WorldWideScience

Sample records for physically synthesized ni-cu

  1. Effect of heat treatment on the physical properties of bimetallic doped catalyst, Cu-Ni/TiO2

    International Nuclear Information System (INIS)

    Bashiri, Robabeh; Sufian, Suriati; Mohamed, Norani Muti; Kait, Chong Fai

    2015-01-01

    Post heat treatment is critical for the doped semiconductor oxide in order to improve its photocatalytic performance. Thus work had been carried out to understand the effect of different calcination temperature (400, 450 and 500°C) on the physical properties of nanosized Cu-Ni/TiO 2 Cu-Ni doped TiO 2 nanoparticles prepared using a combined method of sol-gel and hydrothermal. The treated samples were characterized using Raman spectroscopy, Brunauer–Emmett–teller (BET) measurement, high resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), and diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis). Raman analysis showed that all samples displayed anatase (101) phase of TiO 2 , which is in good agreement with the TEM results. BET data showed that all prepared Cu-Ni/TiO 2 with different calcination temperature are mesoporous. SEM images displayed spherical particles with typical size of about 15 to 20 nm. UV-Vis spectra illustrated that the absorbance edge of all prepared Cu-Ni/TiO 2 have extended to the visible region with bandgap energies (2-2.1 eV) less than the pure anatase TiO 2 (3.2 eV). Calcination temperature of 450°C is considered to be the optimum as it converts the synthesized Cu-Ni/TiO 2 sample to have smaller average particle size with higher surface area that lead to more absorbance in the visible region and lower bandgap energy

  2. Effect of heat treatment on the physical properties of bimetallic doped catalyst, Cu-Ni/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bashiri, Robabeh, E-mail: noranimuti-mohamed@petronas.com.my; Sufian, Suriati [Chemical Engineering Dept. Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my; Kait, Chong Fai, E-mail: chongfaikait@petronas.com.my [Fundamental and Applied Sciences Dept., Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Post heat treatment is critical for the doped semiconductor oxide in order to improve its photocatalytic performance. Thus work had been carried out to understand the effect of different calcination temperature (400, 450 and 500°C) on the physical properties of nanosized Cu-Ni/TiO{sub 2}Cu-Ni doped TiO{sub 2} nanoparticles prepared using a combined method of sol-gel and hydrothermal. The treated samples were characterized using Raman spectroscopy, Brunauer–Emmett–teller (BET) measurement, high resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), and diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis). Raman analysis showed that all samples displayed anatase (101) phase of TiO{sub 2}, which is in good agreement with the TEM results. BET data showed that all prepared Cu-Ni/TiO{sub 2} with different calcination temperature are mesoporous. SEM images displayed spherical particles with typical size of about 15 to 20 nm. UV-Vis spectra illustrated that the absorbance edge of all prepared Cu-Ni/TiO{sub 2} have extended to the visible region with bandgap energies (2-2.1 eV) less than the pure anatase TiO{sub 2} (3.2 eV). Calcination temperature of 450°C is considered to be the optimum as it converts the synthesized Cu-Ni/TiO{sub 2} sample to have smaller average particle size with higher surface area that lead to more absorbance in the visible region and lower bandgap energy.

  3. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.

    Science.gov (United States)

    Kim, Tae Gon; Park, Hye Jin; Woo, Kyoohee; Jeong, Sunho; Choi, Youngmin; Lee, Su Yeon

    2018-01-10

    In this work, the fabrication and application of highly conductive, robust, flexible, and oxidation-resistant Cu-Ni core-shell nanoparticle (NP)-based electrodes have been reported. Cu@Ni core-shell NPs with a tunable Ni shell thickness were synthesized by varying the Cu/Ni molar ratios in the precursor solution. Through continuous spray coating and flash photonic sintering without an inert atmosphere, large-area Cu@Ni NP-based conductors were fabricated on various polymer substrates. These NP-based electrodes demonstrate a low sheet resistance of 1.3 Ω sq -1 under an optical energy dose of 1.5 J cm -2 . In addition, they exhibit highly stable sheet resistances (ΔR/R 0 flexible heater fabricated from the Cu@Ni film is demonstrated, which shows uniform heat distribution and stable temperature compared to those of a pure Cu film.

  4. Solution-Based Epitaxial Growth of Magnetically Responsive Cu@Ni Nanowires

    KAUST Repository

    Zhang, Shengmao; Zeng, Hua Chun

    2010-01-01

    An experiment was conducted to show the solution-based epitaxial growth of magnetically responsive Cu@Ni nanowires. The Ni-sheathed Cu nanowires were synthesized with a one-pot approach. 30 mL of high concentration NaOH, Cu(NO3)2. 3H2O, Cu(NO3)2. 3H2O and 0.07-0.30 mL of Ni(NO3)2. 6H 2O aqueous solutions were added into a plastic reactor with a capacity of 50.0 mL. A varying amount of ethylenediamine (EDA) and hydrazine were also added sequentially, followed by thorough mixing of all reagents. The dimension, morphology, and chemical composition of the products were examined with scanning electron microscopy with energy dispersive X-ray spectroscopy. The XPS analysis on the as formed Cu nanowires confirms that there is indeed no nickel inclusion in the nanowires prior to the formation of nickel overcoat, which rules out the possibility of Cu-Ni alloy formation.

  5. Solution-Based Epitaxial Growth of Magnetically Responsive Cu@Ni Nanowires

    KAUST Repository

    Zhang, Shengmao

    2010-02-23

    An experiment was conducted to show the solution-based epitaxial growth of magnetically responsive Cu@Ni nanowires. The Ni-sheathed Cu nanowires were synthesized with a one-pot approach. 30 mL of high concentration NaOH, Cu(NO3)2. 3H2O, Cu(NO3)2. 3H2O and 0.07-0.30 mL of Ni(NO3)2. 6H 2O aqueous solutions were added into a plastic reactor with a capacity of 50.0 mL. A varying amount of ethylenediamine (EDA) and hydrazine were also added sequentially, followed by thorough mixing of all reagents. The dimension, morphology, and chemical composition of the products were examined with scanning electron microscopy with energy dispersive X-ray spectroscopy. The XPS analysis on the as formed Cu nanowires confirms that there is indeed no nickel inclusion in the nanowires prior to the formation of nickel overcoat, which rules out the possibility of Cu-Ni alloy formation.

  6. Synthesis and characterization of Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal obtained by using microwave irradiation method

    International Nuclear Information System (INIS)

    Jiang Tingshun; Zhao Qian; Chen Kangmin; Tang Yajing; Yu Longbao; Yin Hengbo

    2008-01-01

    Co (Ni or Cu)-MCM-41 mesoporous molecular sieves with different amount of metal were synthesized by using cetyltrimethyl ammonium bromide as a template and by a novel microwave irradiation method. These samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and N 2 physical adsorption. The experimental results show that Co (Ni or Cu)-MCM-41 mesoporous molecular sieves were successfully synthesized. When the as-synthesized samples were calcined at 550 deg. C for 10 h, the template was effectively removed. Under microwave irradiation condition, Co-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 745.7-1188.8 m 2 /g and average pore sizes in a range of 2.46-2.75 nm; Ni-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 625.8-1161.3 m 2 /g and average pore sizes of ca. 2.7 nm; Cu-MCM-41 mesoporous molecular sieves have specific surface areas in a range of 601.6-1142.9 m 2 /g and average pore sizes in a range of 2.46-2.76 nm. On the other hand, with increasing the introduced metal amount, the specific surface area and pore volume of the synthesized Co (Ni or Cu)-MCM-41 mesoporous molecular sieves became small, and the mesoporous ordering of the samples became poor. Under the comparable synthesis conditions, the synthesized Co-MCM-41 mesoporous molecular sieve has a bigger specific surface area and a more uniform pore distribution as compared with the synthesized Ni-MCM-41and Cu-MCM-41 mesoporous molecular sieves

  7. Promising Cu-Ni-Cr-Si alloy for first wall ITER applications

    International Nuclear Information System (INIS)

    Ivanov, A.; Abramov, V.; Rodin, M.

    1996-01-01

    Precipitation-hardened Cu-Ni-Cr-Si alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of Cu-Ni-Cr-Si alloy at 250-300 C is observed. Mechanical properties of Cu-Ni-Cr-Si alloy neutron irradiated to a dose of ∝0.2 dpa at 293 C are investigated. Embrittlement of Cu-Ni-Cr-Si alloy can be avoided by annealing. (orig.)

  8. CuNiO nanoparticles assembled on graphene as an effective platform for enzyme-free glucose sensing

    International Nuclear Information System (INIS)

    Zhang, Xiaohui; Liao, Qingliang; Liu, Shuo; Xu, Wei; Liu, Yichong; Zhang, Yue

    2015-01-01

    Highlights: • Hydrothermal CuNiO nanoparticles assembled on CVD synthesized graphene. • CuNiO–graphene nanocomposite was applied to construct nonenzymatic glucose sensor. • Wide linear range up to 16 mM, good selectivity and stability were achieved. - Abstract: We utilized CuNiO nanoparticles modified graphene sheets (CuNiO–graphene) to the application of enzymeless glucose sensing. The hydrothermal synthesized CuNiO nanoparticles were successfully assembled on graphene sheets. Distinct from general method, the high quality pristine graphene was produced by chemical vapor deposition (CVD) and bubbling transferred on the electrode. Incorporating the excellent electronic transport of graphene and high electrocatalytic activity of CuNiO nanoparticles, the CuNiO–graphene nanocomposite modified electrode possessed strong electrocatalytic ability toward glucose in alkaline media. The proposed nonenzymatic glucose sensor exhibited wide linear range up to 16 mM (two parts, from 0.05 to 6.9 mM and 6.9–16 mM) and high sensitivity (225.75 μA mM −1 cm −2 and 32.44 μA mM −1 cm −2 , respectively). Excellent selectivity and acceptable stability were also achieved. Such an electrode would be attractive to sensor construction for its good properties, simple operation and low expense

  9. Calculation of Gibbs energy of Zr-Al-Ni, Zr-Al-Cu, Al-Ni-Cu and Zr-Al-Ni-Cu liquid alloys based on quasiregular solution model

    International Nuclear Information System (INIS)

    Li, H.Q.; Yang, Y.S.; Tong, W.H.; Wang, Z.Y.

    2007-01-01

    With the effects of electronic structure and atomic size being introduced, the mixing enthalpy as well as the Gibbs energy of the ternary Zr-Al-Cu, Ni-Al-Cu, Zr-Ni-Al and quaternary Zr-Al-Ni-Cu systems are calculated based on quasiregular solution model. The computed results agree well with the experimental data. The sequence of Gibbs energies of different systems is: G Zr-Al-Ni-Cu Zr-Al-Ni Zr-Al-Cu Cu-Al-Ni . To Zr-Al-Cu, Ni-Al-Cu and Zr-Ni-Al, the lowest Gibbs energy locates in the composition range of X Zr 0.39-0.61, X Al = 0.38-0.61; X Ni = 0.39-0.61, X Al = 0.38-0.60 and X Zr = 0.32-0.67, X Al = 0.32-0.66, respectively. And to the Zr-Ni-Al-Cu system with 66.67% Zr, the lowest Gibbs energy is obtained in the region of X Al = 0.63-0.80, X Ni = 0.14-0.24

  10. Morphology and chemical composition of Cu/Sn/Cu and Cu(5 at-%Ni)/Sn/Cu(5 at-%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Wojewoda-Budka, J.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2012-01-01

    In the present paper, scanning and transmission electron microscopies as well as energy dispersive X-ray spectroscopy investigations were performed to describe the morphology and chemical composition of the intermetallic phases growing in Cu/Sn/Cu and Cu(Ni)/Sn/Cu(Ni) interconnections during the

  11. Giant magnetoresistance in melt spun Cu85Co10Ni5

    DEFF Research Database (Denmark)

    Curiotto, Stefano; Johnson, Erik; Celegato, Federica

    2009-01-01

    CuCoNi rapidly solidified alloys are interesting because they display giant magnetoresistance (GMR). In the present work a Cu85Co10Ni5 alloy has been synthesized by melt spinning and analysed for GMR. The ribbons obtained have been annealed at different temperatures and the evolution of the crystal...... structure with annealing has been studied by X-ray diffraction. The. ne microstructure has been observed by TEM and related to the magnetic properties, investigated in a vibrating sample magnetometer. In the studied composition the magnetoresistance was found to be lower than in binary CuCo alloys without...

  12. Synthesis of CuO-NiO core-shell nanoparticles by homogeneous precipitation method

    International Nuclear Information System (INIS)

    Bayal, Nisha; Jeevanandam, P.

    2012-01-01

    Highlights: ► CuO-NiO core-shell nanoparticles have been synthesized using a simple homogeneous precipitation method for the first time. ► Mechanism of the formation of core-shell nanoparticles has been investigated. ► The synthesis route may be extended for the synthesis of other mixed metal oxide core-shell nanoparticles. - Abstract: Core-shell CuO–NiO mixed metal oxide nanoparticles in which CuO is the core and NiO is the shell have been successfully synthesized using homogeneous precipitation method. This is a simple synthetic method which produces first a layered double hydroxide precursor with core-shell morphology which on calcination at 350 °C yields the mixed metal oxide nanoparticles with the retention of core-shell morphology. The CuO–NiO mixed metal oxide precursor and the core-shell nanoparticles were characterized by powder X-ray diffraction, FT-IR spectroscopy, thermal gravimetric analysis, elemental analysis, scanning electron microscopy, transmission electron microscopy, and diffuse reflectance spectroscopy. The chemical reactivity of the core-shell nanoparticles was tested using catalytic reduction of 4-nitrophenol with NaBH 4 . The possible growth mechanism of the particles with core-shell morphology has also been investigated.

  13. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in

    2014-03-25

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E{sub d} = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices.

  14. NiTiCu/AlN/NiTiCu shape memory thin film heterostructures for vibration damping in MEMS

    International Nuclear Information System (INIS)

    Kaur, Navjot; Kaur, Davinder

    2014-01-01

    Highlights: • Fabrication of NiTiCu/AlN/NiTiCu heterostructure using dc/rf magnetron sputtering. • Exhibits highest hardness (38 GPa) and elastic modulus (187 GPa). • Enhanced dissipation of mechanical energy (E d = 5.7 N J). • High damping capacity (0.052) and figure of merit (∼0.62). • Can be applied for vibration damping in MEMS. -- Abstract: Shape memory alloy (NiTiCu) thin films coupled with piezoelectric AlN layer produce an intelligent material for vibration damping. In the present study pure NiTiCu, NiTiCu/AlN and NiTiCu/AlN/NiTiCu heterostructures have been deposited on Si substrate using magnetron sputtering technique. By the use of the interfaces and shape memory effect provided by NiTiCu layers, the damping capacity can be increased along with increase in stiffness and mechanical hardness. The heterostructures were characterized in terms of structural, electrical, morphological and mechanical properties by X-ray diffraction (XRD), four probe resistivity method, atomic force microscopy, field emission scanning electron microscopy, and nanoindentation. The NiTiCu/AlN/NiTiCu heterostructure exhibit enhanced mechanical and damping properties as compared to NiTiCu/AlN and pure NiTiCu. This enhancement in hardness and damping of the heterostructure could be attributed to the shape memory effect of NiTiCu, intrinsic piezoelectricity of AlN and increased number of interfaces in heterostructure that help in dissipation of mechanical vibrations. The findings of this work provide additional impetus for the application of these heterostructures in emerging fields of nanotechnology and microelectro mechanical (MEMS) devices

  15. Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures

    International Nuclear Information System (INIS)

    Horváth, Barbara; Illés, Balázs; Shinohara, Tadashi

    2014-01-01

    Intermetallic growth mechanisms and rates are investigated in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. An 8–10 μm thick Sn surface finish layer was electroplated onto a Cu substrate with a 1.5–2 μm thick Ni or Ag barrier layer. In order to induce intermetallic layer growth, the samples were aged in elevated temperatures: 50 °C and 125 °C. Intermetallic layer growth was checked by focused ion beam–scanning ion microscope. The microstructures and chemical compositions of the intermetallic layers were observed with a transmission electron microscope. It has been found that Ni barrier layers can effectively block the development of Cu 6 Sn 5 intermetallics. The intermetallic growth characteristics in the Sn/Cu and Sn/Ni/Cu systems are very similar. The intermetallic layer grows towards the Sn layer and forms a discrete layer. Differences were observed only in the growth gradients and surface roughness of the intermetallic layer which may explain the different tin whiskering properties. It was observed that the intermetallic layer growth mechanisms are completely different in the Ag barrier layers compared to the Ni layers. In the case of Sn/Ag/Cu systems, the Sn and Cu diffused through the Ag layer, formed Cu 6 Sn 5 intermetallics mainly at the Sn/Ag interface and consumed the Ag barrier layer. - Highlights: • Intermetallic growth was characterised in Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layer systems. • Intermetallic growth rates and roughness are similar in the Sn/Cu and Sn/Ni/Cu systems. • Sn/Ni/Cu system contains the following intermetallic layer structure Sn–Ni3Sn4–Ni3Sn2–Ni3Sn–Ni. • In the case of Sn/Ag/Cu systems the Sn and Cu diffusion consumes the Ag barrier layer. • When Cu reaches the Sn/Ag interface a large amount of Cu 6 Sn 5 forms above the Ag layer

  16. DO22-(Cu,Ni)3Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    International Nuclear Information System (INIS)

    Liu Lilin; Huang, Haiyou; Fu Ran; Liu Deming; Zhang Tongyi

    2009-01-01

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO 22 -(Cu,Ni) 3 Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO 22 -(Cu,Ni) 3 Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO 22 -(Cu,Ni) 3 Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO 22 -(Cu,Ni) 3 Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO 22 IMC and fcc Cu crystals in comparison with that between the equilibrium DO 3 IMC and fcc Cu crystals.

  17. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    Science.gov (United States)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  18. Corrosion Resistance Of Electroless Ni-P/Cu/Ni-P Multilayer Coatings

    Directory of Open Access Journals (Sweden)

    Zhao G.L.

    2015-06-01

    Full Text Available Ni-P/Cu/Ni-P multilayer coatings were prepared by deposition of Cu layer between two Ni–P layers. The Cu layer was deposited by metal displacement reaction between Cu2+ and Fe atoms. Corrosion behavior of single-layer Ni-P coatings, double-layer Ni-P/Cu coatings, and three-layer Ni-P/Cu/Ni-P coatings were investigated by electrochemical tests in 3.5% NaCl solution. The three-layer coatings exhibited more positive Ecorr and decreased Icorr compared with conventional single-layer Ni-P coatings, which indicated an improved corrosion resistance. The polarization curves of the three-layer coatings were characterized by two passive regions. The improved corrosion resistance was not only attributed to the function of the blocked pores of Cu. The Cu interlayer also acted as a sacrificial layer instead of a barrier in the coatings, which altered the corrosion mechanism and further improved the corrosion resistance of the coatings.

  19. Synthesis and magnetic properties of multilayer Ni/Cu and NiFe/Cu ...

    Indian Academy of Sciences (India)

    The diameter of wires can be easily varied by pore size of alumina, ranging ... saturated HgCl2 solution to remove the remaining Al, and then dipped in 5 wt% ... for NiFe alloy it is 1.3 V, that is higher than for Ni/Cu nanowires to diminish Cu.

  20. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gagorowska, B; Dus-Sitek, M [Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa (Poland)

    2007-08-15

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d{sub Cu} = 2 nm) and the thickness of Ni layer - variable (1 nm {<=} d{sub Ni} {<=} 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent.

  1. Influence of ni thickness on oscillation coupling in Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Gagorowska, B; Dus-Sitek, M

    2007-01-01

    The results of investigation of magnetic properties of [Cu/Ni]x100 were presented. Samples were deposited by face-to-face sputtering method onto the silicon substrate, the thickness of Cu layer was constant (d Cu = 2 nm) and the thickness of Ni layer - variable (1 nm ≤ d Ni ≤ 6 nm). In Cu/Ni multilayers, for the thickness of Ni layer bigger than 2 nm antiferromagnetic coupling (A-F) were observed, for the thickness of Ni smaller than 2 nm A-F coupling is absent

  2. Microstructure and magnetic studies of Mg-Ni-Zn-Cu ferrites

    International Nuclear Information System (INIS)

    Bachhav, S.G.; Patil, R.S.; Ahirrao, P.B.; Patil, A.M.; Patil, D.R.

    2011-01-01

    Highlights: → Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 ferrite shows spinel structure. → Lattice parameter, X-ray density, porosity increase with increase in Ni content. → The IR spectra show tetrahedral and octahedral complexes. → Initial permeability remains constant with temperature and drops to zero at certain temperature which is in close agreement with Curie temperature. → The Curie temperature shows increasing trend with Ni content. - Abstract: Soft Mg-Ni-Zn-Cu spinel ferrites having general chemical formula Ni x Mg 0.5-x Cu 0.1 Zn 0.4 Fe 2 O 4 (where x 0.1, 0.2, 0.3, 0.4 and 0.5) were prepared by standard double sintering ceramic method. The samples were characterized by X-ray diffraction at room temperature. The X-ray diffraction (XRD) study revealed that lattice parameter decreases with increase in Ni content, resulting in a reduction in lattice strain. The electrical and magnetic properties of the synthesized ferrites have been investigated as a function of temperature. The variation of initial permeability and AC susceptibility with temperature exhibits normal ferrimagnetic behavior. The variation of initial permeability with frequency is studied. The Curie temperature (T C ) in the present work was determined from initial permeability and AC susceptibility. The Curie temperature increases with Ni content.

  3. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    Science.gov (United States)

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV−visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties. PMID:27877868

  4. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses; Estudos do desenvolvimento e caracterizacao das ligas Cu-Ni-Pt e Cu-Ni-Sn para fins eletro-eletronicos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis Carlos Elias da

    2006-07-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  5. Influence of in situ synthesized TiC on thermal stability and corrosion behavior of Zr60Cu10Al15Ni15 amorphous composites

    International Nuclear Information System (INIS)

    Geng, Jiwei; Teng, Xinying; Zhou, Guorong; Leng, Jinfeng; Zhao, Degang

    2014-01-01

    In situ synthesized TiC particles were prepared by a thermal explosion method. Adding “in situ synthesized” TiC into Zr 60 Cu 10 Al 15 Ni 15 glass matrix to obtain amorphous matrix composites was achieved. The corrosion behavior of Zr 60 Cu 10 Al 15 Ni 15 amorphous composites was evaluated using potentiodynamic polarization measurements in 3.5 wt% NaCl solution at room temperature. The results show that the microhardness and thermal stability are improved apparently, while the TiC (≤0.6 wt%) does not significantly affect the supercooled liquid behavior. Moreover, the corrosion resistance is improved apparently because the nanocrystals accelerate the diffusion of passive elements for faster formation of the protective passive film at nanocrystals/amorphous interfaces. However, when the TiC content is more than 0.6 wt%, both glass forming ability and corrosion resistance are reduced significantly

  6. A study of the composition and microstructure of nanodispersed Cu-Ni alloys obtained by different routes from copper and nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cangiano, Maria de los A; Ojeda, Manuel W., E-mail: mojeda@unsl.edu.ar; Carreras, Alejo C.; Gonzalez, Jorge A.; Ruiz, Maria del C

    2010-11-15

    Mixtures of CuO and NiO were prepared by two different techniques, and then the oxides were reduced with H{sub 2}. Method A involved the preparation of mechanical mixtures of CuO and NiO using different milling and pelletizing processes. Method B involved the chemical synthesis of the mixture of CuO and NiO. The route used to prepare the copper and nickel oxide mixture was found to have great influence on the characteristics of bimetallic Cu-Ni particles obtained. Observations performed using the X-ray diffraction (XRD) technique showed that although both methods led to the Cu-Ni solid solution, the diffractogram of the alloy obtained with method A revealed the presence of NiO together with the alloy. The temperature-programmed reduction (TPR) experiments indicated that the alloy is formed at lower temperatures when using method B. The scanning electron microscopy (SEM) studies revealed notable differences in the morphology and size distribution of the bimetallic particles synthesized by different routes. The results of the electron probe microanalysis (EPMA) studies evidenced the existence of a small amount of oxygen in both cases and demonstrated that the alloy synthesized using method B presented a homogeneous composition with a Cu-Ni ratio close to 1:1. On the contrary, the alloy obtained using method A was not homogeneous in all the volume of the solid. The homogeneity depended on the mechanical treatment undergone by the mixture of the oxides. - Research Highlights: {yields}Study of the properties of Cu-Ni alloys synthesized by two different routes. {yields}Mixtures of Cu and Ni oxides prepared by two techniques were reduced with H{sub 2}. {yields}Mixtures of oxides were obtained by a mechanical process and the citrate-gel route. {yields}The characterizations were carried out by TPR, XRD, SEM and EPMA. {yields}The route used to prepare oxide mixtures influences on the Cu-Ni alloy obtained.

  7. A study of the composition and microstructure of nanodispersed Cu-Ni alloys obtained by different routes from copper and nickel oxides

    International Nuclear Information System (INIS)

    Cangiano, Maria de los A; Ojeda, Manuel W.; Carreras, Alejo C.; Gonzalez, Jorge A.; Ruiz, Maria del C

    2010-01-01

    Mixtures of CuO and NiO were prepared by two different techniques, and then the oxides were reduced with H 2 . Method A involved the preparation of mechanical mixtures of CuO and NiO using different milling and pelletizing processes. Method B involved the chemical synthesis of the mixture of CuO and NiO. The route used to prepare the copper and nickel oxide mixture was found to have great influence on the characteristics of bimetallic Cu-Ni particles obtained. Observations performed using the X-ray diffraction (XRD) technique showed that although both methods led to the Cu-Ni solid solution, the diffractogram of the alloy obtained with method A revealed the presence of NiO together with the alloy. The temperature-programmed reduction (TPR) experiments indicated that the alloy is formed at lower temperatures when using method B. The scanning electron microscopy (SEM) studies revealed notable differences in the morphology and size distribution of the bimetallic particles synthesized by different routes. The results of the electron probe microanalysis (EPMA) studies evidenced the existence of a small amount of oxygen in both cases and demonstrated that the alloy synthesized using method B presented a homogeneous composition with a Cu-Ni ratio close to 1:1. On the contrary, the alloy obtained using method A was not homogeneous in all the volume of the solid. The homogeneity depended on the mechanical treatment undergone by the mixture of the oxides. - Research Highlights: →Study of the properties of Cu-Ni alloys synthesized by two different routes. →Mixtures of Cu and Ni oxides prepared by two techniques were reduced with H 2 . →Mixtures of oxides were obtained by a mechanical process and the citrate-gel route. →The characterizations were carried out by TPR, XRD, SEM and EPMA. →The route used to prepare oxide mixtures influences on the Cu-Ni alloy obtained.

  8. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  9. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    Science.gov (United States)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  10. The activation energy for loop growth in Cu and Cu-Ni alloys

    International Nuclear Information System (INIS)

    Barlow, P.; Leffers, T.; Singh, B.N.

    1978-08-01

    The apparent activation energy for the growth of interstitial dislocation loops in copper, Cu-1%Ni, Cu-2%Ni, and Cu-5%Ni during high voltage electron microscope irradiation was determined. The apparent activation energy for loop growth in all these materials can be taken to be 0.34eV+-0.02eV. This value together with the corresponding value of 0.44eV+-0.02eV determined earlier for Cu-10%Ni is discussed with reference to the void growth rates observed in these materials. The apparent activation energy for loop growth in copper (and in Cu-1%Ni that has a void growth rate similar to that in pure copper) is interpreted as twice the vacancy migration energy (indicating that divacancies do not play any significant role). For the materials with higher Ni content (in which the void growth rate is much lower than that in Cu and Cu-1%Ni) the measured apparent activation energy is interpreted to be characteristic of loops positioned fairly close to the foil surface and not of loops in ''bulk material''. From the present results in combination with the earlier results for Cu-10%Ni it is concluded that interstitial trapping is the most likely explanation of the reduced void growth rate in Cu-Ni alloys. (author)

  11. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Liang [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China); Wu, Ya-Pan [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Dong, Wen-Wen [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Zhou, Chun-Sheng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China)

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  12. CO2 activation on bimetallic CuNi nanoparticles

    Directory of Open Access Journals (Sweden)

    Natalie Austin

    2016-10-01

    Full Text Available Density functional theory calculations have been performed to investigate the structural, electronic, and CO2 adsorption properties of 55-atom bimetallic CuNi nanoparticles (NPs in core-shell and decorated architectures, as well as of their monometallic counterparts. Our results revealed that with respect to the monometallic Cu55 and Ni55 parents, the formation of decorated Cu12Ni43 and core-shell Cu42Ni13 are energetically favorable. We found that CO2 chemisorbs on monometallic Ni55, core-shell Cu13Ni42, and decorated Cu12Ni43 and Cu43Ni12, whereas, it physisorbs on monometallic Cu55 and core-shell Cu42Ni13. The presence of surface Ni on the NPs is key in strongly adsorbing and activating the CO2 molecule (linear to bent transition and elongation of C˭O bonds. This activation occurs through a charge transfer from the NPs to the CO2 molecule, where the local metal d-orbital density localization on surface Ni plays a pivotal role. This work identifies insightful structure-property relationships for CO2 activation and highlights the importance of keeping a balance between NP stability and CO2 adsorption behavior in designing catalytic bimetallic NPs that activate CO2.

  13. DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound nanolayer formed in Cu/Sn-nanolayer/Ni structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lilin [School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Haiyou [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China); Fu Ran; Liu Deming [ASM Assembly Automation Ltd. (Hong Kong); Zhang Tongyi, E-mail: mezhangt@ust.h [Department of Mechanical Engineering, Hong Kong University of Science and Technology (HKUST) (Hong Kong); Hong Kong - Beijing Joint Research Center, HKUST Fok Ying Tung Graduate School, Nansha, Guangzhou (China)

    2009-11-03

    The present work conducts crystal characterization by High Resolution Transmission Electron Microscopy (HRTEM) on Cu/Sn-nanolayer/Ni sandwich structures associated with the use of Energy Dispersive X-ray (EDX) analysis. The results show that DO{sub 22}-(Cu,Ni){sub 3}Sn intermetallic compound (IMC) ordered structure is formed in the sandwich structures at the as-electrodeposited state. The formed DO{sub 22}-(Cu,Ni){sub 3}Sn IMC is a homogeneous layer with a thickness about 10 nm. The DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer is stable during annealing at 250 deg. C for 810 min. The formation and stabilization of the metastable DO{sub 22}-(Cu,Ni){sub 3}Sn IMC nanolayer are attributed to the less strain energy induced by lattice mismatch between the DO{sub 22} IMC and fcc Cu crystals in comparison with that between the equilibrium DO{sub 3} IMC and fcc Cu crystals.

  14. A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Yan Shifeng; Geng Jianxin; Chen Jianfeng; Yin Li; Zhou Yunchun; Liu Leijing; Zhou Enle

    2005-01-01

    Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni 0.65 Zn 0.35 Cu 0.1 Fe 1.9 O 4 /SiO 2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of α-Fe 2 O 3 . The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%. The magnetic properties of the nanocomposites are closely related to the ferrite content. The saturation magnetization increases with the ferrite content, while the coercivity reaches a maximum when the ferrite is 80wt% in the silica matrix

  15. CuNi NPs supported on MIL-101 as highly active catalysts for the hydrolysis of ammonia borane

    Science.gov (United States)

    Gao, Doudou; Zhang, Yuhong; Zhou, Liqun; Yang, Kunzhou

    2018-01-01

    The catalysts containing Cu, Ni bi-metallic nanoparticles were successfully synthesized by in-situ reduction of Cu2+ and Ni2+ salts into the highly porous and hydrothermally stable metal-organic framework MIL-101 via a simple liquid impregnation method. When the total amount of loading metal is 3 × 10-4 mol, Cu2Ni1@MIL-101 catalyst shows higher catalytic activity comparing to CuxNiy@MIL-101 with different molar ratio of Cu and Ni (x, y = 0, 0.5, 1.5, 2, 2.5, 3). Cu2Ni1@MIL-101 catalyst has the highest catalytic activity comparing to mono-metallic Cu and Ni counterparts and pure bi-metallic CuNi nanoparticles in hydrolytic dehydrogeneration of ammonia borane (AB) at room temperature. Additionally, in the hydrolysis reaction, the Cu2Ni1@MIL- 101 catalyst possesses excellent catalytic performances, which exhibit highly catalytic activity with turn over frequency (TOF) value of 20.9 mol H2 min-1 Cu mol-1 and a very low activation energy value of 32.2 kJ mol-1. The excellent catalytic activity has been successfully achieved thanks to the strong bi-metallic synergistic effects, uniform distribution of nanoparticles and the bi-functional effects between CuNi nanoparticles and the host of MIL-101. Moreover, the catalyst also displays satisfied durable stability after five cycles for the hydrolytically releasing H2 from AB. The non-noble metal catalysts have broad prospects for commercial applications in the field of hydrogen-stored materials due to the low prices and excellent catalytic activity.

  16. Structural characterization and antioxidant properties of Cu(II) and Ni(II) complexes derived from dicyandiamide

    Science.gov (United States)

    Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet

    2018-01-01

    New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).

  17. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  18. DNA binding and biological activity of mixed ligand complexes of Cu(II, Ni(II and Co(II with quinolones and N donor ligand

    Directory of Open Access Journals (Sweden)

    S.M M Akram

    2015-10-01

    Full Text Available  AbstractMixed ligand complexes of  Cu(II, Ni(II and Co(II have been synthesized by using levofloxacin and bipyridyl and characterized using spectral and analytical techniques. The binding behavior of the Ni(II and Cu(II complexes with herring sperm DNA(Hs-DNA were determined using electronic absorption titration, viscometric measurements and cyclic voltammetry measurements. The binding constant calculated  for Cu(II and Ni(II complexes are 2.0 x 104 and 4.0 x 104 M-1 respectively. Detailed analysis reveals that these metal complexes interact with DNA through intercalative binding mode. The nuclease activity of  Cu(II and Ni(II complexes with ct-DNA was carried out using agarose gel electrophoresis technique. The antioxidant activities for the synthesized complexes have been tested and the antibacterial activity for Ni(II complex was also checked.Key words: Intercalation, hypochromism, red shift and  peak potential.

  19. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4) nanocrystalline ferrites for core, switching and MLCI’s applications

    International Nuclear Information System (INIS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M.S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu_xZn_0_._5_−_xNi_0_._5Fe_2O_4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights: • Cu substituted

  20. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray...... diffraction (XRD), and X-ray absorption spectroscopy (XAS), were applied to follow the reduction and alloying process of Cu-Ni nanoparticles on silica. In situ reduction of Cu-Ni samples with structural characterization by combined synchrotron XRD and XAS reveals a strong interaction between Cu and Ni species......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...

  1. Effect of the Cu and Ni content on the crystallization temperature and crystallization mechanism of La–Al–Cu(Ni metallic glasses

    Directory of Open Access Journals (Sweden)

    Peiyou Li

    2016-02-01

    Full Text Available The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La–Al–Cu(Ni metallic glasses (MGs was studied by differential scanning calorimetry (DSC. The experimental results have shown that the DSC curves obtained for the La–Al–Cu and La–Al–Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La–Al–Cu and La–Al–Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the La72Cu28 and La81.6Al18.4 MGs, and La72Ni28 and La81.6Al18.4 MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al–Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La–Al–Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La–Al–Cu(Ni MGs.

  2. Studies of the development and characterization of the Cu-Ni-Pt and Cu-Ni-Sn alloys for electro-electronic uses

    International Nuclear Information System (INIS)

    Silva, Luis Carlos Elias da

    2006-01-01

    The Cu and its alloys have different applications in the owed modern society the excellent electric properties, thermal conductivity, resistance to the corrosion and other properties. These applications can be in valves, pipes, pots for absorption of solar energy, radiators for automobiles, current driver, electronic driver, thermostats elements and structural parts of nuclear reactors, as, for example, reels for field toroidal for a reactor of nuclear coalition. The alloys used in nuclear reactors, we can highlight Cu-Be, Cu-Sn and Cu-Pt. Ni and Co frequently are added to the Cu alloys so that the solubility is moved for temperatures more elevated with relationship to the binary systems of Cu-Sn and Cu-Pt. The addition of Ni-Pt or Ni-Sn to the Cu in the same or inferior percentages to 1,5% plus thermomechanical treatments changes the properties of the copper. We studied the electric conductivity and hardness Vickers of the Cu-Ni-Pt and Cu-Ni-Sn and compared with the electrolytic Cu. In the proposed flowcharts, breaking of the obtaining of the ingot, we proceeded with thermo mechanical treatments. (author)

  3. The Janus effect on superhydrophilic Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles for oil/water separation

    Science.gov (United States)

    Luo, Zhi-Yong; Lyu, Shu-Shen; Fu, Yuan-Xiang; Heng, Yi; Mo, Dong-Chuan

    2017-07-01

    Janus effect has been studied for emerging materials like Janus membranes, Janus nanoparticles, etc., and the applications including fog collection, oil/water separation, CO2 removal and stabilization of multiphasic mixtures. However, the Janus effect on oil/water separation is still unclear. Herein, Janus Cu mesh decorated with Ni-NiO/Ni(OH)2 core-shell nanoparticles is synthesized via selective electrodeposition, in which we keep one side of Cu mesh (Janus A) to be superhydrophilic, while manipulate the wettability of another side (Janus B) from hydrophobic to superhydrophilic. Experimental results indicate that Cu mesh with both-side superhydrophilic shows the superior oil/water separation performance (separation efficiency >99.5%), which is mainly due to its higher water capture percentage as well as larger oil intrusion pressure. Further, we demonstrate the orientation of Janus membranes for oil/water separation, and summarize that the wettability of the upper surface plays a more important role than the lower surface to achieve remarkable performance. Our work provides a clear insight of Janus effect on oil/water separation, it is significative to design high-performance membranes for oil/water separation and many other applications.

  4. Magnetic susceptibility, specific heat and magnetic structure of CuNi2(PO4)2

    International Nuclear Information System (INIS)

    Escobal, Jaione; Pizarro, Jose L.; Mesa, Jose L.; Larranaga, Aitor; Fernandez, Jesus Rodriguez; Arriortua, Maria I.; Rojo, Teofilo

    2006-01-01

    The CuNi 2 (PO 4 ) 2 phosphate has been synthesized by the ceramic method at 800 deg. C in air. The crystal structure consists of a three-dimensional skeleton constructed from MO 4 (M II =Cu and Ni) planar squares and M 2 O 8 dimers with square pyramidal geometry, which are interconnected by (PO 4 ) 3- oxoanions with tetrahedral geometry. The magnetic behavior has been studied on powdered sample by using susceptibility, specific heat and neutron diffraction data. The bimetallic copper(II)-nickel(II) orthophosphate exhibits a three-dimensional magnetic ordering at, approximately, 29.8 K. However, its complex crystal structure hampers any parametrization of the J-exchange parameter. The specific heat measurements exhibit a three-dimensional magnetic ordering (λ-type) peak at 29.5 K. The magnetic structure of this phosphate shows ferromagnetic interactions inside the Ni 2 O 8 dimers, whereas the sublattice of Cu(II) ions presents antiferromagnetic couplings along the y-axis. The change of the sign in the magnetic unit-cell, due to the [1/2, 0, 1/2] propagation vector determines a purely antiferromagnetic structure. - Graphical abstract: Magnetic structure of CuNi2(PO4)2

  5. Influence of NiO concentration on structural, dielectric and magnetic properties of core/shell CuFe{sub 2}O{sub 4}/NiO nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif [Department of Physics, International Islamic University, Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@qau.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan); Jan, Tariq [Department of Physics, University of Lahore, Sargodha Campus, Sargodha (Pakistan); Ahmad, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan); Wan, Dongyun [School of Materials Science and Engineering, Shanghai University, Shanghai 200444 (China); Ahmad, Ijaz [Department of Chemistry, Allama Iqbal Open University, Islamabad (Pakistan)

    2017-07-01

    Nanocomposites of (1-x)CuFe{sub 2}O{sub 4}/xNiO (x = 10% to 50 wt %) have been synthesized utilizing a chemical co-precipitation method. In order to obtain the required phase, the samples have been annealed at 600 °C for 6 h. The x-ray Diffraction (XRD) technique has been used for the crystallographic structure analysis which not only confirms the coexistent of both copper ferrite (CuFe{sub 2}O{sub 4}) and nickel oxide (NiO) phases in all samples but also verifies the absence of any impurity phases. The average crystallite size as estimated via XRD patterns show that the average size lies in the range of 22–36 nm which has also been confirmed by TEM. The FTIR absorbance spectra also show the characteristic vibration modes of cation at tetrahedral and octahedral sites. The electrical properties like A.C. conductivity, impedance, Dielectric constant, and Tangent loss has been measured by LCR meter. The results show that with the increase in NiO concentration, electrical conductivity increases for all concentration while dielectric constant decreases up to 30% NiO wt% and increases with further addition of NiO. The real and imaginary parts of impedance depict same dispersion i.e the impedance decreases at higher frequency due to increase in conductivity. Moreover the magnetic characterizations performed by VSM, reveal that the hysteresis loops exhibit normal behavior of ferromagnetic/ferrimagnetic materials for all compositions but the coercivity (H{sub c}), and saturation magnetization (M{sub s}) decreases with the increase in NiO contents that transform the material in to soft magnetic. - Highlights: • This novel core/shell nanocomposite synthesized by a facile wet chemical route. • The decrease in coercivity with NiO contents is due to pinning of moments at surface. • Increase in NiO contents makes CuFe{sub 2}O{sub 4} a high dielectric loss material. • The antiferromagnetic nature of NiO shift CuFe{sub 2}O{sub 4} toward a soft magnetic material.

