelerator is proceeding. Neutronic evaluations of the 233 U breeding potential of DT fusion reactors with thorium blankets are underway. The dependency of the vacancy formation energy in β'-brass on the long-range order has been studied by positron annihilation. Several branches of the normal mode dispersion relation in deuterated α-glycine have been measured by neutron scattering. Previous studies of actinide magnetism have been extended by measurements and theoretical analysis of collective magnetic excitation in UPd 3 . Operation of the MP tandem accelerator and the main site computing centre are also summarized. (OST)

  17. Progress report, Physics Division: 1982 July 1 - September 30

    International Nuclear Information System (INIS)

    1982-12-01

    Nuclear physics work at CRNL included determination of the half lives of sup(26)Alsup(m), sup(34)Cl and sup(38)Ksup(m), development of the second of three ports of the isotope separator, extensive test runs for the parity violation experiment on the electron test accelerator, and completion of the analysis of circular polarization data for gamma decay in 21 Ne. Solid state physics research included studies of the crystal structures of K 2 ReBr 6 , analysis of small-angle scattering data from superoxide dismutase, and analysis of the temperature dependence of the positron annihilation peak rate in alpha and beta thorium in terms of the trapping model. Applied mathematics and computation research included mathematical modelling of transient thermal behaviour of Slowpoke-III fuel and development of a probability distribution for unobserved occurrences of dryout in a fuel bundle test. Testing began on the pre-processor program PRESTAR that aids in preparing input for the stress analysis program STARDYNE

  18. Progress report, Physics, Division, October 1 to December 31, 1980

    International Nuclear Information System (INIS)

    1981-02-01

    There were thirteen experiments performed on the CRNL MP tandem accelerator during the quarter. Nuclear physics research activities included the bombardment of tungsten with 97 MeV 16 O ions, construction of a decay scheme for 71 Br, measurement of differences in reaction Q-values, experimental determination of average γ-ray widths for nuclei far from stability, use of the( 3 He,n) reaction in inverse Doppler shift attenuation measurements, and measurement of the full spectrum of gamma rays from the 13 C(n,γ) 14 C reaction. Construction and development of the heavy ion superconducting cyclotron, the high current proton accelerator, and the electron test accelerator continued. Research in solid state physics included investigations of solid β-N 2 , measurments of the temperature dependence of the positron annihilation peak coincidence rate in FeCo, observations of the excitation spectrum in the anisotropic quasi one-dimensional antiferromagnet CsCoBr 3 , and development of a theory of neutron diffraction for cubic crystals of the type Msub(c)Asub(1-c)B. Additional hardware was installed in the computer centre, increasing the computer memory and disc facilties. (L.L.)

  19. Status of physical protection systems of nuclear facilities; survey report

    International Nuclear Information System (INIS)

    Hwang, In Koo; Kwack, Eun Ho; Ahn, Jin Soo; Lee, Hyun Chul; Kim, Jung Soo

    2002-02-01

    This report presents a survey on the physical protection equipment for a nuclear power plant. This survey was conducted by Korea Atomic Energy Research Institute as a part of the project, 'Development of Technologies for National Control of and Accountancy for Nuclear Material,' funded by the Ministry of Science and Technology of Korea. A physical protection system of a nuclear plant includes outer and inner fences, intrusion detection sensors, alarm generation system, illumination equipment, central monitoring and control station, entry control and management system, etc. The outermost fence indicates the boundary of the plant area and prevents a simple or unintentional intrusion. The inner fence area of each plant unit associated with intrusion detection sensors, illuminators, monitoring cameras, serves the key role for physical protection function for the nuclear plant

  20. Progress report, Physics Division, 1 July to 30 September, 1979

    International Nuclear Information System (INIS)

    1979-11-01

    Study of exotic new isotopes with the on-line isotope separator, ISOL, has begun. Quadrupole moments of isomeric states in lead isotopes have been further investigated. Progress is being made in identifying and overcoming certain insidious background processes in 14 C dating with the MP Tandem. The Fast Intense Neutron Source accelerator now operates well at 80% of design current. Development and construction of the Superconducting Cyclotron continues. Operation with larger plasma apertures has given improved beam quality and more beam current than expected from the duoPIGatron ion source. Commissioning of the Alvarez accelerator continues. The practicability of characterizing thick target spallation reactions in terms of ten activities from spallation and fast neutron fission multiplication has been demonstrated. Study of the temperature dependence of the condensate fraction in 4 He has been completed. A simple and very successful semiempirical relationship between the reduced superfluid density of liquid 4 He and the condensate fraction has been obtained. The source of copper impurities that are suspected to be limiting performance of CdTe detectors have been traced to the furnace wall materials; installation of platinum wall liners is planned. Refinement of programs for the simulation of chemical reactions continued. A number of improvements were made to the fuel defect experiment data processing system. Operations of the MP Tandem Accelerator and the main site computing centre are summarized. (OST)

  1. Progress report 1982 of the institute of experimental physics of the Leopold Franzens University Innsbruck

    International Nuclear Information System (INIS)

    Howorka, F.; Maerk, T.; Lindinger, W.

    1983-01-01

    This progress report describes the scientific work and research results of the department of atomic physics in the institute of experimental physics of the university of Innsbruck for the period of 1982. A comprehensive list of publications of this department is given. (A.N.)

  2. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  3. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  4. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  5. Progress report Physics Division, 1 April - 30 June, 1980

    International Nuclear Information System (INIS)

    1980-08-01

    Ultra-high precision results in measurements of mass differences with the QD3 spectrometer have been obtained. Accurate velocity calbiration of the enhanced transient field effect has shown the suitablility of Gd as the ferromagnetic material. A way of annealing Gd foils to provide consistently high magnetization has been found. Fine strucutre in the photo fission spectrum of 232 Th has been interpreted in terms of a many-well potential shape for the fission barrier. Measurements of the fast neutron yields from 6 LiD exposed to thermal neutrons indicates that a converter of 6 LiD installed in a high-flux research reactor could produce a neutron flux for fusion-energy neutron damage studies. Construction of the Superconducting Cyclotron is continuing. High Current Proton Accelerator development is continuing. Measurements of frequencies of phonons in uranium rocksalt-structure compounds have been continued. A theoretical description of magnon-phonon coupling in actinide rocksalt compounds is being developed. The fraction of water molecules existing as strongly hydrogen-bonded hydrates in three types of living plant leaves has been measured by thermal neutron inelastic scattering. Calculations have been made of neutron fluxes and leakage and absorption rates for spheres of light and heavy water containing various neutron sources. The development of a model for bias effects in the micro-strucutre of radiation induced creep has concluded. A project to develop an improved subroutine for providing thermodynamic properties of water and steam was begun. Operations of the MP Tandem Accelerator, the electron test accelerator, and the computing facility are described. (LL)

  6. Progress and cooperation. Y2K, safeguards and physical protection

    International Nuclear Information System (INIS)

    Chitumbo, K.; Hilliard, J.; Smith, J.

    1999-01-01

    The Year 2000 problem poses major technical challenges to computer systems. For that reason it has drawn considerable attention over the past four years at the IAEA and within the international safeguards community of States and organisations. Actions of IAEA are very close to completion for the conversion of al related systems to make them Y2K compliant. As a result of IAEA past work and continuing liaison with Member States, the following needs were identified: organizing assistance and/or training to help states evaluate existing accounting software, and upgrade it or develop new Y2K compliant software; providing Y2K compliant software when needed; providing guidance and assistance on physical protection issues; organizing assistance missions visiting a state encountering problems; establishing contingency plans

  7. Progress report of Technical Physics Division: April 1980 - March 1982

    International Nuclear Information System (INIS)

    Chaudhry, Ramesh; Vijendran, P.

    1983-01-01

    Activities, with an individual summary of each, of the Technical Physics Division (TPD) of the Bhabha Atomic Research Centre (BARC), Bombay are reported for the period April 1980 - March 1982. The major thrust of the TPD's work has been in: (i) design and fabrication of instruments, devices and equipment and (ii) development of techniques in the frontline research and technology areas like vacuum science, surface analysis, cryogenics and crystal growing. The Division also provided custombuilt electronics equipment, vacuum systems and glass components and devices to the various Divisions of BARC and other units of the DAE. Training and manpower development activities and technology transfer activities are also reported. Lists of seminars, colloquia, publications during the period of the report are given. (M.G.B.)

  8. Experimental nuclear physics. Progress report, September 1980-June 1981

    International Nuclear Information System (INIS)

    1981-01-01

    Continuing cooperative research is reported in the areas of, a) In-beam γ-ray spectroscopy with scientists at Oak Ridge and the University of Koeln; b) Coulomb excitation studies at Lawrence Berkeley Laboratory and at GSI, Darmstadt, Germany; c) Maxsive transfer and preequilibrium emission processes in fusion reactions at ORNL; d) Nucleon transfer reaction studies with scientists at ORNL, Los Alamos and Brookhaven; e) delta-electron spectroscopy at the Mas Planck Institute in Heidelberg; f) Heavy ion atomic physics at the ORNL En tandem; g) Studies of nuclei far from stability at UNISOR; and h) Theoretical studies of high spin phenomena with scientists at Lawrence Berkeley, Brookhaven Lab., Univ. of Tubingen, and Copenhagen and of nuclear molecules and their decay processes in very heavy ion collisions with the University of Frankfurt and Vanderbilt theorists. Abstracts of papers published or submitted for publication are presented, and brief reports of work in process are given

  9. Progress report for 1978-79, Technical Physics Division

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.; Deshpande, R.Y.

    1980-01-01

    The research and development activities of the Technical Physics Division (TPD) of the Bhabha Atomic Research Centre, Bombay, during the calendar years 1978 and 1979 are reported. The TPD's major areas of work are electronics instrumentation, crystal technology, mass spectrometers, cryogenic equipment and vacuum equipment. Some of the major achievements are: (1) fabrication of various electronic instruments and components for the pulsed nuclear magnetic resonance spectrometers, (2) growth of large size NaI(Tl) and Ge crystals, (3) growth of CsI, KDP and arsenic selenide crystals, (4) fabrication of quadrupole mass filters and (5) fabrication of mass spectrometers for gas analysis and D/H analysis in water samples. (M.G.B.)

  10. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas. (LEW)

  11. Future directions in intermediate energy heavy ion physics. A proposed expansion of the Holifield Facility

    International Nuclear Information System (INIS)

    1986-02-01

    A proposal is presented for a major accelerator addition to the Holifield Heavy Ion Research Facility. The expanded facility will provide ion beams of mass 1 to 238 amu with a combination of energy, intensity, momentum resolution, and beam quality not currently available at any other facility in North America. The physics motivation for such an addition is discussed, and involves physics dominated by meson-exchange forces, Coulomb-force dominated physics, and possibly a regime where the quark and gluon degrees of freedom are significant. The physics research would include topics in atomic and interdisciplinary areas as well as nuclear physics. Some remarks are made on the merits of Oak Ridge as a site for this facility, placing the proposal in some historical perspective. The accelerator system is then described, giving the required beam properties, and the parameters of the synchrotron ring components, injection, ring magnets, RF systems, vacuum system, and electron cooling system and stochastic cooling system requirements. Also described are such facilities as buildings, beam transport and shielding, and experimental facilities, including target areas

  12. PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the report covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.

  13. Significant progress towards development of the low-level radioactive waste disposal facility in Illinois

    International Nuclear Information System (INIS)

    Klebe, M.; Henry, T.L.; Corpstein, P.

    1996-01-01

    Development of disposal sites for low-level radioactive waste is a complicated legal, regulatory and public sector process. Development of the low-level radioactive waste disposal facility to support generators in Illinois and Kentucky is well under way. Significant progress has been made to re-engineer the siting development process capitalizing on prior lessons learned and a recommitment from Illinois state leadership assuring the future success of the program. Comparisons of why this new process will succeed are the major focus of this paper. Specific changes in approach from the previous process including changes in the Illinois Management Act (Management Act), creation of the Illinois Low-Level Radioactive Waste Siting Task Group (Task Group), new roles for the Illinois State Geologic Survey and Illinois State Water Survey (Scientific Surveys) and the Illinois Department of Nuclear Safety (IDNS), a new contractor reliance approach and increased confidence on the open-quote science close-quote are the major contrasts between the previous process and the new process currently underway

  14. Legal Aspects of international cooperation in the physical protection of nuclear facilities and materials

    International Nuclear Information System (INIS)

    Herron, L.W.

