WorldWideScience

Sample records for physics application framework

  1. Orbit Display's Use of the Physics Application Framework

    International Nuclear Information System (INIS)

    Zelazny, Michael

    2009-01-01

    At the SLAC National Accelerator Laboratory (SLAC) the Controls Department (CD) is developing a physics application framework based on the Java(tm) programming language developed by Sun Microsystems. This paper will discuss the first application developed using this approach: a new Orbit Display. The software is being developed by several individuals in reusable Java packages. It relies on the Experimental Physics and Industrial Control System (EPICS) toolkit for data collection and XAL - A Java based Hierarchy for Application Programming for model parameters. The Orbit Display tracks and displays electron paths through the Linac Coherent Light Source (LCLS) in both a graphical, beam line plot, and tabular format. It contains many features that may be unique to SLAC and is meant to be used both in the control room and by individuals in their offices or at home. Unique features include BSA Beam Synchronous Acquisition (BSA), Orbit Fitting, and Buffered Acquisition.

  2. Orbit Display's Use of the Physics Application Framework

    Energy Technology Data Exchange (ETDEWEB)

    Zelazny, Michael; Chevtsov, Sergei; Chu, Chungming Paul; Fairley, Diane; Krejcik, Patrick; Natampalli, Partha; Rogind, Deborah; White, Greg; /SLAC

    2009-12-09

    At the SLAC National Accelerator Laboratory (SLAC) the Controls Department (CD) is developing a physics application framework based on the Java(tm) programming language developed by Sun Microsystems. This paper will discuss the first application developed using this approach: a new Orbit Display. The software is being developed by several individuals in reusable Java packages. It relies on the Experimental Physics and Industrial Control System (EPICS) toolkit for data collection and XAL - A Java based Hierarchy for Application Programming for model parameters. The Orbit Display tracks and displays electron paths through the Linac Coherent Light Source (LCLS) in both a graphical, beam line plot, and tabular format. It contains many features that may be unique to SLAC and is meant to be used both in the control room and by individuals in their offices or at home. Unique features include BSA Beam Synchronous Acquisition (BSA), Orbit Fitting, and Buffered Acquisition.

  3. Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers

    International Nuclear Information System (INIS)

    Dreher, Patrick; Scullin, William; Vouk, Mladen

    2015-01-01

    Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers. (paper)

  4. The Framework of Plasma Physics

    CERN Document Server

    Hazeltine, Richard D

    2004-01-01

    Plasma physics is a necessary part of our understanding of stellar and galactic structure. It determines the magnetospheric environment of the earth and other planets; it forms the research frontier in such areas as nuclear fusion, advanced accelerators, and high power lasers; and its applications to various industrial processes (such as computer chip manufacture) are rapidly increasing. It is thus a subject with a long list of scientific and technological applications. This book provides the scientific background for understanding such applications, but it emphasizes something else: the intrinsic scientific interest of the plasma state. It attempts to develop an understanding of this state, and of plasma behavior, as thoroughly and systematically as possible. The book was written with the graduate student in mind, but most of the material would also fit into an upper-level undergraduate course.

  5. Gender Dimensions Framework Application

    OpenAIRE

    Rubin, D.

    2011-01-01

    This is a presentation of the The Gender Dimensions Framework (GDF). The GDF was developed to provide guidance to USAID staff and partner organizations for working with USAID projects looking at promoting equitable opportunities in agricultural value chains. The GDF contemplates four dimensions: access to and control over key productive assets (tangible and intangible); beliefs and perceptions; practices and participation, and legal frameworks. CCRA-7 (Gendered Knowledge)

  6. Elementary process theory: a formal axiomatic system with a potential application as a foundational framework for physics supporting gravitational repulsion of matter and antimatter

    International Nuclear Information System (INIS)

    Cabbolet, M.J.T.F.

    2010-01-01

    Theories of modern physics predict that antimatter having rest mass will be attracted by the earth's gravitational field, but the actual coupling of antimatter with gravitation has not been established experimentally. The purpose of the present research was to identify laws of physics that would govern the universe if antimatter having rest mass would be repulsed by the earth's gravitational field. As a result, a formalized axiomatic system was developed together with interpretation rules for the terms of the language: the intention is that every theorem of the system yields a true statement about physical reality. Seven non-logical axioms of this axiomatic system form the elementary process theory (EPT): this is then a scheme of elementary principles describing the dynamics of individual processes taking place at supersmall scale. It is demonstrated how gravitational repulsion functions in the universe of the EPT, and some observed particles and processes have been formalized in the framework of the EPT. Incompatibility of quantum mechanics (QM) and General Relativity (GR) with the EPT is proven mathematically; to demonstrate applicability to real world problems to which neither QM nor GR applies, the EPT has been applied to a theory of the Planck era of the universe. The main conclusions are that a completely formalized framework for physics has been developed supporting the existence of gravitational repulsion and that the present results give rise to a potentially progressive research program. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Tecolote: An object-oriented framework for physics development

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J.; Ankeny, L.; Clancy, S. [and others

    1998-12-31

    The authors describe a C++ physics development environment, called the Tecolote Framework, which allows model developers to work more efficiently and accurately. This Framework contains a variety of meshes, operators, and parallel fields, as well as an input/output (I/O) subsystem and graphics capabilities. Model developers can inherit Tecolote`s generic model interface and use the Framework`s high-level field and operator components to write parallel physics equations. New Tecolote models are easily registered with the Framework, and they can be built and called directly from the input file, which greatly expedites model installation. In the process of developing an extensible and robust framework, they have found appealing solutions to some of the serious problems they encounter when parallelizing and extending the older codes. They also discuss memory and performance issues for a large hydrodynamics application built in this Framework.

  8. Tecolote: An object-oriented framework for physics development

    International Nuclear Information System (INIS)

    Marshall, J.; Ankeny, L.; Clancy, S.

    1998-01-01

    The authors describe a C++ physics development environment, called the Tecolote Framework, which allows model developers to work more efficiently and accurately. This Framework contains a variety of meshes, operators, and parallel fields, as well as an input/output (I/O) subsystem and graphics capabilities. Model developers can inherit Tecolote's generic model interface and use the Framework's high-level field and operator components to write parallel physics equations. New Tecolote models are easily registered with the Framework, and they can be built and called directly from the input file, which greatly expedites model installation. In the process of developing an extensible and robust framework, they have found appealing solutions to some of the serious problems they encounter when parallelizing and extending the older codes. They also discuss memory and performance issues for a large hydrodynamics application built in this Framework

  9. Intervention dose estimation in health promotion programmes: a framework and a tool. Application to the diet and physical activity promotion PRALIMAP trial

    Directory of Open Access Journals (Sweden)

    Legrand Karine

    2012-09-01

    Full Text Available Abstract Background Although the outcomes of health promotion and prevention programmes may depend on the level of intervention, studies and trials often fail to take it into account. The objective of this work was to develop a framework within which to consider the implementation of interventions, and to propose a tool with which to measure the quantity and the quality of activities, whether planned or not, relevant to the intervention under investigation. The framework and the tool were applied to data from the diet and physical activity promotion PRALIMAP trial. Methods A framework allowing for calculation of an intervention dose in any health promotion programme was developed. A literature reviews revealed several relevant concepts that were considered in greater detail by a multidisciplinary working group. A method was devised with which to calculate the dose of intervention planned and that is actually received (programme-driven activities dose, as well as the amount of non-planned intervention (non-programme-driven activities dose. Results Indicators cover the roles of all those involved (supervisors, anchor personnel as receivers and providers, targets, in each intervention-related groups (IRG: basic setting in which a given intervention is planned by the programme and may differ in implementation level and for every intervention period. All indicators are described according to two domains (delivery, participation in two declensions (quantity and quality. Application to PRALIMAP data revealed important inter- and intra-IRG variability in intervention dose. Conclusions A literature analysis shows that the terminology in this area is not yet consolidated and that research is ongoing. The present work provides a methodological framework by specifying concepts, by defining new constructs and by developing multiple information synthesis methods which must be introduced from the programme's conception. Application to PRALIMAP underlined the

  10. Zend Framework 2 application development

    CERN Document Server

    Valles, Christopher

    2013-01-01

    The book is really pragmatic, focusing on the key aspects you usually need to create an application. We skip the boring theory and jump straight to the action. Also, the examples don't try to be perfect, they just show the topic in question or the tool/components we are using. Here the focus is on the framework itself not on how to architect applications. The book will spend a lot of time reviewing the examples and each chapter is created around the example used to explain the topics so the example is first, then the explanation.This book is great for you if you are new to Zend Framework 2 and

  11. Overview of Java application configuration frameworks

    OpenAIRE

    Denisov, Victor

    2013-01-01

    This paper reviews three major application configuration frameworks for Java-based applications: java.util.Properties, Apache Commons Configuration and Preferences API. Basic functionality of each framework is illustrated with code examples. Pros and cons of each framework are described in moderate detail. Suggestions are made about typical use cases for each framework.

  12. Applications of Nuclear Physics

    OpenAIRE

    Hayes, Anna C.

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...

  13. High-Level Application Framework for LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P; Chevtsov, S.; Fairley, D.; Larrieu, C.; Rock, J.; Rogind, D.; White, G.; Zalazny, M.; /SLAC

    2008-04-22

    A framework for high level accelerator application software is being developed for the Linac Coherent Light Source (LCLS). The framework is based on plug-in technology developed by an open source project, Eclipse. Many existing functionalities provided by Eclipse are available to high-level applications written within this framework. The framework also contains static data storage configuration and dynamic data connectivity. Because the framework is Eclipse-based, it is highly compatible with any other Eclipse plug-ins. The entire infrastructure of the software framework will be presented. Planned applications and plug-ins based on the framework are also presented.

  14. Computational models in physics teaching: a framework

    Directory of Open Access Journals (Sweden)

    Marco Antonio Moreira

    2012-08-01

    Full Text Available The purpose of the present paper is to present a theoretical framework to promote and assist meaningful physics learning through computational models. Our proposal is based on the use of a tool, the AVM diagram, to design educational activities involving modeling and computer simulations. The idea is to provide a starting point for the construction and implementation of didactical approaches grounded in a coherent epistemological view about scientific modeling.

  15. Design and Analysis of Web Application Frameworks

    DEFF Research Database (Denmark)

    Schwarz, Mathias Romme

    -state manipulation vulnerabilities. The hypothesis of this dissertation is that we can design frameworks and static analyses that aid the programmer to avoid such errors. First, we present the JWIG web application framework for writing secure and maintainable web applications. We discuss how this framework solves...... some of the common errors through an API that is designed to be safe by default. Second, we present a novel technique for checking HTML validity for output that is generated by web applications. Through string analysis, we approximate the output of web applications as context-free grammars. We model......Numerous web application frameworks have been developed in recent years. These frameworks enable programmers to reuse common components and to avoid typical pitfalls in web application development. Although such frameworks help the programmer to avoid many common errors, we nd...

  16. Applications of nuclear physics

    Science.gov (United States)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  17. Applications of nuclear physics

    International Nuclear Information System (INIS)

    Hayes-Sterbenz, Anna Catherine

    2017-01-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  18. Applications of mesoscopic physics

    International Nuclear Information System (INIS)

    Feng, Shechao.

    1993-01-01

    Research activities in the area ''applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves'' are briefly summarized. The main thrust in fundamental research is in the general areas of mesoscopic effects in disordered semiconductors and metals and the related field of applications of mesoscopic physics to the subject matter of classical wave propagation through disordered scattering media. Specific topics are Fabry-Perot interferometer with disorder: correlations and light localization; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; and transmission and reflection correlations of second harmonic waves in nonlinear random media. Research in applied physics centered on far infrared photon-assisted transport through quantum point contact devices and photon migration distributions in multiple scattering media. 7 refs

  19. Establishing the Common Community Physics Package by Transitioning the GFS Physics to a Collaborative Software Framework

    Science.gov (United States)

    Xue, L.; Firl, G.; Zhang, M.; Jimenez, P. A.; Gill, D.; Carson, L.; Bernardet, L.; Brown, T.; Dudhia, J.; Nance, L. B.; Stark, D. R.

    2017-12-01

    The Global Model Test Bed (GMTB) has been established to support the evolution of atmospheric physical parameterizations in NCEP global modeling applications. To accelerate the transition to the Next Generation Global Prediction System (NGGPS), a collaborative model development framework known as the Common Community Physics Package (CCPP) is created within the GMTB to facilitate engagement from the broad community on physics experimentation and development. A key component to this Research to Operation (R2O) software framework is the Interoperable Physics Driver (IPD) that hooks the physics parameterizations from one end to the dynamical cores on the other end with minimum implementation effort. To initiate the CCPP, scientists and engineers from the GMTB separated and refactored the GFS physics. This exercise demonstrated the process of creating IPD-compliant code and can serve as an example for other physics schemes to do the same and be considered for inclusion into the CCPP. Further benefits to this process include run-time physics suite configuration and considerably reduced effort for testing modifications to physics suites through GMTB's physics test harness. The implementation will be described and the preliminary results will be presented at the conference.

  20. MC++ and a transport physics framework

    International Nuclear Information System (INIS)

    Lee, S.R.; Cummings, J.C.; Nolen, S.D.; Keen, N.D.

    1997-01-01

    The Department of Energy has launched the Accelerated Strategic Computing Initiative (ASCI) to address a pressing need for more comprehensive computer simulation capabilities in the area of nuclear weapons safety and reliability. In light of the decision by the US Government to abandon underground nuclear testing, the Science-Based Stockpile Stewardship (SBSS) program is focused on using computer modeling to assure the continued safety and effectiveness of the nuclear stockpile. The authors believe that the utilization of object-oriented design and programming techniques can help in this regard. Object-oriented programming (OOP) has become a popular model in the general software community for several reasons. MC++ is a specific ASCI-relevant application project which demonstrates the effectiveness of the object-oriented approach. It is a Monte Carlo neutron transport code written in C++. It is designed to be simple yet flexible, with the ability to quickly introduce new numerical algorithms or representations of the physics into the code. MC++ is easily ported to various types of Unix workstations and parallel computers such as the three new ASCI platforms, largely because it makes extensive use of classes from the Parallel Object-Oriented Methods and Applications (POOMA) C++ class library. The MC++ code has been successfully benchmarked using some simple physics test problems, has been shown to provide comparable serial performance and a parallel efficiency superior to that of a well-known Monte Carlo neutronics package written in Fortran, and was the first ASCI-relevant application to run in parallel on all three ASCI computing platforms

  1. Barriers and facilitators to the implementation of a school-based physical activity policy in Canada: application of the theoretical domains framework.

    Science.gov (United States)

    Weatherson, Katie A; McKay, Rhyann; Gainforth, Heather L; Jung, Mary E

    2017-10-23

    In British Columbia Canada, a Daily Physical Activity (DPA) policy was mandated that requires elementary school teachers to provide students with opportunities to achieve 30 min of physical activity during the school day. However, the implementation of school-based physical activity policies is influenced by many factors. A theoretical examination of the factors that impede and enhance teachers' implementation of physical activity policies is necessary in order to develop strategies to improve policy practice and achieve desired outcomes. This study used the Theoretical Domains Framework (TDF) to understand teachers' barriers and facilitators to the implementation of the DPA policy in one school district. Additionally, barriers and facilitators were examined and compared according to how the teacher implemented the DPA policy during the instructional school day. Interviews were conducted with thirteen teachers and transcribed verbatim. One researcher performed barrier and facilitator extraction, with double extraction occurring across a third of the interview transcripts by a second researcher. A deductive and inductive analytical approach in a two-stage process was employed whereby barriers and facilitators were deductively coded using TDF domains (content analysis) and analyzed for sub-themes within each domain. Two researchers performed coding. A total of 832 items were extracted from the interview transcripts. Some items were coded into multiple TDF domains, resulting in a total of 1422 observations. The most commonly coded TDF domains accounting for 75% of the total were Environmental context and resources (ECR; n = 250), Beliefs about consequences (n = 225), Social influences (n = 193), Knowledge (n = 100), and Intentions (n = 88). Teachers who implemented DPA during instructional time differed from those who relied on non-instructional time in relation to Goals, Behavioural regulation, Social/professional role and identity, Beliefs about

  2. Barriers and facilitators to the implementation of a school-based physical activity policy in Canada: application of the theoretical domains framework

    Directory of Open Access Journals (Sweden)

    Katie A. Weatherson

    2017-10-01

    Full Text Available Abstract Background In British Columbia Canada, a Daily Physical Activity (DPA policy was mandated that requires elementary school teachers to provide students with opportunities to achieve 30 min of physical activity during the school day. However, the implementation of school-based physical activity policies is influenced by many factors. A theoretical examination of the factors that impede and enhance teachers’ implementation of physical activity policies is necessary in order to develop strategies to improve policy practice and achieve desired outcomes. This study used the Theoretical Domains Framework (TDF to understand teachers’ barriers and facilitators to the implementation of the DPA policy in one school district. Additionally, barriers and facilitators were examined and compared according to how the teacher implemented the DPA policy during the instructional school day. Methods Interviews were conducted with thirteen teachers and transcribed verbatim. One researcher performed barrier and facilitator extraction, with double extraction occurring across a third of the interview transcripts by a second researcher. A deductive and inductive analytical approach in a two-stage process was employed whereby barriers and facilitators were deductively coded using TDF domains (content analysis and analyzed for sub-themes within each domain. Two researchers performed coding. Results A total of 832 items were extracted from the interview transcripts. Some items were coded into multiple TDF domains, resulting in a total of 1422 observations. The most commonly coded TDF domains accounting for 75% of the total were Environmental context and resources (ECR; n = 250, Beliefs about consequences (n = 225, Social influences (n = 193, Knowledge (n = 100, and Intentions (n = 88. Teachers who implemented DPA during instructional time differed from those who relied on non-instructional time in relation to Goals, Behavioural regulation, Social

  3. Applying Laban's Movement Framework in Elementary Physical Education

    Science.gov (United States)

    Langton, Terence W.

    2007-01-01

    This article recommends raising the bar in elementary physical education by using Laban's movement framework to develop curriculum content in the areas of games, gymnastics, and dance (with physical fitness concepts blended in) in order to help students achieve the NASPE content standards. The movement framework can permeate and unify an…

  4. Thermoluminescence - physics and applications

    International Nuclear Information System (INIS)

    Sunta, C.M.

    1992-01-01

    The interaction of ionizing radiations with matter leads to various effects, some of which leave memory in the target material. These memory effects can be seen as the after-effects of the irradiation. Thermoluminescence is one such phenomenon in the insulating solids. This paper describes the sequence of the physical events beginning with the incidence of an ionizing particle, leading to a trail of atomic and electronic displacements which stabilize in the form of so called defect centres. These defects - interstitials, colour centres, etc., store energy in their configuration. Most of the damage effects are reversible. The return of the displaced entities to their original site leads to the release of the stored energy. Thermoluminescence is the result of the re-adjustment (relaxation) of the displaced electrons. The stimulation for the relaxation process is provided by heating of the irradiated sample. The kinetics of the thermoluminescence process has been explained phenomenologically. The correspondence between the defect centres and the TL glow peaks has remained vague or ambiguous even in the most widely studied TL materials. Notwithstanding this deficiency, the phenomenon has found many practical applications. The paper deals mainly with the physical processes involved in the TL emission and alludes briefly to its involvement in applied areas.(author). 6 refs., 2 figs

  5. Specification framework for engineering adaptive web applications

    NARCIS (Netherlands)

    Frasincar, F.; Houben, G.J.P.M.; Vdovják, R.

    2002-01-01

    The growing demand for data-driven Web applications has led to the need for a structured and controlled approach to the engineering of such applications. Both designers and developers need a framework that in all stages of the engineering process allows them to specify the relevant aspects of the

  6. Service mining framework and application

    CERN Document Server

    Chang, Wei-Lun

    2014-01-01

    The shifting focus of service from the 1980s to 2000s has proved that IT not only lowers the cost of service but creates avenues to enhance and increase revenue through service. The new type of service, e-service, is mobile, flexible, interactive, and interchangeable. While service science provides an avenue for future service researches, the specific research areas from the IT perspective still need to be elaborated. This book introduces a novel concept-service mining-to address several research areas from technology, model, management, and application perspectives. Service mining is defined as "a systematical process including service discovery, service experience, service recovery, and service retention to discover unique patterns and exceptional values within the existing services." The goal of service mining is similar to data mining, text mining, or web mining, and aims to "detect something new" from the service pool. The major difference is the feature of service is quite distinct from the mining targe...

  7. Context-aware Mobile Hypermedia: Concepts, Framework, and Applications

    DEFF Research Database (Denmark)

    Hansen, Frank Allan

    the requirements for context aware mobile hypermedia, both theoretically and practically, and is realized by: • A conceptual model for context-aware hypermedia, • HyCon, a framework for context-aware mobile hypermedia, • A range of hypermedia applications utilizing context-awareness to support mobile fieldwork...... moves beyond the desktop and into the physical environments we live and work in, it may be worthwhile to support these digital-physical relationships. The thesis addresses the definition, design and requirements for context-aware mobile hypermedia systems. Context-aware hypermedia applies ubiquitous...... of a framework for context-aware hypermedia, HyCon, implementing general abstractions for acquiring context information and demonstrating how traditional anchor based hypermedia models can be extended to encompass both digital and physical entities. Several prototype applications built atop HyCon are also...

  8. IMHOTEP: virtual reality framework for surgical applications.

    Science.gov (United States)

    Pfeiffer, Micha; Kenngott, Hannes; Preukschas, Anas; Huber, Matthias; Bettscheider, Lisa; Müller-Stich, Beat; Speidel, Stefanie

    2018-05-01

    The data which is available to surgeons before, during and after surgery is steadily increasing in quantity as well as diversity. When planning a patient's treatment, this large amount of information can be difficult to interpret. To aid in processing the information, new methods need to be found to present multimodal patient data, ideally combining textual, imagery, temporal and 3D data in a holistic and context-aware system. We present an open-source framework which allows handling of patient data in a virtual reality (VR) environment. By using VR technology, the workspace available to the surgeon is maximized and 3D patient data is rendered in stereo, which increases depth perception. The framework organizes the data into workspaces and contains tools which allow users to control, manipulate and enhance the data. Due to the framework's modular design, it can easily be adapted and extended for various clinical applications. The framework was evaluated by clinical personnel (77 participants). The majority of the group stated that a complex surgical situation is easier to comprehend by using the framework, and that it is very well suited for education. Furthermore, the application to various clinical scenarios-including the simulation of excitation propagation in the human atrium-demonstrated the framework's adaptability. As a feasibility study, the framework was used during the planning phase of the surgical removal of a large central carcinoma from a patient's liver. The clinical evaluation showed a large potential and high acceptance for the VR environment in a medical context. The various applications confirmed that the framework is easily extended and can be used in real-time simulation as well as for the manipulation of complex anatomical structures.

  9. Physical applications of homogeneous balls

    CERN Document Server

    Scarr, Tzvi

    2005-01-01

    One of the mathematical challenges of modern physics lies in the development of new tools to efficiently describe different branches of physics within one mathematical framework. This text introduces precisely such a broad mathematical model, one that gives a clear geometric expression of the symmetry of physical laws and is entirely determined by that symmetry. The first three chapters discuss the occurrence of bounded symmetric domains (BSDs) or homogeneous balls and their algebraic structure in physics. The book further provides a discussion of how to obtain a triple algebraic structure ass

  10. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  11. The PROactive innovative conceptual framework on physical activity

    NARCIS (Netherlands)

    Dobbels, Fabienne; de Jong, Corina; Drost, Ellen; Elberse, Janneke; Feridou, Chryssoula; Jacobs, Laura; Rabinovich, Roberto; Frei, Anja; Puhan, Milo A.; de Boer, Willem I.; van der Molen, Thys; Williams, Kate; Pinnock, Hillary; Troosters, Thierry; Karlsson, Niklas; Kulich, Karoly; Ruedell, Katja

    2014-01-01

    Although physical activity is considered an important therapeutic target in chronic obstructive pulmonary disease (COPD), what "physical activity" means to COPD patients and how their perspective is best measured is poorly understood. We designed a conceptual framework, guiding the development and

  12. A framework for developing remote sensing applications

    International Nuclear Information System (INIS)

    Ahmad, T.; Hayat, M.F.; Afzal, M.; Asif, H.M.S.; Asif, K.H.

    2014-01-01

    Remote Sensing Application (RSA) is important as one of the critical enabler of e-systems such as e- governments, e-commerce, and e-sciences. In this study, we argued that owning to the specialized needs of RSA such as volatility and interactive nature, a customized Software Engineering (SE) approach should be adapted for their development. Based on this argument we have also identified the shortcomings of the conventional SE approaches and the classical waterfall software development life cycle model. In this study, we have proposed a modification to the classical waterfall software development life cycle model for proposing a customized software development Framework for RSAs. We have identified four (4) different types of changes that can occur to an already developed RS application. The proposed framework was capable to incorporate all four types of changes. Remote Sensing, software engineering, functional requirements, types of changes. (author)

  13. Urban water sustainability: framework and application

    Directory of Open Access Journals (Sweden)

    Wu Yang

    2016-12-01

    Full Text Available Urban areas such as megacities (those with populations greater than 10 million are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems. The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human-nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water

  14. Physical application: Cannon case

    Science.gov (United States)

    Prada, D. A.; Tarazona, J. D.; Gómez, J. M.

    2018-04-01

    The study of physical phenomena by means of guided experimentation and experimental thinking, allow students to infer and understand the reason for the different variations that evidence. Parabolic motion of a projectile powered by a cannon under the spring mechanism, generates discussion regarding the choice of the proper angle, according to a certain distance, a known average initial velocity, and a given height. Give the blank is a great encouragement, however, being able to explain which conditions of the environment influenced the failed launches, generates a space of dialogue and a durable concrete learning.

  15. Forensic applications of physics

    International Nuclear Information System (INIS)

    Martinez, Ernesto N.

    2002-01-01

    Science and the law are considered to be the two main shaping forces in modern societies. The Regional Seminars on Forensic Physics are organized by (mostly CNEA) scientists in Bariloche with a twofold purpose: to increase the participation of researchers as experts witnesses in the solution of legal problems, and to make judges aware of facilities and techniques that might prove useful. Some of the contributions to the last seminar are discussed, ranging from the numerical simulation of mayor explosions to the behavior of snow avalanches, and from the proper control of a trace laboratory to the distribution of words in the plays of Shakespeare. (author)

  16. Tactical Applications (TACAPPS) JavaScript Framework Investigation

    Science.gov (United States)

    2017-02-01

    be more resilient against framework obsolesce if the framework does not dictate its structure. Java Serialization to XML In order to benefit...UNCLASSIFIED UNCLASSIFIED AD-E403 846 Technical Report ARWSE-CR-16003 TACTICAL APPLICATIONS (TACAPPS) JAVASCRIPT FRAMEWORK ...4. TITLE AND SUBTITLE TACTICAL APPLICATIONS (TACAPPS) JAVASCRIPT FRAMEWORK INVESTIGATION 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  17. A generic framework for individual-based modelling and physical-biological interaction

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Mariani, Patrizio; Payne, Mark R.

    2018-01-01

    The increased availability of high-resolution ocean data globally has enabled more detailed analyses of physical-biological interactions and their consequences to the ecosystem. We present IBMlib, which is a versatile, portable and computationally effective framework for conducting Lagrangian...... scales. The open-source framework features a minimal robust interface to facilitate the coupling between individual-level biological models and oceanographic models, and we provide application examples including forward/backward simulations, habitat connectivity calculations, assessing ocean conditions...

  18. Extending Symfony 2 web application framework

    CERN Document Server

    Armand, Sébastien

    2014-01-01

    Symfony is a high performance PHP framework for developing MVC web applications. Symfony1 allowed for ease of use but its shortcoming was the difficulty of extending it. However, this difficulty has now been eradicated by the more powerful and extensible Symfony2. Information on more advanced techniques for extending Symfony can be difficult to find, so you need one resource that contains the advanced features in a way you can understand. This tutorial offers solutions to all your Symfony extension problems. You will get to grips with all the extension points that Symfony, Twig, and Doctrine o

  19. JWIG: Yet Another Framework for Maintainable and Secure Web Applications

    DEFF Research Database (Denmark)

    Møller, Anders; Schwarz, Mathias Romme

    2009-01-01

    Although numerous frameworks for web application programming have been developed in recent years, writing web applications remains a challenging task. Guided by a collection of classical design principles, we propose yet another framework. It is based on a simple but flexible server-oriented arch...... services.The resulting framework provides a novel foundation for developing maintainable and secure web applications....

  20. A Web Service Framework for Economic Applications

    Directory of Open Access Journals (Sweden)

    Dan BENTA

    2010-01-01

    Full Text Available The Internet offers multiple solutions to linkcompanies with their partners, customers or suppliersusing IT solutions, including a special focus on Webservices. Web services are able to solve the problem relatedto the exchange of data between business partners, marketsthat can use each other's services, problems ofincompatibility between IT applications. As web servicesare described, discovered and accessed programs based onXML vocabularies and Web protocols, Web servicesrepresents solutions for Web-based technologies for smalland medium-sized enterprises (SMEs. This paper presentsa web service framework for economic applications. Also, aprototype of this IT solution using web services waspresented and implemented in a few companies from IT,commerce and consulting fields measuring the impact ofthe solution in the business environment development.

  1. Java Application Shell: A Framework for Piecing Together Java Applications

    Science.gov (United States)

    Miller, Philip; Powers, Edward I. (Technical Monitor)

    2001-01-01

    This session describes the architecture of Java Application Shell (JAS), a Swing-based framework for developing interactive Java applications. Java Application Shell is being developed by Commerce One, Inc. for NASA Goddard Space Flight Center Code 588. The purpose of JAS is to provide a framework for the development of Java applications, providing features that enable the development process to be more efficient, consistent and flexible. Fundamentally, JAS is based upon an architecture where an application is considered a collection of 'plugins'. In turn, a plug-in is a collection of Swing actions defined using XML and packaged in a jar file. Plug-ins may be local to the host platform or remotely-accessible through HTTP. Local and remote plugins are automatically discovered by JAS upon application startup; plugins may also be loaded dynamically without having to re-start the application. Using Extensible Markup Language (XML) to define actions, as opposed to hardcoding them in application logic, allows easier customization of application-specific operations by separating application logic from presentation. Through XML, a developer defines an action that may appear on any number of menus, toolbars, and buttons. Actions maintain and propagate enable/disable states and specify icons, tool-tips, titles, etc. Furthermore, JAS allows actions to be implemented using various scripting languages through the use of IBM's Bean Scripting Framework. Scripted action implementation is seamless to the end-user. In addition to action implementation, scripts may be used for application and unit-level testing. In the case of application-level testing, JAS has hooks to assist a script in simulating end-user input. JAS also provides property and user preference management, JavaHelp, Undo/Redo, Multi-Document Interface, Single-Document Interface, printing, and logging. Finally, Jini technology has also been included into the framework by means of a Jini services browser and the

  2. WWER reactor physics code applications

    International Nuclear Information System (INIS)

    Gado, J.; Kereszturi, A.; Gacs, A.; Telbisz, M.

    1994-01-01

    The coupled steady-state reactor physics and thermohydraulic code system KARATE has been developed and applied for WWER-1000 and WWER-440 operational calculations. The 3 D coupled kinetic code KIKO3D has been developed and validated for WWER-440 accident analysis applications. The coupled kinetic code SMARTA developed by VTT Helsinki has been applied for WWER-440 accident analysis. The paper gives a summary of the experience in code development and application. (authors). 10 refs., 2 tabs., 5 figs

  3. The PROactive innovative conceptual framework on physical activity

    Science.gov (United States)

    Dobbels, Fabienne; de Jong, Corina; Drost, Ellen; Elberse, Janneke; Feridou, Chryssoula; Jacobs, Laura; Rabinovich, Roberto; Frei, Anja; Puhan, Milo A.; de Boer, Willem I.; van der Molen, Thys; Williams, Kate; Pinnock, Hillary; Troosters, Thierry; Karlsson, Niklas; Kulich, Karoly; Rüdell, Katja; Brindicci, Caterina; Higenbottam, Tim; Troosters, Thierry; Dobbels, Fabienne; Decramer, Marc; Tabberer, Margaret; Rabinovich, Roberto A; MacNee, William; Vogiatzis, Ioannis; Polkey, Michael; Hopkinson, Nick; Garcia-Aymerich, Judith; Puhan, Milo; Frei, Anja; van der Molen, Thys; de Jong, Corina; de Boer, Pim; Jarrod, Ian; McBride, Paul; Kamel, Nadia; Rudell, Katja; Wilson, Frederick J.; Ivanoff, Nathalie; Kulich, Karoly; Glendenning, Alistair; Karlsson, Niklas X.; Corriol-Rohou, Solange; Nikai, Enkeleida; Erzen, Damijan

    2014-01-01

    Although physical activity is considered an important therapeutic target in chronic obstructive pulmonary disease (COPD), what “physical activity” means to COPD patients and how their perspective is best measured is poorly understood. We designed a conceptual framework, guiding the development and content validation of two patient reported outcome (PRO) instruments on physical activity (PROactive PRO instruments). 116 patients from four European countries with diverse demographics and COPD phenotypes participated in three consecutive qualitative studies (63% male, age mean±sd 66±9 years, 35% Global Initiative for Chronic Obstructive Lung Disease stage III–IV). 23 interviews and eight focus groups (n = 54) identified the main themes and candidate items of the framework. 39 cognitive debriefings allowed the clarity of the items and instructions to be optimised. Three themes emerged, i.e. impact of COPD on amount of physical activity, symptoms experienced during physical activity, and adaptations made to facilitate physical activity. The themes were similar irrespective of country, demographic or disease characteristics. Iterative rounds of appraisal and refinement of candidate items resulted in 30 items with a daily recall period and 34 items with a 7-day recall period. For the first time, our approach provides comprehensive insight on physical activity from the COPD patients’ perspective. The PROactive PRO instruments’ content validity represents the pivotal basis for empirically based item reduction and validation. PMID:25034563

  4. The PROactive innovative conceptual framework on physical activity.

    Science.gov (United States)

    Dobbels, Fabienne; de Jong, Corina; Drost, Ellen; Elberse, Janneke; Feridou, Chryssoula; Jacobs, Laura; Rabinovich, Roberto; Frei, Anja; Puhan, Milo A; de Boer, Willem I; van der Molen, Thys; Williams, Kate; Pinnock, Hillary; Troosters, Thierry; Karlsson, Niklas; Kulich, Karoly; Rüdell, Katja

    2014-11-01

    Although physical activity is considered an important therapeutic target in chronic obstructive pulmonary disease (COPD), what "physical activity" means to COPD patients and how their perspective is best measured is poorly understood. We designed a conceptual framework, guiding the development and content validation of two patient reported outcome (PRO) instruments on physical activity (PROactive PRO instruments). 116 patients from four European countries with diverse demographics and COPD phenotypes participated in three consecutive qualitative studies (63% male, age mean±sd 66±9 years, 35% Global Initiative for Chronic Obstructive Lung Disease stage III-IV). 23 interviews and eight focus groups (n = 54) identified the main themes and candidate items of the framework. 39 cognitive debriefings allowed the clarity of the items and instructions to be optimised. Three themes emerged, i.e. impact of COPD on amount of physical activity, symptoms experienced during physical activity, and adaptations made to facilitate physical activity. The themes were similar irrespective of country, demographic or disease characteristics. Iterative rounds of appraisal and refinement of candidate items resulted in 30 items with a daily recall period and 34 items with a 7-day recall period. For the first time, our approach provides comprehensive insight on physical activity from the COPD patients' perspective. The PROactive PRO instruments' content validity represents the pivotal basis for empirically based item reduction and validation. ©ERS 2014.

  5. Applications of physics in agriculture

    International Nuclear Information System (INIS)

    Jin Zhonghui; Mao Yanlin; Yan Yanlu; Yan Tailai

    2002-01-01

    The applications of nuclear technology, electro-magnetics, optics, acoustics and ion beam in agriculture and precision agriculture are reviewed. It is shown that the various technologies of physics can reap great economic and ecologic benefits for agriculture, so that agr-technology can maintain continuous development

  6. Radiation applications of physical chemistry

    International Nuclear Information System (INIS)

    Talrose, V.L.

    1993-01-01

    Many chemical energy problems have a physical chemistry nature connected with chemical kinetics and thermodynamics. In our country, the development in this field is associated with the name N.N. Semenov, who was involved in a large number of fundamental and applied physical chemistry problems.Energy development during the last decades created or sharpened new problems. Our new Institute, the Institute of Energy problems of Chemical Physics, USSR Academy of Sciences, is dealing with some of them. The present article is an overview of our work on radiation applications. Examples of the use of radiation in power industry (such as coal gasification), tire production, mechanical joints, metal powder production and sterilization of pharmaceutical products are given. Methods and problems involved in these applications are discussed and the great potential for vast utilization is demonstrated. (authors)

  7. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Christian

    2013-11-15

    The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

  8. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

    International Nuclear Information System (INIS)

    Pfeifer, Christian

    2013-11-01

    The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

  9. Investigation in Query System Framework for High Energy Physics

    CERN Document Server

    Jatuphattharachat, Thanat

    2017-01-01

    We summarize an investigation in query system framework for HEP (High Energy Physics). Our work was an investigation on distributed server part of Femtocode, which is a query language that provides the ability for physicists to make plots and other aggregations in real-time. To make the system more robust and capable of processing large amount of data quickly, it is necessary to deploy the system on a redundant and distributed computing cluster. This project aims to investigate third party coordination and resource management frameworks which fit into the design of real-time distributed query system. Zookeeper, Mesos and Marathon are the main frameworks for this investigation. The results indicate that Zookeeper is good for job coordinator and job tracking as it provides robust, fast, simple and transparent read and write process for all connecting client across distributed Zookeeper server. Furthermore, it also supports high availability access and consistency guarantee within specific time bound.

  10. A Framework for Understanding Physics Students' Computational Modeling Practices

    Science.gov (United States)

    Lunk, Brandon Robert

    With the growing push to include computational modeling in the physics classroom, we are faced with the need to better understand students' computational modeling practices. While existing research on programming comprehension explores how novices and experts generate programming algorithms, little of this discusses how domain content knowledge, and physics knowledge in particular, can influence students' programming practices. In an effort to better understand this issue, I have developed a framework for modeling these practices based on a resource stance towards student knowledge. A resource framework models knowledge as the activation of vast networks of elements called "resources." Much like neurons in the brain, resources that become active can trigger cascading events of activation throughout the broader network. This model emphasizes the connectivity between knowledge elements and provides a description of students' knowledge base. Together with resources resources, the concepts of "epistemic games" and "frames" provide a means for addressing the interaction between content knowledge and practices. Although this framework has generally been limited to describing conceptual and mathematical understanding, it also provides a means for addressing students' programming practices. In this dissertation, I will demonstrate this facet of a resource framework as well as fill in an important missing piece: a set of epistemic games that can describe students' computational modeling strategies. The development of this theoretical framework emerged from the analysis of video data of students generating computational models during the laboratory component of a Matter & Interactions: Modern Mechanics course. Student participants across two semesters were recorded as they worked in groups to fix pre-written computational models that were initially missing key lines of code. Analysis of this video data showed that the students' programming practices were highly influenced by

  11. Safety Framework for Nuclear Power Source Applications in Outer Space

    International Nuclear Information System (INIS)

    2009-01-01

    Nuclear power sources (NPS) for use in outer space have been developed and used in space applications where unique mission requirements and constraints on electrical power and thermal management precluded the use of non-nuclear power sources. Such missions have included interplanetary missions to the outer limits of the Solar System, for which solar panels were not suitable as a source of electrical power because of the long duration of these missions at great distances from the Sun. According to current knowledge and capabilities, space NPS are the only viable energy option to power some space missions and significantly enhance others. Several ongoing and foreseeable missions would not be possible without the use of space NPS. Past, present and foreseeable space NPS applications include radioisotope power systems (for example, radioisotope thermoelectric generators and radioisotope heater units) and nuclear reactor systems for power and propulsion. The presence of radioactive materials or nuclear fuels in space NPS and their consequent potential for harm to people and the environment in Earth's biosphere due to an accident require that safety should always be an inherent part of the design and application of space NPS. NPS applications in outer space have unique safety considerations compared with terrestrial applications. Unlike many terrestrial nuclear applications, space applications tend to be used infrequently and their requirements can vary significantly depending upon the specific mission. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. For some applications, space NPS must operate autonomously at great distances from Earth in harsh environments. Potential accident conditions resulting from launch failures and inadvertent re-entry could expose NPS to extreme physical conditions. These and other unique safety considerations for the use of

  12. Framework Application for Core Edge Transport Simulation (FACETS)

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D; Shende, Sameer S; Huck, Kevin A; Mr. Alan Morris, and Mr. Wyatt Spear

    2012-03-14

    The goal of the FACETS project (Framework Application for Core-Edge Transport Simulations) was to provide a multiphysics, parallel framework application (FACETS) that will enable whole-device modeling for the U.S. fusion program, to provide the modeling infrastructure needed for ITER, the next step fusion confinement device. Through use of modern computational methods, including component technology and object oriented design, FACETS is able to switch from one model to another for a given aspect of the physics in a flexible manner. This enables use of simplified models for rapid turnaround or high-fidelity models that can take advantage of the largest supercomputer hardware. FACETS does so in a heterogeneous parallel context, where different parts of the application execute in parallel by utilizing task farming, domain decomposition, and/or pipelining as needed and applicable. ParaTools, Inc. was tasked with supporting the performance analysis and tuning of the FACETS components and framework in order to achieve the parallel scaling goals of the project. The TAU Performance System® was used for instrumentation, measurement, archiving, and profile / tracing analysis. ParaTools, Inc. also assisted in FACETS performance engineering efforts. Through the use of the TAU Performance System, ParaTools provided instrumentation, measurement, analysis and archival support for the FACETS project. Performance optimization of key components has yielded significant performance speedups. TAU was integrated into the FACETS build for both the full coupled application and the UEDGE component. The performance database provided archival storage of the performance regression testing data generated by the project, and helped to track improvements in the software development.

  13. A Sustainable Evaluation Framework and Its Application

    Science.gov (United States)

    Powell, Robert B.; Stern, Marc J.; Ardoin, Nicole

    2006-01-01

    This article presents a framework for developing internally sustainable evaluation systems for environmental education organizations, although the framework can be applied to other types of organizations. The authors developed a sustainable evaluation framework (SEF) with the intent of creating an evaluation system that could be self-administered…

  14. Weak Quantum Theory: Formal Framework and Selected Applications

    International Nuclear Information System (INIS)

    Atmanspacher, Harald; Filk, Thomas; Roemer, Hartmann

    2006-01-01

    Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non-commutativity of observables.The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of ambiguous stimuli

  15. A Flexible Framework for Collaborative Visualization Applications using JAVASPACES

    National Research Council Canada - National Science Library

    Butler, Sean

    2001-01-01

    ...(Trademark), a high-level network programming API. This thesis describes a tool for developing collaborative visualization software using JavaSpaces-an application framework and accompanying toolkit...

  16. Laser applications in nuclear physics

    International Nuclear Information System (INIS)

    Murnick, D.E.

    1985-01-01

    A large fraction of the International Workshop on Hyperfine Interactions was devoted to various aspects of 'laser applications in nuclear physics'. This panel discussion took place before all of the relevant formal presentations on the subject were complete. Nevertheless, there had been sufficient discussions for the significance of this emerging area of hyperfine interaction research to be made clear. An attempt was made to identify critical and controversial aspects of the subject in order to critically evaluate past successes and indicate important future directions of research. Each of the panelists made a short statement on one phase of laser-nuclear physics research, which was followed by general discussions with the other panelists and the audience. In this report, a few areas which were not covered in the formal presentations are summarized: extensions of laser spectroscopy to shorter lifetimes; extension of laser techniques to nuclei far off stability; interpretation of laser spectroscopic data; sensitivity and spectral resolution; polarized beams and targets. (Auth.)

  17. JWIG: Yet Another Framework for Maintainable and Secure Web Applications

    DEFF Research Database (Denmark)

    Møller, Anders; Schwarz, Mathias Romme

    2009-01-01

    Although numerous frameworks for web application programming have been developed in recent years, writing web applications remains a challenging task. Guided by a collection of classical design principles, we propose yet another framework. It is based on a simple but flexible server......-oriented architecture that coherently supports general aspects of modern web applications, including dynamic XML construction, session management, data persistence, caching, and authentication, but it also simplifies programming of server-push communication and integration of XHTML-based applications and XML-based web...... services.The resulting framework provides a novel foundation for developing maintainable and secure web applications....

  18. Physics for Medical Imaging Applications

    CERN Document Server

    Caner, Alesssandra; Rahal, Ghita

    2007-01-01

    The book introduces the fundamental aspects of digital imaging and covers four main themes: Ultrasound techniques and imaging applications; Magnetic resonance and MPJ in hospital; Digital imaging with X-rays; and Emission tomography (PET and SPECT). Each of these topics is developed by analysing the underlying physics principles and their implementation, quality and safety aspects, clinical performance and recent advancements in the field. Some issues specific to the individual techniques are also treated, e.g. choice of radioisotopes or contrast agents, optimisation of data acquisition and st

  19. Business model framework applications in health care: A systematic review.

    Science.gov (United States)

    Fredriksson, Jens Jacob; Mazzocato, Pamela; Muhammed, Rafiq; Savage, Carl

    2017-11-01

    It has proven to be a challenge for health care organizations to achieve the Triple Aim. In the business literature, business model frameworks have been used to understand how organizations are aligned to achieve their goals. We conducted a systematic literature review with an explanatory synthesis approach to understand how business model frameworks have been applied in health care. We found a large increase in applications of business model frameworks during the last decade. E-health was the most common context of application. We identified six applications of business model frameworks: business model description, financial assessment, classification based on pre-defined typologies, business model analysis, development, and evaluation. Our synthesis suggests that the choice of business model framework and constituent elements should be informed by the intent and context of application. We see a need for harmonization in the choice of elements in order to increase generalizability, simplify application, and help organizations realize the Triple Aim.

  20. Three frameworks to predict physical activity behavior in middle school inclusive physical education: a multilevel analysis.

    Science.gov (United States)

    Jin, Jooyeon; Yun, Joonkoo

    2013-07-01

    The purpose of this study was to examine three frameworks, (a) process-product, (b) student mediation, and (c) classroom ecology, to understand physical activity (PA) behavior of adolescents with and without disabilities in middle school inclusive physical education (PE). A total of 13 physical educators teaching inclusive PE and their 503 students, including 22 students with different disabilities, participated in this study. A series of multilevel regression analyses indicated that physical educators' teaching behavior and students' implementation intentions play important roles in promoting the students' PA in middle school inclusive PE settings when gender, disability, lesson content, instructional model, and class location are considered simultaneously. The findings suggest that the ecological framework should be considered to effectively promote PA of adolescents with and without disabilities in middle school PE classes.