  6. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Manyala, N., E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Oliphant, C. J.; Jordaan, W. A. [National Metrology Institute of South Africa, Private Bag X34, Lynwood Ridge, Pretoria 0040 (South Africa); Fabiane, M. [Department of Physics, Institute of Applied Materials, SARCHI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Department of Physics, National University of Lesotho, P.O. Roma 180 (Lesotho)

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  7. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of interface intermixing on giant magnetoresistance in NiFe/Cu and Co/NiFe/Co/Cu multilayers

    International Nuclear Information System (INIS)

    Nagamine, L.C.C.M.; Biondo, A.; Pereira, L.G.; Mello, A.; Schmidt, J.E.; Chimendes, T.W.; Cunha, J.B.M.; Saitovitch, E.B.

    2003-01-01

    This article reports on the important influence of the spontaneously built-in paramagnetic interfacial layers on the magnetic and magnetoresistive properties of NiFe/Cu and Co/NiFe/Co/Cu multilayers grown by magnetron sputtering. A computational simulation, based on a semiclassical model, has been used to reproduce the variations of the resistivity and of the magnetoresistance (MR) amplitude with the thickness of the NiFe, Cu, and Co layers. We showed that the compositionally intermixed layers at NiFe/Cu interfaces, which are paramagnetic, reduce the flow of polarized electrons and produce a masking on the estimated mean-free path of both types of electrons due to the reduction of their effective values, mainly for small NiFe thickness. Moreover, the transmission coefficients for the electrons decrease when Fe buffer layers are replaced by NiFe ones. This result is interpreted in terms of the variations of the interfacial intermixing and roughness at the interfaces, leading to an increase of the paramagnetic interfacial layer thickness. The effect provoked by Co deposition at the NiFe 16 A/Cu interfaces has also been investigated. The maximum of the MR amplitudes was found at 5 A of Co, resulting in the quadruplication of the MR amplitude. This result is partially attributed to the interfacial spin-dependent scattering due to the increase of the magnetic order at interfaces. Another effect observed here was the increase of the spin-dependent scattering events in the bulk NiFe due to a larger effective NiFe thickness, since the paramagnetic interfacial layer thickness is decreased

  9. Structural and magnetic properties of Co-substituted NiCu ferrite nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Le-Zhong, E-mail: lezhongli@cuit.edu.cn; Zhong, Xiao-Xi; Wang, Rui; Tu, Xiao-Qiang; Peng, Long

    2017-07-01

    Highlights: • There are Fe{sub 2}O{sub 3} and CuO impurity phases when x ≤ 0.10. • The saturation magnetization and coercivity monotonically increase with the increase of Co substitution. • The anisotropy constant increases with the increase of Co substitution. • The calculated and observed values of magneton number are in close agreement with each other. - Abstract: Co-substituted NiCu ferrite nanopowders with the chemical formula Ni{sub 0.5−x}Cu{sub 0.5−x}Co{sub 2x}Fe{sub 2}O{sub 4} (0 ≤ x ≤ 0.50) were synthesized by sol-gel auto-combustion method. The effects of Co substitution on the cation distribution, structural and magnetic properties of the NiCu ferrite nanopowders have been investigated. Differential thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM) measurements were used to characterize the chemical, structural and magnetic properties of the ferrite nanopowders, respectively. The DTA-TG results indicate that there are three steps of the combustion process. XRD results indicate that there are Fe{sub 2}O{sub 3} and CuO impurity phases when x ≤ 0.10. Furthermore, the lattice parameter increases, and the X-ray density and the average crystallite size decrease with increasing Co substitution. And the obtained particle size from TEM image is in very good agreement with the average crystallite size estimated by XRD measurements. The saturation magnetization and coercivity monotonically increase with the increase of Co substitution. The increase of the saturation magnetization is due to the substitution of Ni{sup 2+} and Cu{sup 2+} ions with lower magnetic moment by Co{sup 2+} ions with higher magnetic moment on the octahedral sites. And the increase of the coercivity is mainly due to the increase of magnetocrystalline anisotropy energy.

  10. Magnetron sputtered Cu{sub 3}N/NiTiCu shape memory thin film heterostructures for MEMS applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navjot; Choudhary, Nitin [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Goyal, Rajendra N. [Indian Institute of Technology, Roorkee, Department of Chemistry (India); Viladkar, S. [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India); Matai, I.; Gopinath, P. [Indian Institute of Technology, Roorkee, Centre for Nanotechnology (India); Chockalingam, S. [Indian Institute of Technology, Guwahati, Department of Biotechnology (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee, Functional Nanomaterials Research Lab, Department of Physics and Centre of Nanotechnology (India)

    2013-03-15

    In the present study, for the first time, Cu{sub 3}N/NiTiCu/Si heterostructures were successfully grown using magnetron sputtering technique. Nanocrystalline copper nitride (Cu{sub 3}N with thickness {approx}200 nm) thin films and copper nanodots were subsequently deposited on the surface of 2-{mu}m-thick NiTiCu shape memory thin films in order to improve the surface corrosion and nickel release properties of NiTiCu thin films. Interestingly, the phase transformation from martensite phase to austenite phase has been observed in Cu{sub 3}N/NiTiCu heterostructures with corresponding change in texture and surface morphology of top Cu{sub 3}N films. Field emission scanning electron microscopy and atomic force microscope images of the heterostructures reveals the formation of 20-nm-sized copper nanodots on NiTiCu surface at higher deposition temperature (450 Degree-Sign C) of Cu{sub 3}N. Cu{sub 3}N passivated NiTiCu films possess low corrosion current density with higher corrosion potential and, therefore, better corrosion resistance as compared to pure NiTiCu films. The concentration of Ni released from the Cu{sub 3}N/NiTiCu samples was observed to be much less than that of pure NiTiCu film. It can be reduced to the factor of about one-ninth after the surface passivation resulting in smooth, homogeneous and highly corrosion resistant surface. The antibacterial and cytotoxicity of pure and Cu{sub 3}N coated NiTiCu thin films were investigated through green fluorescent protein expressing E. coli bacteria and human embryonic kidney cells. The results show the strong antibacterial property and non cytotoxicity of Cu{sub 3}N/NiTiCu heterostructure. This work is of immense technological importance due to variety of BioMEMS applications.

  11. Study of dipole interaction in micron-width NiFe/Cu/NiFe/NiO wire using exchange anisotropy

    International Nuclear Information System (INIS)

    Kimura, Takashi; Itagaki, Yoshio; Wakaya, Fujio; Gamo, Kenji

    2001-01-01

    The dipole interaction between a NiFe layer pinned by a NiO and a free NiFe layer in a micron-wide NiFe/Cu/NiFe/NiO wire was studied by changing the direction of the exchange bias from the NiO layer. The effect of the dipole interaction when the exchange bias was perpendicular to the wire axis was larger than that when the exchange bias was parallel to the wire axis, and was consistently explained by the stray field caused by the magnetic charges of the pinned layer. It was demonstrated that this method, using exchange anisotropy, is useful for investigating the dipole interaction between ferromagnetic materials separated by a nonmagnetic material in small-scale magnetic multilayers. [copyright] 2001 American Institute of Physics

  12. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  13. Nanoscale morphology of Ni{sub 50}Ti{sub 45}Cu{sub 5} nanoglass

    Energy Technology Data Exchange (ETDEWEB)

    Śniadecki, Z., E-mail: sniadecki@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Wang, D. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Ivanisenko, Yu. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Chakravadhanula, V.S.K. [Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm, Helmholtzstraße 11, 89081, Ulm (Germany); Joint Research Laboratory Nanomaterials (KIT-TUD), Institute of Materials Science, TU Darmstadt, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Kübel, C. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Hahn, H. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Joint Research Laboratory Nanomaterials (KIT-TUD), Institute of Materials Science, TU Darmstadt, Jovanka-Bontschits-Str. 2, 64287 Darmstadt (Germany); Nanjing University of Science and Technology, Herbert Gleiter Institute of Nanoscience, Building 340, Nanjing, Jiangsu 2 10094 (China); and others

    2016-03-15

    Nanoglasses are noncrystalline solids with a granular nano-/microstructure. In contrast to their nanocrystalline analogs, typically constituted of grains and grain boundaries, nanoglasses consist of glassy regions with a structure corresponding to melt-quenched glasses and amorphous interfaces characterized by a reduced density. Their unique properties can be controlled by modifying size and chemical composition of the granular and interfacial regions. Ni{sub 50}Ti{sub 45}Cu{sub 5} amorphous films were obtained by magnetron sputtering and analyzed to determine their nanoscale morphology and the formation mechanisms. The nanoglasses were noted to have a hierarchical nano-columnar structure with the smallest Ni-rich (Ni:Ti ratio of ca. 5:3) amorphous columns with diameters of about 8 nm and Ti-rich glassy interfacial regions with a substantially lower density. The results were obtained utilizing X-ray diffraction and different microscopic methods, e.g., atomic force microscopy and transmission electron microscopy. A detailed analysis indicates the complexity of the formation mechanisms of topologically and chemically distinguishable structural units with curvature driven surface diffusion, surface mobility, self-shadowing and internal stresses as the most important parameters. Common and simple synthesis method and the possibility for easy modification of the morphology and, consequently, the physical properties offer an opportunity for intensive studies of this new class of materials, opening the way towards possible applications. - Highlights: • Ni{sub 50}Ti{sub 45}Cu{sub 5} thin film nanoglasses were synthesized by magnetron sputtering. • Ti amorphous interfacial phase with reduced density is observed. • Stabilization of interfaces by specific local thermodynamic conditions.

  14. Studies of the magnetic properties of Ni-Zn-Cu ferrite and its synthesis by using metal nitrate salts

    International Nuclear Information System (INIS)

    Koh, Jae Gui

    2004-01-01

    Ni-Zn-Cu ferrite was synthesized by decomposing the metal nitrates Ni(NO 3 ) 2 ·6H 2 O, Cu(NO 3 ) 2 ·6H 2 O, Zn(NO 3 ) 2 ·6H 2 O, and Fe(NO 3 ) 3 ·9H 2 O at 200 .deg. C for 20 hours. The ferrite powder was calcined at 400 .deg. C and pulverized for 3, 6, 9, or 12 hours in a steel ball mill. Then, it was sintered from 700 .deg. C to 1000 .deg. C in 100 .deg. C steps for 1 hour at each step. Thus, we could study the effects of the synthesis conditions on the microstructure and magnetic properties of Ni-Zn-Cu ferrite. We could chemically bond initial specimens in liquid at a low-temperature of 150 .deg. C owing to the low melting points, less than 200 .deg. C, of the metal nitrates instead of mechanical ball-mill pulverization, thus narrowing the distance between the particles a molecular one and lowering the sintering point at least by 200 .deg. C to 300 .deg. C. The initial permeability was 50 to 470, and the maximum magnetic induction and coercive force were 0.2410 T and 39.79 A/m to 95.496 A/m, respectively, which are similar to values for Ni-Zn-Cu ferrite synthesized using a conventional process.

  15. Fabrication and tensile properties of rapidly solidified Cu-10wt. %Ni alloy. [Cu-10Ni

    Energy Technology Data Exchange (ETDEWEB)

    Baril, D; Angers, R; Baril, J [Dept. of Mining and Metallurgy, Laval Univ., Ste-Foy, Quebec (Canada)

    1992-10-15

    Cu-10wt.%Ni ribbons were produced by melt spinning and cut into small particles with a blade cutter mill. The powders were then hot consolidated to full density by hot pressing followed by hot extrusion. Tensile properties of the resulting pieces were measured. Cu-10wt.%Ni cast ingots were also hot extruded and mechanically tested to compare with the rapidly solidified alloy and to evaluate the possible benefits brought by the rapid solidification process.

  16. Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension

    Science.gov (United States)

    Sen Gupta, S.; Datta, J.

    An understanding of the kinetics and mechanism of the electrochemical oxidation of ethanol is of considerable interest for the optimization of the direct ethanol fuel cell. In this paper, the electro-oxidation of ethanol in sodium hydroxide solution has been studied over 70:30 CuNi alloy supported binary platinum electrocatalysts. These comprised mixed deposits of Pt with Ru or Mo. The electrodepositions were carried out under galvanostatic condition from a dilute suspension of polytetrafluoroethylene (PTFE) containing the respective metal salts. Characterization of the catalyst layers by scanning electron microscope (SEM)-energy dispersive X-ray (EDX) indicated that this preparation technique yields well-dispersed catalyst particles on the CuNi alloy substrate. Cyclic voltammetry, polarization study and electrochemical impedance spectroscopy were used to investigate the kinetics and mechanism of ethanol electro-oxidation over a range of NaOH and ethanol concentrations. The relevant parameters such as Tafel slope, charge transfer resistance and the reaction orders in respect of OH - ions and ethanol were determined.

  17. Nanostructure analysis of friction welded Pd-Ni-P/Pd-Cu-Ni-P metallic glass interface

    International Nuclear Information System (INIS)

    Ohkubo, T.; Shoji, S.; Kawamura, Y.; Hono, K.

    2005-01-01

    Friction welded Pd 40 Ni 40 P 20 /Pd 40 Cu 30 Ni 10 P 20 metallic glass interface has been characterized by energy filtering transmission electron microscopy. The interface is fully amorphous with a gradual compositional change of Cu and Ni in the range of 30 nm. By annealing above T g , the interdiffusion of Cu and Ni progressed in the supercooled liquid region, and the crystallization occurred from the Pd 40 Ni 40 P 20 glass

  18. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    Science.gov (United States)

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-10-01

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration, which led to the HDO of furfural on Ni/Cu(111). The ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).

  19. Cu{sup 2+}-modified physical properties of Cobalt-Nickel ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhar Babu, K.; Rao, K. Rama [Department of Physics, Andhra University, Visakhapatnam, Andhra Pradesh 530003 (India); Rajesh Babu, B., E-mail: rajeshbabu.bitra@gmail.com [Department of Physics, GVP College of Engineering for Women, Visakhapatnam, Andhra Pradesh 530048 (India)

    2017-07-15

    Highlights: • In this work, Influence of Cu and cation redistribution is discussed in detail. • Theoretical and experimental results related to distribution, lattice constant are found to be consistent. • Substitution of Cu significantly modifies the magnetization, permeability, grain size and resistivity. - Abstract: The present study focused on structural, magnetic and electrical properties of Cu substituted Co-Ni ferrite nanoparticles synthesized by sol-gel combustion method. X-ray diffraction, Fourier Transform infra-red spectroscopy (FTIR), magnetization, magnetic permeability and resistivity measurements were carried out to study the structural, magnetic and electrical properties. X-ray diffraction pattern confirms single phase spinel formation. Crystallite size determined from Scherer’s method increases with Cu concentration. Distribution of cations was estimated from X-ray line intensity calculations, suggest that the majority of Cu{sup 2+} ions occupy octahedral (B) site. Saturation magnetization exhibit increasing trend from 40 emu/g (x = 0.0) to 60 emu/g (x = 0.4) with Cu concentration, though higher magnetic moment Ni ions are replaced by lower magnetic moment Cu ions. Magnetic permeability increases with increasing Cu concentration and shows a flat profile in the frequency range 1–50 MHz. Significant modification in DC electrical resistivity and activation energy are explained on the basis of hopping mechanism.

  20. Hydrazine reduction of metal ions to porous submicro-structures of Ag, Pd, Cu, Ni, and Bi

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue; Shi Yongfang; Chen Yubiao [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Wu Liming, E-mail: liming_wu@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2012-07-15

    Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. Phase purity, morphology, and specific surface area have been characterized. The reactions probably undergo three different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. The reductant hydrazine also plays an important role to the formation of the porous submicro-structure. The reaction temperature influences the size of the constituent particles and the overall architecture of the submicro-structure so as to influence the surface area value. The as-prepared porous metals have shown the second largest surface area ever reported, which are smaller than those made by the reduction of NaBH{sub 4}, but larger than those made by hard or soft template methods. - Graphical abstract: Porous submicro-structures of Ag, Pd, Cu, Ni, and Bi with high surface area have been prepared by the reduction of hydrazine in the glycerol-ethanol solution at room temperature or 120-180 Degree-Sign C. The reactions undergo different mechanisms: simple reduction for Ag and Pd, coordination-then-reduction for Cu and Ni, and hydrolysis-then-reduction for Bi. Highlights: Black-Right-Pointing-Pointer Syntheses of porous Ag, Pd, Cu, Ni, and Bi with high surface area. Black-Right-Pointing-Pointer Ag and Pd undergo simple reduction. Black-Right-Pointing-Pointer Cu and Ni undergo coordination-then-reduction. Black-Right-Pointing-Pointer Bi undergoes hydrolysis-then-reduction. Black-Right-Pointing-Pointer The as-prepared metals have shown the second largest surface area ever reported.

  1. Microstructure and Mechanical Characterization of a Dissimilar Friction-Stir-Welded CuCrZr/CuNiCrSi Butt Joint

    Directory of Open Access Journals (Sweden)

    Youqing Sun

    2018-05-01

    Full Text Available Dissimilar CuNiCrSi and CuCrZr butt joints were successfully frictionstirwelded at constant welding speed of 150 mm/min and rotational speed of 1400 rpm with the CuCrZr alloy or the CuNiCrSi alloy located on the advancing side (AS. The microstructure and mechanical properties of joints were investigated. When the CuCrZr alloy was located on the AS, the area of retreating material in the nugget zone was a little bigger. The Cr solute-rich particles were found in the nugget zone on CuCrZr side (CuCrZr-NZ while a larger density of solute-rich particles identified as the concentration of Cr and Si element was found in the nugget zone on CuNiCrSi side (CuNiCrSi-NZ. The Cr precipitates and δ-Ni2Si precipitates were found in the base metal on CuNiCrSi side (CuNiCrSi-BM but only Cr precipitates can be observed in the base metal on CuCrZr side (CuCrZr-BM. Precipitates were totally dissolved into Cu matrix in both CuCrZr-NZ and CuNiCrSi-NZ, which led to a sharp decrease in both micro-hardness and tensile strength from BM to NZ. When the CuNiCrSi was located on the AS, the tensile testing results showed the fracture occurred at the CuCrZr-NZ, while the fracture was found at the mixed zone of CuNiCrSi-NZ and CuCrZr-NZ for the other case.

  2. Synthesis, characterization, structure and properties of heterobimetallic complexes [CuNi(μ-OAc) (μ-OH) (μ-OH2) (bpy)2] (BF4)2 and [CuNi(bz)3(bpy)2] ClO4 from 2,2‧ bipyridine

    Science.gov (United States)

    Kurbah, Sunshine D.; Kumar, A.; Syiemlieh, I.; Dey, A. K.; Lal, R. A.

    2018-02-01

    Heterobimetallic complexes of the composition [CuNi(bpy)2 (μ-OAc) (μ-OH) (μ-OH2)](BF4)2 (1) and [CuNi(bz)3 (bpy)2]ClO4 (2) were synthesized in moderate yield through solid state reaction and have been characterized by elemental analyses, molar conductance, mass spectra, magnetic moment, EPR, UV-Vis, IR spectroscopies and cyclic voltammetry. The ground state in complex (1) is doublet while that in complex (2), the ground state is a mixture of doublet and quartet, respectively. The structure of the complexes has been established by X-ray crystallography. The electron transfer reactions of the complexes have been investigated by cyclic voltammetry.

  3. Evaluation of structural, morphological and magnetic properties of CuZnNi (Cu{sub x}Zn{sub 0.5−x}Ni{sub 0.5}Fe{sub 2}O{sub 4}) nanocrystalline ferrites for core, switching and MLCI’s applications

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Majid Niaz, E-mail: majidniazakhtar@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100 Pakistan (Pakistan); Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Nazir, M.S. [Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Imran, M.; Ali, A.; Sattar, A. [Department of Physics, COMSATS Institute of Information Technology, Lahore, 54000 Pakistan (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, G.C. University, Lahore (Pakistan)

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni–Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni–Zn nanoferrites. The nanocrystalline ferrites of Cu substituted Cu{sub x}Zn{sub 0.5−x}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni–Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu–Zn–Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35–46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M–H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni–Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni–Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI’s due to variety of the soft magnetic characteristics. - Highlights

  4. Structural and magnetic properties of Ni0.8M0.2Fe2O4 (M = Cu, Co) nano-crystalline ferrites

    Science.gov (United States)

    Vijaya Babu, K.; Satyanarayana, G.; Sailaja, B.; Santosh Kumar, G. V.; Jalaiah, K.; Ravi, M.

    2018-06-01

    Nano-crystalline nickel ferrites are interesting materials due to their large physical and magnetic properties. In the present work, two kinds of spinel ferrites Ni0.8M0.2Fe2O4 (M = Cu, Co) are synthesized by using sol-gel auto-combustion method and the results are compared with NiFe2O4. The structural properties of synthesized ferrites are determined by using X-ray powder diffraction; scanning electron microscope and Fourier transform infrared spectroscopy. The cation distribution obtained from X-ray diffraction show that cobalt/copper occupies only tetrahedral site in spinel lattice. The lattice constant increases with the substitution of cobalt/copper. The structural parameters like bond lengths, tetrahedral and octahedral edges have been varied with the substitution. The microstructural study is carried out by using SEM technique and the average grain size is increased with nickel ferrite. The initial permeability (μi) is improving with the substitution. The observed g-value from ESR is approximately equal to standard value.

  5. Microstructure and mechanical properties of Cu-Ni-Si alloys

    International Nuclear Information System (INIS)

    Monzen, Ryoichi; Watanabe, Chihiro

    2008-01-01

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni 2 Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 μm shows higher stress relaxation resistance than the alloy with a small grain size of 10 μm because of a lower density of mobile dislocations in the former alloy

  6. Microstructure and mechanical properties of Cu-Ni-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Monzen, Ryoichi [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)], E-mail: monzen@t.kanazawa-u.ac.jp; Watanabe, Chihiro [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanzawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2008-06-15

    The microstructure and mechanical properties of 0.1 wt.% Mg-added and Mg-free Cu-2.0 wt.% Ni-0.5 wt.% Si alloys aged at 400 deg. C have been examined. The addition of Mg promotes the formation of disk-shaped Ni{sub 2}Si precipitates. The Cu-Ni-Si-Mg alloy exhibits higher strength and resistance to stress relaxation than the Cu-Ni-Si alloy. The higher strength or stress relaxation resistance is attributable to the reduction in inter-precipitate spacing by the Mg addition or the drag effect of Mg atoms on dislocation motion. The Cu-Ni-Si alloy with a large grain size of 150 {mu}m shows higher stress relaxation resistance than the alloy with a small grain size of 10 {mu}m because of a lower density of mobile dislocations in the former alloy.

  7. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    International Nuclear Information System (INIS)

    Cherif, S.-M.; Layadi, A.; Ben Youssef, J.; Nacereddine, C.; Roussigne, Y.

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K 1 and K 2 , have been included; for the Ni/Cu series, K 1 was found to decrease from 1.0x10 6 to 0.18x10 6 erg/cm 3 as t increases from 31 to 165 nm, while K 2 increased from 0.24x10 6 to 0.8x10 6 erg/cm 3 . Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t≥165 nm in Ni/glass and t≥90 nm in Ni/Cu

  8. Cr Poisoning On Nd2Ni0.95Cu0.05O4+δ Cathode for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Choe Yeong-Ju

    2016-06-01

    Full Text Available In this study, Nd2Ni1-xCuxO4+δ (x=0, 0.05, 0.1, and 0.2 layered perovskite powders were synthesized by the glycine nitrate process (GNP and the chromium poisoning effect on the electrochemical performance of the Nd2Ni0.95Cu0.05O4+δ and La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes were investigated. In the case of the LSCF cathode, the strontium chromite phase formed after the exposure of the gaseous chromium species, while there was no additional phase in the Nd2Ni0.95Cu0.05O4+δ cathode. The area specific resistance (ASR of the Nd2Ni0.95Cu0.05O4+δ cathode did not change significantly after the exposure of the gaseous chromium species at 800°C.

  9. Crystal structure and ferroelectric properties of Ca(Cu3−xMx)Ti4O12 (M = Fe and Ni) ceramics

    International Nuclear Information System (INIS)

    Moriyama, Tohru; Kan, Akinori; Ogawa, Hirotaka

    2013-01-01

    Highlights: ► M-substituted Ca(Cu 3−x M x )Ti 4 O 12 (CCMTO) ceramics, where M = Fe and Ni, were synthesized. ► The influence of M substitution for Cu on crystal structure and ferroelectric properties of CCMTO ceramics were investigated. ► Analysis of CCMTO ceramics revealed the single phase of CCMTO ceramics belongs to I23 non-centrosymmetric space group of I23. ► As a result, the P r and E c values of CCFTO ceramics at x = 0.05 were 1.8 μC/cm 2 and 40 kV/cm, respectively. -- Abstract: M-substituted Ca(Cu 3−x M x )Ti 4 O 12 (CCMTO) ceramics, where M = Fe and Ni, were synthesized and the influence of M substitutions for Cu on the crystal structure and ferroelectric properties of CCMTO ceramics were investigated in this study. From the variations in the lattice parameters of CCMTO ceramics, the solubility limit of Ni substitution for Cu in CaCu 3−x Ni x Ti 4 O 12 (CCNTO) ceramics was x = 0.2, whereas that of CaCu 3−x Fe x Ti 4 O 12 (CCFTO) ceramics was x = 0.05. The crystal structural analysis of CCMTO ceramics revealed that the single phase of CCMTO ceramics belongs to the I23 non-centrosymmetric space group of I23; as a result, the P r and E c values of CCFTO ceramics at x = 0.05 were 1.8 μC/cm 2 and 40 kV/cm, respectively. The ferroelectric behavior of CCMTO ceramics by the M substitutions for Cu may be related to the displacement of a Ti 4+ cation in the TiO 6 octahedra and tilting of the Ti–O–Ti angle because of the non-centrosymmetric space group

  10. Mechanical properties of highly textured Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Liu, Y.; Bufford, D.; Wang, H.; Sun, C.; Zhang, X.

    2011-01-01

    We report on the synthesis of highly (1 1 1) and (1 0 0) textured Cu/Ni multilayers with individual layer thicknesses, h, varying from 1 to 200 nm. When, h, decreases to 5 nm or less, X-ray diffraction spectra show epitaxial growth of Cu/Ni multilayers. High resolution transmission electron microscopy studies show the coexistence of nanotwins and coherent layer interfaces in highly (1 1 1) textured Cu/Ni multilayers with smaller h. Hardnesses of multilayer films increase with decreasing h, approach a maximum at h of a few nanometers, and show softening thereafter at smaller h. The influence of layer interfaces as well as twin interfaces on strengthening mechanisms of multilayers and the formation of twins in Ni in multilayers are discussed.

  11. Research on Zr50Al15-xNi10Cu25Yx amorphous alloys prepared by mechanical alloying with commercial pure element powders

    International Nuclear Information System (INIS)

    Long Woyun; Ouyang Xueqiong; Luo Zhiwei; Li Jing; Lu Anxian

    2011-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x alloy powders were fabricated by mechanical alloying at low vacuum with commercial pure element powders. The effects on glass forming ability of Al partial substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 and thermal stability of Si 3 N 4 powders addition were investigated. The as-milled powders were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimeter. The results show that partial substitution of Al can improve the glass forming ability of Zr 50 Al 15 Ni 10 Cu 25 alloy. Minor Si 3 N 4 additions raise the crystallization activation energy of the amorphous phase and thus improve its thermal stability. -- Research Highlights: → ZrAlNiCu amorphous alloys can be synthesized by MA in low cost. → Appropriate amount of Al substituted by Y in ZrAlNiCu alloy can improve its glass forming ability. → A second phase particle addition helps to improve the thermal stability of the amorphous matrix.

  12. Fabrication of a Cu/Ni stack in supercritical carbon dioxide at low-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rasadujjaman, Md, E-mail: rasadphy@duet.ac.bd [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Department of Physics, Dhaka University of Engineering & Technology, Gazipur 1700 (Bangladesh); Watanabe, Mitsuhiro [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Sudoh, Hiroshi; Machida, Hideaki [Gas-Phase Growth Ltd., 2-24-16 Naka, Koganei, Tokyo 184-0012 (Japan); Kondoh, Eiichi [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2015-09-30

    We report the low-temperature deposition of Cu on a Ni-lined substrate in supercritical carbon dioxide. A novel Cu(I) amidinate precursor was used to reduce the deposition temperature. From the temperature dependence of the growth rate, the activation energy for Cu growth on the Ni film was determined to be 0.19 eV. The films and interfaces were characterized by Auger electron spectroscopy. At low temperature (140 °C), we successfully deposited a Cu/Ni stack with a sharp Cu/Ni interface. The stack had a high adhesion strength (> 1000 mN) according to microscratch testing. The high adhesion strength originated from strong interfacial bonding between the Cu and the Ni. However, at a higher temperature (240 °C), significant interdiffusion was observed and the adhesion became weak. - Highlights: • Cu/Ni stack fabricated in supercritical CO{sub 2} at low temperature. • A novel Cu(I) amidinate precursor was used to reduce the deposition temperature. • Adhesion strength of Cu/Ni stack improved dramatically. • Fabricated Cu/Ni stack is suitable for Cu interconnections in microelectronics.

  13. Soft magnetic properties of hybrid ferromagnetic films with CoFe, NiFe, and NiFeCuMo layers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-Gu [Eastern-western Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Hwang, Do-Guwn [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of); Rhee, Jang-Roh [Dept. of Physics, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Lee, Sang-Suk, E-mail: sslee@sangji.ac.kr [Dept. of Oriental Biomedical Engineering, Sangji University, Wonju 220-702 (Korea, Republic of)

    2011-09-30

    Two-layered ferromagnetic alloy films (NiFe and CoFe) with intermediate NiFeCuMo soft magnetic layers of different thicknesses were investigated to understand the relationship between coercivity and magnetization process by taking into account the strength of hard-axis saturation field. The thickness dependence of H{sub EC} (easy-axis coercivity), H{sub HS} (hard-axis saturation field), and {chi} (susceptibility) of the NiFeCuMo thin films in glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared using the ion beam deposition method was determined. The magnetic properties (H{sub EC}, H{sub HS}, and {chi}) of the ferromagnetic CoFe, NiFe three-layers with an intermediate NiFeCuMo super-soft magnetic layer were strongly dependent on the thickness of the NiFeCuMo layer.

  14. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  15. Microstructural characterization of alloys of the quasibinary Cu-NiBe system

    Energy Technology Data Exchange (ETDEWEB)

    Spaic, S.; Markoli, B. [Univ. of Ljubljana, Faculty of Natural Science and Engineering, Ljubljana (Slovenia)

    2003-08-01

    Alloys of the quasibinary section Cu-NiBe were experimentally investigated with differential thermal analysis, optical microscopy, electron microanalysis, transmission electron microscopy and X-ray diffraction. The construction of the quasibinary Cu-NiBe phase diagram was made based on the experimental results. The constitution of alloys of the whole section was studied along with the investigation of the microstructure and crystallographic relationship of the NiBe phase in aged alloys from the Cu-rich corner of the Cu-NiBe system. (orig.)

  16. Study of the magnetic anisotropy in Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: a_layadi@yahoo.fr; Ben Youssef, J. [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Roussigne, Y. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse, 93340 (France)

    2007-01-01

    The magnetic properties of evaporated Ni/Cu and Ni/glass thin films have been investigated by means of the vibrating sample magnetometer (VSM), the Brillouin light scattering (BLS) and magnetic force microscopy (MFM). The Ni thickness, t, ranges from 31 to 165 nm. The second- and fourth-order magnetic anisotropy constants, K {sub 1} and K {sub 2}, have been included; for the Ni/Cu series, K {sub 1} was found to decrease from 1.0x10{sup 6} to 0.18x10{sup 6} erg/cm{sup 3} as t increases from 31 to 165 nm, while K {sub 2} increased from 0.24x10{sup 6} to 0.8x10{sup 6} erg/cm{sup 3}. Over all the thickness range, the magnetization easy axis is in plane. For thinner films, there is a good agreement between anisotropy constant values inferred from VSM and BLS. Stripe domains were observed for t{>=}165 nm in Ni/glass and t{>=}90 nm in Ni/Cu.

  17. Ostwald ripening of decomposed phases in Cu-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Hernandez-Santiago, Felipe; Lopez-Hirata, Victor; Dorantes-Rosales, Hector J.; Saucedo-Munoz, Maribel L.; Gonzalez-Velazquez, Jorge L.; Paniagua-Mercado, Ana Ma.

    2008-01-01

    A study of the coarsening process of the decomposed phases was carried out in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys using transmission electron microscopy. As aging progressed, the morphology of the coherent decomposed Ni-rich phase changed from cuboids to platelets aligned in the Cu-rich matrix directions. Prolonged aging caused the loss of coherency between the decomposed phases and the morphology of the Ni-rich phase changed to ellipsoidal. The variation of mean radius of the coherent decomposed phases with aging time followed the modified LSW theory for thermally activated growth in ternary alloy systems. The linear variation of the density number of precipitates and matrix supersaturation with aging time, also confirmed that the coarsening process followed the modified LSW theory in both alloys. The coarsening rate was faster in the symmetrical Cu-45 wt.% Ni-10 wt.% Cr alloy due to its higher volume fraction of precipitates. The activation energy for thermally activated growth was determined to be about 182 and 102 kJ mol -1 in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys, respectively. The lower energy for the former alloy seems to be related to an increase in the atomic diffusion process as the chromium content increases. The size distributions of precipitates in the Cu-Ni-Cr alloys were broader and more symmetric than that predicted by the modified LSW theory for ternary alloys

  18. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  19. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    International Nuclear Information System (INIS)

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-01-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P_d_i_s_s=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  20. Facile Synthesis of Cu2O/RGO/Ni(OH)2 Nanocomposite and its Double Synergistic Effect on Supercapacitor Performance

    International Nuclear Information System (INIS)

    Wang, Kun; Zhao, Chongjun; Min, Shudi; Qian, Xiuzhen

    2015-01-01

    ABSTRACT: A nanocomposite for supercapacitor electrode materials was designed and developed by integrating partially disabled Cu 2 O (low specific capacity, but high cycling ability) and Ni(OH) 2 (low cyclability and high specific capacity) in the presence of reduced graphene oxide (RGO) nanosheets. Nanocomposite of Cu 2 O/RGO/Ni(OH) 2 was directly grown on nickel foam (NF) through a facile one-pot hydrothermal process without any other reductant or oxidant, in which nickel foam acted as both a reductant of GO and Ni source, and a substrate for nanocomposite. The resultant Cu 2 O/RGO/Ni(OH) 2 nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectrometer (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The electrochemical performance of the as-synthesized Cu 2 O/RGO/Ni(OH) 2 /NF electrodes were evaluated using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectrometry (EIS) in 6 mol L −1 KOH aqueous solution. This Cu 2 O/RGO/Ni(OH) 2 nanocomposite exhibits superior capacitive performance: high capability (3969.3 mF cm −2 at 30 mA cm −2 , i.e., 923.1 F g −1 at 7.0 A g −1 ), excellent cycling stability (92.4% retention even after 4,000 cycles, for RGO/Ni(OH) 2 /NF, 92.3% after 1,000 cycles), and good rate capacitance (50.3% capacity remaining at 200 mA cm −2 )

  1. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys; Estudio cinetico de las reacciones de recocido en aleaciones de Cu-Ni-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E.

    2014-07-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi{sub 3} phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi{sub 3} phase. (Author)

  2. Thermoelasticity and interdiffusion in CuNi multilayers

    International Nuclear Information System (INIS)

    Benoudia, M.C.; Gao, F.; Roussel, J.M.; Labat, S.; Gailhanou, M.; Thomas, O.; Beke, D.L.; Erdelyi, Z.; Langer, G.A.; Csik, A.; Kis-Varga, M.

    2012-01-01

    Complete text of publication follows. The idea of observing artificial metallic multilayers with x-ray diffraction techniques to study interdiffusion phenomena dates back to the work of DuMond and Youtz. Interestingly, these pioneering contributions even suggested that the approach could be used to measure the concentration dependence of the diffusion coefficient. This remark is precisely the subject of the present work: we aim to revisit this issue in light of recent atomistic simulation results obtained for coherent CuNi multilayers. More generally, CuNi multilayers have been extensively studied for their magnetic, mechanical, and optical properties. These physical properties depend critically on interfaces and require a good control on the evolution of composition and strain fields under heat treatment. Understanding of how interdiffusion proceeds in these nanosystems should therefore improve these practical aspects. From a theoretical viewpoint these synthetic modulated structures have been also used as valuable model systems to test the various diffusion theories accounting in particular for the influence of the alloying energy, the coherency strain, and the local concentration. Nowadays, this field remains active and has been extended with the development of atomic simulations and many microscopy techniques like atom probe tomography which give details on the intermixing mechanisms. We have performed x-ray diffraction experiments on coherent CuNi multilayers to probe thermoelasticity and interdiffusion in these samples. Kinetic mean-field simulations combined with the modeling of the x-ray spectra were also achieved to rationalize the experimental results. We have shown that classical thermoelastic arguments combined with bulk data can be used to model the x-ray scattered intensity of annealed coherent CuNi multilayers. This result provides a valuable framework to analyze the evolution of the concentration profiles at higher temperature. The typical coherent

  3. X-ray diffraction study of chalcopyrite CuFeS2, pentlandite (Fe,Ni)9S8 and Pyrrhotite Fe1-xS obtained from Cu-Ni orebodies

    International Nuclear Information System (INIS)

    Nkoma, J.S.; Ekosse, G.

    1998-05-01

    The X-ray Diffraction (XRD) technique is applied to study five samples of Cu-Ni orebodies, and it is shown that they contain chalcopyrite CuFeS 2 as the source of Cu, pentlandite (Fe,Ni) 9 S 8 as the source of Ni and pyrrhotite Fe 1-x S as a dominant compound. There are also other less dominant compounds such as bunsenite NiO, chalcocite Cu 2 S, penrosite (Ni, Cu)Se 2 and magnetite Fe 3 O 4 . Using the obtained XRD data, we obtain the lattice parameters for tetragonal chalcopyrite as a=b=5.3069A and c=10.3836A, cubic pentlandite as a=b=c=10.0487A, and hexagonal pyrrhotite as a=b=6.8820A and c=22.8037A. (author)

  4. Topological model of austenite-martensite interfaces in Cu-Al-Ni alloy

    Czech Academy of Sciences Publication Activity Database

    Ostapovets, Andriy; Zárubová, Niva; Paidar, Václav

    2012-01-01

    Roč. 122, č. 3 (2012), s. 493-496 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : CuAlNi * alloy * experimental data * in-situ * topological models * transmission electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.531, year: 2012

  5. Soldering-induced Cu diffusion and intermetallic compound formation between Ni/Cu under bump metallization and SnPb flip-chip solder bumps

    Science.gov (United States)

    Huang, Chien-Sheng; Jang, Guh-Yaw; Duh, Jenq-Gong

    2004-04-01

    Nickel-based under bump metallization (UBM) has been widely used as a diffusion barrier to prevent the rapid reaction between the Cu conductor and Sn-based solders. In this study, joints with and without solder after heat treatments were employed to evaluate the diffusion behavior of Cu in the 63Sn-37Pb/Ni/Cu/Ti/Si3N4/Si multilayer structure. The atomic flux of Cu diffused through Ni was evaluated from the concentration profiles of Cu in solder joints. During reflow, the atomic flux of Cu was on the order of 1015-1016 atoms/cm2s. However, in the assembly without solder, no Cu was detected on the surface of Ni even after ten cycles of reflow. The diffusion behavior of Cu during heat treatments was studied, and the soldering-process-induced Cu diffusion through Ni metallization was characterized. In addition, the effect of Cu content in the solder near the solder/intermetallic compound (IMC) interface on interfacial reactions between the solder and the Ni/Cu UBM was also discussed. It is evident that the (Cu,Ni)6Sn5 IMC might form as the concentration of Cu in the Sn-Cu-Ni alloy exceeds 0.6 wt.%.

  6. FABRICATION OF Cu-Al-Ni SHAPE MEMORY THIN FILM BY THERMAL EVOPRATION

    OpenAIRE

    Özkul, İskender; Canbay, Canan Aksu; Tekataş, Ayşe

    2017-01-01

    Among the functional, materials shape memory alloysare important because of their unique properties. So, these materials haveattracted more attention to be used in micro/nano electronic andelectromechanic systems. In this work, thermal evaporation method has been usedto produce CuAlNi shape memory alloy thin film. The produced CuAlNi thin filmhas been characterized and the presence of the martensite phase wasinvestigated and compared with the CuAlNi alloy sample. CuAlNi shape memoryalloy thin...