    1981-10-01

    This paper provides a detailed analysis of developments in the number field having led the IAEA to promote international cooperation in ensuring adequate physical protection of nuclear facilities and materials. This work resulted in the establishment of recommendations and guidelines in this respect and culminated in the development of the 1980 Convention on the Physical Protection of Nuclear Materials. (NEA) [fr

  15. Progress report Physics and Health Sciences. Health Sciences section. 1987 July 01-December 31

    International Nuclear Information System (INIS)

    1988-03-01

    This report covers the fourth semi-annual period since the Research Company was reorganized. We now have eight research fellows on staff, six fully funded by Physics and Health Sciences (P and HS). The first section of this report contains an excellent topical review of the program in Health Sciences on tritium toxicity which involves scientists from all three of the Chalk River branches of Health Sciences. Their work on cancer proneness is expanding data on apparently normal people and has been extended to include cancer patients. All tests are now blind. The work was the subject of two very fine TV presentations, one each shown on the French and English networks of the CBC. Investigation also continues on the complex influence of hyperthermia on cancer induction and promotion. The potency of natural killer cells in human blood which have the ability to recognize and destroy cancerous cells have been shown to be very sensitive to temperature. A method may have been found for extending the life of T-lymphocytes grown in culture beyond the present 30 to 60-day limit. Activities in environmental research are moving in the direction of studies of a more fundamental nature so that the results will have a certain portability. Model studies form a large part of this new emphasis and notable among those is the Twin Lakes tracer study. Work is in progress to follow the plume the full 240 metres to the discharge zone with considerable success in the mathematical modelling. Members of the Health Sciences unit at CRNL were active as resource people for the Hare Commission on Ontario Nuclear Safety Review during the late fall. At Partnerships for Profit, which brought 85 senior executives of Canadian business in contact with the Research Company's capabilities, Physics and Health Sciences manned four booths on cancer screening, environmental protection, ANDI and nuclear physics instrumentation. Discussions with MOSST and other government departments were initiated on the

  16. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  17. High energy physics at Tufts University. Progress report

    International Nuclear Information System (INIS)

    1977-09-01

    During the year a final paper was produced on XI* production from 2.9 GeV/c K - p interactions, and a paper on the Σ - π - π + (π 0 ) final state from 2.9 GeV/c K - d interactions is on the verge of completion. From our 14.75 GeV/c anti pp experiment results have been prepared for publication on three topics: the charm search, V 0 inclusive production, and π 0 production. Further analysis of data is continuing. In the 300 GeV/c pp experiment, investigations are completed or underway in three areas: neutral and charged pion correlations, inclusive γ and V 0 production, and inclusive resonance production. Further data on inclusive V 0 distributions from 6.5 GeV/c K - p interactions has been obtained and analysis is nearing completion. A good deal of effort went into the development of proposals for new physics. These new directions may be represented by three approved experiments at three different laboratories: Neutrino-deuterium interactions at Fermilab (an approved and a proposed experiment); Search for new states decaying into anti ΛΛ and K 0 /sub s/K 0 /sub s/ using the Multiparticle Spectrometer at B.N.L. (approved in May, 1977); Search for baryonium using the SLAC hybrid bubble chamber system, which won approval in September with a recommendation for prompt running from the Program Advisory Committee. A list of publications is included

  18. Recent progress on microwave imaging technology and new physics results

    International Nuclear Information System (INIS)

    Tobias, Benjamin; Luhmann, Neville C. Jr.; Domier, Calvin W.

    2011-01-01

    Techniques for visualizing turbulent flow in nature and in the laboratory have evolved over half a millennium from Leonardo da Vinci's sketches of cascading waterfalls to the advanced imaging technologies which are now pervasive in our daily lives. Advancements in millimeter wave imaging have served to usher in a new era in plasma diagnostics, characterized by ever improving 2D, and even 3D, images of complex phenomena in tokamak and stellarator plasmas. Examples at the forefront of this revolution are electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR). ECEI has proved to be a powerful tool as it has provided immediate physics results following successful diagnostic installations on TEXTOR, ASDEX-U, DIII-D, and KSTAR. Recent results from the MIR system on LHD are demonstrating that this technique has the potential for comparable impact in the diagnosis of electron density fluctuations. This has motivated a recent resurgence in MIR research and development, building on a prototype system demonstrated on TEXTOR, toward the realization of combined ECEI/MIR systems on DIII-D and KSTAR for simultaneous imaging of electron temperature and density fluctuations. The systems discussed raise the standard for fusion plasma diagnostics and present a powerful new capability for the validation of theoretical models and numerical simulations. (author)

  19. Fusion reactors: physics and technology. Annual progress report

    International Nuclear Information System (INIS)

    Conn, R.W.

    1983-08-01

    Fusion reactors are designed to operate at full power and generally at steady state. Yet experience shows the load variations, licensing constraints, and frequent sub-system failures often require a plant to operate at fractions of rated power. The aim of this study has been to assess the technology problems and design implications of startup and fractional power operation on fusion reactors. The focus of attention has been tandem mirror reactors (TMR) and we have concentrated on the plasma and blanket engineering for startup and fractional power operation. In this report, we first discuss overall problems of startup, shutdown and staged power operation and their influence on TMR design. We then present a detailed discussion of the plasma physics associated with TMR startup and various means of achieving staged power operation. We then turn to the issue of instrumentation and safety controls for fusion reactors. Finally we discuss the limits on transient power variations during startup and shutdown of Li 17 Pb 83 cooled blankets

  20. Progress report, Physics Division, 1 January - 31 March 1981

    International Nuclear Information System (INIS)

    1981-05-01

    The nuclear physics group used the on-line isotope separator to make direct mass doublet measurments for the first time and to identify a new α-emitter, hafnium-162. A new NaI(Tl) detector gave improved data on the multiplicities and intensities of continuum γ-rays in gadolinium-147. Beam profile data for the Fast Intense Neutron source showed that tritium loss from bombarded targets is not caused by beam hot-spots. Geometry studies on the High Current Proton Accelerator showed that proton fraction increases with improved arc and gas efficiencies. In conjunction with fertile-to-fissile conversion experiments at TRIUMF, two types of monitoring foils agreed within 2.5% with results obtained by two other laboratories. Neutron diffraction data for a single β-N 2 crystal at 0.4 MPa showed that its scattering density distribution and mean translation displacements have almost perfect spherical symmetry. A new non-linear stress analysis code was marketed

  1. Research program in theoretical high-energy physics. Progress report

    International Nuclear Information System (INIS)

    Feldman, D.; Fried, H.M.; Guralnik, G.S.

    1979-01-01

    Last year's research program dealt with a large range of topics in high energy theoretical physics. Included in the problems studied were: flavor mixing angles in flavor gauge theory; grand unification schemes; neutral current phenomenology; charmonium decays; perturbative aspects of soft hadronic phenomena within the framework of the dual topological expansion; Regge trajectory slopes and the shape of the inclusive spectra; bound states in quantum electrodynamics; calculations of the Lamb Shift and hyperfine splitting in hydrogen (and muonium) through order α(Zα) 6 ; perturbation theory resummation techniques; collective behavior of instantons in quantum chromodynamics; 1/N expansion and mean field expansion techniques (applied to the nonlinear sigma model, classical solutions to Yang-Mills theories, and renormalized four-Fermi models of weak interactions); semiclassical calculation of Z 1 (α) in scalar QED; group theoretic studies of spontaneous symmetry breaking; fibre bundles applied to the topological aspects of gauge theories; strong-coupling expansions (as an aspect of infrared behavior, as a systematic perturbation expansion with reference to lattice extrapolation, applied to classical statistical mechanics, applied to problems with nonquadratic kinetic energy terms, and in transfer matrix formulations); eikonal methods (three-body Coulomb scattering, quark-antiquark potentials); computer augmented solutions to quantum field theory; topological excitations in two-dimensional models and WKB approximation on a lattice. A list of publications is included

  2. Progress report on B physics task force activities, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    This document summarizes the results of the studies on physics and detector at the proposed KEK B-factory made over the past one year. A considerable amount of studies were done prior to the last year on the Monte Carlo simulations of CP violating processes and an optimization of the detector for those processes [1,2]. These studies resulted in a conceptual design of the detector. Chapter 2 summarizes the configuration and expected performances of the proposed detector. Chapter 3 summarizes expected sensitivities of the detector to CP violation parameters. Chapter 4 describe mostly new results from our detector R and D effort. Status of the full simulation development is described in Chapter 5. What are the requirements on the momentum resolution and K/π separation for comprehensive studies of CP violation processes remain to be an unresolved issue. With a decision to use VENUS solenoid, we can obtain at most 1.0 Tesla. Even though all of our previous studies were done with this magnetic field and we have been convinced that 1.0 Tesla is adequate for measurements of most processes, we need to do these studies in conjunction with the other detectors such as K/π separation device. A good K/π separation above 1 GeV/c requires some types of Cherenkov counter. Construction of any of these devices is technically demanding and we need to examine its necessity carefully. This argument is given in Chapter 6. (J.P.N.) 72 refs

  3. Progress report, Physics Division, 1 April - 30 June, 1981

    International Nuclear Information System (INIS)

    1981-08-01

    The nuclear physics group obtained an accurate value of the gamow-teller contribution to the 2 + → 2 + (T=1) super allowed β transition in 20 Na from kinematic shifts in the β-delayed α-particle spectrum, thus allowing calculation of the Fermi coupling constant. In experiments with an anti-Compton NaI(Tl) shield, the average properties of the continuum γ-rays were determined for the (HI,xn) reaction and the properties of the high-energy (approximately 14 MeV) giant resonance γ-rays were correlated with specific (HI,xn) reaction channels. A systematic analysis by different techniques showed that recoil distance lifetime measurements can have systematic errors of about 10% from undetected feeding, background and/or hyperfine interactions. Average neutron kinetic energies for the 124 Sn ( 28 Si,5n) 147 Gd reaction correlated very strongly, but unexpectedly, with the bombarding energy. In the High Current Proton Accelerator, beamlet stacking was found to improve injection emittance by a factor of 1.9. The line-shapes of selected phonons in the orientationally disordered crystal β-nitrogen were calculated with the Michel-Nandts model. Computer simulation was used to calculate the spin-wave properties of the disordered ferromagnet Nisub(2)Mnsub(0.8)Vsub(0.2)Sn

  4. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.

    Science.gov (United States)

    Nakasaki, Kiyohiko; Marui, Taketoshi

    2011-06-01

    To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.

  5. Clinton P. Anderson Meson Physics Facility and its operational safety program

    International Nuclear Information System (INIS)

    Putnam, T.M.

    1975-01-01

    The Clinton P. Anderson Meson Physics Facility (LAMPF) at the Los Alamos Scientific Laboratory consists of/ (1) a medium-energy, high-intensity linear proton accelerator; (2) experimental areas designed to support a multidisciplined program of research and practical applications; and (3) support facilities for accelerator operations and the experimental program. The high-intensity primary and secondary beams at LAMPF and the varied research program create many interesting and challenging problems for the Health Physics staff. A brief overview of LAMPF is presented, and the Operational Safety Program is discussed, with emphasis on the radiological safety and health physics aspects

  6. Measurements of physical properties during transesterification of soybean oil to biodiesel for prediction of reaction progress

    International Nuclear Information System (INIS)

    Moradi, G.R.; Dehghani, S.; Ghanei, R.

    2012-01-01

    Highlights: ► Reaction progress in transesterification of soybean oil predicted using physical properties. ► Transesterification performed at 70 °C with Me/oil ratio 12:1 and 5 wt.% of BaO as catalyst. ► Viscosity and refractive index decreases nonlinearly during the progress of transesterification. ► Pour point increases linearly and cloud point increases nonlinearly during progress of reaction. ► Refractive index and pour point recommended for prediction transesterification progress. - Abstract: Biodiesel is a pure, non-toxic, biodegradable, clean-burning fuel and renewable alternative for fossil diesel fuel. In this work, a new method was introduced to determine reaction progress in transesterification of soybean oil to biodiesel by the use of physical property variation during reaction. Quantitative analysis stage for determination fatty acid methyl ester (FAME) which is expensive and time-consuming can be replaced by this method. To develop the method, in the first stage, transesterification of soybean oil at optimum conditions (70 °C with MeOH to oil molar ratio of 12:1 and 5 wt.% of BaO as catalyst) was carried out to determine how conversion and physical properties change with time. Then appropriate functions were fitted on the extracted data and were evaluated by comparison with GC results. Refractive index was selected as good physical property to predict reaction progress.