  1. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    Science.gov (United States)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  2. Social Commerce Design: A Framework and Application

    OpenAIRE

    Han, Hui; Trimi, Silvana

    2017-01-01

    Abstract: Social commerce is a new business model of e-commerce, which utilizes of Web 2.0 technologies and social media to support social-related exchange activities. While its popularity, being a subset of e-commerce, has been increasing tremendously since its introduction in 2005, there exists a general paucity of research on its framework and its applications’ effectiveness, especially in areas beyond the common social commerce practices. This study develops a comprehensive social commerc...

  3. Framework for understanding LENR processes, using conventional condensed matter physics

    International Nuclear Information System (INIS)

    Chubb, Scott R.

    2006-01-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD x , these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD x the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  4. Framework for understanding LENR processes, using conventional condensed matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, Scott R. [Research Systems Inc., 9822 Pebble Weigh Ct., Burke VA 22015-3378 (United States)

    2006-07-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD{sub x}, these fluctuations begin to occur as x {yields} 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD{sub x} the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  5. A Specialized Framework for Data Retrieval Web Applications

    Directory of Open Access Journals (Sweden)

    Jerzy Nogiec

    2005-06-01

    Full Text Available Although many general-purpose frameworks have been developed to aid in web application development, they typically tend to be both comprehensive and complex. To address this problem, a specialized server-side Java framework designed specifically for data retrieval and visualization has been developed. The framework's focus is on maintainability and data security. The functionality is rich with features necessary for simplifying data display design, deployment, user management and application debugging, yet the scope is deliberately kept limited to allow for easy comprehension and rapid application development. The system clearly decouples the application processing and visualization, which in turn allows for clean separation of layout and processing development. Duplication of standard web page features such as toolbars and navigational aids is therefore eliminated. The framework employs the popular Model-View-Controller (MVC architecture, but it also uses the filter mechanism for several of its base functionalities, which permits easy extension of the provided core functionality of the system.

  6. A specialized framework for data retrieval Web applications

    International Nuclear Information System (INIS)

    Jerzy Nogiec; Kelley Trombly-Freytag; Dana Walbridge

    2004-01-01

    Although many general-purpose frameworks have been developed to aid in web application development, they typically tend to be both comprehensive and complex. To address this problem, a specialized server-side Java framework designed specifically for data retrieval and visualization has been developed. The framework's focus is on maintainability and data security. The functionality is rich with features necessary for simplifying data display design, deployment, user management and application debugging, yet the scope is deliberately kept limited to allow for easy comprehension and rapid application development. The system clearly decouples the application processing and visualization, which in turn allows for clean separation of layout and processing development. Duplication of standard web page features such as toolbars and navigational aids is therefore eliminated. The framework employs the popular Model-View-Controller (MVC) architecture, but it also uses the filter mechanism for several of its base functionalities, which permits easy extension of the provided core functionality of the system

  7. Regulatory frameworks for mobile medical applications.

    Science.gov (United States)

    Censi, Federica; Mattei, Eugenio; Triventi, Michele; Calcagnini, Giovanni

    2015-05-01

    A mobile application (app) is a software program that runs on mobile communication devices such as a smartphone. The concept of a mobile medical app has gained popularity and diffusion but its reference regulatory context has raised discussion and concerns. Theoretically, a mobile app can be developed and uploaded easily by any person or entity. Thus, if an app can have some effects on the health of the users, it is mandatory to identify its reference regulatory context and the applicable prescriptions.

  8. J2EE tienda virtual application framework

    OpenAIRE

    Varga Laguna, Eduardo; Universitat Autònoma de Barcelona. Escola Tècnica Superior d'Enginyeria

    2007-01-01

    En el siguiente documento podrá encontrar de una forma clara y entendedora, a través de la creación de un sencillo aplicativo, el mecanismo para la creación de una aplicación J2EE basada en el framework de desarrollo Yakarta Struts. En el mismo partirá desde cero, desde el inicio en la captación de requerimientos, pasando por la etapa de análisis y diseño y la posterior implementación. Nota: Aquest document conté originàriament altre material i/o programari només consultable a la Bibliotec...

  9. Environmental costs of a river watershed within the European water framework directive: Results from physical hydronomics

    International Nuclear Information System (INIS)

    Martinez, A.; Uche, J.; Valero, A.; Valero-Delgado, A.

    2010-01-01

    Physical hydronomics (PH) is the specific application of thermodynamics that physically characterizes the governance of water bodies, i.e., the Water Framework Directive (WFD) for European Union citizens. In this paper, calculation procedures for the exergy analysis of river basins are developed within the WFD guidelines and a case study is developed. Therefore, it serves as an example for the feasible application of PH in the environmental cost assessment of water bodies, accordingly to the principle of recovery of the costs related to water services in accordance with the polluter pays principle, one of the milestones of the WFD. The Foix River watershed, a small river located at the Inland Basins of Catalonia (IBC), has been analyzed. Main results, difficulties, and constraints encountered are shown in the paper. Following WFD's quantity and quality objectives previously defined, water costs are calculated and the equivalence between the exergy loss due to water users and the exergy variation along the river are also analyzed.

  10. A Framework for Blockchain-Based Applications

    OpenAIRE

    Feig, Ephraim

    2018-01-01

    Blockchains have recently generated explosive interest from both academia and industry, with many proposed applications. But descriptions of many these proposals are more visionary projections than realizable proposals, and even basic definitions are often missing. We define "blockchain" and "blockchain network", and then discuss two very different, well known classes of blockchain networks: cryptocurrencies and Git repositories. We identify common primitive elements of both and use them to c...

  11. Experiences developing ALEGRA: A C++ coupled physics framework

    Energy Technology Data Exchange (ETDEWEB)

    Budge, K.G.; Peery, J.S.

    1998-11-01

    ALEGRA is a coupled physics framework originally written to simulate inertial confinement fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories. It has since grown into a large software development project supporting a number of computational programs at Sandia. As the project has grown, so has the development team, from the original two authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel supercomputer. The authors discuss the reasons for ALEGRA`s success, which include the intelligent use of object-oriented techniques and the choice of C++ as the programming language. They argue that the intelligent use of development tools, such as build tools (e.g. make), compiler, debugging environment (e.g. dbx), version control system (e.g. cvs), and bug management software (e.g. ClearDDTS), is nearly as important as the choice of language and paradigm.

  12. Experiences developing ALEGRA: A C++ coupled physics framework

    International Nuclear Information System (INIS)

    Budge, K.G.; Peery, J.S.

    1998-01-01

    ALEGRA is a coupled physics framework originally written to simulate inertial confinement fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories. It has since grown into a large software development project supporting a number of computational programs at Sandia. As the project has grown, so has the development team, from the original two authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel supercomputer. The authors discuss the reasons for ALEGRA's success, which include the intelligent use of object-oriented techniques and the choice of C++ as the programming language. They argue that the intelligent use of development tools, such as build tools (e.g. make), compiler, debugging environment (e.g. dbx), version control system (e.g. cvs), and bug management software (e.g. ClearDDTS), is nearly as important as the choice of language and paradigm

  13. Molecule database framework: a framework for creating database applications with chemical structure search capability.

    Science.gov (United States)

    Kiener, Joos

    2013-12-11

    Research in organic chemistry generates samples of novel chemicals together with their properties and other related data. The involved scientists must be able to store this data and search it by chemical structure. There are commercial solutions for common needs like chemical registration systems or electronic lab notebooks. However for specific requirements of in-house databases and processes no such solutions exist. Another issue is that commercial solutions have the risk of vendor lock-in and may require an expensive license of a proprietary relational database management system. To speed up and simplify the development for applications that require chemical structure search capabilities, I have developed Molecule Database Framework. The framework abstracts the storing and searching of chemical structures into method calls. Therefore software developers do not require extensive knowledge about chemistry and the underlying database cartridge. This decreases application development time. Molecule Database Framework is written in Java and I created it by integrating existing free and open-source tools and frameworks. The core functionality includes:•Support for multi-component compounds (mixtures)•Import and export of SD-files•Optional security (authorization)For chemical structure searching Molecule Database Framework leverages the capabilities of the Bingo Cartridge for PostgreSQL and provides type-safe searching, caching, transactions and optional method level security. Molecule Database Framework supports multi-component chemical compounds (mixtures).Furthermore the design of entity classes and the reasoning behind it are explained. By means of a simple web application I describe how the framework could be used. I then benchmarked this example application to create some basic performance expectations for chemical structure searches and import and export of SD-files. By using a simple web application it was shown that Molecule Database Framework

  14. Principles and applications of nanomems physics

    CERN Document Server

    Santos, Hector

    2005-01-01

    ""Principles and Applications of NanoMEMS Physics"" presents the first unified exposition of the physical principles at the heart of NanoMEMS-based devices and applications. In particular, after beginning with a comprehensive presentation of the fundamentals and limitations of nanotechnology and MEMS fabrication techniques, the book addresses the physics germane to this dimensional regime, namely, quantum wave-particle phenomena, including, the manifestation of charge discreteness, quantized electrostatic actuation, and the Casimir effect, and quantum wave phenomena, including, quantized elect

  15. An Adaptive Sensor Mining Framework for Pervasive Computing Applications

    Science.gov (United States)

    Rashidi, Parisa; Cook, Diane J.

    Analyzing sensor data in pervasive computing applications brings unique challenges to the KDD community. The challenge is heightened when the underlying data source is dynamic and the patterns change. We introduce a new adaptive mining framework that detects patterns in sensor data, and more importantly, adapts to the changes in the underlying model. In our framework, the frequent and periodic patterns of data are first discovered by the Frequent and Periodic Pattern Miner (FPPM) algorithm; and then any changes in the discovered patterns over the lifetime of the system are discovered by the Pattern Adaptation Miner (PAM) algorithm, in order to adapt to the changing environment. This framework also captures vital context information present in pervasive computing applications, such as the startup triggers and temporal information. In this paper, we present a description of our mining framework and validate the approach using data collected in the CASAS smart home testbed.

  16. Analysis of GEANT4 Physics List Properties in the 12 GeV MOLLER Simulation Framework

    Science.gov (United States)

    Haufe, Christopher; Moller Collaboration

    2013-10-01

    To determine the validity of new physics beyond the scope of the electroweak theory, nuclear physicists across the globe have been collaborating on future endeavors that will provide the precision needed to confirm these speculations. One of these is the MOLLER experiment - a low-energy particle experiment that will utilize the 12 GeV upgrade of Jefferson Lab's CEBAF accelerator. The motivation of this experiment is to measure the parity-violating asymmetry of scattered polarized electrons off unpolarized electrons in a liquid hydrogen target. This measurement would allow for a more precise determination of the electron's weak charge and weak mixing angle. While still in its planning stages, the MOLLER experiment requires a detailed simulation framework in order to determine how the project should be run in the future. The simulation framework for MOLLER, called ``remoll'', is written in GEANT4 code. As a result, the simulation can utilize a number of GEANT4 coded physics lists that provide the simulation with a number of particle interaction constraints based off of different particle physics models. By comparing these lists with one another using the data-analysis application ROOT, the most optimal physics list for the MOLLER simulation can be determined and implemented. This material is based upon work supported by the National Science Foundation under Grant No. 714001.

  17. Molecular magnets physics and applications

    CERN Document Server

    Bartolomé, Juan; Fernández, Julio F

    2013-01-01

    This book provides an overview of the physical phenomena discovered in magnetic molecular materials over the last 20 years. It is written by leading scientists having made the most important contributions to this active area of research. The main topics of this book are the principles of quantum tunneling and quantum coherence of single-molecule magnets (SMMs), phenomena which go beyond the physics of individual molecules, such as the collective behavior of arrays of SMMs, the physics of one-dimensional singleâ€"chain magnets and magnetism of SMMs grafted on substrates.

  18. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    Science.gov (United States)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization

  19. Multiscale, multiphysics beam dynamics framework design and applications

    International Nuclear Information System (INIS)

    Amundson, J F; Spentzouris, P; Dechow, D; Stoltz, P; McInnes, L; Norris, B

    2008-01-01

    Modern beam dynamics simulations require nontrivial implementations of multiple physics models. We discuss how component framework design in combination with the Common Component Architecture's component model and implementation eases the process of incorporation of existing state-of-the-art models with newly-developed models. We discuss current developments in componentized beam dynamics software, emphasizing design issues and distribution issues

  20. Evidence-Based Evaluation of Practice and Innovation in Physical Therapy Using the IDEAL-Physio Framework.

    Science.gov (United States)

    Beard, David; Hamilton, David; Davies, Loretta; Cook, Jonathan; Hirst, Allison; McCulloch, Peter; Paez, Arsenio

    2018-02-01

    The IDEAL framework is an established method for initial and ongoing evaluations of innovation and practice for complex health care interventions. First derived for surgical sciences and embedded at a global level for evaluating surgery/surgical devices, the IDEAL framework is based on the principle that innovation and evaluation in clinical practice can, and should, evolve together in an ordered manner: from conception to development and then to validation by appropriate clinical studies and, finally, longer-term follow-up. This framework is highly suited to other complex, nonpharmacological interventions, such as physical therapist interventions. This perspective outlines the application of IDEAL to physical therapy in the new IDEAL-Physio framework. The IDEAL-Physio framework comprises 5 stages. In stage 1, the idea phase, formal data collection should begin. Stage 2a is the phase for iterative improvement and adjustment with thorough data recording. Stage 2b involves the onset of formal evaluation using systematically collected group or cohort data. Stage 3 is the phase for formal comparative assessment of treatment, usually involving randomized studies. Stage 4 involves long-term follow-up. The IDEAL-Physio framework is recommended as a method for guiding and evaluating both innovation and practice in physical therapy, with the overall goal of providing better evidence-based care. © 2017 American Physical Therapy Association.

  1. A Conceptual Framework for Tiered Intervention in Physical Education

    Science.gov (United States)

    Dauenhauer, Brian; Keating, Xiaofen; Lambdin, Dolly; Knipe, Robert

    2017-01-01

    Our goal as physical educators is to help all students develop the knowledge, skills and dispositions to be physically active for a lifetime. Despite efforts to address the diverse needs of students through quality physical education, the reality is that some students still need additional support beyond physical education to achieve their full…

  2. Application Framework with Abstractions for Protocol and Agent Role

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun

    2016-01-01

    In multi-agent systems, agents interact by sending and receiving messages and the actual sequences of message form interaction structures between agents. Protocols and agents organized internally by agent roles support these interaction structures. Description and use of protocols based on agent ...... roles are supported by a simple and expressive application framework....

  3. Statistical physics including applications to condensed matter

    CERN Document Server

    Hermann, Claudine

    2005-01-01

    Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies -- as e.g. semiconductors or lasers -- are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.

  4. Coupled multi-physics simulation frameworks for reactor simulation: A bottom-up approach

    International Nuclear Information System (INIS)

    Tautges, Timothy J.; Caceres, Alvaro; Jain, Rajeev; Kim, Hong-Jun; Kraftcheck, Jason A.; Smith, Brandon M.

    2011-01-01

    A 'bottom-up' approach to multi-physics frameworks is described, where first common interfaces to simulation data are developed, then existing physics modules are adapted to communicate through those interfaces. Physics modules read and write data through those common interfaces, which also provide access to common simulation services like parallel IO, mesh partitioning, etc.. Multi-physics codes are assembled as a combination of physics modules, services, interface implementations, and driver code which coordinates calling these various pieces. Examples of various physics modules and services connected to this framework are given. (author)

  5. Application of physics technology in aquaculture

    International Nuclear Information System (INIS)

    Bai Yaxiang; Hu Yucai; Yang Guijuan

    2002-01-01

    Experiments show that after hydrobiology stimulation by a certain dosage of a physical field such as electromagnetic, laser, or neutron irradiation, hydorbiological activity can be improved, and consequently yield and quality enhanced. Recent advances in the application of physical fields in aquaculture are summarized, and prospects for future developments presented

  6. AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenzhao; Tang, Houjun; Harenberg, Steven; Byna, Suren; Zou, Xiaocheng; Devendran, Dharshi; Martin, Daniel; Wu, Kesheng; Dong, Bin; Klasky, Scott; Samatova, Nagiza

    2017-08-31

    Frameworks that facilitate runtime data sharing across multiple applications are of great importance for scientific data analytics. Although existing frameworks work well over uniform mesh data, they can not effectively handle adaptive mesh refinement (AMR) data. Among the challenges to construct an AMR-capable framework include: (1) designing an architecture that facilitates online AMR data management; (2) achieving a load-balanced AMR data distribution for the data staging space at runtime; and (3) building an effective online index to support the unique spatial data retrieval requirements for AMR data. Towards addressing these challenges to support runtime AMR data sharing across scientific applications, we present the AMRZone framework. Experiments over real-world AMR datasets demonstrate AMRZone's effectiveness at achieving a balanced workload distribution, reading/writing large-scale datasets with thousands of parallel processes, and satisfying queries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to 16384 cores; in the best case, our framework achieves a 46% performance improvement.

  7. Nuclear astrophysics: An application of nuclear physics

    International Nuclear Information System (INIS)

    Fueloep, Z.

    2005-01-01

    Nuclear astrophysics, a fruitful combination of nuclear physics and astrophysics can be viewed as a special application of nuclear physics where the study of nuclei and their reactions are motivated by astrophysical problems. Nuclear astrophysics is also a good example for the state of the art interdisciplinary research. The origin of elements studied by geologists is explored by astrophysicists using nuclear reaction rates provided by the nuclear physics community. Due to the high interest in the field two recent Nuclear Physics Divisional Conferences of the European Physical Society were devoted to nuclear astrophysics and a new conference series entitled 'Nuclear Physics in Astrophysics' has been established. Selected problems of nuclear astrophysics will be presented emphasizing the interplay between nuclear physics and astrophysics. As an example the role of 14 N(p,r) 15 O reaction rate in the determination of the age of globular clusters will be discussed in details

  8. Psychological Coercion in Human Trafficking: An Application of Biderman's Framework.

    Science.gov (United States)

    Baldwin, Susie B; Fehrenbacher, Anne E; Eisenman, David P

    2015-09-01

    This study examined coercive conditions experienced by trafficked persons in the context of Biderman's theory of coercion. We conducted semi-structured interviews with 12 adult women trafficked into Los Angeles County, from 10 countries, for domestic work and/or sex work. Participants described health problems they experienced in relation to their trafficking experience and their perceptions of conditions that caused health problems. Utilizing a framework analysis approach, we analyzed themes using Biderman's framework. Participants reported experiencing the range of nonphysical coercive tactics outlined by Biderman, including isolation, monopolization of perception, induced debility or exhaustion, threats, occasional indulgences, demonstration of omnipotence, degradation, and enforcement of trivial demands. Our analysis demonstrates how these coercion tactics reinforced the submission of trafficked persons to their traffickers even in the absence of physical force or restraints. Such psychological abuse creates extreme stress that can lead to acute and chronic, physical and mental health problems. © The Author(s) 2014.

  9. Introducing a Framework for Physics Innovation and Entrepreneurship (PIE) Education

    Science.gov (United States)

    Roughani, Bahram

    A desired outcome for Physics Innovation and Entrepreneurship (PIE) education is preparing physics majors with an innovative and entrepreneurial mindset who are capable of opportunity recognition and adept in leveraging physics knowledge to address specific needs. Physics as a discipline is well-recognized to prepare students who become problem solvers and critical thinkers, gifted in dealing with abstract ideas and ambiguities in the context of complex and real-world problems. These characteristics when enhanced through appropriate combinations of curricular, co-curricular, and extra-curricular programs can prepare physics majors for careers and future challenges that may involve translating physics knowledge into useful products and services either as part of a technical team within an organization or through startups. A viable PIE education model prepares graduates for various career paths in addition to the traditional options such as pursuing graduate studies or becoming a science teacher. Having a well-defined ``third option'' for physics will benefit the robustness of the physics discipline through recruitment and retention of prospective students who in principle are interested in physics as a subject, but in practice they may overlook physics as their preferred major primarily because they are uncertain about a viable career path based on an undergraduate physics education. The ''Pathways to Innovation'' at Loyola is established based on the program developed by VentureWell and Epicenter (NSF Supported).

  10. Application of cybernetic methods in physics

    Energy Technology Data Exchange (ETDEWEB)

    Fradkov, Aleksandr L [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg (Russian Federation)

    2005-02-28

    Basic aspects of the subject and methodology for a new and rapidly developing area of research that has emerged at the intersection of physics and control theory (cybernetics) and emphasizes the application of cybernetic methods to the study of physical systems are reviewed. Speed-gradient and Hamiltonian solutions for energy control problems in conservative and dissipative systems are presented. Application examples such as the Kapitza pendulum, controlled overcoming of a potential barrier, and controlling coupled oscillators and molecular systems are presented. A speed-gradient approach to modeling the dynamics of physical systems is discussed. (reviews of topical problems)

  11. Application of cybernetic methods in physics

    International Nuclear Information System (INIS)

    Fradkov, Aleksandr L

    2005-01-01

    Basic aspects of the subject and methodology for a new and rapidly developing area of research that has emerged at the intersection of physics and control theory (cybernetics) and emphasizes the application of cybernetic methods to the study of physical systems are reviewed. Speed-gradient and Hamiltonian solutions for energy control problems in conservative and dissipative systems are presented. Application examples such as the Kapitza pendulum, controlled overcoming of a potential barrier, and controlling coupled oscillators and molecular systems are presented. A speed-gradient approach to modeling the dynamics of physical systems is discussed. (reviews of topical problems)

  12. Physical metallurgy. Vol. 6. Corrosion, oxidation and physical metallurgy applications

    International Nuclear Information System (INIS)

    Adda, Y.; Dupuy, J.M.; Philibert, J.; Quere, Y.

    1982-12-01

    This document deals with the following subjects: oxidation, corrosion and surface treatments. Some physical metallurgy applications are presented: aluminium alloys, high elastic limit materials, materials for very high temperature, nuclear metallurgy problems, composite materials, magnetic materials, very high purity materials, and, superconductor materials [fr

  13. EgoSENSE: A Framework for Context-Aware Mobile Applications Development

    Directory of Open Access Journals (Sweden)

    E. M. Milic

    2017-08-01

    Full Text Available This paper presents a context-aware mobile framework (or middleware, intended to support the implementation of context-aware mobile services. The overview of basic concepts, architecture and components of context-aware mobile framework is given. The mobile framework provide acquisition and management of context, where raw data sensed from physical (hardware sensors and virtual (software sensors are combined, processed and analyzed to provide high-level context and situation of the user to the mobile context-aware applications in near real-time. Using demo mobile health application, its most important components and functions, such as these supposed to detect urgent or alarming health conditions of a mobile user and to initiate appropriate actions demonstrated.

  14. Comparison of Physics Frameworks for WebGL-Based Game Engine

    Directory of Open Access Journals (Sweden)

    Yogya Resa

    2014-03-01

    Full Text Available Recently, a new technology called WebGL shows a lot of potentials for developing games. However since this technology is still new, there are still many potentials in the game development area that are not explored yet. This paper tries to uncover the potential of integrating physics frameworks with WebGL technology in a game engine for developing 2D or 3D games. Specifically we integrated three open source physics frameworks: Bullet, Cannon, and JigLib into a WebGL-based game engine. Using experiment, we assessed these frameworks in terms of their correctness or accuracy, performance, completeness and compatibility. The results show that it is possible to integrate open source physics frameworks into a WebGLbased game engine, and Bullet is the best physics framework to be integrated into the WebGL-based game engine.

  15. Web application development with Laravel PHP Framework version 4

    OpenAIRE

    Armel, Jamal

    2014-01-01

    The purpose of this thesis work was to learn a new PHP framework and use it efficiently to build an eCommerce web application for a small start-up freelancing company that will let potential customers check products by category and pass orders securely. To fulfil this set of requirements, a system consisting of a web application with a backend was designed and implemented using built in Laravel features such as Composer, Eloquent, Blade and Artisan and a WAMP stack. The web application wa...

  16. Tailored motivational message generation: A model and practical framework for real-time physical activity coaching.

    Science.gov (United States)

    Op den Akker, Harm; Cabrita, Miriam; Op den Akker, Rieks; Jones, Valerie M; Hermens, Hermie J

    2015-06-01

    This paper presents a comprehensive and practical framework for automatic generation of real-time tailored messages in behavior change applications. Basic aspects of motivational messages are time, intention, content and presentation. Tailoring of messages to the individual user may involve all aspects of communication. A linear modular system is presented for generating such messages. It is explained how properties of user and context are taken into account in each of the modules of the system and how they affect the linguistic presentation of the generated messages. The model of motivational messages presented is based on an analysis of existing literature as well as the analysis of a corpus of motivational messages used in previous studies. The model extends existing 'ontology-based' approaches to message generation for real-time coaching systems found in the literature. Practical examples are given on how simple tailoring rules can be implemented throughout the various stages of the framework. Such examples can guide further research by clarifying what it means to use e.g. user targeting to tailor a message. As primary example we look at the issue of promoting daily physical activity. Future work is pointed out in applying the present model and framework, defining efficient ways of evaluating individual tailoring components, and improving effectiveness through the creation of accurate and complete user- and context models. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An application of the ESD framework to the probabilistic risk assessment of dynamic systems

    International Nuclear Information System (INIS)

    Swaminathan, S.; Smidts, Carol

    2000-01-01

    Dynamic reliability is the probabilistic study of man-machine-software systems affected by an underlying physical process. The theory of probabilistic dynamics established that dynamic reliability methodologies are essentially semi-Markovian frameworks and can be expressed by an extension of the Chapman-Kolmogorov equation. The mathematical complexity associated with the assessment of dynamic systems' behaviour can be rather overwhelming for real life size systems. This is due to the fact that dynamic methodologies emphasize a component based representation rather than the sequence based representation used in the traditional Event Tree/Fault Tree framework or in the original Event Sequence Diagram (ESD) Framework. An extension of the ESD framework was proposed that facilitates capture of dynamic situations. The modeling framework is composed of events, gates, conditions, competitions and constraints which express many of the dynamic situations encountered in the evolution of accidents. The following paper illustrates an application of this extended ESD framework on a complex dynamic application. The problem at hand is an extension of a problem extensively studied in the validation of dynamic reliability algorithms, a simplified model of the fast reactor Europa. A discussion on how ESDs can help in guiding dynamic reliability simulations as well as aggregating and binning the numerous scenarios generated by dynamic reliability algorithms is provided.(author)

  18. Spallation reactions - physics and applications

    International Nuclear Information System (INIS)

    Kelic, A.; Ricciardi, M.; Schmidt, K-H.

    2009-01-01

    Spallation reactions have become an ideal tool for studying the equation of state and thermal instabilities of nuclear matter. In astrophysics, the interactions of cosmic rays with the interstellar medium have to be understood in detail for deducing their original composition and their production mechanisms. Renewed interest in spallation reactions with protons around 1 GeV came up recently with the developments of spallation neutron sources. The project of an accelerator-driven system (ADS) as a technological solution for incinerating the radioactive waste even intensified the efforts for better understanding the physics involved in the spallation process. Experiments on spallation reactions were performed for determining the production cross sections and properties of particles, fragments and heavy residues. Traditional experiments on heavy residues, performed in direct kinematics, were limited to the direct observation of long-lived radioactive nuclides and did not provide detailed information on the kinematics of the reaction. Therefore, an innovative experimental method has been developed, based on inverse kinematics, which allowed to identify all reaction residues in-flight, using the high resolution magnetic spectrometer FRS of GSL Darmstadt. It also gives direct access to the reaction kinematics. An experimental campaign has been carried out in a Europe-wide collaboration, investigating the spallation of several nuclei ranging from 56 Fe to 238 U Complementary experiments were performed with a full-acceptance detection system, yielding total fission cross sections. Recently, another detection system using the large acceptance ALADIN dipole and the LAND neutron detector was introduced to measure light particles in coincidence with the heavy residues. Another intense activity was dedicated to developing codes, which cover nuclear reactions occurring in an ADS. The first phase of the reaction is successfully described by a sequence of quasi-free nucleon

  19. A framework for distributed mixed-language scientific applications

    International Nuclear Information System (INIS)

    Quarrie, D.R.

    1996-01-01

    The Object Management Group has defined an architecture (COBRA) for distributed object applications based on an Object Broker and Interface Definition Language. This project builds upon this architecture to establish a framework for the creation of mixed language scientific applications. A prototype compiler has been written that generates FORTRAN 90 or Eiffel subs and skeletons and the required C++ glue code from an input IDL file that specifies object interfaces. This generated code can be used directly for non-distributed mixed language applications or in conjunction with the C++ code generated from a commercial IDL compiler for distributed applications. A feasibility study is presently to see whether a fully integrated software development environment for distributed, mixed-language applications can be created by modifying the back-end code generator of a commercial CASE tool to emit IDL. (author)

  20. From Particle Physics to Medical Applications

    Science.gov (United States)

    Dosanjh, Manjit

    2017-06-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen in 1895, physics has been instrumental in the development of technologies in the biomedical domain, including the use of ionizing radiation for medical imaging and therapy. Some key examples that are explored in detail in this book include scanners based on positron emission tomography, as well as radiation therapy for cancer treatment. Even the collaborative model of particle physics is proving to be effective in catalysing multidisciplinary research for medical applications, ensuring that pioneering physics research is exploited for the benefit of all.

  1. Leverage hadoop framework for large scale clinical informatics applications.

    Science.gov (United States)

    Dong, Xiao; Bahroos, Neil; Sadhu, Eugene; Jackson, Tommie; Chukhman, Morris; Johnson, Robert; Boyd, Andrew; Hynes, Denise

    2013-01-01

    In this manuscript, we present our experiences using the Apache Hadoop framework for high data volume and computationally intensive applications, and discuss some best practice guidelines in a clinical informatics setting. There are three main aspects in our approach: (a) process and integrate diverse, heterogeneous data sources using standard Hadoop programming tools and customized MapReduce programs; (b) after fine-grained aggregate results are obtained, perform data analysis using the Mahout data mining library; (c) leverage the column oriented features in HBase for patient centric modeling and complex temporal reasoning. This framework provides a scalable solution to meet the rapidly increasing, imperative "Big Data" needs of clinical and translational research. The intrinsic advantage of fault tolerance, high availability and scalability of Hadoop platform makes these applications readily deployable at the enterprise level cluster environment.

  2. DARC: Next generation decentralized control framework for robot applications

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Andersen, Nils Axel; Ravn, Ole

    2013-01-01

    This paper presents DARC, a next generation control framework for robot applications. It is designed to be equally powerful in prototyping research projects and for building serious commercial robots running on low powered embedded hardware, thus closing the gab between research and industry....... It incorporates several new techniques such as a decentralized peer-to-peer architecture, transparent network distribution of the control system, and automatic run-time supervision to guarantee robustness....

  3. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Directory of Open Access Journals (Sweden)

    J. Bhardwaj

    2018-02-01

    Full Text Available New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  4. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Science.gov (United States)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-02-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  5. APPLICATION FRAMEWORK IN ENGINEERING SERVICE ORIENTED ARCHITECTURE SYSTEM SERVICE

    Directory of Open Access Journals (Sweden)

    Ade Hodijah

    2017-03-01

    Full Text Available The Service Engineering (SE is understood as a framework to create innovative services in application development of information technology approach to Service Oriented Architecture (SOA. Implementing SOA is required methodology to identify services that can be used again in the application and organization of a company. in this research, software development model used is object-oriented methodologies, SOA itself is a collection consisting of tools, technologies, frameworks, and best practices that facilitate the implementation of a service quickly. in a study this uses the tools of Business Process Management System (BPMS to support the implementation of service-oriented software. the purpose of this study is to produce a model of activities and artifacts of the application software development models of the SE with a case study Rate Loans. Validation to the design of the model is done through testing of the software produced. The results showed that the application of the SE in the development of service-oriented software can use the object-oriented methodology by providing additional value-added analysis and redesign of business processes to be implemented on a BPMS. BPMS usage of the application of the SE on the SOA has the advantage of visualization in the management of business processes.

  6. From particle physics to medical applications

    CERN Document Server

    Dosanjh, Manjit

    2017-01-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen...

  7. Learning in Physics by Doing Laboratory Work: Towards a New Conceptual Framework

    Science.gov (United States)

    Danielsson, Anna Teresia; Linder, Cedric

    2009-01-01

    Drawing on a study that explores university students' experiences of doing laboratory work in physics, this article outlines a proposed conceptual framework for extending the exploration of the gendered experience of learning. In this framework situated cognition and post-structural gender theory are merged together. By drawing on data that aim at…

  8. A programmatic framework for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Goldston, R.J.; Neilson, G.H.

    1993-01-01

    Significant advances have been made in the confinement of reactor-grade plasmas, so that the authors are now preparing for experiments at the open-quotes power breakevenclose quotes level in the JET and TFTR experiments. In ITER the authors will extend the performance of tokamaks into the burning plasma regime, develop the technology of fusion reactors, and produce over a gigawatt of fusion power. Besides taking these crucial steps toward the technical feasibility of fusion, the authors must also take steps to ensure its economic acceptability. The broad requirements for economically attractive tokamak reactors based on physics advancements have been set forth in a number of studies. An advanced physics data base is emerging from a physics program of concept improvement using existing tokamaks around the world. This concept improvements program is emerging as the primary focus of the US domestic tokamak program, and a key element of that program is the proposed Tokamak Physics Experiment (TPX). With TPX the authors can develop the scientific data base for compact, continuously-operating fusion reactors, using advanced steady-state control techniques to improve plasma performance. The authors can develop operating techniques needed to ensure the success of ITER and provide first-time experience with several key fusion reactor technologies. This paper explains the relationships of TPX to the current US fusion physics program, to the ITER program, and to the development of an attractive tokamak demonstration plant for this next stage in the fusion program

  9. The contribution of conceptual frameworks to knowledge translation interventions in physical therapy.

    Science.gov (United States)

    Hudon, Anne; Gervais, Mathieu-Joël; Hunt, Matthew

    2015-04-01

    There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. © 2015 American Physical Therapy Association.

  10. Applications of SSNTD's in high energy physics

    International Nuclear Information System (INIS)

    Otterlund, I.

    1976-09-01

    Different applications of the emulsion technique in high energy physics are given. Investigations of heavy ion and proton-nucleus reactions with the conventional emulsion technique are presented together with a short interpretation of recent results. Methods of using nuclear emulsion with embedded targets will be discussed. Emulsion stacks in hybrid systems with electronic tagging suggest a new and interesting application of the emulsion technique. (Auth.)

  11. Application of PIN diodes in Physics Research

    International Nuclear Information System (INIS)

    Ramirez-Jimenez, F. J.; Mondragon-Contreras, L.; Cruz-Estrada, P.

    2006-01-01

    A review of the application of PIN diodes as radiation detectors in different fields of Physics research is presented. The development and research in semiconductor technology, the use of PIN diodes in particle counting, X-and γ-ray spectroscopy, medical applications and charged particle spectroscopy are considered. Emphasis is made in the activities realized in the different research and development Mexican institutions dealing with this kind of radiation detectors

  12. Useful and Usable Climate Science: Frameworks for Bridging the Social and Physical domains.

    Science.gov (United States)

    Buja, L.

    2016-12-01

    Society is transforming the Earth's system in unprecedented ways, often with significant variations across space and time. In turn, the impacts of climate change on the human system vary dramatically due to differences in cultural, socioeconomic, institutional, and physical processes at the local level. The Climate Science and Applications Program (CSAP) at the National Center for Atmospheric Research in Boulder Colorado addresses societal vulnerability, impacts and adaptation to climate change through the development of frameworks and methods for analyzing current and future vulnerability, and integrated analyses of climate impacts and adaptation at local, regional and global scales. CSAP relies heavily on GIS-based scientific data and knowledge systems to bridge social and physical science approaches in its five focus areas: Governance of inter-linked natural and managed resource systems. The role of urban areas in driving emissions of climate change Weather, climate and global human health, GIS-based science data & knowledge systems. Regional Climate Science and Services for Adaptation Advanced methodologies and frameworks for assessing current and future risks to environmental hazards through the integration of physical and social science models, research results, and remote sensing data are presented in the context of recent national and international projects on climate change and food/water security, urban carbon emissions, metropolitan extreme heat and global health. In addition, innovative CSAP international capacity building programs teaching interdisciplinary approaches for using geospatial technologies to integrate multi-scale spatial information of weather, climate change into important sectors such as disaster reduction, agriculture, tourism and society for decision-making are discussed.

  13. CAreDroid: Adaptation Framework for Android Context-Aware Applications.

    Science.gov (United States)

    Elmalaki, Salma; Wanner, Lucas; Srivastava, Mani

    2015-09-01

    Context-awareness is the ability of software systems to sense and adapt to their physical environment. Many contemporary mobile applications adapt to changing locations, connectivity states, available computational and energy resources, and proximity to other users and devices. Nevertheless, there is little systematic support for context-awareness in contemporary mobile operating systems. Because of this, application developers must build their own context-awareness adaptation engines, dealing directly with sensors and polluting application code with complex adaptation decisions. In this paper, we introduce CAreDroid, which is a framework that is designed to decouple the application logic from the complex adaptation decisions in Android context-aware applications. In this framework, developers are required- only-to focus on the application logic by providing a list of methods that are sensitive to certain contexts along with the permissible operating ranges under those contexts. At run time, CAreDroid monitors the context of the physical environment and intercepts calls to sensitive methods, activating only the blocks of code that best fit the current physical context. CAreDroid is implemented as part of the Android runtime system. By pushing context monitoring and adaptation into the runtime system, CAreDroid eases the development of context-aware applications and increases their efficiency. In particular, case study applications implemented using CAre-Droid are shown to have: (1) at least half lines of code fewer and (2) at least 10× more efficient in execution time compared to equivalent context-aware applications that use only standard Android APIs.

  14. Porting plasma physics simulation codes to modern computing architectures using the libmrc framework

    Science.gov (United States)

    Germaschewski, Kai; Abbott, Stephen

    2015-11-01

    Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source libmrc framework that has been used to modularize and port three plasma physics codes: The extended MHD code MRCv3 with implicit time integration and curvilinear grids; the OpenGGCM global magnetosphere model; and the particle-in-cell code PSC. libmrc consolidates basic functionality needed for simulations based on structured grids (I/O, load balancing, time integrators), and also introduces a parallel object model that makes it possible to maintain multiple implementations of computational kernels, on e.g. conventional processors and GPUs. It handles data layout conversions and enables us to port performance-critical parts of a code to a new architecture step-by-step, while the rest of the code can remain unchanged. We will show examples of the performance gains and some physics applications.

  15. MAPI: a software framework for distributed biomedical applications

    Directory of Open Access Journals (Sweden)

    Karlsson Johan

    2013-01-01

    Full Text Available Abstract Background The amount of web-based resources (databases, tools etc. in biomedicine has increased, but the integrated usage of those resources is complex due to differences in access protocols and data formats. However, distributed data processing is becoming inevitable in several domains, in particular in biomedicine, where researchers face rapidly increasing data sizes. This big data is difficult to process locally because of the large processing, memory and storage capacity required. Results This manuscript describes a framework, called MAPI, which provides a uniform representation of resources available over the Internet, in particular for Web Services. The framework enhances their interoperability and collaborative use by enabling a uniform and remote access. The framework functionality is organized in modules that can be combined and configured in different ways to fulfil concrete development requirements. Conclusions The framework has been tested in the biomedical application domain where it has been a base for developing several clients that are able to integrate different web resources. The MAPI binaries and documentation are freely available at http://www.bitlab-es.com/mapi under the Creative Commons Attribution-No Derivative Works 2.5 Spain License. The MAPI source code is available by request (GPL v3 license.

  16. Visual Basic Applications to Physics Teaching

    Science.gov (United States)

    Chitu, Catalin; Inpuscatu, Razvan Constantin; Viziru, Marilena

    2011-01-01

    Derived from basic language, VB (Visual Basic) is a programming language focused on the video interface component. With graphics and functional components implemented, the programmer is able to bring and use their components to achieve the desired application in a relatively short time. Language VB is a useful tool in physics teaching by creating…

  17. Application of neural networks in experimental physics

    International Nuclear Information System (INIS)

    Kisel', I.V.; Neskromnyj, V.N.; Ososkov, G.A.

    1993-01-01

    The theoretical foundations of numerous models of artificial neural networks (ANN) and their applications to the actual problems of associative memory, optimization and pattern recognition are given. This review contains also numerous using of ANN in the experimental physics both as the hardware realization of fast triggering systems for even selection and for the following software implementation of the trajectory data recognition

  18. The Contribution of Conceptual Frameworks to Knowledge Translation Interventions in Physical Therapy

    Science.gov (United States)

    Gervais, Mathieu-Joël; Hunt, Matthew

    2015-01-01

    There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. PMID:25060959

  19. GEM applications outside high energy physics

    CERN Document Server

    Duarte Pinto, Serge

    2013-01-01

    From its invention in 1997, the Gas Electron Multiplier has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  20. A Run-Time Verification Framework for Smart Grid Applications Implemented on Simulation Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ciraci, Selim; Sozer, Hasan; Tekinerdogan, Bedir

    2013-05-18

    Smart grid applications are implemented and tested with simulation frameworks as the developers usually do not have access to large sensor networks to be used as a test bed. The developers are forced to map the implementation onto these frameworks which results in a deviation between the architecture and the code. On its turn this deviation makes it hard to verify behavioral constraints that are de- scribed at the architectural level. We have developed the ConArch toolset to support the automated verification of architecture-level behavioral constraints. A key feature of ConArch is programmable mapping for architecture to the implementation. Here, developers implement queries to identify the points in the target program that correspond to architectural interactions. ConArch generates run- time observers that monitor the flow of execution between these points and verifies whether this flow conforms to the behavioral constraints. We illustrate how the programmable mappings can be exploited for verifying behavioral constraints of a smart grid appli- cation that is implemented with two simulation frameworks.

  1. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine.

    Science.gov (United States)

    Chen, Wei; Wu, Chunsheng

    2018-02-13

    Metal-organic frameworks (MOFs), also known as coordination polymers, have attracted extensive research interest in the past few decades due to their unique physical structures and potentially vast applications. In this review, we outline the recent progress in the synthesis, functionalization and applications of MOFs in biomedicine, mainly focusing on two promising, yet challenging areas, i.e., drug delivery and biosensing applications. A major challenge is the proper functionalization of MOFs with demanding properties suitable for biomedical applications. Extensive studies on MOFs in biomedicine have led to substantial progress in the control of key properties of MOFs such as toxicity, size and shape, and biological stability. Due to their flexible composition, pore size and easy functionalization properties, MOFs can be utilized as key components for the development of various functional systems, and their applications in drug delivery and biosensing are reviewed. Future trends and perspectives in these research areas are also outlined.

  2. A framework to enhance security of physically unclonable functions using chaotic circuits

    Science.gov (United States)

    Chen, Lanxiang

    2018-05-01

    As a new technique for authentication and key generation, physically unclonable function (PUF) has attracted considerable attentions, with extensive research results achieved already. To resist the popular machine learning modeling attacks, a framework to enhance the security of PUFs is proposed. The basic idea is to combine PUFs with a chaotic system of which the response is highly sensitive to initial conditions. For this framework, a specific construction which combines the common arbiter PUF circuit, a converter, and the Chua's circuit is given to implement a more secure PUF. Simulation experiments are presented to further validate the framework. Finally, some practical suggestions for the framework and specific construction are also discussed.

  3. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun

    2014-06-26

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new class of porous solid materials, MOFs are attractive for a variety of industrial applications including separation membranes-a rapidly developing research area. Many reports have discussed the synthesis and applications of MOFs and MOF thin films, but relatively few have addressed MOF membranes. This critical review provides an overview of the diverse MOF membranes that have been prepared, beginning with a brief introduction to the current techniques for the fabrication of MOF membranes. Gas and liquid separation applications with different MOF membranes are also included (175 references). This journal is © the Partner Organisations 2014.

  4. A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics

    Science.gov (United States)

    Tuminaro, Jonathan

    Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of

  5. Using a Disciplinary Literacy Framework to Teach High School Physics: An Action Research Study

    Science.gov (United States)

    Hurley, Brian P.; Henry, Michael P.

    2015-01-01

    This action research study investigated the impact of teaching physics using a disciplinary literacy framework for instruction across all units in one academic year. Through a suite of vocabulary strategies and lessons that encourage students to write, speak, draw, mathematically translate, and design experiments, students learn to do physics by…

  6. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongqin; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering (China)

    2015-07-15

    Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  7. A development framework for parallel CFD applications: TRIOU project

    International Nuclear Information System (INIS)

    Calvin, Ch.

    2003-01-01

    We present in this paper the parallel structure of a thermal-hydraulic framework: Trio-U. This development platform has been designed in order to solve large 3-dimensional structured or unstructured CFD (computational fluid dynamics) problems. The code is intrinsically parallel, and an object-oriented design, UML, is used. The implementation language chosen is C++. All the parallelism management and the communication routines have been encapsulated. Parallel I/O and communication classes over standard I/O streams of C++ have been defined, which allows the developer an easy use of the different modules of the application without dealing with basic parallel process management and communications. Moreover, the encapsulation of the communication routines, guarantees the portability of the application and allows an efficient tuning of basic communication methods in order to achieve the best performances of the target architecture. The speed-up of parallel applications designed using the Trio U framework are very good since we obtained, for instance, on complex turbulent flow Large Eddy Simulation (LES) simulations an efficiency of up to 90% on 20 processors. The efficiencies obtained on direct numerical simulations of two phase flow fluids are similar since the speed-up is nearly equals to 7.5 for a 3-dimensional simulation using a one million element mesh on 8 processors. The purpose of this paper is to focus on the main concepts and their implementation that were the guidelines of the design of the parallel architecture of the code. (author)

  8. Application of the Carolina Framework for Cervical Cancer Prevention.

    Science.gov (United States)

    Moss, Jennifer L; McCarthy, Schatzi H; Gilkey, Melissa B; Brewer, Noel T

    2014-03-01

    The Carolina Framework for Cervical Cancer Prevention describes 4 main causes of cervical cancer incidence: human papillomavirus (HPV) infection, lack of screening, screening errors, and not receiving follow-up care. We present 2 applications of the Carolina Framework in which we identify high-need counties in North Carolina and generate recommendations for improving prevention efforts. We created a cervical cancer prevention need index (CCPNI) that ranked counties on cervical cancer mortality, HPV vaccine initiation and completion, Pap smear screening, and provision of Pap tests to rarely- or never-screened women. In addition, we conducted in-depth interviews with 19 key informants from programs and agencies involved in cervical cancer prevention in North Carolina. North Carolina's 100 counties varied widely on individual CCPNI components, including annual cervical cancer mortality (median 2.7/100,000 women; range 0.0-8.0), adolescent girls' HPV vaccine initiation (median 42%; range 15%-62%), and Pap testing in the previous 3 years among Medicaid-insured adult women (median 59%; range 40%-83%). Counties with the greatest prevention needs formed 2 distinct clusters in the northeast and south-central regions of the state. Interviews generated 9 recommendations to improve cervical cancer prevention in North Carolina, identifying applications to specific programs and policies in the state. This study found striking geographic disparities in cervical cancer prevention need in North Carolina. Future prevention efforts in the state should prioritize high-need regions as well as recommended strategies and applications in existing programs. Other states can use the Carolina Framework to increase the impact of their cervical cancer prevention efforts. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A Unit-Test Framework for Database Applications

    DEFF Research Database (Denmark)

    Christensen, Claus Abildgaard; Gundersborg, Steen; de Linde, Kristian

    The outcome of a test of an application that stores data in a database naturally depends on the state of the database. It is therefore important that test developers are able to set up and tear down database states in a simple and efficient manner. In existing unit-test frameworks, setting up...... test can be minimized. In addition, the reuse between unit tests can speed up the execution of test suites. A performance test on a medium-size project shows a 40% speed up and an estimated 25% reduction in the number of lines of test code....