  7. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest; Fusion y caracterizacion de una aleacion Cu-Zn-Al-Ni de interes nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Santana M, J.S

    2003-07-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  8. Photocatalytic property and structural stability of CuAl-based layered double hydroxides

    International Nuclear Information System (INIS)

    Lv, Ming; Liu, Haiqiang

    2015-01-01

    Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO 2 reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210 mmol/g h, which was high efficient. In addition, the influence of the different M 2+ on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAlAl based on result from UV–vis analysis. • CuMgAl shows the highest stability and lowest photocatalytic activity, while CuNiAl just opposite

  9. Ageing effects in a Cu-Al-Ni shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Daříček, Tomáš; Lašek, Jiří; Zárubová, Niva; Novák, Václav; Bartuška, Pavel

    2001-01-01

    Roč. 11, - (2001), s. Pr8-179-Pr8-184 ISSN 1155-4339 R&D Projects: GA AV ČR IAA1010909; GA AV ČR IAA1010817 Institutional research plan: CEZ:AV0Z1010914 Keywords : Cu-Al-Ni alloy * shape memory * martensitic transformation * resistometry Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.401, year: 2001

  10. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    International Nuclear Information System (INIS)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun

    2017-01-01

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr 7 Ni 10 , ZrNi, ZrNi 5 , Zr 14 Cu 51 , and Zr 2 Cu 9 , show a remarkable ternary solubility. A new ternary compound named τ 3 (Zr 31.1-30.7 . Cu 28.5-40.3 Ni 40.4-29.0 ) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  11. Effect of metal ion and ball milling on the electrochemical properties of M0.5TiOPO4 (M = Ni, Cu, Mg)

    International Nuclear Information System (INIS)

    Godbole, Vikram A.; Villevieille, Claire; Novák, Petr

    2013-01-01

    Various metal titanium oxyphosphates, M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were synthesized via modified solution route synthesis. The as synthesized M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were electrochemically tested using galvanostatic cycling, cyclic voltammetry, and rate performance measurements in order to investigate the effect of metal ion (M) on the electrochemical performance of this family of materials. All the studied materials reacted with 3 Li + during the 1st lithiation showing reaction plateaus at different potentials versus Lithium. Similar studies were performed on M 0.5 TiOPO 4 (M = Ni, Cu, Mg) samples with smaller particle size, obtained via ball milling, in order to understand the effect of particle size on the electrochemistry of the materials. The ball milled samples delivered higher specific charge during the 1st cycle showing reaction plateaus at different potentials, poorer capacity retention, and poorer rate capability as compared to the as synthesized ones. This was attributed to a change in morphology and particle size of the samples upon ball milling. Amongst all the tested materials, the as synthesized Cu 0.5 TiOPO 4 showed the best electrochemistry. The ball milled Mg 0.5 TiOPO 4 reacted with ∼5.5 Li + during 1st lithiation (as compared to 3 Li + expected from this family of compounds) and 3.3 Li + during the 1st delithiation (rather than the expected 2 Li + ). This suggests a reaction mechanism where Mg 0.5 TiOPO 4 undergoes a phase transformation forming Mg 0 , which reversibly alloys with 2.5 extra Li + . Thus the electrochemical cycling of Mg 0.5 TiOPO 4 gives insights into the reaction mechanism in this family of materials

  12. Austenite-martensite interfaces in strained foils of CuAlNi alloy

    Czech Academy of Sciences Publication Activity Database

    Ostapovets, Andrej; Paidar, Václav; Zárubová, Niva

    2009-01-01

    Roč. 100, č. 3 (2009), 342-344 ISSN 1862-5282 R&D Projects: GA MŠk OC 149; GA AV ČR(CZ) IAA200100627 Institutional research plan: CEZ:AV0Z10100520 Keywords : martensitic transformation * CuAlNi * habit planes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  13. Synthesis and densification of Cu-coated Ni-based amorphous composite powders

    International Nuclear Information System (INIS)

    Kim, Yong-Jin; Kim, Byoung-Kee; Kim, Jin-Chun

    2007-01-01

    Spherical Ni 57 Zr 20 Ti 16 Si 2 Sn 3 (numbers indicate at.%) amorphous powders were produced by the gas atomization process, and ductile Cu phase was coated on the Ni-based amorphous powders by the spray drying process in order to increase the ductility of the consolidated amorphous alloy. The characteristics of the as-prepared powders and the consolidation behaviors of Cu-coated Ni-based amorphous composite powders were investigated. The atomization was conducted at 1450 deg. C under the vacuum of 10 -2 mbar. The Ni-based amorphous powders and Cu nitrate solution were mixed and sprayed at temperature of 130 deg. C. After spray drying and reduction treatment, the sub-micron size Cu powders were coated successfully on the surface of the atomized Ni amorphous powders. The spark plasma sintering process was applied to study the densification behavior of the Cu-coated composite powders. Thickness of the Cu layer was less than 1 μm. The compacts obtained by SPS showed high relative density of over 98% and its hardness was over 800 Hv

  14. Phase transformations behavior in a Cu-8.0Ni-1.8Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Q. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Li, Z., E-mail: lizhou6931@163.com [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China) and Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Wang, M.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha, 410083 (China); Zhang, L.; Gong, S. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Xiao, Z. [Department of Engineering, University of Liverpool, Liverpool, L693 GH (United Kingdom); Pan, Z.Y. [Hunan Nonferrous Metals Holding Group Co., Ltd., Changsha, 410015 (China)

    2011-02-24

    Research highlights: > High solute concentrations Cu-Ni-Si alloy with super high strength and high conductivity has a good prospect for replacing Cu-Be alloys. At least four different kinds of precipitation products (DO{sub 22} ordered structure, {beta}-Ni{sub 3}Si precipitate, {delta}-Ni{sub 2}Si precipitate and {gamma}-Ni{sub 5}Si{sub 2} precipitate) have been observed in previous investigation. Therefore, the overall phase transformation behavior of Cu-Ni-Si alloy appears to be very complex. And most previous studies on the phase transformation usually investigated the precipitation process at only one temperature or at most a few temperatures, which is far away to establish a time-temperature-transformation (TTT) diagram for Cu-Ni-Si alloy. > The phase transformation behavior of Cu-8.0Ni-1.8Si alloy has been studied systematically at wide temperature range in this paper. The results we have gained are that: after solution treatment, followed by different conditions of isothermal treatment, DO{sub 22} ordering, discontinuous precipitation and continuous precipitation were observed in the alloy; discontinuous precipitates of {beta}-Ni{sub 3}Si phase appeared when the alloy isothermal treated at 550 deg. C for short time, which had not been reported by the previous Cu-Ni-Si system alloy's researchers in their papers; two kinds of precipitates of {beta}-Ni{sub 3}Si and {delta}-Ni{sub 2}Si were determined by the TEM characterization; the orientation relationship between the two kinds of precipitates and Cu-matrix is that: (1 1 0){sub Cu}//(1 1 0){sub {beta}}//(211-bar){sub {delta}}, [112-bar]{sub Cu}//[11-bar 2]{sub {beta}}//[3 2 4]{sub {delta}}; during overaging treatment, Cu-matrix, {beta}-Ni{sub 3}Si, {delta}-Ni{sub 2}Si and {delta}'-Ni{sub 2}Si were distinguished in the samples and the orientation relationship between the precipitates and Cu-matrix can be expressed as that: (0 2 2){sub Cu}//(0 2 2){sub {beta}}//(1 0 0){sub {delta}}, (02-bar 2){sub Cu

  15. Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties

    International Nuclear Information System (INIS)

    Karunakaran, C.; Manikandan, G.; Gomathisankar, P.

    2013-01-01

    Highlights: •CuO nanoleaves synthesized by CTAB-assisted hydrothermal method. •CuO nanodiscs synthesized by CTAB-assisted sonochemical method. •Combustion synthesized CuO is highly porous. •Synthetic method and morphology influence CuO bactericidal activity. -- Abstract: Cetyltrimethylammonium bromide (CTAB)-assisted microwave synthesis of CuO provides nanoleaves and in the absence of CTAB the shape of CuO is irregular. Sonochemical synthesis of CuO using CTAB gives nanodiscs whereas irregularly shaped flake-like structure is obtained without CTAB. Combustion synthesized CuO is highly porous with innumerable large holes. CTAB does not provide any structure in combustion synthesis. Transmission electron micrographs (TEM) display the constituent nanoparticles of microwave and sonochemically synthesized CuO. The powder X-ray diffractogram (XRD) shows the sample obtained by sonochemical method in the absence of CTAB as a mixture of monoclinic CuO, cubic Cu 2 O, and orthorhombic Cu(OH) 2 . But the rest of the samples are pure CuO in monoclinic phase. The selected area electron diffractograms (SAED) of the microwave and sonochemically synthesized samples, in the presence as well as in the absence of CTAB, confirm the monoclinic phase of CuO and indicates the presence of amorphous CuO in traces. All the samples are characteristic of Fourier Transform infrared (FT-IR) Cu–O stretching frequencies. The method of synthesis and also the morphology influence the electrical properties as well as the bactericidal activity of CuO

  16. Magnetic refrigeration capabilities of magnetocaloric Ni2Mn:75Cu:25Ga

    Science.gov (United States)

    Mishra, S. K.; Jenkins, C. A.; Dubenko, I.; Samanta, T.; Ali, N.; Roy, S.

    2013-03-01

    Doping-driven competition between energetically similar ground states leads to many exciting materials phenomena such as the emergence of high-Tc superconductivity, diluted magnetic semiconductors, and colossal magnetoresistance. Doped Ni2MnGa Heusler alloy, which is a multifunctional ferromagnetic alloy with various exotic physical properties demonstrates this notion of rich phenomenology via modified ground spin states. Adopting this generic concept, here we will present a novel doped Ni2Mn.75Cu.25Ga alloy that offers unprecedented co-existence of the magnetocaloric effect and fully controlled ferromagnetism at room temperature. Application of site engineering enables us to manipulate the ground spin state that leads to the decrease in magnetic transition temperature and also increases the delocalization of the Mn magnetism. SQUID magnetometery suggests that Cu doping enhances the saturation magnetization, coercive field and clarity of magnetic hysteresis loops. By exploiting x-ray absorption techniques and measuring element specific magnetic hysteresis loops, here we will describe the microscopic origin of enhnaced magnetocaloric properties and d-d interaction driven charge transfer effects in Ni2Mn.75Cu.25Ga This work was supported by DOE Grant No. DE-FG02-06ER46291

  17. Effects of Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} intermetallic layers on cross-interaction between Pd and Ni in solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yong-Ho [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Chung, Bo-Mook [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Department of Research and Development, KPM TECH, Ansan 425-090 (Korea, Republic of); Choi, Young-Sik [Division of Advanced Circuit Interconnect, Samsung Electro-Mechanics Co., Ltd., Suwon 443-743 (Korea, Republic of); Choi, Jaeho [Department of Advanced Metal and Materials Engineering, Gangneung-Wonju National University, Gangneung 210-702 (Korea, Republic of); Huh, Joo-Youl, E-mail: jyhuh@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-12-05

    Highlights: •Ni{sub 3}Sn{sub 4} acts as a source of Ni atoms, leading to a strong cross-interaction with Pd. •(Cu,Ni){sub 6}Sn{sub 5} is an effective Ni diffusion barrier, inhibiting Pd resettlement. •Dissolution kinetics of (Pd,Ni)Sn{sub 4} was interpreted based on the Sn–Ni–Pd isotherm. •Cu addition to solder alleviates the (Pd,Ni)Sn{sub 4}-related risk of reliability deterioration. -- Abstract: We examined the effects of layers of intermetallic compound (IMC) Ni{sub 3}Sn{sub 4} and (Cu,Ni){sub 6}Sn{sub 5} formed at the solder/Ni interface, on the cross-interactions between Pd and Ni during solid-state aging and reflow soldering. Two types of diffusion couples, Pd/Sn/Ni and Pd/Sn–Cu/Ni, were aged at 150 °C to study the solid-state interactions. In contrast to the Pd/Sn/Ni couples in which a Ni{sub 3}Sn{sub 4} layer formed at the Ni interface, the Pd/Sn–Cu/Ni couple where a (Cu,Ni){sub 6}Sn{sub 5} layer formed at the Ni interface exhibited no significant interaction between Pd and Ni. The (Cu,Ni){sub 6}Sn{sub 5} layer acted as an effective barrier against Ni diffusion and thus inhibited the resettlement of (Pd,Ni)Sn{sub 4} onto the Ni interface. For the interaction during reflow, Sn–3.5Ag and Sn–3.0Ag–0.5Cu solder balls were isothermally reflowed on an electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) surface finish at 250 °C, and the dissolution kinetics of the (Pd,Ni)Sn{sub 4} particles converted from the 0.2-μm-thick Pd-finish layer were examined. The spalled (Pd,Ni)Sn{sub 4} particles very quickly dissolved into the molten solder when the IMC layer formed on the Ni substrate was (Cu,Ni){sub 6}Sn{sub 5} rather than Ni{sub 3}Sn{sub 4}. The dependence of the dissolution kinetics of the spalled (Pd,Ni)Sn{sub 4} particles on the IMC layers was rationalized on the basis of a Sn–Ni–Pd isotherm at 250 °C. The present study suggests that the formation of a dense (Cu,Ni){sub 6}Sn{sub 5} layer at the solder/Ni interface can effectively

  18. Comparison of properties and microstructures of Tréfimétaux CuNiBe and Hycon 3HPTM before and after neutron irradiation

    DEFF Research Database (Denmark)

    Singh, B.N.; Edwards, D.J.; Eldrup, Morten Mostgaard

    2000-01-01

    The precipitation strengthened CuNiBe alloys are among the three candidate copper alloys that are being evaluated for application in the first wall, divertor, and limiter components of ITER. Generally, CuNiBe alloys have higher strength but poorerconductivity compared to CuCrZr and Cu-A1_2O_3...... alloys. Brush-Wellman Inc. has developed an improved version of their Hycon CuNiBe alloy that has higher conductivity while maintaining a reasonable level of strength. In the present work we have investigatedthe physical and mechanical properties of the Hycon 3HPTM alloy both before and after neutron...

  19. Kinetic study of the annealing reactions in Cu-Ni-Fe alloys

    International Nuclear Information System (INIS)

    Donoso, E.

    2014-01-01

    The thermal aging of a Cu-45Ni-4Fe, Cu-34Ni-11Fe and Cu-33Ni-22Fe alloys tempered from 1173 K have been studied from Differential Scanning Calorimetry (DSC) and microhardness measurements. The analysis of DSC curves, from room temperature to 950 K, shows the presence of one exothermic reaction associated to the formation of FeNi 3 phase nucleating from a modulate structure, and one endothermic peak attributed to dissolution of this phase. Kinetic parameters were obtained using the usual Avrami-Erofeev equation, modified Kissinger method and integrated kinetic functions. Microhardness measurements confirmed the formation and dissolution of the FeNi 3 phase. (Author)

  20. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    Science.gov (United States)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  1. Magnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method

    Directory of Open Access Journals (Sweden)

    M. Jafari Fesharaki

    2015-07-01

    Full Text Available Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4.6H2O, Co(SO4.7H2O, Cu(SO4 and H3BO3 using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX  analysis confirmed the purity of deposited samples. The morphology of the samples was estimated by scanning electron microscope (SEM. Magnetoresistance (MR measurements were carried out at room temperature for the Ni-Co/Cu multilayers by measuring the resistivity in a magnetic fields varying between ±6kOe as a function of the Ni-Co and Cu layer thicknesses; (1 dCu(nm 4 and 3 dNi-Cu(nm 5. The Maximum value of giant magnetoresistance (GMR was obtained when the Ni-Co and Cu thicknesses were 4.0nm and 4.0nm respectively. The hysteresis loop of the samples at room temperature was studied using an alternating gradient force magnetometer (AGFM. Finally, the temperature dependence of magnetization for Ni-Co/Cu multilayers; (dNi-Cu(4nm/dCu(2nm and dNi-Cu(3nm/dCu(3nm measured by Faraday balance and decreasing the magnetization with increasing the temperature discussed according to electron scattering due to spin fluctuation.

  2. On the evolution of Cu-Ni-rich bridges of Alnico alloys with tempering

    Energy Technology Data Exchange (ETDEWEB)

    Fan, M. [Department of Materials Science and Engineering, North Carolina State University, Campus Box 7907, Raleigh, NC 27695-7907 (United States); Liu, Y. [Department of Materials Science and Engineering, North Carolina State University, Campus Box 7907, Raleigh, NC 27695-7907 (United States); Analytical Instrumentation Facility, North Carolina State University, Raleigh, NC 27695 (United States); Jha, Rajesh; Dulikravich, George S. [Departments of Mechanical and Materials Engineering, MAIDROC, Florida International University, EC3462, 10555 West Flagler Street, Miami, FL 33174 (United States); Schwartz, J.; Koch, C.C. [Department of Materials Science and Engineering, North Carolina State University, Campus Box 7907, Raleigh, NC 27695-7907 (United States)

    2016-12-15

    Tempering is a critical step in Alnico alloy processing, yet the effects of tempering on microstructure have not been well studied. Here we report these effects, and in particular the effects on the Cu-Ni bridges. Energy-dispersive X-ray spectroscopy (EDS) maps and line scans show that tempering changes the elemental distribution in the Cu-Ni bridges, but not the morphology and distribution of Cu-bridges. The Cu concentration in the Cu-Ni bridges increases after tempering while other element concentrations decrease, especially Ni and Al. Furthermore, tempering sharpens the Cu bridge boundaries. These effects are primarily related to the large 2C{sub 44}/(C{sub 11}−C{sub 12}) ratio for Cu, largest of all elements in Alnico. In addition, the Ni-Cu loops around the α{sub 1} phases become inconspicuous with tempering. The diffusion of Fe and Co to the α{sub 1} phase during tempering, which increases the difference of saturation magnetization between the α{sub 1} and α{sub 2} phases, is observed by EDS. In summary, α{sub 1}, α{sub 2} and Cu-bridges are concentrated with their major elements during tempering which improves the magnetic properties. The formation of these features formed through elemental diffusion is discussed via energy theories. - Highlights: • Tempering changes the elemental distribution in the Cu-Ni bridges, but not morphology. • Cu concentration in the Cu-Ni bridges increases after tempering while others decrease. • These effects are related to the large 2C{sub 44}/(C{sub 11}−C{sub 12}) ratio for Cu. • The Ni-Cu loops around the α{sub 1} phases become inconspicuous with tempering. • The diffusion of Fe and Co to the α{sub 1} phase during tempering is observed by EDS.

  3. Effect of Cu insertion on structural, local electronic/atomic structure and photocatalyst properties of TiO{sub 2}, ZnO and Ni(OH){sub 2} nanostructures: XANES-EXAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Aditya; Varshney, Mayora [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul, 02792 (Korea, Republic of); Shin, Hyun Joon, E-mail: shj001@postech.ac.kr [Pohang Accelerator Laboratory (POSTECH), Pohang, 37673 (Korea, Republic of); Lee, Byeong-Hyeon [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul, 02792 (Korea, Republic of); Chae, Keun Hwa, E-mail: khchae@kist.re.kr [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul, 02792 (Korea, Republic of); Won, Sung Ok, E-mail: sowon@kist.re.kr [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul, 02792 (Korea, Republic of)

    2017-04-15

    We report detailed investigations on the synthesis, structural, morphology, electronic/atomic structure and photocatalyst properties of Cu doped TiO{sub 2}, ZnO and Ni(OH){sub 2} nanostructures. All of the samples were synthesized by using the chemical precipitation method. Samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and photocatalyst measurements. XRD studies revealed single phase nature of the samples and omitted the presence of trivial metallic or binary oxide phases. TiO{sub 2} set of samples have shown nanorod kind of morphology, however TEM images of ZnO and Ni(OH){sub 2} set of samples depicted the spherical morphology of particles. XANES spectra at the Cu K-edge and Cu L-edge, along with the atomic multiplet calculations, revealed the predominance of Cu{sup 2+} ions in all of the samples, within the entire doping range. Ti L-edge and Ti K-edge XANES confirmed the existence of Ti{sup 4+} ions in the pure and Cu doped TiO{sub 2} samples with anatase local structure. Zn L-edge XANES results confirmed the divalent character of Zn ions in the pure and Cu doped ZnO, which is further validated by the Zn K-edge XANES. Ni L-edge and Ni K-edge XANES conveyed the +2 valence state of Ni ions in the pure and Cu doped Ni (OH){sub 2} samples. EXAFS analysis at the Cu K-edge nullifies the formation of Cu metallic clusters and other trivial phases, suggesting random distribution of Cu atoms in the oxide materials. Though, local atomic arrangement of Cu ions is disparate in the different oxide compounds. As an application of the pure and Cu doped TiO{sub 2}, ZnO and Ni(OH){sub 2} nanostructures, towards the degradation of water pollutant dyes, we demonstrate that all of the samples can serve as effective photocatalyst materials towards the degradation of methyl orange aqueous pollutant dye under the UV-light irradiation

  4. Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature

    International Nuclear Information System (INIS)

    Kuznetsov, Anatoly A.; Leontiev, Vladimir G.; Brukvin, Vladimir A.; Vorozhtsov, Georgy N.; Kogan, Boris Ya.; Shlyakhtin, Oleg A.; Yunin, Alexander M.; Tsybin, Oleg I.; Kuznetsov, Oleg A.

    2007-01-01

    Copper-nickel (CuNi) alloy nanoparticles with Curie temperatures (T c ) from 40 to 60 o C were synthesized by several techniques. Varying the synthesis parameters and post-treatment, as well as separations by size and T c , allow producing mediator nanoparticles for magnetic fluid hyperthermia with parametric feedback temperature control with desired parameters. In vitro and in vivo animal experiments have demonstrated the feasibility of the temperature-controlled heating of the tissue, laden with the particles, by an external alternating magnetic field

  5. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys

    International Nuclear Information System (INIS)

    Yang, Tai; Zhai, Tingting; Yuan, Zeming; Bu, Wengang; Xu, Sheng; Zhang, Yanghuan

    2014-01-01

    Highlights: • La–Mg–Ni system AB 2 -type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi 3.6 M 0.4 (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi 4 and the secondary phase LaNi 5 . However, the secondary phase of the Al substitution alloy changes into LaAlNi 4 . The lattice parameters and cell volumes of the LaMgNi 4 phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi 4 phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi 4 phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between hydriding and dehydriding

  6. Thermal stability and primary phase of Al-Ni(Cu)-La amorphous alloys

    International Nuclear Information System (INIS)

    Huang Zhenghua; Li Jinfu; Rao Qunli; Zhou Youhe

    2008-01-01

    Thermal stability and primary phase of Al 85+x Ni 9-x La 6 (x = 0-6) and Al 85 Ni 9-x Cu x La 6 (x = 0-9) amorphous alloys were investigated by X-ray diffraction and differential scanning calorimeter. It is revealed that replacing Ni in the Al 85 Ni 9 La 6 alloy by Cu decreases the thermal stability and makes the primary phase change from intermetallic compounds to single fcc-Al as the Cu content reaches and exceeds 4 at.%. When the Ni and La contents are fixed, replacing Al by Cu increases the thermal stability but also promotes the precipitation of single fcc-Al as the primary phase

  7. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun [Xiamen Univ. (China). College of Materials and Fujian Provincial Key Lab. of Materials Genome

    2017-08-15

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr{sub 7}Ni{sub 10}, ZrNi, ZrNi{sub 5}, Zr{sub 14}Cu{sub 51}, and Zr{sub 2}Cu{sub 9}, show a remarkable ternary solubility. A new ternary compound named τ{sub 3} (Zr{sub 31.1-30.7} . Cu{sub 28.5-40.3}Ni{sub 40.4-29.0}) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  8. Electroplating Ni-63 metal ions in chloride bath on the Cu-plate

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Kwon Mo; Uhm, Young Rang; Son, Kwang Jae; Park, Keun Yung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ni-63 plating is similar to other electroplating processes that employ soluble metal anodes. The nickel plating solution described by Watts in 1916 eventually replaced all other strategies in use up to that time. Charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, charged Ni-63 ions are formed by dissolving metal Ni-63. Specifically, it requires the passage of direct current (DC) between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The flow of a DC causes one of the electrodes (the anode) to dissolve and the other electrode (the cathode) to become covered with nickel. The nickel in the solution is present in the form of divalent positively charged ions (Ni{sup 2+}). When the current flows, the positive ions react with two electrons (2e{sup -}) and are converted into metallic nickel (Ni{sup 0}) at the cathode surface. In the present study, we optimize and established process for the electroplating Ni-63 on Cu-plate. Nanocrystalline nickel (Ni) coatings were synthesized by DC electro deposition at a current density of 15 mA/cm{sup 2}. The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni-63 metal particles in HCl. The prototype for electroplating radioactive Ni-63 has been established. The electroplating was carried out by two-step processes such as preparation of ionic solution including Ni-63, and coating processes on the substrate.

  9. Electroplating Ni-63 metal ions in chloride bath on the Cu-plate

    International Nuclear Information System (INIS)

    Yoo, Kwon Mo; Uhm, Young Rang; Son, Kwang Jae; Park, Keun Yung

    2014-01-01

    Ni-63 plating is similar to other electroplating processes that employ soluble metal anodes. The nickel plating solution described by Watts in 1916 eventually replaced all other strategies in use up to that time. Charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, charged Ni-63 ions are formed by dissolving metal Ni-63. Specifically, it requires the passage of direct current (DC) between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The flow of a DC causes one of the electrodes (the anode) to dissolve and the other electrode (the cathode) to become covered with nickel. The nickel in the solution is present in the form of divalent positively charged ions (Ni 2+ ). When the current flows, the positive ions react with two electrons (2e - ) and are converted into metallic nickel (Ni 0 ) at the cathode surface. In the present study, we optimize and established process for the electroplating Ni-63 on Cu-plate. Nanocrystalline nickel (Ni) coatings were synthesized by DC electro deposition at a current density of 15 mA/cm 2 . The bath was primarily composed of 0.2 M Ni ions, prepared by dissolving Ni-63 metal particles in HCl. The prototype for electroplating radioactive Ni-63 has been established. The electroplating was carried out by two-step processes such as preparation of ionic solution including Ni-63, and coating processes on the substrate

  10. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    Science.gov (United States)

    Bustam, Mohamad Azmi; Chong, Fai Kait; Man, Zakaria B.; Khan, Muhammad Saqib; Shariff, Azmi M.

    2014-01-01

    Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD) removal (86.82%). According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion. PMID:25105158

  11. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Nadia Riaz

    2014-01-01

    Full Text Available Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI method with TiO2 (Degussa-P25 as support and calcined at different temperatures (180, 200, and 300°C for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR and temperature programmed reduction (TPR. The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD removal (86.82%. According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion.

  12. Influence of Ni Solute segregation on the intrinsic growth stresses in Cu(Ni) thin films

    International Nuclear Information System (INIS)

    Kaub, T.M.; Felfer, P.; Cairney, J.M.; Thompson, G.B.

    2016-01-01

    Using intrinsic solute segregation in alloys, the compressive stress in a series of Cu(Ni) thin films has been studied. The highest compressive stress was noted in the 5 at.% Ni alloy, with increasing Ni concentration resulting in a subsequent reduction of stress. Atom probe tomography quantified Ni's Gibbsian interfacial excess in the grain boundaries and confirmed that once grain boundary saturation is achieved, the compressive stress was reduced. This letter provides experimental support in elucidating how interfacial segregation of excess adatoms contributes to the post-coalescence compressive stress generation mechanism in thin films. - Graphical abstract: Cu(Ni) film stress relationship with Ni additions. Atom probe characterization confirms solute enrichment in the boundaries, which was linked to stress response.

  13. Magnetic nanoparticles of NiCuZn tested in different conditions in catalysis for biodiesel; Nanoparticulas magneticas de NiCuZn testadas em diferentes condicoes na catalise para biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, J.; Silva, F.N.; Silva, A.S.; Pereira, K.R.O.; Costa, A.C.F.M., E-mail: joeldadantas@yahoo.com.br [Universidade Federal de Campina Grande (LabSMaC/UFCG), PB (Brazil). Laboratorio de Sintese de Materiais Ceramicos

    2014-07-01

    In this work it was used magnetic nanoparticles Ni{sub 0,2}Cu{sub 0,3}Zn{sub 0,5}Fe{sub 2}O{sub 4}, chemical and thermally stable, under different conditions in catalysis for biodiesel. The magnetic characteristic of such material allows the catalyst recovery after the reactions by applying a permanent magnet. It was proposed to evaluate the performance of the nanomagnetic catalyst Ni{sub 0,2}Cu{sub 0,3}Zn{sub 0,5}Fe{sub 2}O{sub 4} in the transesterification, modifying the processing variables (temperature, time, molar ratio of oil:alcohol and catalyst amount). The nanoparticles were synthesized by combustion reaction and characterized by XRD, TG, BET, magnetic measurements and gas chromatography. The results revealed the formation of inverse spinel phase, type B(AB){sub 2}O{sub 4}, presenting isotherm profile classified as type V, with hysteresis loop of type 3 (H3). The magnetic hysteresis curve showed a characteristic behavior of soft magnetic material. GC analysis confirmed that nanoparticles were catalytically active, since they were superior to the reaction conducted without the catalyst presence. Besides, the reactions suffered considerable influence due to the changes of the independent variables. (author)

  14. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    Science.gov (United States)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  15. Sorption of Cu(II, Zn(II and Ni(II from aqueous solution using activated carbon prepared from olive stone waste

    Directory of Open Access Journals (Sweden)

    Gehan Sharaf

    2015-10-01

    Full Text Available The performance of olive stone activated carbon (OSAC for sorption of Cu2+, Zn2+ and Ni2+ ions was investigated via batch technique. OSAC materials were prepared under different physially activation conditions. Olive stone waste was physically activated with N2 gas and steam gas at 900oC at 3.5h hold time (OSAC-3 was choice as the best one for Cu2+, Zn2+ and Ni2+ removal. Characterization for OSAC-3 were performed under BET-surface area, SEM, density and FTIR-spectrum. Optimum adsorption conditions were specified as a function of agitation time, initial metal concentration, pH and temperature. Kinetic results were found to be fast and described well by the pseudo-second order model. The adsorption capacities are 25.38mg/g (Cu2+, 16.95mg/g (Zn2+ and 14.65mg/g (Ni2+ which followed the sequence Cu2+ > Zn2+ > Ni2+. Spontaneous adsorption for all the studied cations, endothermic nature for both Zn2+ and Ni2+ ions and exothermic nature for Cu2+ ions were obtained. The results showed that OSAC-3 is a good economical material for Cu2+, Zn2+ and Ni2+ remediation from weakly acidic contaminated effluents.

  16. A diffuse neutron scattering study of clustering kinetics in Cu-Ni alloys

    International Nuclear Information System (INIS)

    Vrijen, J.; Radelaar, S.; Schwahn, D.

    1977-01-01

    Diffuse scattering of thermal neutrons was used to investigate the kinetics of clustering in Cu-Ni alloys. In order to optimize the experimental conditions the isotopes 65 Cu and 62 Ni were alloyed. The time evolution of the diffuse scattered intensity at 400 0 C has been measured for eight Cu-Ni alloys, varying in composition between 30 and 80 at. pour cent Ni. The relaxation of the so called null matrix, containing 56.5 at. pour cent Ni has also been investigated at 320, 340, 425 and 450 0 C. Using Cook's model from all these measurements information has been deduced about diffusion at low temperatures and about thermodynamic properties of the Cu-Ni system. It turns out that Cook's model is not sufficiently detailed for an accurate description of the initial stages of these relaxations

  17. PRECIPITATION BEHAVIOR IN A Cu-Sn-Ni-Zn-P LEAD FRAME MATERIAL

    Institute of Scientific and Technical Information of China (English)

    W.H. Tian; C.K. Yan; M.Nemoto

    2003-01-01

    Transmission electron microscopy (TEM) observations were carried out for examining the precipitation behavior in a Cu-Sn-Ni-Zn-P lead frame material. TEM observations revealed that the precipitate is hexagonal Ni5P2 and the orientation relationship between the Cu matrix and Ni5P2 precipitate is (111)fcc//(0001)hcp,[101]fcc//[11-20]hcp, where the suffix fcc denotes the Cu matrix and hcp denotes the hexagonal Ni5P2 precipitate. The NisP2 precipitate is ovoidal in shape at the beginning of aging at lower temperature. By prolonging the aging time or increasing the aging temperature, Ni5P2 precipitate grows and shows a rod-like shape. The Ni added Cu based lead frame material has a comparative mechanical properties with that of TAMAC15 which has been developed and used in electrical industry.

  18. First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au

    International Nuclear Information System (INIS)

    Wolverton, C.; Ozolins, V.; Zunger, A.

    1998-01-01

    We describe a first-principles technique for calculating the short-range order (SRO) in disordered alloys, even in the presence of large anharmonic atomic relaxations. The technique is applied to several alloys possessing large size mismatch: Cu-Au, Cu-Ag, Ni-Au, and Cu-Pd. We find the following: (i) The calculated SRO in Cu-Au alloys peaks at (or near) the left-angle 100 right-angle point for all compositions studied, in agreement with diffuse scattering measurements. (ii) A fourfold splitting of the X-point SRO exists in both Cu 0.75 Au 0.25 and Cu 0.70 Pd 0.30 , although qualitative differences in the calculated energetics for these two alloys demonstrate that the splitting in Cu 0.70 Pd 0.30 may be accounted for by T=0 K energetics while T≠0 K configurational entropy is necessary to account for the splitting in Cu 0.75 Au 0.25 . Cu 0.75 Au 0.25 shows a significant temperature dependence of the splitting, in agreement with recent in situ measurements, while the splitting in Cu 0.70 Pd 0.30 is predicted to have a much smaller temperature dependence. (iii) Although no measurements exist, the SRO of Cu-Ag alloys is predicted to be of clustering type with peaks at the left-angle 000 right-angle point. Streaking of the SRO peaks in the left-angle 100 right-angle and left-angle 1 (1) /(2) 0 right-angle directions for Ag- and Cu-rich compositions, respectively, is correlated with the elastically soft directions for these compositions. (iv) Even though Ni-Au phase separates at low temperatures, the calculated SRO pattern in Ni 0.4 Au 0.6 , like the measured data, shows a peak along the left-angle ζ00 right-angle direction, away from the typical clustering-type left-angle 000 right-angle point. (v) The explicit effect of atomic relaxation on SRO is investigated and it is found that atomic relaxation can produce significant qualitative changes in the SRO pattern, changing the pattern from ordering to clustering type, as in the case of Cu-Ag. copyright 1998 The American

  19. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

    Science.gov (United States)

    Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong

    2018-04-01

    Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.

  20. Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Leontiev, Vladimir G. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Brukvin, Vladimir A. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Vorozhtsov, Georgy N. [NIOPIK Organic Intermediates and Dyes Institute, Moscow 103787 (Russian Federation); Kogan, Boris Ya. [NIOPIK Organic Intermediates and Dyes Institute, Moscow 103787 (Russian Federation); Shlyakhtin, Oleg A. [Institute of Chemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Yunin, Alexander M. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Tsybin, Oleg I. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation)]. E-mail: kuznetsov_oa@yahoo.com

    2007-04-15

    Copper-nickel (CuNi) alloy nanoparticles with Curie temperatures (T{sub c}) from 40 to 60{sup o}C were synthesized by several techniques. Varying the synthesis parameters and post-treatment, as well as separations by size and T{sub c}, allow producing mediator nanoparticles for magnetic fluid hyperthermia with parametric feedback temperature control with desired parameters. In vitro and in vivo animal experiments have demonstrated the feasibility of the temperature-controlled heating of the tissue, laden with the particles, by an external alternating magnetic field.

  1. GdCuMg with ZrNiAl-type structure. An 82.2 K ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Sebastian; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-08-01

    GdCuMg has been synthesized by induction-melting of the elements in a sealed niobium ampoule followed by annealing in a muffle furnace. The sample was studied by powder and single crystal X-ray diffraction: ZrNiAl type, P anti 62m (a=749.2(4), c=403.3(1) pm), wR2=0.0242, 315 F{sup 2} values and 15 variables. Temperature dependent magnetic susceptibility measurements have revealed an experimental magnetic moment of 8.54(1) μ{sub B} per Gd atom. GdCuMg orders ferromagnetically below T{sub C}=82.2(5) K and based on the magnetization isotherms it can be classified as a soft ferromagnet.

  2. Synthesis, characterization and biological studies of 2-(4-nitrophenylamino-carbonyl)benzoic acid and its complexes with Cr(III), Co(II), Ni(II), Cu(II) and Zn(II)

    International Nuclear Information System (INIS)

    Imran, M; Nazir, S.; Latif, S.; Mahmood, Z.

    2010-01-01

    Cr(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of 2-(4-Nitrophenyl aminocarbonyl)benzoic acid were synthesized and characterized on the basis of physical, analytical and spectroscopic data. The ligands, as well as its metal complexes were checked for their in-vitro antimicrobial activity against three bacterial strains, Mycobacterium smegmatis, Escherichia coli, Pseudomonas aeuroginosa, and three fungal strains, Nigrospora oryzae, Aspergillus niger and Candida albicans. Disc diffusion method and Tube diffusion test were used for antibacterial and antifungal activities, respectively. The synthesized complexes only show significant antifungal activity but inactive for antibacterial, however, in general, the metal complexes were found to be more active against antimicrobial activities as compared to their un complexed ligand. (author)

  3. The effect of Ni-doping on the magnetic order in the cubic GdIn(Cu{sub 1-x}Ni{sub x})4 (0.00 < x < 1.00) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, Edielma Costa; Silva, Leonardo Souza; Mercena, Samuel Gomes; Peixoto, Erilaine Barreto; Meneses, Cristiano Teles de, E-mail: edielmacm@gmail.com [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Duque, Jose Gerivaldo; Jesus, Camilo Bruno Ramos; Pagliuso, Pascoal G. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin

    2016-07-01

    Full text: In this work, we report on X-ray, magnetization, heat capacity and electron spin resonance measurements in GdIn(Ni{sub x}Cu{sub 1-x}){sub 4} (0.00 < x < 1.00) samples synthesized via flux method. The analysis of X-ray powder diffraction data carried out at room temperature reveal that all samples belong to cubic space group (Cl5b-type structure) with lattice parameters ranging 7.087 < a < 7.233 Å. Interestingly, the T-dependence of magnetic susceptibility and the MvsH loops indicate an gradual transition from antiferromagnetic to ferromagnetic as function the Ni-doping. Specific heat for samples with concentrations x = 0 (Cu-rich) and x = 0.70 and 0.90 (Ni-rich) confirm the order temperatures observed in MvsT data. Finally, electron spin resonance taken in 10 < T < 60 K for two intermediate concentrations x = 0.5 and 0.65 shows a single resonance of Dysonian with a nearly temperature g-independent and a linear thermal broadening of the linewidth following a Korringa-like behavior. In both cases, we observe an increasing of the residual linewidth as compared with GdInCu{sub 4}. We suggest that this can be linked with the chemical disorder produced by the Ni-doping. (author)

  4. Dissolved trace metal (Cu, Cd, Co, Ni, and Ag) distribution and Cu speciation in the southern Yellow Sea and Bohai Sea, China

    Science.gov (United States)

    Li, Li; Xiaojing, Wang; Jihua, Liu; Xuefa, Shi

    2017-02-01

    Trace metals play an important role in biogeochemical cycling in ocean systems. However, because the use of trace metal clean sampling and analytical techniques has been limited in coastal China, there are few accurate trace metal data for that region. This work studied spatial distribution of selected dissolved trace metals (Ag, Cu, Co, Cd, and Ni) and Cu speciation in the southern Yellow Sea (SYS) and Bohai Sea (BS). In general, the average metal (Cu, Co, Cd, and Ni) concentrations found in the SYS were lower by a factor of two than those in BS, and they are comparable to dissolved trace metal concentrations in coastal seawater of the United States and Europe. Possible sources and sinks and physical and biological processes that influenced the distribution of these trace metals in the study region were further examined. Close relationships were found between the trace metal spatial distribution with local freshwater discharge and processes such as sediment resuspension and biological uptake. Ag, owing to its extremely low concentrations, exhibited a unique distribution pattern that magnified the influences from the physical and biological processes. Cu speciation in the water column showed that, in the study region, Cu was strongly complexed with organic ligands and concentrations of free cupric ion were in the range of 10-12.6-10-13.2 mol L-1. The distribution of Cu-complexing ligand, indicated by values of the side reaction coefficient α', was similar to the Chl a distribution, suggesting that in situ biota production may be one main source of Cu-complexing organic ligand.

  5. Monitoring Cu nodule formation using Ni marker layers

    Energy Technology Data Exchange (ETDEWEB)

    Lafouresse, M.C., E-mail: mlafouresse@gmail.co [Department of Civil and Earth Resources Engineering, Kyoto University, Katsura, Kyoto 615-8540 (Japan); Fukunaka, Y. [Institute for Nanoscience and Nanotechnology, Waseda University, Shinjuku Ku, Tokyo 169-8555 (Japan); ISS Science Project Office, JAXA, Tsukuba-shi, Ibaraki 305-8505 (Japan); Matsuoka, T. [Department of Civil and Earth Resources Engineering, Kyoto University, Katsura, Kyoto 615-8540 (Japan); Schwarzacher, W. [H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2011-04-30

    Highlights: {yields} Ni marker layers to monitor electrodeposited Cu nodule morphological evolution. {yields} The edges of the nodules trace out a straight line. {yields} Difference in growth between spheres and hemispheres. {yields} Nodule on nodule growth at high overpotential. {yields} No dramatic effect of the diffusion layer thickness on the film morphology. - Abstract: We have used Ni marker layers to study the evolution of the characteristic spheroidal nodule morphology in electrodeposited Cu films. Ultrathin Ni layers were electrodeposited in-between Cu layers, and cross sections prepared by electrochemical polishing. During growth of a typical spheroidal feature, the edge (i.e. where there is a discontinuity in the surface slope) traces out a straight line in the cross-sectional image. At high overpotential, the cross-sections show nodule-on-nodule growth, giving rise to the well known cauliflower morphology. Rotating disk electrode studies reveal that, surprisingly, the absolute diffusion layer thickness does not appear to play a major role in the development of spheres.