  7. Research in theoretical nuclear physics, Nuclear Theory Group. Progress report

    International Nuclear Information System (INIS)

    Brown, G.E.; Jackson, A.D.; Kuo, T.T.S.

    1984-01-01

    Primary emphasis is placed on understanding the nature of nucleon-nucleon and meson-nucleon interactions and on determining the consequences of such microscopic interactions in nuclear systems. We have constructed models of baryons which smoothly interpolate between currently popular bag and Skyrme models of hadrons and provide a vehicle for introducing the notions of quantum chromodynamics to low energy nuclear physics without violating the constraints of chiral invariance. Such models have been used to study the nucleon-nucleon interaction, the spectrum of baryons, and the important question of the radius of the quark bag. We have used many-body techniques to consider a variety of problems in finite nuclei and infinite many-body systems. New light has been shed on the nuclear coexistence of spherical and deformed states in the A = 18 region as well as the role of genuine three-body forces in this region. Phenomenological studies of infinite systems have led to a number of predictions particularly regarding the spin-polarized quantum liquids of current experimental interest. Microscopic many-body theories, based on the parquet diagrams, have been improved to a fully quantitative level for the ground state properties of infinite many-body systems. Finite temperature theories of nuclear matter, important in the study of heavy ion reactions, have been constructed. An expanded program in heavy ion theory has led to major advances in the multi-dimensional barrier penetration problem. Activities in nuclear astrophysics have provided a far more reliable description of the role of electron capture processes in stellar collapse. As a consequence, we have been able to perform legitimate calculations of the unshocked mass in Type II supernovae

  8. Nuclear and particle physics research at the University of Richmond. Progress report, November 1, 1995 - October 31, 1996

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1996-01-01

    Summarized in this report is the progress achieved during the period from November 1, 1995 to October 31, 1996. The experimental work described in this report is in preparation for the electromagnetic nuclear physics research program in Hall B at Thomas Jefferson National Accelerator Facility (TJNAF). Much progress has been made this year toward the realization of the physics program in Hall B. The Program Advisory Committee (PAC) reviewed all of the Hall B physics proposals and assigned scientific ratings to those not previously rated. Updates on these proposals were submitted to the PAC for this review and can be found in this report. Also included in this report is a summary of the progress achieved on an experiment that the authors are collaborating on to measure rare radiative decays of the φ meson. This experiment received the PAC's highest rating and will use the Hall B photon tagger and a lead glass calorimeter housed in the alcove upstream of the beam dump. After nearly a decade of planning and construction, the CEBAF Large Acceptance Spectrometer (CLAS) will be commissioned next year. The authors have been members of the CLAS Collaboration since its inception and their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the gas system components built at the University of Richmond have been installed in the Hall B gas shed and the initial operation of the system has begun. Gilfoyle is coordinating the software development for the CLAS drift chambers. Considerable progress has been made this year in developing software for the analysis of the drift-chamber data. Vineyard served as coordinator of the γ3 Running Period for the CLAS Collaboration and he is also responsible for the development of the drift-chamber gas system controls

  9. Database design for Physical Access Control System for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, T., E-mail: satishkumart@igcar.gov.in; Rao, G. Prabhakara, E-mail: prg@igcar.gov.in; Arumugam, P., E-mail: aarmu@igcar.gov.in

    2016-08-15

    Highlights: • Database design needs to be optimized and highly efficient for real time operation. • It requires a many-to-many mapping between Employee table and Doors table. • This mapping typically contain thousands of records and redundant data. • Proposed novel database design reduces the redundancy and provides abstraction. • This design is incorporated with the access control system developed in-house. - Abstract: A (Radio Frequency IDentification) RFID cum Biometric based two level Access Control System (ACS) was designed and developed for providing access to vital areas of nuclear facilities. The system has got both hardware [Access controller] and software components [server application, the database and the web client software]. The database design proposed, enables grouping of the employees based on the hierarchy of the organization and the grouping of the doors based on Access Zones (AZ). This design also illustrates the mapping between the Employee Groups (EG) and AZ. By following this approach in database design, a higher level view can be presented to the system administrator abstracting the inner details of the individual entities and doors. This paper describes the novel approach carried out in designing the database of the ACS.

  10. Database design for Physical Access Control System for nuclear facilities

    International Nuclear Information System (INIS)

    Sathishkumar, T.; Rao, G. Prabhakara; Arumugam, P.

    2016-01-01

    Highlights: • Database design needs to be optimized and highly efficient for real time operation. • It requires a many-to-many mapping between Employee table and Doors table. • This mapping typically contain thousands of records and redundant data. • Proposed novel database design reduces the redundancy and provides abstraction. • This design is incorporated with the access control system developed in-house. - Abstract: A (Radio Frequency IDentification) RFID cum Biometric based two level Access Control System (ACS) was designed and developed for providing access to vital areas of nuclear facilities. The system has got both hardware [Access controller] and software components [server application, the database and the web client software]. The database design proposed, enables grouping of the employees based on the hierarchy of the organization and the grouping of the doors based on Access Zones (AZ). This design also illustrates the mapping between the Employee Groups (EG) and AZ. By following this approach in database design, a higher level view can be presented to the system administrator abstracting the inner details of the individual entities and doors. This paper describes the novel approach carried out in designing the database of the ACS.

  11. The ISAC RIB Facility and physics programme at TRIUMF

    International Nuclear Information System (INIS)

    Schmor, P.W.

    2008-01-01

    ISAC (Isotope Separator and Accelerator) at TRIUMF uses the ISOL (On Line Isotope Separator) technique with up to 100 μA of 500 MeV protons from the TRIUMF cyclotron driver to produce exotic isotopes in a thick target. The exotic nuclei are ionized, formed into beams, mass separated and transported at energies up to 60 keY to various experimental stations. Singly charged isotopes with nuclear masses below 31 can be further accelerated in ISAC I up to 1.8 MeV/u for Nuclear Astrophysics studies by a series of linear accelerators consisting of a RFQ (Radio Frequency Quadrupole) and DTL (Drift Tube Linace). Super conducting RF cavities are presently being added to the Iinac chain to permit a further increase in the maximum energy of the exotic beams to 6.5 MeV/u and an ECR-based charge state booster is being added in front of the RFQ to increase the available mass range of the accelerated isotopes from 30 to about added in front of the RFQ to increase the available mass range of the accelerated isotopes from 30 to about 150. This talk will describe the status of the facility and its experimental programme. (author)

  12. The Radiological Research Accelerator Facility. Progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1994-04-01

    This document begins with a general description of the facility to include historical and up-to-date aspects of design and operation. A user's guide and a review of research using the facility follows. Next the accelerator utilization and operation and the development of the facilities is given. Personnel currently working at the facility are listed. Lastly, recent publications and literature cited are presented

  13. Experimental Facilities Division/User Program Division technical progress report 1999-2000

    International Nuclear Information System (INIS)

    2001-01-01

    In October 1999, the two divisions of the Advanced Photon Source (APS), the Accelerator Systems Division (ASD) and the Experimental Facilities Division (XFD), were reorganized into four divisions (see high-level APS organizational chart, Fig. 1.1). In addition to ASD and XFD, two new divisions were created, the APS Operations Division (AOD), to oversee APS operations, and the User Program Division (UPD), to serve the APS user community by developing and maintaining the highest quality user technical and administration support. Previous XFD Progress Reports (ANL/APS/TB-30 and ANL/APS/TB-34) covered a much broader base, including APS user administrative support and what was previously XFD operations (front ends, interlocks, etc.) This Progress Report summarizes the main scientific and technical activities of XFD, and the technical support, research and development (R and D) activities of UPD from October 1998 through November 2000. The report is divided into four major sections, (1) Introduction, (2) SRI-CAT Beamlines, Technical Developments, and Scientific Applications, (3) User Technical Support, and (4) Major Plans for the Future. Sections 2 and 3 describe the technical activities and research accomplishments of the XFD and UPD personnel in supporting the synchrotron radiation instrumentation (SRI) collaborative access team (CAT) and the general APS user community. Also included in this report is a comprehensive list of publications (Appendix 1) and presentations (Appendix 2) by XFD and UPD staff during the time period covered by this report. The organization of section 2, SRI CAT Beamlines, Technical Developments, and Scientific Applications has been made along scientific techniques/disciplines and not ''geographical'' boundaries of the sectors in which the work was performed. Therefore items under the subsection X-ray Imaging and Microfocusing could have been (and were) performed on several different beamlines by staff in different divisions. The management of

  14. Progress report: Physical Sciences - Physics Division, 1992 July 01 -December 31

    Energy Technology Data Exchange (ETDEWEB)

    Ungrin, J; Kim, S M; Sears, V F [eds.

    1993-03-01

    This report summarizes operations and research activities in the Accelerator Physics, Neutron and Condensed Matter Science and Theoretical Physics branches at Chalk River Laboratories during the last half of 1992. 21 figs., 3 tabs.

  15. Progress report: Physical Sciences - Physics Division, 1992 July 01 -December 31

    International Nuclear Information System (INIS)

    Ungrin, J.; Kim, S.M.; Sears, V.F.

    1993-03-01

    This report summarizes operations and research activities in the Accelerator Physics, Neutron and Condensed Matter Science and Theoretical Physics branches at Chalk River Laboratories during the last half of 1992. 21 figs., 3 tabs

  16. Adolescents' physical activity: competition between perceived neighborhood sport facilities and home media resources.

    Science.gov (United States)

    Wong, Bonny Yee-Man; Cerin, Ester; Ho, Sai-Yin; Mak, Kwok-Kei; Lo, Wing-Sze; Lam, Tai-Hing

    2010-04-01

    To examine the independent, competing, and interactive effects of perceived availability of specific types of media in the home and neighborhood sport facilities on adolescents' leisure-time physical activity (PA). Survey data from 34 369 students in 42 Hong Kong secondary schools were collected (2006-07). Respondents reported moderate-to-vigorous leisure-time PA, presence of sport facilities in the neighborhood and of media equipment in the home. Being sufficiently physically active was defined as engaging in at least 30 minutes of non-school leisure-time PA on a daily basis. Logistic regression and post-estimation linear combinations of regression coefficients were used to examine the independent and competing effects of sport facilities and media equipment on leisure-time PA. Perceived availability of sport facilities was positively (OR(boys) = 1.17; OR(girls) = 1.26), and that of computer/Internet negatively (OR(boys) = 0.48; OR(girls) = 0.41), associated with being sufficiently active. A significant positive association between video game console and being sufficiently active was found in girls (OR(girls) = 1.19) but not in boys. Compared with adolescents without sport facilities and media equipment, those who reported sport facilities only were more likely to be physically active (OR(boys) = 1.26; OR(girls) = 1.34), while those who additionally reported computer/Internet were less likely to be physically active (OR(boys) = 0.60; OR(girls) = 0.54). Perceived availability of sport facilities in the neighborhood may positively impact on adolescents' level of physical activity. However, having computer/Internet may cancel out the effects of active opportunities in the neighborhood. This suggests that physical activity programs for adolescents need to consider limiting the access to computer-mediated communication as an important intervention component.

  17. Neutron Physics Laboratory. Annual Progress Report October 1, 1967-September 30, 1968

    International Nuclear Information System (INIS)

    Wiedling, T.