  10. Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics

    Science.gov (United States)

    Chubb, Scott

    2005-03-01

    As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.

  11. Applications of fractional calculus in physics

    CERN Document Server

    2000-01-01

    Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and co

  12. Proposing a Framework for Mobile Applications in Disaster Health Learning.

    Science.gov (United States)

    Liu, Alexander G; Altman, Brian A; Schor, Kenneth; Strauss-Riggs, Kandra; Thomas, Tracy N; Sager, Catherine; Leander-Griffith, Michelle; Harp, Victoria

    2017-08-01

    Mobile applications, or apps, have gained widespread use with the advent of modern smartphone technologies. Previous research has been conducted in the use of mobile devices for learning. However, there is decidedly less research into the use of mobile apps for health learning (eg, patient self-monitoring, medical student learning). This deficiency in research on using apps in a learning context is especially severe in the disaster health field. The objectives of this article were to provide an overview of the current state of disaster health apps being used for learning, to situate the use of apps in a health learning context, and to adapt a learning framework for the use of mobile apps in the disaster health field. A systematic literature review was conducted by using the PRISMA checklist, and peer-reviewed articles found through the PubMed and CINAHL databases were examined. This resulted in 107 nonduplicative articles, which underwent a 3-phase review, culminating in a final selection of 17 articles. While several learning models were identified, none were sufficient as an app learning framework for the field. Therefore, we propose a learning framework to inform the use of mobile apps in disaster health learning. (Disaster Med Public Health Preparedness. 2017;11:487-495).

  13. Design and Applications of a Multimodality Image Data Warehouse Framework

    Science.gov (United States)

    Wong, Stephen T.C.; Hoo, Kent Soo; Knowlton, Robert C.; Laxer, Kenneth D.; Cao, Xinhau; Hawkins, Randall A.; Dillon, William P.; Arenson, Ronald L.

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications—namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains. PMID:11971885

  14. Application of a Physical Protection to HANARO

    International Nuclear Information System (INIS)

    Ryu, Jeong-Soo; Park, Cheol; Cho, Yeong-Garp; Lee, Jung-Hee; Jung, Hoan-Sung

    2006-01-01

    After the fearful terror attack on September 11, 2001, in USA, international nuclear society has strengthened its physical protection system against nuclear reactors to prevent the theft of nuclear materials and its ill-intended application, and the destruction of nuclear installations and the obstruction of an operation in such facilities. In the nuclear agreements between Korea and USA or other countries, the observance of the IAEA recommendations on a physical protection for a nuclear installation and nuclear materials is clearly requested. Since IAEA recommendation on physical protection was revised more strictly, KAERI made a plan to follow the strengthened IAEA recommendation and to improve the physical protection for the HANARO and fuel fabrication building. In response to the plan for the improvement of the physical protection system, the reactor hall, control room, and fuel fabrication building was established as the boundary of a physical protection concept. Accordingly, the existing doors were recommended to be replaced with new security doors against a terror attack. Therefore, security doors reflecting the design characteristics of the HANARO have been developed to replace the existing doors, and the design, fabrication, driving and leak tight tests were carried out before an installation. For securing a safety and easy operation of the security doors, HANARO access control system (HANACS) has been developed to perform a real time communication and identification of persons for an access control

  15. A Physics-Based Modeling Framework for Prognostic Studies

    Science.gov (United States)

    Kulkarni, Chetan S.

    2014-01-01

    Prognostics and Health Management (PHM) methodologies have emerged as one of the key enablers for achieving efficient system level maintenance as part of a busy operations schedule, and lowering overall life cycle costs. PHM is also emerging as a high-priority issue in critical applications, where the focus is on conducting fundamental research in the field of integrated systems health management. The term diagnostics relates to the ability to detect and isolate faults or failures in a system. Prognostics on the other hand is the process of predicting health condition and remaining useful life based on current state, previous conditions and future operating conditions. PHM methods combine sensing, data collection, interpretation of environmental, operational, and performance related parameters to indicate systems health under its actual application conditions. The development of prognostics methodologies for the electronics field has become more important as more electrical systems are being used to replace traditional systems in several applications in the aeronautics, maritime, and automotive fields. The development of prognostics methods for electronics presents several challenges due to the great variety of components used in a system, a continuous development of new electronics technologies, and a general lack of understanding of how electronics fail. Similarly with electric unmanned aerial vehicles, electrichybrid cars, and commercial passenger aircraft, we are witnessing a drastic increase in the usage of batteries to power vehicles. However, for battery-powered vehicles to operate at maximum efficiency and reliability, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. We develop an electrochemistry-based model of Li-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable

  16. Physics and applications of CVD diamond

    CERN Document Server

    Koizumi, Satoshi; Nesladek, Milos

    2008-01-01

    Here, leading scientists report on why and how diamond can be optimized for applications in bioelectronic and electronics. They cover such topics as growth techniques, new and conventional doping mechanisms, superconductivity in diamond, and excitonic properties, while application aspects include quantum electronics at room temperature, biosensors as well as diamond nanocantilevers and SAWs.Written in a review style to make the topic accessible for a wider community of scientists working in interdisciplinary fields with backgrounds in physics, chemistry, biology and engineering, this is e

  17. Quantum Well Infrared Photodetectors Physics and Applications

    CERN Document Server

    Schneider, Harald

    2007-01-01

    Addressed to both students as a learning text and scientists/engineers as a reference, this book discusses the physics and applications of quantum-well infrared photodetectors (QWIPs). It is assumed that the reader has a basic background in quantum mechanics, solid-state physics, and semiconductor devices. To make this book as widely accessible as possible, the treatment and presentation of the materials is simple and straightforward. The topics for the book were chosen by the following criteria: they must be well-established and understood; and they should have been, or potentially will be, used in practical applications. The monograph discusses most aspects relevant for the field but omits, at the same time, detailed discussions of specialized topics such as the valence-band quantum wells.

  18. Algebra and topology for applications to physics

    Science.gov (United States)

    Rozhkov, S. S.

    1987-01-01

    The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.

  19. Dod physical security equipment application experience

    International Nuclear Information System (INIS)

    Dixon, H.M.

    1978-01-01

    In the Department of Defense, the subject of physical security is very broad in scope. Its application ranges from countering the shoplifters in the post exchange facilities to the sophisticated terrorist who may attempt to obtain access to one of our nuclear weapons. This paper focuses on the area of specific interest to the members of INMM which is the protection of nuclear devices and the classified information associated with them

  20. Applications of fiber optics in physical protection

    International Nuclear Information System (INIS)

    Buckle, T.H.

    1994-03-01

    The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors

  1. Remote Sensing: Physics And Environmental Applications

    International Nuclear Information System (INIS)

    EI Raey, M.

    2007-01-01

    Full text: Basic principles of remote sensing of environment are outlined emphasizing inherent physical and target properties leading to proper identification and classification. Basic processing techniques are discussed. Applications of remote sensing techniques in various aspects of environmental monitoring and assessment is surveyed with emphasis on aspects of main concern to developing communities such as planning, sea level impacts, mine detection and earthquake prediction are all outlined and discussed

  2. Applications of Particle Accelerators in Medical Physics

    OpenAIRE

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide f...

  3. Framework for Proliferation Resistance and Physical Protection for Nonproliferation Impact Assessments

    International Nuclear Information System (INIS)

    Bari, R.

    2008-01-01

    This report describes a framework for proliferation resistance and physical protection evaluation for the fuel cycle systems envisioned in the expansion of nuclear power for electricity generation. The methodology is based on an approach developed as part of the Generation IV technical evaluation framework and on a qualitative evaluation approach to policy factors similar to those that were introduced in previous Nonproliferation Impact Assessments performed by DOE

  4. Video motion detection for physical security applications

    International Nuclear Information System (INIS)

    Matter, J.C.

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost-effectiveness. In recent years, significant advances in image-processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Early video motion detectors (VMDs) were useful for interior applications of volumetric sensing. Success depended on having a relatively well-controlled environment. Attempts to use these systems outdoors frequently resulted in an unacceptable number of nuisance alarms. Currently, Sandia National Laboratories (SNL) is developing several advanced systems that employ image-processing techniques for a broader set of safeguards and security applications. The Target Cueing and Tracking System (TCATS), the Video Imaging System for Detection, Tracking, and Assessment (VISDTA), the Linear Infrared Scanning Array (LISA); the Mobile Intrusion Detection and Assessment System (MIDAS), and the Visual Artificially Intelligent Surveillance (VAIS) systems are described briefly

  5. Towards a conceptual framework for identifying student difficulties with solving Real-World Problems in Physics

    DEFF Research Database (Denmark)

    Niss, Martin

    2012-01-01

    This paper develops a conceptual framework for identifying the challenges and obstacles university students encounter when solving real-world problems involving Physics. The framework is based on viewing problem solving as a modelling process. In order to solve a real-world problem, the problem...... solver has to go through the steps and do the tasks of such a process. The paper presents a theoretical analysis of what it takes to solve three real-world problems, demonstrating how the framework presented captures the essential aspects of solving them. Moreover, it is argued that three steps critical...... for real-world problem solving – initial analysis of the problem situation, choice of relevant physical theory (the so-called paradigmatic choice) and mathematization – are not covered by existing models of problem solving in Physics. Finally, the existing research on student difficulties with problem...

  6. Applications in atomic and molecular physics

    International Nuclear Information System (INIS)

    Todd, J.F.J.

    1976-01-01

    Probably the most extensive area of application of quadrupole mass spectrometry has been that of atomic and molecular physics: it was for this market that the commercial instruments were first introduced and the variety of investigations which have consequently been made possible provides an obvious basis for illustrating the unique features possessed by the mass filter. The account which follows is divided into two main sections. The first deals with general applications of the quadrupole, in which the instrument is used essentially as an analyser for neutral or ionic species, e.g. the monitoring of residual gases and reaction products. The fields of vacuum technology, surface studies and gas phase studies are considered in turn. The second section is devoted to an account of the special applications of quadrupole fields in which use is made of properties such as ion containment. (Auth.)

  7. Abstracted Workow Framework with a Structure from Motion Application

    Science.gov (United States)

    Rossi, Adam J.

    In scientific and engineering disciplines, from academia to industry, there is an increasing need for the development of custom software to perform experiments, construct systems, and develop products. The natural mindset initially is to shortcut and bypass all overhead and process rigor in order to obtain an immediate result for the problem at hand, with the misconception that the software will simply be thrown away at the end. In a majority of the cases, it turns out the software persists for many years, and likely ends up in production systems for which it was not initially intended. In the current study, a framework that can be used in both industry and academic applications mitigates underlying problems associated with developing scientific and engineering software. This results in software that is much more maintainable, documented, and usable by others, specifically allowing new users to extend capabilities of components already implemented in the framework. There is a multi-disciplinary need in the fields of imaging science, computer science, and software engineering for a unified implementation model, which motivates the development of an abstracted software framework. Structure from motion (SfM) has been identified as one use case where the abstracted workflow framework can improve research efficiencies and eliminate implementation redundancies in scientific fields. The SfM process begins by obtaining 2D images of a scene from different perspectives. Features from the images are extracted and correspondences are established. This provides a sufficient amount of information to initialize the problem for fully automated processing. Transformations are established between views, and 3D points are established via triangulation algorithms. The parameters for the camera models for all views / images are solved through bundle adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and camera matrices are used to generate a dense

  8. Critical Look at Physics Identity: An Operationalized Framework for Examining Race and Physics Identity

    Science.gov (United States)

    Hyater-Adams, Simone; Fracchiolla, Claudia; Finkelstein, Noah; Hinko, Kathleen

    2018-01-01

    Studies on physics identity are appearing more frequently and often responding to increased awareness of the underrepresentation of students of color in physics. In our broader research, we focus our efforts on understanding how racial identity and physics identity are negotiated throughout the experiences of Black physicists. In this paper, we…

  9. Metal-organic frameworks and their applications in catalysis; Redes metalorganicas e suas aplicacoes em catalise

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Andre Luis Dantas, E-mail: aldramos@ufs.br [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil). Departamento de Engenharia Quimica; Tanase, Stefania; Rothenberg, Gadi [Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam (Netherlands)

    2014-07-01

    Metal-organic frameworks (MOFs) form a new class of materials with well-defined yet tunable properties. These are crystalline, highly porous and exhibit strong metal-ligand interactions. Importantly, their physical and chemical properties, including pore size, pore structure, acidity, and magnetic and optical characteristics, can be tailored by choosing the appropriate ligands and metal precursors. Here we review the key aspects of synthesis and characterization of MOFs, focusing on lanthanide-based and vanadium-based materials. We also outline some of their applications in catalysis and materials science. (author)

  10. Applications of nuclear physics: Future trends

    International Nuclear Information System (INIS)

    Eichler, R.

    2005-01-01

    Nuclear physics and energy research depends on and advances science and technology outside of the nuclear field. Perhaps the most commonly perceived benefits to society from nuclear and particle physics are those derived from particle beam technology. Charged particle accelerators play an increasing role in applications in industry and medicine. Neutrons produced with a high power proton accelerator in a spallation process are used from basic research, radiography in automotive industry (example fuel cell development) to transmutation of highly radioactive fission products. Production and acceleration of ultra cold neutrons provide intense and almost mono-energetic neutrons to study soft matter. Heavier radioisotopes are used in a wide field ranging from medicine to semiconductor industry (ion implantation for doping or coating technologies). Concrete examples and future trends will be given. Detailed understanding of ion physics at low energy allows the design of compact accelerator mass spectroscopy (close to table top size). The ability to measure concentrations of specific radioactive isotopes even below the natural radioactivity widens the scope of applications from archaeology, climate research to food industry. Such a compact device is close to commercialisation. (author)

  11. Group Theory with Applications in Chemical Physics

    Science.gov (United States)

    Jacobs, Patrick

    2005-10-01

    Group Theory is an indispensable mathematical tool in many branches of chemistry and physics. This book provides a self-contained and rigorous account on the fundamentals and applications of the subject to chemical physics, assuming no prior knowledge of group theory. The first half of the book focuses on elementary topics, such as molecular and crystal symmetry, whilst the latter half is more advanced in nature. Discussions on more complex material such as space groups, projective representations, magnetic crystals and spinor bases, often omitted from introductory texts, are expertly dealt with. With the inclusion of numerous exercises and worked examples, this book will appeal to advanced undergraduates and beginning graduate students studying physical sciences and is an ideal text for use on a two-semester course. An introductory and advanced text that comprehensively covers fundamentals and applications of group theory in detail Suitable for a two-semester course with numerous worked examples and problems Includes several topics often omitted from introductory texts, such as rotation group, space groups and spinor bases

  12. Framework Application for Core Edge Transport Simulation (FACETS)

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, Sergei; Pigarov, Alexander

    2011-10-15

    The FACETS (Framework Application for Core-Edge Transport Simulations) project of Scientific Discovery through Advanced Computing (SciDAC) Program was aimed at providing a high-fidelity whole-tokamak modeling for the U.S. magnetic fusion energy program and ITER through coupling separate components for each of the core region, edge region, and wall, with realistic plasma particles and power sources and turbulent transport simulation. The project also aimed at developing advanced numerical algorithms, efficient implicit coupling methods, and software tools utilizing the leadership class computing facilities under Advanced Scientific Computing Research (ASCR). The FACETS project was conducted by a multi-discipline, multi-institutional teams, the Lead PI was J.R. Cary (Tech-X Corp.). In the FACETS project, the Applied Plasma Theory Group at the MAE Department of UCSD developed the Wall and Plasma-Surface Interaction (WALLPSI) module, performed its validation against experimental data, and integrated it into the developed framework. WALLPSI is a one-dimensional, coarse grained, reaction/advection/diffusion code applied to each material boundary cell in the common modeling domain for a tokamak. It incorporates an advanced model for plasma particle transport and retention in the solid matter of plasma facing components, simulation of plasma heat power load handling, calculation of erosion/deposition, and simulation of synergistic effects in strong plasma-wall coupling.

  13. Biological applications of zinc imidazole framework through protein encapsulation

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    2015-12-01

    Full Text Available Abstract The robustness of biomolecules is always a significant challenge in the application of biostorage in biotechnology or pharmaceutical research. To learn more about biostorage in porous materials, we investigated the feasibility of using zeolite imidazolate framework (ZIF-8 with respect to protein encapsulation. Here, bovine serum albumin (BSA was selected as a model protein for encapsulation with the synthesis of ZIF-8 using water as a media. ZIF-8 exhibited excellent protein adsorption capacity through successive adsorption of free BSA with the formation of hollow crystals. The loading of protein in ZIF-8 crystals is affected by the molecular weight due to diffusion-limited permeation inside the crystals and also by the affinity of the protein to the pendent group on the ZIF-8 surface. The polar nature of BSA not only supported adsorption on the solid surface, but also enhanced the affinity of crystal spheres through weak coordination interactions with the ZIF-8 framework. The novel approach tested in this study was therefore successful in achieving protein encapsulation with porous, biocompatible, and decomposable microcrystalline ZIF-8. The presence of both BSA and FITC–BSA in ZIF-8 was confirmed consistently by spectroscopy as well as optical and electron microscopy.

  14. The Application of Architecture Frameworks to Modelling Exploration Operations Costs

    Science.gov (United States)

    Shishko, Robert

    2006-01-01

    Developments in architectural frameworks and system-of-systems thinking have provided useful constructs for systems engineering. DoDAF concepts, language, and formalisms, in particular, provide a natural way of conceptualizing an operations cost model applicable to NASA's space exploration vision. Not all DoDAF products have meaning or apply to a DoDAF inspired operations cost model, but this paper describes how such DoDAF concepts as nodes, systems, and operational activities relate to the development of a model to estimate exploration operations costs. The paper discusses the specific implementation to the Mission Operations Directorate (MOD) operational functions/activities currently being developed and presents an overview of how this powerful representation can apply to robotic space missions as well.

  15. Coupling between a multi-physics workflow engine and an optimization framework

    Science.gov (United States)

    Di Gallo, L.; Reux, C.; Imbeaux, F.; Artaud, J.-F.; Owsiak, M.; Saoutic, B.; Aiello, G.; Bernardi, P.; Ciraolo, G.; Bucalossi, J.; Duchateau, J.-L.; Fausser, C.; Galassi, D.; Hertout, P.; Jaboulay, J.-C.; Li-Puma, A.; Zani, L.

    2016-03-01

    A generic coupling method between a multi-physics workflow engine and an optimization framework is presented in this paper. The coupling architecture has been developed in order to preserve the integrity of the two frameworks. The objective is to provide the possibility to replace a framework, a workflow or an optimizer by another one without changing the whole coupling procedure or modifying the main content in each framework. The coupling is achieved by using a socket-based communication library for exchanging data between the two frameworks. Among a number of algorithms provided by optimization frameworks, Genetic Algorithms (GAs) have demonstrated their efficiency on single and multiple criteria optimization. Additionally to their robustness, GAs can handle non-valid data which may appear during the optimization. Consequently GAs work on most general cases. A parallelized framework has been developed to reduce the time spent for optimizations and evaluation of large samples. A test has shown a good scaling efficiency of this parallelized framework. This coupling method has been applied to the case of SYCOMORE (SYstem COde for MOdeling tokamak REactor) which is a system code developed in form of a modular workflow for designing magnetic fusion reactors. The coupling of SYCOMORE with the optimization platform URANIE enables design optimization along various figures of merit and constraints.

  16. Application of nanotechnologies in high energy physics

    International Nuclear Information System (INIS)

    Angelucci, R.; Corticelli, F.; Cuffiani, M.; Dallavalle, G.M.; Malferraxi, L.; Montanari, A.; Montanari, C.; Odorici, F.; Rizzoli, R.; Summonte, C.

    2003-01-01

    In the past, the progressive reduction of electronics integration scale has allowed high energy physics experiments to build particle detectors with a high number of sensitive channels and high spatial granularity, down to the micron scale. Nowadays, the increasing effort towards nanoelectronics and progresses in various fields of nanotechnologies, suggests that the time for nanodetectors is not far to come. As an example of possible application of nanotechnologies in HEP, we present results on fabrication of nanochannel matrices in anodic porous alumina as a template for preparing an array of carbon nanotubes, which we believe can be a promising building block in developing particle detectors with high spatial resolution

  17. Applications of Particle Accelerators in Medical Physics

    CERN Document Server

    Cuttone, G

    2008-01-01

    Particle accelerators are often associated to high energy or nuclear physics. As well pointed out in literature [1] if we kindly analyse the number of installation worldwide we can easily note that about 50% is mainly devoted to medical applications (radiotherapy, medical radioisotopes production, biomedical research). Particle accelerators are also playing an important indirect role considering the improvement of the technical features of medical diagnostic. In fact the use of radionuclide for advanced medical imaging is strongly increasing either in conventional radiography (CT and MRI) and also in nuclear medicine for Spect an PET imaging. In this paper role of particle accelerators for medical applications will be presented together with the main solutions applied.

  18. Ten physical applications of spectral zeta functions

    CERN Document Server

    Elizalde, Emilio

    2012-01-01

    Zeta-function regularization is a powerful method in perturbation theory, and this book is a comprehensive guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice, for example in the Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking, and non-commutative spacetime. The formulae, some of which are new, can be directly applied in creating physically meaningful, accurate numerical calculations. The book acts both as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice. Thoroughly revised, updated and expanded, this new edition includes novel, explicit formulas on the general quadratic, the Chowla-Selberg series case, an interplay with the Hadamard calculus, and also features a fresh chapter on recent cosmological applications, inclu...

  19. Irreducible projective representations and their physical applications

    Science.gov (United States)

    Yang, Jian; Liu, Zheng-Xin

    2018-01-01

    An eigenfunction method is applied to reduce the regular projective representations (Reps) of finite groups to obtain their irreducible projective Reps. Anti-unitary groups are treated specially, where the decoupled factor systems and modified Schur’s lemma are introduced. We discuss the applications of irreducible Reps in many-body physics. It is shown that in symmetry protected topological phases, geometric defects or symmetry defects may carry projective Rep of the symmetry group; while in symmetry enriched topological phases, intrinsic excitations (such as spinons or visons) may carry projective Rep of the symmetry group. We also discuss the applications of projective Reps in problems related to spectrum degeneracy, such as in search of models without sign problem in quantum Monte Carlo simulations.

  20. Physical Activity Research in Intellectual Disability: A Scoping Review Using the Behavioral Epidemiological Framework

    Science.gov (United States)

    Pitchford, E. Andrew; Dixon-Ibarra, Alicia; Hauck, Janet L.

    2018-01-01

    Through a scoping review, the current state of physical activity research in people with intellectual disability was examined. A search of publications between 2000 and 2014 retrieved 362 articles that met inclusion criteria. Eligible studies were coded according to the Behavioral Epidemiological Framework. Of the articles identified, 48% examined…

  1. Physical applications of GPS geodesy: a review.

    Science.gov (United States)

    Bock, Yehuda; Melgar, Diego

    2016-10-01

    Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.

  2. Covalent Organic Frameworks: From Materials Design to Biomedical Application

    Directory of Open Access Journals (Sweden)

    Fuli Zhao

    2017-12-01

    Full Text Available Covalent organic frameworks (COFs are newly emerged crystalline porous polymers with well-defined skeletons and nanopores mainly consisted of light-weight elements (H, B, C, N and O linked by dynamic covalent bonds. Compared with conventional materials, COFs possess some unique and attractive features, such as large surface area, pre-designable pore geometry, excellent crystallinity, inherent adaptability and high flexibility in structural and functional design, thus exhibiting great potential for various applications. Especially, their large surface area and tunable porosity and π conjugation with unique photoelectric properties will enable COFs to serve as a promising platform for drug delivery, bioimaging, biosensing and theranostic applications. In this review, we trace the evolution of COFs in terms of linkages and highlight the important issues on synthetic method, structural design, morphological control and functionalization. And then we summarize the recent advances of COFs in the biomedical and pharmaceutical sectors and conclude with a discussion of the challenges and opportunities of COFs for biomedical purposes. Although currently still at its infancy stage, COFs as an innovative source have paved a new way to meet future challenges in human healthcare and disease theranostic.

  3. Application and Limitations of Nanocasting in Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Malonzo, Camille D. [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Wang, Zhao [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Duan, Jiaxin [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Zhao, Wenyang [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Webber, Thomas E. [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Li, Zhanyong [Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States; Kim, In Soo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kumar, Anurag [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States; Bhan, Aditya [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States; Platero-Prats, Ana E. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Chapman, Karena W. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Farha, Omar K. [Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States; Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Hupp, Joseph T. [Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States; Martinson, Alex B. F. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Penn, R. Lee [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States; Stein, Andreas [Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States

    2018-02-12

    Nanocasting can be a useful strategy to transfer the catalytic metal clusters in metal-organic frameworks (MOFs) to an all-inorganic support such as silica. The incorporation of silica in the MOF pores as a secondary support has the potential to extend the application of the highly tunable metal-based active sites in MOFs to high temperature catalysis. Here, we demonstrate the applicability of the nanocasting method to a range of MOFs that incorporate catalytically attractive hexazirconium, hexacerium, or pentanickel oxide-based clusters (UiO-66, (Ce)UiO-66, (Ce)UiO-67, (Ce)MOF-808, DUT-9, and In- and Ni-post-metalated NU-1000). We describe, in tutorial form, the challenges associated with nanocasting of MOFs that are related to their small pore size and to considerations of chemical and mechanical stability, and we provide approaches to overcome some of these challenges. Some of these nanocast materials feature the site-isolated clusters in a porous, thermally stable silica matrix, suitable for catalysis at high temperatures; in others, structural rearrangement of clusters or partial cluster aggregation occurs, but extensive aggregation can be mitigated by the silica skeleton introduced during nanocasting.

  4. Radioisotope Production for Medical and Physics Applications

    Science.gov (United States)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  5. The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications

    Science.gov (United States)

    Dür, Wolfgang; Heusler, Stefan

    2016-01-01

    Using the simplest possible quantum system--the qubit--the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous "TPT" article and in a…

  6. ACER: A framework on the use of mathematics in upper-division physics

    Science.gov (United States)

    Caballero, Marcos D.; Wilcox, Bethany R.; Pepper, Rachel E.; Pollock, Steven J.

    2013-01-01

    At the University of Colorado Boulder, as part of our broader efforts to transform middle- and upper-division physics courses, we research students' difficulties with particular concepts, methods, and tools in classical mechanics, electromagnetism, and quantum mechanics. Unsurprisingly, a number of difficulties are related to students' use of mathematical tools (e.g., approximation methods). Previous work has documented a number of challenges that students must overcome to use mathematical tools fluently in introductory physics (e.g., mapping meaning onto mathematical symbols). We have developed a theoretical framework to facilitate connecting students' difficulties to challenges with specific mathematical and physical concepts. In this paper, we motivate the need for this framework and demonstrate its utility for both researchers and course instructors by applying it to frame results from interview data on students' use of Taylor approximations.

  7. Auditing the Physical Activity and Parkinson Disease Literature Using the Behavioral Epidemiologic Framework.

    Science.gov (United States)

    Swank, Chad; Shearin, Staci; Cleveland, Samantha; Driver, Simon

    2017-06-01

    Motor and nonmotor symptoms associated with Parkinson disease place individuals at greater risk of sedentary behaviors and comorbidities. Physical activity is one modifiable means of improving health and reducing the risk of morbidity. We applied a behavioral framework to classify existing research on physical activity and Parkinson disease to describe the current evolution and inform knowledge gaps in this area. Research placed in phase 1 establishes links between physical activity and health-related outcomes; phase 2 develops approaches to quantify physical activity behavior; phase 3 identifies factors associated with implementation of physical activity behaviors; phase 4 assesses the effectiveness of interventions to promote activity; and phase 5 disseminates evidence-based recommendations. Peer-reviewed literature was identified by searching PubMed, Google Scholar, and EBSCO-host. We initially identified 287 potential articles. After further review, we excluded 109 articles, leaving 178 included articles. Of these, 75.84% were categorized into phase 1 (n = 135), 10.11% in phase 2 (n = 18), 9.55% into phase 3 (n = 17), 3.37% into phase 4 (n = 6), and 1.12% into phase 5 (n = 2). By applying the behavioral framework to the physical activity literature for people with Parkinson disease, we suggest this area of research is nascent with more than 75% of the literature in phase 1. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. The Extended Likeability Framework: A Theoretical Framework for and a Practical Case of Designing Likeable Media Applications for Preschoolers

    Directory of Open Access Journals (Sweden)

    Vero vanden Abeele

    2008-01-01

    Full Text Available A theoretical framework and practical case for designing likeable interactive media applications for preschoolers in the home environment are introduced. First, we elaborate on the theoretical framework. We introduce the uses and gratifications paradigm (U&G. We argue that U&G is a good approach to researching likeability of media applications. Next, we complete the U&G framework with expectancy-value (EV theory. EV theory helps us move from theoretical insights to concrete design guidelines. Together, the U&G framework and the EV model form the foundation of our extended likeability framework for the design and evaluation of interactive media applications, for preschoolers in the home environment. Finally, we demonstrate a practical case of our extended likeability framework via the research project CuTI. The CuTI project aims at revealing those particular user gratifications and design attributes that are important to support playful behaviour and fun activities of preschoolers in the home environment.

  9. A Global Sensitivity Analysis Methodology for Multi-physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tong, C H; Graziani, F R

    2007-02-02

    Experiments are conducted to draw inferences about an entire ensemble based on a selected number of observations. This applies to both physical experiments as well as computer experiments, the latter of which are performed by running the simulation models at different input configurations and analyzing the output responses. Computer experiments are instrumental in enabling model analyses such as uncertainty quantification and sensitivity analysis. This report focuses on a global sensitivity analysis methodology that relies on a divide-and-conquer strategy and uses intelligent computer experiments. The objective is to assess qualitatively and/or quantitatively how the variabilities of simulation output responses can be accounted for by input variabilities. We address global sensitivity analysis in three aspects: methodology, sampling/analysis strategies, and an implementation framework. The methodology consists of three major steps: (1) construct credible input ranges; (2) perform a parameter screening study; and (3) perform a quantitative sensitivity analysis on a reduced set of parameters. Once identified, research effort should be directed to the most sensitive parameters to reduce their uncertainty bounds. This process is repeated with tightened uncertainty bounds for the sensitive parameters until the output uncertainties become acceptable. To accommodate the needs of multi-physics application, this methodology should be recursively applied to individual physics modules. The methodology is also distinguished by an efficient technique for computing parameter interactions. Details for each step will be given using simple examples. Numerical results on large scale multi-physics applications will be available in another report. Computational techniques targeted for this methodology have been implemented in a software package called PSUADE.

  10. CMS Partial Releases Model, Tools, and Applications. Online and Framework-Light Releases

    CERN Document Server

    Jones, Christopher D; Meschi, Emilio; Shahzad Muzaffar; Andreas Pfeiffer; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth

    2009-01-01

    The CMS Software project CMSSW embraces more than a thousand packages organized in subsystems for analysis, event display, reconstruction, simulation, detector description, data formats, framework, utilities and tools. The release integration process is highly automated by using tools developed or adopted by CMS. Packaging in rpm format is a built-in step in the software build process. For several well-defined applications it is highly desirable to have only a subset of the CMSSW full package bundle. For example, High Level Trigger algorithms that run on the Online farm, and need to be rebuilt in a special way, require no simulation, event display, or analysis packages. Physics analysis applications in Root environment require only a few core libraries and the description of CMS specific data formats. We present a model of CMS Partial Releases, used for preparation of the customized CMS software builds, including description of the tools used, the implementation, and how we deal with technical challenges, suc...

  11. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.

    Science.gov (United States)

    Islamoglu, Timur; Goswami, Subhadip; Li, Zhanyong; Howarth, Ashlee J; Farha, Omar K; Hupp, Joseph T

    2017-04-18

    Metal-organic frameworks (MOFs) are periodic, hybrid, atomically well-defined porous materials that typically form by self-assembly and consist of inorganic nodes (metal ions or clusters) and multitopic organic linkers. MOFs as a whole offer many intriguing properties, including ultrahigh porosity, tunable chemical functionality, and low density. These properties point to numerous potential applications, including gas storage, chemical separations, catalysis, light harvesting, and chemical sensing, to name a few. Reticular chemistry, or the linking of molecular building blocks into predetermined network structures, has been employed to synthesize thousands of MOFs. Given the vast library of candidate nodes and linkers, the number of potentially synthetically accessible MOFs is enormous. Nevertheless, a powerful complementary approach to obtain specific structures with desired chemical functionality is to modify known MOFs after synthesis. This approach is particularly useful when incorporation of particular chemical functionalities via direct synthesis is challenging or impossible. The challenges may stem from limited stability or solubility of precursors, unwanted secondary reactivity of precursors, or incompatibility of functional groups with the conditions needed for direct synthesis. MOFs can be postsynthetically modified by replacing the metal nodes and/or organic linkers or via functionalization of the metal nodes and/or organic linkers. Here we describe some of our efforts toward the development and application of postsynthetic strategies for imparting desired chemical functionalities in MOFs of known topology. The techniques include methods for functionalizing MOF nodes, i.e., solvent-assisted ligand incorporation (SALI) and atomic layer deposition in MOFs (AIM) as well as a method to replace structural linkers, termed solvent-assisted linker exchange (SALE), also known as postsynthethic exchange (PSE). For each functionalization strategy, we first describe

  12. Osteoarthritis, Application of Physical Therapy Proceduers

    Directory of Open Access Journals (Sweden)

    Dijana Avdić

    2008-08-01

    Full Text Available Osteoarthritis (OA is a group of overlapping disorders, which may have different aetiology but similar biological, morphologic and clinical outcome. In osteoarthritis, process will not encompass the joint cartilage only, but the entire joint, including sub-hondral bone, ligaments, capsule, and sinovial membrane and surrounding muscles. Osteoarthritis is a multi-factor disorder of sinovial joints, which occurs as result of mechanical and biological factors, which destabilise normal hondrocyte function, partitioning of cartilage, extra-cellular matrix and sub-hondral bone. The earliest changes, which are restricted to the joint cartilage surface only, do not cause any subjective feeling. The pain in arthrosis occurs (or re-occurs a bit later, Diagnosis will be determined based on clinical exam as well as signs and symptoms present. Symptomatic and functional treatment of osteoarthritis as one of rheumatic disorders must be taken throughout years, sometimes throughout a lifetime. It encompasses application of many medications and physical therapy procedures.

  13. The Safety Assessment Framework Tool (SAFRAN) - Description, Overview and Applicability

    International Nuclear Information System (INIS)

    Alujevic, Luka

    2014-01-01

    The SAFRAN tool (Safety Assessment Framework) is a user-friendly software application that incorporates the methodologies developed in the SADRWMS (Safety Assessment Driven Radioactive Waste Management Solutions) project. The International Atomic Energy Agency (IAEA) organized the International Project on Safety Assessment Driving Radioactive Waste Management Solutions (SADRWMS) to examine international approaches to safety assessment for predisposal management of all types of radioactive waste, including disused sources, small volumes, legacy and decommissioning waste, operational waste, and large volume naturally occurring radioactive material residues. SAFRAN provides aid in: Describing the predisposal RW management activities in a systematic way, Conducting the SA (safety assessment) with clear documentation of the methodology, assumptions, input data and models, Establishing a traceable and transparent record of the safety basis for decisions on the proposed RW management solutions, Demonstrating clear consideration of and compliance with national and international safety standards and recommendations. The SAFRAN tool allows the user to visibly, systematically and logically address predisposal radioactive waste management and decommissioning challenges in a structured way. It also records the decisions taken in such a way that it constitutes a justifiable safety assessment of the proposed management solutions. The objective of this paper is to describe the SAFRAN architecture and features, properly define the terms safety case and safety assessment, and to predict the future development of the SAFRAN tool and assess its applicability to the construction of a future LILW (Low and Intermediate Level Waste) storage facility and repository in Croatia, taking into account all the capabilities and modelling features of the SAFRAN tool. (author)

  14. Electrocatalytic Metal-Organic Frameworks for Energy Applications.

    Science.gov (United States)

    Downes, Courtney A; Marinescu, Smaranda C

    2017-11-23

    With the global energy demand expected to increase drastically over the next several decades, the development of a sustainable energy system to meet this increase is paramount. Renewable energy sources can be coupled with electrochemical conversion processes to store energy in chemical bonds. To promote these difficult transformations, electrocatalysts that operate at high conversion rates and efficiency are required. Metal-organic frameworks (MOFs) have emerged as a promising class of materials; however, the insulating nature of MOFs has limited their application as electrocatalysts. The recent development of conductive MOFs has led to several electrocatalytic MOFs that display activity comparable to that of the best-performing heterogeneous catalysts. Although many electrocatalytic MOFs exhibit low activity and stability, the few successful examples highlight the possibility of MOF electrocatalysts as replacements for noble-metal-based catalysts in commercial energy-converting devices. We review herein the use of pristine MOFs as electrocatalysts to facilitate important energy-related reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Medical physics. The application of physics to medicine

    International Nuclear Information System (INIS)

    Ka Weibo

    2002-01-01

    Physics has been applied to medicine for several hundred years, and has greatly spurred the development of medical science. Two important examples are medical imaging and radiation oncology. A review of the state-of-the-art of these two fields is presented for physicists. The combination of physics and medicine has not only provided advanced techniques for clinical diagnosis and treatment but has also advanced physics itself

  16. The Habitability Framework: Linking Human Behavior and Physical Environment in Special Education.

    Science.gov (United States)

    Preiser, Wolfgang F. E.; Taylor, Anne

    1983-01-01

    The concept of environmental design cybernetics is explained, and its use by special educators and architects in creating learning environments is discussed. A proposed habitability framework is defined, and its applications to buildings and building occupants/users are offered. Research on architectural design applied to special education…

  17. TIMSS Advanced 2015 and Advanced Placement Calculus & Physics. A Framework Analysis. Research in Review 2016-1

    Science.gov (United States)

    Lazzaro, Christopher; Jones, Lee; Webb, David C.; Grover, Ryan; Di Giacomo, F. Tony; Marino, Katherine Adele

    2016-01-01

    This report will determine to what degree the AP Physics 1 and 2 and AP Calculus AB and BC frameworks are aligned with the Trends in International Mathematics and Science Study (TIMSS) Advanced Physics and Mathematics frameworks. This will enable an exploration of any differences in content coverage and levels of complexity, and will set the stage…

  18. A Survey and Analysis of Frameworks and Framework Issues for Information Fusion Applications

    Science.gov (United States)

    Llinas, James

    This paper was stimulated by the proposed project for the Santander Bank-sponsored "Chairs of Excellence" program in Spain, of which the author is a recipient. That project involves research on characterizing a robust, problem-domain-agnostic framework in which Information Fusion (IF) processes of all description, to include artificial intelligence processes and techniques could be developed. The paper describes the IF process and its requirements, a literature survey on IF frameworks, and a new proposed framework that will be implemented and evaluated at Universidad Carlos III de Madrid, Colmenarejo Campus.

  19. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef

    2016-03-30

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  20. Low concentration CO2 capture using physical adsorbents: Are Metal-Organic Frameworks becoming the new benchmark materials?

    KAUST Repository

    Belmabkhout, Youssef; Guillerm, Vincent; Eddaoudi, Mohamed

    2016-01-01

    The capture and separation of traces and concentrated CO2 from important commodities such as CH4, H2, O2 and N2, is becoming important in many areas related to energy security and environmental sustainability. While trace CO2 concentration removal applications have been modestly studied for decades, the spike in interest in the capture of concentrated CO2 was motivated by the need for new energy vectors to replace highly concentrated carbon fuels and the necessity to reduce emissions from fossil fuel-fired power plants. CO2 capture from various gas streams, at different concentrations, using physical adsorbents, such as activated carbon, zeolites, and metal-organic frameworks (MOFs), is attractive. However, the adsorbents must be designed with consideration of many parameters including CO2 affinity, kinetics, energetics, stability, capture mechanism, in addition to cost. Here, we perform a systematic analysis regarding the key technical parameters that are required for the best CO2 capture performance using physical adsorbents. We also experimentally demonstrate a suitable material model of Metal Organic Framework as advanced adsorbents with unprecedented properties for CO2 capture in a wide range of CO2 concentration. These recently developed class of MOF adsorbents represent a breakthrough finding in the removal of traces CO2 using physical adsorption. This platform shows colossal tuning potential for more efficient separation agents.

  1. LAMMPS Framework for Dynamic Bonding and an Application Modeling DNA

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework....

  2. Resource Based Multi Agent Plan Merging : Framework and application

    NARCIS (Netherlands)

    De Weerdt, M.M.; Van der Krogt, R.P.J.; Witteveen, C.

    2003-01-01

    We discuss a resource-based planning framework where agents are able to merge plans by exchanging resources. In this framework, plans are specified as structured objects composed of resource consuming and resource producing processes (actions). A plan itself can also be conceived as a process

  3. Physics through the 1990s: Scientific interfaces and technological applications

    International Nuclear Information System (INIS)

    1986-01-01

    Physics traditionally serves mankind through its fundamental discoveries, which enrich our understanding of nature and the cosmos. While the basic driving force for physics research is intellectual curiosity and the search for understanding, the nation's support for physics is also motivated by strategic national goals, by the pride of world scientific leadership, by societal impact through symbiosis with other natural sciences, and through the stimulus of advanced technology provided by applications of physics. This Physics Survey volume looks outward from physics to report its profound impact on society and the economy through interactions at the interfaces with other natural sciences and through applications of physics to technology, medicine, and national defense

  4. Fundamental properties of fracture and seismicity in a non extensive statistical physics framework.

    Science.gov (United States)

    Vallianatos, Filippos

    2010-05-01

    A fundamental challenge in many scientific disciplines concerns upscaling, that is, of determining the regularities and laws of evolution at some large scale, from those known at a lower scale. Earthquake physics is no exception, with the challenge of understanding the transition from the laboratory scale to the scale of fault networks and large earthquakes. In this context, statistical physics has a remarkably successful work record in addressing the upscaling problem in physics. It is natural then to consider that the physics of many earthquakes has to be studied with a different approach than the physics of one earthquake and in this sense we can consider the use of statistical physics not only appropriate but necessary to understand the collective properties of earthquakes [see Corral 2004, 2005a,b,c;]. A significant attempt is given in a series of works [Main 1996; Rundle et al., 1997; Main et al., 2000; Main and Al-Kindy, 2002; Rundle et al., 2003; Vallianatos and Triantis, 2008a] that uses classical statistical physics to describe seismicity. Then a natural question arises. What type of statistical physics is appropriate to commonly describe effects from fracture level to seismicity scale?? The application of non extensive statistical physics offers a consistent theoretical framework, based on a generalization of entropy, to analyze the behavior of natural systems with fractal or multi-fractal distribution of their elements. Such natural systems where long - range interactions or intermittency are important, lead to power law behavior. We note that this is consistent with a classical thermodynamic approach to natural systems that rapidly attain equilibrium, leading to exponential-law behavior. In the frame of non extensive statistical physics approach, the probability function p(X) is calculated using the maximum entropy formulation of Tsallis entropy which involves the introduction of at least two constraints (Tsallis et al., 1998). The first one is the

  5. Toward University Modeling Instruction—Biology: Adapting Curricular Frameworks from Physics to Biology

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence. PMID:23737628

  6. Toward university modeling instruction--biology: adapting curricular frameworks from physics to biology.

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-06-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.

  7. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  8. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, H.; Ipsen, John Hjort; Markvorsen, S

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes axe examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  9. Linked Data Reactor: a Framework for Building Reactive Linked Data Applications

    NARCIS (Netherlands)

    Khalili, Ali

    2016-01-01

    This paper presents Linked Data Reactor (LD-Reactor or LD-R) as a framework for developing exible and reusable User Interface components for Linked Data applications. LD-Reactor utilizes Facebook's ReactJS components, Flux architecture and Yahoo's Fluxible framework for isomorphic Web applications.

  10. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    Science.gov (United States)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  11. An Application of a Game Development Framework in Higher Education

    Directory of Open Access Journals (Sweden)

    Alf Inge Wang

    2009-01-01

    Full Text Available This paper describes how a game development framework was used as a learning aid in a software engineering. Games can be used within higher education in various ways to promote student participation, enable variation in how lectures are taught, and improve student interest. In this paper, we describe a case study at the Norwegian University of Science and Technology (NTNU where a game development framework was applied to make students learn software architecture by developing a computer game. We provide a model for how game development frameworks can be integrated with a software engineering or computer science course. We describe important requirements to consider when choosing a game development framework for a course and an evaluation of four frameworks based on these requirements. Further, we describe some extensions we made to the existing game development framework to let the students focus more on software architectural issues than the technical implementation issues. Finally, we describe a case study of how a game development framework was integrated in a software architecture course and the experiences from doing so.

  12. ROMANIAN AERONAUTICAL METEOROLOGY APPLICABLE LEGAL FRAMEWORK –BRIEFING

    Directory of Open Access Journals (Sweden)

    CATALIN POPA

    2012-05-01

    Full Text Available The purpose of this briefing is toprovide an overview of the aeronautical meteorology legal framework in Romania. In this context, the role and importance of aeronautical meteorology in international air traffic management will be underlined, with focus on the civil aviation activity in Romania. The international legal framework and modalities of implementing these rules at national level will constitute a significant part of the present study., Specific accent will be put on the national regulatory framework and structure, means of updating it, and how it responds to changing regulatory requirements.