  6. Monitoring Cu nodule formation using Ni marker layers

    International Nuclear Information System (INIS)

    Lafouresse, M.C.; Fukunaka, Y.; Matsuoka, T.; Schwarzacher, W.

    2011-01-01

    Highlights: → Ni marker layers to monitor electrodeposited Cu nodule morphological evolution. → The edges of the nodules trace out a straight line. → Difference in growth between spheres and hemispheres. → Nodule on nodule growth at high overpotential. → No dramatic effect of the diffusion layer thickness on the film morphology. - Abstract: We have used Ni marker layers to study the evolution of the characteristic spheroidal nodule morphology in electrodeposited Cu films. Ultrathin Ni layers were electrodeposited in-between Cu layers, and cross sections prepared by electrochemical polishing. During growth of a typical spheroidal feature, the edge (i.e. where there is a discontinuity in the surface slope) traces out a straight line in the cross-sectional image. At high overpotential, the cross-sections show nodule-on-nodule growth, giving rise to the well known cauliflower morphology. Rotating disk electrode studies reveal that, surprisingly, the absolute diffusion layer thickness does not appear to play a major role in the development of spheres.

  7. RF magnetron sputtered TiNiCu shape memory alloy thin film

    International Nuclear Information System (INIS)

    Fu Yongqing; Du Hejun

    2003-01-01

    Shape memory alloys (SMAs) offer a unique combination of novel properties, such as shape memory effect, super-elasticity, biocompatibility and high damping capacity, and thin film SMAs have the potential to become a primary actuating mechanism for micro-actuators. In this study, TiNiCu films were successfully prepared by mix sputtering of a Ti 55 Ni 45 target with a separated Cu target. Crystalline structure, residual stress and phase transformation properties of the TiNiCu films were investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and curvature measurement methods. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Results showed that films prepared at a high Ar gas pressure exhibited a columnar structure, while films deposited at a low Ar gas pressure showed smooth and featureless structure. Chemical composition of TiNiCu thin films was dependent on the DC power of copper target. DSC, XRD and curvature measurement revealed clearly the martensitic transformation of the deposited TiNiCu films. When the free-standing film was heated and cooled, a 'two-way' shape-memory effect can be clearly observed

  8. Synthesis and characterization of heterobimetallic complexes of the type [Cu(pn2][MCl4] where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II, and Hg(II

    Directory of Open Access Journals (Sweden)

    Seema Yadav

    2016-11-01

    Full Text Available A series of new bimetallic transition metal complexes of the type [Cu(pn2] [MCl4] have been synthesized (where M = Co(II, Ni(II, Cu(II, Zn(II, Cd(II and Hg(II, pn = 1,3-diaminopropane and characterized by elemental analysis, molar conductance, TGA, IR and electronic spectra. All the compounds are 1:1 electrolyte in DMF. The Cu(II ion is square-planar while metal ions in the anionic moiety acquire their usual tetrahedral arrangement. On the basis of these studies it is concluded that anionic moiety is electrically stabilized by its cationic counterpart.

  9. Unsaturated b-ketoesters and their Ni(II, Cu(II and Zn(II complexes

    Directory of Open Access Journals (Sweden)

    MUHAMMED BASHEER UMMATHUR

    2009-03-01

    Full Text Available A new series of b-ketoesters in which the keto group is attached to the olefinic linkage were synthesized by the reaction of methyl acetoacetate and aromatic aldehydes under specified conditions. The existence of these compounds predominantly in the intramolecularly hydrogen bonded enol form was well demonstrated from their IR, 1H-NMR and mass spectral data. Details on the formation of their [ML2] complexes with Ni(II, Cu(II and Zn(II and the nature of the bonding are discussed on the basis of analytical and spectral data.

  10. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor.

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-28

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g(-1) at the scan rate of 5 mV s(-1). In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  11. Shape memory effect and microstructures of sputter-deposited Cu-Al-Ni films

    International Nuclear Information System (INIS)

    Minemura, T.; Andoh, H.; Kita, Y.; Ikuta, I.

    1985-01-01

    The shape memory effect has been found in many alloy systems which exhibit a thermoelastic martensite transformation. Cu-Al-Ni alloys exhibit an excellent shape memory effect in single crystalline states, but they have not yet been commercially used due to their brittle fracture along the grain boundaries in polycrystalline states. This letter reports the shape memory effect and microstructures of the sputter-deposited Cu-Al-Ni films. Cu-14%Al-4%Ni alloy ingot was prepared. A target for sputter deposition was cut from the ingot. Aluminium foils (20 μm thick) were used for the substrates of sputter deposition. The microstructures and crystal structures of the films were investigated by transmission electron microscopy (TEM) and X-ray diffraction using CuKα radiation, respectively. The effect of the sputtering conditions such as substrate temperature, partial pressure of argon gas, and the sputtering power on the structures of sputter-deposited Cu-14%Al-4%Ni films were investigated by X-ray diffraction. Results are shown and discussed. Photographs demonstrate shape memory behaviour of Cu-14%Al-4%Ni films sputter-deposited on aluminium foils from (a) liquid nitrogen temperature to (d) room temperature. (author)

  12. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr--Ni--Cu--Al metallic glasses

    International Nuclear Information System (INIS)

    Fan, Cang; Li, Chunfei; Inoue, Akihisa; Haas, Volker

    2001-01-01

    This work shows that the crystallization process of Zr--Ni--Cu--Al metallic glass is greatly influenced by adding Nb as an alloying element. Based on the results of the differential scanning calorimetry experiments for metallic glasses Zr 69-x Nb x Ni 10 Cu 12 Al 9 (x=0--15at.%), the crystallization process takes place through two individual stages. For Zr 69 Ni 10 Cu 12 Al 9 (x=0), metastable hexagonal ω-Zr and a small fraction of tetragonal Zr 2 Cu are precipitated upon completion of the first exothermic reaction. Contrary to this alloy, the precipitation of a nanoquasicrystalline phase is detected when 5--10 at.% Nb is added. Furthermore, the crystallization temperature T x , supercooled liquid region ΔT x and reduced temperature T g /T L (T g is the glass transition temperature, T L the liquidus temperature) increase with increasing Nb content. These results indicate that adding Nb content to Zr--Ni--Cu--Al metallic glasses not only induces quasicrystalline phase formation, but also enhances glass-forming ability. Copyright 2001 American Institute of Physics

  14. Interfacial reactions in the Sb–Sn/(Cu, Ni) systems: Wetting experiments

    International Nuclear Information System (INIS)

    Novakovic, R.; Lanata, T.; Delsante, S.; Borzone, G.

    2012-01-01

    Interfacial reactions in the Sb–Sn/Cu and Sb–Sn/Ni systems have been investigated by means of wetting experiments. The wetting behaviour of two lead-free alloys, namely, Sb 2.5 Sn 97.5 and Sb 14.5 Sn 85.5 (at.%), in contact with Cu and Ni-substrates has been studied in view of possible applications as high-temperature solders in the electronics industry. The contact angle measurements on Cu and Ni plates were performed by using a sessile drop apparatus. The solder/substrate interface was characterised by the SEM-EDS analyses. -- Highlights: ► Sb–Sn alloys are used as high temperature lead-free solders. ► Sb–Sn alloys have good wetting properties on Cu and Ni substrates. ► Interfacial reactions and products are important for joint properties. ► Interfacial reactions/products data can be used to study the phase diagrams.

  15. Electroless deposition of NiCrB diffusion barrier layer film for ULSI-Cu metallization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuechun [School of Materials Science and Engineering, Yunnan University, Kunming (China); Chen, Xiuhua, E-mail: chenxh@ynu.edu.cn [School of Materials Science and Engineering, Yunnan University, Kunming (China); Ma, Wenhui [National Engineering Laboratory of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming (China); Shang, Yudong; Lei, Zhengtao; Xiang, Fuwei [School of Materials Science and Engineering, Yunnan University, Kunming (China)

    2017-02-28

    Highlights: • In this paper, the electroless deposited NiCrB thin film was mainly in the form of NiB, CrB{sub 2} compounds and elementary Ni. • The sheet resistance of NiCrB thin film was 3.043 Ω/□, it is smaller than that of the widely used Ta, TaN and TiN diffusion barrier layers. • Annealing experiments showed that the failure temperature of NiCrB thin film regarding Cu diffusion was 900 °C. • NiCrB barrier layer crystallized after 900 °C annealing, Cu grains arrived at Si-substrate through grain boundaries, resulting in the formation of Cu{sub 3}Si. • Eelectroless deposited NiCrB film also had good oxidation resistance, it is expected to become an anti-oxidant layer of copper interconnection. - Abstract: NiCrB films were deposited on Si substrates using electroless deposition as a diffusion barrier layer for Cu interconnections. Samples of the prepared NiCrB/SiO{sub 2}/Si and NiCrB/Cu/NiCrB/SiO{sub 2}/Si were annealed at temperatures ranging from 500 °C to 900 °C. The reaction mechanism of the electroless deposition of the NiCrB film, the failure temperature and the failure mechanism of the NiCrB diffusion barrier layer were investigated. The prepared samples were subjected to XRD, XPS, FPP and AFM to determine the phases, composition, sheet resistance and surface morphology of samples before and after annealing. The results of these analyses indicated that the failure temperature of the NiCrB barrier film was 900 °C and the failure mechanism led to crystallization and grain growth of the NiCrB barrier layer after high temperature annealing. It was found that this process caused Cu grains to reach Si substrate through the grain boundaries, and then the reaction between Cu and Si resulted in the formation of highly resistive Cu{sub 3}Si.

  16. Hydrogen storage properties of LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tai [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhai, Tingting; Yuan, Zeming; Bu, Wengang [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Xu, Sheng [Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Zhang, Yanghuan, E-mail: zhangyh59@sina.com [Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081 (China); Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010 (China)

    2014-12-25

    Highlights: • La–Mg–Ni system AB{sub 2}-type alloys were prepared by induction melting. • Structures and lattice parameters were analysed by XRD. • Hydrogen absorption/desorption performances were studied. • Mechanisms of hydrogen absorption capacity fading were investigated. - Abstract: LaMgNi{sub 3.6}M{sub 0.4} (M = Ni, Co, Mn, Cu, Al) alloys were prepared through induction melting process. The phase compositions and crystal structures were characterised via X-ray diffraction (XRD). The hydrogen storage properties, including activation performance, hydrogen absorption capacity, cycle stability, alloy particle pulverisation and plateau pressure, were systemically investigated. Results show that Ni, Co, Mn and Cu substitution alloys exhibit multiphase structures comprising the main phase LaMgNi{sub 4} and the secondary phase LaNi{sub 5}. However, the secondary phase of the Al substitution alloy changes into LaAlNi{sub 4}. The lattice parameters and cell volumes of the LaMgNi{sub 4} phase follow the order Ni < Co < Al < Cu < Mn. Activation is simplified through partial substitution of Ni with Al, Cu and Co. The hydrogen absorption capacities of all of the alloys are approximately 1.7 wt.% at the first activation process; however, they rapidly decrease with increasing cycle number. In addition, the stabilities of hydriding and dehydriding cycles decrease in the order Al > Co > Ni > Cu > Mn. Hydriding processes result in numerous cracks and amorphisation of the LaMgNi{sub 4} phase in the alloys. The p–c isotherms were determined by a Sieverts-type apparatus. Two plateaus were observed for the Ni, Co and Al substitution alloys, whereas only one plateau was found for Mn and Cu. This result was caused by the amorphisation of the LaMgNi{sub 4} phase during the hydriding cycles. Reversible absorption and desorption of hydrogen are difficult to achieve. Substitutions of Ni with Co, Mn, Cu and Al significantly influence the reduction of hysteresis between

  17. Effect of solute Cu on ductile-to-brittle behavior of martensitic Fe-8% Ni alloy

    International Nuclear Information System (INIS)

    Junaidi Syarif; Tsuchiyama, Toshihiro; Takaki, Setsuo

    2007-01-01

    Effect of solute Cu on the ductile-to-brittle (DBT) behaviour of martensitic Fe-8mass%Ni alloy is investigated to understand the effect of solute Cu on mechanical properties of martensitic steel. The DBT behaviours of the Fe-8mass%Ni and the Fe-8mass%Ni-1mass%Cu alloys are almost the same. It is thought to be due to disappearance of the solid solution softening in the martensitic Fe-8mass%Ni-Cu alloys. The solute Cu gives small influence on temperature and strain rate dependences of yield stress and suppressing the twin deformation at lower temperature in the martensitic Fe-8mass%Ni alloy. Therefore, the DBT temperature of the martensitic Fe-8mass%Ni-Cu alloy was not shifted to lower side. (author)

  18. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    Science.gov (United States)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  19. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    Science.gov (United States)

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  20. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation

    International Nuclear Information System (INIS)

    Tian Xike; Zhao Xiaoyu; Yang Chao; Pi Zhenbang; Zhang Lide; Zhang Suxin

    2008-01-01

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one

  1. Toxicity assessment and selective leaching characteristics of Cu-Al-Ni shape memory alloys in biomaterials applications.

    Science.gov (United States)

    Chang, Shih-Hang; Chen, Bor-Yann; Lin, Jin-Xiang

    2016-04-06

    Cu-Al-Ni shape memory alloys (SMAs) possess two-way shape memory effects, superelasticity, and damping capacity. Nonetheless, Cu-Al-Ni SMAs remain promising candidates for use in biomedical applications, as they are more economical and machinable than other SMAs. Ensuring the biocompatibility of Cu-Al-Ni SMAs is crucial to their development for biomedical applications. Therefore, this study aimed to assess the toxicity of Cu-Al-Ni SMAs using a Probit dose-response model and augmented simplex design. In this study, the effects of Cu2+, Al3+ and Ni2+ metal ions on bacteria (Escherichia coli DH5α) using Probit dose-response analysis and augmented simplex design to assess the actual toxicity of the Cu-Al-Ni SMAs. Extraction and repetition of Escherichia coli DH5α solutions with high Cu2+ ion concentrations and 30-hour incubation demonstrated that Escherichia coli DH5α was able to alter its growth mechanisms in response to toxins. Metal ions leached from Cu-Al-Ni SMAs appeared in a multitude of compositions with varying degrees of toxicity, and those appearing close to a saddle region identified in the contour plot of the augmented simplex model were identified as candidates for elevated toxicity levels. When the Cu-13.5Al-4Ni SMA plate was immersed in Ringer's solution, the selective leaching rate of Ni2+ ions far exceeded that of Cu2+ and Al3+. The number of Cu2+, Al3+ and Ni2+ ions leached from Cu-Al-Ni SMAs increased with immersion time; however, at higher ratios, toxicity interactions among the metal ions had the effect of gradually reducing overall toxicity levels with regard to Escherichia coli DH5α. The quantities of Cu2+, Al3+ and Ni2+ ions leached from the Cu-13.5Al-4Ni SMA plate increased with immersion time, the toxicity interactions associated with these compositions reduced the actual toxicity to Escherichia coli DH5α.

  2. High-pressure x-ray diffraction of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, Karel; Rasmussen, Helge Kildahl

    2001-01-01

    temperature using synchrotron radiation. The icosahedral quasicrystal structure is retained up to the highest hydrostatic pressure used (approximately 28 GPa) and is reversible after decompression. The bulk modulus at zero pressure and its pressure derivative of the icosahedral Zr-Al-Ni-Cu-Ag quasicrystal......The effect of pressure on the structural stability of icosahedral Zr-Al-Ni-Cu-Ag quasicrystals forming from a Zr65Al7.5Ni10Cu7.5Ag10 metallic glass with a supercooled liquid region of 44 K has been investigated by in situ high-pressure angle-dispersive x-ray powder diffraction at ambient......-Al-Ni-Cu-Ag quasicrystals induced by pressure....

  3. Crystallization behavior of Zr62Al8Ni13Cu17 Metallic Glass

    Directory of Open Access Journals (Sweden)

    Jo Mi Sun

    2017-06-01

    Full Text Available The crystallization behavior has been studied in Zr62Al8Ni13Cu17 metallic glass alloy. The Zr62Al8Ni13Cu17 metallic glass crystallized through two steps. The fcc Zr2Ni phase transformed from the amorphous matrix during first crystallization and then the Zr2Ni and residual amorphous matrix transformed into a mixture of tetragonal Zr2Cu and hexagonal Zr6Al2Ni phases. Johnson-Mehl-Avrami analysis of isothermal transformation data suggested that the formation of crystalline phase is primary crystallization by diffusion-controlled growth.

  4. Growth kinetics of the intermetallic phase in diffusion-soldered (Cu-5 at.%Ni)/Sn/(Cu-5 at.%Ni) interconnections

    NARCIS (Netherlands)

    Wierzbicka-Miernik, A.; Miernik, K.; Wojewoda-Budka, J.; Szyszkiewicz, K.; Filipek, R.; Litynska-Dobrzynska, L.; Kodentsov, A.; Zieba, P.

    2013-01-01

    A stereological analysis was carried out in order to obtain the kinetics parameters of the (Cu1-xNix)6Sn5 growth in the diffusion soldered (Cu–5 at.%Ni)/Sn/(Cu–5 at.%Ni) interconnections where previously anomalous fast growth of this phase was described. The n-parameter in the equation x = ktn was

  5. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest

    International Nuclear Information System (INIS)

    Santana M, J.S.

    2003-01-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  6. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  7. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability

    International Nuclear Information System (INIS)

    Sun, Y.J.; Qu, D.D.; Huang, Y.J.; Liss, K.-D.; Wei, X.S.; Xing, D.W.; Shen, J.

    2009-01-01

    Zr-Cu-Ni-Al quaternary amorphous alloy compositions with varying glass-forming ability are developed by an efficient method of proportional mixing of binary eutectics. The critical diameter of the glassy sample is improved from 6 mm for Zr 53 Cu 18.7 Ni 12 Al 16.3 to 14 mm for Zr 50.7 Cu 28 Ni 9 Al 12.3 by straightforwardly adjusting the eutectic unit's coefficients. The drastic improvement in GFA is attributed to balancing the chemical affinities of the Zr, Cu, Ni and Al components in the melt prior to solidification which makes the precipitation of competing crystalline phases more difficult. As the glass-forming ability increases, the concentration of Cu in the alloys exhibits a same trend. Based on synchrotron radiation high-energy X-ray diffraction analysis and Miracle's structural model, it is envisioned that the substitution of additional Cu atoms for Zr atoms in the investigated alloys stabilizes the efficient cluster packing structure of the amorphous alloys, leading to the pronounced increase in their glass-forming ability

  8. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    International Nuclear Information System (INIS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D.V.

    2015-01-01

    Highlights: • Three new refractory alloys namely: Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 , were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al 25 Ti 25 Ni 25 C u25 Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al 25 Ti 25 Ni 25 Cu 25 , Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 and Al 20 Ti 20 Ni 20 Cu 20 Fe 20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al 22.5 Ti 22.5 Ni 20 Cu 20 Fe 15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  9. Effect of Ni addition to the Cu substrate on the interfacial reaction and IMC growth with Sn3.0Ag0.5Cu solder

    Science.gov (United States)

    Zhang, Xudong; Hu, Xiaowu; Jiang, Xiongxin; Li, Yulong

    2018-04-01

    The formation and growth of intermetallic compound (IMC) layer at the interface between Sn3.0Ag0.5Cu (SAC305) solder and Cu- xNi ( x = 0, 0.5, 1.5, 5, 10 wt%) substrate during reflowing and aging were investigated. The soldering was conducted at 270 °C using reflowing method, following by aging treatment at 150 °C for up to 360 h. The experimental results indicated that the total thickness of IMC increased with increasing aging time. The scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were observed between SAC305 solder and purely Cu substrate. As the content of Ni element in Cu substrate was 0.5% or 1.5%, the scallop-like Cu6Sn5 and planar-like Cu3Sn IMC layer were still found between solder and Cu-Ni substrate and the total thickness of IMC layer decreased with the increasing Ni content. Besides, when the Ni content was up to 5%, the long prismatic (Cu,Ni)6Sn5 phase was the only product between solder and substrate and the total thickness of IMC layer increased significantly. Interestingly, the total thickness of IMC decreased slightly as the Ni addition was up to 10%. In the end, the grains of interfacial IMC layer became coarser with aging time increasing while the addition of Ni in Cu substrate could refine IMC grains.

  10. Simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix for production of radioisotope "6"4Cu

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2011-01-01

    The simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix has been carried out as a preliminary study for production of medical radioisotope Cu-64 based on nuclear reaction of "6"4Ni (p,n) "6"4Cu. The nickel target preparation was performed by means of electroplating method using acidic solution of nickel chloride - boric acid mixture and basic solution of nickel sulphate - nickel chloride mixture on a silver - surfaced-target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel target containing both irradiated nickel and radioactive copper, but in the presented work the proton irradiation of nickel target was omitted, while the radioactive copper was originally obtained from neutron irradiation of CuO target. The separation of radioactive copper from the nickel target matrix was based on anion exchange column chromatography in which the radiocopper was conditioned to form anion complex CuCl_4"2"- and retained on the column while the nickel was kept in the form of Ni"2"+ cation and eluted off from the column. The retained radioactive copper was then eluted out the column in the condition of dilute HCl changing back the copper anion complex into Cu"2"+ cation. It was found that the electroplating result from the acidic solution was more satisfied than that from the basic solution. By conditioning the matrix solution at HCl 6 M, the radioactive copper was found in the forms of Cu"2"+ and CuCl_4"2"- while the nickel was totally in the form of Ni"2"+. In the condition of HCl 9 M, the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was found as both Ni"2"+ and NiCl_4"2"-. The best condition of separation was in HCl 8 M in which the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was mostly in the form of Ni"2"+. The retained CuCl_4"2"- was then changed back into Cu_2_+ cation form and eluted out the column by using HCl 0.05 M

  11. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular rings as detected by μsR

    OpenAIRE

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P.V.; Timco, G.; Winpenny, R. E.P.; Blundell, S. J.; Lascialfari, A.

    2017-01-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni-Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J, while Cr7Ni-Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J ≪ J. The longitudinal muon relaxation rate λ collected at low magnetic fields...

  12. Study on the characteristics of the impingement erosion-corrosion for Cu-Ni Alloy sprayed coating(I)

    International Nuclear Information System (INIS)

    Lee, Sang Yeol; Lim, Uh Joh; Yun, Byoung Du

    1998-01-01

    Impingement erosion-corrosion test and electrochemical corrosion test in tap water(5000Ω-cm) and seawater(25Ω-cm). Thermal spraying coated Cu-Ni alloy on the carbon steel was carried out. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of the substrate(SS41) and Cu-Ni thermal spray coating were investigated. The erosion-corrosion control efficiency of Cu-Ni coating to substrate was also estimated quantitatively. Main results obtained are as follows : 1) Under the flow velocity of 13m/s, impingement erosion-corrosion of Cu-Ni coating is under the control of electrochemical corrosion factor rather than that of mechanical erosion. 2) The corrosion potential of Cu-Ni coating becomes more noble than that of substrate, and the current density of Cu-Ni coating under the corrosion potential is drained lowly than that of substrate. 3) The erosion-corrosion control efficiency of Cu-Ni coating to substrate is excellent in the tap water of high specific resistance solution, but it becomes dull in the seawater of low specific resistance. 4) The corrosion control efficiency of Cu-Ni coating to substrate in the seawater appears to be higher than that in the tap water

  13. Structural and magnetic properties of Ni0.15Mg0.1Cu0.3Zn0.45Fe2O4 ferrite prepared by NaOH-precipitation method

    International Nuclear Information System (INIS)

    Hou, Wei-xiao; Wang, Zhi

    2015-01-01

    Highlights: • NiMgCuZn ferrites were successfully prepared by low-temperature sintering. • NiMgCuZn ferrites have the advantages of both NiCuZn and MgCuZn ferrites. • NiMgCuZn ferrites exhibit high Curie temperature & high stability of permeability. - Abstract: The Ni 0.15 Mg 0.1 Cu 0.3 Zn 0.45 Fe 2 O 4 ferrite powders have been prepared by NaOH co-precipitation method and characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The XRD patterns confirm the single phase spinel structure of synthesized nanoparticles. The average crystallite size of the particles increases from 12 to 36 nm with calcining temperature (T a ) from 500 to 800 °C. The saturation magnetization (M s ) of the superparamagnetic particles was deduced by Langevin theory. Subsequently, the densification characteristics and magnetic properties of the low-temperature 950 °C-sintered ferrite bulk samples were also investigated. The magnetic measurement showed that the sintered bulk sample of T a = 600 °C has the highest initial permeability (μ i ), lowest coercivity (H c ), largest saturation magnetization (M s ) and satisfactory thermal stability of μ i . The microstructures of sintered samples were examined using field emission scanning electric microscope (FESEM). The T a has significant influence on the bulk density, initial permeability, saturation magnetization and coercivity of Ni 0.15 Mg 0.1 Cu 0.3 Zn 0.45 Fe 2 O 4 ferrite

  14. Exchange correlation length and magnetoresistance in Fe-Cu and Fe-Cu-Ni melt-spun ribbons

    International Nuclear Information System (INIS)

    El Ghannami, M.; Gomez-Polo, C.; Rivero, G.; Hernando, A.

    1994-01-01

    The magnetic properties of Fe 30 Cu 70 melt-spun ribbons are reported for the first time. In the as-cast state, the microstructure consists of b.c.c.-Fe grains immersed in a Cu-rich matrix. However, the addition of a small percentage of Ni gives rise to the appearance of new Cu-Fe-Ni phases. Under suitable thermal treatments, the microstructure of both alloys evolves towards a complete phase segregation in b.c.c-Fe and f.c.c.-Cu immiscibles phases. The temperature dependence of the magnetic properties is analysed and related to the microstructural changes produced during the thermal treatments. Remarkable magneto-resistance effects have been observed in both as-cast alloys, with maximum values of the order of 6% at low measuring temperatures. (orig.)

  15. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    Directory of Open Access Journals (Sweden)

    Marco Abdo Gravina

    2014-01-01

    Full Text Available OBJECTIVE: This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni Titanium (Ti conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek, to the wires with addition of copper (CuNiTi 27oC and 35oC, Ormco after traction test. METHODS: The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV with EDS system of microanalysis (energy dispersive spectroscopy. RESULTS : The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu. As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27oC and 35oC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi. 4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27oC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35oC wires presented inadequate wire-surface roughness in the fracture region. CONCLUSION: CuNiTi 35oC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region.

  16. Synthesis, characterization and anti-fungal evaluation of Ni(II and Cu(II complexes with a derivative of 4-aminoantipyrine

    Directory of Open Access Journals (Sweden)

    Monika Tyagi

    2017-01-01

    Full Text Available Transition metal complexes of Ni(II and Cu(II metal ions with the general stoichiometry [M(LX]X and [M(LSO4], where M = Ni(II and Cu(II, L = (1E-N-((5-((E-(2,3-dimethyl-1-phenyl-4-pyrazolineiminomethylthiophen-2-ylmethylene-2,3-dimethyl-1-phenyl-4-pyrazolineamine and X = Cl−, NO3− and SO42−, have been synthesized and characterized. The synthesized ligand and metal complexes were characterized by 1H NMR, IR, mass spectrometry, UV–Vis spectra and EPR. In molecular modelling, the geometries of the Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31g(d,p basis set. The nickel(II complexes were found to have octahedral geometry, whereas the copper(II complexes were of tetragonal geometry. The covalency factor (β and orbital reduction factor (k suggest the covalent nature of the complexes. To develop broad spectrum new molecules against seed-borne fungi, the minimum inhibitory concentration (MIC of the ligand and its metal complexes was evaluated by the serial dilution method.

  17. Magneto-optical response of Cu/NiFe/Cu nanostructure under surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, S. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Moradi, M., E-mail: m.moradi@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, 87317 (Iran, Islamic Republic of); Mohseni, S.M. [Department of Physics, Shahid Beheshti University, Evin, Tehran, 19839 (Iran, Islamic Republic of)

    2016-12-15

    In this paper, we present theoretical and experimental studies about the surface plasmon resonance effects on the magneto-optical activity of Cu/NiFe/Cu nanostructures as a function of layers thickness and light incident angle. Device fabrication was done by an oblique deposition technique with RF magnetron sputtering to carefully cover fine step thickness variation of all constituted layers. Angular dependent transverse Kerr response of samples was measured in the Kretschmann configuration at a fixed wavelength of 632 nm. At an optimum layer thickness and incident angle, significant amplification of the transverse Kerr effect was observed. Enhancement in the transverse Kerr effect can be realized by hybridization of surface plasmon excitation and cavity resonance in the plasmonic nanostructure. Experimental results were in qualitative agreement with modeling based on the 4×4 transfer matrix formalism. - Highlights: • Large magneto-optical response in Cu/NiFe/Cu multilayer nanostructure is achieved. • Layer thickness and sequence are studied to find large transverse Kerr signal. • Hybridization of surface plasmon excitation and cavity resonance were done.

  18. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    Science.gov (United States)

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  19. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds

    International Nuclear Information System (INIS)

    Yu, Chao

    2017-01-01

    Here we report a solution phase synthesis of 16 nm CuNi nanoparticles (NPs) with the Cu/Ni composition control. These NPs are assembled on graphene (G) and show Cu/Ni composition-dependent catalysis for methanolysis of ammonia borane (AB) and hydrogenation of aromatic nitro (nitrile) compounds to primary amines in methanol at room temperature. Among five different CuNi NPs studied, the G-Cu 36 Ni 64 NPs are the best catalyst for both AB methanolysis (TOF = 49.1 mol H2 mol CuNi -1 min -1 and E a = 24.4 kJ/mol) and hydrogenation reactions (conversion yield >97%). In conclusion, the G-CuNi represents a unique noble-metal-free catalyst for hydrogenation reactions in a green environment without using pure hydrogen.

  20. Chemical ordering around open-volume regions in bulk metallic glass Zr52.5Ti5Al10Cu17.9Ni14.6

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Hartley, J.; Howell, R.; Sterne, P. A.; Nieh, T. G.

    2000-01-01

    We provide direct experimental evidence for a nonrandom distribution of atomic constituents in Zr 52.5 Ti 5 Al 10 Cu 17.9 Ni 14.6 bulk metallic glass using positron annihilation spectroscopy. The Ti content around the open-volume regions is significantly enhanced at the expense of Ni and Cu. Our results indicate that Ni and Cu atoms closely occupy the volume bounded by their neighboring atoms while Al, Ti, and Zr are less closely packed, and more likely to be associated with the open-volume regions. The overall distribution of elements seen by the positron is not significantly altered by annealing or by crystallization. Theoretical calculations indicate that the observed elemental distribution is not consistent with the known crystalline phases Zr 2 Cu and NiZr 2 , while Al 3 Zr 4 shows some of the characteristics seen in the experiment. (c) 2000 American Institute of Physics

  1. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    Science.gov (United States)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-05-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  2. High-Performance Ink-Synthesized Cu-Gate Thin-Film Transistor with Diffusion Barrier Formation

    Science.gov (United States)

    Woo, Whang Je; Nam, Taewook; Oh, Il-Kwon; Maeng, Wanjoo; Kim, Hyungjun

    2018-02-01

    The improved electrical properties of Cu-gate thin-film transistors (TFTs) using an ink-synthesizing process were studied; this technology enables a low-cost and large area process for the display industry. We investigated the film properties and the effects of the ink-synthesized Cu layer in detail with respect to device characteristics. The mobility and reliability of the devices were significantly improved by applying a diffusion barrier at the interface between the Cu gate and the gate insulator. By using a TaN diffusion barrier layer, considerably improved and stabilized ink-Cu gated TFTs could be realized, comparable to sputtered-Cu gated TFTs under positive bias temperature stress measurements.

  3. Magnetic nanoparticles of NiCuZn tested in different conditions in catalysis for biodiesel

    International Nuclear Information System (INIS)

    Dantas, J.; Silva, F.N.; Silva, A.S.; Pereira, K.R.O.; Costa, A.C.F.M.

    2014-01-01

    In this work it was used magnetic nanoparticles Ni_0_,_2Cu_0_,_3Zn_0_,_5Fe_2O_4, chemical and thermally stable, under different conditions in catalysis for biodiesel. The magnetic characteristic of such material allows the catalyst recovery after the reactions by applying a permanent magnet. It was proposed to evaluate the performance of the nanomagnetic catalyst Ni_0_,_2Cu_0_,_3Zn_0_,_5Fe_2O_4 in the transesterification, modifying the processing variables (temperature, time, molar ratio of oil:alcohol and catalyst amount). The nanoparticles were synthesized by combustion reaction and characterized by XRD, TG, BET, magnetic measurements and gas chromatography. The results revealed the formation of inverse spinel phase, type B(AB)_2O_4, presenting isotherm profile classified as type V, with hysteresis loop of type 3 (H3). The magnetic hysteresis curve showed a characteristic behavior of soft magnetic material. GC analysis confirmed that nanoparticles were catalytically active, since they were superior to the reaction conducted without the catalyst presence. Besides, the reactions suffered considerable influence due to the changes of the independent variables. (author)

  4. Selective hydrogenation of furfural to cyclopentanone over Cu-Ni-Al hydrotalcite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongyan; Zhou, Minghao; Zeng, Zuo; Xiao, Guomin; Xiao, Rui [Southeast University, Nanjing (China)

    2014-04-15

    A series of Cu-Ni-Al hydrotalcites derived oxides with a (Cu+Ni)/Al mole ratio of 3 with varied Cu/Ni mole ratio (from 0.017 to 0.5, with a Cu ratio of 0.0125 to 0.25) were prepared by co-precipitation method, then applied to the hydrogenation of furfural in aqueous. Their catalytic performance for liquid phase hydrogenation of furfural to prepare cyclopentanone was described in detail, considering reaction temperature, catalyst composition, reaction time and so on. The yield of cyclopentanone was influenced by the mole ratio of Cu-Ni-Al based heterogeneous catalyst and depended on the reaction conditions. The yield of cyclopentanone was up to 95.8% when the reaction was carried out under 413 K with H{sub 2} pressure of 40 bar for 8 h. The catalysts were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and H{sub 2} temperature-programmed reduction (H{sub 2}-TPR)

  5. Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni-Cu catalysts on various supports

    NARCIS (Netherlands)

    Ardiyanti, A. R.; Khromova, S. A.; Venderbosch, R. H.; Yakovlev, V. A.; Melian-Cabrera, I. V.; Heeres, H. J.

    2012-01-01

    Bimetallic Ni-Cu catalysts on various Supports (CeO2-ZrO2, ZrO2, SiO2, TiO2, rice husk carbon, and Sibunite) with metal contents ranging from 7.5 to 9.0 (Ni) and 3.1-3.6 wt.% (Cu) for the inorganic supports and 17.1-17.8 (Ni) and 7.1-7.8 (Cu) for the carbon supports were synthesised and screened for

  6. The crystallization of (NiCu)ZrTiAlSi glass/crystalline composite

    International Nuclear Information System (INIS)

    Czeppe, T.; Sypien, A.; Ochin, P.; Anastassova, S.

    2007-01-01

    Alloys of composition (Ni 1-x Cu x ) 60 Zr 18 Ti 13 A1 5 Si 4 were investigated in the form of ribbons and massive samples. The microstructure of the massive samples consists of dendritic crystals in the amorphous or nanocrystalline matrix. The amount of the amorphous phase is the lowest in the sample with the highest Cu content. The segregation in the liquid phase, leading to the local differences in density and the composition of the crystallizing dendrites in the samples crystallized in the copper mould was shown. The typical compositions of the multi-component crystals could be distinguished; one with the increased content of aluminum, the second with the high content of silicon and third, with the high content of (NiCu) and (ZrTi). The cubic phase Ni(Cu)Ti(Zr) with Cu and Zr dissolved could be identified. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. Potentiodynamic polarization studies of bulk amorphous alloy Zr57Cu15.4Ni12.6Al10Nb5 and Zr59Cu20Ni8Al10Ti3 in aqueous HNO3 media

    International Nuclear Information System (INIS)

    Sharma, Poonam; Dhawan, Anil; Jayraj, J.; Kamachi Mudali, U.

    2013-01-01

    The potentiodynamic polarization studies were carried out on Zr based bulk amorphous alloy Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 in solutions of 1 M, 6 M and 11.5 M HNO 3 aqueous media at room temperature. As received specimens of Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 (5 mm diameter rod) and Zr 59 Cu 20 Ni 8 Al 10 Ti 3 (3 mm diameter rod) were polished with SiC paper before testing them for potentiodynamic polarization studies. The amorphous nature of the specimens was checked by X-ray diffraction. The bulk amorphous alloy Zr 59 Cu 20 Ni 8 Al 10 Ti 3 shows the better corrosion resistance than Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy in the aqueous HNO 3 media as the value of the corrosion current density (I corr ) for Zr 57 Cu 15.4 Ni 12.6 Al 10 Nb 5 alloy were found to be more than Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy in aqueous HNO 3 media. The improved corrosion resistance of Zr 59 Cu 20 Ni 8 Al 10 Ti 3 alloy is possibly due to the presence of Ti and formation of TiO 2 during anodic oxidation. Both Zr based bulk amorphous alloys shows wider passive range at lower concentration of nitric acid and the passive region gets narrowed down with the increase in concentration. A comparison of data obtained from both the Zr-based bulk amorphous alloys is made and results are discussed in the paper. (author)

  8. Magnetic behavior of NiCu nanowire arrays: Compositional, geometry and temperature dependence

    International Nuclear Information System (INIS)

    Palmero, E. M.; Bran, C.; Real, R. P. del; Vázquez, M.; Magén, C.

    2014-01-01

    Arrays of Ni 100−x Cu x nanowires ranging in composition 0 ≤ x ≤ 75, diameter from 35 to 80 nm, and length from 150 nm to 28 μm have been fabricated by electrochemical co-deposition of Ni and Cu into self-ordered anodic aluminum oxide membranes. As determined by X-ray diffraction and Transmission Electron Microscopy, the crystalline structure shows fcc cubic symmetry with [111] preferred texture and preferential Ni or Cu lattice depending on the composition. Their magnetic properties such as coercivity and squareness have been determined as a function of composition and geometry in a Vibrating Sample Magnetometer in the temperature range from 10 to 290 K for applied magnetic fields parallel and perpendicular to the nanowires axis. Addition of Cu into the NiCu alloy up to 50% enhances both parallel coercivity and squareness. For the higher Cu content, these properties decrease and the magnetization easy axis becomes oriented perpendicular to the wires. In addition, coercivity and squareness increase by decreasing the diameter of nanowires which is ascribed to the increase of shape anisotropy. The temperature dependent measurements reflect a complex behavior of the magnetic anisotropy as a result of energy contributions with different evolution with temperature.

  9. Preparation of 64Cu based on nuclear reaction of 64Ni (p,n) 64Cu: Simulations of target preparation and radionuclidic separation

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2010-01-01

    As a preliminary study for production technology of 64 Cu based on nuclear reaction of 64 Ni (p,n) 64 Cu, the nickel targets were prepared by electroplating method using acidic solution of nickel chloride - boric acid and basic solution of nickel sulphate - nickel chloride mixtures on a silver-surfaced target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel containing radioactive copper. In the presented work the irradiation of nickel target was omitted, while the radioactive copper was obtained from neutron irradiation of CuO target. The separation of radioactive copper was based on anion exchange column chromatography in which the radiocopper was conditioned to form CuCl 4 2- anion complex, while the nickel was kept as Ni 2+ cation. It was found that the electroplating deposit from the acidic solution was better than that form the basic solution. By conditioning the matrix solution in 6 M HCl, the radioactive copper was indicated in the forms of Cu 2+ and CuCl 4 2- while the nickel was in the form of Ni 2+ . In the condition of 9 M HCl, the radioactive copper was in the form of CuCl 4 2- , while the nickel was found as both Ni 2+ and CuCl 4 2- . The best condition of separation was in 8 M HCl in which the radioactive copper was in the form of CuCl 4 2- , while the nickel was in the form of Ni 2+ . The retained CuCl 4 2- was then changed back into Cu 2+ cation and eluted out from the column by using 0.05 M HCl. The γ-spectrometric analysis showed a single strong peak at 511 keV in accordance to γ-annihilation peak coming from positron decay of 64 Cu, and a very weak peak at 1346 keV related to γ-ray from internal energy transition of 64 Cu. (author)

  10. Cation distribution in CuFe{sub 2}O{sub 4} nanoparticles: Effects of Ni doping on magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Nguyen Kim; Loan, To Thanh, E-mail: totloan@itims.edu.vn; Anh, Luong Ngoc; Duong, Nguyen Phuc; Hien, Than Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, Hanoi 100000 (Viet Nam); Soontaranon, Siriwat; Thammajak, Nirawat [Synchrotron Light Research Institute, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000 (Thailand)

    2016-10-14

    The Cu{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} nanoparticles (with x = 0, 0.3, 0.5, 0.7, and 1) were synthesized by using spray co-precipitation method at annealing temperature T{sub a} = 900 °C in air for 5 h. The crystal structure, microstructure, oxidation state, and magnetic properties of the samples were characterized by using X-ray diffraction, synchrotron X-ray diffraction, scanning electron microscopy, X-ray absorption spectroscopy, and vibrating sample magnetometer. It was shown that all the samples have cubic structure. Lattice constant and grain size decrease, while the Curie temperature T{sub C} increases with increasing of Ni{sup 2+} content. A small amount of Fe{sup 2+} was found in all the samples. Cation distribution was determined by using a combination of magnetization measurements, extended X-ray absorption fine structure analysis, and Rietveld refinement from synchrotron X-ray diffraction data. It was indicated that Ni{sup 2+} ions occupy in octahedral site only, while Cu{sup 2+} ions distribute in both tetrahedral and octahedral sites. The variation of magnetic parameters is discussed based on Ni{sup 2+} concentration, grain size, the cation distribution, surface effect, and the presence of Fe{sup 2+} ion in the samples.