    1969-04-01

    The present progress report gives some short descriptions of experiments going on in the neutron physics branch at the Studsvik laboratories. The main program concerns fast neutron physics at the Van de Graaff laboratory with a strong emphasis on neutron scattering cross section data of elements of interest for reactor calculations. Since the Van de Graaff accelerator is still the one in Sweden giving the highest potential, it has been quite natural to use the machine also for some nuclear physics experiments with charged particles, though in some cases related to the neutron physics program. In connection with the use of the reactors at Studsvik for physics experiments, research programs have been in progress for several years concerning the use of reactor neutrons for production of isotopes for a systematic study of short lived nuclear isomeric states as well as for the study of the gamma emission in the fission process

  18. Neutron Physics Laboratory. Annual Progress Report October 1, 1967-September 30, 1968

    Energy Technology Data Exchange (ETDEWEB)

    Wiedling, T

    1969-04-15

    The present progress report gives some short descriptions of experiments going on in the neutron physics branch at the Studsvik laboratories. The main program concerns fast neutron physics at the Van de Graaff laboratory with a strong emphasis on neutron scattering cross section data of elements of interest for reactor calculations. Since the Van de Graaff accelerator is still the one in Sweden giving the highest potential, it has been quite natural to use the machine also for some nuclear physics experiments with charged particles, though in some cases related to the neutron physics program. In connection with the use of the reactors at Studsvik for physics experiments, research programs have been in progress for several years concerning the use of reactor neutrons for production of isotopes for a systematic study of short lived nuclear isomeric states as well as for the study of the gamma emission in the fission process.

  19. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, M [ed.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author).

  20. Progress report - Physical and Environmental Sciences - Physics Division. 1994 January 1 to December 31

    International Nuclear Information System (INIS)

    Harvey, M.

    1995-09-01

    This report marks the change from biannual to annual reports recording technical developments in Physics Division. During this period, AECL has continued with its restructuring program, with Physics Division now included in an expanded Physical and Environmental Sciences Unit. The Division itself remains unchanged, with major activities on neutron scattering, the Sudbury Neutrino Observatory and developments and applications of accelerator technology. (author)

  1. Physical startup of the first stage of the IREN facility

    International Nuclear Information System (INIS)

    Belozerov, A.V.; Boettcher, Yu.; Bulycheva, Yu.K.

    2010-01-01

    It is reported on the startup of the first stage of the Intense REsonance Neutron source installation (IREN) at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research. The general scheme and current status of the electron linear accelerator with accelerating structure on an S-band traveling wave (f = 2856 MHz) are presented. Results of adjustment of the basic functional systems of the linac and the measured parameters of the beam (pulse current of the beam 1.5 A, electron energy 30 MeV; duration of a pulse current 100 ns; rep. rate 25 Hz) are reported. The integral neutron yield from a nonmultiplying target reaches (3-5)·10 10 s -1

  2. Developing a low-level radioactive waste disposal facility in Connecticut: Update on progress and new directions

    Energy Technology Data Exchange (ETDEWEB)

    Gingerich, R.E. [Connecticut Hazardous Waste Management Service, Hartford, CT (United States)

    1993-03-01

    Connecticut is a member of the Northeast Interstate Low-Level Radioactive Waste Management Compact (Northeast LLRW Compact). The other member of the Northeast LLRW Compact is New Jersey. The Northeast Interstate Low-Level Radioactive Waste Commission (Northeast Compact Commission), the Northeast LLRW Compact`s governing body, has designated both Connecticut and New Jersey as host states for disposal facilities. The Northeast Compact Commission has recommended that, for purposes of planning for each state`s facility, the siting agency for the state should use projected volumes and characteristics of the LLW generated in its own state. In 1987 Connecticut enacted legislation that assigns major responsibilities for developing a LLW disposal facility in Connecticut to the Connecticut Hazardous Waste Management Service (CHWMS). The CHWMS is required to: prepare and revise, as necessary, a LLW Management Plan for the state; select a site for a LLW disposal facility; select a disposal technology to be used at the site; select a firm to obtain the necessary approvals for the facility and to develop and operate it; and serve as the custodial agency for the facility. This paper discusses progress in developing a facility.

  3. Calculation of displacement and helium production at the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF) irradiation facility

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Davidson, D.R.; Greenwood, L.R.; Sommer, W.F.

    1984-01-01

    CT: Differential and total displacement and helium production rates are calculated for copper irradiated by spallation neutrons and 760 MeV protons at the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF). The calculations are performed using the SPECTER and VNMTC computer codes, the latter being specially designed for spallation radiation damage calculations. For comparison, similar SPECTER calculations are also described for irradiation of copper in EBR-II and RTNS-II. The results indicate substantial contributions to the displacement and helium production rates due to neutrons in the high-energy tail (above 20 MeV) of the LAMPF spallation neutron spectrum. Still higher production rates are calculated for irradiations in the direct proton beam. These results will provide useful background information for research to be conducted at a new irradiation facility at LAMPF

  4. methodological and technical aspects to be considered in the location of physical recreational sports facilities

    Directory of Open Access Journals (Sweden)

    Jesús I. Benítez Llanes

    2012-03-01

    Full Text Available Sometimes we wonder. Why practitioners of recreational physical activities do not make systematic use of a particular sports facility ?, Why some sports facility remains almost always empty? Why it is continued unnecessarily reversed large sums of material resources for maintenance? For the simple reason that sports facilities were from the beginning that were not well conceived and designed architecturally, where among other things, not sporting habits and population size of the place properly examined. Similarly, we have witnessed criteria issued regarding the performance of a specific sports field, far from contributing to the extension and improvement of the practice of recreational physical and sports activities in its various manifestations, its null or poor continuous maintenance contributing negatively to limit the sporting life and lacerate mental and physical welfare of the inhabitants of the environment. Justifications that led the author of this research to the development of methodological technical aspects regarding the location of recreational physical sports infrastructure, content which also form part of the subject and / or curricular unit "Spaces and Sports Facilities" currently teaches future professionals and managers of Physical Culture for the last two academic years at the University of the Sciences of Physical Culture and Sport Nancy Uranga Romagoza in Pinar del Río Cuba and the Iberoamerican University of Sport in Venezuela.

  5. Health physics division annual progress report for period ending June 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This annual progress report follows, as in the past, the organizational structure of the Health Physics Division. Each part is a report of work done by a section of the division: Assessment and Technology Section (Part I), headed by H.W. Dickson; Biological and Radiation Physics Section (Part II), H.A. Wright; Chemical Physics and Spectroscopy Section (Part III), W.R. Garrett; Emergency Technology Section (Part IV), C.V. Chester, Medical Physics and Internal Dosimetry Section (Part V), K.E. Cowser; and the Analytic Dosimetry and Education Group (Part VI), J.E. Turner.

  6. Progress in Computational Physics (PiCP) Volume 1 Wave Propagation in Periodic Media

    CERN Document Server

    Ehrhardt, Matthias

    2010-01-01

    Progress in Computational Physics is a new e-book series devoted to recent research trends in computational physics. It contains chapters contributed by outstanding experts of modeling of physical problems. The series focuses on interdisciplinary computational perspectives of current physical challenges, new numerical techniques for the solution of mathematical wave equations and describes certain real-world applications. With the help of powerful computers and sophisticated methods of numerical mathematics it is possible to simulate many ultramodern devices, e.g. photonic crystals structures,

  7. Accelerator facilities and development of physics in Kazakhstan (1992-2002)

    International Nuclear Information System (INIS)

    Shkol'nik, V.S.; Arzumanov, A.A.; Borisenko, A.N.; Gorlachev, I.D.; Kadyrzhanov, K.K.; Kuterbekov, K.A.; Lysukhin, S.N.; Tuleushev, A.Zh.

    2003-01-01

    The monograph is devoted to the use both the isochronous cyclotron U-150M and the accelerator of the heavy ions UKP-2-1, which are the base facilitates of the Institute of Nuclear Physics of the National Nuclear Center of the Republic of Kazakhstan (INP NNC RK) for scientific researches in the field of nuclear physics of low and middle energies, radiation solid state physics and applied nuclear physics. The history of creation of facilities, some archival documents are given The use of the accelerators of INP NNC RK for the last ten years (1992-2002) is described in detail. The parameters of facilities, photos of the main functional units of the accelerators as well as nuclear and physical methods realized on these basic facilities have been presented. The appendixes present copies of some important historical documents as well as the following materials: a list of on accelerator themes, a list of dissertation works, a list of publications of the Nuclear Physics Department within the period of 1972-2002 and the Solid State Department within the period of 1995-2002 carried out using the accelerators of INP NNC RK. The book is intended for scientists studying actual problems of nuclear physics of low and middle energies, radiation solid state physics as well as students specializing in this field (author)

  8. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Naimark, Oleg B.; Nikitiuk, Aleksandr S. [Institute of Continuous Media Mechanics UrB RAS, Perm, 614013 (Russian Federation); Baudement, Marie-Odile; Forné, Thierry [Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, Université de Montpellier, 1919 route de Mende, Montpellier cedex 5, 34293 France (France); Lesne, Annick, E-mail: annick.lesne@igmm.cnrs.fr [Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, Université de Montpellier, 1919 route de Mende, Montpellier cedex 5, 34293 France (France); Laboratoire de Physique Théorique de la Matière Condensée UMR 7600, CNRS, UPMC, Sorbonne Universités, 4 place Jussieu, Paris cedex 5, 75252 France (France)

    2016-08-02

    Cancer progression is generally described in terms of accumulated genetic alterations and ensuing changes in cell properties. However, intermediary modifications are involved in the establishment of cancer cell phenotypes, at different levels of nuclear organization: DNA damages and their structural consequences, epigenetic modifications and their impact on chromatin architecture, changes in chromosome 3D organization. We review some of these alterations with a focus on their physical aspects. The challenge is to understand the multiscale interplay between generic physical mechanisms and specific biological factors in cancer cells. We argue that such an interdisciplinary perspective offers a novel viewpoint on cancer progression, early diagnosis and possibly therapeutic targets.

  9. Correlates of distances traveled to use recreational facilities for physical activity behaviors

    Directory of Open Access Journals (Sweden)

    Bulsara Max

    2006-07-01

    Full Text Available Abstract Background Information regarding how far people are willing to travel to use destinations for different types of recreational physical activity behaviors is limited. This study examines the demographic characteristics, neighborhood opportunity and specific-physical activity behaviors associated with distances traveled to destinations used for recreational physical activity. Methods A secondary analysis was undertaken of data (n = 1006 from a survey of Western Australian adults. Road network distances between respondents' homes and 1 formal recreational facilities; 2 beaches and rivers; and 3 parks and ovals used for physical activity were determined. Associations between distances to destinations and demographic characteristics, neighborhood opportunity (number of destinations within 1600 meters of household, and physical activity behaviors were examined. Results Overall, 56.3% of respondents had used a formal recreational facility, 39.9% a beach or river, and 38.7% a park or oval. The mean distance traveled to all destinations used for physical activity was 5463 ± 5232 meters (m. Distances traveled to formal recreational facilities, beaches and rivers, and parks and ovals differed depending on the physical activity undertaken. Younger adults traveled further than older adults (7311.8 vs. 6012.6 m, p = 0.03 to use beaches and rivers as did residents of socio-economically disadvantaged areas compared with those in advantaged areas (8118.0 vs. 7311.8 m, p = 0.02. Club members traveled further than non-members to use parks and ovals (4156.3 vs. 3351.6 meters, p = 0.02. The type of physical activity undertaken at a destination and number of neighborhood opportunities were also associated with distance traveled for all destination types. Conclusion The distances adults travel to a recreational facility depends on the demographic characteristics, destination type, physical activity behavior undertaken at that destination, and number of

  10. Licensing of spent fuel storage facility including its physical protection in the Czech Republic

    International Nuclear Information System (INIS)

    Fajman, V.; Sedlacek, J.

    1992-01-01

    The current spent fuel management policies as practised in the Czech Republic are described, and the conception of the fuel cycle back end is outlined. The general principles and the legislative framework are explained of the licensing process concerning spent fuel interim storage facilities, including the environmental impact assessment component. The history is outlined of the licensing process for the spent fuel storage facility at the Dukovany NPP site, including the licensing of the transport and storage cask. The basic requirements placed on the physical safeguarding of the facility and on the licensing process are given. (J.B.). 13 refs

  11. Health physics and quality control management of a cyclotron-based PET facility

    International Nuclear Information System (INIS)

    Jerabek, P.A.