  13. Physically unclonable functions constructions, properties and applications

    CERN Document Server

    Maes, Roel

    2013-01-01

    Physically unclonable functions (PUFs) are innovative physical security primitives that produce unclonable and inherent instance-specific measurements of physical objects; in many ways they are the inanimate equivalent of biometrics for human beings. Since they are able to securely generate and store secrets, they allow us to bootstrap the physical implementation of an information security system. In this book the author discusses PUFs in all their facets: the multitude of their physical constructions, the algorithmic and physical properties which describe them, and the techniques required to

  14. Conceptual Framework for Physical Protection Against Sabotage Considering Plant-specific Radiological Consequences

    International Nuclear Information System (INIS)

    Lee, Joung Hoon; Yu, Dong Han

    2010-01-01

    According to the Generation IV (Gen IV) Technology Roadmap, Gen IV nuclear energy systems (NESs) should highlight proliferation resistance and physical protection (PR and PP) as one of the four goals along with sustainability, safety and reliability, and economics. Especially, physical protection (PP) is the typical important characteristic of an NES that impedes the theft of materials suitable for nuclear explosives or radiation dispersal devices (RDD) and the sabotage of facilities and transportation by subnation entities and other non-Host State adversaries. These two subjects have been studied separately. Proliferation is commonly considered as an international concern and the past work on the PR assessments can be found. On the other hands, PP is regarded as a State security concern, much of which is classified and facility-dependent. Recently, more concern has been focused on the PP design and regulation because of rapid environment changes including radiological consequences by internal sabotage and nuclear terrorism by RDDs. The current PP Regulation has been applied intensively to the existing nuclear facilities and could be a possible guidance for the future GEN-IV NESs. This paper first reviews the IAEA guide document, INFCIRC/225, which was accepted as the standard international guideline in the physical protection area. It has been updated several times up to now, and is undergoing another revision. The paper introduces current substantial changes in the document regarding PP including the national nuclear security and sabotage in the nuclear facilities. Then, it presents a conceptual framework for physical protection against sabotage considering plant-specific radiological consequence after malicious acts within certain vital areas. The framework combines the newly developed method of vital area identification, the current PSA level 2 works, and physical protection concepts. This would help to improve a design concept of new physical protection

  15. Conceptual Framework for Physical Protection Against Sabotage Considering Plant-specific Radiological Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joung Hoon; Yu, Dong Han [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2010-10-15

    According to the Generation IV (Gen IV) Technology Roadmap, Gen IV nuclear energy systems (NESs) should highlight proliferation resistance and physical protection (PR and PP) as one of the four goals along with sustainability, safety and reliability, and economics. Especially, physical protection (PP) is the typical important characteristic of an NES that impedes the theft of materials suitable for nuclear explosives or radiation dispersal devices (RDD) and the sabotage of facilities and transportation by subnation entities and other non-Host State adversaries. These two subjects have been studied separately. Proliferation is commonly considered as an international concern and the past work on the PR assessments can be found. On the other hands, PP is regarded as a State security concern, much of which is classified and facility-dependent. Recently, more concern has been focused on the PP design and regulation because of rapid environment changes including radiological consequences by internal sabotage and nuclear terrorism by RDDs. The current PP Regulation has been applied intensively to the existing nuclear facilities and could be a possible guidance for the future GEN-IV NESs. This paper first reviews the IAEA guide document, INFCIRC/225, which was accepted as the standard international guideline in the physical protection area. It has been updated several times up to now, and is undergoing another revision. The paper introduces current substantial changes in the document regarding PP including the national nuclear security and sabotage in the nuclear facilities. Then, it presents a conceptual framework for physical protection against sabotage considering plant-specific radiological consequence after malicious acts within certain vital areas. The framework combines the newly developed method of vital area identification, the current PSA level 2 works, and physical protection concepts. This would help to improve a design concept of new physical protection

  16. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun; Xue, Ming; Zhu, Guangshan

    2014-01-01

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new

  17. A Framework for PSS Business Models: Formalization and Application

    OpenAIRE

    Adrodegari, Federico; Saccani, Nicola; Kowalkowski, Christian

    2016-01-01

    In order to successfully move "from products to solutions", companies need to redesign their business model. Nevertheless, service oriented BMs in product-centric firms are under-investigated in the literature: very few works develop a scheme of analysis of such BMs. To provide a first step into closing this gap, we propose a new framework to describe service-oriented BMs, pointing out the main BM components and related PSS characteristics. Thus, the proposed framework aims to help companies ...

  18. Application of dematel method in integrated framework of corporate governance

    OpenAIRE

    Klozíková, Jana; Dočkalíková, Iveta

    2015-01-01

    Corporate governance was created in recent decades and we can say that it is a new field of science. The most famous companies failed from day to day. Their failure and scandals had significant impact on local and international community. Finding of a new effective framework of level of corporate governance can help that the similar negative events wouldn't be repeated never again. The new approach in the corporate governance - an integrated framework, created for corporate governance is one ...

  19. An object-oriented framework for application development and integration in hydroinformatics

    Energy Technology Data Exchange (ETDEWEB)

    Alfredsen, Knut Tore

    1999-03-01

    interface to a framework component or by developing classes after a predefined structure that allows insertion into the main components of the framework. The developed framework can be used directly or it can be used as a foundation for further developments. The use of the framework is illustrated by its application to two development projects. After the large 1995 flood in the River Glomma it was decided to start a project to study how human development in the catchment have affected the flood levels. Based on the requirement specification made in a project called HYDRA, the framework was selected as the integration platform in this project. Through the classes in the framework a model of the river system is built and a different process models are connected, both as external and internal methods. These are then used to analyse different aspects of human encroachments, and an example showing how the hydropower system affects flood levels is described in this thesis. The second application example is the redesign of the physical habitat simulation system (HABITAT). This is an existing modelling system to quantify impacts of river regulations on the available fish habitat. New developments in hydraulic modelling and biological assessment outdated the existing version and a new program was required. The habitat modelling framework was built on top of the general framework. This was used to develop the new HABITAT and through the framework structure it is ensured that future developments would easily integrate into the habitat modelling system. The new version of the model contains several new options, such as links to two- and three-dimensional hydraulics, use of spatial metrics for assessment of the physical habitat, improved tools to study temporal habitat variation and a bio energetic habitat model. Research in information science provides new methodology and tools that are useful additions to the hydro informatics system. Permanent storage of objects and data can be a

  20. Progress report for FACETS (Framework Application for Core-Edge Transport Simulations): C.S. SAP

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, T W

    2008-10-01

    The mission of the Computer Science Scientific Application Partnership (C.S. SAP) at LLNL is to develop and apply leading-edge scientific component technology to FACETS software. Contributions from LLNL's fusion energy program staff towards the underlying physics modules are described in a separate report. FACETS uses component technology to combine selectively multiple physics and solver software modules written in different languages by different institutions together in an tightly-integrated, parallel computing framework for Tokamak reactor modeling. In the past fiscal year, the C.S. SAP has focused on two primary tasks: applying Babel to connect UEDGE into the FACETS framework through UEDGE's existing Python interface and developing a next generation componentization strategy for UEDGE which avoids the use of Python. The FACETS project uses Babel to solve its language interoperability challenges. Specific accomplishments for the year include: (1) Refined SIDL interfaces for UEDGE to meet satisfy the standard interfaces required by FACETS for all physics modules. This required consensus building between framework and UEDGE developers. (2) Wrote prototype C++ driver for UEDGE to demonstrate how UEDGE can be called from C++ using Babel. (3) Supported the FACETS project by adding new features to Babel such as release number tagging, porting to new machines, and adding new configuration options. Babel modifications were delivered to FACETS by testing and publishing development snapshots in the projects software repository. (4) Assisted Tech-X Corporation in testing and debugging of a high level build system for the complete FACETS tool chain--the complete list of third-party software libraries that FACETS depends on directly or indirectly (e.g., MPI, HDF5, PACT, etc.). (5) Designed and implemented a new approach to wrapping UEDGE as a FACETS component without requiring Python. To get simulation results as soon as possible, our initial connection from the

  1. Progress report for FACETS (Framework Application for Core-Edge Transport Simulations): C.S. SAP

    International Nuclear Information System (INIS)

    Epperly, T.W.

    2008-01-01

    The mission of the Computer Science Scientific Application Partnership (C.S. SAP) at LLNL is to develop and apply leading-edge scientific component technology to FACETS software. Contributions from LLNL's fusion energy program staff towards the underlying physics modules are described in a separate report. FACETS uses component technology to combine selectively multiple physics and solver software modules written in different languages by different institutions together in an tightly-integrated, parallel computing framework for Tokamak reactor modeling. In the past fiscal year, the C.S. SAP has focused on two primary tasks: applying Babel to connect UEDGE into the FACETS framework through UEDGE's existing Python interface and developing a next generation componentization strategy for UEDGE which avoids the use of Python. The FACETS project uses Babel to solve its language interoperability challenges. Specific accomplishments for the year include: (1) Refined SIDL interfaces for UEDGE to meet satisfy the standard interfaces required by FACETS for all physics modules. This required consensus building between framework and UEDGE developers. (2) Wrote prototype C++ driver for UEDGE to demonstrate how UEDGE can be called from C++ using Babel. (3) Supported the FACETS project by adding new features to Babel such as release number tagging, porting to new machines, and adding new configuration options. Babel modifications were delivered to FACETS by testing and publishing development snapshots in the projects software repository. (4) Assisted Tech-X Corporation in testing and debugging of a high level build system for the complete FACETS tool chain--the complete list of third-party software libraries that FACETS depends on directly or indirectly (e.g., MPI, HDF5, PACT, etc.). (5) Designed and implemented a new approach to wrapping UEDGE as a FACETS component without requiring Python. To get simulation results as soon as possible, our initial connection from the FACETS

  2. Framework and implementation for improving physics essential skills via computer-based practice: Vector math

    Science.gov (United States)

    Mikula, Brendon D.; Heckler, Andrew F.

    2017-06-01

    We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with a careful identification of target skills and the study of specific student difficulties with these skills. It then employs computer-based instruction, immediate feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved training sequences and distributed practice. We implemented this with more than 1500 students over 2 semesters. Students completed the mastery practice for an average of about 13 min /week , for a total of about 2-3 h for the whole semester. Results reveal large (>1 SD ) pretest to post-test gains in accuracy in vector skills, even compared to a control group, and these gains were retained at least 2 months after practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that simple computer-based mastery practice is an effective and efficient way to improve a set of basic and essential skills for introductory physics.

  3. Dance for Parkinson's: a new framework for research on its physical, mental, emotional, and social benefits.

    Science.gov (United States)

    McGill, Ashley; Houston, Sara; Lee, Raymond Y W

    2014-06-01

    Parkinson's is a neurodegenerative disease commonly associated with symptoms such as tremor, rigidity, bradykinesia, freezing during gait, motor control deficits and instability. These physical symptoms can cause a myriad of psychological problems including depression, feelings of loneliness, and low self-esteem. Current research suggests pharmacological interventions do not sufficiently address all symptoms and thus alternative therapies have been deemed an important part of treatment for people with Parkinson's. Dance has shown to be a beneficial activity for this population. Upon reviewing recent dance for Parkinson's studies it is clear that there are developing trends with respect to overall approach. The tendency to place more emphasis on changes to clinical signs is creating a gap whereby research neglects to look at how dance is influencing a particular individual in all aspects of their life. There is a need for a framework that allows for and encourages the analysis of the dancing experience for people with Parkinson's on a variety of levels including physically, mentally, emotionally, and socially. With such a framework it would be possible to triangulate the information gathered to draw stronger conclusions that are more meaningful to the people with Parkinson's. This paper would like to propose the use of the World Health Organization's International Classification of Functioning, Disability, and Health as a possible framework for dance for Parkinson's research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Validity of instruments to measure physical activity may be questionable due to a lack of conceptual frameworks: a systematic review

    Science.gov (United States)

    2011-01-01

    Background Guidance documents for the development and validation of patient-reported outcomes (PROs) advise the use of conceptual frameworks, which outline the structure of the concept that a PRO aims to measure. It is unknown whether currently available PROs are based on conceptual frameworks. This study, which was limited to a specific case, had the following aims: (i) to identify conceptual frameworks of physical activity in chronic respiratory patients or similar populations (chronic heart disease patients or the elderly) and (ii) to assess whether the development and validation of PROs to measure physical activity in these populations were based on a conceptual framework of physical activity. Methods Two systematic reviews were conducted through searches of the Medline, Embase, PsycINFO, and Cinahl databases prior to January 2010. Results In the first review, only 2 out of 581 references pertaining to physical activity in the defined populations provided a conceptual framework of physical activity in COPD patients. In the second review, out of 103 studies developing PROs to measure physical activity or related constructs, none were based on a conceptual framework of physical activity. Conclusions These findings raise concerns about how the large body of evidence from studies that use physical activity PRO instruments should be evaluated by health care providers, guideline developers, and regulatory agencies. PMID:21967887

  5. A Model-Based Approach for Bridging Virtual and Physical Sensor Nodes in a Hybrid Simulation Framework

    Directory of Open Access Journals (Sweden)

    Mohammad Mozumdar

    2014-06-01

    Full Text Available The Model Based Design (MBD approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL simulation.

  6. A Source-level Energy Optimization Framework for Mobile Applications

    DEFF Research Database (Denmark)

    Li, Xueliang; Gallagher, John Patrick

    2016-01-01

    strategies. The framework also lays a foundation for the code optimization by automatic tools. To the best of our knowledge, our work is the first that achieves this for a high-level language such as Java. In a case study, the experimental evaluation shows that our approach is able to save from 6.4% to 50...... process. The source code is the interface between the developer and hardware resources. In this paper, we propose an energy optimization framework guided by a source code energy model that allows developers to be aware of energy usage induced by the code and to apply very targeted source-level refactoring...

  7. Statistical and thermal physics with computer applications

    CERN Document Server

    Gould, Harvey

    2010-01-01

    This textbook carefully develops the main ideas and techniques of statistical and thermal physics and is intended for upper-level undergraduate courses. The authors each have more than thirty years' experience in teaching, curriculum development, and research in statistical and computational physics. Statistical and Thermal Physics begins with a qualitative discussion of the relation between the macroscopic and microscopic worlds and incorporates computer simulations throughout the book to provide concrete examples of important conceptual ideas. Unlike many contemporary texts on the

  8. Photodegradation of polymers physical characteristics and applications

    CERN Document Server

    Rabek, Jan F

    1996-01-01

    In this book on physical characteristics and practical aspects of polymer photodegradation Rabek emphasizes the experimental work on the subject. The most important feature of the book is the physical interpretation of polymer degradation, e.g. mechanism of UV/light absorption, formation of excited states, energy transfer mechanism, kinetics, dependence on physical properties of macromolecules and polymer matrices, formation of mechanical defects, practics during environmental ageing. He includes also some aspects of polymer photodegradation in environmental and space condition.

  9. Getting started with Spring Framework a hands-on guide to begin developing applications using Spring Framework

    CERN Document Server

    Sharma, J

    2016-01-01

    Getting started with Spring Framework is a hands-on guide to begin developing applications using Spring Framework. The examples (consisting of 74 sample projects) that accompany this book are based on Spring 4.3 and Java 8. You can download the examples described in this book from the following GitHub project:github.com/getting-started-with-spring/3rdEdition This book is meant for Java developers with little or no knowledge of Spring Framework. Getting started with Spring Framework, Third Edition has been updated to reflect changes in Spring 4.3 and also includes new chapters on Java-based configuration and Spring Data (covers Spring Data JPA and Spring Data MongoDB projects). The existing chapters have been revised to include information on Java-based configuration. The book also includes some new information on bean definition profiles, importing application context XML files, lazy autowiring, creating custom qualifier annotations, JSR 349 annotations, spring-messaging module, Java 8's Optional type, and s...

  10. CernVM Co-Pilot: a Framework for Orchestrating Virtual Machines Running Applications of LHC Experiments on the Cloud

    International Nuclear Information System (INIS)

    Harutyunyan, A; Sánchez, C Aguado; Blomer, J; Buncic, P

    2011-01-01

    CernVM Co-Pilot is a framework for the delivery and execution of the workload on remote computing resources. It consists of components which are developed to ease the integration of geographically distributed resources (such as commercial or academic computing clouds, or the machines of users participating in volunteer computing projects) into existing computing grid infrastructures. The Co-Pilot framework can also be used to build an ad-hoc computing infrastructure on top of distributed resources. In this paper we present the architecture of the Co-Pilot framework, describe how it is used to execute the jobs of the ALICE and ATLAS experiments, as well as to run the Monte-Carlo simulation application of CERN Theoretical Physics Group.

  11. Leadership emergence: the application of the Cynefin framework ...

    African Journals Online (AJOL)

    social HIV/AIDS risk-reduction pilot. ... In this instance the Cynefin framework was used to: (1) provide an indication to the project managers whether the early stages of the intervention had been effective; (2) provide the participants an opportunity ...

  12. A Software Data Transport Framework for Trigger Applications on Clusters

    CERN Document Server

    Steinbeck, T M; Tilsner, H; Steinbeck, Timm M.; Lindenstruth, Volker; Tilsner, Heinz

    2003-01-01

    In the future ALICE heavy ion experiment at CERN's Large Hadron Collider input data rates of up to 25 GB/s have to be handled by the High Level Trigger (HLT) system, which has to scale them down to at most 1.25 GB/s before being written to permanent storage. The HLT system that is being designed to cope with these data rates consists of a large PC cluster, up to the order of a 1000 nodes, connected by a fast network. For the software that will run on these nodes a flexible data transport and distribution software framework has been developed. This framework consists of a set of separate components, that can be connected via a common interface, allowing to construct different configurations for the HLT, that are even changeable at runtime. To ensure a fault-tolerant operation of the HLT, the framework includes a basic fail-over mechanism that will be further expanded in the future, utilizing the runtime reconnection feature of the framework's component interface. First performance tests show very promising res...

  13. Inclusive Education for International Students: Applications of a Constructivist Framework

    Science.gov (United States)

    Stipanovic, Natalie; Pergantis, Stephanie Irlene

    2018-01-01

    International students are a globally growing population that have numerous risk factors to their successful matriculation. One classroom tool university instructors have to combat these risk factors is utilizing an inclusive pedagogical framework. Instructors of international students that wish to apply an inclusive pedagogy to meet the needs of…

  14. Industrial applications of neutron physics methods

    International Nuclear Information System (INIS)

    Gozani, T.

    1994-01-01

    Three areas where nuclear based techniques have significant are briefly described. These are: Nuclear material control and non-proliferation, on-line elemental analysis of coal and minerals, and non- detection of explosives and other contraband. The nuclear physics and the role of reactor physics methods are highlighted. (author). 5 refs., 10 figs., 5 tabs

  15. The regulatory framework of special medical group students' physical education: identifying the problem.

    Directory of Open Access Journals (Sweden)

    Mazur Valerij Anatol'evich

    2011-09-01

    Full Text Available The question of regulatory framework for special medical group students' physical education, and their physical condition in particular is elaborated. It is found that in the current program the identified question is missing, although the assessment of individual performance standards for the physical condition of the students was envisaged in the programs of 1977 and 1982. The need for such an assessment is indicated by the large number of Ukrainian and foreign pediatricians and specialists in therapeutic physical culture. At the same time the standards for assessing these indicators are not developed. It complicates the formation of positive motivation of students to regular classes, and does not promote their self-confidence, capabilities and effectiveness of monitoring the effectiveness of exercise in various forms. The findings suggest the need to define the optimal composition of the bulk of tests and functional tests to assess the physical condition of special medical group students with various diseases and to develop appropriate indicators for their evaluation standards.

  16. Continuous Integration for Concurrent MOOSE Framework and Application Development on GitHub

    OpenAIRE

    Slaughter, Andrew E.; Peterson, John W.; Gaston, Derek R.; Permann, Cody J.; Andrš, David; Miller, Jason M.

    2015-01-01

    For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc.) in developing closed-source multiphysics simulation software (Gaston et al., 'Journal of Open Research Software' vol. 2, article e10, 2014). In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expandin...

  17. Applications of holography to condensed matter physics

    Science.gov (United States)

    Ross, Simon F.

    2012-10-01

    Holography is one of the key insights to emerge from string theory. It connects quantum gravity to field theory, and thereby provides a non-perturbative formulation of string theory. This has enabled progress on a range of theoretical issues, from the quantum description of spacetime to the calculation of scattering amplitudes in supersymmetric field theories. There have been important insights into both the field theories and the spacetime picture. More recently, applied holography has been the subject of intense and rapid development. The idea here is to use the spacetime description to address questions about strongly coupled field theory relevant to application areas such as finite-temperature QCD and condensed matter physics; the focus in this special issue is on the latter. This involves the study of field theory at finite temperature and with chemical potentials for appropriate charges, described in spacetime by charged black hole solutions. The use of holography to study these systems requires a significant extrapolation, from the field theories where classical gravitational calculations in the bulk are a useful approximation to the experimentally relevant theories. Nonetheless, the approach has had some striking qualitative successes, including the construction of holographic versions of superconducting or superfluid phase transitions, the identification of Fermi liquids with a variety of thermal behaviours, and the construction of a map between a class of gravity solutions and the hydrodynamic regime in the field theory. The use of holography provides a qualitatively new perspective on these aspects of strong coupling dynamics. In addition to insight into the behaviour of the strongly coupled field theories, this work has led to new insights into the bulk dynamics and a deeper understanding of holography. The purpose of this focus issue is to strengthen the connections between this direction and other gravitational research and to make the gravity

  18. An Automated DAKOTA and VULCAN-CFD Framework with Application to Supersonic Facility Nozzle Flowpath Optimization

    Science.gov (United States)

    Axdahl, Erik L.

    2015-01-01

    Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.

  19. Physical microscopic free-choice model in the framework of a Darwinian approach to quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Baladron, Carlos [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, E-47011, Valladolid (Spain)

    2017-06-15

    A compatibilistic model of free choice for a fundamental particle is built within a general framework that explores the possibility that quantum mechanics be the emergent result of generalised Darwinian evolution acting on the abstract landscape of possible physical theories. The central element in this approach is a probabilistic classical Turing machine -basically an information processor plus a randomiser- methodologically associated with every fundamental particle. In this scheme every system acts not under a general law, but as a consequence of the command of a particular, evolved algorithm. This evolved programme enables the particle to algorithmically anticipate possible future world configurations in information space, and as a consequence, without altering the natural forward causal order in physical space, to incorporate elements to the decision making procedure that are neither purely random nor strictly in the past, but in a possible future. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. The action cycle/structural context framework: a fisheries application

    Directory of Open Access Journals (Sweden)

    D.G. Webster

    2015-03-01

    Full Text Available There is a growing consensus that environmental governance is a wicked problem that requires understanding of the many linkages and feedbacks between human and natural systems. Here, I propose an action cycle/structural context (AC/SC framework that is based on the concept of responsive governance, in which individuals and decision makers respond to problems rather than working to prevent them. By linking agency and structure, the AC/SC framework points out two key problems in the realm of environmental governance: the profit disconnect, whereby economic signals of environmental harm are dampened by endogenous or exogenous forces, and the power disconnect, whereby those who feel the costs of harm are politically marginalized and so have little influence to effect solutions. I apply this framework to fisheries to develop hypotheses regarding exclusionary and conservation-oriented responses under different power/profit dynamics. These expectations are tested in a historical case study of management of the lobster fishery in Maine. The analysis confirms the importance of profit/power dynamics and reveals that governance tends to go through effective and ineffective cycles in a management treadmill that can be driven by internal or external forces. The latter in particular are generally ignored in fisheries management but could ultimately undermine sustainability even in previously well-managed systems.

  1. Integrating Visualization Applications, such as ParaView, into HEP Software Frameworks for In-situ Event Displays

    Science.gov (United States)

    Lyon, A. L.; Kowalkowski, J. B.; Jones, C. D.

    2017-10-01

    ParaView is a high performance visualization application not widely used in High Energy Physics (HEP). It is a long standing open source project led by Kitware and involves several Department of Energy (DOE) and Department of Defense (DOD) laboratories. Futhermore, it has been adopted by many DOE supercomputing centers and other sites. ParaView is unique in speed and efficiency by using state-of-the-art techniques developed by the academic visualization community that are often not found in applications written by the HEP community. In-situ visualization of events, where event details are visualized during processing/analysis, is a common task for experiment software frameworks. Kitware supplies Catalyst, a library that enables scientific software to serve visualization objects to client ParaView viewers yielding a real-time event display. Connecting ParaView to the Fermilab art framework will be described and the capabilities it brings discussed.

  2. Integrating Visualization Applications, such as ParaView, into HEP Software Frameworks for In-situ Event Displays

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, A. L. [Fermilab; Kowalkowski, J. B. [Fermilab; Jones, C. D. [Fermilab

    2017-11-22

    ParaView is a high performance visualization application not widely used in High Energy Physics (HEP). It is a long standing open source project led by Kitware and involves several Department of Energy (DOE) and Department of Defense (DOD) laboratories. Futhermore, it has been adopted by many DOE supercomputing centers and other sites. ParaView is unique in speed and efficiency by using state-of-the-art techniques developed by the academic visualization community that are often not found in applications written by the HEP community. In-situ visualization of events, where event details are visualized during processing/analysis, is a common task for experiment software frameworks. Kitware supplies Catalyst, a library that enables scientific software to serve visualization objects to client ParaView viewers yielding a real-time event display. Connecting ParaView to the Fermilab art framework will be described and the capabilities it brings discussed.

  3. On the physical applications of hyper-Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Gaeta, Giuseppe; Rodriguez, Miguel A

    2008-01-01

    An extension of Hamiltonian dynamics, defined on hyper-Kahler manifolds ('hyper-Hamiltonian dynamics') and sharing many of the attractive features of standard Hamiltonian dynamics, was introduced in previous work. In this paper, we discuss applications of the theory to physically interesting cases, dealing with the dynamics of particles with spin 1/2 in a magnetic field, i.e. the Pauli and the Dirac equations. While the free Pauli equation corresponds to a hyper-Hamiltonian flow, it turns out that the hyper-Hamiltonian description of the Dirac equation, and of the full Pauli one, is in terms of two commuting hyper-Hamiltonian flows. In this framework one can use a factorization principle discussed here (which is a special case of a general phenomenon studied by Walcher) and provide an explicit description of the resulting flow. On the other hand, by applying the familiar Foldy-Wouthuysen and Cini-Tousheck transformations (and the one recently introduced by Mulligan) which separate-in suitable limits-the Dirac equation into two equations, each of these turn out to be described by a single hyper-Hamiltonian flow. Thus the hyper-Hamiltonian construction is able to describe the fundamental dynamics for particles with spin

  4. GLOFRIM v1.0-A globally applicable computational framework for integrated hydrological-hydrodynamic modelling

    NARCIS (Netherlands)

    Hoch, Jannis M.; Neal, Jeffrey C.; Baart, Fedor; Van Beek, Rens; Winsemius, Hessel C.; Bates, Paul D.; Bierkens, Marc F.P.

    2017-01-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological-hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global

  5. The Corporate Governance Framework & its Application to Privatizations of Public Enterprises

    Science.gov (United States)

    Kenourgios, Dimitris; Samitas, Aristidis; Konstantopoulos, Nikolaos

    2007-12-01

    This paper is an attempt to evaluate the application of Corporate Governance framework issue within Public domain. It is an attempt to quantify the compliance of Greek companies with international best practices.

  6. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    Science.gov (United States)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  7. Physics through the 1990s: scientific interfaces and technological applications

    International Nuclear Information System (INIS)

    1986-01-01

    The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics--biophysics, the brain, and theoretical biology; the physics-chemistry interface--instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics--tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics--complex systems and applications in basic research; mathematics--field theory and chaos; microelectronics--integrated circuits, miniaturization, future trends; optical information technologies--fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security--devices, weapons, and arms control; medical physics--radiology, ultrasonics, NMR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs

  8. An electromechanically coupled micro-sphere framework: application to the finite element analysis of electrostrictive polymers

    International Nuclear Information System (INIS)

    Thylander, Sara; Menzel, Andreas; Ristinmaa, Matti

    2012-01-01

    The number of industrial applications of electroactive polymers (EAPs) is increasing and, consequently, the need for reliable modelling frameworks for such materials as well as related robust simulation techniques continuously increases. In this context, we combine the modelling of non-linear electroelasticity with a computational micro-sphere formulation in order to simulate the behaviour of EAPs. The micro-sphere approach in general enables the use of physics-based constitutive models like, for instance, the so-called worm-like chain model. By means of the micro-sphere formulation, scalar-valued micromechanical constitutive relations can conveniently be extended to a three-dimensional continuum setting. We discuss several electromechanically coupled numerical examples and make use of the finite element method to solve inhomogeneous boundary value problems. The incorporated material parameters are referred to experimental data for an electrostrictive polymer. The numerical examples show that the coupled micro-sphere formulation combined with the finite element method results in physically sound simulations that mimic the behaviour of an electrostrictive polymer. (paper)

  9. Physics of electronic materials principles and applications

    CERN Document Server

    Rammer, Jorgen

    2017-01-01

    Adopting a uniquely pedagogical approach, this comprehensive textbook on the quantum mechanics of semiconductor materials and devices focuses on the materials, components and devices themselves whilst incorporating a substantial amount of fundamental physics related to condensed matter theory and quantum mechanics. Written primarily for advanced undergraduate students in physics and engineering, this book can also be used as a supporting text for introductory quantum mechanics courses, and will be of interest to anyone interested in how electronic devices function at a fundamental level. Complete with numerous exercises, and with all the necessary mathematics and physics included in appendices, this book guides the reader seamlessly through the principles of quantum mechanics and the quantum theory of metals and semiconductors, before describing in detail how devices are exploited within electric circuits and in the hardware of computers, for example as amplifiers, switches and transistors. Includes nume...

  10. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  11. Tracking and sensor data fusion methodological framework and selected applications

    CERN Document Server

    Koch, Wolfgang

    2013-01-01

    Sensor Data Fusion is the process of combining incomplete and imperfect pieces of mutually complementary sensor information in such a way that a better understanding of an underlying real-world phenomenon is achieved. Typically, this insight is either unobtainable otherwise or a fusion result exceeds what can be produced from a single sensor output in accuracy, reliability, or cost. This book provides an introduction Sensor Data Fusion, as an information technology as well as a branch of engineering science and informatics. Part I presents a coherent methodological framework, thus providing th

  12. Online test application development using framework CodeIgniter

    Science.gov (United States)

    Wibawa, S. C.; Wahyuningsih, Y.; Sulistyowati, R.; Abidin, R.; Lestari, Y.; Noviyanti; Maulana, D. A.

    2018-01-01

    The purpose of this study is developing application an online test for vocational students and to know the user acceptance testing on the application. The method used in this research is the Research and Development (R & D) only up to the pilot phase of the product. The stage of the procedure of the research namely: (1) Analyze the exam using paper compared to using web-based application test online. (2) Design the media in accordance with the design of the author. (3) To test the product by including a questionnaire instrument against the application that has been done. Researchers carried out tests on class X on the computer and network engineering Vocational High School (SMK) Darul Ma’wa Plumpang. It can be concluded that: (1) application online test was created gets the value of the validator with the percentage of lowest value and the highest value for the validation of products: 25% and 100%. With a total number of 14 questions, after validation of the products obtained from the three aspects of the assessment scale from 81.25 to 100 obtained from 2 different validators with the meaning of an application that has been developed and very suitable for use in school. (2) Based on User Acceptance Testing (UAT), applications can be very well received by the students and recommend to replay the final semester and others. With the successful acquisition of a category which means it’s ready and qualified.

  13. Nuclear physics for applications. A model approach

    International Nuclear Information System (INIS)

    Prussin, S.G.

    2007-01-01

    Written by a researcher and teacher with experience at top institutes in the US and Europe, this textbook provides advanced undergraduates minoring in physics with working knowledge of the principles of nuclear physics. Simplifying models and approaches reveal the essence of the principles involved, with the mathematical and quantum mechanical background integrated in the text where it is needed and not relegated to the appendices. The practicality of the book is enhanced by numerous end-of-chapter problems and solutions available on the Wiley homepage. (orig.)

  14. Flexible Human Behavior Analysis Framework for Video Surveillance Applications

    Directory of Open Access Journals (Sweden)

    Weilun Lao

    2010-01-01

    Full Text Available We study a flexible framework for semantic analysis of human motion from surveillance video. Successful trajectory estimation and human-body modeling facilitate the semantic analysis of human activities in video sequences. Although human motion is widely investigated, we have extended such research in three aspects. By adding a second camera, not only more reliable behavior analysis is possible, but it also enables to map the ongoing scene events onto a 3D setting to facilitate further semantic analysis. The second contribution is the introduction of a 3D reconstruction scheme for scene understanding. Thirdly, we perform a fast scheme to detect different body parts and generate a fitting skeleton model, without using the explicit assumption of upright body posture. The extension of multiple-view fusion improves the event-based semantic analysis by 15%–30%. Our proposed framework proves its effectiveness as it achieves a near real-time performance (13–15 frames/second and 6–8 frames/second for monocular and two-view video sequences.

  15. A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis

    Directory of Open Access Journals (Sweden)

    Koichiro Uriu

    2017-08-01

    Full Text Available In development and disease, cells move as they exchange signals. One example is found in vertebrate development, during which the timing of segment formation is set by a ‘segmentation clock’, in which oscillating gene expression is synchronized across a population of cells by Delta-Notch signaling. Delta-Notch signaling requires local cell-cell contact, but in the zebrafish embryonic tailbud, oscillating cells move rapidly, exchanging neighbors. Previous theoretical studies proposed that this relative movement or cell mixing might alter signaling and thereby enhance synchronization. However, it remains unclear whether the mixing timescale in the tissue is in the right range for this effect, because a framework to reliably measure the mixing timescale and compare it with signaling timescale is lacking. Here, we develop such a framework using a quantitative description of cell mixing without the need for an external reference frame and constructing a physical model of cell movement based on the data. Numerical simulations show that mixing with experimentally observed statistics enhances synchronization of coupled phase oscillators, suggesting that mixing in the tailbud is fast enough to affect the coherence of rhythmic gene expression. Our approach will find general application in analyzing the relative movements of communicating cells during development and disease.

  16. Hyperspherical Harmonics and Their Physical Applications

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    Hyperspherical harmonics are extremely useful in nuclear physics and reactive scattering theory. However, their use has been confined to specialists with very strong backgrounds in mathematics. This book aims to change the theory of hyperspherical harmonics from an esoteric field, mastered....... The book is accompanied by programs and exercises designed for teaching and practical use....

  17. A Distributed Framework for Supporting 3D Swarming Applications

    OpenAIRE

    Pour Sadrollah, Ghazaleh; Barca, Jan Carlo; Khan, Asad; Eliasson, Jens; Senthooran, Ilankaikone

    2014-01-01

    Abstract—In-flight wireless sensor networks (WSN) are ofincreased interest owing to efficiency gains in weight and operationallifetime of IP-enabled computers. High impact 3Dswarming applications for such systems include autonomousmapping, surveying, servicing, environmental monitoring anddisaster site management. For distributed robotic applications,such as quad copter swarms, it is critical that the robots are ableto localise themselves autonomously with respect to other robotsand to share ...

  18. New framework for rehabilitation – fusion of cognitive and physical rehabilitation: the hope for dancing

    Science.gov (United States)

    Dhami, Prabhjot; Moreno, Sylvain; DeSouza, Joseph F. X.

    2015-01-01

    Neurorehabilitation programs are commonly employed with the goal to help restore functionality in patients. However, many of these therapies report only having a small impact. In response to the need for more effective and innovative approaches, rehabilitative methods that take advantage of the neuroplastic properties of the brain have been used to aid with both physical and cognitive impairments. Following this path of reasoning, there has been a particular interest in the use of physical exercise as well as musical related activities. Although such therapies demonstrate potential, they also have limitations that may affect their use, calling for further exploration. Here, we propose dance as a potential parallel to physical and music therapies. Dance may be able to aid with both physical and cognitive impairments, particularly due to it combined nature of including both physical and cognitive stimulation. Not only does it incorporate physical and motor skill related activities, but it can also engage various cognitive functions such as perception, emotion, and memory, all while done in an enriched environment. Other more practical benefits, such as promoting adherence due to being enjoyable, are also discussed, along with the current literature on the application of dance as an intervention tool, as well as future directions required to evaluate the potential of dance as an alternative therapy in neurorehabilitation. PMID:25674066

  19. New Framework for Rehabilitation - Fusion of Cognitive and Physical Rehabilitation: The Hope for Dancing

    Directory of Open Access Journals (Sweden)

    Prabhjot eDhami

    2015-01-01

    Full Text Available Neurorehabilitation programs are commonly employed with the goal to help restore functionality in patients. However, many of these therapies report only having a small impact. In response to the need for more effective and innovative approaches, rehabilitative methods that take advantage of the neuroplastic properties of the brain have been used to aid with both physical and cognitive impairments. Following this path of reasoning, there has been a particular interest in the use of physical exercise as well as musical related activities. Although such therapies demonstrate potential, they also have limitations that may affect their use, calling for further exploration. Here, we propose dance as a potential parallel to physical and music therapies. Dance may be able to aid with both physical and cognitive impairments, particularly due to it combined nature of including both physical and cognitive stimulation. Not only does it incorporate physical and motor skill related activities, but also provides cognitive stimulation through engaging various cognitive functions such as perception, emotion, memory, all done in an enriched environment. Other more practical benefits, such as promoting adherence due to being enjoyable, are also discussed, along with the current literature on the application of dance as an intervention tool, as well as future directions required to evaluate the potential of dance as an alternative therapy in neurorehabilitation.

  20. Inferential framework for non-stationary dynamics: theory and applications

    International Nuclear Information System (INIS)

    Duggento, Andrea; Luchinsky, Dmitri G; McClintock, Peter V E; Smelyanskiy, Vadim N

    2009-01-01

    An extended Bayesian inference framework is presented, aiming to infer time-varying parameters in non-stationary nonlinear stochastic dynamical systems. The convergence of the method is discussed. The performance of the technique is studied using, as an example, signal reconstruction for a system of neurons modeled by FitzHugh–Nagumo oscillators: it is applied to reconstruction of the model parameters and elements of the measurement matrix, as well as to inference of the time-varying parameters of the non-stationary system. It is shown that the proposed approach is able to reconstruct unmeasured (hidden) variables of the system, to determine the model parameters, to detect stepwise changes of control parameters for each oscillator and to track the continuous evolution of the control parameters in the adiabatic limit

  1. Developments and applications of DAQ framework DABC v2

    International Nuclear Information System (INIS)

    Adamczewski-Musch, J; Kurz, N; Linev, S

    2015-01-01

    The Data Acquisition Backbone Core (DABC) is a software framework for distributed data acquisition. In 2013 Version 2 of DABC has been released with several improvements. For monitoring and control, an HTTP web server and a proprietary command channel socket have been provided. Web browser GUIs have been implemented for configuration and control of DABC and MBS DAQ nodes via such HTTP server. Several specific plug-ins, for example interfacing PEXOR/KINPEX optical readout PCIe boards, or HADES trbnet input and hld file output, have been further developed. In 2014, DABC v2 was applied for production data taking of the HADES collaboration's pion beam time at GSI. It fully replaced the functionality of the previous event builder software and added new features concerning online monitoring. (paper)

  2. Artificial intelligence - applications in high energy and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U. E-mail: mueller@whep.uni-wuppertal.de

    2003-04-21

    In the parallel sessions at ACAT2002 different artificial intelligence applications in high energy and nuclear physics were presented. I will briefly summarize these presentations. Further details can be found in the relevant section of these proceedings.

  3. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  4. Visapult: A Prototype Remote and Distributed Visualization Application and Framework

    International Nuclear Information System (INIS)

    Bethel, Wes

    2000-01-01

    We describe an approach used for implementing a highly efficient and scalable method for direct volume rendering. Our approach uses a pipelined-parallel decomposition composed of parallel computers and commodity desktop hardware. With our approach, desktop interactivity is divorced from the latency inherent in network-based applications

  5. Additive manufacturing: state-of-the-art and application framework

    Directory of Open Access Journals (Sweden)

    Vinícius Picanço Rodrigues

    2017-09-01

    Full Text Available Additive manufacturing encompasses a class of production processes with increasing applications in different areas and supply chains. Due to its flexibility for production in small batches and the versatility of materials and geometries, this technology is recognized as being capable of revolutionizing the production processes as well as changing production strategies that are currently employed. However, there are different technologies under the generic label of additive manufacturing, materials and application areas with different requirements. Given the growing importance of additive manufacturing as a production process, and also considering the need to have a better insight into the potential applications for driving research and development efforts, this article presents a proposal of organization for additive manufacturing applications in seven areas. Additionally, the article provides a panorama of the current development stage of this technology, with a review of its major technological variants. The results presented aim to serve as a basis to support driving initiatives in additive manufacturing in companies, development agencies and research institutions.

  6. Inverse operator theory method and its applications in nonlinear physics

    International Nuclear Information System (INIS)

    Fang Jinqing

    1993-01-01

    Inverse operator theory method, which has been developed by G. Adomian in recent years, and its applications in nonlinear physics are described systematically. The method can be an unified effective procedure for solution of nonlinear and/or stochastic continuous dynamical systems without usual restrictive assumption. It is realized by Mathematical Mechanization by us. It will have a profound on the modelling of problems of physics, mathematics, engineering, economics, biology, and so on. Some typical examples of the application are given and reviewed

  7. Plasmonic interferometers: From physics to biosensing applications

    Science.gov (United States)

    Zeng, Xie

    Optical interferometry has a long history and wide range of applications. In recent years, plasmonic interferometer arouses great interest due to its compact size and enhanced light-matter interaction. They have demonstrated attractive applications in biomolecule sensing, optical modulation/switching, and material characterization, etc. In this work, we first propose a practical far-field method to extract the intrinsic phase dispersion, revealing important phase information during interactions among free-space light, nanostructure, and SPs. The proposed approach is confirmed by both simulation and experiment. Then we design novel plasmonic interferometer structure for sensitive optical sensing applications. To overcome two major limitations suffered by previously reported double-slit plasmonic Mach-Zehnder interferometer (PMZI), two new schemes are proposed and investigated. (1) A PMZI based on end-fire coupling improves the SP coupling efficiency and enhance the interference contrast more than 50 times. (2) In another design, a multi-layered metal-insulator-metal PMZI releases the requirement for single-slit illumination, which enables sensitive, high-throughput sensing applications based on intensity modulation. We develop a sensitive, low-cost and high-throughput biosensing platform based on intensity modulation using ring-hole plasmonic interferometers. This biosensor is then integrated with cell-phone-based microscope, which is promising to develop a portable sensor for point-of-care diagnostics, epidemic disease control and food safety monitoring.

  8. Linux OS integrated modular avionics application development framework with apex API of ARINC653 specification

    Directory of Open Access Journals (Sweden)

    Anna V. Korneenkova

    2017-01-01

    Full Text Available The framework is made to provide tools to develop the integrated modular avionics (IMA applications, which could be launched on the target platform LynxOs-178 without modifying their source code. The framework usage helps students to form skills for developing modern modules of the avionics. In addition, students obtain deeper knowledge for the development of competencies in the field of technical creativity by using of the framework.The article describes the architecture and implementation of the Linux OS framework for ARINC653 compliant OS application development.The proposed approach reduces ARINC-653 application development costs and gives a unified tool to implement OS vendor independent code that meets specification. To achieve import substitution free and open-source Linux OS is used as an environment for developing IMA applications.The proposed framework is applicable for using as the tool to develop IMA applications and as the tool for development of the following competencies: the ability to master techniques of using software to solve practical problems, the ability to develop components of hardware and software systems and databases, using modern tools and programming techniques, the ability to match hardware and software tools in the information and automated systems, the readiness to apply the fundamentals of informatics and programming to designing, constructing and testing of software products, the readiness to apply basic methods and tools of software development, knowledge of various technologies of software development.

  9. GeoGebra and eXe Learning: applicability in the teaching of Physics and Mathematics

    Directory of Open Access Journals (Sweden)

    Eunice Maria Mussoi

    2011-04-01

    Full Text Available Today, education in the field of sciences is still characterized by excessive attention to repetitive exercises at the expense of understanding and visualizing the concepts of mathematical and physical phenomena. This article will show the potential of the software GeoGebra to build content and / or activities in Physics and Mathematics usable in isolation or engaged in other activities, such as eXe Learning. For this we constructed two activities: a mathematical content - Application of successive derivatives, and a content of physics - Application of uniform rectilinear motion. These contents were built in eXe Learning, and the graphics was built in GeoGebra and imported into the eXe by Java Applet. The content was done with the exported SCORM to Moodle, it is within this framework that the student will study the movement and display of graphic content.

  10. The conceptual framework for physical risk assessment in multi-purpose workplaces

    Directory of Open Access Journals (Sweden)

    Lasota Andrzej Marek

    2017-01-01

    Full Text Available In industry work related musculoskeletal disorders (WRMSDs are still a common problem which frequent cause of health problems, sick leave and it can result in decreased productivity, quality of work and increased absenteeism. Though, traditional manufacturing work practices do not enough take into account task variability issues during the work design – assessment process. Variations in task content and organizational work performance are due to effective use of equipments and reaching high level of productivity. But this variation has impact on work demand and risk to WRMSDs and makes some difficulties with assessment of risk. Therefore, this study aims develop a framework for assessment multi-purpose workplaces. The proposed method integrates complementary concepts of widely known techniques used for evaluation of physical risk factors to WRMSDs on workplaces. Additionally the research framework is highlighting major differences in worker’s exposure to WRMSDs risk, potential impact on awkward postures, and how these findings can be used for finding solutions in a future ergonomic intervention.

  11. Physics of automated driving in framework of three-phase traffic theory.

    Science.gov (United States)

    Kerner, Boris S

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  12. Physics of automated driving in framework of three-phase traffic theory

    Science.gov (United States)

    Kerner, Boris S.

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  13. Computational applications of DNA physical scales

    DEFF Research Database (Denmark)

    Baldi, Pierre; Chauvin, Yves; Brunak, Søren

    1998-01-01

    that these scales provide an alternative or complementary compact representation of DNA sequences. As an example we construct a strand invariant representation of DNA sequences. The scales can also be used to analyze and discover new DNA structural patterns, especially in combinations with hidden Markov models......The authors study from a computational standpoint several different physical scales associated with structural features of DNA sequences, including dinucleotide scales such as base stacking energy and propellor twist, and trinucleotide scales such as bendability and nucleosome positioning. We show...

  14. Hyperspherical Harmonics and Their Physical Applications

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    Hyperspherical harmonics are extremely useful in nuclear physics and reactive scattering theory. However, their use has been confined to specialists with very strong backgrounds in mathematics. This book aims to change the theory of hyperspherical harmonics from an esoteric field, mastered...... by specialists, into an easily-used tool with a place in the working kit of all theoretical physicists, theoretical chemists and mathematicians. The theory presented here is accessible without the knowledge of Lie-groups and representation theory, and can be understood with an ordinary knowledge of calculus...

  15. Developing a User-Driven Framework for Generating Field Data Collection Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-09

    This paper describes the implementation of a web-based framework, which allows end users to build custom data collection applications. The emphasis of this project is to ease the transition from handwritten forms to electronic mobile applications for data collection.

  16. Additive manufacturing: state-of-the-art and application framework

    DEFF Research Database (Denmark)

    Rodrigues, Vinicius Picanco; de Senzi Zancul, Eduardo; Gonçalves Mançanares, Cauê

    2017-01-01

    Additive manufacturing encompasses a class of production processes with increasing applications indifferent areas and supply chains. Due to its flexibility for production in small batches and the versatilityof materials and geometries, this technology is recognized as being capable...... of revolutionizing theproduction processes as well as changing production strategies that are currently employed. However,there are different technologies under the generic label of additive manufacturing, materials and applicationareas with different requirements. Given the growing importance of additive...... manufacturingas a production process, and also considering the need to have a better insight into the potential applicationsfor driving research and development efforts, this article presents a proposal of organizationfor additive manufacturing applications in seven areas. Additionally, the article provides...