  11. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings

    International Nuclear Information System (INIS)

    Qiu, X.W.; Zhang, Y.P.; Liu, C.G.

    2014-01-01

    Highlights: • Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. • Al 2 CrFeNiCoCuTi x coatings show excellent corrosion resistance and wear resistance. • Al 2 CrFeNiCoCuTi x coatings play a good protective effect on Q235 steel. • Ti element promotes the formation of a BCC structure in a certain extent. -- Abstract: The Al 2 CrFeNiCoCuTi x high-entropy alloy coatings were prepared by laser cladding. The structure, hardness, corrosion resistance, wear resistance and magnetic property were studied by metallurgical microscope, scanning electron microscopy with spectroscopy (SEM/EDS), X-ray diffraction, micro/Vickers hardness tester, electrochemical workstation tribometer and multi-physical tester. The result shows that, Al 2 CrFeNiCoCuTi x high-entropy alloy samples consist of the cladding zone, bounding zone, heat affected zone and substrate zone. The bonding between the cladding layer and the substrate of a good combination; the cladding zone is composed mainly of equiaxed grains and columnar crystal; the phase structure of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings simple for FCC, BCC and Laves phase due to high-entropy affect. Ti element promotes the formation of a BCC structure in a certain extent. Compared with Q235 steel, the free-corrosion current density of Al 2 CrFeNiCoCuTi x high-entropy alloy coatings is reduced by 1–2 orders of magnitude, the free-corrosion potential is more “positive”. With the increasing of Ti content, the corrosion resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings enhanced in 0.5 mol/L HNO 3 solution. Compared with Q235 steel, the relative wear resistance of Al 2 CrFeCoCuNiTi x high-entropy alloy coatings has improved greatly; both the hardness and plasticity are affecting wear resistance. Magnetization loop shows that, Ti 0.0 high-entropy alloy is a kind of soft magnetic materials

  12. Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys

    Science.gov (United States)

    Kim, Hyung Giun; Lee, Taeg Woo; Kim, Sang Min; Han, Seung Zeon; Euh, Kwangjun; Kim, Won Yong; Lim, Sung Hwan

    2013-01-01

    The mechanical and electrical properties of Cu-5.98Ni-1.43Si and Cu-5.98Ni-1.29Si-0.24Ti alloys under heat treatment at 400 and 500 °C after hot- and cold-rolling were investigated, and a microstructural analysis using transmission electron microscopy was performed. Cu-5.98Ni-1.29Si-0.24Ti alloy displayed the combined Vickers hardness/electrical conductivity value of 315.9 Hv/57.1%IACS. This was attributed to a decrease of the solution solubility of Ni and Si in the Cu matrix by the formation of smaller and denser δ-Ni2Si precipitates. Meanwhile, the alloyed Ti was detected in the coarse Ni-Si-Ti phase particles, along with other large Ni-Si phase particles, in Cu-5.98Ni-1.29Si-0.24Ti.

  13. Structural, electrical and magnetic properties of evaporated Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: A_Layadi@yahoo.fr; Guittoum, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger 16000 (Algeria); Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Chauveau, T. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Billet, D. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Youssef, J. Ben [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Bourzami, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Bourahli, M.-H. [Departement d' O. M. P., Universite Ferhat Abbas, Setif 19000 (Algeria)

    2007-01-25

    The structural, electrical and magnetic properties of Ni thin films evaporated onto glass and polycrystalline Cu substrates have been investigated. The Ni thickness ranges from 31 to 165 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to study the structure and morphology of these systems. The Ni/Cu and Ni/glass thin films are found to be polycrystalline with a (1 1 1) texture. There is an overall increase of the grain size with increasing thickness. A negative strain was noted indicating that all the samples are under a compressive stress. Diffusion at the grain boundaries seems to be a major contribution to the electrical resistivity in this thickness range. Study of the hysteresis curves, obtained by vibrating sample magnetometer (VSM), indicates that all samples are characterized by an in-plane magnetization easy axis. Higher in-plane coercive fields seem to be associated with higher grain size, indicating that coercivity may be due to nucleation of reverse domains rather than pinning of domain walls. The saturation field and the squareness have been studied as a function of the Ni thickness.

  14. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    Science.gov (United States)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  15. Recovery stress and shape memory stability in Ni-Ti-Cu thin wires at high temperatures

    Czech Academy of Sciences Publication Activity Database

    Molnár, Peter; Van Humbeeck, J.

    2011-01-01

    Roč. 102, č. 11 (2011), s. 1362-1368 ISSN 1862-5282 Institutional research plan: CEZ:AV0Z10100520 Keywords : shape memory alloys * recovery stress * Ni-Ti-Cu * stress relaxation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.830, year: 2011 http://www.ijmr.de/directlink.asp?MK110596

  16. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, M; Diaz, J; Xuriguera, H; Chimenos, J M; Espiell, F [Dept. of Chemical Engineering and Metallurgy, Univ. of Barcelona, Barcelona (Spain); Miralles, L [Lab. d' Investigacio en Formacions Geologiques. Dept. of Petrology, Geochemistry and Geological Prospecting, Univ. of Barcelona, Barcelona (Spain); Pinol, S [Inst. de Ciencia de Materials de Barcelona, Bellaterra (Spain)

    2003-07-01

    Copper is an interesting substrate for HTS coated conductors for its low cost compared to other metallic substrates, and for its low resistivity. Nevertheless, mechanical properties and resistance to oxidation should be improved in order to use it as substrate for YBCO deposition by non-vacuum techniques. Therefore, different cube textured CuNi tapes were prepared by RABIT as possible substrates for deposition of high critical current density YBCO films. Under the optimised conditions of deformation and annealing, all the studied CuNi alloys (2%, 5%, and 10% Ni) presented (100) left angle 001 right angle cube texture which is compatible for YBCO deposition. Textured CuNi alloys present higher tensile strength than pure copper. Oxidation resistance of CuNi tapes under different oxygen atmospheres was also studied by thermogravimetric analysis and compared to pure copper tapes. Although the presence of nickel improves mechanical properties of annealed copper, it does not improve its oxidation resistance. However, when a chromium buffer layer is electrodeposited on the tape, oxygen diffusion is slowed down. Chromium is, therefore, useful for protecting copper and CuNi alloys from oxidation although its recrystallisation texture, (110), is not suitable for coated conductors. (orig.)

  17. Biperiodic oscillatory coupling with the thickness of an embedded Ni layer in Co/Cu/Co/Ni/Co (100) and selection rules for the periods

    NARCIS (Netherlands)

    de Vries, J.J.; Vorst, van de M.T.H.; Johnson, M.T.; Jungblut, R.; Reinders, A.; Bloemen, P.J.H.; Coehoorn, R.; Jonge, de W.J.M.

    1996-01-01

    A biperiodic oscillation of the strength of the antiferromagnetic interlayer coupling as a function of the thickness of an embedded Ni layer has been observed in an epitaxial Cu(100)/Co/Cu/Co/Ni/Co sample with the Cu interlayer and the Ni layer in the form of wedges. As the effect originates from

  18. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants.

    Science.gov (United States)

    Saleem, Samia; Ahmed, Bilal; Khan, Mohammad Saghir; Al-Shaeri, Majed; Musarrat, Javed

    2017-10-01

    Nanotechnology based therapeutics has emerged as a promising approach for augmenting the activity of existing antimicrobials due to the unique physical and chemical properties of nanoparticles (NPs). Nickel oxide nanoparticles (NiO-NPs) have been suggested as prospective antibacterial and antitumor agent. In this study, NiO-NPs have been synthesized by a green approach using Eucalyptus globulus leaf extract and assessed for their bactericidal activity. The morphology and purity of synthesized NiO-NPs determined through various spectroscopic techniques like UV-Visible, FT-IR, XRD, EDX and electron microscopy differed considerably. The synthesized NiO-NPs were pleomorphic varying in size between 10 and 20 nm. The XRD analysis revealed the average size of NiO-NPs as 19 nm. The UV-Vis spectroscopic data showed a strong SPR of NiO-NPs with a characteristic spectral peak at 396 nm. The FTIR data revealed various functional moieties like C=C, C-N, C-H and O-H which elucidate the role of leaf biomolecules in capping and dispersal of NiO-NPs. The bioactivity assay revealed the antibacterial and anti-biofilm activity of NiO-NPs against ESβL (+) E. coli, P. aeruginosa, methicillin sensitive and resistant S. aureus. Growth inhibition assay demonstrated time and NiO-NPs concentration dependent decrease in the viability of treated cells. NiO-NPs induced biofilm inhibition was revealed by a sharp increase in characteristic red fluorescence of PI, while SEM images of NiO-NPs treated cells were irregular shrink and distorted with obvious depressions/indentations. The results suggested significant antibacterial and antibiofilm activity of NiO-NPs which may play an important role in the management of infectious diseases affecting human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ternary systems Sr-{Ni,Cu}-Si: Phase equilibria and crystal structure of ternary phases

    International Nuclear Information System (INIS)

    Nasir, Navida; Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Giester, Gerald; Wosik, Jaroslaw; Nauer, Gerhard E.

    2010-01-01

    Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 deg. C) and Sr-Cu-Si (800 deg. C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi 3 (BaNiSn 3 -type) and SrNi 9-x Si 4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(Ni x Si 1-x ) 2 (AlB 2 -type). The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi 5.5 Si 6.5 □ 1.0 . Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu 2-x Si 2+x (ThCr 2 Si 2 -type), Sr(Cu x Si 1-x ) 2 (AlB 2 -type), SrCu 9-x Si 4+x (0≤x≤1.0; CeNi 8.5 Si 4.5 -type) and SrCu 13-x Si x (4≤x≤1.8; NaZn 13 -type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems. Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba. - Graphical abstract: The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type and is related to CeNi 8.5 Si 4.5 -type.

  20. Cd, Zn, Ni and Cu in the Indian Ocean

    NARCIS (Netherlands)

    Saager, Paul M.; Baar, Hein J.W. de; Howland, Robin J.

    1992-01-01

    Vertical profiles of dissolved Cd, Zn, Ni and Cu in the Northwest Indian Ocean (Arabian Sea) exhibit a nutrient type distribution also observed in other oceans. The area is characterized by strong seasonal upwelling and a broad oxygen minimum zone in intermediate waters. However, neither Cd, Zn, Ni

  1. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  2. Paduan Ni-Cu-Mn Sebagai Logam Alternatif Kedokteran Gigi: Efek Perendaman dalam Larutan 0,1% Sodium Sulfida

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-09-01

    Full Text Available In this study, the ternary base alloys of nickel-copper-manganese (Ni-Cu-Mn alloys are prepared and these ternary alloys systems, which were constituted from higher nickel and lower copper contents than copper-base alloy ones, were evaluated by a tarnish test. Tarnish tests conducted in a 0,1% sodium sulphide solution (pH=12 at 37◦C. All test specimens were case into square paddles of 15 mm x 20 mm x 2,5 mm using the lost-wax technique with a phosphate-bonded investment. The surface of the specimens were then prepared with abrasion papers down to a 600 grit finish. Tarnish attack was quantitatively evaluated by Fibre colorimetry. The results of tarnish test showed that ternary nickel-copper-manganese alloys, such as 40Ni-30Cu-30Mn and 50Ni-30Cu-20Mn, have superior tarnishment resistance than other alloys, e.g. 20Ni-40Cu-40Mn, 30Ni-30Cu-40Mn and 30Ni-40Cu-30Mn. It was also found that 40Ni-30Cu-30Mn and 50Ni-30Cu-20Mn alloys have lower values of colour change vector than the other alloys given above.

  3. Catalytic Chemical Vapor Deposition of Methane to Carbon Nanotubes: Copper Promoted Effect of Ni/MgO Catalysts

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2014-01-01

    Full Text Available The Ni/MgO and Ni-Cu/MgO catalysts were prepared by sol-gel method and used as the catalysts for synthesis of carbon nanotubes by thermal chemical vapor deposition. The effect of Cu on the carbon yield and structure was investigated, and the effects of calcination temperature and reaction temperature were also investigated. The catalysts and synthesized carbon materials were characterized by temperature programmed reduction (TPR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. Results showed that the addition of Cu promoted the reduction of nickel species, subsequently improving the growth and yield of CNTs. Meanwhile, CNTs were synthesized by the Ni/MgO and Ni-Cu/MgO catalysts with various calcination temperatures and reaction temperatures, and results suggested that the obtained CNTs on Ni-Cu/MgO catalyst with the calcination temperature of 500°C and the reaction temperature of 650°C were of the greatest yield and quantity of 927%.

  4. Severe plastic deformation of melt-spun shape memory Ti2NiCu and Ni2MnGa alloys

    International Nuclear Information System (INIS)

    Pushin, Vladimir G.; Korolev, Alexander V.; Kourov, Nikolai I.; Kuntsevich, Tatiana E.; Valiev, Eduard Z.; Yurchenko, Lyudmila I.; Valiev, Ruslan Z.; Gunderov, Dmitrii V.; Zhu, Yuntian T.

    2006-01-01

    This paper describes the influence of severe plastic deformation (SPD) on the structure, phase transformations, and physical properties of melt-spun Ti 2 NiCu-based and Ni 2 MnGa-based shape memory intermetallic alloys. It was found that the SPD by high pressure torsion (HPT) at room temperature can be effectively used for the synthesis of bulk nanostructured states in these initially submicro-grained or amorphized alloys obtained by melt-spinning method in the form of a ribbon. The subsequent low-temperature annealing of HPT-processed alloys leads to formation of homogeneous ultrafine nano-grained structure. This is connected with a very high degree and high homogeneity of deformation at SPD in the whole volume of deformed samples. (author)

  5. Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks.

    Science.gov (United States)

    Šillerová, Hana; Chrastný, Vladislav; Vítková, Martina; Francová, Anna; Jehlička, Jan; Gutsch, Marissa R; Kocourková, Jana; Aspholm, Paul E; Nilsson, Lars O; Berglen, Tore F; Jensen, Henning K B; Komárek, Michael

    2017-09-01

    The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM 10 ). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ 60 Ni (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ 65 Cu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δ 60 Ni and δ 65 Cu values determined in the smelter, i.e. in feeding material and slag (δ 60 Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ 65 Cu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ 60 Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ 65 Cu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    Science.gov (United States)

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  7. Synthesis and molecular structure of [Cu(NH3)4][Ni(CN)4]: A missing piece in the [Cu(NH3)n][Ni(CN)4] story

    Science.gov (United States)

    Solanki, Dina; Hogarth, Graeme

    2015-11-01

    Reaction of CuCl2·2H2O and K2[Ni(CN)4]·2H2O in aqueous ammonia gave blue rod-like crystals of [Cu(NH3)4][Ni(CN)4]. An X-ray crystallographic reveals that square-planar anions and cations are weakly associated through coordination of a cis pair of cyanide ligands to copper, with one short and one long contact and thus the copper centre is best described as a square-based pyramid. Crystals lose ammonia readily upon removal from the solvent and this has been probed by TGA and DSC measurements. For comparison we have also re-determined the structure of the related ethylenediamine (en) complex [Cu(en)2][Ni(CN)4] at 150 K. This consists of a 1D chain in which a trans pair of cyanide ligands bind to copper such that the latter has an overall tetragonally distorted octahedral coordination geometry.

  8. Microstructure, thickness and sheet resistivity of Cu/Ni thin film produced by electroplating technique on the variation of electrolyte temperature

    Science.gov (United States)

    Toifur, M.; Yuningsih, Y.; Khusnani, A.

    2018-03-01

    In this research, it has been made Cu/Ni thin film produced with electroplating technique. The deposition process was done in the plating bath using Cu and Ni as cathode and anode respectively. The electrolyte solution was made from the mixture of HBrO3 (7.5g), NiSO4 (100g), NiCl2 (15g), and aquadest (250 ml). Electrolyte temperature was varied from 40°C up to 80°C, to make the Ni ions in the solution easy to move to Cu cathode. The deposition was done during 2 minutes on the potential of 1.5 volt. Many characterizations were done including the thickness of Ni film, microstructure, and sheet resistivity. The results showed that at all samples Ni had attacked on the Cu substrate to form Cu/Ni. The raising of electrolyte temperature affected the increasing of Ni thickness that is the Ni thickness increase with the increasing electrolyte temperature. From the EDS spectrum, it can be informed that samples already contain Ni and Cu elements and NiO and CuO compounds. Addition element and compound are found for sample Cu/Ni resulted from 70° electrolyte temperature of Ni deposition, that are Pt and PtO2. From XRD pattern, there are several phases which have crystal structure i.e. Cu, Ni, and NiO, while CuO and PtO2 have amorphous structure. The sheet resistivity linearly decreases with the increasing electrolyte temperature.

  9. Geochemical partitioning of Cu and Ni in mangrove sediments: Relationships with their bioavailability

    International Nuclear Information System (INIS)

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita

    2015-01-01

    Highlights: • Metal speciation controls bioavailability in mangrove ecosystem. • Bioavailability of Ni was controlled by Fe/Mn-oxyhydroxide and organic phases • Bioavailability of Cu in mangrove roots was controlled by organic phase in the sediments. • Cu interacts more strongly with organic phases than Ni in mangrove sediment. - Abstract: Sequential extraction study was performed to determine the concentrations of non-residual metal-complexes in the mangrove sediments from the Divar Island, (west coast of India). Accumulation of metal in the mangrove roots (from the same location) was determined and used as an indicator of bioavailability of metal. An attempt was made to establish a mechanistic linkage between the non-residual metal complexes and their bioavailability in the mangrove system. The non-residual fractions of Cu and Ni were mainly associated with Fe/Mn oxyhydroxide and organic phases in the sediments. A part of these metal fractions were bioavailable in the system. These two phases were the major controlling factors for Ni speciation and their bioavailability in the studied sediments. However, Cu was found to interact more strongly with the organic phases than Ni in the mangrove sediments. Organic phases in the mangrove sediments acted as buffer to control the speciation and bioavailability of Cu in the system

  10. Temperature dependence magnetic properties and exchange bias effect in CuFe{sub 2}O{sub 4} nanoparticles embedded in NiO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kashif [Physics Department, Quaid-i-Azam University, Islamabad (Pakistan); Physics Department, International Islamic University, Islamabad (Pakistan); Physics Department, University of Gujrat, Gujrat (Pakistan); Sarfraz, A.K., E-mail: sarfraz.ak1@gmail.com [Physics Department, Quaid-i-Azam University, Islamabad (Pakistan); Physics Department, International Islamic University, Islamabad (Pakistan); Physics Department, University of Gujrat, Gujrat (Pakistan); Ali, Atif; Mumtaz, A.; Hasanain, S.K. [Physics Department, Quaid-i-Azam University, Islamabad (Pakistan); Physics Department, International Islamic University, Islamabad (Pakistan); Physics Department, University of Gujrat, Gujrat (Pakistan)

    2014-11-15

    The effect of temperature on the magnetic properties of CuFe{sub 2}O{sub 4}/NiO nanocomposites of (1−x) NiO/xCuFe{sub 2}O{sub 4} (x=0.5) has been investigated. The (1−x)NiO/xCuFe{sub 2}O{sub 4} (x=0.5) nanoparticles were synthesized by co-precipitation route and their crystallographic structure was confirmed through X-ray diffraction (XRD) analysis. The average crystallite sizes of the nanoparticles as determined from the XRD were found to lie in the range of 20–31 nm. Magnetic characterization including coercivity and magnetization were measured with effect of particle size and temperature. During magnetic measurement it is observed that the hysteresis loop displaces along negative field axis with exchange bias field (H{sub EB}) about 75 Oe at 5 K and vanish at 150 K which is irreversible temperature T{sub irr}. The temperature dependence of coercively follows Kneller's law while the saturation magnetization followed Bloch's law with exponent α=3/2. - Highlights: • Synthesis of (1−x)NiO/xCuFe{sub 2}O{sub 4} (x=0.5) nanoparticles by co-precipitation route. • Magnetic characterization with particle size and temperature variation. • Exchange bias effect: monotonic decrease in exchange field with temperature. • Temperature dependence of coercivity follows Kneller's law. • Temperature dependence of saturation magnetization follows Bloch's law.

  11. Synthesis, spectral, antitumor, antioxidant and antimicrobial studies on Cu(II), Ni(II) and Co(II) complexes of 4-[(1H-Benzoimidazol-2-ylimino)-methyl]-benzene-1,3-diol.

    Science.gov (United States)

    El-wakiel, Nadia; El-keiy, Mai; Gaber, Mohamed

    2015-08-05

    A new Schiff base of 2-aminobenzimidazole with 2,4-dihydroybezaldehyde (H₃L), and its Cu(II), Ni(II) and Co(II) complexes have been synthesized and characterized by elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, IR, EI-mass, UV-Vis. and ESR spectral studies. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as dibasic tridentate ligand coordinating via deprotonated OH, NH and azomethine nitrogen atom. The results showed that Co(II) and Ni(II) complexes have tetrahedral structure while Cu(II) complexes has octahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated. The studied complexes were tested for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the ligand and its metal complexes is evaluated against human liver Carcinoma (HEPG2) cell. These compounds exhibited a moderate and weak activity against the tested HEPG2 cell lines with IC₅₀ of 9.08, 18.2 and 19.7 μg/ml for ligand, Cu(II) and Ni(II) complexes, respectively. In vitro antioxidant activity of the newly synthesized compounds has also been evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High-performance Cu nanoparticles/three-dimensional graphene/Ni foam hybrid for catalytic and sensing applications

    Science.gov (United States)

    Zhu, Long; Guo, Xinli; Liu, Yuanyuan; Chen, Zhongtao; Zhang, Weijie; Yin, Kuibo; Li, Long; Zhang, Yao; Wang, Zengmei; Sun, Litao; Zhao, Yuhong

    2018-04-01

    A novel hybrid of Cu nanoparticles/three-dimensional graphene/Ni foam (Cu NPs/3DGr/NiF) was prepared by chemical vapor deposition, followed by a galvanic displacement reaction in Ni- and Cu-ion-containing salt solution through a one-step reaction. The as-prepared Cu NPs/3DGr/NiF hybrid is uniform, stable, recyclable and exhibits an extraordinarily high catalytic efficiency for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with a reduction rate constant K = 0.056 15 s-1, required time ˜30 s and excellent sensing properties for the non-enzymatic amperometric hydrogen peroxide (H2O2) with a linear range ˜50 μM-9.65 mM, response time ˜3 s, detection limit ˜1 μM. The results indicate that the as-prepared Cu NPs/3DGr/NiF hybrid can be used to replace expensive noble metals in catalysis and sensing applications.

  13. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    International Nuclear Information System (INIS)

    Klinbumrung, Arrak; Thongtem, Titipun; Thongtem, Somchai

    2014-01-01

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm −1 vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH 3 mixed with air at various working temperatures and NH 3 concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH 3

  14. On the annealing-induced enhancement of the interface properties of NiO:Cu/wet-SiOx/n-Si tunnelling junction solar cells

    Science.gov (United States)

    Yang, Xueliang; Liu, Wei; Chen, Jingwei; Sun, Yun

    2018-04-01

    Using metal oxides to form a carrier-selective interface on crystalline silicon (c-Si) has recently generated considerable interest for use with c-Si photovoltaics because of the potential to reduce cost. n-type oxides, such as MoO3, V2O5, and WO3, have been widely studied. In this work, a p-type oxide, Cu-doped NiO (NiO:Cu), is explored as a transparent hole-selective contact to n-Si. An ultrathin SiOx layer, fabricated by a wet-chemical method (wet-SiOx), is introduced at the NiO:Cu/n-Si interface to achieve a tunnelling junction solar cell. Interestingly, it was observed that the interface quality of the NiO:Cu/wet-SiOx/n-Si heterojunction was dramatically enhanced by post-deposition annealing (PDA) at a temperature of 200 °C. Our device exhibits an improved power conversion efficiency of 10.8%, which is the highest efficiency among NiO/Si heterojunction photo-electric devices to date. It is demonstrated that the 200 °C PDA treatment enhances the built-in field by a reduction in the interface density of states (Dit) but does not influence the work function of the NiO:Cu thin layer. This stable work function after the PDA treatment is in conflict with the changed built-in field according to the Schottky model. Thus, the Bardeen model is introduced for this physical insight: the enhancement of the built-in field originates from the unpinning of the Fermi levels of NiO:Cu and n-Si by the interface state reduction.

  15. Lack of dependence between intrinsic magnetic damping and perpendicular magnetic anisotropy in Cu(t{sub Cu})/[Ni/Co]{sub N} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minghong [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Li, Wei [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Ren, Yang [School of Physics and Astronomy, Yunnan University, Kunming 650000 (China); Zhang, Zongzhi, E-mail: zzzhang@fudan.edu.cn [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Jin, Q.Y. [Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)

    2017-04-15

    The correlation between magnetic damping and perpendicular magnetic anisotropy has been investigated in Cu(t{sub Cu})/[Ni/Co]{sub N} multilayers by time-resolved magneto-optical Kerr effect. The uniaxial magnetic anisotropy constant K{sub u} is varied in the range of 3.0–3.6 Merg/cm{sup 3} by tuning either multilayer repetition number N or Cu thickness t{sub Cu}. It is found that the PMA strength K{sub u} increases with the increase of N, while the damping constant α{sub 0} keeps nearly a constant of 0.025, implying the intrinsic damping is independent of the K{sub u} tuned by N. In contrast, as t{sub Cu} increases from 2.5 to 20 nm, the α{sub 0} value rises continuously up to 0.040, in spite of the rather weak enhancement in K{sub u} and its non-monotonic variation behavior. We consider the constant α{sub 0} with N is due to the unchanged spin-orbit coupling strength at each Co/Ni interface, while the obvious enhancement in α{sub 0} with t{sub Cu} results mainly from the increased degree of spin disordering at the rougher Cu/Ni interface. - Highlights: • The perpendicular magnetic anisotropy K{sub u} is tuned in Cu(t{sub Cu})/[Ni/Co]{sub N} system. • The intrinsic magnetic damping is found to be independent K{sub u}. • Extrinsic damping increases with t{sub Cu} due to large interfacial spin disordering.

  16. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    A study on the inhibition of Al-Cu-Ni alloy in simulated sea-water environment was investigated using Sodium Chromate as inhibitor. The inhibitor concentration was varied as control, 0.25, 0.5, 1.0, 1.5 and 2.0 Molar. Al-Cu-Ni alloy was sand cast into cylindrical bars of 20 mm x 300 mm dimension. The corrosion of the ...

  17. Study of interfacial reactions in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate

    International Nuclear Information System (INIS)

    Sun, Peng; Andersson, Cristina; Wei, Xicheng; Cheng, Zhaonian; Shangguan, Dongkai; Liu, Johan

    2007-01-01

    In this paper, the coupling effect in Sn-3.5Ag-3.0Bi and Sn-8.0Zn-3.0Bi solder joint with sandwich structure by long time reflow soldering was studied. It was found that the interfacial compound at the Cu substrate was binary Cu-Sn compound in Sn-Ag-Bi solder joint and Cu 5 Zn 8 phase in Sn-Zn-Bi solder joint. The thickness of the Cu-Zn compound layer formed at the Cu substrate was greater than or equal to that of Cu-Sn compound layer, although the reflow soldering temperature of Sn-Zn-Bi (240 o C) was lower than that of Sn-Ag-Bi (250 o C). The stable Cu-Zn compound was the absolute preferential phase in the interfacial layer between Sn-Zn-Bi and the Cu substrate. The ternary (Cu, Ni) 6 Sn 5 compound was formed at the Sn-Ag-Bi/Ni(P)-Cu metallization interface, and a complex alloy Sn-Ni-Cu-Zn was formed at the Sn-Zn-Bi/Ni(P)-Cu metallization interface. It was noted that Cu atoms could diffuse from the Cu substrate through the solder matrix to the Ni(P)-Cu metallization within 1 min reflow soldering time for both solder systems, indicating that just 30 s was long enough for Cu to go through 250 μm diffusion length in the Sn-Ag-Bi solder joint at 250 o C. The coupling effect between Ni(P)/Cu metallization and Cu substrate was confirmed as the type of IMCs at Ni(P) layer had been changed from Ni-Sn system to Cu-Sn system apparently by the diffusion effect of Cu atoms. The (Cu, Ni) 6 Sn 5 layer at the Ni(P)/Cu metallization grew significantly and its thickness was even greater than that of the Cu-Sn compound on the opposite side, however the growth of the complex alloy including Sn, Ni, Cu and Zn on the Ni(P)/Cu metallization was suppressed

  18. Assessment of Ni, Cu, Zn and Pb levels in beach and dune sands from Havana resorts, Cuba.

    Science.gov (United States)

    Díaz Rizo, Oscar; Buzón González, Fran; Arado López, Juana O

    2015-11-15

    Concentrations of nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb) in beach and dune sands from thirteen Havana (Cuba) resorts were estimated by X-ray fluorescence analysis. Determined mean metal contents (in mg·kg(-1)) in beach sand samples were 28±12 for Ni, 35±12 for Cu, 31±11 for Zn and 6.0±1.8 for Pb, while for dune sands were 30±15, 38±22, 37±15 and 6.8±2.9, respectively. Metal-to-iron normalization shows moderately severe and severe enrichment by Cu. The comparison with sediment quality guidelines shows that dune sands from various resorts must be considered as heavily polluted by Cu and Ni. Almost in every resort, the Ni and Cu contents exceed their corresponding TEL values and, in some resorts, the Ni PEL value. The comparison with a Havana topsoil study indicates the possible Ni and Cu natural origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Science.gov (United States)

    Zhou, Luoxiao; He, Ying; Jia, Congpu; Pavlinek, Vladimir; Saha, Petr; Cheng, Qilin

    2017-01-01

    Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer. PMID:28914819

  20. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Luoxiao Zhou

    2017-09-01

    Full Text Available Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2 and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  1. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    Czech Academy of Sciences Publication Activity Database

    Molnar, P.; Šittner, P.; Novák, V.; Lukáš, Petr

    2008-01-01

    Roč. 481, Sp.Iss.SI (2008), s. 513-517 ISSN 0921-5093 R&D Projects: GA AV ČR IAA100480704 Institutional research plan: CEZ:AV0Z10480505 Keywords : Cu-Al-Ni * single crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.806, year: 2008

  2. Structure, surface morphology and electrical properties of evaporated Ni thin films: Effect of substrates, thickness and Cu underlayer

    International Nuclear Information System (INIS)

    Hemmous, M.; Layadi, A.; Guittoum, A.; Souami, N.; Mebarki, M.; Menni, N.

    2014-01-01

    Series of Ni thin films have been deposited by thermal evaporation onto glass, Si(111), Cu, mica and Al 2 O 3 substrates with and without a Cu underlayer. The Ni thicknesses, t, are in the 4 to 163 nm range. The Cu underlayer has also been evaporated with a Cu thickness equal to 27, 52 and 90 nm. The effects of substrate, the Ni thickness and the Cu underlayer on the structural and electrical properties of Ni are investigated. Rutherford Backscattering Spectroscopy was used to probe the Ni/Substrate and Ni–Cu underlayer interfaces and to measure both Ni and Cu thicknesses. The texture, the strain and the grain size values were derived from X-ray diffraction experiments. The surface morphology is studied by means of a Scanning Electron Microscope. The electrical resistivity is measured by the four point probe. The Ni films grow with the <111> texture on all substrates. The Ni grain sizes D increase with increasing thickness for the glass, Si and mica substrates and decrease for the Cu one. The strain ε is positive for low thickness, decreases in magnitude and becomes negative as t increases. With the Cu underlayer, the growth mode goes through two phases: first, the stress (grain size) increases (decreases) up to a critical thickness t Cr , then stress is relieved and grain size increases. All these results will be discussed and correlated. - Highlights: • The structural and electrical properties of evaporated Ni thin films are studied. • The effect of thickness, substrates and Cu underlayer is investigated. • Texture, grain size, strain and surface morphology are discussed. • Growth modes are described as a function of Ni thickness

  3. The n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside: Syntheses, crystal structure, physical properties and stability constants of their complexes with Cu(II), Ni(II) and VO(II)

    Science.gov (United States)

    Barabaś, Anna; Madura, Izabela D.; Marek, Paulina H.; Dąbrowska, Aleksandra M.

    2017-11-01

    The structure, conformation and configuration of the n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside (BAra-nPr) were determined by 1H NMR, 13C NMR, and IR spectroscopy, as well as by optical rotation. The crystal structure was confirmed by single-crystal X-ray diffraction studies at room temperature. The compound crystallizes in P21 space group symmetry of the monoclinic system. The molecule has a 4C1 chair conformation with azide group in the equatorial position both in a solution as well as in the crystal. The spatial arrangement of azide group is compared to other previously determined azidosugars. The hydrogen bonds between the hydroxyl group of sugar molecules lead to a ribbon structure observed also for the ethyl homolog. The packing of ribbons is dependent on the alkyl substituent length and with the elongation changes from pseudohexagonal to lamellar. Acidity constants for the n-propyl 3-azido-2,3-dideoxy-β-D-arabino-hexopyranoside (BAra-nPr) in an aqueous solution were evaluated by the spectrophotometric and potentiometric titrations methods. Title compound exhibit blue absorption with the maximum wavelengths in the range of 266 nm and 306 nm. Based on these measurements we showed equilibria existing in a particular solution and a distribution of species which have formed during the titration. We also investigated interactions between Cu(II), Ni(II) and VO(II) and title compound (as ligand L) during complexometric titration. On these bases we identified that in [CuII-BAra-nPr]2+ the ratio of the ligand L to metal ion M(II) was 3:1, while in [NiII-BAra-nPr]2+ and [VOII-BAra-nPr]2+ complexes 2:1 ratios were found. The cumulative stability constants (as log β) occurring in an aqueous solution for the complexes of BAra-nPr with Cu(II), Ni(II) and VO(IV) were 14.57; 11.71 and 4.20, respectively.

  4. Influence of Ni and Cu contamination on the superconducting properties of MgB2 filaments

    International Nuclear Information System (INIS)

    Jung, A; Schlachter, S I; Runtsch, B; Ringsdorf, B; Fillinger, H; Orschulko, H; Drechsler, A; Goldacker, W

    2010-01-01

    Technical MgB 2 wires usually have a sheath composite consisting of different metals. For the inner sheath with direct contact to the superconducting filament, chemically inert Nb may be used as a reaction barrier and thermal stabilization is provided by a highly conductive metal like Cu. A mechanical reinforcement can be achieved by the addition of stainless steel. In order to illuminate the influence of defects in the reaction barrier, monofilament in situ wires with direct contact between the MgB 2 filament and frequently applied reactive sheath metals like Cu, Ni or Monel are studied. Reactions of Mg and B with a Cu-containing sheath lead to Cu-based by-products penetrating the whole filament. Reactions with Ni-containing sheaths lead to Ni-based by-products which tend to remain at the filament-sheath interface. Cu and/or Ni contamination of the filament lowers the MgB 2 -forming temperature due to the eutectic reaction between Mg, Ni and Cu. Thus, for the samples heat-treated at low temperatures J C and (partly) T C are increased compared to stainless-steel-sheathed wires. At high heat treatment temperatures uncontaminated filaments lead to the highest J C values. From the point of view of broken reaction barriers in real wires, the contamination of the filament with Cu and/or Ni does not necessarily constrain the superconductivity; it may even improve the properties of the wire, depending on the desired application.

  5. Investigation of optical properties of Cu/Ni multilayer nanowires embedded in etched ion-track template

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Lu [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Yao, Huijun, E-mail: Yaohuijun@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Duan, Jinglai; Chen, Yonghui [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lyu, Shuangbao [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Maaz, Khan [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Nanomaterials Research Group, Physics Division, PINSTECH, Nilore 45650, Islamabad (Pakistan); Mo, Dan [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, Jie, E-mail: J.Liu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, Youmei; Hou, Mingdong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-12-01

    Graphical abstract: The schematic diagram of measurement of extinction spectra of Cu/Ni multilayer nanowire arrays embedded in the template after removing the gold/copper substrate. - Highlights: • The optical properties of Cu/Ni multilayer nanowire arrays were first investigated by UV/Vis/NIR spectrometer and it was confirmed that the extinction peaks strongly related to the periodicity of the multilayer nanowire. • The Ni segment was thought as a kind of impurity which can change the surface electron distribution and thereby the extinction peaks of nanowire. • Current work supplied the clear layer thickness information of Cu and Ni in Cu/Ni multilayer nanowire with TEM and EDS line-scan profile analysis. - Abstract: For understanding the interaction between light and noble/magnetism multilayer nanowires, Cu/Ni multilayer nanowires are fabricated by a multi-potential step deposition technique in etched ion-track polycarbonate template. The component and the corresponding layer thickness of multilayer nanowire are confirmed by TEM and EDS line-scan analysis. By tailoring the nanowire diameter, the Cu layer thickness and the periodicity of the nanowire, the extinction spectral of nanowire arrays exhibit an extra sensitivity to the change of structural parameters. The resonance wavelength caused by surface plasmon resonance increases obviously with increasing the nanowire diameter, the Cu layer thickness and the periodicity. The observations in our work can be explained by the “impurity effect” and coupled effect and can also be optimized for developing optical devices based on multilayer nanowires.

  6. Facile approach to synthesize Ni(OH)2 nanoflakes on MWCNTs for high performance electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Shahid, Muhammad; Liu Jingling; Shakir, Imran; Warsi, Muhammad Farooq; Nadeem, Muhammad; Kwon, Young-Uk

    2012-01-01

    Highlights: ► Deposition of ultra-thin Ni(OH) 2 nanoflakes on MWCNTs. ► Full utilization of the Ni(OH) 2 nanoflakes which provide maximum pseudocapacitance while minimizing the high surface area. ► The ultra-thin layer of Ni(OH) 2 nanoflakes on highly conductive MWCNTs is favorable for fast ion and electron transfer. ► The ultra-thin layer of Ni(OH) 2 nanoflakes on MWCNTs exhibited good cycling stability and lifetime. - Abstract: Ultrathin nanoflakes of Ni(OH) 2 were synthesized onto multi-walled carbon nanotubes (MWCNTs) by simple low cost chemically precipitation method for high performance electrochemical supercapacitor applications. The synthesized ultrathin Ni(OH) 2 exhibit high specific capacitance of 1735 Fg −1 at a scan rate of 5 mV s −1 with excellent rate capability. This high performance of Ni(OH) 2 nanoflakes was attributed to its complete accessibility to the electrolyte and maximum utilization of metal hydroxides. Findings of this work suggest that synthesized electrodes offer low-cost and scalable solution for high-performance energy storage devices.

  7. Magnetic properties of intermetallic compounds La(Ni,Co,Cu)3

    International Nuclear Information System (INIS)

    Tazuke, Y.; Tanikawa, H.; Okano, A.; Miyaji, T.

    2006-01-01

    LaNi 3 exhibited a metallic antiferromagnetic property with T N =30 K. La(Ni 1-x Co x ) 3 with x=0.01, 0.03 and 0.05 exhibited ferromagnetic properties, T C increasing linearly with increasing x. La(Ni 1-2z Co z Cu z ) 3 with z=0.015 exhibited a ferromagnetic property with a small T C . A La(Ni 1-y Cu y ) 3 sample with y=0.01 exhibited a Pauli-paramagnetic property; those with y=0.02, 0.03 and 0.04 exhibited gradual metamagnetic behavior and that with y=0.05 exhibited a ferromagnetic property. The gradual metamagnetic M-H variations are numerically simulated by using Landau-type free energies. The results suggest that the gradual metamagnetic behavior occurs from an antiferromagnetic state to a ferromagnetic one. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Verma, M. [Department of Chemistry, IIT Roorkee, Roorkee-247667, India and Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee-247667 (India); Gupta, V. K. [Department of Chemistry, IIT Roorkee, Roorkee-247667 (India); Gautam, Y. K.; Dave, V.; Chandra, R. [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee-247667 (India)

    2014-01-28

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al{sub 2}O{sub 3}, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  9. Characterization and gas sensing properties of CuO synthesized by DC directly applying voltage

    Energy Technology Data Exchange (ETDEWEB)

    Klinbumrung, Arrak [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai, E-mail: schthongtem@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-09-15

    Highlights: • CuO as a p-type semiconductor. • It was synthesized by directly applying voltage. • A promising material for ammonia detection. - Abstract: CuO microstructure was successfully synthesized by 50 A and 3.6 V DC directly applying voltage. Crystalline structure was characterized by X-ray diffraction (XRD), morphology by scanning and transmission electron microscopy (SEM, TEM). The sample of the 15 min processing time has an irregular shape with diameter about several hundreds of nanometer. Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) were used to determine vibrational modes and optical properties of the as-synthesized samples: 529 and 585 cm{sup −1} vibrational modes, 3.95 eV band gap, and 402 nm emitting wavelength in violet region of CuO. X-ray photoelectron (XPS) spectroscopy was used to determine chemical composition, Cu(II)O, of the metal oxide surface. Gas sensing performance exposing to NH{sub 3} mixed with air at various working temperatures and NH{sub 3} concentrations of the as-synthesized CuO has the best response at the optimal working temperature of 250 °C: sensitivity of 56.6% exposed to 5275 ppm NH{sub 3}.