    1995-01-01

    This paper provides an overview of the operation and management of a Positron Emission Tomography (PET) facility at the University of Texas. The facility components are discussed from an operations perspective with an emphasis on devices, and on practices and procedures which are implemented to ensure that personnel exposures are as low as reasonably achievable. The cyclotron-based PET facility uses in-house production of PET radioisotopes for preparation of radiopharmaceuticals. A combination of specially designed cyclotron equipped devices, radiopharmaceutical preparation devices, and shielded devices along with health physics practices have helped to make PET operations become routine

  12. Health physics experience with nondestructive X-radiation facilities in the US Air Force

    International Nuclear Information System (INIS)

    Stencel, J.R.; Piltingsrud, H.V.

    1976-01-01

    Radiation safety experience in the construction and use of enclosed nondestructive inspection (NDI) facilities in the US Air Force, has reaffirmed the constant need for the health physicist to continually monitor and assit in upgrading these facilities. Health physics contributions include evaluation of initial shielding requirements, proper selection of construction material, insuring that adequate safety devices are installed and adequate personnel dosimetry devices are available, surveying the facility, and assisting in the safety education program. There is a need to better define NDI warning/safety devices, using the National Bureau of Standards, (NBS) Handbook 107 as the most applicable guide

  13. Progress report on research in nuclear physics, August 1, 1994--June 30, 1995

    International Nuclear Information System (INIS)

    Kozub, R.L.; Hindi, M.M.

    1995-07-01

    The progress on Grant No. DE-FG05-87ER40314 from August 1, 1994 to June 30, 1995, is summarized in this report. The activities for the past year were focused on the rare electron capture studies, using experimental facilities at Tennessee Technological University and Montana State University. Also discussed are the PC-based multiparameter data acquisition systems and the two-dimensional position-sensitive microchannel plate detector

  14. Medium-energy physics program. Progress report, August 1--October 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    van Dyck, O.B.; Dunn, E.D. (comps.)

    1978-05-01

    A report is given of the medium-energy physics program at the LAMPF linac for the period from August 1 through October 31, 1977. Topics discussed include: (1) accelerator facilities and development; (2) the main beam lines; (3) experimental areas; (4) research; (5) nuclear chemistry; (6) practical applications; (7) linac technology; and (8) management. (PMA)

  15. Medium-energy physics program. Progress report, August 1--October 31, 1977

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Dunn, E.D.

    1978-05-01

    A report is given of the medium-energy physics program at the LAMPF linac for the period from August 1 through October 31, 1977. Topics discussed include: (1) accelerator facilities and development; (2) the main beam lines; (3) experimental areas; (4) research; (5) nuclear chemistry; (6) practical applications; (7) linac technology; and (8) management

  16. Inertial confinement physics and technology group progress report (1994-1995)

    International Nuclear Information System (INIS)

    Associazione EURATOM-ENEA sulla fusione, Frascati

    1998-05-01

    The technical activities performed during the period 1994-1995 in the framework of the Inertial Fusion Physics and Technology Group, are reported. The theoretical and numerical work, as well as experiments performed with the Frascati ABC facility are described [it

  17. Overview of the TCV tokamak program: scientific progress and facility upgrades

    Science.gov (United States)

    Coda, S.; Ahn, J.; Albanese, R.; Alberti, S.; Alessi, E.; Allan, S.; Anand, H.; Anastassiou, G.; Andrèbe, Y.; Angioni, C.; Ariola, M.; Bernert, M.; Beurskens, M.; Bin, W.; Blanchard, P.; Blanken, T. C.; Boedo, J. A.; Bolzonella, T.; Bouquey, F.; Braunmüller, F. H.; Bufferand, H.; Buratti, P.; Calabró, G.; Camenen, Y.; Carnevale, D.; Carpanese, F.; Causa, F.; Cesario, R.; Chapman, I. T.; Chellai, O.; Choi, D.; Cianfarani, C.; Ciraolo, G.; Citrin, J.; Costea, S.; Crisanti, F.; Cruz, N.; Czarnecka, A.; Decker, J.; De Masi, G.; De Tommasi, G.; Douai, D.; Dunne, M.; Duval, B. P.; Eich, T.; Elmore, S.; Esposito, B.; Faitsch, M.; Fasoli, A.; Fedorczak, N.; Felici, F.; Février, O.; Ficker, O.; Fietz, S.; Fontana, M.; Frassinetti, L.; Furno, I.; Galeani, S.; Gallo, A.; Galperti, C.; Garavaglia, S.; Garrido, I.; Geiger, B.; Giovannozzi, E.; Gobbin, M.; Goodman, T. P.; Gorini, G.; Gospodarczyk, M.; Granucci, G.; Graves, J. P.; Guirlet, R.; Hakola, A.; Ham, C.; Harrison, J.; Hawke, J.; Hennequin, P.; Hnat, B.; Hogeweij, D.; Hogge, J.-Ph.; Honoré, C.; Hopf, C.; Horáček, J.; Huang, Z.; Igochine, V.; Innocente, P.; Ionita Schrittwieser, C.; Isliker, H.; Jacquier, R.; Jardin, A.; Kamleitner, J.; Karpushov, A.; Keeling, D. L.; Kirneva, N.; Kong, M.; Koubiti, M.; Kovacic, J.; Krämer-Flecken, A.; Krawczyk, N.; Kudlacek, O.; Labit, B.; Lazzaro, E.; Le, H. B.; Lipschultz, B.; Llobet, X.; Lomanowski, B.; Loschiavo, V. P.; Lunt, T.; Maget, P.; Maljaars, E.; Malygin, A.; Maraschek, M.; Marini, C.; Martin, P.; Martin, Y.; Mastrostefano, S.; Maurizio, R.; Mavridis, M.; Mazon, D.; McAdams, R.; McDermott, R.; Merle, A.; Meyer, H.; Militello, F.; Miron, I. G.; Molina Cabrera, P. A.; Moret, J.-M.; Moro, A.; Moulton, D.; Naulin, V.; Nespoli, F.; Nielsen, A. H.; Nocente, M.; Nouailletas, R.; Nowak, S.; Odstrčil, T.; Papp, G.; Papřok, R.; Pau, A.; Pautasso, G.; Pericoli Ridolfini, V.; Piovesan, P.; Piron, C.; Pisokas, T.; Porte, L.; Preynas, M.; Ramogida, G.; Rapson, C.; Rasmussen, J. Juul; Reich, M.; Reimerdes, H.; Reux, C.; Ricci, P.; Rittich, D.; Riva, F.; Robinson, T.; Saarelma, S.; Saint-Laurent, F.; Sauter, O.; Scannell, R.; Schlatter, Ch.; Schneider, B.; Schneider, P.; Schrittwieser, R.; Sciortino, F.; Sertoli, M.; Sheikh, U.; Sieglin, B.; Silva, M.; Sinha, J.; Sozzi, C.; Spolaore, M.; Stange, T.; Stoltzfus-Dueck, T.; Tamain, P.; Teplukhina, A.; Testa, D.; Theiler, C.; Thornton, A.; Tophøj, L.; Tran, M. Q.; Tsironis, C.; Tsui, C.; Uccello, A.; Vartanian, S.; Verdoolaege, G.; Verhaegh, K.; Vermare, L.; Vianello, N.; Vijvers, W. A. J.; Vlahos, L.; Vu, N. M. T.; Walkden, N.; Wauters, T.; Weisen, H.; Wischmeier, M.; Zestanakis, P.; Zuin, M.; the EUROfusion MST1 Team

    2017-10-01

    The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from

  18. Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.K.; Griffin, J.J.

    1995-06-01

    This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes.

  19. Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1995-06-01

    This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes

  20. U.C. Davis high energy particle physics research: Technical progress report -- 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

  1. Recent Progress in Planetary Laboratory Astrophysics achieved with NASA Ames' COSmIC Facility

    Science.gov (United States)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-10-01

    We describe the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for "Cosmic Simulation Chamber" and is dedicated to the study of neutral and ionized molecules and nanoparticles under the low temperature and high vacuum conditions that are required to simulate various space environments such as planetary atmospheres. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. The COSmIC experimental setup is composed of a Pulsed Discharge Nozzle (PDN) expansion, that generates a plasma in the stream of a free supersonic jet expansion, coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection [2, 3], and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [4].Recent results obtained using COSmIC will be highlighted. In particular, the progress that has been achieved in an on-going study investigating the formation and the characterization of laboratory analogs of Titan's aerosols generated from gas-phase molecular precursors [5] will be presented. Plans for future laboratory experiments on planetary molecules and aerosols in the growing field of planetary laboratory astrophysics will also be addressed, as well as the implications of studies underway for astronomical observations.References: [1] Salama F., in Organic Matter in Space, IAU S251, Kwok & Sandford eds, CUP, S251, 4, 357 (2008).[2] Biennier L., Salama, F., Allamandola L., & Scherer J., J. Chem. Phys., 118, 7863 (2003)[3] Tan X, & Salama F., J. Chem. Phys. 122, 84318 (2005)[4] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300

  2. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    International Nuclear Information System (INIS)

    Butterworth, St.W.; Shaw, M.R.

    2009-01-01

    Significant progress continued at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) with the completion of the closure process to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks had historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Four of the large storage tanks remain in use for waste storage while the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. During 2008 over seven miles of underground process piping along with associated tank valve boxes and secondary containment systems was stabilized with grout. Lessons learned were compiled and implemented during the closure process and will be utilized on the remaining four 1,135.6-kL (300,000-gal) underground stainless steel storage tanks. Significant progress has been made to clean and close emptied tanks at the INTEC TFF. Between 2002 and 2005, seven of the eleven 1,135.6-kL (300,000-gal) tanks and all four 113.5-kL (30,000-gal) tanks were cleaned and prepared

  3. Phenomenological analyses and their application to the Defense Waste Processing Facility probabilistic safety analysis accident progression event tree. Revision 1

    International Nuclear Information System (INIS)

    Kalinich, D.A.; Thomas, J.K.; Gough, S.T.; Bailey, R.T.; Kearnaghan, D.P.

    1995-01-01

    In the Defense Waste Processing Facility (DWPF) Safety Analysis Reports (SARs) for the Savannah River Site (SRS), risk-based perspectives have been included per US Department of Energy (DOE) Order 5480.23. The NUREG-1150 Level 2/3 Probabilistic Risk Assessment (PRA) methodology was selected as the basis for calculating facility risk. The backbone of this methodology is the generation of an Accident Progression Event Tree (APET), which is solved using the EVNTRE computer code. To support the development of the DWPF APET, deterministic modeling of accident phenomena was necessary. From these analyses, (1) accident progressions were identified for inclusion into the APET; (2) branch point probabilities and any attendant parameters were quantified; and (3) the radionuclide releases to the environment from accidents were determined. The phenomena of interest for accident progressions included explosions, fires, a molten glass spill, and the response of the facility confinement system during such challenges. A variety of methodologies, from hand calculations to large system-model codes, were used in the evaluation of these phenomena

  4. Progress report of Physics Division. 1st January - 31st December 1973

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The reactor MOATA is operating successfully at 100 kW with the higher available flux being much appreciated by all users. An uranium analysis service commenced and the various mining exploration companies are gradually availing themselves of it in an increasing fashion. The possible introduction of a similar service for neutron radiography is being explored following successful laboratory studies. Various other applications of nuclear science are under development. The revised safety assessment carried out for 100 kW operation of MOATA led to a more generalized study of self limited, non boiling power transients and in particular the maximum reactivity limit for these transients. This involved a re-examination of the SPERT non boiling transients and the prediction of their outcome in quantitative terms on purely physics considerations without resort to normalization. The indications are that a 10 second period transient in MOATA would give rise to a power transient which would be self limited to 100 . A possible experiment to test this prediction is under examination. Various physics aspects of MOATA operation were studied on a mockup of the reactor on the split table machine and the degree of understanding by staff of this reactor's behavior much improved. The safety assessment of the split table machine (Critical Facility) was completed and should shortly be available from the printer for submission to the new Licensing and Regulatory Bureau for authority to operate. {nu}-bar measurements for the various fissile elements are complete, but studies of neutron emission from the individual fragments produced during the spontaneous fission of {sup 252}Cf fission and the neutron energy spectrum of {sup 252}Cf fission neutrons are being undertaken to clarify some of the remaining discrepancies. Analysis of neutron capture cross section data obtained at Oak Ridge National Laboratory is continuing. Details of the analysis for some element studies are given. Progress has