  17. A Fully Customized Baseline Removal Framework for Spectroscopic Applications.

    Science.gov (United States)

    Giguere, Stephen; Boucher, Thomas; Carey, C J; Mahadevan, Sridhar; Dyar, M Darby

    2017-07-01

    The task of proper baseline or continuum removal is common to nearly all types of spectroscopy. Its goal is to remove any portion of a signal that is irrelevant to features of interest while preserving any predictive information. Despite the importance of baseline removal, median or guessed default parameters are commonly employed, often using commercially available software supplied with instruments. Several published baseline removal algorithms have been shown to be useful for particular spectroscopic applications but their generalizability is ambiguous. The new Custom Baseline Removal (Custom BLR) method presented here generalizes the problem of baseline removal by combining operations from previously proposed methods to synthesize new correction algorithms. It creates novel methods for each technique, application, and training set, discovering new algorithms that maximize the predictive accuracy of the resulting spectroscopic models. In most cases, these learned methods either match or improve on the performance of the best alternative. Examples of these advantages are shown for three different scenarios: quantification of components in near-infrared spectra of corn and laser-induced breakdown spectroscopy data of rocks, and classification/matching of minerals using Raman spectroscopy. Software to implement this optimization is available from the authors. By removing subjectivity from this commonly encountered task, Custom BLR is a significant step toward completely automatic and general baseline removal in spectroscopic and other applications.

  18. Photonic crystals physics, fabrication and applications

    CERN Document Server

    Ohtaka, Kazuo

    2004-01-01

    "Photonic Crystals" details recent progress in the study of photonic crystals, ranging from fundamental aspects to up-to-date applications, in one unified treatment It covers most of the worldwide frontier fields in photonic crystals, including up-to-date fabrication techniques, recent and future technological applications, and our basic understanding of the various optical properties of photonic crystals Brand-new theoretical and experimental data are also presented The book is intended for graduate course students and specialists actively working in this field, but it will also be useful for newcomers, especially the extensive chapter dealing with fundamental aspects of photonic crystals, which paves the way to a full appreciation of the other topics addressed

  19. THREE-DIMENSIONAL WEB-BASED PHYSICS SIMULATION APPLICATION FOR PHYSICS LEARNING TOOL

    Directory of Open Access Journals (Sweden)

    William Salim

    2012-10-01

    Full Text Available The purpose of this research is to present a multimedia application for doing simulation in Physics. The application is a web based simulator that implementing HTML5, WebGL, and JavaScript. The objects and the environment will be in three dimensional views. This application is hoped will become the substitute for practicum activity. The current development is the application only covers Newtonian mechanics. Questionnaire and literature study is used as the data collecting method. While Waterfall Method used as the design method. The result is Three-DimensionalPhysics Simulator as online web application. Three-Dimensionaldesign and mentor-mentee relationship is the key features of this application. The conclusion made is Three-DimensionalPhysics Simulator already fulfilled in both design and functionality according to user. This application also helps them to understand Newtonian mechanics by simulation. Improvements are needed, because this application only covers Newtonian Mechanics. There is a lot possibility in the future that this simulation can also covers other Physics topic, such as optic, energy, or electricity.Keywords: Simulation, Physic, Learning Tool, HTML5, WebGL

  20. Artificial Atoms: from Quantum Physics to Applications

    International Nuclear Information System (INIS)

    2014-01-01

    The primary objective of this workshop is to survey the most recent advances of technologies enabling single atom- and artificial atom-based devices. These include the assembly of artificial molecular structures with magnetic dipole and optical interactions between engineered atoms embedded in solid-state lattices. The ability to control single atoms in diamond or similar solids under ambient operating conditions opens new perspectives for technologies based on nanoelectronics and nanophotonics. The scope of the workshop is extended towards the physics of strong coupling between atoms and radiation field modes. Beyond the traditional atom-cavity systems, artificial dipoles coupled to microwave radiation in circuit quantum electrodynamics is considered. All these technologies mutually influence each other in developing novel devices for sensing at the quantum level and for quantum information processing.

  1. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  2. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1991-01-01

    The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise

  3. Stochastic Effects; Application in Nuclear Physics

    International Nuclear Information System (INIS)

    Mazonka, O.

    2000-04-01

    Stochastic effects in nuclear physics refer to the study of the dynamics of nuclear systems evolving under stochastic equations of motion. In this dissertation we restrict our attention to classical scattering models. We begin with introduction of the model of nuclear dynamics and deterministic equations of evolution. We apply a Langevin approach - an additional property of the model, which reflect the statistical nature of low energy nuclear behaviour. We than concentrate our attention on the problem of calculating tails of distribution functions, which actually is the problem of calculating probabilities of rare outcomes. Two general strategies are proposed. Result and discussion follow. Finally in the appendix we consider stochastic effects in nonequilibrium systems. A few exactly solvable models are presented. For one model we show explicitly that stochastic behaviour in a microscopic description can lead to ordered collective effects on the macroscopic scale. Two others are solved to confirm the predictions of the fluctuation theorem. (author)

  4. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1989-01-01

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs

  5. Monte Carlo Frameworks Building Customisable High-performance C++ Applications

    CERN Document Server

    Duffy, Daniel J

    2011-01-01

    This is one of the first books that describe all the steps that are needed in order to analyze, design and implement Monte Carlo applications. It discusses the financial theory as well as the mathematical and numerical background that is needed to write flexible and efficient C++ code using state-of-the art design and system patterns, object-oriented and generic programming models in combination with standard libraries and tools.   Includes a CD containing the source code for all examples. It is strongly advised that you experiment with the code by compiling it and extending it to suit your ne

  6. Ten physical applications of spectral zeta functions

    CERN Document Server

    Elizalde, Emilio

    1995-01-01

    Zeta-function regularization is a powerful method in perturbation theory. This book is meant as a guide for the student of this subject. Everything is explained in detail, in particular the mathematical difficulties and tricky points, and several applications are given to show how the procedure works in practice (e.g. Casimir effect, gravity and string theory, high-temperature phase transition, topological symmetry breaking). The formulas some of which are new can be used for accurate numerical calculations. The book is to be considered as a basic introduction and a collection of exercises for those who want to apply this regularization procedure in practice.

  7. Adapting smart phone applications about physics education to blind students

    Science.gov (United States)

    Bülbül, M. Ş.; Yiğit, N.; Garip, B.

    2016-04-01

    Today, most of necessary equipment in a physics laboratory are available for smartphone users via applications. Physics teachers may measure from acceleration to sound volume with its internal sensors. These sensors collect data and smartphone applications make the raw data visible. Teachers who do not have well-equipped laboratories at their schools may have an opportunity to conduct experiments with the help of smart phones. In this study, we analyzed possible open source physics education applications in terms of blind users in inclusive learning environments. All apps are categorized as partially, full or non-supported. The roles of blind learner’s friend during the application are categorized as reader, describer or user. Mentioned apps in the study are compared with additional opportunities like size and downloading rates. Out of using apps we may also get information about whether via internet and some other extra information for different experiments in physics lab. Q-codes reading or augmented reality are two other opportunity provided by smart phones for users in physics labs. We also summarized blind learner’s smartphone experiences from literature and listed some suggestions for application designers about concepts in physics.

  8. Cyber Physical Autonomous Mobile Robot (CPAMR Framework in the Context of Industry 4.0

    Directory of Open Access Journals (Sweden)

    Lee Yoon Ket

    2018-01-01

    Full Text Available Industry 4.0 or Smart Manufacturing creates intelligent object networking and independent process management through Internet of thing and data services. Cyber-Physical System (CPS communicates among humans, machines and products through Internet of Things (IoT. In this paper a cyber physical autonomous mobile robot (CPAMR IoT infrastructure system has been proposed. It is capable of performing human-machine interact by allowing users to place and manage orders using cloud platform. The Enterprise Resource Planning (ERP system processes the data and send the product's data to Radio-frequency identification (RFID tag system for storage and printout. Through Remote Telemetry Unit (RTU, the status of the product, CPAMR system and workstations or machineries are linked to the cloud platform. Initially, system identify the locations of CPAMR, product and the desired workstation. After gathering all the required information, Artificial Intelligence Algorithms (AIA performs real time route map planning according to the shortest distance between CPAMR and the destination. This route map planning will then be sent to the CPAMR’s micro-controller for operation. While the CPAMR is moving, it moves according to the planned route map with the assistance of the Obstacle Avoidance System until it reaches the destination and notifies cloud platform. Three individual projects representing three main functions of the proposed CPAMR have been carried out. Results show that the framework of the project is viable.

  9. A Robust Dynamic Heart-Rate Detection Algorithm Framework During Intense Physical Activities Using Photoplethysmographic Signals

    Directory of Open Access Journals (Sweden)

    Jiajia Song

    2017-10-01

    Full Text Available Dynamic accurate heart-rate (HR estimation using a photoplethysmogram (PPG during intense physical activities is always challenging due to corruption by motion artifacts (MAs. It is difficult to reconstruct a clean signal and extract HR from contaminated PPG. This paper proposes a robust HR-estimation algorithm framework that uses one-channel PPG and tri-axis acceleration data to reconstruct the PPG and calculate the HR based on features of the PPG and spectral analysis. Firstly, the signal is judged by the presence of MAs. Then, the spectral peaks corresponding to acceleration data are filtered from the periodogram of the PPG when MAs exist. Different signal-processing methods are applied based on the amount of remaining PPG spectral peaks. The main MA-removal algorithm (NFEEMD includes the repeated single-notch filter and ensemble empirical mode decomposition. Finally, HR calibration is designed to ensure the accuracy of HR tracking. The NFEEMD algorithm was performed on the 23 datasets from the 2015 IEEE Signal Processing Cup Database. The average estimation errors were 1.12 BPM (12 training datasets, 2.63 BPM (10 testing datasets and 1.87 BPM (all 23 datasets, respectively. The Pearson correlation was 0.992. The experiment results illustrate that the proposed algorithm is not only suitable for HR estimation during continuous activities, like slow running (13 training datasets, but also for intense physical activities with acceleration, like arm exercise (10 testing datasets.

  10. Virtualizing Resources for the Application Services and Framework Team

    Science.gov (United States)

    Varner, Justin T.; Crawford, Linda K.

    2010-01-01

    Virtualization is an emerging technology that will undoubtedly have a major impact on the future of Information Technology. It allows for the centralization of resources in an enterprise system without the need to make any changes to the host operating system, file system, or registry. In turn, this significantly reduces cost and administration, and provides a much greater level of security, compatibility, and efficiency. This experiment examined the practicality, methodology, challenges, and benefits of implementing the technology for the Launch Control System (LCS), and more specifically the Application Services (AS) group of the National Aeronautics and Space Administration (NASA) at the Kennedy Space Center (KSC). In order to carry out this experiment, I used several tools from the virtualization company known as VMWare; these programs included VMWare ThinApp, VMWare Workstation, and VMWare ACE. Used in conjunction, these utilities provided the engine necessary to virtualize and deploy applications in a desktop environment on any Windows platform available. The results clearly show that virtualization is a viable technology that can, when implemented properly, dramatically cut costs, enhance stability and security, and provide easier management for administrators.

  11. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  12. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  13. Persuasive Technology in Mobile Applications Promoting Physical Activity: a Systematic Review.

    Science.gov (United States)

    Matthews, John; Win, Khin Than; Oinas-Kukkonen, Harri; Freeman, Mark

    2016-03-01

    Persuasive technology in mobile applications can be used to influence the behaviour of users. A framework known as the Persuasive Systems Design model has been developed for designing and evaluating systems that influence the attitudes or behaviours of users. This paper reviews the current state of mobile applications for health behavioural change with an emphasis on applications that promote physical activity. The inbuilt persuasive features of mobile applications were evaluated using the Persuasive Systems Design model. A database search was conducted to identify relevant articles. Articles were then reviewed using the Persuasive Systems Design model as a framework for analysis. Primary task support, dialogue support, and social support were found to be moderately represented in the selected articles. However, system credibility support was found to have only low levels of representation as a persuasive systems design feature in mobile applications for supporting physical activity. To ensure that available mobile technology resources are best used to improve the wellbeing of people, it is important that the design principles that influence the effectiveness of persuasive technology be understood.

  14. Criteria and application methodology of physical protection of nuclear materials within the national and regional boundaries

    International Nuclear Information System (INIS)

    Rodriguez, C.E.; Cesario, R.H.; Giustina, D.H.; Canibano, J.

    1998-01-01

    Full text: The physical protection against robbery, diversion of nuclear materials and sabotage of nuclear installations by individuals or groups, has been for long time the reason of national and international concern. Even though, the obligation to create and implement an effective physical protection system for nuclear materials and installations in the territory of a given State, fall entirely on the State's Government, whether this obligation is fulfilled or not, and if it does, in what measure or up to what extent, it also concerns the rest of the States. Therefore, physical protection has become the reason for a regional co-operation. It is evident the need of co-operation in those cases where the physical protection efficiency within the territory of a given State depends also on the appropriate measures other States are taken, specially when dealing with materials been transported through national borders. The above mentioned constitute an important framework for the regional co-operation for the physical protection of nuclear materials. For that reason, the Nuclear Regulatory Authority established criteria and conditions aimed at mitigate diversions, robberies and sabotage to nuclear installations. As a working philosophy, it was established a simplify physical protection model of application in Argentina who, through the ARCAL No. 23 project, will be extrapolated to the whole Latin-American region, concluding that the application of the appropriated physical protection systems at regional level will lead to the strengthening of it at national level. (author) [es

  15. Graphene plasmonics: physics and potential applications

    Directory of Open Access Journals (Sweden)

    Huang Shenyang

    2016-10-01

    Full Text Available Plasmon in graphene possesses many unique properties. It originates from the collective motion of massless Dirac fermions, and the carrier density dependence is distinctively different from conventional plasmons. In addition, graphene plasmon is highly tunable and shows strong energy confinement capability. Most intriguingly, as an atom-thin layer, graphene and its plasmon are very sensitive to the immediate environment. Graphene plasmons strongly couple to polar phonons of the substrate, molecular vibrations of the adsorbates, and lattice vibrations of other atomically thin layers. In this review, we present the most important advances in graphene plasmonics field. The topics include terahertz plasmons, mid-infrared plasmons, plasmon-phonon interactions, and potential applications. Graphene plasmonics opens an avenue for reconfigurable metamaterials and metasurfaces; it is an exciting and promising new subject in the nanophotonics and plasmonics research field.

  16. Physics and applications of electrochromic devices

    Science.gov (United States)

    Pawlicka, Agnieszka; Avellaneda, Cesar O.

    2003-07-01

    Solid state electrochromic devices (ECD) are of considerable technological and commercial interest because of their controllable transmission, absorption and/or reflectance. For instance, a major application of these devices is in smart windows that can regulate the solar gains of buildings and also in glare attenuation in automobile rear view mirrors. Other applications include solar cells, small and large area flat panel displays, satellite temperature control, food monitoring, and document authentication. A typical electrochromic device has a five-layer structure: GS/TC/EC/IC/IS/TC/GS, where GS is a glass substrate, TC is a transparent conductor, generally ITO (indium tin oxide) or FTO (fluorine tin oxide), EC is an electrochromic coating, IC is an ion conductor (solid or liquid electrolyte) and IS is an ion storage coating. Generally, the EC and IS layers are deposited separately on the TC coatings and then jointed with the IC and sealed. The EC and IS are thin films that can be deposited by sputtering, CVD, sol-gel precursors, etc. There are different kinds of organic, inorganic and organic-inorganic films that can be used to make electrochromic devices. Thin electrochromic films can be: WO3, Nb2O5, Nb2O5:Li+ or Nb2O5-TiO2 coatings, ions storage films: CeO2-TiO2, CeO2-ZrO2 or CeO2-TiO2-ZrO2 and electrolytes like Organically Modified Electrolytes (Ormolytes) or polymeric films also based on natural polymers like starch or cellulose. These last are very interesting due to their high ionic conductivity, high transparency and good mechanical properties. This paper describes construction and properties of different thin oxide and polymeric films and also shows the optical response of an all sol-gel electrochromic device with WO3/Ormolyte/CeO2-TiO2 configuration.

  17. Surgical model-view-controller simulation software framework for local and collaborative applications.

    Science.gov (United States)

    Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2011-07-01

    Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.

  18. NPA applications development in the nuclear safety authority framework

    International Nuclear Information System (INIS)

    Maselj, A.; Vojnovic, D.; Gregonc, M.

    1999-01-01

    Due to the present tasks of the SNSA (Slovenian Nuclear Safety Administration) there was a need to gain a tool for analysing the transients of the Krsko Nuclear Power Plant at the SNSA. Combining the RELAP5 code with graphical interface NPA (Nuclear Plant Analyzer), the SNSA management saw an opportunity to have a powerful instrument for analyses and assessments on a user friendly basis and without high costs. The Krsko NPP Analyzer is a joint project of the SNSA and the operator, the Krsko NPP. The RELAP5/Mod2.5 input deck was constructed by the Krsko NPP's experts and their subcontractors. In 1996 the work started with translation of input model from RELAP5/Mod2.5 version to Mod3.2. This was done by Tractebel which combined NPA masks with translated input deck and constructed new dynamic function and interactive commands between graphical MMI (Man Machine Interface) and simulation code. Since Tractebel performed similar activities for the Belgian plants, their experience was used through a transfer of knowledge to the SNSA. After this phase of the project, a user of the NPP Analyzer can run accidents as SBLOCA, Main Steam Line Break, Feed Water Break, SGTR, and many other transients activating and combining interactive commands, starting from a full power operation. This project has not been finished yet. Improvements of the input deck should be done. The Critical Safety Function window will be created. The analyzer will be a helpful tool during the training program for Accident Assessment Group, which will give to the experts basic knowledge of plant operation, its systems, and physical phenomena during a steady state and transients or accidents. Also a new dimension is added to the existing safety evaluations at the SNSA to confirm the requested level of nuclear safety at the Krsko NPP. (author)

  19. An application framework of three-dimensional reconstruction and measurement for endodontic research.

    Science.gov (United States)

    Gao, Yuan; Peters, Ove A; Wu, Hongkun; Zhou, Xuedong

    2009-02-01

    The purpose of this study was to customize an application framework by using the MeVisLab image processing and visualization platform for three-dimensional reconstruction and assessment of tooth and root canal morphology. One maxillary first molar was scanned before and after preparation with ProTaper by using micro-computed tomography. With a customized application framework based on MeVisLab, internal and external anatomy was reconstructed. Furthermore, the dimensions of root canal and radicular dentin were quantified, and effects of canal preparation were assessed. Finally, a virtual preparation with risk analysis was performed to simulate the removal of a broken instrument. This application framework provided an economical platform and met current requirements of endodontic research. The broad-based use of high-quality free software and the resulting exchange of experience might help to improve the quality of endodontic research with micro-computed tomography.

  20. Physics of nuclear radiations concepts, techniques and applications

    CERN Document Server

    Rangacharyulu, Chary

    2013-01-01

    Physics of Nuclear Radiations: Concepts, Techniques and Applications makes the physics of nuclear radiations accessible to students with a basic background in physics and mathematics. Rather than convince students one way or the other about the hazards of nuclear radiations, the text empowers them with tools to calculate and assess nuclear radiations and their impact. It discusses the meaning behind mathematical formulae as well as the areas in which the equations can be applied. After reviewing the physics preliminaries, the author addresses the growth and decay of nuclear radiations, the stability of nuclei or particles against radioactive transformations, and the behavior of heavy charged particles, electrons, photons, and neutrons. He then presents the nomenclature and physics reasoning of dosimetry, covers typical nuclear facilities (such as medical x-ray machines and particle accelerators), and describes the physics principles of diverse detectors. The book also discusses methods for measuring energy a...

  1. Physics and Applications of Metallic Magnetic Calorimeters

    Science.gov (United States)

    Kempf, S.; Fleischmann, A.; Gastaldo, L.; Enss, C.

    2018-03-01

    Metallic magnetic calorimeters (MMCs) are calorimetric low-temperature particle detectors that are currently strongly advancing the state of the art in energy-dispersive single particle detection. They are typically operated at temperatures below 100 mK and make use of a metallic, paramagnetic temperature sensor to transduce the temperature rise of the detector upon the absorption of an energetic particle into a change of magnetic flux which is sensed by a superconducting quantum interference device. This outstanding interplay between a high-sensitivity thermometer and a near quantum-limited amplifier results in a very fast signal rise time, an excellent energy resolution, a large dynamic range, a quantum efficiency close to 100% as well as an almost ideal linear detector response. For this reason, a growing number of groups located all over the world is developing MMC arrays of various sizes which are routinely used in a variety of applications. Within this paper, we briefly review the state of the art of metallic magnetic calorimeters. This includes a discussion of the detection principle, sensor materials and detector geometries, readout concepts, the structure of modern detectors as well as the state-of-the-art detector performance.

  2. Laser-induced nuclear physics and applications

    International Nuclear Information System (INIS)

    Ledingham, K.W.D.; Singhal, R.P.; McKenna, P.; Spencer, I.

    2002-01-01

    With a 1 ps pulse laser at 1 μm wavelength, He gas is ionised at about 3.10 14 W.cm -2 . As the intensity increases, the inert gases become multiple ionised and between 10 18 and 10 19 W.cm -2 photon induced nuclear reactions are energetically possible. Close to 10 21 W.cm -2 pion production can take place. At the very high intensities of 10 28 W.cm -2 , it can be shown that electron-positron pairs can be created from the vacuum. The authors review the applications of high intensity focused laser beams in particle acceleration, laser-induced fission and laser production of protons and neutrons. Exciting new phenomena are expected at intensities higher than 10 22 W.cm -2 , -) the oscillating electric field can affect directly the protons in exactly the same way as the electrons in the plasma, -) fusion reactions by direct laser acceleration of ions. (A.C.)

  3. 8th International Conference on Physics and its Applications (ICOPIA)

    International Nuclear Information System (INIS)

    2016-01-01

    Proceeding of 8 th International Conference of Physics and Its Applications (8 th ICOPIA) 2016 Preface International Conference of Physics and Its Applications (ICOPIA) is a biannual conference, started in 2001, for presenting and discussing current research in Physics and Its Applications. This year of 2016, this conference is the eighth one. Studies about material physics, optics, geophysics, instrumentation, magnetics and theoretical physics are presented either orally or by poster. This conference is mainly supported by Department of Physics, University of Sebelas Maret, Indonesia. The keynote presentations are provided especially to show the contribution of physicists to medical research. A study of pT resolution magnetic sensor utilizing MI element towards medical use is presented by Prof. Tsuyoshi Uchiyama, from Nagoya University, Japan. Presentation about computational intelligence technique for electroencephalography (EEG) analysis is delivered by Assoc. Prof. Lipo Wang from Nanyang Technological University, Singapore. Keynote presentation about polycapillary optic and its application in medical imaging which is provided by Prof. Carolyn Ann Macdonald, from University At Albany, USA. Understanding the synergic and competitive interaction between Polyvinyl alcohol and plasticizers onto Na-Bentonite Clay is presented by Khairuddin, Ph.D, from University of Sebelas Maret, Indonesia. This volume contains the papers presented in ICOPIA 2016. The papers are divided into eight sections: magnetism and magnetic material, material physics and characterization, acoustics, theoretical physics, instrumentation physics, optics and geophysics. This structure is made so that readers are easier to find an article in this proceeding. We would like to thank to all of the participants attending this conference and also to committee for their contribution to this high level conference and its overall success. We also would like to thank to the reviewers for their positive

  4. Real-World Solutions for Developing High-Quality PHP Frameworks and Applications

    CERN Document Server

    Bergmann, Sebastian

    2011-01-01

    Learn to develop high-quality applications and frameworks in PHP Packed with in-depth information and step-by-step guidance, this book escorts you through the process of creating, maintaining and extending sustainable software of high quality with PHP. World-renowned PHP experts present real-world case studies for developing high-quality applications and frameworks in PHP that can easily be adapted to changing business requirements. . They offer different approaches to solving  typical development and quality assurance problems that every developer needs to know and master.Details the process

  5. Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture.

    Science.gov (United States)

    Mat Kiah, M L; Al-Bakri, S H; Zaidan, A A; Zaidan, B B; Hussain, Muzammil

    2014-10-01

    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.

  6. New trends in atomic and molecular physics. Advanced technological applications

    International Nuclear Information System (INIS)

    Mohan, Man

    2013-01-01

    Represents an up-to-date scientific status report on new trends in atomic and molecular physics. Multi-disciplinary approach. Also of interest to researchers in astrophysics and fusion plasma physics. Contains material important for nano- and laser technology. The field of Atomic and Molecular Physics (AMP) has reached significant advances in high-precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy, astrophysics, fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) Tokomak plasma machine which need accurate AMP data.

  7. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    OpenAIRE

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-01-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor no...

  8. Application of smart cards in physical and information security systems

    International Nuclear Information System (INIS)

    Dreifus, H.N.

    1988-01-01

    Smart Cards, integrated circuits embedded into credit cards, have been proposed for many computer and physical security applications. The cards have shown promise in improving both the security and monitoring of systems ranging from computer network identification through physical protection and access control. With the increasing computational power embedded within these cards, advanced encryption techniques such as public key cryptography can now be realized, enabling more sophisticated uses

  9. Mathematical Physics Framework SustainingNatural Anticipation and Selection of Attention

    Directory of Open Access Journals (Sweden)

    Alfons Salden

    2005-04-01

    Full Text Available An ambient intelligent environment is definitely a prerequisite for anticipating the needs and catching the attention of systems. But how to endow such an environment with natural anticipatory and attentive features is still a hardly ever properly addressed question. Before providing a roadmap towards such an ambient intelligent environment we first give cognitive-ergonomic accounts for how natural anticipation and selection of attention (NASA emerge in living organisms. In particular, we describe why, when and how exploratory and goal-directed acts by living organisms are controlled while optimizing their changing and limited structural and functional capabilities of multimodal sensor, cognitive and actuator systems. Next, we describe how NASA can be embedded and embodied in sustainable intelligent multimodal systems (SIMS. Such systems allow an ambient intelligent environment to (self- interact taking its contexts into account. In addition, collective intelligent agents (CIA distribute, store, extend, maintain, optimize, diversify and sustain the NASA embedded and embodied in the ambient intelligent environment. Finally, we present the basic ingredients of a mathematical-physical framework for empirically modeling and sustaining NASA within SIMS by CIA in an ambient intelligent environment. An environment which is modeled this way, robustly and reliably over time aligns multi-sensor detection and fusion; multimodal fusion, dialogue planning and fission; multi actuator fission, rendering and presentation schemes. NASA residing in such an environment are then active within every phase of perception-decision-action cycles, and are gauged and renormalized to its physics. After determining and assessing across several evolutionary dynamic scales appropriate fitness, utility and measures, NASA can be realized by reinforcement learning and self-organization.

  10. Leveraging physical protection technology for international safeguards applications

    International Nuclear Information System (INIS)

    Glidewell, Don

    2001-01-01

    Full text: In an effort to improve the effectiveness, efficiency, and reliability of equipment used for International Safeguards, the European Safeguards Research and Development Association (ESARDA) Reflection Group requested the ESARDA Containment and Surveillance Working Group to investigate the feasibility of employing physical protection technologies for international safeguards applications. The physical protection market has traditionally been much greater than the international safeguards market. Consequently, physical protection technology has been subjected to greater testing and evaluation, and has enjoyed much greater real world experience. The larger market yields economies of scale, and the greater testing and experience should arguably result in improved reliability. This paper will compare requirements for physical protection versus international safeguards equipment, and identify types of physical protection equipment, which have potential for safeguards applications. It will evaluate both Commercial Off-the-Shelf (COTS) and non-COTS equipment. Finally, for selected physical protection equipment, the paper will evaluate the degree of modification that would be needed to make it acceptable for safeguards applications. (author)

  11. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks

    Science.gov (United States)

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-01-01

    Hybrid mobile applications (apps) combine the features of Web applications and “native” mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources—file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies “bridges” that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources—the ability to read and write contacts list, local files, etc.—to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign

  12. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks.

    Science.gov (United States)

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-02-01

    Hybrid mobile applications (apps) combine the features of Web applications and "native" mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources-file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies "bridges" that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources-the ability to read and write contacts list, local files, etc.-to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content

  13. Industrial applications of low-temperature plasma physics

    International Nuclear Information System (INIS)

    Chen, F.F.

    1995-01-01

    The application of plasma physics to the manufacturing and processing of materials may be the new frontier of our discipline. Already partially ionized discharges are used in industry, and the performance of plasmas has a large commercial and technological impact. However, the science of low-temperature plasmas is not as well developed as that of high-temperature, collisionless plasmas. In this paper several major areas of application are described and examples of forefront problems in each are given. The underlying thesis is that gas discharges have evolved beyond a black art, and that intellectually challenging problems with elegant solutions can be found. copyright 1995 American Institute of Physics

  14. A Review of Smartphone Applications for Promoting Physical Activity.

    Science.gov (United States)

    Coughlin, Steven S; Whitehead, Mary; Sheats, Joyce Q; Mastromonico, Jeff; Smith, Selina

    Rapid developments in technology have encouraged the use of smartphones in health promotion research and practice. Although many applications (apps) relating to physical activity are available from major smartphone platforms, relatively few have been tested in research studies to determine their effectiveness in promoting health. In this article, we summarize data on use of smartphone apps for promoting physical activity based upon bibliographic searches with relevant search terms in PubMed and CINAHL. After screening the abstracts or full texts of articles, 15 eligible studies of the acceptability or efficacy of smartphone apps for increasing physical activity were identified. Of the 15 included studies, 6 were qualitative research studies, 8 were randomized control trials, and one was a nonrandomized study with a pre-post design. The results indicate that smartphone apps can be efficacious in promoting physical activity although the magnitude of the intervention effect is modest. Participants of various ages and genders respond favorably to apps that automatically track physical activity (e.g., steps taken), track progress toward physical activity goals, and are user-friendly and flexible enough for use with several types of physical activity. Future studies should utilize randomized controlled trial research designs, larger sample sizes, and longer study periods to establish the physical activity measurement and intervention capabilities of smartphones. There is a need for culturally appropriate, tailored health messages to increase knowledge and awareness of health behaviors such as physical activity.

  15. A Review of Smartphone Applications for Promoting Physical Activity

    Science.gov (United States)

    Coughlin, Steven S.; Whitehead, Mary; Sheats, Joyce Q.; Mastromonico, Jeff; Smith, Selina

    2016-01-01

    Introduction Rapid developments in technology have encouraged the use of smartphones in health promotion research and practice. Although many applications (apps) relating to physical activity are available from major smartphone platforms, relatively few have been tested in research studies to determine their effectiveness in promoting health. Methods In this article, we summarize data on use of smartphone apps for promoting physical activity based upon bibliographic searches with relevant search terms in PubMed and CINAHL. Results After screening the abstracts or full texts of articles, 15 eligible studies of the acceptability or efficacy of smartphone apps for increasing physical activity were identified. Of the 15 included studies, 6 were qualitative research studies, 8 were randomized control trials, and one was a nonrandomized study with a pre-post design. The results indicate that smartphone apps can be efficacious in promoting physical activity although the magnitude of the intervention effect is modest. Participants of various ages and genders respond favorably to apps that automatically track physical activity (e.g., steps taken), track progress toward physical activity goals, and are user-friendly and flexible enough for use with several types of physical activity. Discussion Future studies should utilize randomized controlled trial research designs, larger sample sizes, and longer study periods to establish the physical activity measurement and intervention capabilities of smartphones. There is a need for culturally appropriate, tailored health messages to increase knowledge and awareness of health behaviors such as physical activity. PMID:27034992

  16. Valuing Metal-Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents

    KAUST Repository

    Adil, Karim

    2017-08-22

    The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.

  17. Developing Dynamic Single Page Web Applications Using Meteor : Comparing JavaScript Frameworks: Blaze and React

    OpenAIRE

    Yetayeh, Asabeneh

    2017-01-01

    This paper studies Meteor which is a JavaScript full-stack framework to develop interactive single page web applications. Meteor allows building web applications entirely in JavaScript. Meteor uses Blaze, React or AngularJS as a view layer and Node.js and MongoDB as a back-end. The main purpose of this study is to compare the performance of Blaze and React. A multi-user Blaze and React web applications with similar HTML and CSS were developed. Both applications were deployed on Heroku’s w...

  18. Evaluation of Conceptual Frameworks Applicable to the Study of Isolation Precautions Effectiveness

    Science.gov (United States)

    Crawford, Catherine; Shang, Jingjing

    2015-01-01

    Aims A discussion of conceptual frameworks applicable to the study of isolation precautions effectiveness according to Fawcett and DeSanto-Madeya’s (2013) evaluation technique and their relative merits and drawbacks for this purpose Background Isolation precautions are recommended to control infectious diseases with high morbidity and mortality, but effectiveness is not established due to numerous methodological challenges. These challenges, such as identifying empirical indicators and refining operational definitions, could be alleviated though use of an appropriate conceptual framework. Design Discussion paper Data Sources In mid-April 2014, the primary author searched five electronic, scientific literature databases for conceptual frameworks applicable to study isolation precautions, without limiting searches by publication date. Implications for Nursing By reviewing promising conceptual frameworks to support isolation precautions effectiveness research, this paper exemplifies the process to choose an appropriate conceptual framework for empirical research. Hence, researchers may build on these analyses to improve study design of empirical research in multiple disciplines, which may lead to improved research and practice. Conclusion Three frameworks were reviewed: the epidemiologic triad of disease, Donabedian’s healthcare quality framework and the Quality Health Outcomes model. Each has been used in nursing research to evaluate health outcomes and contains concepts relevant to nursing domains. Which framework can be most useful likely depends on whether the study question necessitates testing multiple interventions, concerns pathogen-specific characteristics and yields cross-sectional or longitudinal data. The Quality Health Outcomes model may be slightly preferred as it assumes reciprocal relationships, multi-level analysis and is sensitive to cultural inputs. PMID:26179813

  19. Final Report for Project "Framework Application for Core-Edge Transport Simulations (FACETS)"

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States)

    2014-01-17

    This is the final report for the Colorado State University Component of the FACETS Project. FACETS was focused on the development of a multiphysics, parallel framework application that could provide the capability to enable whole-device fusion reactor modeling and, in the process, the development of the modeling infrastructure and computational understanding needed for ITER. It was intended that FACETS be highly flexible, through the use of modern computational methods, including component technology and object oriented design, to facilitate switching from one model to another for a given aspect of the physics, and making it possible to use simplified models for rapid turnaround or high-fidelity models that will take advantage of the largest supercomputer hardware. FACETS was designed in a heterogeneous parallel context, where different parts of the application can take advantage through parallelism based on task farming, domain decomposition, and/or pipelining as needed and applicable. As with all fusion simulations, an integral part of the FACETS project was treatment of the coupling of different physical processes at different scales interacting closely. A primary example for the FACETS project is the coupling of existing core and edge simulations, with the transport and wall interactions described by reduced models. However, core and edge simulations themselves involve significant coupling of different processes with large scale differences. Numerical treatment of coupling is impacted by a number of factors including, scale differences, form of information transferred between processes, implementation of solvers for different codes, and high performance computing concerns. Operator decomposition involving the computation of the individual processes individually using appropriate simulation codes and then linking/synchronizing the component simulations at regular points in space and time, is the defacto approach to high performance simulation of multiphysics

  20. Does the knowledge-to-action (KTA) framework facilitate physical demands analysis development for firefighter injury management and return-to-work planning?

    Science.gov (United States)

    Sinden, Kathryn; MacDermid, Joy C

    2014-03-01

    Employers are tasked with developing injury management and return-to-work (RTW) programs in response to occupational health and safety policies. Physical demands analyses (PDAs) are the cornerstone of injury management and RTW development. Synthesizing and contextualizing policy knowledge for use in occupational program development, including PDAs, is challenging due to multiple stakeholder involvement. Few studies have used a knowledge translation theoretical framework to facilitate policy-based interventions in occupational contexts. The primary aim of this case study was to identify how constructs of the knowledge-to-action (KTA) framework were reflected in employer stakeholder-researcher collaborations during development of a firefighter PDA. Four stakeholder meetings were conducted with employee participants who had experience using PDAs in their occupational role. Directed content analysis informed analyses of meeting minutes, stakeholder views and personal reflections recorded throughout the case. Existing knowledge sources including local data, stakeholder experiences, policies and priorities were synthesized and tailored to develop a PDA in response to the barriers and facilitators identified by the firefighters. The flexibility of the KTA framework and synthesis of multiple knowledge sources were identified strengths. The KTA Action cycle was useful in directing the overall process but insufficient for directing the specific aspects of PDA development. Integration of specific PDA guidelines into the process provided explicit direction on best practices in tailoring the PDA and knowledge synthesis. Although the themes of the KTA framework were confirmed in our analysis, order modification of the KTA components was required. Despite a complex context with divergent perspectives successful implementation of a draft PDA was achieved. The KTA framework facilitated knowledge synthesis and PDA development but specific standards and modifications to the KTA

  1. Exploring end user adoption and maintenance of a telephone-based physical activity counseling service for individuals with physical disabilities using the Theoretical Domains Framework.

    Science.gov (United States)

    Tomasone, Jennifer R; Arbour-Nicitopoulos, Kelly P; Pila, Eva; Lamontagne, Marie-Eve; Cummings, Isabelle; Latimer-Cheung, Amy E; Routhier, François

    2017-06-01

    In Canada, two counseling services are offered to facilitate physical activity participation among persons with physical disabilities, yet both have encountered concerns related to the recruitment and retainment of clients. The purpose of this paper is to explore factors related to service adoption among nonusers, and the barriers and facilitators to maintaining service participation among adopters. Individuals who had never enrolled in the services (nonusers, n = 13) as well as current/previous service clients (adopters, n = 26) participated in interviews based on the Theoretical Domains Framework. Transcripts were subjected to deductive thematic analysis according to participant group. Fifteen themes relating to service adoption within 10 of the 12 theoretical domains were identified for nonusers, while 23 themes relating to maintenence of service participation were identified across all 12 theoretical domains for adopters. The findings provide strategies to improve recruitment, adoption, and retention of clients in counseling services and to enhance the experiences of targeted service users. Implications for Rehabiliation Peer support and education for equipment use should be built into physical activity programs to encourage participation among persons with physical disabilities. Programs that encourage physical activity among individuals with disabilities should be designed by practitioners to be responsive to a variety of needs, which are addressed in the program's advertisements and offerings. The Theoretical Domains Framework is a useful framework for providing valuable insight about clients' experiences of adoption and maintenance of a behavior change service, suggesting merit in other rehabilitation settings.

  2. BioInt: an integrative biological object-oriented application framework and interpreter.

    Science.gov (United States)

    Desai, Sanket; Burra, Prasad

    2015-01-01

    BioInt, a biological programming application framework and interpreter, is an attempt to equip the researchers with seamless integration, efficient extraction and effortless analysis of the data from various biological databases and algorithms. Based on the type of biological data, algorithms and related functionalities, a biology-specific framework was developed which has nine modules. The modules are a compilation of numerous reusable BioADTs. This software ecosystem containing more than 450 biological objects underneath the interpreter makes it flexible, integrative and comprehensive. Similar to Python, BioInt eliminates the compilation and linking steps cutting the time significantly. The researcher can write the scripts using available BioADTs (following C++ syntax) and execute them interactively or use as a command line application. It has features that enable automation, extension of the framework with new/external BioADTs/libraries and deployment of complex work flows.

  3. Application of Intervention Mapping to the Development of a Complex Physical Therapist Intervention.

    Science.gov (United States)

    Jones, Taryn M; Dear, Blake F; Hush, Julia M; Titov, Nickolai; Dean, Catherine M

    2016-12-01

    Physical therapist interventions, such as those designed to change physical activity behavior, are often complex and multifaceted. In order to facilitate rigorous evaluation and implementation of these complex interventions into clinical practice, the development process must be comprehensive, systematic, and transparent, with a sound theoretical basis. Intervention Mapping is designed to guide an iterative and problem-focused approach to the development of complex interventions. The purpose of this case report is to demonstrate the application of an Intervention Mapping approach to the development of a complex physical therapist intervention, a remote self-management program aimed at increasing physical activity after acquired brain injury. Intervention Mapping consists of 6 steps to guide the development of complex interventions: (1) needs assessment; (2) identification of outcomes, performance objectives, and change objectives; (3) selection of theory-based intervention methods and practical applications; (4) organization of methods and applications into an intervention program; (5) creation of an implementation plan; and (6) generation of an evaluation plan. The rationale and detailed description of this process are presented using an example of the development of a novel and complex physical therapist intervention, myMoves-a program designed to help individuals with an acquired brain injury to change their physical activity behavior. The Intervention Mapping framework may be useful in the development of complex physical therapist interventions, ensuring the development is comprehensive, systematic, and thorough, with a sound theoretical basis. This process facilitates translation into clinical practice and allows for greater confidence and transparency when the program efficacy is investigated. © 2016 American Physical Therapy Association.

  4. Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty

    International Nuclear Information System (INIS)

    Zhu, Shun-Peng; Huang, Hong-Zhong; Peng, Weiwen; Wang, Hai-Kun; Mahadevan, Sankaran

    2016-01-01

    A probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs operating under uncertainty is developed. The framework incorporates the overall uncertainties appearing in a structural integrity assessment. A comprehensive uncertainty quantification (UQ) procedure is presented to quantify multiple types of uncertainty using multiplicative and additive UQ methods. In addition, the factors that contribute the most to the resulting output uncertainty are investigated and identified for uncertainty reduction in decision-making. A high prediction accuracy of the proposed framework is validated through a comparison of model predictions to the experimental results of GH4133 superalloy and full-scale tests of aero engine high-pressure turbine discs. - Highlights: • A probabilistic PoF-based framework for fatigue life prediction is proposed. • A comprehensive procedure forquantifyingmultiple types of uncertaintyis presented. • The factors that contribute most to the resulting output uncertainty are identified. • The proposed frameworkdemonstrates high prediction accuracybyfull-scale tests.

  5. Layout Study and Application of Mobile App Recommendation Approach Based On Spark Streaming Framework

    Science.gov (United States)

    Wang, H. T.; Chen, T. T.; Yan, C.; Pan, H.

    2018-05-01

    For App recommended areas of mobile phone software, made while using conduct App application recommended combined weighted Slope One algorithm collaborative filtering algorithm items based on further improvement of the traditional collaborative filtering algorithm in cold start, data matrix sparseness and other issues, will recommend Spark stasis parallel algorithm platform, the introduction of real-time streaming streaming real-time computing framework to improve real-time software applications recommended.

  6. Physical protection evaluation methodology program development and application

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Yoo, Hosik [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  7. Physical protection evaluation methodology program development and application

    International Nuclear Information System (INIS)

    Seo, Janghoon; Yoo, Hosik

    2015-01-01

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  8. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    Science.gov (United States)

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-02-11

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  9. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2014-02-01

    Full Text Available Robust security is highly coveted in real wireless sensor network (WSN applications since wireless sensors’ sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring. The proposed framework offers: (i key initialization; (ii secure network (cluster formation (i.e., mutual authentication and dynamic key establishment; (iii key revocation; and (iv new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  10. A basic framework for integrating social and collaborative applications into learning environments

    NARCIS (Netherlands)

    Moghnieh, Ayman; Blat, Josep

    2009-01-01

    Moghnieh, A., & Blat, J. (2009). A basic framework for integrating social and collaborative applications into learning environments. Proceedings of the first conference on Research, Reflection, and Innovations in Integrating ICT in Education: Vol. 2 (pp. 1057-1061). April, 22-24, 2009, Lisbon,

  11. Metal-Organic Frameworks For Adsorption Driven Energy Transformation : From Fundamentals To Applications

    NARCIS (Netherlands)

    De Lange, M.F.

    2015-01-01

    A novel class of materials, i.e. Metal-Organic Frameworks (MOFs), has successfully been developed that is extremely suited for application in heat pumps and chillers. They have a superior performance over commercial sorbents and may potentially contribute to considerable energy savings worldwide.

  12. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    Science.gov (United States)

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  13. A Framework for Automated Testing of JavaScript Web Applications

    DEFF Research Database (Denmark)

    Artzi, Shay; Dolby, Julian; Jensen, Simon Holm

    2011-01-01

    Current practice in testing JavaScript web applications requires manual construction of test cases, which is difficult and tedious. We present a framework for feedback-directed automated test generation for JavaScript in which execution is monitored to collect information that directs the test...

  14. Application of Resource Description Framework to Personalise Learning: Systematic Review and Methodology

    Science.gov (United States)

    Jevsikova, Tatjana; Berniukevicius, Andrius; Kurilovas, Eugenijus

    2017-01-01

    The paper is aimed to present a methodology of learning personalisation based on applying Resource Description Framework (RDF) standard model. Research results are two-fold: first, the results of systematic literature review on Linked Data, RDF "subject-predicate-object" triples, and Web Ontology Language (OWL) application in education…

  15. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications

    NARCIS (Netherlands)

    Pagis, C.; Ferbinteanu, M.; Rothenberg, G.; Grecea, S.

    2016-01-01

    This short critical review outlines the main synthetic strategies used in the designed synthesis of lanthanide-based metal organic frameworks (Ln-MOFs). It explains the impact of the choice of organic linker on the final network topology, and it highlights the applications of Ln-MOFs in the

  16. Mobile Applications and 4G Wireless Networks: A Framework for Analysis

    Science.gov (United States)

    Yang, Samuel C.

    2012-01-01

    Purpose: The use of mobile wireless data services continues to increase worldwide. New fourth-generation (4G) wireless networks can deliver data rates exceeding 2 Mbps. The purpose of this paper is to develop a framework of 4G mobile applications that utilize such high data rates and run on small form-factor devices. Design/methodology/approach:…

  17. Application of the group-theoretical method to physical problems

    OpenAIRE

    Abd-el-malek, Mina B.

    1998-01-01

    The concept of the theory of continuous groups of transformations has attracted the attention of applied mathematicians and engineers to solve many physical problems in the engineering sciences. Three applications are presented in this paper. The first one is the problem of time-dependent vertical temperature distribution in a stagnant lake. Two cases have been considered for the forms of the water parameters, namely water density and thermal conductivity. The second application is the unstea...

  18. Teaching and Learning Numerical Analysis and Optimization: A Didactic Framework and Applications of Inquiry-Based Learning

    Science.gov (United States)

    Lappas, Pantelis Z.; Kritikos, Manolis N.

    2018-01-01

    The main objective of this paper is to propose a didactic framework for teaching Applied Mathematics in higher education. After describing the structure of the framework, several applications of inquiry-based learning in teaching numerical analysis and optimization are provided to illustrate the potential of the proposed framework. The framework…

  19. End User Development Toolkit for Developing Physical User Interface Applications

    OpenAIRE

    Abrahamsen, Daniel T; Palfi, Anders; Svendsen, Haakon Sønsteby

    2014-01-01

    BACKGROUND: Tangible user interfaces and end user development are two increasingresearch areas in software technology. Physical representation promoteopportunities to ease the use of technology and reinforce personality traits ascreativeness, collaboration and intuitive actions. However, designing tangibleuser interfaces are both cumbersome and require several layers of architecture.End user development allows users with no programming experience to createor customize their own applications. ...

  20. Recent applications of nuclear orientation to solid state physics

    International Nuclear Information System (INIS)

    Turrell, B.G.

    1985-01-01

    The author reviews how certain problems in solid state physics have been clarified by low temperature nuclear orientation and nuclear magnetic resonance of oriented nuclei. The advantages of these techniques, a brief survey of recent progress in traditional applications, and new developments are discussed, and, finally, future trends are suggested. (Auth.)