  10. Photoconducting and photocapacitance properties of Al/p-CuNiO{sub 2}-on-p-Si isotype heterojunction photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, I.A. [Physics Department, College of Science and Humanitarian Studies, Salman bin Abdulaziz University (Saudi Arabia); Physics Department, Faculty of Science, Damietta University (Egypt); Çavaş, Mehmet [Department of Mechatronics, Faculty of Technology, Firat University, Elazig (Turkey); Gupta, R. [Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762 (United States); Fahmy, T. [Physics Department, College of Science and Humanitarian Studies, Salman bin Abdulaziz University (Saudi Arabia); Polymer Research Group, Physics Department, Faculty of Science, Mansoura University (Egypt); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Physics Department, Faculty of Science, Firat University, Elazig (Turkey)

    2015-07-25

    Highlights: • The CuNiO{sub 2} thin film was prepared by sol gel method. • The diode has a high photosensitivity value of 1.02 × 10{sup 3} under 100 mW/cm{sup 2}. • Al/p-Si/CuNiO{sub 2}/Al can used in optoelectronic device applications. - Abstract: Thin film of CuNiO{sub 2} was prepared by sol gel method to fabricate a photodiode. The surface morphology of the CuNiO{sub 2} thin film was investigated by atomic force microscopy (AFM). AFM results indicated that CuNiO{sub 2} film was formed from the nanoparticles and the average size of the nanoparticles was about 115 nm. The optical band gap of CuNiO{sub 2} film was calculated using optical data and was found to be about 2.4 eV. A photodiode having a structure of Al/p-Si/CuNiO{sub 2}/Al was prepared. The electronic parameters such as ideality factor and barrier height of the diode were determined and were obtained to be 8.23 and 0.82 eV, respectively. The interface states properties of the Al/p-Si/CuNiO{sub 2}/Al diode was performed using capacitance–voltage and conductance–voltage characteristics. The series resistance of the Al/p-Si/CuNiO{sub 2}/Al photo diode was observed to be decreasing with increasing frequency. The diode exhibited a photoconducting behavior with a high photosensitivity value of 1.02 × 10{sup 3} under 100 mW/cm{sup 2}. The obtained results indicate that Al/p-Si/CuNiO{sub 2}/Al can used in optoelectronic device applications.

  11. Neutron diffraction determination of atomic mean-square displacements in cubic compounds of Ni-Al and Ni-Al-Cu systems

    International Nuclear Information System (INIS)

    Khidirov, I.; Mukhtarova, N.N.

    2002-01-01

    The atomic mean-square displacements (AMSD) are some of important characteristics of the solid and can be the main information for determination of a number of other characteristics of substances. In the work AMSD is determined for a number of cubic compounds of Ni-Al, Ni-Al-Cu systems immediately from intensities of neutron diffraction maxima. It is shown by the offered method that in all NiAl x and NiAlCu x compounds with the CsCl - type structure AMSD are near each other and they are practically constant. Therefore it is possible to assume that within the homogeneity region of these compounds the interatomic bond forces are changed insignificantly

  12. Site determination of Ni atoms in Cu-Al-Ni shape memory alloys by electron channelling enhanced microanalysis

    International Nuclear Information System (INIS)

    Nakata, Yoshiyuki; Tadaki, Tsugio; Shimizu, Ken-ichi

    1990-01-01

    The crystallographic site of Ni atoms in the parent phase of differently heat-treated Cu-28.6Al-3.7Ni (at.%) shape memory alloys has been examined by electron channelling enhanced microanalysis (ALCHEMI) in order to clarify effects of heat-treatments on the Ni atom site and M s temperature. The heat-treatments were as follows: (a) Quenching into a 10% NaOH solution at 263 K, (b) Quenching into hot water at 363 K and (c) Aging at 523 K for 3.6 ks after treatment (b). The M s temperatures of specimens (a), (b) and (c) were 158, 185 and 259 K, respectively, increasing with lowering quenching rate or aging. ALCHEMI revealed that Ni atoms occupied an identical site in all the three kinds of specimens: The Ni atoms were located at the nearest neighbor sites around Al atoms. This preferential occupation of Ni atoms was attributed to the strong binding force between Ni and Al atoms. Thus, the change in M s temperature due to different heat-treatments was not directly related to the crystallographic site of Ni atoms, but might be caused by the ordering between the next nearest neighbor Cu and Al atoms. (author)

  13. Formation and structure of nanocrystalline Al-Mn-Ni-Cu alloys

    International Nuclear Information System (INIS)

    Latuch, J.; Krasnowski, M.; Ciesielska, B.

    2002-01-01

    This paper reports the results of the short investigation on the effect of Cu additions upon the nanocrystallization behaviour of an Al-Mn-Ni alloy. 2 at.% Cu added to the base alloy of Al 85 Mn 10 Ni 5 alloy by substitution for Mn(mischmetal). The control of cooling rate did not cause the formation of nanocrystals of fcc-Al phase. The nanocrystalline structure fcc-Al + amorphous phase in quarternary alloy was obtained by isothermal annealing and continuous heating method, but the last technique is more effective. The volume fraction, lattice parameter, and size of Al-phase were calculated. (author)

  14. Correlation of plastic deformation induced intermittent electromagnetic radiation characteristics with mechanical properties of Cu-Ni alloys

    International Nuclear Information System (INIS)

    Singh, Ranjana; Lal, Shree P.; Misra, Ashok

    2015-01-01

    This paper presents experimental results on intermittent electromagnetic radiation during plastic deformation of Cu-Ni alloys under tension and compression modes of deformation. On the basis of the nature of electromagnetic radiation signals, oscillatory or exponential, results show that the compression increases the viscous coefficient of Cu-Ni alloys during plastic deformation. Increasing the percentage of solute atoms in Cu-Ni alloys makes electromagnetic radiation strength higher under tension. The electromagnetic radiation emission occurs at smaller strains under compression showing early onset of plastic deformation. This is attributed to the role of high core region tensile residual stresses in the rolled Cu-Ni alloy specimens in accordance with the Bauschinger effect. The distance between the apexes of the dead metal cones during compression plays a significant role in electromagnetic radiation parameters. The dissociation of edge dislocations into partials and increase in internal stresses with increase in solute percentage in Cu-Ni alloys under compression considerably influences the electromagnetic radiation frequency.

  15. Synthesis and Characterization of Polyol-Assisted Nano Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 by a Wet Hydroxyl Route

    Science.gov (United States)

    Pavithradevi, S.; Suriyanarayanan, N.; Boobalan, T.; Velumani, S.; Chandramohan, M.; Manivel Raja, M.

    2017-08-01

    Nanocrystalline spinel ferrite of composition Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 has been synthesized by a wet hydroxyl chemical route in ethylene glycol as chelating agent and sodium hydroxide as precipitator at pH 8. Ethylene glycol has been used as the medium which serves as the solvent as well as a complexing agent. The synthesized particles are annealed at temperatures of 350°C, 700°C, and 1050°C. Thermogravimetric (TG) analysis confirms that at 240°C, ethylene glycol has evaporated completely, and a stable phase is formed above 670°C. Fourier transform infrared (FT-IR) spectroscopy of mixed Cu0.2Ni0.2Sn0.2Ba0.4 ferrite nanoparticles like as synthesized and annealed at 1050°C are recorded between 400 cm-1 and 4000 cm-1. FT-IR appraises the structural formation of Cu0.2Ni0.2Sn0.2Ba0.4 Fe2O4 between the as-synthesized sample and the sample annealed at 1050°C. Structural characterizations of all the samples are carried out by x-ray diffraction (XRD) technique. XRD reveals that the particle size increases with the increase in annealing temperatures. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirms that the particles are flaky and spherical with the crystallite size in the range of 11-27 nm. The decrement of dielectric properties, like dielectric constant and dielectric loss, with the increment of frequency as seen in all the samples is an usual dielectric behavior of spinel ferrites. The lack of net magnetization is noticed immediately when the applied magnetic field is removed which prompts superparamagnetic behavior, as seen in all the samples.

  16. Mechanical Deformation Behavior of Sn-Ag-Cu Solders with Minor Addition of 0.05 wt.% Ni

    Science.gov (United States)

    Hammad, A. E.; El-Taher, A. M.

    2014-11-01

    The aim of the present work is to develop a comparative evaluation of the microstructural and mechanical deformation behavior of Sn-Ag-Cu (SAC) solders with the minor addition of 0.05 wt.% Ni. Test results showed that, by adding 0.05Ni element into SAC solders, generated mainly small rod-shaped (Cu,Ni)6Sn5 intermetallic compounds (IMCs) inside the β-Sn phase. Moreover, increasing the Ag content and adding Ni could result in the change of the shape and size of the IMC precipitate. Hence, a significant improvement is observed in the mechanical properties of SAC solders with increasing Ag content and Ni addition. On the other hand, the tensile results of Ni-doped SAC solders showed that both the yield stress and ultimate tensile strengths decrease with increasing temperature and with decreasing strain rate. This behavior was attributed to the competing effects of work hardening and dynamic recovery processes. The Sn-2.0Ag-0.5Cu-0.05Ni solder displayed the highest mechanical properties due to the formation of hard (Cu,Ni)6Sn5 IMCs. Based on the obtained stress exponents and activation energies, it is suggested that the dominant deformation mechanism in SAC (205)-, SAC (0505)- and SAC (0505)-0.05Ni solders is pipe diffusion, and lattice self-diffusion in SAC (205)-0.05Ni solder. In view of these results, the Sn-2.0Ag-0.5Cu-0.05Ni alloy is a more reliable solder alloy with improved properties compared with other solder alloys tested in the present work.

  17. The response of macrophages to a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Anzel, Ivan; Lojen, Gorazd

    2010-09-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.

  18. Nanostructure investigation of magnetic nanomaterial Ni0.5Zn0.3Cu0.2Fe2O4 synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Pransisco, Prengki; Shafie, Afza; Guan, Beh Hoe

    2015-01-01

    Magnetic nanomaterial Ni 0.5 Zn 0.3 Cu 0.2 Fe 2 O 4 was successfully prepared by using sol-gel method. Heat treatment on material is always giving defect on properties of material. This paper investigates the effect of heat treatment on nanostructure of magnetic nanomaterial Ni 0.5 Zn 0.3 Cu 0.2 Fe 2 O 4 . According to thermo gravimetric analysis (TGA) that after 600°C there is no more weight loss detected and it was decided as minimum calcination temperature. Intensity, crystallite size, structure, lattice parameter and d-spacing of the material were investigated by using X-ray diffraction (XRD). High resolution transmission electron microscope (HRTEM) was used to examine nanostructure, nanosize, shape and distribution particle of magnetic material Ni 0.5 Zn 0.3 Cu 0.2 Fe 2 O 4 and variable pressure field emission scanning electron microscope (VP-FESEM) was used to investigate the surface morphology and topography of the material. The XRD result shows single-phase cubic spinel structure with average crystallite size in the range of 25.6-95.9 nm, the value of the intensity of the material was increased with increasing temperature, and followed by lattice parameter was increased with increasing calcination temperature, value of d-spacing was relatively decreased with accompanied increasing temperature. From HRTEM result the distribution of particles was tend to be agglomerates with particle size of 7.8-17.68 nm. VP-FESEM result shows that grain size of the material increases with increasing calcination temperature and the surface morphology shows that the material is in hexagonal shape and it was also proved by mapping result which showing the presence each of constituents inside the compound

  19. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    Science.gov (United States)

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  20. Design and characterization of FeCrNiCoAlCu and FeCrNiCo(AlCu){sub 0,5} multicomponent alloys; Previsao e caracterizacao de ligas multicomponentes FeCrNiCoAlCu e FeCrNiCo(AlCu){sub 0,5}

    Energy Technology Data Exchange (ETDEWEB)

    Triveno Rios, Carlos; Artacho, Victor Falcao [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Engenharia de Materiais

    2014-07-01

    High entropy alloys using multi-element main quasi-equivalent atomic proportions and generally forms single-phase solid solution and has the ability to enhance levels of strain hardening combined with high levels of plastic deformation at room temperature. In this work two high-entropy alloys with almost similar composition were studied and the factors influencing the formation of solid solution phases (δ atomic radius difference, ΔH{sub mix} mixing enthalpy, ΔS{sub mix} mixing entropy) were evaluated. The microstructure as-cast and the compositions of phases in the two alloys were analyzed by SEM and XRD. The mechanical characterization was realized by measurements of microhardness and cold compression test. The results showed that FeCrNiCo(AlCu){sub 0,5} and FeCrNiCoAlCu alloys with δ equal to 5,7 and 4,9, respectively, form alloys with solid solutions of high entropy. However, the presence of FC and BCCC structures greatly influence the mechanical properties. (author)

  1. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    Science.gov (United States)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  2. Intermartensitic transitions in Ni-Mn-Fe-Cu-Ga Heusler alloys

    International Nuclear Information System (INIS)

    Khan, Mahmud; Gautam, Bhoj; Pathak, Arjun; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2008-01-01

    A series of Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga Heusler alloys have been investigated by means of x-ray diffraction, magnetizations, thermal expansion, and electrical resistivity measurements. In Ni 2 Mn 0.75 Cu 0.25 Ga, martensitic and ferromagnetic transitions occur at the same temperature. Partial substitution of Mn by Fe results in a decrease of the martensitic transition temperature, T M , and an increase of the ferromagnetic transition temperature, T C , resulting in separation of the two transitions. In addition to the martensitic transition, complete thermoelastic intermartensitic transformations have been observed in the Fe doped Ni 2 Mn 0.75-x Fe x Cu 0.25 Ga samples with x>0.04. An unusual transition is observed in the alloy with x = 0.04. The magnetization curve as a function of increasing temperature shows only one first-order transition in the temperature range 5-400 K, which is identified as a typical coupled magnetostructural martensitic transformation. The magnetization curve as a function of decreasing temperature shows three different transitions, which are characterized as the ferromagnetic transition, the martensitic transition and the intermartensitic transition.

  3. SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel joints prepared by dynamic diffusion bonding: Microelectrochemical studies in 0.6 M NaCl solution

    International Nuclear Information System (INIS)

    Andreatta, Francesco; Matesanz, Laura; Akita, Adriano H.; Paussa, Luca; Fedrizzi, Lorenzo; Fugivara, Cecilio S.; Gomez de Salazar, Jose M.; Benedetti, Assis V.

    2009-01-01

    Corrosion of SAE 1045 steel/WC-Co/Ni-Cu-Ni/SAE 1045 steel interfaces was investigated in 0.6 M NaCl solution using an electrochemical microcell, which enables local electrochemical characterization at the micrometer scale. Two pieces of steel, one with a WC-Co coating covered with Ni (12 μm) and Cu (5 μm) layers, and the other with a Ni (15 μm) layer, were welded by dynamic diffusion bonding. A WC-Co coating was applied to the steel by the high velocity oxygen-fuel process, and Ni-Cu and Ni layers by electroplating. Polarization curves were recorded using an electrochemical microcell. Different regions of welded samples were investigated, including steel, cermet coating, and steel/cermet and steel/Ni-Cu-Ni/cermet interfaces. Optical and electronic microscopes were employed to study the corroded regions. Potentiodynamic polarization curves obtained using the microcell revealed that the base metal was more susceptible to corrosion than the cermet. In addition, cermet steel/cermet and steel/Ni-Cu-Ni/cermet joints exhibited different breakdown potentials. Steel was strongly corroded in the regions adjacent to the interfaces, while the cermet was less corroded. Iron oxides/hydroxides and chloride salts were the main corrosion products of steel. After removal of the superficial layer of corrosion products, iron oxides were mainly observed. Chloride ions were detected mainly on a copper-enriched layer placed between two Ni-enriched layers.

  4. Polycrystalline oxides formation during transient oxidation of (001) Cu-Ni binary alloys studied by in situ TEM and XRD

    International Nuclear Information System (INIS)

    Yang, J.C.; Li, Z.Q.; Sun, L.; Zhou, G.W.; Eastman, J.A.; Fong, D.D.; Fuoss, P.H.; Baldo, P.M.; Rehn, L.E.; Thompson, L.J.

    2009-01-01

    The nucleation and growth of Cu 2 O and NiO islands due to oxidation of Cu x Ni 1-x (001) films were monitored, at various temperatures, by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM) and in situ synchrotron X-ray diffraction (XRD). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands formed with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. In situ XRD experiments revealed that NiO formed first epitaxially, then other orientations appeared, and finally polycrystalline Cu 2 O developed as the oxidation pressure was increased. The segregation of Ni and Cu towards or away, respectively, from the alloy surface during oxidation could disrupt the surface and cause polycrystalline oxide formation.

  5. Deposition of Mn-Cu-Ni-enriched sediments during glacial period in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Borole, D.V.

    Two siliceous sediment cores collected from the Central Indian Basin have been analysed for organic carbon, biogenic silica, Al, Mn, Ni and Cu content. The concentrations of Mn, Cu and Ni showed one order of magnitude variation (an enrichment by a...

  6. The influence of Ni additions on the relative stability of η and η′ Cu6Sn5

    KAUST Repository

    Schwingenschlögl, Udo

    2010-02-09

    We investigate how 5 at. % Ni influences the relative stability of η and η′ Cu6Sn5. Synchrotron x-ray diffraction shows that, while Cu6Sn5 exists as η′ at 25 and 150 °C and transforms to η on heating to 200 °C, Cu5.5Ni0.5Sn5 is best fit to η throughout 25–200 °C. Our first principles calculations predict that η′ is stable at T=0 K in both Cu6Sn5 and Cu5.5Ni0.5Sn5, but that the energy difference is substantially reduced from 1.21 to 0.90 eV per 22 atom cell by the Ni addition. This effect is attributed to Ni developing distinct bonding to both Cu and Sn in the η phase.

  7. Precipitation kinetics in binary Fe–Cu and ternary Fe–Cu–Ni alloys via kMC method

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-08-01

    Full Text Available The precipitation kinetics of coherent Cu rich precipitates (CRPs in binary Fe–Cu and ternary Fe–Cu–Ni alloys during thermal aging was modelled by the kinetic Monte Carlo method (kMC. A good agreement of the precipitation kinetics of Fe–Cu was found between the simulation and experimental results, as observed by means of advancement factor and cluster number density. This agreement was obtained owing to the correct description of the fast cluster mobility. The simulation results indicate that the effects of Ni are two-fold: Ni promotes the nucleation of Cu clusters; while the precipitation kinetics appears to be delayed by Ni addition during the coarsening stage. The apparent delayed precipitation kinetics is revealed to be related with the cluster mobility, which are reduced by Ni addition. The reduction effect of the cluster mobility weakens when the CRPs sizes increase. The results provide a view angle on the effects of solute elements upon Cu precipitation kinetics through the consideration of the non-conventional cluster growth mechanism, and kMC is verified to be a powerful approach on that.

  8. Low temperature interdiffusion in Cu/Ni thin films

    International Nuclear Information System (INIS)

    Lefakis, H.; Cain, J.F.; Ho, P.S.

    1983-01-01

    Interdiffusion in Cu/Ni thin films was studied by means of Auger electron spectroscopy in conjunction with Ar + ion sputter profiling. The experimental conditions used aimed at simulating those of typical chip-packaging fabrication processes. The Cu/Ni couple (from 10 μm to 60 nm thick) was produced by sequential vapor deposition on fused-silica substrates at 360, 280 and 25 0 C in 10 - 6 Torr vacuum. Diffusion anneals were performed between 280 and 405 0 C for times up to 20 min. Such conditions define grain boundary diffusion in the regimes of B- and C-type kinetics. The data were analyzed according to the Whipple-Suzuoka model. Some deviations from the assumptions of this model, as occurred in the present study, are discussed but cannot fully account for the typical data scatter. The grain boundary diffusion coefficients were determined allowing calculation of respective permeation distances. (Auth.)

  9. Effects of Cu intercalation on the graphene/Ni(111) surface: density-functional calculations

    International Nuclear Information System (INIS)

    Kwon, Se Gab; Kang, Myung Ho

    2012-01-01

    The Cu-intercalated graphene/Ni(111) surface has been studied by using density-functional theory calculations. We find that (1) the intercalation-induced decoupling between graphene and the Ni(111) substrate begins sharply at a Cu coverage of about 0.75 ML, (2) at the optimal Cu coverage of 1 ML, graphene recovers an almost ideal Dirac-cone band structure with no band gap, and (3) the Dirac point is located at 0.17 eV below the Fermi level, indicating a small charge transfer from the substrate. Cu thus plays essentially the same role as Au in realizing quasi-free-standing graphene by intercalation. Our charge character analysis shows that the Dirac-cone bands near the Fermi level reveal a weakening of their π character when crossing the Ni d bands, suggesting that the resulting low Dirac-cone intensity could possibly be the origin of the recent photoemission report of a relatively large band gap of 0.18 eV.

  10. Phase formation in as-solidified and heat-treated Al-Si-Cu-Mg-Ni alloys: Thermodynamic assessment and experimental investigation for alloy design

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail: amir.rezaeifarkoosh@mail.mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Javidani, M. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Hoseini, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada); Larouche, D. [Laval University, Department of Mining, Metallurgy and Materials Engineering, Aluminum Research Center - REGAL, 1065 Ave de la Medecine, Quebec, Canada G1V 0A6 (Canada); Pekguleryuz, M. [Department of Mining and Materials Engineering, McGill University, 3610 University, Aluminum Research Center - REGAL, Montreal, Quebec, Canada H3A 2B2 (Canada)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Phase formation in Al-Si-Ni-Cu-Mg-Fe system have been investigated. Black-Right-Pointing-Pointer T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni are formed at different Ni levels. Black-Right-Pointing-Pointer Thermally stable Ni-bearing precipitates improved the overaged hardness. Black-Right-Pointing-Pointer It was found that Ni:Cu and Ni:Fe ratios control the precipitation. Black-Right-Pointing-Pointer {delta}-Al{sub 3}CuNi phase has more contribution to strength compare to other precipitates. - Abstract: Thermodynamic simulations based on the CALPHAD method have been carried out to assess the phase formation in Al-7Si-(0-1)Ni-0.5Cu-0.35Mg alloys (in wt.%) under equilibrium and non-equilibrium (Scheil cooling) conditions. Calculations showed that the T-Al{sub 9}FeNi, {gamma}-Al{sub 7}Cu{sub 4}Ni, {delta}-Al{sub 3}CuNi and {epsilon}-Al{sub 3}Ni phases are formed at different Ni levels. By analyzing the calculated isothermal sections of the phase diagrams it was revealed that the Ni:Cu and Ni:Fe ratios control precipitation in this alloy system. In order to verify the simulation results, microstructural investigations in as-cast, solution treated and aged conditions were carried out using electron probe microanalysis (EPMA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Furthermore, cooling curve analysis (CCA) was also performed to determine the freezing range of the new alloys and porosity formation during solidification. Hardness measurements of the overaged samples showed that in this alloy system the {delta}-Al{sub 3}CuNi phase has a greater influence on the overall strength of the alloys compared to the other Ni-bearing precipitates.

  11. Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Fu, Tao; Peng, Xianghe; Weng, Shayuan; Zhao, Yinbo; Gao, Fengshan; Deng, Lijun; Wang, Zhongchang

    2016-01-01

    We perform molecular dynamics simulation of the indentation on pure Cu and Ni films and Cu/Ni multilayered films with a cylindrical indenter, aimed to investigate the effects of the cubic-on-cubic interface and hetero-twin interface on their mechanical properties. We also investigate systematically the formation of twin boundary in the pure metals and the effects of the cubic-on-cubic and hetero-twin interface on mechanical properties of the multilayers. We find that the slip of the horizontal stacking fault can release the internal stress, resulting in insignificant strengthening. The change in the crystal orientation by horizontal movement of the atoms in a layer-by-layer manner is found to initiate the movement of twin boundary, and the hetero-twin interface is beneficial to the hardening of multilayers. Moreover, we also find that increasing number of hetero-twin interfaces can harden the Cu/Ni multilayers.

  12. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach

    Directory of Open Access Journals (Sweden)

    Dongmei Li

    2017-08-01

    Full Text Available Cu-Ni-Si alloys are widely used due to their good electrical conductivities in combination with high strength and hardness. In the present work, minor-alloying with M = (Cr, Fe, Mo, Zr was conducted for the objective of further improving their hardness while maintaining their conductivity level. A cluster-plus-glue-atom model was introduced to design the compositions of M-alloyed Cu-Ni-Si alloys, in which an ideal composition formula [(Ni,Si,M-Cu12]Cu3 (molar proportion was proposed. To guarantee the complete precipitation of solute elements in fine δ-Ni2Si precipitates, the atomic ratio of (Ni,M/Si was set as 2/1. Thus the designed alloy series of Cu93.75(Ni/Zr3.75Si2.08(Cr/Fe/Mo0.42 (at% were arc-melted into ingots under argon atmosphere, and solid-solutioned at 950 °C for 1 h plus water quenching and then aged at 450 °C for different hours. The experimental results showed that these designed alloys exhibit high hardness (HV > 1.7 GPa and good electrical conductivities (≥ 35% IACS. Specifically, the quinary Cu93.75Ni3.54Si2.08(Cr/Fe0.42Zr0.21 alloys (Cu-3.32Ni-0.93Si-0.37(Cr/Fe−0.30Zr wt% possess both a high hardness with HV = 2.5–2.7 GPa, comparable to the high-strength KLFA85 alloy (Cu-3.2Ni-0.7Si-1.1Zn wt%, HV = 2.548 GPa, and a good electrical conductivity (35–36% IACS.

  13. Characteristics of slowly cooled Zr-Al-Cu-Ni bulk samples with different oxygen content

    International Nuclear Information System (INIS)

    Gebert, A.; Eckert, J.; Bauer, H.-D.; Schultz, L.

    1998-01-01

    Bulk samples of the glass-forming Zr 65 Al 7.5 Cu 17.5 Ni 10 and Zr 55 Al 10 Cu 30 Ni 5 alloys with 3 mm diameter were prepared by die casting into a copper mould. The oxygen content of the samples was varied between 0.26 at.% and 0.73 at.% by adjusting the oxygen partial pressure in the argon atmosphere upon casting. Characterization of the microstructure of as-cast samples and of specimens continuously heated to 873 K was carried out by X-ray diffraction (XRD), optical microscopy (OM) and transmission electron microscopy (TEM). Thermal stability was investigated by constant-rate differential scanning calorimetry (DSC). The phase formation and the thermal stability of the slowly cooled zirconium-based bulk samples are essentially influenced by the oxygen content of the material. Furthermore, the sensitivity to oxygen depends on the composition of the alloy. In bulk Zr 65 Al 7.5 Cu 17.5 Ni 10 samples only small oxygen traces induce nucleation and crystal growth during slow cooling whereas Zr 55 Al 10 Cu 30 Ni 5 samples are completely amorphous for all oxygen contents investigated. The processes of the oxygen-induced phase formation are discussed in detail also with respect to the results obtained for the heat treated samples. With increasing oxygen content the thermal stability deteriorates, as it is obvious from a diminution of the supercooled liquid region (ΔT x = T x - T g ) which is mainly due to a reduction of the crystallization temperature T x . Furthermore, the thermal behaviour of Zr 65 Al 7.5 Cu 17.5 Ni 10 and Zr 55 Al 10 Cu 30 Ni 5 reveals significant differences. (orig.)

  14. In situ TEM observation of stress-induced martensitictransformations and twinning processes in CuAlNi single crystals

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Gemperlová, Juliana; Gemperle, Antonín; Dlabáček, Zdeněk; Šittner, Petr; Novák, Václav

    2010-01-01

    Roč. 58, č. 15 (2010), s. 5109-5119 ISSN 1359-6454 R&D Projects: GA AV ČR(CZ) IAA200100627 Institutional research plan: CEZ:AV0Z10100520 Keywords : CuAlNi shape memory alloy * martensitic transformation * in situ TEM straining Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.781, year: 2010

  15. Note: Erosion of W-Ni-Fe and W-Cu alloy electrodes in repetitive spark gaps.

    Science.gov (United States)

    Wu, Jiawei; Han, Ruoyu; Ding, Weidong; Qiu, Aici; Tang, Junping

    2018-02-01

    A pair of W-Ni-Fe and W-Cu electrodes were tested under 100 kA level pulsed currents for 10 000 shots, respectively. Surface roughness and morphology characteristics of the two pairs of electrodes were obtained and compared. Experimental results indicated cracks divided the W-Cu electrode surface to polygons while the W-Ni-Fe electrode surface remained as a whole with pits and protrusions. Accordingly, the surface roughness of W-Ni-Fe electrodes increased to ∼3 μm while that of W-Cu electrodes reached ∼7 μm at the end of the test. The results reveal that the W-Ni-Fe alloy has a better erosion resistance and potential to be further applied in spark gaps.

  16. Analysis of the influence of structure on mechanical properties of multilayer Ni/Cu thin films for use in microelectronic technologies

    Directory of Open Access Journals (Sweden)

    Lamovec Jelena S.

    2015-01-01

    Full Text Available Multilayer Ni/Cu thin films were produced by dual-bath electrodeposition technique (DBT on polycrystalline cold-rolled Cu substrate. Different Ni/Cu multilayer structures were realized by changing of process parameters such as total film thickness, sublayer thickness and Ni/Cu sublayer thickness ratio. The mechanical properties of Vickers microhardness and interfacial adhesion in the films were investigated. Decreasing of sublayer thickness down to 300 nm and increasing of Ni:Cu sublayer thickness ratio to 1:4, lead to higher values of Vickers microhardness compared to monolayer metal films. Thin films with sublayer thicknesses from 75 nm to 5 μm show strong interfacial adhesion. A weak adhesion and sublayer exfoliation for the films with sublayer thickness greater than 5μm were found. Three-dimensional Ni microstructures can be fabricated using multilayer Ni/Cu film by selective etching of Cu layers in an acidic thiourea solution ('surface micromachining' technique.

  17. Stability of an amorphous alloy of the Mm-Al-Ni-Cu system

    Directory of Open Access Journals (Sweden)

    Carlos Triveño Rios

    2012-10-01

    Full Text Available An investigation was made of the stability of melt-spun ribbons of Mm55Al25Ni10Cu10 (Mm = Mischmetal amorphous alloy. The structural transformations that occurred during heating were studied using a combination of X-ray diffraction (XRD and differential scanning calorimetry (DSC. Crystallization took place through a multi-stage process. The first stage of transformation corresponded to the formation of a metastable phase followed by cfc-Al precipitation, while in the second stage, exothermic transformations led to the formation of complex and unidentified Mm(Cu, Ni and MmAl(Cu, Ni phases. The transformation curves recorded from isothermal treatments at 226 °C and 232 °C indicated that crystallization occurred through nucleation and growth, with diffusion-controlled growth occurring in the first crystallization stage. The supercooled liquid region, ∆Tx, at 40 K/min was ~80 K. This value was obtained by the substitution of Mm (=Ce + La + Nd + Pr for La or Ce, saving chemical element-related costs.

  18. Stability of mechanically alloyed vacancy ordered phase in Al{sub 70}Cu{sub 15}Ni{sub 15} alloy during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Thakur Prasad; Tiwari, Radhey Shyam; Srivastava, Onkar Nath [Department of Physics, Banaras Hindu University, Varanasi-221 005 (India); Mukhopadhyay, Nilay Krishna, E-mail: hepons@yahoo.co, E-mail: yadavtp@gmail.co [Department of Metallurgical Engineering, Institute of Technology, Banaras Hindu University, Varanasi-221 005 (India)

    2010-04-01

    A nano {tau}{sub 3} vacancy-ordered phase in the Al-Cu-Ni alloy system has been synthesized with a composition close to Al{sub 70}Cu{sub 15}Ni{sub 15} by mechanical alloying a mixture of elemental powder in a high-energy ball mill by varying milling time from 10 to 100 hours. The stability of nano-crystalline {tau}{sub 3} vacancy-ordered phase has been studied under thermal annealing in vacuum as well as in air. The x-ray diffraction and transmission electron microscopy techniques were employed for characterization of the milled and annealed samples. The powder after 100 h of milling was found to contain mostly nano {tau}{sub 3} phase with the partial ordering, and with crystallite sizes in the range of 10-20 nm along with a lattice strain of {approx}0.67 %. The milled powder, after annealing in vacuum at 700 {sup 0}C for 60 h, revealed the formation of a strain-free and ordered {tau}{sub 3} phase with a crystallite size of 80 nm, indicating grain coarsening. It is interesting to note that the milled powder annealed in air at 700 {sup 0}C for 60 h showed the formation of (Cu,Ni)Al{sub 2}O{sub 4} type spinel phase with the lattice parameter of 8.1 A and the lattice strain as 0.52 %. The average grain size of spinel phase was found to be {approx} 40 nm.

  19. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Huang, Y.J.; Shen, J.; Sun, J.F.; Yu, X.B.

    2007-01-01

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti 41.5 Zr 2.5 Hf 5 Cu 42.5-x Ni 7.5 Si 1 Sn x (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy. The activation energies for glass transition and crystallization for Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti 41.5 Zr 2.5 Hf 5 Cu 37.5 Ni 7.5 Si 1 Sn 5 alloy also possesses superior mechanical properties

  20. CuAlO2 and CuAl2O4 thin films obtained by stacking Cu and Al films using physical vapor deposition

    Science.gov (United States)

    Castillo-Hernández, G.; Mayén-Hernández, S.; Castaño-Tostado, E.; DeMoure-Flores, F.; Campos-González, E.; Martínez-Alonso, C.; Santos-Cruz, J.

    2018-06-01

    CuAlO2 and CuAl2O4 thin films were synthesized by the deposition of the precursor metals using the physical vapor deposition technique and subsequent annealing. Annealing was carried out for 4-6 h in open and nitrogen atmospheres respectively at temperatures of 900-1000 °C with control of heating and cooling ramps. The band gap measurements ranged from 3.3 to 4.5 eV. Electrical properties were measured using the van der Pauw technique. The preferred orientations of CuAlO2 and CuAl2O4 were found to be along the (1 1 2) and (3 1 1) planes, respectively. The phase percentages were quantified using a Rietveld refinement simulation and the energy dispersive X-ray spectroscopy indicated that the composition is very close to the stoichiometry of CuAlO2 samples and with excess of aluminum and deficiency of copper for CuAl2O4 respectively. High resolution transmission electron microscopy identified the principal planes in CuAlO2 and in CuAl2O4. Higher purities were achieved in nitrogen atmosphere with the control of the cooling ramps.

  1. Cofiring behavior and interfacial structure of NiCuZn ferrite/PMN ferroelectrics composites for multilayer LC filters

    International Nuclear Information System (INIS)

    Miao Chunlin; Zhou Ji; Cui Xuemin; Wang Xiaohui; Yue Zhenxing; Li Longtu

    2006-01-01

    The cofiring behavior, interfacial structure and cofiring migration between NiCuZn ferrite and lead magnesium niobate (PMN)-based relaxor ferroelectric materials were investigated via thermomechanical analyzer (TMA), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Mismatched sintering shrinkage between NiCuZn ferrite and PMN was modified by adding an appropriate amount of sintering aids, Bi 2 O 3 , into NiCuZn ferrite. Pyrochlore phase appeared in the mixture of NiCuZn ferrite and PMN, which is detrimental to the final electric properties of LC filters. EDS results indicated that the interdiffusion at the heterogeneous interfaces in the composites, such as Fe, Pb, Zn, existed which can strengthen combinations between ferrite layers and ferroelectrics layers

  2. Effect of iron content on the structure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25} and (AlTi){sub 60-x}Ni{sub 20}Cu{sub 20}Fe{sub x} (x=15, 20) high-entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fazakas, É., E-mail: eva.fazakas@bayzoltan.hu [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525, P.O.B. 49 (Hungary); Bay Zoltán Nonprofit Ltd., For Applied Research H-1116 Budapest, Fehérvári út 130 (Hungary); Zadorozhnyy, V. [National University of Science and Technology «MISIS», Leninsky prosp., 4, Moscow 119049 (Russian Federation); Louzguine-Luzgin, D.V. [WPI-Advaced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2015-12-15

    Highlights: • Three new refractory alloys namely: Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20}, were produced by induction-melting and casting. • This kind of alloys exhibits high resistance to annealing softening. • Most the alloys in the annealed state possess even higher Vickers microhardness than the as-cast alloys. • The Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys annealed at 973 K show the highest compressive stress and ductility values. - Abstract: In this work, we investigated the microstructure and mechanical properties of Al{sub 25}Ti{sub 25}Ni{sub 25}C{sub u25} Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al{sub 25}Ti{sub 25}Ni{sub 25}Cu{sub 25}, Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} and Al{sub 20}Ti{sub 20}Ni{sub 20}Cu{sub 20}Fe{sub 20} alloys are relatively hard and ductile. Being heat treated at 973 K the Al{sub 22.5}Ti{sub 22.5}Ni{sub 20}Cu{sub 20}Fe{sub 15} alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  3. Local atomic and crystal structure rearrangement during the martensitic transformation in Ti50Ni25Cu25 shape memory alloy

    International Nuclear Information System (INIS)

    Menushenkov, Alexey; Grishina, Olga; Shelyakov, Alexander; Yaroslavtsev, Alexander; Zubavichus, Yan; Veligzhanin, Alexey; Bednarcik, Jozef; Chernikov, Roman; Sitnikov, Nikolay

    2014-01-01

    Highlights: • Local crystalline structure of TiNiCu SMA is investigated using EXAFS. • Peculiarities of Ni and Cu local environment are found. • Ti atoms show greater mobility relative to Ni atoms. • Ni local environment change is significant for shape memory effect. -- Abstract: The changes of crystal structure and local crystalline environment of Ti, Ni and Cu atoms in Ti 50 Ni 25 Cu 25 shape memory alloy are investigated using X-ray diffraction and extended X-ray absorption fine structure spectroscopy (EXAFS) in temperature range of martensite transformation. The analysis of the EXAFS-spectra shows that the bonds involving Ni atoms have the highest degree of disorder and the change in the local environment around Ni atoms is significant for the occurrence of the shape memory effect, while Cu atoms occupy the normal positions in the crystallographic structure and have the lowest displacement amplitude leading to the stabilization of both phases

  4. Syntheses, crystal structures and Hirshfeld surface analysis of a coordination polymer of Cu(II) chlorido and a tris-octahedral complex of Ni(II) containing isonicotinoylhydrazone blockers

    Science.gov (United States)

    Mahmoudi, Ghodrat; Chowdhury, Habibar; Ghosh, Barindra K.; Lofland, Samuel E.; Maniukiewicz, Waldemar

    2018-05-01

    One-pot reactions of pre-assigned molar ratios of appropriate metal (II) salts and HL1 (2-acetylpyridine nicotinoylhydrazone) or HL2 (2-acetylpyridine isonicotinoylhydrazone) in MeOH solutions at room temperature afford 1D coordination polymeric chain [Cu(μ-L1) (Cl)]n (1) and a mononuclear complex [Ni(L2)2] (2). The compounds (1) and (2) were characterized using elemental analyses, spectral and other physicochemical methods. Single crystal X-ray diffraction measurements for (1) and (2) have been made to define the molecular aggregates and crystalline architectures. In (1), each copper (II) center adopts a distorted square pyramidal geometry with a CuN3OCl chromophore linked through μ-L1 to form the 1D polymeric chain. While in (2) each Ni(II) cation is six-coordinate with octahedral structure having NiN4O2 chromophore containing two L2 units each functioning as a classical tridentate (N,N,O) chelator. Different weak non-covalent interactions promote dimensionalities in the compounds. A Hirshfeld surface analysis was employed to gain additional insight into interactions responsible for packing of (1) and (2). Magnetic susceptibility measurement of (1) in the 4-300 K range reveals simple paramagnetism.

  5. Hume-Rothery electron concentration rule across a whole solid solution range in a series of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems

    Science.gov (United States)

    Mizutani, U.; Noritake, T.; Ohsuna, T.; Takeuchi, T.

    2010-05-01

    The aim of the present work is to examine if the Hume-Rothery stabilisation mechanism holds across whole solid solution ranges in a series of gamma-brasses with especial attention to the role of vacancies introduced into the large unit cell. The concentration dependence of the number of atoms in the unit cell, N, for gamma-brasses in the Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga, Ni-Zn and Co-Zn alloy systems was determined by measuring the density and lattice constants at room temperature. The number of itinerant electrons in the unit cell, e/uc, is evaluated by taking a product of N and the number of itinerant electrons per atom, e/a, for the transition metal element deduced earlier from the full-potential linearised augmented plane wave (FLAPW)-Fourier analysis. The results are discussed within the rigid-band model using as a host the density of states (DOS) derived earlier from the FLAPW band calculations for the stoichiometric gamma-brasses Cu5Zn8, Cu9Al4 and TM2Zn11 (TM = Co and Ni). A solid solution range of gamma-brasses in Cu-Zn, Cu-Cd, Cu-Al, Cu-Ga and Ni-Zn alloy systems is found to fall inside the existing pseudogap at the Fermi level. This is taken as confirmation of the validity of the Hume-Rothery stability mechanism for a whole solute concentration range of these gamma-brasses. An exception to this behaviour was found in the Co-Zn gamma-brasses, where orbital hybridisation effects are claimed to play a crucial role in stabilisation.