  5. Progress report of Physics Division. 1st January - 31st December 1973

    International Nuclear Information System (INIS)

    2004-01-01

    The reactor MOATA is operating successfully at 100 kW with the higher available flux being much appreciated by all users. An uranium analysis service commenced and the various mining exploration companies are gradually availing themselves of it in an increasing fashion. The possible introduction of a similar service for neutron radiography is being explored following successful laboratory studies. Various other applications of nuclear science are under development. The revised safety assessment carried out for 100 kW operation of MOATA led to a more generalized study of self limited, non boiling power transients and in particular the maximum reactivity limit for these transients. This involved a re-examination of the SPERT non boiling transients and the prediction of their outcome in quantitative terms on purely physics considerations without resort to normalization. The indications are that a 10 second period transient in MOATA would give rise to a power transient which would be self limited to 100 . A possible experiment to test this prediction is under examination. Various physics aspects of MOATA operation were studied on a mockup of the reactor on the split table machine and the degree of understanding by staff of this reactor's behavior much improved. The safety assessment of the split table machine (Critical Facility) was completed and should shortly be available from the printer for submission to the new Licensing and Regulatory Bureau for authority to operate. ν-bar measurements for the various fissile elements are complete, but studies of neutron emission from the individual fragments produced during the spontaneous fission of 252 Cf fission and the neutron energy spectrum of 252 Cf fission neutrons are being undertaken to clarify some of the remaining discrepancies. Analysis of neutron capture cross section data obtained at Oak Ridge National Laboratory is continuing. Details of the analysis for some element studies are given. Progress has also been

  6. Strengthened implementation of physical protection of nuclear material and nuclear facilities in the Republic of Korea

    International Nuclear Information System (INIS)

    Shim, H.-W.; Lee, J.-U.

    2005-01-01

    Full text: Since the 9.11 terror, strengthening physical protection has been an accelerated trend internationally. IAEA has been requesting that member states implement a strengthened physical protection of nuclear facilities on the basis of threat assessments. In order to cope with this demand, the Korean government promulgated the 'Law for Physical Protection and Radiological Emergency Preparedness (LPPRE)' as a substantial countermeasure against possible threats. Pursuant to LPPRE, which entered into force on February 16, 2004, nuclear enterprisers are obliged to implement an effective physical protection of nuclear materials, get approval for its physical protection system, and be constantly inspected on. The Ministry of Science and Technology (MOST) approved physical protection regulations of 24 domestic facilities operated by 14 enterprisers. National Nuclear management and Control Agency (NNCA) is entrusted with physical protection related duty and has been conducting physical protection inspection on nuclear materials in use, storage and transport. In addition, NNCA has established the methodology of threat assessment that entails organizing the threat assessment working group to develop a design basis threat (DBT). Korea is putting its best efforts to construct the threat assessment system and strengthen domestic physical protection regime in cooperation with competent authorities. (author)

  7. Implementation Planning and Progress on Physical Activity Goals: The Mediating Role of Life-Management Strategies

    Science.gov (United States)

    Dugas, Michelle; Gaudreau, Patrick; Carraro, Natasha

    2012-01-01

    This 4-week prospective study examined whether the use of life-management strategies mediates the relationship between implementation planning and short-term progress on physical activity goals. In particular, the strategies of elective selection, compensation, and loss-based selection were disentangled to assess their specific mediating effects.…

  8. Chronic Family Economic Hardship, Family Processes and Progression of Mental and Physical Health Symptoms in Adolescence

    Science.gov (United States)

    Lee, Tae Kyoung; Wickrama, K. A. S.; Simons, Leslie Gordon

    2013-01-01

    Research has documented the relationship between family stressors such as family economic hardship and marital conflict and adolescents' mental health symptoms, especially depressive symptoms. Few studies, however, have examined the processes whereby supportive parenting lessens this effect and the progression of mental health and physical health…

  9. Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1993--June 30, 1994

    International Nuclear Information System (INIS)

    Cohen, T.D.; Banerjee, M.K.

    1994-07-01

    Under Hadrons in Nuclei and Nuclear Matter the authors research the ways in which the properties of nucleons and mesons are modified in the nuclear medium. Research progress is reported on a number of topics in this general area, including studies of the role of chiral symmetry for finite density or temperature nuclear matter, the use of QCD sum rules to describe baryons in nuclear matter, and color transparency. In the general field of Hadron Physics broad progress included studies of perturbative QCD, heavy quark physics, QCD sum rules, and QCD-based models. Notable progress was also achieved in Relativistic Dynamics in Quark, Hadron, and Nuclear Physics, where an explicit model of composite particles shows how the z-graph physics (which is an essential part of Dirac phenomenology) comes about. In addition, calculations of elastic electron-deuteron scattering based on two-body relativistic dynamics and meson exchange currents were completed, as were studies of quark-anti-quark bound states based on a relativistic quark model. Progress is also reported on the relativistic few-body problem. In the area of Heavy Ion Dynamics and Sharp Lepton Pairs, work continues on the Composite Particle Scenario for the 'Sharp Lepton Problem'. In particular, the scenario can now encompass the anomalous sharp leptons reported from positron irradiation of heavy neutral atoms, establishing such irradiations as an alternative experimental window to the heavy ion experiments

  10. Studies in theoretical high energy particle physics: Technical progress report [February 1987-February 1988

    International Nuclear Information System (INIS)

    Sukhatme, U.P.; Keung, Wai-Yee; Kovacs, E.

    1988-02-01

    This is a technical progress report for grant No. FG02-84ER40173 for the period February 1987 to February 1988. Our research on supersymmetric quantum mechanics has yielded many interesting results. In particular, a systematic approach to the tunneling problem in double well potentials has been developed. Higgs boson related physics at the high energy hadron colliders has been extensively studied

  11. Progression in Physical Education Teachers' Career-Long Professional Learning: Conceptual and Practical Concerns

    Science.gov (United States)

    Armour, Kathleen; Makopoulou, Kyriaki; Chambers, Fiona

    2012-01-01

    This paper considers the issue of learning "progression" in pedagogy for physical education (PE) teachers in their career-long professional development (CPD). This issue arose from an analysis of findings from three research projects in which the authors were involved. The projects were undertaken in different national contexts (Ireland,…

  12. Recent progress of GEANT4 electromagnetic physics for LHC and other applications

    NARCIS (Netherlands)

    Bagulya, A.; Brown, J.M.C.; Burkhardt, H.; Grichine, V.; Guatelli, S.; Incerti, S.; Ivanchenko, V. N.; Kadri, O.; Karamitros, M.; Maire, M.; Mashtakov, K.; Novak, M; Pandola, L.; Rancoita, P. G.; Sawkey, D.; Tacconi, M.; Urban, L.

    2017-01-01

    We report on the recent progress within the Geant4 electromagnetic physics subpackages. Several new interfaces and models recently introduced are already used in LHC applications and may be useful for any type of simulation. Significant developments were carried out to improve the user interface,

  13. Use of the project management methodology to establish physical protection system at nuclear facility

    International Nuclear Information System (INIS)

    Gramotkin, F.; Kuzmyak, I.; Kravtsov, V.

    2015-01-01

    The paper considers the possibility of using the project management methodology developed by the Project Management Institute (USA) in nuclear security in terms of modernization or development of physical protection system at nuclear facility. It was demonstrated that this methodology allows competent and flexible management of the projects on physical protection, ensuring effective control of their timely implementation in compliance with the planned budget and quality

  14. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  15. Progress report on reactor physics research program, January 1963 - February 1964

    International Nuclear Information System (INIS)

    1964-02-01

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics

  16. Progress report on reactor physics research program, January 1963 - February 1964

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-02-15

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics.

  17. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  18. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  19. Data base of reactor physics experimental results in Kyoto University critical assembly experimental facilities

    International Nuclear Information System (INIS)

    Ichihara, Chihiro; Fujine, Shigenori; Hayashi, Masatoshi

    1986-01-01

    The Kyoto University critical assembly experimental facilities belong to the Kyoto University Research Reactor Institute, and are the versatile critical assembly constructed for experimentally studying reactor physics and reactor engineering. The facilities are those for common utilization by universities in whole Japan. During more than ten years since the initial criticality in 1974, various experiments on reactor physics and reactor engineering have been carried out using many experimental facilities such as two solidmoderated cores, a light water-moderated core and a neutron generator. The kinds of the experiment carried out were diverse, and to find out the required data from them is very troublesome, accordingly it has become necessary to make a data base which can be processed by a computer with the data accumulated during the past more than ten years. The outline of the data base, the data base CAEX using personal computers, the data base supported by a large computer and so on are reported. (Kako, I.)

  20. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    Science.gov (United States)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  1. Radiation physics, biophysics and radiation biology. Progress report for October 1, 1979-September 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, H.H.; Hall, E.J.

    1980-07-01

    Separate abstracts were prepared for 31 of the 32 papers presented in this progress report. The other paper is represented by an abstract only and deals with field shaping and recalibration of x-ray facilities.

  2. Analysis of impact of noncompliance with physical-security requirements at nuclear facilities

    International Nuclear Information System (INIS)

    Green, J.N.

    1982-03-01

    Inspectors are required to analyze the impact of instances of noncompliance with physical security requirements at licensed nuclear facilities. A scoring procedure for components and a method for evaluating the effectiveness of the subsystems involved are proposed to reinforce an inspector's judgment about the remaining level of safeguards

  3. Evaluating physical protection systems of licensed nuclear facilities using systems engineered inspection guidance

    International Nuclear Information System (INIS)

    Bradley, R.T.; Olson, A.W.; Rogue, F.; Scala, S.; Richard, E.W.

    1980-01-01

    The Lawrence Livermore National Laboratory (LLNL) and the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) have applied a systems engineering approach to provide the NRC Office of Inspection and Enforcement (IE) with improved methods and guidance for evaluating the physical protection systems of licensed nuclear facilities

  4. Acceptance criteria for the evaluation of Category 1 fuel cycle facility physical security plans

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, P.A.

    1991-10-01

    This NUREG document presents criteria developed from US Nuclear Regulatory Commission regulations for the evaluation of physical security plans submitted by Category 1 fuel facility licensees. Category 1 refers to those licensees who use or possess a formula quantity of strategic special nuclear material.

  5. Evaluation of effectiveness of physical protection systems at nuclear facilities in the Slovak Republic

    International Nuclear Information System (INIS)

    Stefulova, A.

    2001-01-01

    This paper contains a short presentation of the state supervision in approach to the evaluation of physical protection systems at the nuclear facilities as one kind of measure used to prevent combat illicit trafficking of nuclear and other radioactive materials in the Slovak Republic. (author)

  6. Acceptance criteria for the evaluation of Category 1 fuel cycle facility physical security plans

    International Nuclear Information System (INIS)

    Dwyer, P.A.

    1991-10-01

    This NUREG document presents criteria developed from US Nuclear Regulatory Commission regulations for the evaluation of physical security plans submitted by Category 1 fuel facility licensees. Category 1 refers to those licensees who use or possess a formula quantity of strategic special nuclear material

  7. Physical Facilities for Holistic Education: Lessons from Secondary Schools in Kiambu and Samburu Counties, Kenya

    Science.gov (United States)

    Ndirangu, Waweru Peter; Thinguri, Ruth; Chui, Mary Mugwe

    2016-01-01

    This paper is premised on the background that the majority of researchers and educationists who have contributed to the discourse on education for sustainability seem to be in agreement that management of physical facilities are critical ingredients in achieving holistic and sustainable education. The study examined the application of physical…

  8. An e-p facility for Europe. Weak interactions in e-p physics

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    We first present the recent development on an e-p collider in Europe occuring in the last year. Then a review of physics motivations for an e-p ring is discussed and developed with the latest work presented at the meeting on 'Study for an e-p Facility for Europe' held at Hamburg on April 2-3, 1979

  9. Physics at a future Neutrino Factory and super-beam facility

    NARCIS (Netherlands)

    Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roberts, B. L.; Bouchez, J.; Antoniadis, I.; Ellis, J.; Giudice, G. F.; Schwetz, T.; Umasankar, S.; Karagiorgi, G.; Aguilar-Arevalo, A.; Conrad, J. M.; Shaevitz, M. H.; Pascoli, S.; Geer, S.; Campagne, J. E.; Rolinec, M.; Blondel, A.; Campanelli, M.; Kopp, J.; Lindner, M.; Peltoniemi, J.; Dornan, P. J.; Long, K.; Matsushita, T.; Rogers, C.; Uchida, Y.; Dracos, M.; Whisnant, K.; Casper, D.; Chen, Mu-Chun; Popov, B.; Aysto, J.; Marfatia, D.; Okada, Y.; Sugiyama, H.; Jungmann, K.; Lesgourgues, J.; Zisman, M.; Tortola, M. A.; Friedland, A.; Davidson, S.; Antusch, S.; Biggio, C.; Donini, A.; Fernandez-Martinez, E.; Gavela, B.; Maltoni, M.