  1. Applications of accelerator mass spectrometry to nuclear physics and astrophysics

    International Nuclear Information System (INIS)

    Guo Zhiyu; Zhang Chuan

    2002-01-01

    As an ultra high sensitive analyzing method, accelerator mass spectrometry is playing an important role in the studies of nuclear physics and astrophysics. The accelerator mass spectrometry (AMS) applications in searching for violation of Pauli exclusion principle and study on supernovae are discussed as examples

  2. Applications of neural networks in high energy physics

    International Nuclear Information System (INIS)

    Cutts, D.; Hoftun, J.S.; Nesic, D.; Sornborger, A.; Johnson, C.R.; Zeller, R.T.

    1990-01-01

    Neural network techniques provide promising solutions to pattern recognition problems in high energy physics. We discuss several applications of back propagation networks, and in particular describe the operation of an electron algorithm based on calorimeter energies. 5 refs., 5 figs., 1 tab

  3. Simple mathematical models of symmetry breaking. Application to particle physics

    International Nuclear Information System (INIS)

    Michel, L.

    1976-01-01

    Some mathematical facts relevant to symmetry breaking are presented. A first mathematical model deals with the smooth action of compact Lie groups on real manifolds, a second model considers linear action of any group on real or complex finite dimensional vector spaces. Application of the mathematical models to particle physics is considered. (B.R.H.)

  4. Applications of NAA at Institute of High Energy Physics

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Chai Zhifang

    2003-01-01

    Recent achievements in application studies of neutron activation analysis (NAA) at Institute of High Energy Physics, The Chinese Academy of Sciences are briefly described. A small number of selected areas and problems, particularly in life sciences, are highlighted because they present challenges for NAA and its prospects in the future. (author)

  5. Perturbative calculations and their application to Higgs physics

    International Nuclear Information System (INIS)

    Zirke, Tom J.E.

    2014-09-01

    In this thesis the numerical calculation of IR-finite two-loop integrals for processes related to Higgs physics in four-dimensional regularization regarding especilla the process gg→HZ is described. An application to two-loop vacuum integrals with φ→γγ at NLO QCD is presented. (HSI)

  6. Applications of NAA at Institute of High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Zhiyong, Zhang; Zhifang, Chai [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2003-03-01

    Recent achievements in application studies of neutron activation analysis (NAA) at Institute of High Energy Physics, The Chinese Academy of Sciences are briefly described. A small number of selected areas and problems, particularly in life sciences, are highlighted because they present challenges for NAA and its prospects in the future. (author)

  7. Index Theory with Applications to Mathematics and Physics

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Bleecker, David

    Index Theory with Applications to Mathematics and Physics describes, explains, and explores the Index Theorem of Atiyah and Singer, one of the truly great accomplishments of twentieth-century mathematics whose influence continues to grow, fifty years after its discovery. The Index Theorem has giv...... birth to many mathematical research areas and exposed profound connections between analysis, geometry, topology, algebra, and mathematical physics. Hardly any topic of modern mathematics stands independent of its influence.......Index Theory with Applications to Mathematics and Physics describes, explains, and explores the Index Theorem of Atiyah and Singer, one of the truly great accomplishments of twentieth-century mathematics whose influence continues to grow, fifty years after its discovery. The Index Theorem has given...

  8. Essentials of Mathematica With Applications to Mathematics and Physics

    CERN Document Server

    Boccara, Nino

    2007-01-01

    Essentials of Mathematica: With Applications to Mathematics and Physics, based on the lecture notes of a course taught at the University of Illinois at Chicago to advanced undergraduate and graduate students, teaches how to use Mathematica to solve a wide variety problems in mathematics and physics. The text assumes no previous exposure to Mathematica. It is illustrated with many detailed examples that require the student to construct meticulous, step-by-step, easy-to-read Mathematica programs. It includes many detailed graphics, with instructions to students on how to achieve similar results. The aim of Essentials of Mathematica is to provide the reader with Mathematica proficiency quickly and efficiently. The first part, in which the reader learns how to use a variety of Mathematica commands, avoids long discussions and overly sophisticated techniques. The second part covers a broad range of applications in physics and applied mathematics, including negative and complex bases, the double pendulum, fractals,...

  9. Models of Coupled Settlement and Habitat Networks for Biodiversity Conservation: Conceptual Framework, Implementation and Potential Applications

    Directory of Open Access Journals (Sweden)

    Maarten J. van Strien

    2018-04-01

    Full Text Available Worldwide, the expansion of settlement and transport infrastructure is one of the most important proximate as well as ultimate causes of biodiversity loss. As much as every modern human society depends on a network of settlements that is well-connected by transport infrastructure (i.e., settlement network, animal and plant species depend on networks of habitats between which they can move (i.e., habitat networks. However, changes to a settlement network in a region often threaten the integrity of the region's habitat networks. Determining plans and policy to prevent these threats is made difficult by the numerous interactions and feedbacks that exist between and within the settlement and habitat networks. Mathematical models of coupled settlement and habitat networks can help us understand the dynamics of this social-ecological system. Yet, few attempts have been made to develop such mathematical models. In this paper, we promote the development of models of coupled settlement and habitat networks for biodiversity conservation. First, we present a conceptual framework of key variables that are ideally considered when operationalizing the coupling of settlement and habitat networks. In this framework, we first describe important network-internal interactions by differentiating between the structural (i.e., relating to purely physical conditions determining the suitability of a location for living or movement and functional (i.e., relating to the actual presence, abundance or movement of people or other organisms properties of either network. We then describe the main one-way influences that a settlement network can exert on the habitat networks and vice versa. Second, we give several recommendations for the mathematical modeling of coupled settlement and habitat networks and present several existing modeling approaches (e.g., habitat network models and land-use transport interaction models that could be used for this purpose. Lastly, we elaborate

  10. Fast development of real-time applications using MDSplus and MARTe frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Manduchi, G., E-mail: gabriele.manduchi@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova (Italy); Fredian, T.W.; Stillerman, J.A. [Massachusetts Institute of Technology, 175 Albany Street, Cambridge, MA 02139 (United States); Neto, A.; Sartori, F. [Fusion for Energy, Barcelona (Spain)

    2016-11-15

    Highlights: • The paper describes the integration of two different frameworks for control and data acquisition. • It describes the way the two frameworks have been integrated. • It describes the advantages of this combined approach. • It presents a case study of the utilization of the two integrated frameworks. - Abstract: The recent long lasting fusion experiments introduced a change in paradigm for control and data acquisition. While formerly implemented by different systems, using different software and hardware solutions, new requirements, such as the need of handling a sustained data stream, the availability of powerful general-purpose computers and the evolution of Linux towards real-time responsiveness make an integrated solution nowadays feasible. In the fusion community several frameworks have been developed for control and data acquisition and some of them are shared among different experiments. In particular, MDSplus represents the most used framework for data acquisition and management and MARTe is a framework for real-time applications originally developed at JET, but then adopted in several other experiments. Neither system can be used alone to provide integrated real-time control and data acquisition but, since their functionality complements, they can be used in conjunction. To achieve this, an additional layer has been developed so that data handled in real-time by MARTe components can be redirected to pulse file for storage. At the same time, configuration data, typically defined in the MDSplus experiment model, can be seamlessly transferred to MARTe GAMs during system configuration.

  11. Multiagent Systems and Applications Volume 2 Development Using the GORITE BDI Framework

    CERN Document Server

    Jarvis, Dennis; Ronnquist, Ralph; Jain, Lakhmi C

    2013-01-01

    Since its conception almost 30 years ago, the BDI (Belief Desire Intention) model of agency has become established, along with Soar, as the approach of choice for practitioners in the development of knowledge intensive agent applications. However, in developing BDI agent applications for over 15 years, the authors of this book have observed a disconnect between what the BDI model provides and what is actually required of an agent model in order to build practical systems. The GORITE BDI framework was  developed to address this gap and this book is written for students, researchers and practitioners who wish to gain a practical understanding of how GORITE is used to develop BDI agent applications. In this regard, a feature of the book is the use of complete, annotated examples. As GORITE is a Java framework,  a familiarity with Java (or a similar language) is assumed, but no prior knowledge of the BDI model is required.

  12. Physics and Mechanics of New Materials and Their Applications

    CERN Document Server

    Chang, Shun-Hsyung; Gupta, Vijay

    2018-01-01

    This book presents selected peer-reviewed contributions from the 2017 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2017 (Jabalpur, India, 14–16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical–mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities ...

  13. Multivariable calculus with Matlab with applications to geometry and physics

    CERN Document Server

    Lipsman, Ronald L

    2017-01-01

    This comprehensive treatment of multivariable calculus focuses on the numerous tools that MATLAB® brings to the subject, as it presents introductions to geometry, mathematical physics, and kinematics. Covering simple calculations with MATLAB®, relevant plots, integration, and optimization, the numerous problem sets encourage practice with newly learned skills that cultivate the reader’s understanding of the material. Significant examples illustrate each topic, and fundamental physical applications such as Kepler’s Law, electromagnetism, fluid flow, and energy estimation are brought to prominent position. Perfect for use as a supplement to any standard multivariable calculus text, a “mathematical methods in physics or engineering” class, for independent study, or even as the class text in an “honors” multivariable calculus course, this textbook will appeal to mathematics, engineering, and physical science students. MATLAB® is tightly integrated into every portion of this book, and its graphical ...

  14. DNA confinement in nanochannels: physics and biological applications

    DEFF Research Database (Denmark)

    Reisner, Walter; Pedersen, Jonas Nyvold; Austin, Robert H

    2012-01-01

    in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement—including the effect of varying ionic strength—and then discuss recent applications of these systems to genomic mapping. Apart from the intense...... direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined...... biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100μm range. (Some...

  15. GO-FLOW methodology. Basic concept and integrated analysis framework for its applications

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2010-01-01

    GO-FLOW methodology is a success oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. Recently an integrated analysis framework of the GO-FLOW has been developed for the safety evaluation of elevator systems by the Ministry of Land, Infrastructure, Transport and Tourism, Japanese Government. This paper describes (a) an Overview of the GO-FLOW methodology, (b) Procedure of treating a phased mission problem, (c) Common cause failure analysis, (d) Uncertainty analysis, and (e) Integrated analysis framework. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis and has a wide range of applications. (author)

  16. Flexible test automation a software framework for easily developing measurement applications

    CERN Document Server

    Arpaia, Pasquale; De Matteis, Ernesto

    2014-01-01

    In laboratory management of an industrial test division, a test laboratory, or a research center, one of the main activities is producing suitable software for automatic benches by satisfying a given set of requirements. This activity is particularly costly and burdensome when test requirements are variable over time. If the batches of objects have small size and frequent occurrence, the activity of measurement automation becomes predominating with respect to the test execution. Flexible Test Automation shows the development of a software framework as a useful solution to satisfy this exigency. The framework supports the user in producing measurement applications for a wide range of requirements with low effort and development time.

  17. HealthNode: Software Framework for Efficiently Designing and Developing Cloud-Based Healthcare Applications

    Directory of Open Access Journals (Sweden)

    Ho-Kyeong Ra

    2018-01-01

    Full Text Available With the exponential improvement of software technology during the past decade, many efforts have been made to design remote and personalized healthcare applications. Many of these applications are built on mobile devices connected to the cloud. Although appealing, however, prototyping and validating the feasibility of an application-level idea is yet challenging without a solid understanding of the cloud, mobile, and the interconnectivity infrastructure. In this paper, we provide a solution to this by proposing a framework called HealthNode, which is a general-purpose framework for developing healthcare applications on cloud platforms using Node.js. To fully exploit the potential of Node.js when developing cloud applications, we focus on the fact that the implementation process should be eased. HealthNode presents an explicit guideline while supporting necessary features to achieve quick and expandable cloud-based healthcare applications. A case study applying HealthNode to various real-world health applications suggests that HealthNode can express architectural structure effectively within an implementation and that the proposed platform can support system understanding and software evolution.

  18. Game design and development for learning physics using the flow framework

    NARCIS (Netherlands)

    Pranantha, D.; van der Spek, E.D.; Bellotti, F.; Berta, R.; de Gloria, A.; Rauterberg, G.W.M.; de Gloria, A.

    2014-01-01

    Instruction, in several knowledge domains, aims at achieving two goals: acquisition of a body of knowledge and of problem solving skills in the field. In physics, this requires students to connect physical phe- nomena, physics principles, and physics symbols. This can be learned on paper, but

  19. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    International Nuclear Information System (INIS)

    Jenkins, David

    2015-01-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such 'medium-resolution' spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen. (paper)

  20. A Mobile Application Recommendation Framework by Exploiting Personal Preference with Constraints

    Directory of Open Access Journals (Sweden)

    Konglin Zhu

    2017-01-01

    Full Text Available Explosive mobile applications (Apps are proliferating with the popularity of mobile devices (e.g., smartphones, tablets. These Apps are developed to satisfy different function needs of users. Majority of existing App Stores have difficulty in recommending proper Apps for users. Therefore, it is of significance to recommend mobile Apps for users according to personal preference and various constraints of mobile devices (e.g., battery power. In this paper, we propose a mobile App recommendation framework by incorporating different requirements from users. We exploit modern portfolio theory (MPT to combine the popularity of mobile Apps, personal preference, and mobile device constraints for mobile App recommendation. Based on this framework, we discuss the recommendation approaches by constraints of phone power and limited mobile data plan. Extensive evaluations show that the proposed mobile App recommendation framework can well adapt to power and network data plan constraints. It satisfies the user App preference and mobile device constraints.

  1. Pyff - a pythonic framework for feedback applications and stimulus presentation in neuroscience.

    Science.gov (United States)

    Venthur, Bastian; Scholler, Simon; Williamson, John; Dähne, Sven; Treder, Matthias S; Kramarek, Maria T; Müller, Klaus-Robert; Blankertz, Benjamin

    2010-01-01

    This paper introduces Pyff, the Pythonic feedback framework for feedback applications and stimulus presentation. Pyff provides a platform-independent framework that allows users to develop and run neuroscientific experiments in the programming language Python. Existing solutions have mostly been implemented in C++, which makes for a rather tedious programming task for non-computer-scientists, or in Matlab, which is not well suited for more advanced visual or auditory applications. Pyff was designed to make experimental paradigms (i.e., feedback and stimulus applications) easily programmable. It includes base classes for various types of common feedbacks and stimuli as well as useful libraries for external hardware such as eyetrackers. Pyff is also equipped with a steadily growing set of ready-to-use feedbacks and stimuli. It can be used as a standalone application, for instance providing stimulus presentation in psychophysics experiments, or within a closed loop such as in biofeedback or brain-computer interfacing experiments. Pyff communicates with other systems via a standardized communication protocol and is therefore suitable to be used with any system that may be adapted to send its data in the specified format. Having such a general, open-source framework will help foster a fruitful exchange of experimental paradigms between research groups. In particular, it will decrease the need of reprogramming standard paradigms, ease the reproducibility of published results, and naturally entail some standardization of stimulus presentation.

  2. An Indicator-Based Framework to Evaluate Sustainability of Farming Systems: Review of Applications in Tuscany

    Directory of Open Access Journals (Sweden)

    Concetta Vazzana

    2011-02-01

    Full Text Available Agricultural researchers widely recognise the importance of sustainable agricultural production systems and the need to develop appropriate methods to measure sustainability at the farm level. Policymakers need accounting and evaluation tools to be able to assess the potential of sustainable production practices and to provide appropriate agro-environmental policy measures. Farmers are in search of sustainable management tools to cope with regulations and enhance efficiency. This study proposes an indicator-based framework to evaluate sustainability of farming systems. Main features of the indicators’ framework are the relevance given to different spatial scales (farm, site and field, production and pedo-climatic factors, and a holistic view of the agro-ecosystem. The framework has been conceived to tackle different purposes ranging from detailed scientific analyses to farm-level management systems and cross-compliance. Agro-environmental indicators can be calculated, simulated with models or directly measured with different levels of detail proportionally to the aims of the evaluation exercise. The framework is organised in a number of environmental and production systems and sub-systems. For each system environmental critical points are identified with corresponding agro-environmental indicators and processing methods. A review of applications of the framework in Tuscany, Italy, since 1991 is presented. Applications range from prototyping farming systems, to integrated farm ecological-economic modelling, comparisons between organic, integrated and conventional farming systems, farm eco-management voluntary audit schemes and cross-compliance. Strengths and weaknesses of the framework are discussed against generic requirements of information systems and operational issues.

  3. Application of ECR ion source beams in atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W.

    1987-01-01

    The availability of intense, high charge state ion beams from ECR ion sources has had significant impact not only on the upgrading of cyclotron and synchrotron facilities, but also on multicharged ion collision research, as evidenced by the increasing number of ECR source facilities used at least on a part time basis for atomic physics research. In this paper one such facility, located at the ORNL ECR source, and dedicated full time to the study of multicharged ion collisions, is described. Examples of applications of ECR ion source beams are given, based on multicharged ion collision physics studies performed at Oak Ridge over the last few years. 21 refs., 18 figs., 2 tabs.

  4. QCD sum rules and applications to nuclear physics

    International Nuclear Information System (INIS)

    Cohen, T.D.; Xuemin, J.

    1994-12-01

    Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author)

  5. Classical-physics applications for Finsler b space

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Joshua [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Lehnert, Ralf, E-mail: ralehner@indiana.edu [Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 (United States)

    2015-06-30

    The classical propagation of certain Lorentz-violating fermions is known to be governed by geodesics of a four-dimensional pseudo-Finsler b space parametrized by a prescribed background covector field. This work identifies systems in classical physics that are governed by the three-dimensional version of Finsler b space and constructs a geodesic for a sample non-constant choice for the background covector. The existence of these classical analogues demonstrates that Finsler b spaces possess applications in conventional physics, which may yield insight into the propagation of SME fermions on curved manifolds.

  6. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  7. Development and application of an integrated evaluation framework for preventive safety applications

    NARCIS (Netherlands)

    Scholliers, J.; Joshi, S.; Gemou, M.; Hendriks, F.; Ljung Aust, M.; Luoma, J.; Netto, M.; Engstrom, J.; Leanderson Olsson, S.; Kutzner, R.; Tango, F.; Amditis, A.J.; Blosseville, J.M.; Bekiaris, E.

    2011-01-01

    Preventive safety functions help drivers avoid or mitigate accidents. No quantitative methods have been available to evaluate the safety impact of these systems. This paper describes a framework for the assessment of preventive and active safety functions, which integrates procedures for technical

  8. A framework to evaluate the functionality of mobile applications for music composition

    Directory of Open Access Journals (Sweden)

    Sonja Visagie

    2014-07-01

    Full Text Available The functionality of a diverse range of mobile applications for music composition is discussed in this paper. The focus is on generic functionality requirements, the needs of novice and expert users to compose music and some of the mobile applications for music composition available from the iTunes App Store. The paper further addresses the gap that exists in current literature about the functionalities required of mobile applications for music composition. In order to assist composers of music (from novices to experts to identify and choose the most appropriate application for composing music on a mobile device, a framework is developed against which the functionality of ten mobile applications for music composition is evaluated.

  9. Critical analysis of e-health readiness assessment frameworks: suitability for application in developing countries.

    Science.gov (United States)

    Mauco, Kabelo Leonard; Scott, Richard E; Mars, Maurice

    2018-02-01

    Introduction e-Health is an innovative way to make health services more effective and efficient and application is increasing worldwide. e-Health represents a substantial ICT investment and its failure usually results in substantial losses in time, money (including opportunity costs) and effort. Therefore it is important to assess e-health readiness prior to implementation. Several frameworks have been published on e-health readiness assessment, under various circumstances and geographical regions of the world. However, their utility for the developing world is unknown. Methods A literature review and analysis of published e-health readiness assessment frameworks or models was performed to determine if any are appropriate for broad assessment of e-health readiness in the developing world. A total of 13 papers described e-health readiness in different settings. Results and Discussion Eight types of e-health readiness were identified and no paper directly addressed all of these. The frameworks were based upon varying assumptions and perspectives. There was no underlying unifying theory underpinning the frameworks. Few assessed government and societal readiness, and none cultural readiness; all are important in the developing world. While the shortcomings of existing frameworks have been highlighted, most contain aspects that are relevant and can be drawn on when developing a framework and assessment tools for the developing world. What emerged is the need to develop different assessment tools for the various stakeholder sectors. This is an area that needs further research before attempting to develop a more generic framework for the developing world.

  10. Ergonomic decision-making: a conceptual framework for experienced practitioners from backgrounds in industrial engineering and physical therapy.

    Science.gov (United States)

    Piegorsch, Karen M; Watkins, Ken W; Piegorsch, Walter W; Reininger, Belinda; Corwin, Sara J; Valois, Robert F

    2006-09-01

    Ergonomists play an important role in preventing and controlling work-related injuries and illnesses, yet little is known about the decision-making processes that lead to their recommendations. This study (1) generated a data-grounded conceptual framework, based on schema theory, for ergonomic decision-making by experienced practitioners in the USA and (2) assessed the adequacy of that framework for describing the decision-making of ergonomics practitioners from backgrounds in industrial engineering (IE) and physical therapy (PT). A combination of qualitative and quantitative analyses, within and across 54 decision-making situations derived from in-depth interviews with 21 practitioners, indicated that a single framework adequately describes the decision-making of experienced practitioners from these backgrounds. Results indicate that demands of the practitioner environment and practitioner factors such as personality more strongly influence the decision-making of experienced ergonomics practitioners than does practitioner background in IE or PT.

  11. A New Framework for Evaluating the Functional Capabilities of Intra-Enterprise Application Integration Technologies

    Directory of Open Access Journals (Sweden)

    Hossein Moradi

    2010-10-01

    Full Text Available Enterprise Application Integration (EAI technologies facilitate the sharing of information and business processes of interrelated information systems in order to achieve the target integrated systems. Different EAI solutions and technologies provide various capabilities which lead to the complexity of their evaluation process. To reduce this complexity, appropriate tools for evaluating the functional capabilities of EAI technologies are required. This paper proposes a new framework for evaluating the functional capabilities of EAI technologies, which simplify the process of evaluating the functional capabilities of intra-enterprise integration technologies and solutions.The proposed framework for evaluating the EAI technologies was enhanced using the structural and conceptual aspects of previous frameworks. It offers a new schema for which various EAI technologies are categorized in different classes and are evaluated based on their supporting level for functional integration capabilities’ criteria.The new framework offers two lists containing integration technologies and their associated classifications, and functional capabilities of integration technologies. The proposed framework is a novel one which can be used by information system experts for evaluation and comparison purposes of various integration technologies.

  12. An architectural framework for developing intelligent applications for the carbon dioxide capture process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, C.; Zhou, Q.; Chan, C.W. [Regina Univ., SK (Canada)

    2009-07-01

    This presentation reported on the development of automated application solutions for the carbon dioxide (CO{sub 2}) capture process. An architectural framework was presented for developing intelligent systems for the process system. The chemical absorption process consists of dozens of components. It therefore generates more than a hundred different types of data. Developing automated support for these tasks is desirable because the monitoring, analysis and diagnosis of the data is very complex. The proposed framework interacts with an implemented domain ontology for the CO{sub 2} capture process, which consists of information derived from senior operators of the CO{sub 2} pilot plant at the International Test Centre for Carbon Dioxide Capture at University of Regina. The well-defined library within the framework reduces development time and cost. The framework also has built-in web-based software components for data monitoring, management, and analysis. These components provide support for generating automated solutions for the CO{sub 2} capture process. An automated monitoring system that was also developed based on the architectural framework.

  13. Towards a European Framework to Monitor Infectious Diseases among Migrant Populations: Design and Applicability

    Directory of Open Access Journals (Sweden)

    Flavia Riccardo

    2015-09-01

    Full Text Available There are limitations in our capacity to interpret point estimates and trends of infectious diseases occurring among diverse migrant populations living in the European Union/European Economic Area (EU/EEA. The aim of this study was to design a data collection framework that could capture information on factors associated with increased risk to infectious diseases in migrant populations in the EU/EEA. The authors defined factors associated with increased risk according to a multi-dimensional framework and performed a systematic literature review in order to identify whether those factors well reflected the reported risk factors for infectious disease in these populations. Following this, the feasibility of applying this framework to relevant available EU/EEA data sources was assessed. The proposed multidimensional framework is well suited to capture the complexity and concurrence of these risk factors and in principle applicable in the EU/EEA. The authors conclude that adopting a multi-dimensional framework to monitor infectious diseases could favor the disaggregated collection and analysis of migrant health data.

  14. Interpolation between spatial frameworks: an application of process convolution to estimating neighbourhood disease prevalence.

    Science.gov (United States)

    Congdon, Peter

    2014-04-01

    Health data may be collected across one spatial framework (e.g. health provider agencies), but contrasts in health over another spatial framework (neighbourhoods) may be of policy interest. In the UK, population prevalence totals for chronic diseases are provided for populations served by general practitioner practices, but not for neighbourhoods (small areas of circa 1500 people), raising the question whether data for one framework can be used to provide spatially interpolated estimates of disease prevalence for the other. A discrete process convolution is applied to this end and has advantages when there are a relatively large number of area units in one or other framework. Additionally, the interpolation is modified to take account of the observed neighbourhood indicators (e.g. hospitalisation rates) of neighbourhood disease prevalence. These are reflective indicators of neighbourhood prevalence viewed as a latent construct. An illustrative application is to prevalence of psychosis in northeast London, containing 190 general practitioner practices and 562 neighbourhoods, including an assessment of sensitivity to kernel choice (e.g. normal vs exponential). This application illustrates how a zero-inflated Poisson can be used as the likelihood model for a reflective indicator.

  15. Continuous Integration for Concurrent MOOSE Framework and Application Development on GitHub

    Directory of Open Access Journals (Sweden)

    Andrew E. Slaughter

    2015-11-01

    Full Text Available For the past several years, Idaho National Laboratory’s MOOSE framework team has employed modern software engineering techniques (continuous integration, joint application/framework source code repos- itories, automated regression testing, etc. in developing closed-source multiphysics simulation software (Gaston et al., 'Journal of Open Research Software' vol. 2, article e10, 2014. In March 2014, the MOOSE framework was released under an open source license on GitHub, significantly expanding and diversifying the pool of current active and potential future contributors on the project. Despite this recent growth, the same philosophy of concurrent framework and application development continues to guide the project’s development roadmap. Several specific practices, including techniques for managing multiple repositories, conducting automated regression testing, and implementing a cascading build process are discussed in this short paper. Special attention is given to describing the manner in which these practices naturally synergize with the GitHub API and GitHub-specific features such as issue tracking, Pull Requests, and project forks.

  16. Application of electrostatic accelerators for nuclear physics studies

    International Nuclear Information System (INIS)

    Kuz'minov, B.D.; Romanov, V.A.; Usachev, L.N.

    1983-01-01

    The data are reviewed on dynamics of the development of single- and two-stage electrostatic accelerators (ESA) used as a tool or nuclear physics studies in the range of low and medium energies. The ESA wide possibilities are shown on examples of the most specific studies in the field of nuclear physics, work on measurement of nuclear constants to safisfy the nuclear power needs and applied studies on nuclear microanalysis. It is concluded that the contribution of studies performed using ESA to the development of nowadays concepts on nuclear structure and nuclear reaction kinetics is immeasurably higher than of any other nuclear-physics tool. ESA turned out to be also exceptionally useful for solving applied problems and investigations in different fields of knowledge. Carrying over the technique of investigations using ESA and nuclear physics concepts to atomic and molecular problems has found its application in optical spectroscopy in Lamb shift investigations in strongly ionized heavy ions, in various experiments on atom-atom and atom-molecular scattering, in stUdies of collisions and charge exchange. ESA contributed to the progress in such scientific fields as astraphysics, nuclear physics, solid-state physics, material science and biophysics

  17. Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.

    Science.gov (United States)

    Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S

    2011-02-01

    Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  18. Smart Brix—a continuous evolution framework for container application deployments

    Directory of Open Access Journals (Sweden)

    Johannes M. Schleicher

    2016-06-01

    Full Text Available Container-based application deployments have received significant attention in recent years. Operating system virtualization based on containers as a mechanism to deploy and manage complex, large-scale software systems has become a popular mechanism for application deployment and operation. Packaging application components into self-contained artifacts has brought substantial flexibility to developers and operation teams alike. However, this flexibility comes at a price. Practitioners need to respect numerous constraints ranging from security and compliance requirements, to specific regulatory conditions. Fulfilling these requirements is especially challenging in specialized domains with large numbers of stakeholders. Moreover, the rapidly growing number of container images to be managed due to the introduction of new or updated applications and respective components, leads to significant challenges for container management and adaptation. In this paper, we introduce Smart Brix, a framework for continuous evolution of container application deployments that tackles these challenges. Smart Brix integrates and unifies concepts of continuous integration, runtime monitoring, and operational analytics. Furthermore, it allows practitioners to define generic analytics and compensation pipelines composed of self-assembling processing components to autonomously validate and verify containers to be deployed. We illustrate the feasibility of our approach by evaluating our framework using a case study from the smart city domain. We show that Smart Brix is horizontally scalable and runtime of the implemented analysis and compensation pipelines scales linearly with the number of container application packages.

  19. Image processing applications: From particle physics to society

    International Nuclear Information System (INIS)

    Sotiropoulou, C.-L.; Citraro, S.; Dell'Orso, M.; Luciano, P.; Gkaitatzis, S.; Giannetti, P.

    2017-01-01

    We present an embedded system for extremely efficient real-time pattern recognition execution, enabling technological advancements with both scientific and social impact. It is a compact, fast, low consumption processing unit (PU) based on a combination of Field Programmable Gate Arrays (FPGAs) and the full custom associative memory chip. The PU has been developed for real time tracking in particle physics experiments, but delivers flexible features for potential application in a wide range of fields. It has been proposed to be used in accelerated pattern matching execution for Magnetic Resonance Fingerprinting (biomedical applications), in real time detection of space debris trails in astronomical images (space applications) and in brain emulation for image processing (cognitive image processing). We illustrate the potentiality of the PU for the new applications.

  20. A high performance data parallel tensor contraction framework: Application to coupled electro-mechanics

    Science.gov (United States)

    Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio

    2017-07-01

    The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.

  1. Introducing FACETS, the Framework Application for Core-Edge Transport Simulations

    International Nuclear Information System (INIS)

    Cary, John R.; Candy, Jeff; Cohen, Ronald H.; Krasheninnikov, Sergei I.; McCune, Douglas C.; Estep, Donald J.; Larson, Jay W.; Malony, Allen; Worley, Patrick H.; Carlsson, Johann Anders; Hakim, A.H.; Hamill, P.; Kruger, Scott E.; Muzsala, S.; Pletzer, Alexander; Shasharina, Svetlana; Wade-Stein, D.; Wang, N.; McInnes, Lois C.; Wildey, T.; Casper, T.A.; Diachin, Lori A.; Epperly, Thomas; Rognlien, T.D.; Fahey, Mark R.; Kuehn, Jeffery A.; Morris, A.; Shende, Sameer; Feibush, E.; Hammett, Gregory W.; Indireshkumar, K.; Ludescher, C.; Randerson, L.; Stotler, D.; Pigarov, A.; Bonoli, P.; Chang, C.S.; D'Ippolito, D.A.; Colella, Philip; Keyes, David E.; Bramley, R.

    2007-01-01

    The FACETS (Framework Application for Core-Edge Transport Simulations) project began in January 2007 with the goal of providing core to wall transport modeling of a tokamak fusion reactor. This involves coupling previously separate computations for the core, edge, and wall regions. Such a coupling is primarily through connection regions of lower dimensionality. The project has started developing a component-based coupling framework to bring together models for each of these regions. In the first year, the core model will be a 1 dimensional model (1D transport across flux surfaces coupled to a 2D equilibrium) with fixed equilibrium. The initial edge model will be the fluid model, UEDGE, but inclusion of kinetic models is planned for the out years. The project also has an embedded Scientific Application Partnership that is examining embedding a full-scale turbulence model for obtaining the crosssurface fluxes into a core transport code.

  2. A Comparison Framework for Reactor Anti-Neutrino Detectors in Near-Field Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mendenhall, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brodsky, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-03

    Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculating generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.

  3. Medical applications of nuclear physics and heavy-ion beams

    International Nuclear Information System (INIS)

    Alonso, Jose R.

    2000-01-01

    Isotopes and accelerators, hallmarks of nuclear physics, are finding increasingly sophisticated and effective applications in the medical field. Diagnostic and therapeutic uses of radioisotopes are now a $10B/yr business worldwide, with over 10 million procedures and patient studies performed every year. This paper will discuss the use of isotopes for these applications. In addition, beams of protons and heavy ions are being more and more widely used clinically for treatment of malignancies. To be discussed here as well will be the rationale and techniques associated with charged-particle therapy, and the progress in implementation and optimization of these technologies for clinical use

  4. 14 MeV neutrons physics and applications

    CERN Document Server

    Valkovic, Vladivoj

    2015-01-01

    Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security.Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on:Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube ac

  5. Magnetic resonance angiography: Physical principles and clinical applications

    International Nuclear Information System (INIS)

    Hausmann, R.; Mueller, E.

    1992-01-01

    Within the last four years magnetic resonance angiography (MRA) developed very rapidly towards a well accepted screening technique for vascular examinations as a fast add-on to conventional MR. This review describes the basic physical principles as well as the different methods like time-of-flight and phase-sensitive MRA for visualization of blood vessels. Different applications of 3D, 2D sequential and 3D multivolume MRA are shown from various regions of the head and body. A short outlock to quantitative flow measurments is given in the last chapter including some interesting applications of these techniques which show the still expanding potential of magnetic resonance. (orig.) [de

  6. Classical Methods of Statistics With Applications in Fusion-Oriented Plasma Physics

    CERN Document Server

    Kardaun, Otto J W F

    2005-01-01

    Classical Methods of Statistics is a blend of theory and practical statistical methods written for graduate students and researchers interested in applications to plasma physics and its experimental aspects. It can also fruitfully be used by students majoring in probability theory and statistics. In the first part, the mathematical framework and some of the history of the subject are described. Many exercises help readers to understand the underlying concepts. In the second part, two case studies are presented exemplifying discriminant analysis and multivariate profile analysis. The introductions of these case studies outline contextual magnetic plasma fusion research. In the third part, an overview of statistical software is given and, in particular, SAS and S-PLUS are discussed. In the last chapter, several datasets with guided exercises, predominantly from the ASDEX Upgrade tokamak, are included and their physical background is concisely described. The book concludes with a list of essential keyword transl...

  7. Systems and models with anticipation in physics and its applications

    International Nuclear Information System (INIS)

    Makarenko, A

    2012-01-01

    Investigations of recent physics processes and real applications of models require the new more and more improved models which should involved new properties. One of such properties is anticipation (that is taking into accounting some advanced effects).It is considered the special kind of advanced systems – namely a strong anticipatory systems introduced by D. Dubois. Some definitions, examples and peculiarities of solutions are described. The main feature is presumable multivaluedness of the solutions. Presumable physical examples of such systems are proposed: self-organization problems; dynamical chaos; synchronization; advanced potentials; structures in micro-, meso- and macro- levels; cellular automata; computing; neural network theory. Also some applications for modeling social, economical, technical and natural systems are described.

  8. A Component-based Software Development and Execution Framework for CAx Applications

    Directory of Open Access Journals (Sweden)

    N. Matsuki

    2004-01-01

    Full Text Available Digitalization of the manufacturing process and technologies is regarded as the key to increased competitive ability. The MZ-Platform infrastructure is a component-based software development framework, designed for supporting enterprises to enhance digitalized technologies using software tools and CAx components in a self-innovative way. In the paper we show the algorithm, system architecture, and a CAx application example on MZ-Platform. We also propose a new parametric data structure based on MZ-Platform.

  9. ASP.NET web API build RESTful web applications and services on the .NET framework

    CERN Document Server

    Kanjilal, Joydip

    2013-01-01

    This book is a step-by-step, practical tutorial with a simple approach to help you build RESTful web applications and services on the .NET framework quickly and efficiently.This book is for ASP.NET web developers who want to explore REST-based services with C# 5. This book contains many real-world code examples with explanations whenever necessary. Some experience with C# and ASP.NET 4 is expected.

  10. Applications of the ARGUS code in accelerator physics

    International Nuclear Information System (INIS)

    Petillo, J.J.; Mankofsky, A.; Krueger, W.A.; Kostas, C.; Mondelli, A.A.; Drobot, A.T.

    1993-01-01

    ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper

  11. Solid state physics advances in research and applications

    CERN Document Server

    Turnbull, David

    1991-01-01

    The explosion of the science of mesoscopic structures is having a great impact on physics and electrical engineering because of the possible applications of these structures in microelectronic and optoelectronic devices of the future. This volume of Solid State Physics consists of two comprehensive and authoritative articles that discuss most of the physical problems that have so far been identified as being of importance in semiconductor nanostructures. Much of the volume is tutorial in characture--while at the same time time presenting current and vital theoretical and experimental results and a copious reference list--so it will be essential reading to all those taking a part in the research and development of this emerging technology.

  12. Novel Dilute Bismide, Epitaxy, Physical Properties and Device Application

    Directory of Open Access Journals (Sweden)

    Lijuan Wang

    2017-02-01

    Full Text Available Dilute bismide in which a small amount of bismuth is incorporated to host III-Vs is the least studied III-V compound semiconductor and has received steadily increasing attention since 2000. In this paper, we review theoretical predictions of physical properties of bismide alloys, epitaxial growth of bismide thin films and nanostructures, surface, structural, electric, transport and optic properties of various binaries and bismide alloys, and device applications.

  13. Application of artificial neural networks in particle physics

    International Nuclear Information System (INIS)

    Kolanoski, H.

    1995-04-01

    The application of Artificial Neural Networks in Particle Physics is reviewed. Most common is the use of feed-forward nets for event classification and function approximation. This network type is best suited for a hardware implementation and special VLSI chips are available which are used in fast trigger processors. Also discussed are fully connected networks of the Hopfield type for pattern recognition in tracking detectors. (orig.)

  14. Physics and application of plasmas based on pulsed power technology

    International Nuclear Information System (INIS)

    Hotta, Eiki; Ozaki, Tetsuo

    2012-04-01

    The papers presented at the symposium on 'Physics and Application of Plasmas Based on Pulsed Power Technology' held on December 21-22, 2010 at National Institute of Fusion Science are collected. The papers in this proceeding reflect the current status and progress in the experimental and theoretical researches on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  15. Monte Carlo methods and applications in nuclear physics

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs

  16. Monte Carlo methods and applications in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.

  17. Squids: principles and basic applications in experimental physics

    International Nuclear Information System (INIS)

    Ocio, M.

    1990-01-01

    The basic principles and the description of the technical aspects of SQUIDs (Superconducting Quantum Interference Devices) are described. The applications of SQUIDs in experimental researches and low temperature physics experiments are given. The concepts of fluxoid quantization in a superconductor and Josephson tunnelling are reviewed. The principles, the operation, the noise and the different configurations of r.f. and direct current bias SQUIDs are summarized. The principal characteristics of several SQUIDs are reported

  18. Applications of Monte Carlo method in Medical Physics

    International Nuclear Information System (INIS)

    Diez Rios, A.; Labajos, M.

    1989-01-01

    The basic ideas of Monte Carlo techniques are presented. Random numbers and their generation by congruential methods, which underlie Monte Carlo calculations are shown. Monte Carlo techniques to solve integrals are discussed. The evaluation of a simple monodimensional integral with a known answer, by means of two different Monte Carlo approaches are discussed. The basic principles to simualate on a computer photon histories reduce variance and the current applications in Medical Physics are commented. (Author)

  19. A knowledge-based system framework for real-time monitoring applications

    International Nuclear Information System (INIS)

    Heaberlin, J.O.; Robinson, A.H.

    1989-01-01

    A real-time environment presents a challenge for knowledge-based systems for process monitoring with on-line data acquisition in nuclear power plants. These applications are typically data intensive. This, coupled with the dynamic nature of events on which problematic decisions are based, requires the development of techniques fundamentally different from those generally employed. Traditional approaches involve knowledge management techniques developed for static data, the majority of which is elicited directly from the user in a consultation environment. Inference mechanisms are generally noninterruptible, requiring all appropriate rules to be fired before new data can be accommodated. As a result, traditional knowledge-based applications in real-time environments have inherent problems in dealing with the time dependence of both the data and the solution process. For example, potential problems include obtaining a correct solution too late to be of use or focusing computing resources on problems that no longer exist. A knowledge-based system framework, the real-time framework (RTF), has been developed that can accommodate the time dependencies and resource trade-offs required for real-time process monitoring applications. This framework provides real-time functionality by using generalized problem-solving goals and control strategies that are modifiable during system operation and capable of accommodating feedback for redirection of activities

  20. Internet-based hardware/software co-design framework for embedded 3D graphics applications

    Directory of Open Access Journals (Sweden)

    Wong Weng-Fai

    2011-01-01

    Full Text Available Abstract Advances in technology are making it possible to run three-dimensional (3D graphics applications on embedded and handheld devices. In this article, we propose a hardware/software co-design environment for 3D graphics application development that includes the 3D graphics software, OpenGL ES application programming interface (API, device driver, and 3D graphics hardware simulators. We developed a 3D graphics system-on-a-chip (SoC accelerator using transaction-level modeling (TLM. This gives software designers early access to the hardware even before it is ready. On the other hand, hardware designers also stand to gain from the more complex test benches made available in the software for verification. A unique aspect of our framework is that it allows hardware and software designers from geographically dispersed areas to cooperate and work on the same framework. Designs can be entered and executed from anywhere in the world without full access to the entire framework, which may include proprietary components. This results in controlled and secure transparency and reproducibility, granting leveled access to users of various roles.

  1. The Basic Framework for Robot Applicability Enhancement of Nuclear Risk Management in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young; Jeong, Kungmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Inn Seock [bISSA Technology, Inc., Germantown (United States)

    2015-05-15

    Beyond-design-basis external events such as the one having occurred at the Fukushima Daiichi Nuclear Power Plant typically pose considerable challenges to the plant personnel because of the harsh environments caused by the events (e.g., extreme terrains, high radiation, radioactive rubbles, high heat, and explosive environment). Therefore, remote response techniques by use of robotic systems are needed to help the plant personnel cope with the extreme events. In this study the basic framework for enhancing robotic applicability to disaster management was developed using the analytic technique of Master Logic Diagram (MLD) and Goal-Tree Success-Tree (GTST). The users of robots have to devise a sound maintenance program, otherwise their unscheduled downtime may increase beyond limit, consequently defeating the purpose of robot applications. In addition, maintainability could be enhanced by designing for ease of diagnosis, and ease of access and repair. Ways to upgrade maintainability could be devised by evaluating maintainability in the design stage. The basic framework discussed herein shall be used by the KAERI's robotics team as a fundamental framework in enhancing the applicability of disaster robots in the hazardous environment caused by extreme events.

  2. The Detector Physics and Applications Center—DePAC

    Science.gov (United States)

    Plothow-Besch, H.; Besch, H.-J.; Fiorini, C.; Grupen, C.; Hassard, J.; Longoni, A.; Walenta, A. H.

    2001-09-01

    A new project, the "Detector Physics and Applications Center (DePAC)", is presented. DePAC is a general detector and sensor database, which is not application specific, on the Internet. DePAC collects and explains the physics, the technology and the application of a wide range of radiation detectors. DePAC also collects and describes information about noise problems, front-end electronics, data transfer, processing and storage. DePAC provides short write-ups and source code of all sorts of detector related software depending on availability. DePAC collects useful constants and properties of materials in an exhaustive series of tables and graphs. DePAC also acts as a point of contact for researchers and industry in an interdisciplinary way, e.g. in biology, in medicine, in materials research and in high energy or nuclear physics. Last but not least, DePAC aims to develop also into a virtual lecturing school and serves as a tutorial for students and all interested scientists.

  3. The Detector Physics and Applications Center - DePAC

    International Nuclear Information System (INIS)

    Plothow-Besch, H.; Besch, H.-J.; Fiorini, C.; Grupen, C.; Hassard, J.; Longoni, A.; Walenta, A.H.

    2001-01-01

    A new project, the 'Detector Physics and Applications Center (DePAC)', is presented. DePAC is a general detector and sensor database, which is not application specific, on the Internet. DePAC collects and explains the physics, the technology and the application of a wide range of radiation detectors. DePAC also collects and describes information about noise problems, front-end electronics, data transfer, processing and storage. DePAC provides short write-ups and source code of all sorts of detector related software depending on availability. DePAC collects useful constants and properties of materials in an exhaustive series of tables and graphs. DePAC also acts as a point of contact for researchers and industry in an interdisciplinary way, e.g. in biology, in medicine, in materials research and in high energy or nuclear physics. Last but not least, DePAC aims to develop also into a virtual lecturing school and serves as a tutorial for students and all interested scientists

  4. The Detector Physics and Applications Center - DePAC

    CERN Document Server

    Plothow-Besch, H; Fiorini, C; Grupen, C; Hassard, J; Longoni, A; Walenta, Albert H

    2001-01-01

    A new project, the 'Detector Physics and Applications Center (DePAC)', is presented. DePAC is a general detector and sensor database, which is not application specific, on the Internet. DePAC collects and explains the physics, the technology and the application of a wide range of radiation detectors. DePAC also collects and describes information about noise problems, front-end electronics, data transfer, processing and storage. DePAC provides short write-ups and source code of all sorts of detector related software depending on availability. DePAC collects useful constants and properties of materials in an exhaustive series of tables and graphs. DePAC also acts as a point of contact for researchers and industry in an interdisciplinary way, e.g. in biology, in medicine, in materials research and in high energy or nuclear physics. Last but not least, DePAC aims to develop also into a virtual lecturing school and serves as a tutorial for students and all interested scientists.

  5. Application of United Nations Framework Classification – 2009 (UNFC-2009) to nuclear fuel resources

    International Nuclear Information System (INIS)

    Tulsidas, Harikrishnan; Li Shengxiang; Van Gosen, Bradley

    2014-01-01

    United Nations Framework Classification for Fossil Fuel and Mineral Reserves and Resources 2009: • Generic, principles-based system: – Applicable to both solid minerals and fluids; • Applications in: – International energy studies; – National resource reporting; – Company project management; – Financial reporting; • 3-D classification of resources on the basis of: – Socio-economic criteria (E); – Project maturity (technical feasibility) (F); – Geological knowledge (G); • A key goal of UNFC-2009 is to provide a tool to facilitate global communications: – Uses a numerical coding system; – Language independent reporting

  6. The Mini-Grid Framework: Application Programming Support for Ad hoc Volunteer Grids

    DEFF Research Database (Denmark)

    Venkataraman, Neela Narayanan

    2013-01-01

    To harvest idle, unused computational resources in networked environments, researchers have proposed different architectures for desktop grid infrastructure. However, most of the existing research work focus on centralized approach. In this thesis, we present the development and deployment of one......, and the performance of the framework in a real grid environment. The main contribution of this thesis are: i) modeling entities such as resources and applications using their context, ii) the context-based auction strategy for dynamic task distribution, iii) scheduling through application specific quality parameters...