  6. Structural and microstructural comparative analysis on metallic alloys of composition Cu{sub y%}-Ni{sub x%}-Me (Me = Sn, Cr, Al, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, I.M.; Okazaki, A.K.; Silveira, C.R. da; Carvalhal, M.A.; Monteiro, W.A.; Carrio, J.A.G. [Physics Department, CCH, Presbyterian Mackenzie University, Materials Science and Technology Centre, Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: jgcarrio@mackenzie.br

    2010-07-01

    This work presents a comparative study of microstructural and electrical properties of polycrystalline material Cu-Ni alloys synthesized by conventional and powder metallurgy. A sample of Cu{sub 99,33%} Ni{sub 0,23%} Pt{sub 0,43%} was produced in electric furnace with voltaic arc and various samples containing Al, Sn and Cr as third element were produced by powder metallurgy. The microstructure of the samples was studied by optical microscopy, Vickers micro hardness and x rays powder diffraction. Their electrical conductivity was measured with a milliohmeter Agilent (HP) 4338B. Refinements of the crystalline structure of the samples were performed by the Rietveld method, using the refinement program GSAS. The refinement results and Fourier differences calculations indicate that the copper matrix structure presents not significant distortions by the used amounts of the other metal atoms. The refinement of non structural parameters allowed the micro-structural characterization. The dependence of the micro-structure with thermal and mechanical treatments is studied. (author)

  7. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  8. Ni(II) and Cu(II) binding with a 14-aminoacid sequence of Cap43 protein, TRSRSHTSEGTRSR.

    Science.gov (United States)

    Zoroddu, M A; Kowalik-Jankowska, T; Kozlowski, H; Salnikow, K; Costa, M

    2001-03-01

    The tetradecapeptide containing the 10 aminoacid repeated sequence on the C-terminus of the Ni(II)-induced Cap43 protein, was analyzed for Ni(II) and Cu(II) binding. A combined pH-metric and spectroscopic UV-VIS, EPR, CD and NMR study of Ni(II) and Cu(II) binding to the blocked CH3CO-Thr-Arg-Ser-Arg-Ser-His-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-NH2 (Ac-TRSRSHTSEGTRSR-Am) peptide, modeling a part of the C-terminal sequence of the Cap43 protein, revealed the formation of octahedral complexes involving imidazole nitrogen of histidine, at pH 5.5 and pH 7 for Cu(II) and Ni(II), respectively; a major square planar 4N-Ni(II) complex (about 100% at pH 9, log K* = -28.16) involving imidazole nitrogen of histidine and three deprotonated amide nitrogens of the backbone of the peptide was revealed; a 3N-Cu(II) complex (maximum about 70% at pH 7, log K*=-13.91) and a series of 4N-Cu(II) complexes starting at pH 5.5 (maximum about 90% at pH 8.7, log K* = -21.39 for CuH(-3)L), were revealed. This work supports the existence of a metal binding site at the COOH-terminal part of the Cap43 peptide.

  9. Disintegration of the net-shaped grain-boundary phase by multi-directional forging and its influence on the microstructure and properties of Cu-Ni-Si alloy

    Science.gov (United States)

    Zhang, Jinlong; Lu, Zhenlin; Zhao, Yuntao; Jia, Lei; Xie, Hui; Tao, Shiping

    2017-09-01

    Cu-Ni-Si alloys with 90% Cu content and Ni to Si ratios of 5:1 were fabricated by fusion casting, and severe plastic deformation of the Cu-Ni-Si alloy was carried out by multi-direction forging (MDF). The results showed that the as-cast and homogenized Cu-Ni-Si alloys consisted of three phases, namely the matrix phase α-Cu (Ni, Si), the reticular grain boundary phase Ni31Si12 and the precipitated phase Ni2Si. MDF significantly destroyed the net-shaped grain boundary phase, the Ni31Si12 phase and refined the grain size of the Cu matrix, and also resulted in the dissolving of Ni2Si precipitates into the Cu matrix. The effect of MDF on the conductivity of the solid solution Cu-Ni-Si alloy was very significant, with an average increase of 165.16%, and the hardness of the Cu-Ni-Si alloy also increased obviously.

  10. In-situ observation of the energy dependence of defect production in Cu and Ni

    International Nuclear Information System (INIS)

    King, W.E.; Merkel, K.L.; Baily, A.C.; Haga, K.; Meshii, M.

    1983-01-01

    The damage function, the average number of Frenkel pairs created as a function of lattice atom recoil energy, was investigated in Cu and Ni using in-situ electrical-resistivity damage-rate measurements in the high-voltage electron micrscope (HVEM) at T < 10K. Electron and proton irradiations were performed in-situ on the same polycrystalline specimens using the Argonne National Laboratory HVEM-Ion Beam Interface. Both Ni and Cu exhibit a sharp rise in the damage function above the minimum threshold energy (approx. 18 eV for Cu and approx. 20 eV for Ni) as displacements in the low-threshold energy regions of the threshold energy surface become possible. A plateau is observed for both materials (0.54 Frenkel pairs for Cu and 0.46 Frenkel pairs for Ni) indicating that no further directions become productive until much higher recoil energies. These damage functions show strong deviations from simple theoretical models, such as the Modified Kinchin-Pease damage function. The results are discussed in terms of the mechanisms of defect production that govern the single-displacement regime of the damage function and are compared with results from recent molecular-dynamics simulations

  11. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.Heavy metals are a group of elements with specific features and natural occurrence in the environment, representing an accessory in the formation of rocks. These elements, although associated with toxicity, must be treated different from xenobiotics, since many

  12. A facile route for the synthesis of Co, Ni and Cu metallic nanoparticles with potential antimicrobial activity using novel metallosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gurpreet; Singh, Prabjot; Mehta, S.K. [Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014 (India); Kumar, Sandeep; Dilbaghi, Neeraj [Department of Bio and Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar 125 001, Haryana (India); Chaudhary, Ganga Ram, E-mail: grc22@pu.ac.in [Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014 (India)

    2017-05-15

    Graphical abstract: In this work diamine dicholoro metal surfactants have been synthesized for cobalt, nickel and copper. The prepared complexes have been characterized by FTIR, NMR and TGA and were used as templates in form of vesicular aggregates to fabricate respective nanoparticles using redox two phase methods. The size of core of bilayer is playing a crucial role in controlling the size of metallic nanoparticle. - Highlights: • Diamine-dichloro complexes of Co, Ni and Cu have been synthesized and characterized using FTIR, NMR, MASS, CHN and TGA. • Self aggregation properties of prepared complexes were analysed in different alcohols • Solutions of the metallic aggregates of complexes were used as templates to synthesize metallic nanoparticles. • BSA binding studies were performed with metallic nano-structures • Antimicrobial studies of prepared complexes and metallic nanoparticles were evaluated against bacterial and fungal strains. - Abstract: The work deals with optimizing a methodology for fabrication of monodisperse metallic nanoparticles (active against microbes) using micellar core of amine based metallosurfactant. Novel double chained amine metallosurfactants of the type [M(C{sub 12}H{sub 25}NH{sub 2}){sub 2}] (where M is copper, nickel and cobalt) have been synthesized and characterized with elemental analysis, Fourier Transform Infrared spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR) and thermogravimetric analysis (TGA). Further, study of theaggregated structures (i.e. bilayer) of these lipophilic metallosurfactants in various alcohols has been carried out. Thermodynamics parameters of reverse micellization have also been estimated. The process of micellization is spontaneous and entropy driven. Prepared metallosurfactants have been utilized as precursors for the fabrication of metallic nanoparticles (NPs) of Co, Ni and Cu. The method is validated for all the three studied transition metals for the preparation of metallic nanoparticles

  13. Effect of magnetic ion Ni doping for Cu in the CuO{sub 2} plane on electronic structure and superconductivity on Y123 cuprate

    Energy Technology Data Exchange (ETDEWEB)

    Cao Shixun; Li Pinglin; Cao Guixin; Zhang Jincang

    2003-05-15

    The YBa{sub 2}Cu{sub 3-x}Ni{sub x}O{sub 7-{delta}} with x=0-0.4 have been studied using positron annihilation technique. The changes of positron annihilation parameters with the Ni substitution concentration x are given. From the change of electronic density n{sub e} and T{sub c}, it would prove that the localized carriers (electron and hole) in Cu-O chain and CuO{sub 2} planes have enormous influence on superconductivity by affecting charge transfer between the reservoir layer and CuO{sub 2} planes.

  14. Structural and magnetic properties of Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite prepared by NaOH-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wei-xiao; Wang, Zhi, E-mail: zhiwang@tju.edu.cn

    2015-09-15

    Highlights: • NiMgCuZn ferrites were successfully prepared by low-temperature sintering. • NiMgCuZn ferrites have the advantages of both NiCuZn and MgCuZn ferrites. • NiMgCuZn ferrites exhibit high Curie temperature & high stability of permeability. - Abstract: The Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite powders have been prepared by NaOH co-precipitation method and characterized by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The XRD patterns confirm the single phase spinel structure of synthesized nanoparticles. The average crystallite size of the particles increases from 12 to 36 nm with calcining temperature (T{sub a}) from 500 to 800 °C. The saturation magnetization (M{sub s}) of the superparamagnetic particles was deduced by Langevin theory. Subsequently, the densification characteristics and magnetic properties of the low-temperature 950 °C-sintered ferrite bulk samples were also investigated. The magnetic measurement showed that the sintered bulk sample of T{sub a} = 600 °C has the highest initial permeability (μ{sub i}), lowest coercivity (H{sub c}), largest saturation magnetization (M{sub s}) and satisfactory thermal stability of μ{sub i}. The microstructures of sintered samples were examined using field emission scanning electric microscope (FESEM). The T{sub a} has significant influence on the bulk density, initial permeability, saturation magnetization and coercivity of Ni{sub 0.15}Mg{sub 0.1}Cu{sub 0.3}Zn{sub 0.45}Fe{sub 2}O{sub 4} ferrite.

  15. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  16. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  17. Ferromagnetic half-metallic characteristic in bulk Ni 0.5M 0.5O (M=Cu, Zn and Cd): A GGAU study

    KAUST Repository

    Mi, Wenbo; Yang, Hua; Cheng, Yingchun; Bai, Haili

    2012-01-01

    Ferromagnetic half metallicity with a high spin polarization of 100% was predicted in the bulk Ni 0.5Cu 0.5O using density-functional theory method. The band gap of majority spin is 3.45 eV for Ni 0.5Cu 0.5O. The density of states of minority spin at the Fermi level are mainly from Cu 3d and O 2p in the Ni 0.5Cu 0.5O. The magnetic moments are from Ni 3d states. Ni 0.5Zn 0.5O and Ni 0.5Cd 0.5O systems are ferromagnetic insulators, but the magnetic moment of Ni 2 ions is enhanced by the Zn and Cd incorporation. Therefore, Ni 0.5Cu 0.5O is the potential candidate for spintronics devices because of the predicted high spin polarization. © 2012 Elsevier Ltd. All rights reserved.

  18. Ferromagnetic half-metallic characteristic in bulk Ni 0.5M 0.5O (M=Cu, Zn and Cd): A GGAU study

    KAUST Repository

    Mi, Wenbo

    2012-07-01

    Ferromagnetic half metallicity with a high spin polarization of 100% was predicted in the bulk Ni 0.5Cu 0.5O using density-functional theory method. The band gap of majority spin is 3.45 eV for Ni 0.5Cu 0.5O. The density of states of minority spin at the Fermi level are mainly from Cu 3d and O 2p in the Ni 0.5Cu 0.5O. The magnetic moments are from Ni 3d states. Ni 0.5Zn 0.5O and Ni 0.5Cd 0.5O systems are ferromagnetic insulators, but the magnetic moment of Ni 2 ions is enhanced by the Zn and Cd incorporation. Therefore, Ni 0.5Cu 0.5O is the potential candidate for spintronics devices because of the predicted high spin polarization. © 2012 Elsevier Ltd. All rights reserved.

  19. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys

    International Nuclear Information System (INIS)

    Asghar, Z.; Requena, G.; Boller, E.

    2011-01-01

    The three-dimensional (3-D) architecture of rigid multiphase networks present in AlSi10Cu5Ni1 and AlSi10Cu5Ni2 piston alloys in as-cast condition and after 4 h spheroidization treatment is characterized by synchrotron tomography in terms of the volume fraction of rigid phases, interconnectivity, contiguity and morphology. The architecture of both alloys consists of α-Al matrix and a rigid long-range 3-D network of Al 7 Cu 4 Ni, Al 4 Cu 2 Mg 8 Si 7 , Al 2 Cu, Al 15 Si 2 (FeMn) 3 and AlSiFeNiCu aluminides and Si. The investigated architectural parameters of both alloys studied are correlated with room-temperature and high-temperature (300 deg. C) strengths as a function of solution treatment time. The AlSi10Cu5Ni1 and AlSi10Cu5Ni2 alloys behave like metal matrix composites with 16 and 20 vol.% reinforcement, respectively. Both alloys have similar strengths in the as-cast condition, but the AlSi10Cu5Ni2 is able to retain ∼15% higher high temperature strength than the AlSi10Cu5Ni1 alloy after more than 4 h of spheroidization treatment. This is due to the preservation of the 3-D interconnectivity and the morphology of the rigid network, which is governed by the higher degree of contiguity between aluminides and Si.

  20. Formation of quasicrystals in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass

    DEFF Research Database (Denmark)

    Wanderka, N.; Macht, M. P.; Siedel, M.

    2000-01-01

    The formation of the quasicrystalline phase is observed as a first step of crystallization during isothermal annealing of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 bulk glass. The structure of the quasicrystals and the sequence of phase formation have been investigated by x-ray powder diffraction and transm......The formation of the quasicrystalline phase is observed as a first step of crystallization during isothermal annealing of the Zr46.7Ti8.3Cu7.5Ni10Be27.5 bulk glass. The structure of the quasicrystals and the sequence of phase formation have been investigated by x-ray powder diffraction...... min) at high temperatures above 683 K. (C) 2000 American Institute of Physics....

  1. Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karakoese, Ercan [Erciyes University, Institute of Science and Technology, Department of Physics, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Erciyes University, Faculty of Arts and Sciences, Department of Physics, 38039 Kayseri (Turkey)

    2009-12-15

    The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. The resulting conventional cast and melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry and microhardness techniques. The X-ray diffraction analysis indicated that ingot samples were {alpha}-Al, intermetallic Al{sub 3}Ni and Al{sub 2}Cu phases. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. Al-10Ni-5.6Cu ribbons reveal a very fine cellular structure with intermetallic Al{sub 3}Ni particles. Moreover, at high solidification rates the melt-spun ribbons have a polygonal structure dispersed in a supersaturated aluminum matrix. The differential scanning calorimetry measurements revealed that exothermic reaction was between 290 deg. C and 440 deg. C which are more pronounced in the ternary Al-10Ni-5.6Cu alloy.

  2. Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2009-01-01

    The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. The resulting conventional cast and melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry and microhardness techniques. The X-ray diffraction analysis indicated that ingot samples were α-Al, intermetallic Al 3 Ni and Al 2 Cu phases. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. Al-10Ni-5.6Cu ribbons reveal a very fine cellular structure with intermetallic Al 3 Ni particles. Moreover, at high solidification rates the melt-spun ribbons have a polygonal structure dispersed in a supersaturated aluminum matrix. The differential scanning calorimetry measurements revealed that exothermic reaction was between 290 deg. C and 440 deg. C which are more pronounced in the ternary Al-10Ni-5.6Cu alloy.

  3. Density functional study of hypophosphite adsorption on Ni (1 1 1) and Cu (1 1 1) surfaces

    International Nuclear Information System (INIS)

    Zeng Yue; Liu Shubin; Ou Lihui; Yi Jianlong; Yu Shanci; Wang Huixian; Xiao Xiaoming

    2006-01-01

    Surface structures and electronic properties of hypophosphite, H 2 PO 2 - , molecularly adsorbed on Ni(1 1 1) and Cu(1 1 1) surfaces are investigated in this work by density functional theory at B3LYP/6-31++g(d, p) level. We employ a four-metal-atom cluster as the simplified model for the surface and have fully optimized the geometry and orientation of H 2 PO 2 - on the metal cluster. Six stable orientations have been discovered on both Ni (1 1 1) and Cu (1 1 1) surfaces. The most stable orientation of H 2 PO 2 - was found to have its two oxygen atoms interact the surface with two P-O bonds pointing downward. Results of the Mulliken population analysis showed that the back donation from 3d orbitals of the transition metal substrate to the unfilled 3d orbital of the phosphorus atom in H 2 PO 2 - and 4s orbital's acceptance of electron donation from one lone pair of the oxygen atom in H 2 PO 2 - play very important roles in the H 2 PO 2 - adsorption on the transition metals. The averaged electron configuration of Ni in Ni 4 cluster is 4s 0.63 4p 0.02 3d 9.35 and that of Cu in Cu 4 cluster is 4s 1.00 4p 0.03 3d 9.97 . Because of this subtle difference of electron configuration, the adsorption energy is larger on the Ni surface than on the Cu surface. The amount of charge transfers due to above two donations is larger from H 2 PO 2 - to the Ni surface than to the Cu surface, leading to a more positively charged P atom in Ni n H 2 PO 2 - than in Cu n H 2 PO 2 - . These results indicate that the phosphorus atom in Ni n H 2 PO 2 - complex is easier to be attacked by a nucleophile such as OH - and subsequent oxidation of H 2 PO 2 - can take place more favorably on Ni substrate than on Cu substrate

  4. SYNTHESIS OF ACETIC ACID FROM ETHANOL BY ELECTROOXIDATION TECHNIQUE USING Ni-Cu-PVC ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2017-11-01

    Full Text Available A usage of Ni-Cu-PVC electrode for the oxidation of ethanol by electrochemical technique will be reported in this paper. In this work, the effect of electrodes on the yields of acetic acid was determined. Electrode used was made of the mixtures of Ni powder, Cu powder and of polyvinyl chloride (PVC with various percentages. Electrooxidation of 0.20 M ethanol in 0.16 M KOH  (24 mL were carried out using chrono coulometry (CC at a potential of 1050 mV for 6 hours with continious stirring. Electrooxdation result obtained was analyzed using High Performance Liquid Chromatography (HPLC. The test result shows that the composition of  Ni:Cu:PVC  at 75:20:5 have higher efficiency in the electrooxidation of ethanol to acetic acid.

  5. Giant magnetic coercivity in YNi{sub 4}B-type SmNi{sub 3}TB (T=Mn–Cu) solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jinlei; Yan, Chang [Research Center for Solid State Physics and Materials, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Yapaskurt, V.O. [Department of Petrology, Geological Faculty Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation)

    2016-12-01

    The effects of transition metal substitution for Ni on the magnetic properties of the YNi{sub 4}B-type SmNi{sub 4}B via SmNi{sub 3}TB (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi{sub 4}B, SmNi{sub 3}MnB, SmNi{sub 3}FeB, SmNi{sub 3}CoB and SmNi{sub 3}CuB show ferromagnetic ordering at 40 K, 210 K, 322 K, 90 K and 57 K and field sensitive metamagnetic-like transitions at 15 K, 100 K, 185 K, 55 K and 15 K in a magnetic field of 10 kOe, respectively. The magnetocaloric effects of SmNi{sub 3}TB (T=Mn–Cu) were calculated in terms of isothermal magnetic entropy change (ΔS{sub m}). The magnetic entropy ΔS{sub m} reaches value of –0.94 J/kg K at 40 K for SmNi{sub 4}B, –1.5 J/kg K at 205 K for SmNi{sub 3}MnB, –0.54 J/kg K at 320 K for SmNi{sub 3}FeB, –0.49 J/kg K at 90 K for SmNi{sub 3}CoB and –0.54 J/kg K at 60 K for SmNi{sub 3}CuB in field change of 0–50 kOe around the Curie temperature. They show positive ΔS{sub m} of +0.71 J/kg K at ~10 K for SmNi{sub 4}B, +1.69 J/kg K at 30 K for SmNi{sub 3}MnB, +0.89 J/kg K at 110 K for SmNi{sub 3}FeB, +1.08 J/kg K at 25 K for SmNi{sub 3}CoB and +1.12 J/kg K at 10 K for SmNi{sub 3}CuB in field change of 0–50 kOe around the low temperature metamagnetic-like transition. Below the field induced transition temperature (change of magnetic structure), SmNi{sub 3}TB (T=Mn–Cu) exhibits giant magnetic coercivity of 74 kOe at 5 K for SmNi{sub 4}B, 69 kOe at 20 K (90 kOe at 10 K) for SmNi{sub 3}MnB, 77 kOe at 60 K for SmNi{sub 3}FeB, 88 kOe at 20 K for SmNi{sub 3}CoB and 52 kOe at 5 K for SmNi{sub 3}CuB. - Highlights: • YNi{sub 4}B-type SmNi{sub 3}{Mn, Fe, Co, Ni, Cu}B exhibit the Curie points at 39–322 K. • SmNi{sub 3}{Mn, Fe, Co, Ni, Cu}B show field induced transition at 15–185 K. • SmNi{sub 3}MnB shows huge magnetic hysteresis with coercive field of 69 kOe at 20 K. • SmNi{sub 3}FeB shows huge magnetic hysteresis with coercive field of 77 kOe at 60 K. • SmNi{sub 3}CoB shows giant coercive

  6. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  7. Electroplating condition for Ni nanocrystalline on metal (Ni and Cu) plates

    International Nuclear Information System (INIS)

    Park, Keun Yung; Uhm, Young Rang; Son, Kwang Jae; Shim, Young Ho; Choi, Sun Ju

    2012-01-01

    Ni 63, a beta radiation source, is prepared by the electrical deposition of radioactive Ni 63 ions on a thin non radioactive nickel foil or Cu plate. Given a half life of 100 years, a nuclear battery will still produce half of its initial starting power after 100 years. A speck of a radioisotope like nickel 63, for example, contains enough energy to power a nano nuclear battery for decades, and to do so safely. Ni 63 plating is similar to other electroplating processes that employ soluble metal anodes. It requires the passage of a direct current between two electrodes that are immersed in a conductive, aqueous solution of nickel salts. The charged Ni ions are formed by sulfate, sulfamate, chloride, and a Watts bath. However, the charged Ni 63 ions are formed by dissolving metal Ni 63. To established the coating condition of Ni 63, non radioactive metal Ni particles are dissolved an acid solution and electroplated on a Ni sheet. The nickel plating process is used extensively for decorative, engineering and electro forming purposes because the appearance and other properties of electrodeposited nickel can be varied over a wide range by controlling the composition and operating parameters of the plating solution. A continuous increase in the grain size versus current density has also been recognized in the direct current electrodeposition of nickel coating. On the other hand, A runa et al. reported that the current density has no significant effect on the grain size of nickel electro deposits. A review of the literature shows that saccharin has often been added to a nickel plating bath since the 1980s to improve the ductility and brightness, and in later periods as a grain refiner agent. In the present paper, not only the preparation of a Ni plating solution prepared by dissolving metal particles, but also an optimization of the deposition conditions, such as the current density, saccharin concentration in the bath, and different metal substrates were investigated

  8. Synthesis, Characterization, and Biological Activity of Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II Complexes of N-Thiophenoyl-N′-Phenylthiocarbohydrazide

    Directory of Open Access Journals (Sweden)

    M. Yadav

    2013-01-01

    Full Text Available Mn(II, Fe(II, Co(II, Ni(II, Cu(II, Zn(II, and Cd(II complex of N-thiophenoyl -N′-phenylthiocarbohydrazide (H2 TPTH have been synthesized and characterized by elemental analysis, magnetic susceptibility measurements, infrared, NMR, electronic, and ESR spectral studies. The complexes were found to have compositions [Mn(H TPTH2], [Co(TPTH (H2O2], [Ni(TPTH (H2O2], [Cu(TPTH], [Zn(H TPTH], [Cd(H TPTH2], and [Fe(H TPTH2(EtOH]. The magnetic and electronic spectral studies suggest square planar geometry for [Cu(TPTH], tetrahedral geometry for [Zn(TPTH] and [Cd(H TPTH2], and octahedral geometry for rest of the complexes. The infrared spectral studies of the 1 : 1 deprotonated complexes suggest bonding through enolic oxygen, thiolato sulfur, and both the hydrazinic nitrogens. Thus, H2TPTH acts as a binegative tetradentate ligand. H2 TPTH and its metal complexes have been screened against several bacteria and fungi.

  9. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    Science.gov (United States)

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater.

  10. Glass formation and crystallization of Zr53Cu21Al10Ni8Ti8 alloy

    International Nuclear Information System (INIS)

    Neogy, S.; Tewari, R.; Srivastava, D.; Dey, G.K.; Banerjee, S.; Vaibhaw, K.; Ranganathan, S.

    2010-01-01

    In the present study, transmission electron microscopy techniques, like micro-diffraction, high resolution and fluctuation microscopy, have been employed to carry out detailed investigation of as-solidified and crystallized microstructures of the Zr 53 Cu 21 Al 10 Ni 8 Ti 8 alloy synthesized using melt spinning, suction casting and copper mould casting techniques. Samples produced by copper mould casting technique showed partially crystalline microstructure whereas the other techniques resulted in complete amorphous microstructures. High-resolution microscopy established that the dendrites of the big cube phase in partially crystalline glass grew by atomistic ledges. The other crystalline bct Zr 2 Ni phase, present in partially crystalline glass and also in all the crystallized microstructures, showed various types of internal faults depending upon the crystallite size. Fluctuation microscopy established that oxygen plays a major role in determining the degree of medium range order in glassy phases. In addition, variation in oxygen content changed the crystallization behaviour of glasses from a single to multiple events

  11. Hydrogen induced structural and magnetic transformations in magnetic regenerator materials ErNi n (n=1, 2) and HoCu2

    International Nuclear Information System (INIS)

    Wang Dong; Li Yanli; Long Yi; Ye Rongchang; Chang Yongqin; Wan Farong

    2007-01-01

    The effect of hydrogenation on the structures and magnetic properties of magnetic regenerators HoCu 2 (CeCu 2 -type), ErNi 2 (MgCu 2 -type) and ErNi (FeB-type) has been investigated. All these compounds can form crystalline hydrides which remain in the structure of the original compound. In the case of ErNi 2 , hydrogenation induces volume expansion up to 13% compared with the parent compound. The magnetic moment and the Curie temperature of the crystalline hydrides decreases as the hydrogen content increases. In the case of ErNi and HoCu 2 , there is a little change in the lattice parameters and magnetic properties of the crystalline hydrides compared with original compounds. Amorphous hydrides are also observed after the hydrogenation of ErNi 2 and HoCu 2 compounds

  12. Electronic structure of Pd42.5Ni7.5Cu30P20, an excellent bulk metallic glass former: Comparison to the Pd40Ni40P20 reference glass

    International Nuclear Information System (INIS)

    Hosokawa, S.; Sato, H.; Happo, N.; Mimura, K.; Tezuka, Y.; Ichitsubo, T.; Matsubara, E.; Nishiyama, N.

    2007-01-01

    In-house photoemission and inverse-photoemission spectra (PES and IPES) were measured on Pd 42.5 Ni 7.5 Cu 30 P 20 and Pd 40 Ni 40 P 20 bulk metallic glasses in order to clarify the origin of excellent glass-forming ability from the viewpoint of electronic structure. Minima are observed for both the metallic glasses at a slightly higher energy than the Fermi level. Incident photon-energy dependent PES spectra were obtained using synchrotron radiation and the Pd 4d partial density of states (DOS) was estimated from the PES data. Soft X-ray emission spectra were also measured near the Ni and Cu 2p 3/2 absorption edges to evaluate, respectively, the Ni and Cu 3d partial DOS in the valence band. The Pd 4d and the Ni and Cu 3d partials in the conduction band were obtained from X-ray absorption spectra around the Pd 3p 3/2 and Ni and Cu 2p 3/2 absorption edges, respectively. It was found that the Pd 4d partial DOS near the Fermi energy largely decreases and becomes localized by replacing the Ni atoms with the Cu atoms, which may be closely related to the excellent glass-forming ability of the Pd 42.5 Ni 7.5 Cu 30 P 20 bulk metallic glass due to a selective formation of Pd-P covalent bonds

  13. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    Science.gov (United States)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  14. Enhanced electrical transport and thermoelectric properties in Ni doped Cu3SbSe4

    Science.gov (United States)

    Kumar, Aparabal; Dhama, P.; Das, Anish; Sarkar, Kalyan Jyoti; Banerji, P.

    2018-05-01

    In this study, we report the enhanced thermoelectric performance of Cu3SbSe4 by Ni doping at Cu site. Cu3-xNixSbSe4 (x = 0, 0.01, 0.03, 0.05) were prepared by melt growth, ball milling followed by spark plasma sintering. Structural characterization, phase analysis and surface morphology were carried out using X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Electrical and thermal properties of all the samples were investigated in the temperature range 300 - 650 K. Decrease in electrical resistivity with Ni doping due to increase in carrier concentration with enhanced Seebeck coefficient via increase in density of state near the Fermi level gives a remarkably high power factor. At the same time, thermal conductivity was found to decrease due to increased carrier-phonon scattering and acoustic phonon scattering. Consequently, a remarkable enhancement in the thermoelectric figure of merit (ZT˜ 0.65) of Cu3-xNixSbSe4 was achieved for x = 0.01 sample. Thus, Ni doping is an effective approach to improve the efficiency of Cu3SbSe4.

  15. Comparative study on hydrogenation of propanal on Ni(111) and Cu(111) from density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    An, Wei, E-mail: weian@sues.edu.cn; Men, Yong; Wang, Jinguo

    2017-02-01

    Highlights: • Hydrogenation of propanal is kinetically much faster on Ni(111) than Cu(111). • Hydroxyl route is prefered over alkoxy route on Ni(111). • Alkoxy route is prefered over hydroxyl route on Cu(111). • Activation barrier for hydrogenation of carbonyl is lowered by H-tunneling effect. • η{sup 2}(C,O)-adsorption mode is beneficial for hydrogenation/dehydrogenation of aldehyde. - Abstract: Using propanal as a probe molecule, we have comparatively investigated hydrogenation of carbonyl (C=O) in short carbon-chain aldehyde on Ni(111) and Cu(111) by means of periodic density functional theory. Our focus is in particular on the differentiation of reaction route in sequential hydrogenation on Ni(111) and Cu(111) following Langmuir–Hinshelwood mechanism. Strong binding with alkoxy intermediates has great impact on altering reaction pathways on the two surfaces, where hydroxyl route via 1-hydroxyl propyl intermediate is dominant on Ni(111), but alkoxy route via propoxyl intermediate is more likely on Cu(111) due to a higher activiation barrier of initial hydrogenation in hydroxyl route. In comparison, hydrogenation of carbonyl on Ni(111) is kinetically much faster than that on Cu(111) as a result of much lower activation barrier in rate-determining step (i.e., 13.2 vs 26.8 kcal/mol) of most favorable reaction pathways. Furthermore, the discrepancy in calculated and experimental barriers can be well explained by using the concept of H-tunneling effect on bond forming with H atoms during sequential hydrogenation. The different features of electronic structure exhibited by the two metal surfaces provide insight into their catalytic behaviors.

  16. Response of Pinus halepensis Mill. seedlings to biosolids enriched with Cu, Ni and Zn in three Mediterranean forest soils

    International Nuclear Information System (INIS)

    Fuentes, David; Disante, Karen B.; Valdecantos, Alejandro; Cortina, Jordi; Ramon Vallejo, V.

    2007-01-01

    We investigated the response of Pinus halepensis seedlings to the application of biosolids enriched with Cu, Ni and Zn on three Mediterranean forest soils under semiarid conditions. One-year-old seedlings were planted in lysimeters on soils developed from marl, limestone and sandstone which were left unamended, amended with biosolids, or amended with biosolids enriched in Cu, Ni and Zn. Enriched biosolids increased plant heavy metal concentration, but always below phytotoxic levels. Seedlings receiving unenriched biosolids showed a weak reduction in Cu and Zn concentration in needles, negatively affecting physiological status during drought. This effect was alleviated by the application of enriched sludge. Sewage sludge with relatively high levels of Cu, Zn and Ni had minor effects on plant performance on our experimental conditions. Results suggest that micronutrient limitations in these soils may be alleviated by the application of biosolids with a higher Cu, Zn and Ni content than those established by current regulations. - Biosolid-borne Cu, Ni and Zn did not show negative effects on Pinus halepensis seedlings performance after application on three Mediterranean forest soils

  17. A new Ti-Zr-Hf-Cu-Ni-Si-Sn bulk amorphous alloy with high glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Shen, J. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: junshen@hit.edu.cn; Sun, J.F. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, X.B. [Lab of Energy Science and Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)]. E-mail: yuxuebin@hotmail.com

    2007-01-16

    The effect of Sn substitution for Cu on the glass-forming ability was investigated in Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 42.5-x}Ni{sub 7.5}Si{sub 1}Sn {sub x} (x = 0, 1, 3, 5, 7) alloys by using differential scanning calorimetry (DSC) and X-ray diffractometry. The alloy containing 5% Sn shows the highest glass-forming ability (GFA) among the Ti-Zr-Hf-Cu-Ni-Si-Sn system. Fully amorphous rod sample with diameters up to 6 mm could be successfully fabricated by the copper mold casting Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy. The activation energies for glass transition and crystallization for Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} amorphous alloy are both larger than those values for the Sn-free alloy. The enhancement in GFA and thermal stability after the partial replacement of Cu by Sn may be contributed to the strong atomic bonding nature between Ti and Sn and the increasing of atomic packing density. The amorphous Ti{sub 41.5}Zr{sub 2.5}Hf{sub 5}Cu{sub 37.5}Ni{sub 7.5}Si{sub 1}Sn{sub 5} alloy also possesses superior mechanical properties.

  18. Investigations on Cu-Ni and Cu-Al systems with secondary ion mass spectrometry (SIMS)

    International Nuclear Information System (INIS)

    Rodriguez-Murcia, H.; Beske, H.E.

    1976-04-01

    The ratio of the ionization coefficients of secondary atomic ions emitted from the two component systems Cu-Ni and Cu-Al was investigated as a function of the concentration of the two components. In the low concentration range the ratio of the ionization coefficients is a constant. An influence of the phase composition on the ratio of the ionization coefficients was found in the Cu-Al system. In addition, the cluster ion emission was investigated as a function of the concentration and the phase composition of the samples. The secondary atomic ion intensity was influenced by the presence of cluster ions. The importance of the cluster ions in quantitative analysis and phase determination by means of secondary ion mass spectrometry are discussed. (orig.) [de

  19. On the Path to Optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti High Entropy Alloy Family for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Anna M. Manzoni

    2016-03-01

    Full Text Available The most commonly investigated high entropy alloy, AlCoCrCuFeNi, has been chosen for optimization of its microstructural and mechanical properties by means of compositional changes and heat treatments. Among the different available optimization paths, the decrease of segregating element Cu, the increase of oxidation protective elements Al and Cr and the approach towards a γ-γ′ microstructure like in Ni-based superalloys have been probed and compared. Microscopical observations have been made for every optimization step. Vickers microhardness measurements and/or tensile/compression test have been carried out when the alloy was appropriate. Five derived alloys AlCoCrFeNi, Al23Co15Cr23Cu8Fe15Ni16, Al8Co17Cr17Cu8Fe17Ni33, Al8Co17Cr14Cu8Fe17Ni34.8Mo0.1Ti1W0.1 and Al10Co25Cr8Fe15Ni36Ti6 (all at.% have been compared to the original AlCoCrCuFeNi and the most promising one has been selected for further investigation.

  20. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    Science.gov (United States)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  1. Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Omer N; Nielsen, Benjamin C; Hawk, Jeffrey A

    2013-08-01

    High-entropy alloys are formed by synthesizing five or more principal elements in equimolar or near equimolar concentrations. Microstructure of the CoCrCuFeNiAl{sub 0.5}B{sub x} (x = 0, 0.2, 0.6, 1) high-entropy alloys under investigation is composed of a mixture of disordered bcc and fcc phases and borides. These alloys were tested gravimetrically for their corrosion resistance in simulated syngas containing 0, 0.01, 0.1, and 1 % H{sub 2}S at 500 °C. The exposed coupons were characterized using XRD and SEM. No significant corrosion was detected at 500 °C in syngas containing 0 and 0.01 % H{sub 2}S while significant corrosion was observed in syngas containing 0.1 and 1 % H{sub 2}S. Cu{sub 1.96}S was the primary sulfide in the external corrosion scale on the low-boron high-entropy alloys, whereas FeCo{sub 4}Ni{sub 4}S{sub 8} on the high-boron high-entropy alloys. Multi-phase Cu-rich regions in the low-B high-entropy alloys were vulnerable to corrosive attack.

  2. Preparation of Copper (Cu)-Nickel (Ni) Alloy Thin Films for Bilayer Graphene Growth

    Science.gov (United States)

    2016-02-01

    of each sample after annealing . Transene brand APS-100 etchant is used to completely wet etch away the unmasked portion of the Cu-Ni alloy, and...morphological changes in the metal surfaces such as roughness, grain size, and crystal orientation due to the effects of annealing temperature, hydrogen...post- annealed at 1000 °C for 30 min, 40% H2, 15 Torr.............5 Fig. 6 AFM imaging of Cu:Ni alloyed films with ratios of a) 6:1 , b) 4:1, and c) 3

  3. Sequestration of Cu(II), Ni(II), and Co(II) by ethyleneimine immobilized on silica

    International Nuclear Information System (INIS)

    Arakaki, Luiza N.H.; Alves, Ana Paula M.; Silva Filho, Edson C. da; Fonseca, Maria G.; Oliveira, Severino F.; Espinola, Jose Geraldo P.; Airoldi, Claudio

    2007-01-01

    Thermodynamic data on interaction of Cu(II), Ni(II), and Co(II) with silica modified with ethyleneimine are obtained by calorimetric titration. The amount of ethyleneimine anchored on silica surface was estimated to be 0.70 mmol g -1 . The enthalpies of binding Ni(II), Cu(II) and Co(II), are -3.59 ± 0.001, -4.88 ± 0.001, and -7.75 ± 0.003 kJ mol -1 , respectively

  4. Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode

    Science.gov (United States)

    Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu

    2018-02-01

    We demonstrated the performance of inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with a thermally oxidized nickel/gold/copper (Ni/Au/Cu) trilayer transparent electrode. Oxidized Ni/Au/Cu is a high transparent layer and has less resistance than the oxidized Ni/Au layer. Like the oxidized Ni/Au layer, oxidized Ni and Cu in oxidized Ni/Au/Cu could perform as a hole transport layer of the perovskite-based SCs. It leads to improved perovskite SC performance on an open circuit voltage of 1.01 V, a short circuit current density of 14.36 mA/cm2, a fill factor of 76.7%, and a power conversion efficiency (η%) of 11.1%. The η% of perovskite SCs with oxidized Ni (10 nm)/Au (6 nm)/Cu (1 nm) improved by approximately 10% compared with that of perovskite SCs with oxidized Ni/Au.

  5. Hydrothermal-synthesized NiO nanowall array for lithium ion batteries

    International Nuclear Information System (INIS)

    Yan, Xiaoyan; Tong, Xili; Wang, Jian; Gong, Changwei; Zhang, Mingang; Liang, Liping

    2013-01-01

    Graphical abstract: Freestanding NiO nanowall array is prepared via a hydrothermal synthesis method and shows noticeable Li battery performance with good cycle life and high capacity. Highlights: ► NiO nanowall array is prepared by a hydrothermal synthesis method. ► NiO nanowall array with high capacity as anode material for Li ion battery. ► Nanowall array structure is favorable for fast ion/electron transfer. -- Abstract: We report a self-supported NiO nanowall array prepared by a facile hydrothermal synthesis method. The microstructure and morphology of the sample are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The hydrothermal-synthesized NiO nanowalls with thicknesses of ∼20 nm arrange vertically to the substrate forming a net-like nanowall array structure. As anode material for lithium ion batteries, the NiO nanowall array exhibits better electrochemical performances with higher coulombic efficiency and better cycling performance as compared to the dense NiO film. The NiO nanowall array shows an initial coulombic efficiency of 76%, as well as good cycling stability with a capacity of 567 mAh g −1 at 0.3 A g −1 after 50 cycles, higher than those of the dense polycrystalline NiO film (361 mAh g −1 ). The superior electrochemical performance is mainly due to the unique nanowall array structure with shorter diffusion length for mass and charge transport

  6. KLL resonant Auger transitions in metallic Cu and Ni

    International Nuclear Information System (INIS)

    Koever, L.; Berenyi, Z.; Cserny, I.

    2004-01-01

    Complete text of publication follows. KLL Auger spectra of 3d transition metals contain important information on the effects of the solid environment on deep core Auger transitions. Following the changes in the spectra when fine tuning the exciting photon energy across the K-shell ionization threshold with high energy resolution is informative concerning the possible resonant processes, expected to indicate the single-step nature of threshold Auger emission. The satellite structures in these spectra are strongly related to the unoccupied local electronic states above the Fermi level, as well as to the excitation, relaxation and screening processes associated with core hole ionization. In spite of the fundamental significance of the phenomena mentioned above, even non resonant high energy resolution studies of KLL Auger spectra of 3d transition metals (using laboratory X-ray sources) are very scarce due to the demanding experimental conditions requested. A very efficient tool for studying these phenomena is the Tunable High Energy XPS developed at HASYLAB which provides unique conditions, photon x and energy resolution for deep core Auger spectroscopy. Using the THE-XPS instrument at the BW2 beamline the high energy resolution (ΔE = 0.2 eV) KL 2,3 L 2,3 Auger spectra of polycrystalline Cu and Ni foils were measured with the Scienta SES-200 hemispherical analyzer. In the high energy range Cu 2p photo-electron peaks appearing in the Cu KLL Auger spectra due to the excitation by internal Cu K X-rays and trusted value for the Cu 2p3/2 binding energy were used for energy calibration. The exciting photon energy range was tuned up to about 50 eV above the K absorption edge and for the resonant energy region to 5 eV (Cu KLL) and 4 eV (Ni KLL) below threshold ensuring a photon beam with an energy width of about 1.1 eV. The evolution of the satellite structure as a function of excitation energy above threshold indicates di rent behaviour for particular satellites, making

  7. Comparative study of Ni and Cu doped ZnO nanoparticles: Structural and optical properties

    Science.gov (United States)

    Thakur, Shaveta; Thakur, Samita; Sharma, Jyoti; Kumar, Sanjay

    2018-05-01

    Nanoparticles of undoped and doped (0.1 M Ni2+ and Cu2+) ZnO are synthesized using chemical precipitation method. The crystallite size, morphology, chemical bonding and optical properties of as prepared nanoparticles are determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and UV-visible spectra. XRD analysis shows that the prepared samples are single phase and have hexagonal wurtzite structure. The crystallite size of the doped and undoped nanoparticles is determined using Scherrer method. The crystallite size is found to be increased with concentration of nickel and copper. All stretching and vibrational bands are observed at their specific positions through FTIR. The increase in band gap can be attributed to the different chemical nature of dopant and host cation.