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and

  10. Progress report on the design of a Low-Level Waste Pilot Facility at ORNL

    International Nuclear Information System (INIS)

    Hensley, L.C.; Turner, V.L.; Pruitt, A.S.

    1980-01-01

    All low-level radioactive solid wastes, excluding TRU wastes, are disposed of by shallow land burial at the Oak Ridge National Laboratory. Contaminated liquids and sludges are hydrofractures. The TRU wastes are stored in a retrievable fashion in concrete storage facilities. Currently, the capacity for low-level radioactive waste burial at the Oak Ridge National Laboratory is adequate for another six years of service at the current solids disposal rate which ranges between 80,000 and 100,000 cu ft per year. Decontamination and decommissioning of a number of ORNL facilities will be a significant activity in the next few years. Quantities of radioactive materials to be stored or disposed of as a result of these activities will be large; therefore, the technology to dispose of large quantities of low-level radioactive wastes must be demonstrated. The UCC-ND Engineering Division, in concert with divisions of the Oak Ridge National Laboratory, has been requested to prepare a conceptual design for a facility to both dispose of the currently produced low-level radioactive waste and also to provide a test bed for demonstration of other processes which may be used in future low-level radioactive wastes disposal facilities. This facility is designated as the Low-Level Waste Pilot Facility (LLWPF). This paper describes the status of the conceptual design of a facility for disposal of the subject radioactive waste

  11. Progress towards developing consistent design and evaluation guidelines for DOE facilities subjected to natural phenomena hazards

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; McDonald, J.R.; McCann, M.W. Jr.; Reed, J.W.

    1985-01-01

    Probabilistic definitions of earthquake, wind and tornado natural phenomena hazards for many Department of Energy (DOE) facilities throughout the United States have been developed. In addition, definitions of the flood hazards which might affect these locations are currently being developed. The Department of Energy Natural Phenomena Hazards Panel is now preparing a document to provide guidance and criteria for DOE facility managers to assure that DOE facilities are adequately constructed to resist the effects of natural phenomena such as earthquake, strong wind and flood. The intent of this document is to provide instruction on how to utilize the hazard definitions to evaluate existing facilities and design new facilities in a manner such that the risk of adverse consequences is consistent with the cost, function, and danger to the public or environment of the facility. Potential effects on facilities of natural phenomena hazards are emphasized in this paper. The philosophy for mitigating these effects to be employed in the design and evaluation guidelines is also presented

  12. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    International Nuclear Information System (INIS)

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO 2 laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs

  13. Progress report - physical sciences - physics division - 1993 January 01 - June 30

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    After significant organizational change for the Physics Division, there are now two groups: Neutron and Condensed Matter Science, and Nuclear Physics. Theoretical Physics Branch was disbanded. A topical review of work on high power proton linacs describes the historical development of high power ion linacs and the ion source development program from initiation to its completion in 1993. RFQ1 became the first particle accelerator to be driven by a klystrode-based rf system. The accelerator operated at 1.25 MeV and accelerated more than 50 mA of high quality beam. The equipment has been sent to Los Alamos National Laboratory and will be recommissioned as the Chalk River Injection Test Stand (CRITS). The laser plasma beatwave accelerator generating accelerating field gradients of up to 1.8 GeV/m and acceleration of an injected electron beam to at least 30 meV over a 1 cm distance. The high power CO{sub 2} laser beam was used to irradiate Zr-N6 pressure tube samples. The aim was to assess surface modifications particularly from shock hardening. Application of radiofrequency waves were used to investigate the properties of relevant materials, notably industrial ferrites. Chalk River participated in an international collaboration on measurement of dielectric properties of materials at high temperatures. A second topical review on neutron scattering and mineral physics deals with phase transitions in carbonate and in silicates. Dualspec is operating successfully. Modifications have been made to improve safety, reproducibility, angle control, calibration and sample analysis. Reviews from six programs: physics, molecular physics, material science, condensed matter theory, neutrino physics, and molecular dating and modelling are given. 1 tab., 17 figs.

  14. Overview of new, upgraded, or proposed high energy physics facilities in the United States and Canada

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1994-01-01

    This article reviews six new, proposed, or upgraded accelerator facilities in the United States and Canada. All of the accelerators that are presented here in one form or fashion challenge the validity of the Standard Model of high energy physics which ''currently explains'' all experimentally know phenomena. These facilities include the Continuous Electron Beam Accelerator Facility (CEBAF) at Newport News, Virginia, the Kaon Factory at TRIUMF in Vancouver, British Columbia, Canada, the Asymmetric B Factory at the Stanford Linear Accelerator Center (SLAC) in Palo Alto, California, the Relativistic Heavy Ion Collider (RHIC) facility at Brookhaven National Laboratory in Upton, New York, the injector upgrade project at the Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois, and the Superconducting Super Collider Laboratory (SSCL) in Waxachachie, Texas

  15. Radiological Research Accelerator Facility. Progress report, April 1, 1984-March 31, 1985

    International Nuclear Information System (INIS)

    Rossi, H.H.

    1985-01-01

    The aim of the Radiological Research Accelerator Facility (RARAF) was to provide a source of monoenergetic neutrons for studies in radiation biology, dosimetry and microdosimetry. The research has provided insight into the biological action of radiation and its relation to energy distribution in the cell as described by the theory of dual radiation action. This status report on the facility includes descriptions of the capabilities and layout, staffing, radiation safety, and a chronological account of the development and use of the facilities. 5 references, 2 figures

  16. Health physics manual of good practices for plutonium facilities. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Heid, K.R.; Herrington, W.N.; Kenoyer, J.L.; Munson, L.F.; Munson, L.H.; Selby, J.M.; Soldat, K.L.; Stoetzel, G.A.; Traub, R.J.

    1988-05-01

    This manual consists of six sections: Properties of Plutonium, Siting of Plutonium Facilities, Facility Design, Radiation Protection, Emergency Preparedness, and Decontamination and Decommissioning. While not the final authority, the manual is an assemblage of information, rules of thumb, regulations, and good practices to assist those who are intimately involved in plutonium operations. An in-depth understanding of the nuclear, physical, chemical, and biological properties of plutonium is important in establishing a viable radiation protection and control program at a plutonium facility. These properties of plutonium provide the basis and perspective necessary for appreciating the quality of control needed in handling and processing the material. Guidance in selecting the location of a new plutonium facility may not be directly useful to most readers. However, it provides a perspective for the development and implementation of the environmental surveillance program and the in-plant controls required to ensure that the facility is and remains a good neighbor. The criteria, guidance, and good practices for the design of a plutonium facility are also applicable to the operation and modification of existing facilities. The design activity provides many opportunities for implementation of features to promote more effective protection and control. The application of ''as low as reasonably achievable'' (ALARA) principles and optimization analyses are generally most cost-effective during the design phase. 335 refs., 8 figs., 20 tabs.

  17. A simulated test of physical starting and reactor physics on zero power facility of PWR

    International Nuclear Information System (INIS)

    Yao Zewu; Ji Huaxiang; Chen Zhicheng; Yao Zhiquan; Chen Chen; Li Yuwen

    1995-01-01

    The core neutron economics has been verified through experiments conducted at a zero power reactor with baffles of various thickness. A simulated test of physical starting of Qinshan PWR has been introduced. The feasibility and safety of the programme are verified. The research provides a valuable foundation for developing physical starting programme

  18. Progress report - physical sciences - physics division 1991 July 01 - December 31

    International Nuclear Information System (INIS)

    1992-05-01

    The reports from the three branches in Physics Division, Accelerator Physics, Neutron and Solid State Physics and Theoretical Physics, are each presented in separate sections. Each section features a topical review, highlighting in this report the use of high-temperature rf and microwave response of materials, magnetic excitations in hexagonal ABX 3 materials, and meson exchange currents in nuclear beta decay. Noteworthy achievements in the Accelerator Physics program include the successful operation to design energy of the re-vaned RFQ1 accelerator enabling now an energy of 1250 keV. The ECR ion source has operated for greater than 75 hours without failure and has produced the 100 mA needed for the RFQ1 accelerator. The neutron scattering program was again hampered by the NRU Reactor being down for repair. The good news is that the reactor was brought back up to full power in December thus enabling experiments to begin again. Experiments earlier in the year were carried out at Oak Ridge (US), Riso (Denmark), National Institute for Standards and Technology (US) and the Rutherford-Appleton Laboratory (UK). A new high capacity, portable pumping system was commissioned replacing a fixed one that had become obsolete and allowing now greater use of environment control devices on all spectrometers. An analysis of double-charge exchange reactions in nuclei has been used to provide limits on the radius of the neutron halo in 11 Li. The most up-to-date, complete and accurate tables of neutron scattering lengths and cross-sections have been completed. Continuous quality improvement (CQI) analyses were initiated for all the activities in Physics Division with the goal to enhance performance and provide better service to our many customers

  19. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    International Nuclear Information System (INIS)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division

  20. Engineering Physics and Mathematics Division progress report for period ending December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sincovec, R.F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period January 1, 1993, through December 31, 1994. This report is the final archival record of the EPM Division. On October 1, 1994, ORELA was transferred to Physics Division and on January 1, 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL`s research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  1. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1992

    International Nuclear Information System (INIS)

    1993-08-01

    The results of the joint researches by utilizing the facilities of JAERI in 1992 fiscal year were summarized. The number of research themes in 1992 was 247 cases. In this book, 166 reports are collected. (J.P.N.)

  2. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1993

    International Nuclear Information System (INIS)

    1994-07-01

    The results of the joint researches by utilizing the facilities of JAERI in 1993 fiscal year were summarized. The number of research themes in 1993 was 228 cases. In this book, 243 reports are collected. (J.P.N.)

  3. The radiological research accelerator facility: Progress report for the period December 1, 1986-November 30, 1987

    International Nuclear Information System (INIS)

    1987-04-01

    Experiments performed at the Radiological Research Accelerator Facility (RARAF) during the period of July 1986 through April 1987 are listed, as well as experiments run prior to that period and expected to eventually resume. The experiments run since July 1, 1986 or expected to run before November 30, 1987 are briefly described. Accelerator use and operation is summarized, as well as facilities development and activities of the Scientific Advisory Committee

  4. τ physics using the TPC/2γ facility at HiLum PEP

    International Nuclear Information System (INIS)

    Bloom, E.D.

    1991-01-01

    Plans for a TPC/2γ facility program using HiLum PEP for τ physics are presented. The detector and its performance are described in some detail. The possibilities for a τ physics program with an integrated luminosity of 1 fb -1 are discussed. The physics issues are reviewed, particularly the τ'1-prong' problem, and preliminary results on τ → ν τ K +- X + X - + ≥ 0 Neutrals are shown. The performance of HiLum PEP is also presented, and expectations for the future are discussed. (R.P.) 15 refs., 14 figs., 3 tabs

  5. Power systems development facility. Quarterly technical progress report, July 1, 1994--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. (2) Hot Gas Cleanup Units to mate to all gas streams. (3) Combustion Gas Turbine. (4) Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  6. Progress on ANSTO'S OPAL reactor project and its future importance as the centrepiece of ANSTO'S facilities

    International Nuclear Information System (INIS)

    Smith, I.O.