  7. Using the Intervention Mapping and Behavioral Intervention Technology Frameworks: Development of an mHealth Intervention for Physical Activity and Sedentary Behavior Change.

    Science.gov (United States)

    Direito, Artur; Walsh, Deirdre; Hinbarji, Moohamad; Albatal, Rami; Tooley, Mark; Whittaker, Robyn; Maddison, Ralph

    2018-06-01

    Few interventions to promote physical activity (PA) adapt dynamically to changes in individuals' behavior. Interventions targeting determinants of behavior are linked with increased effectiveness and should reflect changes in behavior over time. This article describes the application of two frameworks to assist the development of an adaptive evidence-based smartphone-delivered intervention aimed at influencing PA and sedentary behaviors (SB). Intervention mapping was used to identify the determinants influencing uptake of PA and optimal behavior change techniques (BCTs). Behavioral intervention technology was used to translate and operationalize the BCTs and its modes of delivery. The intervention was based on the integrated behavior change model, focused on nine determinants, consisted of 33 BCTs, and included three main components: (1) automated capture of daily PA and SB via an existing smartphone application, (2) classification of the individual into an activity profile according to their PA and SB, and (3) behavior change content delivery in a dynamic fashion via a proof-of-concept application. This article illustrates how two complementary frameworks can be used to guide the development of a mobile health behavior change program. This approach can guide the development of future mHealth programs.

  8. Translating Behavioral Science into Practice: A Framework to Determine Science Quality and Applicability for Police Organizations.

    Science.gov (United States)

    McClure, Kimberley A; McGuire, Katherine L; Chapan, Denis M

    2018-05-07

    Policy on officer-involved shootings is critically reviewed and errors in applying scientific knowledge identified. Identifying and evaluating the most relevant science to a field-based problem is challenging. Law enforcement administrators with a clear understanding of valid science and application are in a better position to utilize scientific knowledge for the benefit of their organizations and officers. A recommended framework is proposed for considering the validity of science and its application. Valid science emerges via hypothesis testing, replication, extension and marked by peer review, known error rates, and general acceptance in its field of origin. Valid application of behavioral science requires an understanding of the methodology employed, measures used, and participants recruited to determine whether the science is ready for application. Fostering a science-practitioner partnership and an organizational culture that embraces quality, empirically based policy, and practices improves science-to-practice translation. © 2018 American Academy of Forensic Sciences.

  9. An application framework and data model prototype for the BaBar experiment

    CERN Document Server

    Quarrie, D

    2003-01-01

    The BaBar experiment is a high energy physics experiment to do physics with e sup + e sup - colliding beams in the 10 GeV center-of-mass energy at the PEP-II accelerator at the Stanford Linear Accelerator Center. The principal objectives are to study CP violation and rare processes in decays of B mesons. The experiment is under construction, with first data anticipated in 1999. The BaBar experiment is expected to accumulate of order 10 sup 9 events per calendar year, with over 10 sup 8 interesting hadronic events. The data must be stored efficiently, but must be easily accessible in order for multiple and frequent physics analyses to be carried out. The analysis framework must be flexible enough to accommodate a variety of analysis modules and multiple input/output streams. The BaBar collaboration has developed a prototype for the analysis framework and data access, written in C++ using an object-oriented design philosophy. The data access is based on the Farfalla package. The base class is a ''node''. Variou...

  10. Patient-centered innovation in health care organizations: a conceptual framework and case study application.

    Science.gov (United States)

    Hernandez, Susan E; Conrad, Douglas A; Marcus-Smith, Miriam S; Reed, Peter; Watts, Carolyn

    2013-01-01

    Patient-centered innovation is spreading at the federal and state levels. A conceptual framework can help frame real-world examples and extract systematic learning from an array of innovative applications currently underway. The statutory, economic, and political environment in Washington State offers a special contextual laboratory for observing the interplay of these factors. We propose a framework for understanding the process of initiating patient-centered innovations-particularly innovations addressing patient-centered goals of improved access, continuity, communication and coordination, cultural competency, and family- and person-focused care over time. The framework to a case study of a provider organization in Washington State actively engaged in such innovations was applied in this article. We conducted a selective review of peer-reviewed evidence and theory regarding determinants of organizational change. On the basis of the literature review and the particular examples of patient-centric innovation, we developed a conceptual framework. Semistructured key informant interviews were conducted to illustrate the framework with concrete examples of patient-centered innovation. The primary determinants of initiating patient-centered innovation are (a) effective leadership, with the necessary technical and professional expertise and creative skills; (b) strong internal and external motivation to change; (c) clear and internally consistent organizational mission; (d) aligned organizational strategy; (e) robust organizational capability; and (f) continuous feedback and organizational learning. The internal hierarchy of actors is important in shaping patient-centered innovation. External financial incentives and government regulations also significantly shape innovation. Patient-centered care innovation is a complex process. A general framework that could help managers and executives organize their thoughts around innovation within their organization is presented.

  11. Proceedings of conference on AI applications in physical sciences

    International Nuclear Information System (INIS)

    1993-01-01

    A Conference cum workshop on AI applications in Physical Sciences was organised by the Indian Physics Association at Bhabha Atomic Research Centre, Bombay during January 15-17, 1992. It was held in memory of Late Shri S.N. Seshadri, who was the moving spirit behind self reliance in instrumentation development for research and industry. The two day conference which was followed by one day workshop covered the following broad spectrum of topics in Artificial Intelligence: AI Tools and Techniques, Neural Networks, Robotics and Machine Vision, Fuzzy Control and Applications, Natural Language and Speech Processing, Knowledge based Systems, and AI and Allied applications. The conference dealt with recent advances and achievements in AI. It provided a forum for the exchange of valuable information and expertise in this fast emerging field. Over 200 scientists, engineers and computer professionals from various universities, R and D institutes and industries actively participated. 45 contributed papers and 8 invited talks were presented in the symposium. The volume contains selected papers which were contributed by the participants. Some of them dealt with AI applications in nuclear science and technology. (original)

  12. Block4Forensic: An Integrated Lightweight Blockchain Framework for Forensics Applications of Connected Vehicles

    OpenAIRE

    Cebe, Mumin; Erdin, Enes; Akkaya, Kemal; Aksu, Hidayet; Uluagac, Selcuk

    2018-01-01

    Today's vehicles are becoming cyber-physical systems that do not only communicate with other vehicles but also gather various information from hundreds of sensors within them. These developments help create smart and connected (e.g., self-driving) vehicles that will introduce significant information to drivers, manufacturers, insurance companies and maintenance service providers for various applications. One such application that is becoming crucial with the introduction of self-driving cars ...

  13. Application of the transtheoretical model to sedentary behaviors and its association with physical activity status.

    Directory of Open Access Journals (Sweden)

    Ho Han

    Full Text Available The Transtheoretical Model (TTM is a successful framework for guiding behavior change programs for several health behaviors, yet its application to reduce of sedentary behavior has been neglected. In addition, no data exist regarding the association between determinants of sedentary behaviors based on the TTM and physical activity behavior. The purpose of this study was to investigate college students' stages of motivational readiness to avoid sedentary behaviors and relevant psychological determinants using newly developed TTM questionnaires and to identify the association between current physical activity and sedentary behaviors based on TTM constructs.Data were obtained from 225 college students enrolled in health education and physical education courses. Participants completed a package of questionnaires including validated TTM, physical activity and sitting time questionnaires. Participants also wore an accelerometer for seven consecutive days. MANOVAs were conducted to determine mean differences in psychological constructs across the TTM stages, and Chi-square tests and Spearman correlation were used to evaluate the associations between current physical activity and sedentary behavior.A majority of the participants were in the sedentary stages, and men and women differed in proportion of individuals in the stages (78.0% vs. 68.1%, respectively. The gender difference was also found in use of the processes of change. In general, the mean scores of the TTM constructs increased as the stages progressed. No significant associations were found between the TTM constructs for sedentary behavior and current physical activity levels (p>0.05.A high proportion of college students were in sedentary stages regardless of physical activity levels, but different distributions in men and women. Participants in earlier stages were less likely to utilize the TTM constructs to reduce sedentary behaviors than those in later stages. A lack of association between

  14. What is This Thing Called Sensemaking?: A Theoretical Framework for How Physics Students Resolve Inconsistencies in Understanding

    Science.gov (United States)

    Odden, Tor Ole B.

    Students often emerge from introductory physics courses with a feeling that the concepts they have learned do not make sense. In recent years, science education researchers have begun to attend to this type of problem by studying the ways in which students make sense of science concepts. However, although many researchers agree intuitively on what sensemaking looks like, the literature on sensemaking is both theoretically fragmented and provides few guidelines for how to encourage and support the process. In this dissertation, I address this challenge by proposing a theoretical framework to describe students' sensemaking processes. I base this framework both on the science education research literature on sensemaking and on a series of video-recorded cognitive, clinical interviews conducted with introductory physics students enrolled in a course on electricity and magnetism. Using the science education research literature on sensemaking as well as a cognitivist, dynamic network model of mind as a theoretical lens, I first propose a coherent definition of sensemaking. Then, using this definition I analyze the sensemaking processes of these introductory physics students during episodes when they work to articulate and resolve gaps or inconsistencies in their understanding. Based on the students' framing, gestures, and dialogue I argue that the process of sensemaking unfolds in a distinct way, which we can describe as an epistemic game in which students first build a framework of knowledge, then identify a gap or inconsistency in that framework, iteratively build an explanation to resolve the gap or inconsistency, and (sometimes) successfully resolve it. I further argue that their entry into the sensemaking frame is facilitated by a specific question, which is in turn motivated by a gap or inconsistency in knowledge that I call the vexation point. I also investigate the results of sensemaking, arguing that students may use the technique of conceptual blending to both

  15. Airline Sustainability Modeling: A New Framework with Application of Bayesian Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Hashem Salarzadeh Jenatabadi

    2016-11-01

    Full Text Available There are many factors which could influence the sustainability of airlines. The main purpose of this study is to introduce a framework for a financial sustainability index and model it based on structural equation modeling (SEM with maximum likelihood and Bayesian predictors. The introduced framework includes economic performance, operational performance, cost performance, and financial performance. Based on both Bayesian SEM (Bayesian-SEM and Classical SEM (Classical-SEM, it was found that economic performance with both operational performance and cost performance are significantly related to the financial performance index. The four mathematical indices employed are root mean square error, coefficient of determination, mean absolute error, and mean absolute percentage error to compare the efficiency of Bayesian-SEM and Classical-SEM in predicting the airline financial performance. The outputs confirmed that the framework with Bayesian prediction delivered a good fit with the data, although the framework predicted with a Classical-SEM approach did not prepare a well-fitting model. The reasons for this discrepancy between Classical and Bayesian predictions, as well as the potential advantages and caveats with the application of Bayesian approach in airline sustainability studies, are debated.

  16. The landscape of fear conceptual framework: definition and review of current applications and misuses

    Directory of Open Access Journals (Sweden)

    Sonny S. Bleicher

    2017-09-01

    Full Text Available Landscapes of Fear (LOF, the spatially explicit distribution of perceived predation risk as seen by a population, is increasingly cited in ecological literature and has become a frequently used “buzz-word”. With the increase in popularity, it became necessary to clarify the definition for the term, suggest boundaries and propose a common framework for its use. The LOF, as a progeny of the “ecology of fear” conceptual framework, defines fear as the strategic manifestation of the cost-benefit analysis of food and safety tradeoffs. In addition to direct predation risk, the LOF is affected by individuals’ energetic-state, inter- and intra-specific competition and is constrained by the evolutionary history of each species. Herein, based on current applications of the LOF conceptual framework, I suggest the future research in this framework will be directed towards: (1 finding applied management uses as a trait defining a population’s habitat-use and habitat-suitability; (2 studying multi-dimensional distribution of risk-assessment through time and space; (3 studying variability between individuals within a population; (4 measuring eco-neurological implications of risk as a feature of environmental heterogeneity and (5 expanding temporal and spatial scales of empirical studies.

  17. Stutent’s Individuality within the Framework of Innovative Physical Education .

    Directory of Open Access Journals (Sweden)

    V. A. Salnikov

    2012-01-01

    Full Text Available The paper looks at the necessity of developing a new person- oriented paradigm of physical education, which involves a transition from the normative approach to sport-oriented one in training children, adolescents and young adults; compliance of educational means, forms, methods and conditions with the student’s psychological peculiarities; and sport specialization according to personal inclinations and abilities. The research subject is defined as the physically active personality development with the reference to psychological and age peculiarities. The aim of the study is to update the existing physical education system according to the demands for its health promoting and preserving functions. The methodology compiles the systematic and person-oriented approaches. Personal characteristics of students choosing different kinds of sports for physical education are described along with the correlation between their individual qualities and specificity of physical development. The research findings can be used in developing the curricula for physical education on different levels. 

  18. PREFACE: EPS Euroconference XIX Nuclear Physics Divisional Conference: New Trends in Nuclear Physics Applications and Technology

    Science.gov (United States)

    2006-06-01

    It was with great pleasure that the Department of Nuclear and Theoretical Physics of the University of Pavia and the INFN (Istituto Nazionale di Fisica Nucleare) Structure of Pavia organised the XIX Nuclear Physics Divisional Conference of the European Physical Society, which was held in the historical buildings of the University of Pavia from 5-9 September 2005. The Conference was devoted to the discussion of the most recent experimental and theoretical achievements in the field of Nuclear Physics applications, as well as of the latest developments in technological tools related to Nuclear Physics research. The University of Pavia has a long tradition in Physics and in Applied Physics, being the site where Alessandro Volta developed his "pila", the precursor of the modern battery. This is the place where the first experiments with electricity were conducted and where the term "capacitance" used for capacitors was invented. Today the University hosts a Triga Mark II nuclear reactor, which is used by the Departments of the University of Pavia and by other Universities and private companies as well. Moreover, Pavia is the site selected for the construction of the CNAO complex "Centro Nazionale di Adroterapia Oncologica" (National Centre for Oncological Hadrontherapy), planned for 2005-2008 which represents a unique facility in Italy and will be among the first complexes of this type in Europe. The Conference has gathered together experts in various fields from different countries and has been the occasion to review the present status and to discuss the new emerging trends in Nuclear Physics and its applications to multidisciplinary researches and the development of new technologies. The following topics were treated: Nuclear Techniques in Medicine and Life Sciences (Cancer Therapy, new Imaging and Diagnostics Tools, Radioisotope production, Radiation Protection and Dosimetry). Applications of Nuclear Techniques in Art, Archaeometry and other Interdisciplinary fields

  19. MARTe framework; a middle-ware for real-time applications development

    International Nuclear Information System (INIS)

    Neto, A.; Alves, D.; Carvalho, B.B.; Carvalho, P.J.; Fernandes, H.; Valcarcel, D.F.; Sartori, F.; Barbalace, A.; Manduchi, G.; Boncagni, L.; Tommasi, G. de; McCullen, P.; Stephen, A.; Vitelli, R.; Zabeo, L.

    2012-01-01

    The Multi-threaded Application Real-Time executor (MARTe) is a C++ framework that provides a development environment for the design and deployment of real-time applications, e.g. control systems. The kernel of MARTe comprises a set of data-driven independent blocks, connected using a shared bus. This modular design enforces a clear boundary between algorithms, hardware interaction and system configuration. The architecture, being multi-platform, facilitates the test and commissioning of new systems, enabling the execution of plant models in offline environments and with the hardware-in-the-loop, whilst also providing a set of non-intrusive introspection and logging facilities. Furthermore, applications can be developed in non real-time environments and deployed in a real-time operating system, using exactly the same code and configuration data. The framework is already being used in several fusion experiments, with control cycles ranging from 50 microseconds to 10 milliseconds exhibiting jitters of less than 2%, using VxWorks R , RTAI or Linux. Codes can also be developed and executed in Microsoft Windows R and Solaris R . This paper discusses the main design concepts of MARTe, in particular the architectural choices which enabled the combination of real-time accuracy, performance and robustness with complex and modular data driven applications. (authors)

  20. A Framework for Research in Gamified Mobile Guide Applications using Embodied Conversational Agents (ECAs

    Directory of Open Access Journals (Sweden)

    Ioannis Doumanis

    2015-09-01

    Full Text Available Mobile Guides are mobile applications that provide players with local and location-based services (LBS, such as navigation assistance, where and when they need them most. Advances in mobile technologies in recent years have enabled the gamification of these applications, opening up new opportunities to transfer education and culture through game play. However, adding traditional game elements such as PBLs (points, badges, and leaderboards alone cannot ensure that the intended learning outcomes will be met, as the player’s cognitive resources are shared between the application and the surrounding environment. This distribution of resources prevents players from easily immersing themselves into the educational scenario. Adding artificial conversational characters (ECAs that simulate the social norms found in real-life human-to-human guide scenarios has the potential to address this problem and improve the player’s experience and learning of cultural narratives [1]. Although significant progress has been made towards creating game-like mobile guides with ECAs ([2], [3], there is still a lack of a unified framework that enables researchers and practitioners to investigate the potential effects of such applications to players and how to approach the concepts of player experience, cognitive accessibility and usability in this context. This paper presents a theoretically-well supported research framework consisted of four key components: differences in players, different features of the gamified task, aspects of how the ECA looks, sound or behaves and different mobile environments. Furthermore, it provides based on this framework a working definition of what player experience, cognitive accessibility and usability are in the context of game-like mobile guide applications. Finally, a synthesis of the results of six empirical studies conducted within this research framework is discussed and a series of design guidelines for the effective gamification

  1. A Multifactorial Approach to Sport-Related Concussion Prevention and Education: Application of the Socioecological Framework.

    Science.gov (United States)

    Register-Mihalik, Johna; Baugh, Christine; Kroshus, Emily; Y Kerr, Zachary; Valovich McLeod, Tamara C

    2017-03-01

    To offer an overview of sport-related concussion (SRC) prevention and education strategies in the context of the socioecological framework (SEF). Athletic trainers (ATs) will understand the many factors that interact to influence SRC prevention and the implications of these interactions for effective SRC education. Concussion is a complex injury that is challenging to identify and manage, particularly when athletes fail to disclose symptoms to their health care providers. Education is 1 strategy for increasing disclosure. However, limited information addresses how ATs can integrate the many factors that may influence the effectiveness of SRC education into their specific settings. Public health models provide an example through the SEF, which highlights the interplay among various levels of society and sport that can facilitate SRC prevention strategies, including education. For ATs to develop appropriate SRC prevention strategies, a framework for application is needed. A growing body of information concerning SRC prevention indicates that knowledge alone is insufficient to change concussion-related behaviors. The SEF allows this information to be considered at levels such as policy and societal, community, interpersonal (relationships), and intrapersonal (athlete). The use of such a framework will facilitate more comprehensive SRC prevention efforts that can be applied in all athletic training practice settings. Clinical Applications: Athletic trainers can use this information as they plan SRC prevention strategies in their specific settings. This approach will aid in addressing the layers of complexity that exist when developing a concussion-management policy and plan.

  2. Quantifying heterogeneity attributable to polythetic diagnostic criteria: theoretical framework and empirical application.

    Science.gov (United States)

    Olbert, Charles M; Gala, Gary J; Tupler, Larry A

    2014-05-01

    Heterogeneity within psychiatric disorders is both theoretically and practically problematic: For many disorders, it is possible for 2 individuals to share very few or even no symptoms in common yet share the same diagnosis. Polythetic diagnostic criteria have long been recognized to contribute to this heterogeneity, yet no unified theoretical understanding of the coherence of symptom criteria sets currently exists. A general framework for analyzing the logical and mathematical structure, coherence, and diversity of Diagnostic and Statistical Manual diagnostic categories (DSM-5 and DSM-IV-TR) is proposed, drawing from combinatorial mathematics, set theory, and information theory. Theoretical application of this framework to 18 diagnostic categories indicates that in most categories, 2 individuals with the same diagnosis may share no symptoms in common, and that any 2 theoretically possible symptom combinations will share on average less than half their symptoms. Application of this framework to 2 large empirical datasets indicates that patients who meet symptom criteria for major depressive disorder and posttraumatic stress disorder tend to share approximately three-fifths of symptoms in common. For both disorders in each of the datasets, pairs of individuals who shared no common symptoms were observed. Any 2 individuals with either diagnosis were unlikely to exhibit identical symptomatology. The theoretical and empirical results stemming from this approach have substantive implications for etiological research into, and measurement of, psychiatric disorders.

  3. Revisioning Theoretical Framework of Electronic Performance Support Systems (EPSS within the Software Application Examples

    Directory of Open Access Journals (Sweden)

    Dr. Servet BAYRAM,

    2004-04-01

    Full Text Available Revisioning Theoretical Framework of Electronic Performance Support Systems (EPSS within the Software Application Examples Assoc. Prof. Dr. Servet BAYRAM Computer Education & Instructional Technologies Marmara University , TURKEY ABSTRACT EPSS provides electronic support to learners in achieving a performance objective; a feature which makes it universally and consistently available on demand any time, any place, regardless of situation, without unnecessary intermediaries involved in the process. The aim of this review is to develop a set of theoretical construct that provide descriptive power for explanation of EPSS and its roots and features within the software application examples (i.e., Microsoft SharePoint Server”v2.0” Beta 2, IBM Lotus Notes 6 & Domino 6, Oracle 9i Collaboration Suite, and Mac OS X v10.2. From the educational and training point of view, the paper visualizes a pentagon model for the interrelated domains of the theoretical framework of EPSS. These domains are: learning theories, information processing theories, developmental theories, instructional theories, and acceptance theories. This descriptive framework explains a set of descriptions as to which outcomes occur under given theoretical conditions for a given EPSS model within software examples. It summarizes some of the theoretical concepts supporting to the EPSS’ related features and explains how such concepts sharing same features with the example software programs in education and job training.

  4. Introduction to solitons and their applications in physics and biology

    International Nuclear Information System (INIS)

    Peyrard, M.

    1995-01-01

    The response of most of the physical systems to combined excitations is not a simple superposition of their response to individual stimuli. This is particularly true for biological systems in which the nonlinear effects are often the dominant ones. The intrinsic treatment of nonlinearities in mathematical models and physical systems has led to the emergence of the chaos and solitons concepts. The concept of soliton, relevant for systems with many degrees of freedom, provides a new tool in the studies of biomolecules because it has no equivalent in the world of linear excitations. The aim of this lecture is to present the main ideas that underline the soliton concept and to discuss some applications. Solitons are solitary waves, that propagate at constant speed without changing their shape. They are extremely stable to perturbations, in particular to collisions with small amplitude linear waves and with other solitons. Conditions to have solitons and equations of solitons propagation are analysed. Solitons can be divided into two main classes: topological and non-topological solitons which can be found at all scales and in various domains of physics and chemistry. Using simple examples, this paper shows how linear expansions can miss completely essential physical properties of a system. This is particularly characteristic for the pendulum chain example. Soliton theory offers alternative methods. Multiple scale approximations, or expansion on a soliton basis, can be very useful to provide a description of some physical phenomena. Nonlinear energy localization is also a very important concept valid for a large variety of systems. These concepts are probably even more relevant for biological molecules than for solid state physics, because these molecules are very deformable objects where large amplitude nonlinear motions or conformational changes are crucial for function. (J.S.). 14 refs., 9 figs

  5. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  6. Advances and Applications of Rock Physics for Hydrocarbon Exploration

    Directory of Open Access Journals (Sweden)

    Valle-Molina C.

    2012-10-01

    Full Text Available Integration of the geological and geophysical information with different scale and features is the key point to establish relationships between petrophysical and elastic characteristics of the rocks in the reservoir. It is very important to present the fundamentals and current methodologies of the rock physics analyses applied to hydrocarbons exploration among engineers and Mexican students. This work represents an effort to capacitate personnel of oil exploration through the revision of the subjects of rock physics. The main aim is to show updated improvements and applications of rock physics into seismology for exploration. Most of the methodologies presented in this document are related to the study the physical and geological mechanisms that impact on the elastic properties of the rock reservoirs based on rock specimens characterization and geophysical borehole information. Predictions of the rock properties (litology, porosity, fluid in the voids can be performed using 3D seismic data that shall be properly calibrated with experimental measurements in rock cores and seismic well log data

  7. Toward University Modeling Instruction--Biology: Adapting Curricular Frameworks from Physics to Biology

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER)…

  8. Innovative applications of genetic algorithms to problems in accelerator physics

    Directory of Open Access Journals (Sweden)

    Alicia Hofler

    2013-01-01

    Full Text Available The genetic algorithm (GA is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.

  9. 7T: Physics, safety, and potential clinical applications.

    Science.gov (United States)

    Kraff, Oliver; Quick, Harald H

    2017-12-01

    With more than 60 installed magnetic resonance imaging (MRI) systems worldwide operating at a magnetic field strength of 7T or higher, ultrahigh-field (UHF) MRI has been established as a platform for clinically oriented research in recent years. Profound technical and methodological developments have helped overcome the inherent physical challenges of UHF radiofrequency (RF) signal homogenization in the human body. The ongoing development of dedicated RF coil arrays was pivotal in realizing UHF body MRI, beyond mere brain imaging applications. Another precondition to clinical application of 7T MRI is the safety testing of implants and the establishment of safety concepts. Against this backdrop, 7T MRI and MR spectroscopy (MRS) recently have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. This article provides an overview of the immanent physical challenges of 7T UHF MRI and discusses recent technical solutions and safety concepts. Furthermore, recent clinically oriented studies are highlighted that span a broad application spectrum from 7T UHF brain to body MRI. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1573-1589. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Practical static analysis of JavaScript applications in the presence of frameworks and libraries

    DEFF Research Database (Denmark)

    Madsen, Magnus; Livshits, Benjamin; Fanning, Michael

    2013-01-01

    and complex libraries and frameworks, often written in a combination of JavaScript and native code such as C and C++. Stubs have been commonly employed as a partial specification mechanism to address the library problem; however, they are tedious to write, incomplete, and occasionally incorrect. However......JavaScript is a language that is widely-used for both web- based and standalone applications such as those in the upcoming Windows 8 operating system. Analysis of JavaScript has long been known to be challenging due to its dynamic nature. On top of that, most JavaScript applications rely on large......, the manner in which library code is used within applications often sheds light on what library APIs return or consume as parameters. In this paper, we propose a technique which combines pointer analysis with use analysis to handle many challenges posed by large JavaScript libraries. Our approach enables...

  11. Construction of lead glass tubing matrices for applications in medical physics and high energy physics

    International Nuclear Information System (INIS)

    Schwartz, G.; Conti, M.; Del Guerra, A.; Cinti, M.; Di Fino, M.; Habel, R.

    1985-01-01

    Honeycomb matrices which act both as gamma ray converter/radiator and electron drift structures have been manufactured from lead glass tubing of high density (5-6 g/cm 3 ). Baking the tubing in a reducing atmosphere produces a resistive metallic layer which can be used as a continuous voltage divider for drift field shaping. The application of a multiwire proportional chamber/converter detector to positron emission tomography is described; arrays of lead glass capillaries ( < 1.0 mm inner diameter) are used as converter for the 511 keV annihilation photons. Another application is under study in high energy physics, a high density projection chamber in electromagnetic calorimetry. The various phases of the construction of these lead glass matrices for both applications are described in detail

  12. Instrumentation for Applied Physics and Industrial Applications: Applications of Detectors in Technology, Medicine and Other Fields

    CERN Document Server

    Hillemanns, H

    2011-01-01

    Instrumentation for Applied Physics and Industrial Applications in 'Applications of Detectors in Technology, Medicine and Other Fields', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B2: Detectors for Particles and Radiation. Part 2: Systems and Applications'. This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.3 Instrumentation for Applied Physics and Industrial Applications' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content: 7.3 Instrumentation for Applied Physics and Industrial Applications 7.3.1 Applications of HEP Detectors 7.3.2 Fast Micro- and Nanoelectronics for Particle Detector Readout 7.3.2.1 Fast Counting Mode Front End Electronics 7.3.2.2 NINO,...

  13. Development of a software framework for data assimilation and its applications for streamflow forecasting in Japan

    Science.gov (United States)

    Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Yorozu, K.; Kim, S.

    2012-04-01

    Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrological modeling framework for sequential data assimilation, so called MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modeling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. Sequential data assimilation based on the particle filters is available for any hydrologic models based on MPI-OHyMoS considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for short-term streamflow forecasting of several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and remotely-sensed rainfall data such as X-band or C-band radar is estimated and mitigated in the sequential data assimilation.

  14. Theoretical physics 7 quantum mechanics : methods and applications

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This textbook offers a clear and comprehensive introduction to methods and applications in quantum mechanics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, thus developing the understanding of quantized states further on. The first part of the book introduces the quantum theory of angular momentum and approximation methods. More complex themes are covered in the second part of the book, which describes multiple particle systems and scattering theory. Ideally suited to undergraduate students with some grounding in the basics of quantum mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets.  About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this seri...

  15. QCD sum rules and applications to nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, T D [Maryland Univ., College Park, MD (United States). Dept. of Physics; [Washington Univ., Seattle, WA (United States). Dept. of Physics and Inst. for Nuclear Theory; Furnstahl, R J [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Griegel, D K [Maryland Univ., College Park, MD (United States). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada); Xuemin, J

    1994-12-01

    Applications of QCD sum-rule methods to the physics of nuclei are reviewed, with an emphasis on calculations of baryon self-energies in infinite nuclear matter. The sum-rule approach relates spectral properties of hadrons propagating in the finite-density medium, such as optical potentials for quasinucleons, to matrix elements of QCD composite operators (condensates). The vacuum formalism for QCD sum rules is generalized to finite density, and the strategy and implementation of the approach is discussed. Predictions for baryon self-energies are compared to those suggested by relativistic nuclear physics phenomenology. Sum rules for vector mesons in dense nuclear matter are also considered. (author). 153 refs., 8 figs.

  16. Handbook of modern sensors physics, designs, and applications

    CERN Document Server

    Fraden, Jacob

    2016-01-01

    This book presents a comprehensive and up-to-date account of the theory (physical principles), design, and practical implementations of various sensors for scientific, industrial, and consumer applications. This latest edition focuses on the sensing technologies driven by the expanding use of sensors in mobile devices. These new miniature sensors will be described, with an emphasis on smart sensors which have embedded processing systems. The chapter on chemical sensors has also been expanded to present the latest developments. Digital systems, however complex and intelligent they may be, must receive information from the outside world that is generally analog and not electrical. Sensors are interface devices between various physical values and the electronic circuits that "understand" only a language of moving electrical charges. In other words, sensors are the eyes, ears, and noses of silicon chips. Unlike other books on sensors, the Handbook of Modern Sensors is organized according to the measured variables...

  17. International Conference on Physics and Technology of Reactors and Applications

    International Nuclear Information System (INIS)

    2007-01-01

    The first international conference on physics and technology of reactors and applications (PHYTRA 1) which took place in Marrakech (Morocco) from 14 to 16 March 2007, was designed to bring together scientists, teachers and students from universities, research centres and industry and other institutions to exchange knowledge and to discuss ideas and future issues. The programmes of the PHYTRA 1 conference covers a wide variety topics, the conference was organised in three plenary sessions, ten oral technical sessions and two poster sessions. The plenary sessions covers the following topics : The prospects of nuclear energy, The situation of nuclear sciences and energy in Morocco and Africa, and the new development in reactor physics and reactor design [fr

  18. Spin formalism and applications to new physics searches

    Energy Technology Data Exchange (ETDEWEB)

    Haber, H.E. [Univ. of California, Santa Cruz, CA (United States)

    1994-12-01

    An introduction to spin techniques in particle physics is given. Among the topics covered are: helicity formalism and its applications to the decay and scattering of spin-1/2 and spin-1 particles, techniques for evaluating helicity amplitudes (including projection operator methods and the spinor helicity method), and density matrix techniques. The utility of polarization and spin correlations for untangling new physics beyond the Standard Model at future colliders such as the LHC and a high energy e{sup +}e{sup {minus}} linear collider is then considered. A number of detailed examples are explored including the search for low-energy supersymmetry, a non-minimal Higgs boson sector, and new gauge bosons beyond the W{sup {+-}} and Z.

  19. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  20. Applications of hidden symmetries to black hole physics

    International Nuclear Information System (INIS)

    Frolov, Valeri

    2011-01-01

    This work is a brief review of applications of hidden symmetries to black hole physics. Symmetry is one of the most important concepts of the science. In physics and mathematics the symmetry allows one to simplify a problem, and often to make it solvable. According to the Noether theorem symmetries are responsible for conservation laws. Besides evident (explicit) spacetime symmetries, responsible for conservation of energy, momentum, and angular momentum of a system, there also exist what is called hidden symmetries, which are connected with higher order in momentum integrals of motion. A remarkable fact is that black holes in four and higher dimensions always possess a set ('tower') of explicit and hidden symmetries which make the equations of motion of particles and light completely integrable. The paper gives a general review of the recently obtained results. The main focus is on understanding why at all black holes have something (symmetry) to hide.

  1. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  2. GAMOS: A framework to do GEANT4 simulations in different physics fields with an user-friendly interface

    International Nuclear Information System (INIS)

    Arce, Pedro; Ignacio Lagares, Juan; Harkness, Laura; Pérez-Astudillo, Daniel; Cañadas, Mario; Rato, Pedro; Prado, María de; Abreu, Yamiel; Lorenzo, Gianluca de; Kolstein, Machiel; Díaz, Angelina

    2014-01-01

    GAMOS is a software system for GEANT4-based simulation. It comprises a framework, a set of components providing functionality to simulation applications on top of the GEANT4 toolkit, and a collection of ready-made applications. It allows to perform GEANT4-based simulations using a scripting language, without requiring the writing of C++ code. Moreover, GAMOS design allows the extension of the existing functionality through user-supplied C++ classes. The main characteristics of GAMOS and its embedded functionality are described

  3. Application of the ELOHA framework to regulated rivers in the upper Tennessee River Basin: A case study

    Science.gov (United States)

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff; David C. Mathews

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and...

  4. An Application of the Impact Evaluation Process for Designing a Performance Measurement and Evaluation Framework in K-12 Environments

    Science.gov (United States)

    Guerra-Lopez, Ingrid; Toker, Sacip

    2012-01-01

    This article illustrates the application of the Impact Evaluation Process for the design of a performance measurement and evaluation framework for an urban high school. One of the key aims of this framework is to enhance decision-making by providing timely feedback about the effectiveness of various performance improvement interventions. The…

  5. A framework for integration of scientific applications into the OpenTopography workflow

    Science.gov (United States)

    Nandigam, V.; Crosby, C.; Baru, C.

    2012-12-01

    The NSF-funded OpenTopography facility provides online access to Earth science-oriented high-resolution LIDAR topography data, online processing tools, and derivative products. The underlying cyberinfrastructure employs a multi-tier service oriented architecture that is comprised of an infrastructure tier, a processing services tier, and an application tier. The infrastructure tier consists of storage, compute resources as well as supporting databases. The services tier consists of the set of processing routines each deployed as a Web service. The applications tier provides client interfaces to the system. (e.g. Portal). We propose a "pluggable" infrastructure design that will allow new scientific algorithms and processing routines developed and maintained by the community to be integrated into the OpenTopography system so that the wider earth science community can benefit from its availability. All core components in OpenTopography are available as Web services using a customized open-source Opal toolkit. The Opal toolkit provides mechanisms to manage and track job submissions, with the help of a back-end database. It allows monitoring of job and system status by providing charting tools. All core components in OpenTopography have been developed, maintained and wrapped as Web services using Opal by OpenTopography developers. However, as the scientific community develops new processing and analysis approaches this integration approach is not scalable efficiently. Most of the new scientific applications will have their own active development teams performing regular updates, maintenance and other improvements. It would be optimal to have the application co-located where its developers can continue to actively work on it while still making it accessible within the OpenTopography workflow for processing capabilities. We will utilize a software framework for remote integration of these scientific applications into the OpenTopography system. This will be accomplished by

  6. GLOFRIM v1.0 - A globally applicable computational framework for integrated hydrological-hydrodynamic modelling

    Science.gov (United States)

    Hoch, Jannis M.; Neal, Jeffrey C.; Baart, Fedor; van Beek, Rens; Winsemius, Hessel C.; Bates, Paul D.; Bierkens, Marc F. P.

    2017-10-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological-hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global hydrological model PCR-GLOBWB as well as the hydrodynamic models Delft3D Flexible Mesh (DFM; solving the full shallow-water equations and allowing for spatially flexible meshing) and LISFLOOD-FP (LFP; solving the local inertia equations and running on regular grids). The main advantages of the framework are its open and free access, its global applicability, its versatility, and its extensibility with other hydrological or hydrodynamic models. Before applying GLOFRIM to an actual test case, we benchmarked both DFM and LFP for a synthetic test case. Results show that for sub-critical flow conditions, discharge response to the same input signal is near-identical for both models, which agrees with previous studies. We subsequently applied the framework to the Amazon River basin to not only test the framework thoroughly, but also to perform a first-ever benchmark of flexible and regular grids on a large-scale. Both DFM and LFP produce comparable results in terms of simulated discharge with LFP exhibiting slightly higher accuracy as expressed by a Kling-Gupta efficiency of 0.82 compared to 0.76 for DFM. However, benchmarking inundation extent between DFM and LFP over the entire study area, a critical success index of 0.46 was obtained, indicating that the models disagree as often as they agree. Differences between models in both simulated discharge and inundation extent are to a large extent attributable to the gridding techniques employed. In fact, the results show that both the numerical scheme of the inundation model and the gridding technique can contribute to deviations in simulated inundation extent as we control for model forcing and boundary conditions. This study shows

  7. Distribution theory with applications in engineering and physics

    CERN Document Server

    Teodorescu, Petre P; Toma, Antonela

    2013-01-01

    In this comprehensive monograph, the authors apply modern mathematical methods to the study of mechanical and physical phenomena or techniques in acoustics, optics, and electrostatics, where classical mathematical tools fail.They present a general method of approaching problems, pointing out different aspects and difficulties that may occur. With respect to the theory of distributions, only the results and the principle theorems are given as well as some mathematical results. The book also systematically deals with a large number of applications to problems of general Newtonian mechanics,

  8. Bayesian probability theory applications in the physical sciences

    CERN Document Server

    Linden, Wolfgang von der; Toussaint, Udo von

    2014-01-01

    From the basics to the forefront of modern research, this book presents all aspects of probability theory, statistics and data analysis from a Bayesian perspective for physicists and engineers. The book presents the roots, applications and numerical implementation of probability theory, and covers advanced topics such as maximum entropy distributions, stochastic processes, parameter estimation, model selection, hypothesis testing and experimental design. In addition, it explores state-of-the art numerical techniques required to solve demanding real-world problems. The book is ideal for students and researchers in physical sciences and engineering.

  9. Physics and applications of plasmas produced by pulsed power technology

    International Nuclear Information System (INIS)

    Ozaki, Tetsuo; Katsuki, Sunao

    2013-10-01

    The papers presented at the symposium on 'Physics and Applications of Plasmas Produced by Pulsed Power Technology' held on March 27-28, 2012 at the National Institute for Fusion Science are collected in these proceedings. The papers in these proceedings reflect the current status and progress in the experimental and theoretical research on high power particle beams and high energy density plasmas produced by pulsed power technology. This issue is the collection of 22 papers presented at the entitled meeting. Ten of the presented papers are indexed individually. (J.P.N.)

  10. Final report on LDRD project : coupling strategies for multi-physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Matthew Morgan; Moffat, Harry K.; Carnes, Brian; Hooper, Russell Warren; Pawlowski, Roger P.

    2007-11-01

    Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.

  11. PREFACE: XIX International School on Nuclear Physics, Neutron Physics and Applications (VARNA 2011)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina; Voronov, Victor

    2012-05-01

    This volume contains the lectures and short talks given at the XIX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 19-25 September 2011 in 'Club Hotel Bolero' located in the 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. The co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research - Dubna. According to long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year - 2011, we had the pleasure of welcoming more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to each present a short contribution. The program ranged from recent achievements in areas such as nuclear structure and reactions to the hot topics of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The main topics were as follows: Nuclear excitations at various energies Nuclei at high angular moments and temperature Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues helped with the organization of the School. We would like

  12. PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina

    2014-09-01

    The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in

  13. Uncertainties propagation in the framework of a Rod Ejection Accident modeling based on a multi-physics approach

    Energy Technology Data Exchange (ETDEWEB)

    Le Pallec, J. C.; Crouzet, N.; Bergeaud, V.; Delavaud, C. [CEA/DEN/DM2S, CEA/Saclay, 91191 Gif sur Yvette Cedex (France)

    2012-07-01

    The control of uncertainties in the field of reactor physics and their propagation in best-estimate modeling are a major issue in safety analysis. In this framework, the CEA develops a methodology to perform multi-physics simulations including uncertainties analysis. The present paper aims to present and apply this methodology for the analysis of an accidental situation such as REA (Rod Ejection Accident). This accident is characterized by a strong interaction between the different areas of the reactor physics (neutronic, fuel thermal and thermal hydraulic). The modeling is performed with CRONOS2 code. The uncertainties analysis has been conducted with the URANIE platform developed by the CEA: For each identified response from the modeling (output) and considering a set of key parameters with their uncertainties (input), a surrogate model in the form of a neural network has been produced. The set of neural networks is then used to carry out a sensitivity analysis which consists on a global variance analysis with the determination of the Sobol indices for all responses. The sensitivity indices are obtained for the input parameters by an approach based on the use of polynomial chaos. The present exercise helped to develop a methodological flow scheme, to consolidate the use of URANIE tool in the framework of parallel calculations. Finally, the use of polynomial chaos allowed computing high order sensitivity indices and thus highlighting and classifying the influence of identified uncertainties on each response of the analysis (single and interaction effects). (authors)

  14. Applicability of Domain-Specific Application Framework for End-User Development

    Science.gov (United States)

    Chusho, Takeshi

    2016-01-01

    It is preferable for business professionals to develop web applications which must be modified frequently based on their needs. A website for matching is a typical example because various matching websites for C2C (Consumer to Consumer) have recently been opened in relation to the "sharing economy". In our case studies on end-user…

  15. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  16. Charge transfer devices and their application in physics

    Energy Technology Data Exchange (ETDEWEB)

    Soroko, L M [Joint Inst. for Nuclear Research, Dubna (USSR)

    1979-01-01

    Physical properties and technical specifications of charge transfer devices (CTD) are reviewed. The CTD are semiconductor devices based on silicon single crystals. The limiting charge density of the CTD, their efficiency of charge transfer, the background noise and radiation effects are considered. Fast response and low energy consumption are characteristic features of the devices. The application of the CTD in storage devices, real time spectral data processing systems and in streamer chambers is described. The algorithms of topological transformations in the stage of scanning particle track images, which can be realized with the help of the CTD are shortly considered. It is pointed out that applications of the CTD in different fields of science and technology are numerous and expanding.

  17. Group theory Application to the physics of condensed matter

    CERN Document Server

    Dresselhauss, M S; Jorio, A

    2007-01-01

    Every process in physics is governed by selection rules that are the consequence of symmetry requirements. The beauty and strength of group theory resides in the transformation of many complex symmetry operations into a very simple linear algebra. This concise and class-tested book has been pedagogically tailored over 30 years MIT and 2 years at the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory in close connection with applications helps students to learn, understand and use it for their own needs. For this reason, the theoretical background is confined to the first 4 introductory chapters (6-8 classroom hours). From there, each chapter develops new theory while introducing applications so that the students can best retain new concepts, build on concepts learned the previous week, and see interrelations between topics as presented. Essential problem sets between the chapters also aid the retention of the new material and for the consolid...

  18. Positioning navigation and timing service applications in cyber physical systems

    Science.gov (United States)

    Qu, Yi; Wu, Xiaojing; Zeng, Lingchuan

    2017-10-01

    The positioning navigation and timing (PNT) architecture was discussed in detail, whose history, evolvement, current status and future plan were presented, main technologies were listed, advantages and limitations of most technologies were compared, novel approaches were introduced, and future capacities were sketched. The concept of cyber-physical system (CPS) was described and their primary features were interpreted. Then the three-layer architecture of CPS was illustrated. Next CPS requirements on PNT services were analyzed, including requirements on position reference and time reference, requirements on temporal-spatial error monitor, requirements on dynamic services, real-time services, autonomous services, security services and standard services. Finally challenges faced by PNT applications in CPS were concluded. The conclusion was expected to facilitate PNT applications in CPS, and furthermore to provide references to the design and implementation of both architectures.

  19. GLOFRIM v1.0 – A globally applicable computational framework for integrated hydrological–hydrodynamic modelling

    NARCIS (Netherlands)

    Hoch, J.M.; Neal, Jeffrey; Baart, Fedor; van Beek, L.P.H.; Winsemius, Hessel; Bates, Paul; Bierkens, M.F.P.

    2017-01-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological–hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global

  20. Zirconium-Based metal organic framework (Zr-MOF) material with high hydrostability for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-09-01

    Full Text Available Material-based solutions, such as metal organic frameworks (MOFs), continue to attract increasing attention as viable options for hydrogen storage applications. MOFs are widely regarded as promising materials for hydrogen storage due to their high...

  1. Efimov Physics and the Three-Body Parameter within a Two-Channel Framework

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.

    2012-01-01

    scaling laws. We recover known results for broad Feshbach resonances with small effective range, whereas in the case of narrow resonances we find a distinct non-monotonic behavior of the threshold at which the lowest Efimov trimer merges with the three-body continuum. To address the issue of the physical...... origin of the three-body parameter we provide a physically clear model for the relation between three-body physics and typical two-body atom-atom interactions. Our results demonstrate that experimental information from narrow Feshbach resonances and/or mixed systems are of vital importance to pin down...... the relation of two- and three-body physics in atomic systems....

  2. A Framework For Using GPS Data In Physical Activity And Sedentary Behavior Studies

    DEFF Research Database (Denmark)

    Jankowska, Marta M; Schipperijn, Jasper; Kerr, Jacqueline

    2015-01-01

    Global Positioning Systems (GPS) are increasingly applied in activity studies, yet significant theoretical and methodological challenges remain. This paper presents a framework for integrating GPS data with other technologies to create dynamic representations of behaviors in context. Utilizing more...... accurate and sensitive measures to link behavior and environmental exposures allows for new research questions and methods to be developed. SUMMARY: Global Positioning Systems can be linked with other technologies to create dynamic representations of behaviors in context....

  3. Using an Agent-oriented Framework for Supervision, Diagnosis and Prognosis Applications in Advanced Automation Environments

    DEFF Research Database (Denmark)

    Thunem, Harald P-J; Thunem, Atoosa P-J; Lind, Morten

    2011-01-01

    This paper demonstrates how a generic agent-oriented framework can be used in advanced automation environments, for systems analysis in general and supervision, diagnosis and prognosis purposes in particular. The framework’s background and main application areas are briefly described. Next......-oriented supervision, diagnosis and prognosis purposes are equally explained. Finally, the paper sums up by also addressing plans for further enhancement and in that respect integration with other tailor-made tools for joint treatment of various modeling and analysis activities upon advanced automation environments....

  4. The cost-effectiveness of using financial incentives to improve provider quality: a framework and application

    DEFF Research Database (Denmark)

    Meacock, R.; Kristensen, Søren Rud; Sutton, M.

    2014-01-01

    Despite growing adoption of pay-for-performance (P4P) programmes in health care, there is remarkably little evidence on the cost-effectiveness of such schemes. We review the limited number of previous studies and critique the frameworks adopted and the narrow range of costs and outcomes considered......, and whether performance improvement is a transitory or investment activity. Our application to the Advancing Quality initiative demonstrates that the incentive payments represented less than half of the 13m pound total programme costs. By generating approximately 5200 quality-adjusted life years and 4.4m...

  5. Predictive modeling of coupled multi-physics systems: II. Illustrative application to reactor physics

    International Nuclear Information System (INIS)

    Cacuci, Dan Gabriel; Badea, Madalina Corina

    2014-01-01

    Highlights: • We applied the PMCMPS methodology to a paradigm neutron diffusion model. • We underscore the main steps in applying PMCMPS to treat very large coupled systems. • PMCMPS reduces the uncertainties in the optimally predicted responses and model parameters. • PMCMPS is for sequentially treating coupled systems that cannot be treated simultaneously. - Abstract: This work presents paradigm applications to reactor physics of the innovative mathematical methodology for “predictive modeling of coupled multi-physics systems (PMCMPS)” developed by Cacuci (2014). This methodology enables the assimilation of experimental and computational information and computes optimally predicted responses and model parameters with reduced predicted uncertainties, taking fully into account the coupling terms between the multi-physics systems, but using only the computational resources that would be needed to perform predictive modeling on each system separately. The paradigm examples presented in this work are based on a simple neutron diffusion model, chosen so as to enable closed-form solutions with clear physical interpretations. These paradigm examples also illustrate the computational efficiency of the PMCMPS, which enables the assimilation of additional experimental information, with a minimal increase in computational resources, to reduce the uncertainties in predicted responses and best-estimate values for uncertain model parameters, thus illustrating how very large systems can be treated without loss of information in a sequential rather than simultaneous manner

  6. Mixed method evaluation of the Virtual Traveller physically active lesson intervention: An analysis using the RE-AIM framework.

    Science.gov (United States)

    Norris, E; Dunsmuir, S; Duke-Williams, O; Stamatakis, E; Shelton, N

    2018-02-02

    Physically active lessons integrating movement into academic content are a way to increase children's physical activity levels. Virtual Traveller was a physically active lesson intervention set in Year 4 (aged 8-9) primary school classes in Greater London, UK. Implemented by classroom teachers, it was a six-week intervention providing 10-min physically active Virtual Field Trips three times a week. The aim of this paper is to report the process evaluation of the Virtual Traveller randomized controlled trial according to RE-AIM framework criteria (Reach, Effectiveness, Adoption, Implementation and Maintenance). A mixed methods approach to evaluation was conducted with five intervention group classes. Six sources of data were collected via informed consent logs, teacher session logs, teacher and pupil questionnaires, teacher interviews and pupil focus groups. High participation and low attrition rates were identified (Reach) alongside positive evaluations of Virtual Traveller sessions from pupil and teachers (Effectiveness). Participants were from more deprived and ethnic backgrounds than local and national averages, with Virtual Traveller having the potential to be a free intervention (Adoption). 70% of sessions were delivered overall (Implementation) but no maintenance of the programme was evident at three month follow-up (Maintenance). Mixed method evaluation of Virtual Traveller showed potential for it to be implemented as a low-cost physically active lesson intervention in UK primary schools. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Towards a Self-Consistent Physical Framework for Modeling Coupled Human and Physical Activities during the Anthropocene

    Science.gov (United States)

    Garrett, T. J.

    2014-12-01

    Studies of the response of global climate to anthropogenic activities rely upon scenarios for future human activity to provide a range of possible trajectories for greenhouse gases emissions over the coming century. Sophisticated integrated models are used to explore not only what will happen, but what should happen in order to optimize societal well-being. Hundreds of equations might be used to account for the interplay between human decisions, technological change, and macroeconomic priniciples. In contrast, the model equations used to describe geophysical phenomena look very different because they are a) purely deterministic and b) consistent with basic thermodynamic laws. This inconsistency between macroeconomics and physics suggests a rather unhappy marriage. During the Anthropocene the evolution of humanity and our environment will become increasingly intertwined. Representing such a coupling suggests a need for a common theoretical basis. To this end, the approach that is described here is to treat civilization like any other physical process, that is as an open, non-equilibrium thermodynamic system that dissipates energy and diffuses matter in order to sustain existing circulations and to further its material growth. Theoretical arguments and over 40 years of measurements show that a very general representation of global economic wealth (not GDP) has been tied to rates of global primary energy consumption through a constant 7.1 ± 0.1 mW per year 2005 USD. This link between physics and economics leads to very simple expressions for how fast civilization and its rate of energy consumption grow. These are expressible as a function of rates of energy and material resource discovery and depletion, and of the magnitude of externally imposed decay. The equations are validated through hindcasts that show, for example, that economic conditions in the 1950s can be invoked to make remarkably accurate forecasts of present rates of global GDP growth and primary energy

  8. Fourier series, Fourier transform and their applications to mathematical physics

    CERN Document Server

    Serov, Valery

    2017-01-01

    This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences.  Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing.  The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations.  The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory o...

  9. Integrated computer-aided framework for chemical product and process application design and optimization for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Woodley, John M.; Abildskov, Jens

    2017-01-01

    This contribution presents an integrated framework for product-process design. The framework integrates the two design problems into one and finds the optimal solution through simultaneous optimization. The framework consists of four hierarchical steps and uses a set of methods, tools and databases...... for property prediction, novel fluid design and mathematical programming. The application of the framework is targeted for waste heat recovery design systems, where the sensitivity of product and process design variables is high and the simultaneous design is necessary. The sustainable design solutions...... are showcased in this paper for mixed refrigeration design....

  10. On-Orbit Camera Misalignment Estimation Framework and Its Application to Earth Observation Satellite

    Directory of Open Access Journals (Sweden)

    Seungwoo Lee

    2015-03-01

    Full Text Available Despite the efforts for precise alignment of imaging sensors and attitude sensors before launch, the accuracy of pre-launch alignment is limited. The misalignment between attitude frame and camera frame is especially important as it is related to the localization error of the spacecraft, which is one of the essential factors of satellite image quality. In this paper, a framework for camera misalignment estimation is presented with its application to a high-resolution earth-observation satellite—Deimos-2. The framework intends to provide a solution for estimation and correction of the camera misalignment of a spacecraft, covering image acquisition planning to mathematical solution of camera misalignment. Considerations for effective image acquisition planning to obtain reliable results are discussed, followed by a detailed description on a practical method for extracting many GCPs automatically using reference ortho-photos. Patterns of localization errors that commonly occur due to the camera misalignment are also investigated. A mathematical model for camera misalignment estimation is described comprehensively. The results of simulation experiments showing the validity and accuracy of the misalignment estimation model are provided. The proposed framework was applied to Deimos-2. The real-world data and results from Deimos-2 are presented.

  11. KNODWAT: a scientific framework application for testing knowledge discovery methods for the biomedical domain.

    Science.gov (United States)

    Holzinger, Andreas; Zupan, Mario

    2013-06-13

    Professionals in the biomedical domain are confronted with an increasing mass of data. Developing methods to assist professional end users in the field of Knowledge Discovery to identify, extract, visualize and understand useful information from these huge amounts of data is a huge challenge. However, there are so many diverse methods and methodologies available, that for biomedical researchers who are inexperienced in the use of even relatively popular knowledge discovery methods, it can be very difficult to select the most appropriate method for their particular research problem. A web application, called KNODWAT (KNOwledge Discovery With Advanced Techniques) has been developed, using Java on Spring framework 3.1. and following a user-centered approach. The software runs on Java 1.6 and above and requires a web server such as Apache Tomcat and a database server such as the MySQL Server. For frontend functionality and styling, Twitter Bootstrap was used as well as jQuery for interactive user interface operations. The framework presented is user-centric, highly extensible and flexible. Since it enables methods for testing using existing data to assess suitability and performance, it is especially suitable for inexperienced biomedical researchers, new to the field of knowledge discovery and data mining. For testing purposes two algorithms, CART and C4.5 were implemented using the WEKA data mining framework.

  12. SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications.

    Directory of Open Access Journals (Sweden)

    Ahmad Karim

    Full Text Available Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS, disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks' back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps' detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies.

  13. SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications.

    Science.gov (United States)

    Karim, Ahmad; Salleh, Rosli; Khan, Muhammad Khurram

    2016-01-01

    Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks' back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps' detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies.

  14. The preparation of metal–organic frameworks and their biomedical application

    Directory of Open Access Journals (Sweden)

    Liu R

    2016-03-01

    Full Text Available Rong Liu,1,2 Tian Yu,1 Zheng Shi,1 Zhiyong Wang3 1School of Medicine and Nursing, Chengdu University, Chengdu, 2Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 3Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China Abstract: The development of a safe and targetable drug carrier is a major challenge. An efficient delivery system should protect cargo from degradation and cleanup, and control of drug release in the target site. Metal–organic frameworks (MOFs, consisting of metal ions and a variety of organic ligands, have been applied for drug delivery due to their distinct structure. In this review, we summarized the synthesis strategies of MOFs, especially emphasizing the methods of pore creation in frameworks, which were based on recent literatures. Subsequently, the controlled size, biocompatibility, drug releasing performances, and imaging of MOFs were discussed, which would pave the road for the application in drug-delivery systems. Keywords: metal-organic frameworks, pore creation, the controlled size, biocompatibility, drug releasing performances, imaging

  15. SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications

    Science.gov (United States)

    Karim, Ahmad; Salleh, Rosli; Khan, Muhammad Khurram

    2016-01-01

    Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks’ back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps’ detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies. PMID:26978523

  16. A GeoWall with Physics and Astronomy Applications

    Science.gov (United States)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  17. The physical and genetic framework of the maize B73 genome.

    Directory of Open Access Journals (Sweden)

    Fusheng Wei

    2009-11-01

    Full Text Available Maize is a major cereal crop and an important model system for basic biological research. Knowledge gained from maize research can also be used to genetically improve its grass relatives such as sorghum, wheat, and rice. The primary objective of the Maize Genome Sequencing Consortium (MGSC was to generate a reference genome sequence that was integrated with both the physical and genetic maps. Using a previously published integrated genetic and physical map, combined with in-coming maize genomic sequence, new sequence-based genetic markers, and an optical map, we dynamically picked a minimum tiling path (MTP of 16,910 bacterial artificial chromosome (BAC and fosmid clones that were used by the MGSC to sequence the maize genome. The final MTP resulted in a significantly improved physical map that reduced the number of contigs from 721 to 435, incorporated a total of 8,315 mapped markers, and ordered and oriented the majority of FPC contigs. The new integrated physical and genetic map covered 2,120 Mb (93% of the 2,300-Mb genome, of which 405 contigs were anchored to the genetic map, totaling 2,103.4 Mb (99.2% of the 2,120 Mb physical map. More importantly, 336 contigs, comprising 94.0% of the physical map ( approximately 1,993 Mb, were ordered and oriented. Finally we used all available physical, sequence, genetic, and optical data to generate a golden path (AGP of chromosome-based pseudomolecules, herein referred to as the B73 Reference Genome Sequence version 1 (B73 RefGen_v1.

  18. PREFACE: XVIII International School on Nuclear Physics, Neutron Physics and Applications

    Science.gov (United States)

    Stoyanov, Chavdar; Janeva, Natalia

    2010-11-01

    This volume contains the lectures and short talks given at the XVIII International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 21 to 27 September 2009 in Hotel 'Lilia' located on 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was Bulgarian Nuclear Regulatory Agency. The event was sponsored by National Science Fund of Bulgaria. According to the long-standing tradition the School has taken place every second year since 1973. The School content has been restructured according to our new enlarged international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts a lot of young scientists and students from many countries. This year - 2009, we had the pleasure to welcome more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to present a short contribution. The program ranges from recent achievements in nuclear structure and reactions to the hot problems of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and the pleasant evenings. The main topics were the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues contributed to the organization of the School. We would like to thank to them and especially to the Scientific Secretary of the School Dr

  19. Formative assessment framework proposal for transversal competencies: Application to analysis and problem-solving competence

    Directory of Open Access Journals (Sweden)

    Pedro Gómez-Gasquet

    2018-04-01

    Full Text Available Purpose: In the last years, there is an increasing interest in the manner that transversal competences (TC are introduced in the curricula. Transversal competences are generic and relevant skills that students have to develop through the several stages of the educational degrees. This paper analyses TCs in the context of the learning process of undergraduate and postgraduate courses. The main aim of this paper is to propose a framework to improve results. The framework facilities the student's training and one of the important pieces is undoubtedly that he has constant feedback from his assessments that allowing to improve the learning. An applying in the analysis and problem solving competence in the context of Master Degree in Advanced Engineering Production, Logistics and Supply Chain at the UPV is carried out. Design/methodology/approach: The work is the result of several years of professional experience in the application of the concept of transversal competence in the UPV with undergraduate and graduate students. As a result of this work and various educational innovation projects, a team of experts has been created, which has been discussing some aspects relevant to the improvement of the teaching-learning process. One of these areas of work has been in relation to the integration of various proposals on the application and deployment of transversal competences. With respect to this work, a conceptual proposal is proposed that has subsequently been empirically validated through the analysis of the results of several groups of students in a degree. Findings: The main result that is offered in the work is a framework that allows identifying the elements that are part of the learning process in the area of transversal competences. Likewise, the different items that are part of the framework are linked to the student's life cycle, and a temporal scope is established for their deployment. Practical implications: One of the most noteworthy

  20. 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications

    CERN Document Server

    Leroy, Claude; Price, Lawrence; Rancoita, Pier-Giorgio; Ruchti, Randy; ICATPP 2013; International Conference on Advanced Technology and Particle Physics

    2014-01-01

    The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energy and performed in a large variety of environments ranging from particle accelerators, underground detectors to satellites and the space laboratory. The achievement of these research programs calls for novel techniques, new materials and instrumentation to be used in detectors, often of large scale. Therefore, fundamental physics is at the forefront of technological advance and also leads to many applications. Among these, are the progresses from space experiments whose results allow the understanding of the cosmic environment, of the origin and evolution of the universe after the Big Bang.

  1. Standard model of particles and forces in the framework of two-time physics

    International Nuclear Information System (INIS)

    Bars, Itzhak

    2006-01-01

    In this paper it will be shown that the standard model in 3+1 dimensions is a gauge fixed version of a 2T physics field theory in 4+2 dimensions, thus establishing that 2T physics provides a correct description of nature from the point of view of 4+2 dimensions. The 2T formulation leads to phenomenological consequences of considerable significance. In particular, the higher structure in 4+2 dimensions prevents the problematic F*F term in QCD. This resolves the strong CP problem without a need for the Peccei-Quinn symmetry or the corresponding elusive axion. Mass generation with the Higgs mechanism is less straightforward in the new formulation of the standard model, but its resolution leads to an appealing deeper physical basis for mass, coupled with phenomena that could be measurable. In addition, there are some brand new mechanisms of mass generation related to the higher dimensions that deserve further study. The technical progress is based on the construction of a new field theoretic version of 2T physics including interactions in an action formalism in d+2 dimensions. The action is invariant under a new type of gauge symmetry which we call 2T-gauge symmetry in field theory. This opens the way for investigations of the standard model directly in 4+2 dimensions, or from the point of view of various embeddings of 3+1 dimensions, by using the duality, holography, symmetry, and unifying features of 2T physics

  2. MstApp, a rich client control applications framework at DESY

    International Nuclear Information System (INIS)

    Kirsten Hinsch, Winfried Schuette

    2012-01-01

    The control systems for PETRA 3 (a dedicated synchrotron machine) and its pre-accelerators extensively use rich clients for the control room and the servers. Most of them are written with the help of a rich client Java framework: MstApp. They totalize 106 different consoles and 158 individual server applications. MstApp takes care of many common control system application aspects beyond communication. MstApp provides a common look and feel: core menu items, a colour scheme for standard states of hardware components and predefined standardized screen sizes/locations. It interfaces our console application manager (CAM) and displays on demand our communication link diagnostics tools. MstApp supplies an accelerator context for each application; it handles printing, logging, re-sizing and unexpected application crashes. Due to our standardized deploy process MstApp applications know their individual developers and can even send them - on button press of the users - E-mails. Further a concept of different operation modes is implemented: view only, operating and expert use. Administration of the corresponding rights is done via web access of a database server. Initialization files on a web server are instantiated as JAVA objects with the help of the Java SE XML-Decoder. Data tables are read with the same mechanism. New MstApp applications can easily be created with in house wizards like the NewProjectWizard or the DeviceServerWizard. MstApp improves the operator experience, application developer productivity and delivered software quality. (authors)

  3. Web Application to Monitor Logistics Distribution of Disaster Relief Using the CodeIgniter Framework

    Science.gov (United States)

    Jamil, Mohamad; Ridwan Lessy, Mohamad

    2018-03-01

    Disaster management is the responsibility of the central government and local governments. The principles of disaster management, among others, are quick and precise, priorities, coordination and cohesion, efficient and effective manner. Help that is needed by most societies are logistical assistance, such as the assistance covers people’s everyday needs, such as food, instant noodles, fast food, blankets, mattresses etc. Logistical assistance is needed for disaster management, especially in times of disasters. The support of logistical assistance must be timely, to the right location, target, quality, quantity, and needs. The purpose of this study is to make a web application to monitorlogistics distribution of disaster relefusing CodeIgniter framework. Through this application, the mechanisms of aid delivery will be easily controlled from and heading to the disaster site.

  4. Web Application To Monitor Logistics Distribution of Disaster Relief Using the CodeIgniter Framework

    Directory of Open Access Journals (Sweden)

    Mohamad Jamil

    2017-10-01

    Full Text Available Disaster management is the responsibility of the central government and local governments. The principles of disaster management, among others, are quick and precise, priorities, coordination and cohesion, efficient and effective manner. Help that is needed by most societies are logistical assistance, such as the assistance covers people's everyday needs, such as food, instant noodles, fast food, blankets, mattresses etc. Logistical assistance is needed for disaster management, especially in times of disasters. The support of logistical assistance must be timely, to the right location, target, quality, quantity, and needs. The purpose of this study is to make a web application to monitorlogistics distribution of disaster relefusing CodeIgniter framework. Through this application, the mechanisms of aid delivery will be easily controlled from and heading to the disaster site

  5. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  6. Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications.

    Science.gov (United States)

    Xie, Zhiqiang; Xu, Wangwang; Cui, Xiaodan; Wang, Ying

    2017-04-22

    Metal-organic frameworks (MOFs), as a very promising category of porous materials, have attracted increasing interest from research communities due to their extremely high surface areas, diverse nanostructures, and unique properties. In recent years, there is a growing body of evidence to indicate that MOFs can function as ideal templates to prepare various nanostructured materials for energy and environmental cleaning applications. Recent progress in the design and synthesis of MOFs and MOF-derived nanomaterials for particular applications in lithium-ion batteries, sodium-ion batteries, supercapacitors, dye-sensitized solar cells, and heavy-metal-ion detection and removal is reviewed herein. In addition, the remaining major challenges in the above fields are discussed and some perspectives for future research efforts in the development of MOFs are also provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Application of computer-aided multi-scale modelling framework – Aerosol case study

    DEFF Research Database (Denmark)

    Heitzig, Martina; Sin, Gürkan; Glarborg, Peter

    2011-01-01

    Model-based computer aided product-process engineering has attained increased importance in a number of industries, including pharmaceuticals, petrochemicals, fine chemicals, polymers, biotechnology, food, energy and water. This trend is set to continue due to the substantial benefits computer-aided...... methods provide. The key prerequisite of computer-aided product-process engineering is however the availability of models of different types, forms and application modes. The development of the models required for the systems under investigation tends to be a challenging and time-consuming task involving...... numerous steps, expert skills and different modelling tools. This motivates the development of a computer-aided modelling framework that supports the user during model development, documentation, analysis, identification, application and re-use with the goal to increase the efficiency of the modelling...

  8. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery

    Institute of Scientific and Technical Information of China (English)

    Ming-Xue Wu; Ying-Wei Yang

    2017-01-01

    Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.

  9. Applications of Immobilized Bio-Catalyst in Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2018-04-01

    Full Text Available Immobilization of bio-catalysts in solid porous materials has attracted much attention in the last few decades due to its vast application potential in ex vivo catalysis. Despite the high efficiency and selectivity of enzymatic catalytic processes, enzymes may suffer from denaturation under industrial production conditions, which, in turn, diminish their catalytic performances and long-term recyclability. Metal-organic frameworks (MOFs, as a growing type of hybrid materials, have been identified as promising platforms for enzyme immobilization owing to their enormous structural and functional tunability, and extraordinary porosity. This review mainly focuses on the applications of enzyme@MOFs hybrid materials in catalysis, sensing, and detection. The improvements of catalytic activity and robustness of encapsulated enzymes over the free counterpart are discussed in detail.

  10. Awareness, adoption, and application of the Association of College & Research Libraries (ACRL) Framework for Information Literacy in health sciences libraries.

    Science.gov (United States)

    Schulte, Stephanie J; Knapp, Maureen

    2017-10-01

    In early 2016, the Association of College & Research Libraries (ACRL) officially adopted a conceptual Framework for Information Literacy (Framework) that was a significant shift away from the previous standards-based approach. This study sought to determine (1) if health sciences librarians are aware of the recent Framework for Information Literacy; (2) if they have used the Framework to change their instruction or communication with faculty, and if so, what changes have taken place; and (3) if certain librarian characteristics are associated with the likelihood of adopting the Framework. This study utilized a descriptive electronic survey. Half of all respondents were aware of and were using or had plans to use the Framework. Academic health sciences librarians and general academic librarians were more likely than hospital librarians to be aware of the Framework. Those using the Framework were mostly revising and creating content, revising their teaching approach, and learning more about the Framework. Framework users commented that it was influencing how they thought about and discussed information literacy with faculty and students. Most hospital librarians and half the academic health sciences librarians were not using and had no plans to use the Framework. Librarians with more than twenty years of experience were less likely to be aware of the Framework and more likely to have no plans to use it. Common reasons for not using the Framework were lack of awareness of a new version and lack of involvement in formal instruction. The results suggest that there is room to improve awareness and application of the Framework among health sciences librarians.

  11. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    Science.gov (United States)

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance

  12. GENOVA: a generalized perturbation theory program for various applications to CANDU core physics analysis (I)-theory and application

    International Nuclear Information System (INIS)

    Kim, Do Heon; Choi, Hang Bok

    2001-01-01

    A generalized perturbation theory (GPT) program, GENOVA, has been developed for the purpose of various applications to Canadian deuterium uranium (CANDU) reactor physics analyses. GENOVA was written under the framework of CANDU physics design and analysis code, RFSP. A sensitivity method based on the GPT was implemented in GENOVA to estimate various sensitivity coefficients related to the movement of zone controller units (ZCUs) existing in the CANDU reactor. The numerical algorithm for the sensitivity method was verified by a simple 2 x 2 node problem. The capability of predicting ZCU levels upon a refueling perturbation was validated for a CANDU-6 reactor problem. The applicability of GENOVA to the CANDU-6 core physics analysis has been demonstrated with the optimum refueling simulation and the uncertainty analysis problems. For the optimum refueling simulation, an optimum channel selection strategy has been proposed, using the ZCU level predicted by GENOVA. The refueling simulation of a CANDU-6 natural uranium core has shown that the ZCU levels are successfully controlled within the operating range while the channel and bundle powers are satisfying the license limits. An uncertainty analysis has been performed for the fuel composition heterogeneity of a CANDU DUPIC core, using the sensitivity coefficients generated by GENOVA. The results have shown that the uncertainty of the core performance parameter can be reduced appreciably when the contents of the major fissile isotopes are tightly controlled. GENOVA code has been successfully explored to supplement the weak points of the current design and analysis code, such as the incapacity of performing an optimum refueling simulation and uncertainty analysis. The sample calculations have shown that GENOVA has strong potential to be used for CANDU core analysis combined with the current design and analysis code, RFSP, especially for the development of advanced CANDU fuels

  13. Quantification frameworks and their application for evaluating the software quality factor using quality characteristic value

    International Nuclear Information System (INIS)

    Kim, C.; Chung, C.H.; Won-Ahn, K.

    2004-01-01

    Many problems, related with safety, frequently occur because Digital Instrument and Control Systems are widely used and expanding their ranges to many applications in Nuclear Power Plants. It, however, does not hold a general position to estimate an appropriate software quality. Thus, the Quality Characteristic Value, a software quality factor through each software life cycle, is suggested in this paper. The Quality Characteristic Value is obtained as following procedure: 1) Scoring Quality Characteristic Factors (especially correctness, traceability, completeness, and understandability) onto Software Verification and Validation results, 2) Deriving the diamond-shaped graphs by setting values of Factors at each axis and lining every points, and lastly 3) Measuring the area of the graph for Quality Characteristic Value. In this paper, this methodology is applied to Plant Control System. In addition, the series of quantification frameworks exhibit some good characteristics in the view of software quality factor. More than any thing else, it is believed that introduced framework may be applicable to regulatory guide, software approval procedures, due to its soundness and simple characteristics. (authors)

  14. Soil physical properties on Venezuelan steeplands: Applications to soil conservation planning

    International Nuclear Information System (INIS)

    Delgado, F.

    2004-01-01

    This paper presents a framework to support decision making for soil conservation on Venezuelan steeplands. The general approach is based on the evaluation of two important land qualities: soil productivity and soil erosion risk, both closely related to soil physical properties. Soil productivity can be estimated from soil characteristics such as soil air-water relationships, soil impedances and soil fertility. On the other hand, soil erosion risk depends basically on soil hydrologic properties, rainfall aggressiveness and terrain slope. Two indexes are obtained from soil and land characteristics: soil productivity index (PI) and erosion risk index (ERI), each one evaluates the respective land quality. Subsequently, a matrix with these two qualities shows different land classes as well as soil conservation priorities, conservation requirements and proposed land uses. The paper shows also some applications of the soil productivity index as an approach to evaluate soil loss tolerance for soil conservation programs on tropical steeplands. (author)

  15. A glorious, yet almost forgotten, mathematical theory, and some possibly new applications of it to physics

    International Nuclear Information System (INIS)

    Lo Surdo, C.

    2001-01-01

    Hardly the role and the importance of Classical-Invariant Theory is the history of mathematics (say, between - 1850 and - 1920) can be fully appreciated by a nonspecialist. In this study, it was firstly purposed to provide a compact sketch of its foundations starting from (and keeping the framework of) some very basic ideas in the equation theory; and then, after reviewing a couple of classical examples, to illustrate a number of (presumably new) applications to physics, with special reference to constitutive relations in continuous material media. As a significant example of the latter type (amongst other ones), it shall be completely worked out the problem of the a priori structure of linear viscous-stress tensor in a magnetoplasma [it

  16. Introduction to Plasma Physics: With Space and Laboratory Applications

    International Nuclear Information System (INIS)

    Browning, P K

    2005-01-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, 'with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfven wave theory, observations of Alfven waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects - a large subject! - are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  17. Developing a Conceptual Framework for Participatory Design of Psychosocial and Physical Learning Environments

    Science.gov (United States)

    Mäkelä, Tiina; Helfenstein, Sacha

    2016-01-01

    The present study shows how the mixed-methods approach can be used in capturing and organising learning environment (LE) characteristics for the participatory design of psychosocial and physical LEs involving learners. Theoretical constructs were tested and further elaborated on in the analysis of two similar educational design research studies:…

  18. What Is "Effective" CPD for Contemporary Physical Education Teachers? A Deweyan Framework

    Science.gov (United States)

    Armour, Kathleen; Quennerstedt, Mikael; Chambers, Fiona; Makopoulou, Kyriaki

    2017-01-01

    It is widely argued that continuing professional development (CPD) for physical education (PE) teachers is important, yet questions remain about "effective" CPD. We consider these questions afresh from a Deweyan perspective. An overview of the CPD/PE-CPD literature reveals conflicting positions on teachers as learners. Considering the…

  19. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System.

    Science.gov (United States)

    Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang

    2017-02-20

    Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed.

  20. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Zhenyu Wu

    2017-02-01

    Full Text Available Web of Things (WoT facilitates the discovery and interoperability of Internet of Things (IoT devices in a cyber-physical system (CPS. Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN, it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT framework for CPS (SWoT4CPS. SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed.

  1. Development and Application of a Numerical Framework for Improving Building Foundation Heat Transfer Calculations

    Science.gov (United States)

    Kruis, Nathanael J. F.

    Heat transfer from building foundations varies significantly in all three spatial dimensions and has important dynamic effects at all timescales, from one hour to several years. With the additional consideration of moisture transport, ground freezing, evapotranspiration, and other physical phenomena, the estimation of foundation heat transfer becomes increasingly sophisticated and computationally intensive to the point where accuracy must be compromised for reasonable computation time. The tools currently available to calculate foundation heat transfer are often either too limited in their capabilities to draw meaningful conclusions or too sophisticated to use in common practices. This work presents Kiva, a new foundation heat transfer computational framework. Kiva provides a flexible environment for testing different numerical schemes, initialization methods, spatial and temporal discretizations, and geometric approximations. Comparisons within this framework provide insight into the balance of computation speed and accuracy relative to highly detailed reference solutions. The accuracy and computational performance of six finite difference numerical schemes are verified against established IEA BESTEST test cases for slab-on-grade heat conduction. Of the schemes tested, the Alternating Direction Implicit (ADI) scheme demonstrates the best balance between accuracy, performance, and numerical stability. Kiva features four approaches of initializing soil temperatures for an annual simulation. A new accelerated initialization approach is shown to significantly reduce the required years of presimulation. Methods of approximating three-dimensional heat transfer within a representative two-dimensional context further improve computational performance. A new approximation called the boundary layer adjustment method is shown to improve accuracy over other established methods with a negligible increase in computation time. This method accounts for the reduced heat transfer

  2. Freedom and necessity in computer aided composition: A thinking framework and its application

    Science.gov (United States)

    Kretz, Johannes

    This paper presents some of the author's experiences with computer aided composition (CAC): the modeling of physical movements is used to obtain plausible musical gestures in interaction with constraint programming (rule based expert systems) in order to achieve precisely structured, consistent musical material with strong inner logic and syntax in pitch material. The "Constraints Engine" by Michael Laurson implemented in OpenMusic (IRCAM) or PWGL (Sibelius Academy) can be used to set up an interactive framework for composition, which offers a balance of freedom (allowing chance operations and arbitrary decisions of the composer) and necessity (through strict rules as well as through criteria for optimization). Computer Aided Composition is moving far beyond being "algorithmic" or "mechanical". This paper proposes an approach based on evolutionary epistemology (by the Austrian biologist and philosopher Rupert Riedl). The aim is a holistic synthesis of artistic freedom and coherent structures similar to the grown order of nature.

  3. The application of a multi-physics tool kit to spatial reactor dynamics

    International Nuclear Information System (INIS)

    Clifford, I.; Jasak, H.

    2009-01-01

    Traditionally coupled field nuclear reactor analysis has been carried out using several loosely coupled solvers, each having been developed independently from the others. In the field of multi-physics, the current generation of object-oriented tool kits provides robust close coupling of multiple fields on a single framework. This paper describes the initial results obtained as part of continuing research in the use of the OpenFOAM multi-physics tool kit for reactor dynamics application development. An unstructured, three-dimensional, time-dependent multi-group diffusion code Diffusion FOAM has been developed using the OpenFOAM multi-physics tool kit as a basis. The code is based on the finite-volume methodology and uses a newly developed block-coupled sparse matrix solver for the coupled solution of the multi-group diffusion equations. A description of this code is given with particular emphasis on the newly developed block-coupled solver, along with a selection of results obtained thus far. The code has performed well, indicating that the OpenFOAM tool kit is suited to reactor dynamics applications. This work has shown that the neutronics and simplified thermal-hydraulics of a reactor May be represented and solved for using a common calculation platform, and opens up the possibility for research into robust close-coupling of neutron diffusion and thermal-fluid calculations. This work has further opened up the possibility for research in a number of other areas, including research into three-dimensional unstructured meshes for reactor dynamics applications. (authors)

  4. Funding and remuneration of interdisciplinary primary care teams in Canada: a conceptual framework and application.

    Science.gov (United States)

    Wranik, W Dominika; Haydt, Susan M; Katz, Alan; Levy, Adrian R; Korchagina, Maryna; Edwards, Jeanette M; Bower, Ian

    2017-05-15

    application of a conceptual framework is an important step to the systematic study of the best performing financial models in the context of interdisciplinary primary care. The identification of optimal financial arrangements must be contextualized in terms of feasibility and the implementation environment. In general, financial hierarchy, both overt and covert, is considered a barrier to collaboration.

  5. Developing a framework for critical science agency through case study in a conceptual physics context

    Science.gov (United States)

    Basu, Sreyashi Jhumki; Calabrese Barton, Angela; Clairmont, Neil; Locke, Donya

    2009-06-01

    In this manuscript we examine how two students develop and express agency in and through high school physics. We tell the stories of two youth from a low-income, urban community to elucidate the important components of critical science agency in a physics context, and to situate a set of claims about how youth develop and express this concept. This research is part of a larger multiyear study of democratic practice in middle- and high-school science. We present three claims: (a) that critical science agency is intimately related to the leveraging and development of identity, (b) that critical science agency involves the strategic deployment of resources , and (c) that developing critical science agency is an iterative and generative process. Two university researchers have co-written this paper with the two students whose experiences serve as the cases under investigation, to provide both an "emic" perspective and student-focused voices that complement and challenge the researchers' voices.

  6. A framework for evaluating community-based physical activity promotion programmes in Latin America.

    Science.gov (United States)

    Schmid, Thomas L; Librett, John; Neiman, Andrea; Pratt, Michael; Salmon, Art

    2006-01-01

    A growing interest in promoting physical activity through multi-sectoral community-based programmes has highlighted the need for effective programme evaluation. Meeting in Rio de Janeiro, an international workgroup of behavioural, medical, public health and other scientists and practitioners endorsed the principle of careful evaluation of all programmes and in a consensus process developed the Rio de Janeiro Recommendations for Evaluation of Physical Activity Interventions". Among these recommendations and principles were that when possible, evaluation should 'built into' the programme from the beginning. The workgroup also called for adequate funding for evaluation, setting a goal of about 10% of programme resources for evaluation. The group also determined that evaluations should be developed in conjunction with and the results shared with all appropriate stakeholders in the programme; evaluations should be guided by ethical standards such as those proposed by the American Evaluation Association and should assess programme processes as well as outcomes; evaluation outcomes should be used to revise and refine ongoing programmes and guide decisions about programme continuation or expansion. It was also recognised that additional training in programme evaluation is needed and the Centers for Disease Control and Prevention's Physical Activity Evaluation Handbook could be easily adapted for use in culturally diverse communities, especially in Latin America. This paper describes a 6-step evaluation process and provides the full set of recommendations from the Rio de Janeiro Workgroup. The handbook has been translated and additional case studies from Colombia and Brazil have been added. Spanish and Portuguese language editions of the Evaluation Handbook are available from the Centers for Disease Control and Prevention, Physical Activity and Health Branch.

  7. Reticular Chemistry for the Highly Connected Porous Crystalline Frameworks and Their Potential Applications

    KAUST Repository

    Chen, Zhijie

    2018-03-31

    Control at the molecular level over porous solid-state materials is of prime importance for fine-tuning the local structures, as well as the resultant properties. Traditional porous solid-state materials such as zeolite and activated carbon are the benchmarks in the current market with vital applications in sorption and heterogeneous catalysis. However, the adjustments of pore size and geometry of those materials, which are essential for the broader aspect of modern prominent applications, remain challenging. Reticular chemistry has emerged as a dominant tool toward the ‘designed syntheses’ of porous crystalline frameworks (e.g. metal-organic frameworks (MOFs)) with a specific pore system. This dissertation illustrates the power of reticular chemistry and its use in the directional assembly of highly coordinated MOF materials, as well as their potential applications such as gas storage, natural gas upgrading, and light hydrocarbon separation. Highly connected minimal edge-transitive derived and related nets, obtained via the deconstruction of nodes of the edge-transitive nets, are suitable blueprints and can potentially be deployed in the future ‘designed syntheses’ of MOFs. The further employment of the conceptual net-coded building units (e.g. highly connected MBBs and edge-transitive SBLs) in the practical reticular synthesis results in the rational design and construction of functional MOF platforms like shp-, alb-, kce-, kex- and eea- MOFs. In addition, the isoreticular synthesis of Al-cea-MOF-2 with functionalized pendant acid moieties inside pore channels in comparison to the parent Al-cea-MOF-1 led to enhanced light hydrocarbons separation performance. Moreover, controlling the molecular defects in Zr-fum-fcu-MOFs resulted in the development of an ultramicroporous adsorbent with an engineered aperture size for the highly efficient separation of butane/iso-butane.

  8. Multimicroprocessor system for high-energy physics experiment applications

    International Nuclear Information System (INIS)

    Piska, K.; Falkenberg, W.; Glasneck, C.P.; Pflugbeil, W.

    1982-01-01

    An autonomous modular multicomputer system based on the INTEL 8080 for program development and for application to the high-energy physics experiment 'RISK' is presented. The associated microcomputers (a three-processor configuration is realized) with uniform software systems can perform, in parallel, the interactively-controlled processing and monitoring of data accessible in the common memory block coupled to the processors via the direct shared bus. Data are acquired into the common memory buffer by the main processor, which is linked by the CAMAC interface with the experimental apparatus and optionally with a large-size computer. One microcomputer can be connected with the magnetic tape unit used for data recording. (orig.)

  9. Bilayer graphene: physics and application outlook in photonics

    Directory of Open Access Journals (Sweden)

    Yan Hugen

    2015-05-01

    Full Text Available Layered materials, such as graphene, transition metal dichacogenides and black phosphorus have attracted lots of attention recently. They are emerging novel materials in electronics and photonics, with tremendous potential in revolutionizing the traditional electronics and photonics industry. Marrying layered material to the nanophotonics is being proved fruitful. With the recent emphasis and development of metasurfaces in nanophotonics, atomically thin materials can find their unique position and strength in this field. In this article, I will focus on one specific two dimensional material: bilayer graphene. Basic physics will be reviewed, such as band-gap opening, electron-phonon interaction, phonon-plasmon interaction and Fano resonances in the optical response. Moreover, I will review the application of bilayer graphene as a sensitive and fast photodetector. An outlook will be given in the final part of the paper.

  10. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Science.gov (United States)

    Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; Alam, Muhammad Ashraful; Bermel, Peter

    2017-07-01

    Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  11. Some Applications of Nuclear Physics in Medicine and Dentistry

    International Nuclear Information System (INIS)

    Anwar Chaudhri, M.; Nasir Chaudhri, M.

    2009-01-01

    Some applications of nuclear physics, to solve problems in dentistry and medicine are presented. The following two topics are going to be discussed: A. Nuclear Analytical Methods For Trace Element Studies In Teeth Various nuclear analytical methods have been developed and applied to determine the elemental composition of teeth. Fluorine was determined by prompt gamma activation analysis through the 19 F (p, a v) 16 O reaction. Carbon was measured by activation analysis with He-3 ions, and the technique of Proton-Induced X-ray Emission (PIXE) was applied to simultaneously determine Ca, P, and trace elements in well-documented teeth. Dental hard tissues: enamel, dentine, cement, and their junctions, as well as different parts of the same tissue, were examined separately.

  12. The physics of semiconductors an introduction including nanophysics and applications

    CERN Document Server

    Grundmann, Marius

    2016-01-01

    The 3rd edition of this successful textbook contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, carbon-based nanostructures and transparent conductive oxides. The text derives explicit formulas for many results to support better under...

  13. Application of physical separation techniques in uranium resources processing

    International Nuclear Information System (INIS)

    Padmanabhan, N.P.H.; Sreenivas, T.

    2008-01-01

    The planned economic growth of our country and energy security considerations call for increasing the overall electricity generating capabilities with substantial increase in the zero-carbon and clean nuclear power component. Although India is endowed with vast resources of thorium, its utilization can commence only after the successful completion of the first two stages of nuclear power programme, which use natural uranium in the first stage and natural uranium plus plutonium in the second stage. For the successful operation of first stage, exploration and exploitation activities for uranium should be vigorously followed. This paper reviews the current status of physical beneficiation in processing of uranium ores and discusses its applicability to recover uranium from low grade and below-cut-off grade ores in Indian context. (author)

  14. Normal mode analysis and applications in biological physics.

    Science.gov (United States)

    Dykeman, Eric C; Sankey, Otto F

    2010-10-27

    Normal mode analysis has become a popular and often used theoretical tool in the study of functional motions in enzymes, viruses, and large protein assemblies. The use of normal modes in the study of these motions is often extremely fruitful since many of the functional motions of large proteins can be described using just a few normal modes which are intimately related to the overall structure of the protein. In this review, we present a broad overview of several popular methods used in the study of normal modes in biological physics including continuum elastic theory, the elastic network model, and a new all-atom method, recently developed, which is capable of computing a subset of the low frequency vibrational modes exactly. After a review of the various methods, we present several examples of applications of normal modes in the study of functional motions, with an emphasis on viral capsids.

  15. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Directory of Open Access Journals (Sweden)

    Sun Xingshu

    2017-07-01

    Full Text Available Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  16. Physical activity and the environment: conceptual review and framework for intervention research.

    Science.gov (United States)

    Panter, Jenna; Guell, Cornelia; Prins, Rick; Ogilvie, David

    2017-11-15

    Changing the physical environment is one way to promote physical activity and improve health, but evidence on intervention effectiveness is mixed. The theoretical perspectives and conceptual issues discussed or used in evaluative studies and related literature may contribute to these inconsistencies. We aimed to advance the intervention research agenda by systematically searching for and synthesising the literature pertaining to these wider conceptual issues. We searched for editorials, commentaries, reviews, or primary qualitative or quantitative studies in multiple disciplines by electronic searches of key databases (MEDLINE and MEDLINE In-Process, Web of Science, Cochrane Reviews, ProQuest for dissertations, Health Evidence, EPPI-Centre, TRID and NICE) and snowballing. We extracted theoretical and conceptual material and used thematic analysis in an in-depth, configurative narrative approach to synthesis. Our initial searches identified 2760 potential sources from fields including public health, sociology, behavioural science and transport, of which 104 were included. By first separating out and then drawing together this material, we produced a synthesis that identified five high-level conceptual themes: one concerning outcomes (physical activity as a behaviour and a socially embedded practice), one concerning exposures (environmental interventions as structural changes) and three concerning how interventions bring about their effects (the importance of social and physical context; (un) observable mechanisms linking interventions and changes in physical activity; and interventions as events in complex systems). These themes are inter-related but have rarely been considered together in the disparate literatures. Drawing on these insights, we present a more generalisable way of thinking about how environmental interventions work which could be used in future evaluation studies. Environmental and policy interventions are socially embedded and operate within a

  17. Data driven parallelism in experimental high energy physics applications

    International Nuclear Information System (INIS)

    Pohl, M.

    1987-01-01

    I present global design principles for the implementation of high energy physics data analysis code on sequential and parallel processors with mixed shared and local memory. Potential parallelism in the structure of high energy physics tasks is identified with granularity varying from a few times 10 8 instructions all the way down to a few times 10 4 instructions. It follows the hierarchical structure of detector and data acquisition systems. To take advantage of this - yet preserving the necessary portability of the code - I propose a computational model with purely data driven concurrency in Single Program Multiple Data (SPMD) mode. The task granularity is defined by varying the granularity of the central data structure manipulated. Concurrent processes coordiate themselves asynchroneously using simple lock constructs on parts of the data structure. Load balancing among processes occurs naturally. The scheme allows to map the internal layout of the data structure closely onto the layout of local and shared memory in a parallel architecture. It thus allows to optimize the application with respect to synchronization as well as data transport overheads. I present a coarse top level design for a portable implementation of this scheme on sequential machines, multiprocessor mainframes (e.g. IBM 3090), tightly coupled multiprocessors (e.g. RP-3) and loosely coupled processor arrays (e.g. LCAP, Emulating Processor Farms). (orig.)

  18. Possible applications of the sigma delta digitizer in particle physics

    International Nuclear Information System (INIS)

    Hallgren, B.

    1991-01-01

    The sigma delta (ΣΔ) principle is an analog-to-digital conversion technique based on high-frequency sampling and low-pass filtering of the quantization noise. Resolution in time is exchanged for that in amplitude so as to avoid the difficulty of implementing complex precision analog circuits, in favour of digital circuits. The approach is attractive because it will make it possible to integrate complete channels of high resolution analog-to-digital converters and time digitizers in submicron digital VLSI technologies. Advantage is taken of the fact that the state-of-the-art VLSI is better suited for providing fast digital circuits than for providing precise analog circuits. This article describes the principle and the performance of the ideal ΣΔ digitizer. The design and measurements of a new 10 MHz prototype circuit of a second-order ΣΔ is presented to show the high speed operation of such a circuit. The expected performance of a CMOS test design using the same principles is discussed. Digital filters, useful for particle physics, are introduced. A comparison to other digitizing techniques is made and the potential applications of the ΣΔ digitizer in particle physics are outlined. (orig.)

  19. Positron beams: The journey from fundamental physics to industrial application

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2002-01-01

    Monoenergetic beams of positrons developed for fundamental atomic physics experiments have evolved - via basic and applied research in condensed matter physics and chemistry - to a phase in which possibilities for commercial exploitation are becoming apparent. The evolution of positron beam technology, from table-top laboratory-based apparatus with positrons of energies controllable in the 10 0 -10 2 eV energy range and beam intensities of ∼1 s -1 , to systems capable of delivering positrons of energies from 0.02 eV to MeV at intensities as high as 10 8 s -1 , has been both steady and saltatory. The journey from fundamental research to industrial application is a classic example of scientific development; a brief summary of steps on the way is followed by an example in which an attempt is being made to harness the efficacy of positron beams applied to defect spectroscopy of semiconductor structures to create an instrument of value to the ion implantation industry

  20. CLINICAL APPLICATIONS OF CRYOTHERAPY AMONG SPORTS PHYSICAL THERAPISTS.

    Science.gov (United States)

    Hawkins, Shawn W; Hawkins, Jeremy R

    2016-02-01

    Therapeutic modalities (TM) are used by sports physical therapists (SPT) but how they are used is unknown. To identify the current clinical use patterns for cryotherapy among SPT. Cross-sectional survey. All members (7283) of the Sports Physical Therapy Section of the APTA were recruited. A scenario-based survey using pre-participation management of an acute or sub-acute ankle sprain was developed. A Select Survey link was distributed via email to participants. Respondents selected a treatment approach based upon options provided. Follow-up questions were asked. The survey was available for two weeks with a follow-up email sent after one week. Question answers were the main outcome measures. Reliability: Cronbach's alpha=>0.9. The SPT response rate = 6.9% (503); responses came from 48 states. Survey results indicated great variability in respondents' approaches to the treatment of an acute and sub-acute ankle sprain. SPT applied cryotherapy with great variability and not always in accordance to the limited research on the TM. Continuing education, application of current research, and additional outcomes based research needs to remain a focus for clinicians. 3.