    2006-01-01

    Full text: After an intensive process of analysis, the Australian government approved the construction of a multi-purpose research reactor in 1997. Following the conduct of a comprehensive tender evaluation process in 1998-2000, INVAP was contracted to construct a 20 MW open pool research reactor and associated neutron beam facilities. The construction of the reactor is now almost complete, and we have commenced cold commissioning. ANSTO has applied for an operating licence, and we hope for a decision on that application in June, following the consideration by the regulator of the results of cold commissioning. The OPAL reactor will provide neutrons to a world-class neutron beam facility, in which a number of the instruments will have the best performance available in the world to date. We intend to establish the Bragg Institute as a regional centre of excellence on neutron beam science, with a significant number of international scientists using the facility to produce cutting edge science in the fields of biology, materials science, food science and other area. The reactor also has extensive irradiation facilities within the reflector vessel. These facilities will be used to produce medical isotopes - ANSTO supplies the bulk of the Australian market and also exports into this region - and for the transmutation doping of silicon ingots for semiconductor manufacture. There are also a number of pneumatically loaded radiation facilities allowing for short term irradiation of samples for such activities as neutron activation analysis

  7. Overview of the TCV tokamak program: scientific progress and facility upgrades.

    Czech Academy of Sciences Publication Activity Database

    Coda, S.; Ficker, Ondřej; Horáček, Jan; Papřok, Richard

    2017-01-01

    Roč. 57, October (2017), č. článku 102011. ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : TCV * tokamak * overview Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016

  8. A Road map for Establishing the Physical Protection Regime of Nuclear Materials and Facilities

    International Nuclear Information System (INIS)

    Yoo, Ho-Sik; Kwak, Sung-Woo; Jang, Sung-Soon; Kim, Jae-Kwang; Kim, Jung-Soo; Yoon, Wan-Ki

    2007-01-01

    The importance of physical protection for nuclear materials and facilities that can be an objective for terrorists has never been more stressed. The responsibility for physical protection within a State does not rest entirely with that state because cross-border transactions related to nuclear materials increase as nuclear related industries expand. The international community has prepared measures to strengthen the regime of physical protection such as the IAEA's proposal of the 'Nuclear Security Plan for 2006-2009' and UN's resolution on 'the International Convention for the Suppression of Acts of Nuclear Terrorism'. In order to cope with this, Korea has also made efforts to establish the implementation system for physical protection in the field of nuclear industries since the law for Physical Protection of Nuclear Material and Facility and Radiological Emergency Preparedness (LPPREP) was promulgated in 2004. The detailed plans should be prepared to accomplish this. This study has been performed to derive the items for establishing the regime of physical protection. The items derived were classified as short, mid and long-term depending on their characteristics and environmental circumstances. The regime of national physical protection will be established if the studies on these items are carried out successfully and tangible results are obtained

  9. Spatial accessibility to physical activity facilities and to food outlets and overweight in French youth.

    Science.gov (United States)

    Casey, R; Chaix, B; Weber, C; Schweitzer, B; Charreire, H; Salze, P; Badariotti, D; Banos, A; Oppert, J-M; Simon, C

    2012-07-01

    Some characteristics of the built environment have been associated with obesity in youth. Our aim was to determine whether individual and environmental socio-economic characteristics modulate the relation between youth overweight and spatial accessibility to physical activity (PA) facilities and to food outlets. Cross-sectional study. 3293 students, aged 12 ± 0.6 years, randomly selected from eastern France middle schools. Using geographical information systems (GIS), spatial accessibility to PA facilities (urban and nature) was assessed using the distance to PA facilities at the municipality level; spatial accessibility to food outlets (general food outlets, bakeries and fast-food outlets) was calculated at individual level using the student home address and the food outlets addresses. Relations of weight status with spatial accessibility to PA facilities and to food outlets were analysed using mixed logistic models, testing potential direct and interaction effects of individual and environmental socio-economic characteristics. Individual socio-economic status modulated the relation between spatial accessibility to PA facilities and to general food outlets and overweight. The likelihood of being overweight was higher when spatial accessibility to urban PA facilities and to general food outlets was low, but in children of blue-collar-workers only. The odds ratio (OR) (95% confidence interval) for being overweight of blue-collar-workers children compared with non-blue-collar-workers children was 1.76 (1.25-2.49) when spatial accessibility to urban PA facilities was low. This OR was 1.86 (1.20-2.86) when spatial accessibility to general food outlets was low. There was no significant relationship of overweight with either nature PA facilities or other food outlets (bakeries and fast-food outlets). These results indicate that disparities in spatial accessibility to PA facilities and to general food outlets may amplify the risk of overweight in socio

  10. Experimental and theoretical high energy physics research. Annual progress report, September 1, 1991--September 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.

  11. Research in elementary particle physics. Technical progress report, June 1, 1984-May 31, 1985

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Abbott, L.F.

    1985-01-01

    Research performed on both the experimental and theoretical properties of elementary particles is briefly described, including: construction of forward electromagnetic shower counters; BO test facility; gas monitor development and production; off-line simulation work for trigger studies; hyperon weak radiative decay; search for dibaryons of strangeness = -1; study of the Skyrme model; collider physics; quarkonium spectroscopy; some theoretical studies of the standard model; and studies of cosmology, the cosmological constant, and scalar fields in curved space-time. 37 refs

  12. Progress report - Physical and Environmental Sciences - Physics Division, 1996 January 1 to December 31

    International Nuclear Information System (INIS)

    Powell, B.M.

    1997-04-01

    This document is the last Progress Report for the Neutron and Condensed Matter Science Branch, at Chalk River Labs of Atomic Energy of Canada Limited. The materials science program continued to include measurements of stress as a major component, but the determination of phase diagrams for specific alloys was also a prominent activity. Studies were made of two types of unusual magnetic materials. The magnetic properties of several oxide pyrochlore were investigated and spin waves were measured in the magnetic semiconductor, chalcopyrite. The crystal structures of the deuterated anti fluorite were determined and the reorientation of the ammonium ion was refined in detail. Differential scanning calorimetry measurements were used to investigate whether spontaneous phase separation into chiral domains occurs for mixtures of DPPC of opposite chirality. A new Neutron Velocity Selector was commissioned

  13. Progress report - Physical and Environmental Sciences - Physics Division, 1996 January 1 to December 31

    Energy Technology Data Exchange (ETDEWEB)

    Powell, B.M. (ed.)

    1997-04-01

    This document is the last Progress Report for the Neutron and Condensed Matter Science Branch, at Chalk River Labs of Atomic Energy of Canada Limited. The materials science program continued to include measurements of stress as a major component, but the determination of phase diagrams for specific alloys was also a prominent activity. Studies were made of two types of unusual magnetic materials. The magnetic properties of several oxide pyrochlore were investigated and spin waves were measured in the magnetic semiconductor, chalcopyrite. The crystal structures of the deuterated anti fluorite were determined and the reorientation of the ammonium ion was refined in detail. Differential scanning calorimetry measurements were used to investigate whether spontaneous phase separation into chiral domains occurs for mixtures of DPPC of opposite chirality. A new Neutron Velocity Selector was commissioned.

  14. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  15. Summary of informal meeting on ''facilities for atomic physics research with highly ionized atoms''

    International Nuclear Information System (INIS)

    Cocke, C.L.; Jones, K.W.

    1984-01-01

    An informal meeting to discuss ''Facilities for Atomic Physics Research with Highly Ionized Atoms'' was held during the APS DEAP meeting at the University of Connecticut on May 30, 1984. The meeting was motivated by the realization that the status of facilities for studies of highly ionized atoms is unsettled and that it might be desirable to take action to ensure adequate resources for research over the whole range of charge states and energies of interest. It was assumed that the science to be done with these beams has been amply documented in the literature

  16. Physics design of fast reactor safety test facilities for in-pile experiments

    International Nuclear Information System (INIS)

    Travelli, A.; Matos, J.E.; Snelgrove, J.L.; Shaftman, D.H.; Tzanos, C.P.; Lam, S.K.; Pennington, E.M.; Woodruff, W.L.

    1976-01-01

    A determined effort to identify and resolve current Fast Breeder Reactor safety testing needs has recently resulted in a number of conceptual designs for FBR safety test facilities which are very complex and diverse both in their features and in their purpose. The paper discusses the physics foundations common to most fast reactor safety test facilities and the constraints which they impose on the design. The logical evolution, features, and capabilities of several major conceptual designs are discussed on the basis of this common background

  17. Discussion of the use of the Dragon reactor as a facility for integral reactor physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gutmann, H

    1972-06-05

    The purpose and use of the Dragon Reactor Experiment (DRE) has changed considerably during the years of its operation. The original purpose was to show that the principle of a High Temperature Reactor is sound and demonstrate its operation. After this achievement, the purpose of the Dragon reactor changed to the use as a fuel testing facility. During recent years, a new use of the DRE has been added to its use as a fuel testing facility, namely Fuel Element Design Testing. The current report covers reactor physics experiments aspects.

  18. Perspectives for photonuclear research at the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D.; Balabanski, D.L.; Constantin, P.; Gales, S.; Tesileanu, O.; Ur, C.A.; Ursu, I.; Zamfir, N.V. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); Anzalone, A.; La Cognata, M.; Spitaleri, C. [INFN-LNS, Catania (Italy); Belyshev, S.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Camera, F. [Departement of Physics, University of Milano, Milano (Italy); INFN section of Milano, Milano (Italy); Csige, L.; Krasznahorkay, A. [Hungarian Academy of Sciences (MTA Atomki), Institute of Nuclear Research, Post Office Box 51, Debrecen (Hungary); Cuong, P.V. [Vietnam Academy of Science and Technology, Centre of Nuclear Physics, Institute of Physics, Hanoi (Viet Nam); Cwiok, M.; Dominik, W.; Mazzocchi, C. [University of Warsaw, Warszawa (Poland); Derya, V.; Zilges, A. [University of Cologne, Institute for Nuclear Physics, Cologne (Germany); Gai, M. [University of Connecticut, LNS at Avery Point, Connecticut, Groton (United States); Gheorghe, I. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Bucharest-Magurele (Romania); University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Ishkhanov, B.S. [Lomonosov Moscow State University, Physics Faculty, Moscow (Russian Federation); Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Kuznetsov, A.A.; Orlin, V.N.; Stopani, K.A.; Varlamov, V.V. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Pietralla, N. [Technische Universitat Darmstadt, Institut fur Kernphysik, Darmstadt (Germany); Sin, M. [University of Bucharest, Nuclear Physics Department, Post Office Box MG-11, Bucharest-Magurele (Romania); Utsunomiya, H. [Konan University, Department of Physics, Kobe (Japan); University of Tokyo, Center for Nuclear Study, Saitama (Japan); Weller, H.R. [Triangle Universities Nuclear Laboratory, North Carolina, Durham (United States); Duke University, Department of Physics, North Carolina, Durham (United States)

    2015-12-15

    The perspectives for photonuclear experiments at the new Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility are discussed in view of the need to accumulate novel and more precise nuclear data. The parameters of the ELI-NP gamma beam system are presented. The emerging experimental program, which will be realized at ELI-NP, is presented. Examples of day-one experiments with the nuclear resonance fluorescence technique, photonuclear reaction measurements, photofission experiments and studies of nuclear collective excitation modes and competition between various decay channels are discussed. The advantages which ELI-NP provides for all these experiments compared to the existing facilities are discussed. (orig.)

  19. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    Directory of Open Access Journals (Sweden)

    T. Schietinger

    2016-10-01

    Full Text Available The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and test bed for the development and realization of SwissFEL, the x-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultralow-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.

  20. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1982

    International Nuclear Information System (INIS)

    1983-01-01

    The utilization of the facilities in the Japan Atomic Energy Research Institute in common in 1982 has finished in active state, and the results of the researches have reached the stage of publication. The subjects of the researches spread over wide fields, and in 1982 also, extremely diversified researches were carried out. In this report, theses results were collected in one book, and it is desirable to utilize it actively. The number of the research themes is 131. In the field of general researches, the researches on radiochemistry, the utilization of radiation and the effects of irradiation were mostly carried out, while in cooperative researches, the researches were mainly concerned with nuclear reactor engineering and nuclear reactor materials. The total number of visitors was 3025. The facilities offered to the common utilization were JRR-2, JRR-3, JRR-4, Co-60 irradiation facility and others. The abstracts of the papers are reported. (J.P.N.)