  8. The pseudoelasticity of a Ni45Ti50Cu5 alloy

    International Nuclear Information System (INIS)

    Ranucci, T.; Airoldi, G.

    2000-01-01

    Since several years the Ni (50-X) Ti 50 Cu X alloys are attentively considered for the interesting features related to the B2=>B19' transformation involved in the pseudoelastic behavior. In contrast with the binary NiTi, where two martensitic transformations, B2=>R-phase and R-phase=>B19' can overlap, in the ternary alloy a single transformation is expected with a narrower hysteresis. The pseudoelastic behavior of a Ni 45 Ti 50 Cu 5 is here thoroughly investigated both as a function of different thermal treatments and of the maximum applied strain. The minimum hysteresis width of the pseudoelastic cycle appears for a thermal treatment of 450 C and decreases with stress cycling. The stress induced transformation involves, however, a single process whenever the maximum applied strain is smaller than the transformation strain. When the attained strain exceeds the transformation strain, another transformation sets in as supported by electrical resistance measurements performed concomitantly to stress-strain tests. (orig.)

  9. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  10. Grain boundary diffusion and segregation of Ni in Cu

    International Nuclear Information System (INIS)

    Divinski, Sergiy; Ribbe, Jens; Schmitz, Guido; Herzig, Christian

    2007-01-01

    Grain boundary (GB) diffusion of 63 Ni in polycrystalline Cu was investigated by the radiotracer technique in an extended temperature interval from 476 to 1156K. The independent measurements in Harrison's C and B kinetic regimes resulted in direct data of the GB diffusivity D gb and of the so-called triple product P=s.δ.D gb (s and δ are the segregation factor and the diffusional GB width, respectively). Arrhenius-type temperature dependencies for both the D gb and P values were measured, resulting in the pre-exponential factors D gb 0 =6.93x10 -7 m 2 s -1 and P 0 =1.89x10 -16 m 3 s -1 and the activation enthalpies of 90.4 and 73.8kJmol -1 , respectively. Although Ni is completely soluble in Cu, it reveals a distinct but still moderate ability to segregate copper GBs with a segregation enthalpy of about -17kJmol -1

  11. Atom probe characterization of precipitation in an aged Cu-Ni-P alloy

    International Nuclear Information System (INIS)

    Aruga, Yasuhiro; Saxey, David W.; Marquis, Emmanuelle A.; Cerezo, Alfred; Smith, George D.W.

    2011-01-01

    A temporal evolution of clusters associated with age hardening behavior in a Cu-Ni-P alloy during ageing at 250 o C for up to 100 ks after solution treatment has been carried out. A three-dimensional atom probe (3DAP) analysis has showed that Ni-P clusters are present in the as-quenched condition, and that the cluster density increases as the ageing time increases. The clusters have a wide range of Ni/P ratios when they are relatively small, whereas larger clusters exhibit a narrow distribution of the Ni/P ratio, approaching a ratio of approximately two. These results would indicate that the clusters with various Ni/P ratios form at the early stage of precipitation and the ratio approaches a value identical to that of the equilibrium phase at 250 o C as the clusters enlarge during ageing. -- Research highlights: → We characterize the clustering behavior in a Cu-Ni-P alloy during ageing at 250 o C. → The clusters have a wide range of Ni/P ratios when they are relatively small. → Larger clusters exhibit a narrow distribution of the ratio. → Hardness increases almost linearly with the logarithm of ageing time beyond 100s. → We believe increasing density and size of the clusters leads to the age hardening.

  12. Effect of Si addition on the glass-forming ability of a NiTiZrAlCu alloy

    International Nuclear Information System (INIS)

    Liang, W.Z.; Shen, J.; Sun, J.F.

    2006-01-01

    The effect of Si addition on the glass-forming ability (GFA) of a NiTiZrAlCu alloy was investigated by using differential scanning calorimetry (DSC), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maximum diameter of glassy rods increased from 0.5 mm for the Ni 42 Ti 20 Zr 25 Al 8 Cu 5 alloy (the base alloy) to 2.5 mm for the Ni 42 Ti 20 Zr 21.5 Al 8 Cu 5 Si 3.5 alloy and to 3 mm for the Ni 42 Ti 19 Zr 22.5 Al 8 Cu 5 Si 3.5 alloy, when prepared by using the copper mould casting. The GFA of the alloys can be assessed by the reduced glass transition temperature T rg (=T g /T l ) and a newly proposed parameter, δ(=T x /T l - T g ). An addition of a proper amount of Si and a minor substitution of Ti with Zr can enhance the GFA of the base alloy by suppressing the formation of primary Ni(TiZr) and (TiZr)(CuAl) 2 phases and inducing the composition close to eutectic

  13. Tuning the effective parameters in (Ta/Cu/[Ni/Co]x/Ta) multilayers with perpendicular magnetic anisotropy

    Science.gov (United States)

    Ayareh, Zohreh; Moradi, Mehrdad; Mahmoodi, Saman

    2018-06-01

    In this paper, we report perpendicular magnetic anisotropy (PMA) in a (Ta/Cu/[Ni/Co]x/Ta) multilayers structure. These typical structures usually include a multilayer of ferromagnetic and transition metal thin films. Usually, magnetic anisotropy is characterized by magnetization loops determined by magnetometer or magneto-optical Kerr effect (MOKE). The interface between ferromagnetic and metallic layers plays an important role in magnetic anisotropy evolution from out-of-plane to in-plane in (Ta/Cu/[Ni/Co]/Ta) structure. Obtained results from MOKE and magnetometry of these samples show that they have different easy axes due to change in thickness of Cu as spacer layer and difference in number of repetition of [Ni/Co] stacks.

  14. Moessbauer and transport studies of amorphous and icosahedral Zr-Ni-Cu-Ag-Al alloys

    International Nuclear Information System (INIS)

    Stadnik, Z.M.; Rapp, O.; Srinivas, V.; Saida, J.; Inoue, A.

    2002-01-01

    The alloy Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 in the amorphous and icosahedral states, and the bulk amorphous alloy Zr 65 Al 7.5 Ni 10 Cu 7.5 Ag 10 , have been studied with 57 Fe Moessbauer spectroscopy, electrical resistance and magnetoresistance techniques. The average quadrupole splitting in both alloys decreases with temperature as T 3/2 . The average quadrupole splitting in the icosahedral alloy is the largest ever reported for a metallic system. The lattice vibrations of the Fe atoms in the amorphous and icosahedral alloys are well described by a simple Debye model, with the characteristic Moessbauer temperatures of 379(29) and 439(28) K, respectively. Amorphous alloys Zr 65 Al 7. )5Ni 10 Cu 7.5 Ag 10 and Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 have been found to be superconducting with the transition temperature, T c , of about 1.7 K. The magnitude of Tc and the critical field slope at Tc are in agreement with previous work on Zr-based amorphous superconductors, while the low-temperature normal state resistivity is larger than typical results for binary and ternary Zr-based alloys. The resistivity of icosahedral Zr 65 Al 7.5 Ni 10 Cu 7.3 Fe 0.2 Ag 10 is larger than that for the amorphous ribbon of the same composition, as inferred both from direct measurements on the ribbons and from the observed magnetoresistance. However the icosahedral sample is non-superconducting in the measurement range down to 1.5 K. The results for the resistivity and the superconducting T c both suggest a stronger electronic disorder in the icosahedral phase than in the amorphous phase. (author)

  15. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol.

    Science.gov (United States)

    Korányi, Tamás I; Huang, Xiaoming; Coumans, Alessandro E; Hensen, Emiel J M

    2017-04-03

    The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu-Mg-Al oxide (CuMgAlO x ) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO 2 , Ni 2 P/SiO 2 , and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlO x . A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlO x with Ni/SiO 2 and especially Ni 2 P/SiO 2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni 2 P/SiO 2 , the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products.

  16. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  17. Magnetism of coherent Co and Ni thin films on Cu(111) and Au(111) substrates: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Zelený, Martin, E-mail: zeleny@fme.vutbr.cz; Dlouhý, Ivo

    2017-02-15

    We present an ab initio study of structural and magnetic properties of coherent Co and Ni thin films on Cu(111) and Au(111) substrates with thicknesses of up to 6 monolayers. All studied films on Cu(111) substrates prefer structures close their ground state (hcp for Co and fcc for Ni), whereas only the hcp stacking sequence has been found for both films on Au(111) substrates. All studied films exhibit instability of the first monolayer with respect to decomposition into 2-monolayer- or 3-monolayer-high islands, which is in agreement with experimental findings. All studied films are also ferromagnetic, nevertheless the Ni/Cu(111) films reduce their magnetic moments in the layer adjacent to the substrate due to a stronger Cu–Ni interaction at the interface. The magnetic anisotropy of a Co film does not depend on the film thickness: all the studied Co/Au(111) films exhibit a perpendicular magnetic anisotropy, whereas all the Co/Cu(111) films prefer in-plane magnetization. On the other hand, both Ni films change their preference for in-plane orientation of their easy axis to out-of-plane orientation at a critical thickness of 2 monolayers, however, the magnetic anisotropy energies for films thicker than 1 monolayer are smaller than 1 meV/Ni atom. These behaviors of magnetic anisotropy do not depend on the structure of the studied films. - Highlights: • All films exhibit instability of the first monolayer and prefer grow in islands. • The Cu–Ni interaction is responsible for reduced Ni magnetic moments in Ni/Cu(111) films. • The Co/Au(111) and Co/Cu(111) films show different orientations of magnetic anisotropy. • The Ni films exhibit in-plane magnetization only for single monolayer. • Behaviors of magnetic anisotropy do not depend on the structure of the studied films.

  18. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method

    International Nuclear Information System (INIS)

    Mageshwari, K.; Nataraj, D.; Pal, Tarasankar; Sathyamoorthy, R.; Park, Jinsub

    2015-01-01

    Highlights: • CuO–ZnO nanocomposites were synthesized by reflux condensation method. • Photodegradation of methyl orange and methylene blue dyes was investigated. • Morphological studies show 3D flower-like CuO microspheres adorned with ZnO nanorods. • Optical analysis showed characteristic absorption bands of CuO and ZnO. • CuO–ZnO nanocomposites exhibited superior photocatalytic activity than CuO. - Abstract: Nanostructured CuO–ZnO nanocomposites were successfully synthesized for different Zn 2+ concentrations by reflux condensation method without using any surfactant, and their photocatalytic activity was evaluated using methyl orange and methylene blue dyes under UV light irradiation. XRD revealed the formation of CuO–ZnO nanocomposites, composing of monoclinic CuO and hexagonal ZnO. XPS analysis revealed that CuO–ZnO nanocomposites are made up of Cu(II), Zn(II) and O. FESEM and TEM images showed that pure CuO exhibit 3D flower-like microstructure, while the CuO–ZnO nanocomposites prepared for different Zn 2+ concentrations have 3D flower-like CuO, microstructure adorned with rod-like ZnO particles. UV–Vis DRS showed absorption bands corresponding to CuO and ZnO around 960 nm and 395 nm, respectively. PL spectra of CuO–ZnO nanocomposites exhibited reduced PL emissions compared to pure CuO, indicating the low recombination rate of photogenerated electrons and holes. Photodegradation assay revealed that catalytic activity of CuO–ZnO nanocomposites increased with Zn 2+ concentration, and also effectively degrade methyl orange and methylene blue dyes when compared to pure CuO. The enhanced photocatalytic activity of CuO–ZnO nanocomposites were mainly ascribed to the reduced recombination and efficient separation of photogenerated charge carriers. The possible mechanism for the improved photocatalytic activity of CuO–ZnO nanocomposites was proposed

  19. Cu-Ni nanowire-based TiO{sub 2} hybrid for the dynamic photodegradation of acetaldehyde gas pollutant under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Shuying [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Xie, Xiaofeng, E-mail: xxfshcn@163.com [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Chen, Sheng-Chieh [College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Tong, Shengrui [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Lu, Guanhong [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Pui, David Y.H. [College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Sun, Jing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2017-06-30

    Graphical abstract: One-dimensional Cu-Ni bimetallic nanowires were introduced into TiO{sub 2}-based matrix to enhance their photocatalysis efficiency and expand their light absorption range. - Highlights: • Cu-Ni nanowire-based TiO{sub 2} hybrid photocatalyst. • One-dimensional electron pathways and surface plasmon resonance effects. • Dynamic photodegradation of acetaldehyde gas pollutant. - Abstract: One-dimensional bimetallic nanowires were introduced into TiO{sub 2}-based matrix to enhance their photocatalysis efficiency and expand their light absorption range in this work. Recently, metal nanowires have attracted many attention in photocatalyst research fields because of their favorable electronic transmission properties and especially in the aspect of surface plasmon resonance effects. Moreover, Cu-Ni bimetallic nanowires (Cu-Ni NWs) have shown better chemical stability than ordinary monometallic nanowires in our recent works. Interestingly, it has been found that Ni sleeves of the bimetallic nanowires also can modify the Schottky barrier of interface between TiO{sub 2} and metallic conductor, so that be beneficial to the separation of photogenerated carriers in the Cu-Ni/TiO{sub 2} network topology. Hence, a novel heterostructured photocatalyst composed of Cu-Ni NWs and TiO{sub 2} nanoparticles (NPs) was fabricated by one-step hydrolysis approach to explore its photocatalytic performance. TEM and EDX mapping images of this TiO{sub 2} NPs @Cu-Ni NWs (TCN) hybrid displayed that Cu-Ni NWs were wrapped by compact TiO{sub 2} layer and retained the one-dimensional structure in matrix. In experiments, the photocatalytic performance of the TCN nanocomposite was significantly enhanced comparing to pure TiO{sub 2}. Acetaldehyde, as a common gas pollutant in the environment, was employed to evaluate the photodegradation efficiency of a series of TCN nanocomposites under continuous feeding. The TCN exhibited excellent potodegradation performance, where the

  20. Structural stability of Pd40Cu30Ni10P20 metallic glass in supercooled liquid region

    International Nuclear Information System (INIS)

    Jiang, J.Z.; Saksl, K.

    2004-01-01

    Phase separation of bulk and ribbon Pd 40 Cu 30 Ni 10 P 20 glasses, annealed in the supercooled liquid region at ambient pressure and high pressures, has been studied by means of differential scanning calorimetry (DSC) and X-ray diffraction techniques. DSC measurements show only one glass transition event in all annealed samples, indicating that no phase separation occurs in the alloy annealed in the supercooled liquid region. Phase analyses reveal at least six crystalline phases in the crystallized sample: monoclinic, tetragonal Cu 3 Pd-like, rhombohedral, fcc-Ni 2 Pd 2 P, fcc-(Ni, Pd) solid solution, and body-centered tetragonal (bct) Ni 3 P-like phases. Annealing treatments under external pressures in the vicinity of the glass transition temperature neither induce phase separation nor alter the glass transition temperature of the Pd 40 Cu 30 Ni 10 P 20 bulk glass

  1. Microstructure, morphology and magnetic properties of Ni nanoparticles synthesized by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bouremana, A. [LPM, Faculty of Sciences, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers (Algeria); Guittoum, A., E-mail: aguittoum@gmail.com [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399, Alger-Gare, Algiers (Algeria); Hemmous, M. [Nuclear Research Centre of Algiers, 02 Bd Frantz Fanon, BP 399, Alger-Gare, Algiers (Algeria); Martínez-Blanco, D. [SCTs, University of Oviedo, EPM, 33600 Mieres (Spain); Gorria, Pedro [Department of Physics & IUTA, EPI, University of Oviedo, 33203 Gijón (Spain); Blanco, J.A. [Department of Physics, University of Oviedo, Calvo Sotelo St., 33007 Oviedo (Spain); Benrekaa, N. [LPM, Faculty of Sciences, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers (Algeria)

    2015-06-15

    Powder samples containing high purity nickel nanoparticles (NPs) were prepared by hydrothermal method from Ni(II) chloride hexahydrate (NiCl{sub 2}·6H{sub 2}O) under the presence of sodium hydroxide (NaOH) with different concentrations between 5 and 25 mol/L. The synthesis of the NPs occurs through chemical reduction at relatively low temperature (140 °C). The Ni NPs have a face-centred cubic (fcc) crystal structure with a lattice parameter value close to that of pure Ni (a = 3.52 Å). The average crystallite size determined from x-ray diffraction is around 20 nm, except for the sample synthesized under the highest NaOH concentration (25 mol/L), which has the largest average size (>30 nm). The powder morphology at the sub-micrometre length scale looks like agglomerates of Ni-NPs that drastically changes their shape depending on the NaOH concentration, from flower (5 mol/L) to a dendritic-like (25 mol/L). All the samples are ferromagnetic at room temperature with saturation magnetization values between 50 and 52emu/g, and a coercive field that increases with the NaOH concentration from around 135 (5 mol/L) up to 180Oe (25 mol/L). - Highlights: • Pure Nickel nanoparticles have been synthesized by a chemical reaction process. • Different morphologies were observed with the change of NaOH concentration. • The coercive field increases with increasing the NaOH concentration and depends on the shape of nanoparticles.

  2. Morphology, optical and electrical properties of Cu-Ni nanoparticles in a-C:H prepared by co-deposition of RF-sputtering and RF-PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Ghodselahi, T., E-mail: ghodselahi@ipm.ir [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Vesaghi, M.A. [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Gelali, A.; Zahrabi, H.; Solaymani, S. [Young Researchers Club, Islamic Azad University, Kermanshah Branch, Kermanshah (Iran, Islamic Republic of)

    2011-11-01

    We report optical and electrical properties of Cu-Ni nanoparticles in hydrogenated amorphous carbon (Cu-Ni NPs - a-C:H) with different surface morphology. Ni NPs with layer thicknesses of 5, 10 and 15 nm over Cu NPs - a-C:H were prepared by co-deposition of RF-sputtering and RF-Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) from acetylene gas and Cu and Ni targets. A nonmetal-metal transition was observed as the thickness of Ni over layer increases. The surface morphology of the sample was described by a two dimensional (2D) Gaussian self-affine fractal, except the sample with 10 nm thickness of Ni over layer, which is in the nonmetal-metal transition region. X-ray diffraction profile indicates that Cu NPs and Ni NPs with fcc crystalline structure are formed in these films. Localized Surface Plasmon Resonance (LSPR) peak of Cu NPs is observed around 600 nm in visible spectra, which is widen and shifted to lower wavelengths as the thickness of Ni over layer increases. The variation of LSPR peak width correlates with conductivity variation of these bilayers. We assign both effects to surface electron delocalization of Cu NPs.

  3. Ferromagnetic Behaviors in Fe-Doped NiO Nanofibers Synthesized by Electrospinning Method

    Directory of Open Access Journals (Sweden)

    Yi-Dong Luo

    2013-01-01

    Full Text Available Ni1−xFexO nanofibers with different Fe doping concentration have been synthesized by electrospinning method. An analysis of the phase composition and microstructure shows that Fe doping has no influence on the crystal structure and morphology of NiO nanofibers, which reveals that the doped Fe ions have been incorporated into the NiO host lattice. Pure NiO without Fe doping is antiferromagnetic, yet all the Fe-doped NiO nanofiber samples show obvious room-temperature ferromagnetic properties. The saturation magnetization of the nanofibers can be enhanced with increasing Fe doping concentration, which can be ascribed to the double exchange mechanism through the doped Fe ions and free charge carriers. In addition, it was found that the diameter of nanofibers has significant impact on the ferromagnetic properties, which was discussed in detail.

  4. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes

    Science.gov (United States)

    Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M. K.; Sharma, S. R.; Choudhary, M.

    2018-03-01

    [Ni(L)2] 1 and [Cu(L)2] 2 [HL = 2-((E)-(2-methoxyphenylimino)methyl)-4,6-dichlorophenol] Schiff base complexes have been successfully synthesized and were characterized by FT-IR, UV-Vis, fluorescence spectroscopy and thermogravimetric analysis. The crystal structures of the two complexes were determined through X-ray crystallography. Its inhibitory activity against Helicobacter pylori urease was evaluated in vitro and showed strong inhibitory activity against H. pylori urease compared with acetohydroxamic acid (IC50 = 42.12 μmolL-1), which is a positive reference. A docking analysis using the AutoDock 4.0 program could explain the inhibitory activity of the complex against urease.

  5. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)] metals

    OpenAIRE

    Nahid Nishat; Ashraf Malik

    2016-01-01

    A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). All the polymeric compounds were characterized by (FT-IR) spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA) and antibacterial activities. Polymer complexes of Mn(II), Co(II) and Ni(II) show octahedral geometry, wh...

  6. The variation of grain structure and the enhancement of shear strength in SAC305-0.1Ni/OSP Cu solder joint

    Energy Technology Data Exchange (ETDEWEB)

    Fleshman, Collin; Chen, Wei-Yu; Chou, Tzu-Ting [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Huang, Jia-Hong [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China); Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China)

    2017-03-01

    In this study, the slow speed shear test in both Sn-3.0Ag-0.5Cu (wt%)/OSP Cu and Sn-3.0Ag-0.5Cu-0.1Ni (wt%)/OSP Cu assembly with the ball heights of 300 μm and the corresponding grain structures were investigated. With the aid of Electron Back Scattering Diffraction (EBSD) analysis, single grain structure was observed in Sn-3.0Ag-0.5Cu/OSP Cu. Besides, Ni was found to control the grain structure in Sn-3.0Ag-0.5Cu-0.1Ni solder balls, showing multiple grains with partially interlaced structure. The grain variation resulted from larger undercooling caused by smaller ball size and Ni-dopant induced tiny intermetallic compounds (IMCs). IMCs serve as heterogeneous nucleation sites for β-tin and thus alter the grain structure of solder balls. The results of shear test reveal that the peak force of solder joints was efficiently enhanced by the addition of Ni. The enhancement of mechanical strength was attributed to the modification of grain structure by the introduction of Ni dopant. It is believed that the smaller grains, tiny intermetallic compounds, and the oriented interlaced area in Ni-doped solder joints became energy barriers for propagation of cracks and dislocations. It is demonstrated that Ni-doped solder joints tend to exhibit better mechanical reliability in advanced electronic packaging. - Highlights: • The grain structure and slow speed shear test performance were investigated. • Doping Ni into solder induce interlaced grain structure. • Interlaced structure can enhance mechanical reliability in BGA packaging.

  7. In situ study on reverse polarity effect in Cu/Sn–9Zn/Ni interconnect undergoing liquid–solid electromigration

    Energy Technology Data Exchange (ETDEWEB)

    Huang, M.L., E-mail: huang@dlut.edu.cn; Zhang, Z.J.; Zhao, N.; Yang, F.

    2015-01-15

    Highlights: • Abnormal reverse polarity effect in Cu/Sn–9Zn/Ni interconnect during L–S EM was observed. • The reverse polarity effect was resulted from directional diffusion of Zn to cathode. • Positive effective charge number is responsible for directional diffusion of Zn atom. • The effective charge number value of Zn was calculated to be +0.63 based on a model. • This effect is beneficial to EM reliability of micro-bump solder interconnect. - Abstract: Synchrotron radiation real-time imaging technology was used to in situ study the interfacial reactions in Cu/Sn–9Zn/Ni solder interconnects undergoing liquid–solid electromigration (L–S EM). The reverse polarity effect, evidenced by the continuous growth of intermetallic compound (IMC) layer at the cathode and the thinning of the IMC layer at the anode, was resulted from the abnormal directional migration of Zn atoms toward the cathode in electric field. This abnormal migration behavior was induced by the positive effective charge number (Z{sup ∗}) of Zn atoms, which was calculated to be +0.63 based on the Cu fluxes and the consumption kinetics of the anode Cu. Irrespective of the flowing direction of electrons, the consumption of Cu film was obvious while that of Ni film was limited. The dissolution of anode Cu followed a linear relationship with time while that of cathode Cu followed a parabolic relationship with time. It is more damaging with electrons flowing from the Ni to the Cu than that from the Cu to the Ni. The simulated Zn concentration distributions gave an explanation on the relationship between abnormal migration behavior of Zn atoms and the dissolution of Cu film under electron wind force. The abnormal directional migration of Zn atoms toward the cathode prevented the dissolution of cathode substrate, which is beneficial to improve the EM reliability of micro-bump solder interconnects.

  8. Interplay between interface structure and magnetism in NiFe/Cu/Ni-based pseudo-spin valves

    Science.gov (United States)

    Loving, Melissa G.; Ambrose, Thomas F.; Ermer, Henry; Miller, Don; Naaman, Ofer

    2018-05-01

    Magnetic pseudo spin valves (PSVs) with superconducting Nb electrodes, have been leading candidates for an energy-efficient memory solution compatible with cryogenic operation of ultra-low power superconducting logic. Integration of these PSV Josephson junctions in a standard multi-layer Nb process requires growing high-quality thin magnetic films on a thick Nb bottom electrode (i.e. ≥1.5kÅ, to achieve bulk superconducting properties). However, as deposited, 1.5kÅ Nb exhibits a rough surface with a characteristic rice grain morphology, which severely degrades the switching properties of subsequently deposited PSVs. Therefore, in order to achieve coherent switching throughout a PSV, the Nb interface must be modified. Here, we demonstrate that the Nb surface morphology and PSV crystallinity can be altered with the incorporation of separate 50Å Cu or 100Å Al/50Å Cu non-magnetic seed layers, and demonstrate their impact on the magnetic switching of a 15Å Ni80Fe20/50Å Cu/20Å Ni PSV, at both room temperature and at 10 K. Most notably, these results show that the incorporation of an Al seed layer leads to an improved face centered cubic templating through the bulk of the PSV, and ultimately to superior magnetic switching.

  9. Effect of Particle Size on the Magnetic Properties of Ni Nanoparticles Synthesized with Trioctylphosphine as the Capping Agent

    Directory of Open Access Journals (Sweden)

    Toshitaka Ishizaki

    2016-09-01

    Full Text Available Magnetic cores of passive components are required to have low hysteresis loss, which is dependent on the coercive force. Since it is well known that the coercive force becomes zero at the superparamagnetic regime below a certain critical size, we attempted to synthesize Ni nanoparticles in a size-controlled fashion and investigated the effect of particle size on the magnetic properties. Ni nanoparticles were synthesized by the reduction of Ni acetylacetonate in oleylamine at 220 °C with trioctylphosphine (TOP as the capping agent. An increase in the TOP/Ni ratio resulted in the size decrease. We succeeded in synthesizing superparamagnetic Ni nanoparticles with almost zero coercive force at particle size below 20 nm by the TOP/Ni ratio of 0.8. However, the saturation magnetization values became smaller with decrease in the size. The saturation magnetizations of the Ni nanoparticles without capping layers were calculated based on the assumption that the interior atoms of the nanoparticles were magnetic, whereas the surface-oxidized atoms were non-magnetic. The measured and calculated saturation magnetization values decreased in approximately the same fashion as the TOP/Ni ratio increased, indicating that the decrease could be mainly attributed to increases in the amounts of capping layer and oxidized surface atoms.

  10. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian, E-mail: zhaojian0209@aliyun.com [Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China); State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Man-Chao [State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)

    2014-10-30

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  11. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhao, Jian; He, Man-Chao

    2014-01-01

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail

  12. Microstructural evolution of direct chill cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy during solution treatment

    Directory of Open Access Journals (Sweden)

    He Kezhun

    2011-08-01

    Full Text Available Heat treatment has important influence on the microstructure and mechanical properties of Al-Si alloys. The most common used heat treatment method for these alloys is solution treatment followed by age-hardening. This paper investigates the microstructural evolution of a direct chill (DC cast Al-15.5Si-4Cu-1Mg-1Ni-0.5Cr alloy after solution treated at 500, 510, 520 and 530℃, respectively for different times. The major phases observed in the as-cast alloy are α-aluminum dendrite, primary Si particle, eutectic Si, Al7Cu4Ni, Al5Cu2Mg8Si6, Al15(Cr, Fe, Ni, Cu4Si2 and Al2Cu. The Al2Cu phase dissolves completely after being solution treated for 2 h at 500℃, while the eutectic Si, Al5Cu2Mg8Si6 and Al15(Cr, Fe, Ni, Cu4Si2 phases are insoluble. In addition, the Al7Cu4Ni phase is substituted by the Al3CuNi phase. The α-aluminum dendrite network disappears when the solution temperature is increased to 530℃. Incipient melting of the Al2Cu-rich eutectic mixture occurrs at 520℃, and melting of the Al5Cu2Mg8Si6 and Al3CuNi phases is observed at a solution temperature of 530℃. The void formation of the structure and deterioration of the mechanical properties are found in samples solution treated at 530℃.

  13. Produção de hidrogênio a partir da reforma a vapor de etanol utilizando catalisadores Cu/Ni/gama-Al2o3 Hydrogen production by ethanol steam reforming using Cu/Ni/gamma-Al2o3 catalysts

    Directory of Open Access Journals (Sweden)

    Thaísa A. Maia

    2007-04-01

    Full Text Available Cu/Ni/gamma-Al2O3 catalysts were prepared by an impregnation method with 2.5 or 5% wt of copper and 5 or 15% wt of nickel and applied in ethanol steam reforming. The catalysts were characterized by atomic absorption spectrophotometry, X-ray diffraction, temperature programmed reduction with hydrogen and nitrogen adsorption. The samples showed low crystallinity, with the presence of CuO and NiO, both as crystallites and in dispersed phase, as well as of NiO-Al2O3. The catalytic tests carried out at 400 ºC, with a 3:1 water/ethanol molar ratio, indicated the 5Cu/5Ni/Al2O3 catalyst as the most active for hydrogen production, with a hydrogen yield of 77% and ethanol conversion of 98%.

  14. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    Science.gov (United States)

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  15. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili

    2014-06-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  16. Temperature effects on the generalized planar fault energies and twinnabilities of Al, Ni and Cu: First principles calculations

    KAUST Repository

    Liu, Lili; Wang, Rui; Wu, Xiaozhi; Gan, Liyong; Wei, Qunyi

    2014-01-01

    Based on the quasiharmonic approach from first-principles phonon calculations, the volume versus temperature relations for Al, Ni and Cu are obtained. Using the equilibrium volumes at temperature T, the temperature dependences of generalized planar fault energies have also been calculated by first-principles calculations. It is found that the generalized planar fault energies reduce slightly with increasing temperature. Based on the calculated generalized planar fault energies, the twinnabilities of Al, Ni and Cu are discussed with the three typical criteria for crack tip twinning, grain boundary twinning and inherent twinning at different temperatures. The twinnabilities of Al, Ni and Cu also decrease slightly with increasing temperature. Ni and Cu have the inherent twinnabilities. But, Al does not exhibit inherent twinnability. These results are in agreement with the previous theoretical studies at 0 K and experimental observations at ambient temperature. © 2014 Elsevier B.V. All rights reserved.

  17. Discontinuous precipitation and ordering in Ni2V-Cu alloys

    International Nuclear Information System (INIS)

    Sukhanov, V.D; Boyarshinova, T.S.; Shashkov, O.D.

    1986-01-01

    Ni-V-Cu system alloys were used to investigate the effect of ordering on over-saturated solid solution decomposition. It was discovered that ordering in the process of grain boundary migration (discontinuous disordering), stimulated changing of continuous precipitation mechanism for discontinuous one

  18. Anomalous fast diffusion in Cu-NiFe nanolaminates.

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, Alan F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Energy Nanomaterials Dept.

    2017-09-01

    For this work, the decomposition of the one-dimensional composition wave in Cu-NiFe nanolaminate structures is examined using x-ray diffraction to assess the kinetics of phase decomposition. The anomalously high diffusivity value found for long-term aging at room temperature is attributed to the inherent nanostructure that features paths for short-circuit diffusion in nanolaminates as attributed to interlayer grain boundaries.

  19. Linear arrangement of nano-scale magnetic particles formed in Cu-Fe-Ni alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung, E-mail: k3201s@hotmail.co [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeda, Mahoto [Department of Materials Engineering (SEISAN), Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, 240-8501 (Japan); Takeguchi, Masaki [Advanced Electron Microscopy Group, National Institute for Materials Science (NIMS), Sakura 3-13, Tsukuba, 305-0047 (Japan); Bae, Dong-Sik [School of Nano and Advanced Materials Engineering, Changwon National University, Gyeongnam, 641-773 (Korea, Republic of)

    2010-04-30

    The structural evolution of nano-scale magnetic particles formed in Cu-Fe-Ni alloys on isothermal annealing at 878 K has been investigated by means of transmission electron microscopy (TEM), electron dispersive X-ray spectroscopy (EDS), electron energy-loss spectroscopy (EELS) and field-emission scanning electron microscopy (FE-SEM). Phase decomposition of Cu-Fe-Ni occurred after an as-quenched specimen received a short anneal, and nano-scale magnetic particles were formed randomly in the Cu-rich matrix. A striking feature that two or more nano-scale particles with a cubic shape were aligned linearly along <1,0,0> directions was observed, and the trend was more pronounced at later stages of the precipitation. Large numbers of <1,0,0> linear chains of precipitates extended in three dimensions in late stages of annealing.

  20. The influence of Ni additions on the relative stability of η and η′ Cu6Sn5

    KAUST Repository

    Schwingenschlö gl, Udo; Di Paola, Cono; Gourlay, C. M.; Nogita, K.

    2010-01-01

    We investigate how 5 at. % Ni influences the relative stability of η and η′ Cu6Sn5. Synchrotron x-ray diffraction shows that, while Cu6Sn5 exists as η′ at 25 and 150 °C and transforms to η on heating to 200 °C, Cu5.5Ni0.5Sn5 is best fit to η

  1. Structural and fluorescence properties of Ni:MgO-SiO2 particles synthesized by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Ohishi, Yasutake; Tani, Takao

    2006-01-01

    Structural and fluorescence properties of flame spray-synthesized Ni 1 mol%-doped MgO-SiO 2 nano-particles (MgO:SiO 2 = 100:0, 50:50, 25:75 and 0:100 in mol%) were investigated as a first step to prepare transparent materials containing Ni:MgO for optical gain media. Polyhedral aggregates of primary particles with diameters of 8-19 nm were obtained for all compositions. The 100MgO particles were single crystalline and showed the fluorescences (centered at 1260 and 1320 nm) and lifetime (3.8 ms) similar to those of solid state-synthesized Ni:MgO polycrystalline powder under laser excitation at 976 nm, suggesting Ni ions incorporated in MgO

  2. The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO₂ Technique.

    Science.gov (United States)

    Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun

    2017-04-19

    Co-plating of Cu-Ni coatings by supercritical CO₂ (sc-CO₂) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO₂ process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO₂ process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO₂ process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO₂ process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content.

  3. Spinel LiNi0.5Mn1.5O4 as superior electrode materials for lithium-ion batteries: Ionic liquid assisted synthesis and the effect of CuO coating

    International Nuclear Information System (INIS)

    Li, Xueliang; Guo, Wei; Liu, Yunfu; He, Wenxiang; Xiao, Zhenghui

    2014-01-01

    The LiNi 0.5 Mn 1.5 O 4 with different morphologies have been successfully prepared through co-precipitation route in mixed solution containing 1-dodecyl-3-methylimidazolium bromide ([C 12 mim]Br) and H 2 O with different mass ratios and followed by a solid reaction at high temperature. The morphology of LiNi 0.5 Mn 1.5 O 4 varies with the increasing ratio of [C 12 mim]Br. These samples synthesized at three kinds of concentrations present flake-like morphology, agglomerated flake-like structure and polygon particles with size about 700 nm, respectively. The as-prepared LiNi 0.5 Mn 1.5 O 4 with polygon structure presents the highest discharge capacity. The optimal LiNi 0.5 Mn 1.5 O 4 sample was modified with 1, 3 and 5 wt.% CuO, respectively. The electrochemical testing results demonstrate 3 wt.% CuO-modified material had the capacity retention of higher than 95% after 100 cycles, and high capacity of 98.7 mAh g −1 at 10 C rate, in comparison with the capacity retention of 83% and capacity of 63.6 mAh g −1 for the pristine one. The remarkably improved rate performance and cycling stability can be attributed to CuO coating, which acts as an effective lithium-ion conductor and a protective material against corrosion from electrolyte

  4. Preparation of Zr50Al15− xNi10Cu25Yx amorphous powders by ...

    Indian Academy of Sciences (India)

    The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr50Al15Ni10Cu25 alloy. Thermodynamic calculation of equivalent free energy shows that Zr50Al13.8Ni10Cu25Y1.2 alloy has the ...

  5. Physical mechanisms of Cu-Cu wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.

    2014-01-01

    Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct

  6. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Science.gov (United States)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  7. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity.

    Science.gov (United States)

    Zou, Jingyun; Liu, Dandan; Zhao, Jingna; Hou, Ligan; Liu, Tong; Zhang, Xiaohua; Zhao, Yonghao; Zhu, Yuntian T; Li, Qingwen

    2018-03-07

    Carbon nanotube (CNT) fiber has not shown its advantage as next-generation light-weight conductor due to the large contact resistance between CNTs, as reflected by its low conductivity and ampacity. Coating CNT fiber with a metal layer like Cu has become an effective solution to this problem. However, the weak CNT-Cu interfacial bonding significantly limits the mechanical and electrical performances. Here, we report that a strong CNT-Cu interface can be formed by introducing a Ni nanobuffer layer before depositing the Cu layer. The Ni nanobuffer layer remarkably promotes the load and heat transfer efficiencies between the CNT fiber and Cu layer and improves the quality of the deposited Cu layer. As a result, the new composite fiber with a 2 μm thick Cu layer can exhibit a superhigh effective strength >800 MPa, electrical conductivity >2 × 10 7 S/m, and ampacity >1 × 10 5 A/cm 2 . The composite fiber can also sustain 10 000 times of bending and continuously work for 100 h at 90% ampacity.

  8. Anodic dissolution and corrosion of alloy Cu30Ni in chloride solutions

    International Nuclear Information System (INIS)

    Zolotarev, E.I.

    1989-01-01

    The anodic and corrosion behavior of alloy Cu30Ni is studied in a solution of 3 N NaCl + 0.01 N HCl by a radiometric method using gamma isotopes of 58 Co (as a marker for Ni) and 64 Cu in combination with electrochemical measurements. It was established that under stationary conditions there was uniform dissolution of the alloy both during free corrosion and anodic polarization. The authors obtained partial anodic dissolution curves for the components of the alloy. It was shown that the dissolution kinetics differed from the mechanisms controlling dissolution of the corresponding pure metals. During corrosion of the alloy in an oxygen atmosphere a back precipitation of copper on the surface of the alloy was not observed. The characteristics observed in the corrosion-electrochemical behavior of the alloy in concentrated chloride solutions can be explained by the presence of Ni on the surface of the dissolving alloy

  9. Stress-induced martensitic transformations in a Cu-Al-Ni shape memory alloy studied by in situ transmission electron microscopy

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Gemperlová, Juliana; Gärtnerová, Viera; Gemperle, Antonín

    481-482, č. 5 (2008), s. 457-461 ISSN 0921-5093 R&D Projects: GA ČR GA202/04/2016; GA AV ČR(CZ) IAA200100627 Institutional research plan: CEZ:AV0Z10100520 Keywords : in situ TEM straining * CuAlNi shape memory alloy * stress -induced formation of martensite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.806, year: 2008

  10. Zn and Ni substitutional effects on spin fluctuations in YBa sub 2 Cu sub 3 O sub 7 by sup 6 sup 3 sup , sup 6 sup 5 Cu NQR

    CERN Document Server

    Han, K S; Mean, B J; Lee, K H; Seo, S W; Lee, M H; Lee, W C

    2000-01-01

    We have prepared Zn- and Ni-substituted YBa sub 2 Cu sub 3 O sub 7 (YBa sub 2 Cu sub 3 sub - sub x M sub x O sub 7 , M=Zn or Ni, x=0.00 approx 0.09) and performed sup 6 sup 3 sup , sup 6 sup 5 Cu nuclear quadrupole resonance (NQR) measurements for the plane site at 300 and 100 K. Substitutional effects on the relaxation rates are markedly different. Both the spin-lattice and the spin-spin relaxation rates decrease for Zn-doped YBCO. However, those increase for Ni-doped YBCO. This contrast in local electronic dynamics provides clear microscopic evidence that Zn forms no local moment while Ni develops a local moment. Consequently, the antiferromagnetic spin fluctuation is suppressed by Zn doping whereas it is preserved by Ni doping. This is also confirmed by the ratio of the sup 6 sup 3 sup , sup 6 sup 5 Cu spin-lattice relaxation rates for the plane coppers.

  11. In-situ XRD and EDS method study on the oxidation behaviour of Ni-Cu sulphide ore.

    Science.gov (United States)

    Li, Guangshi; Cheng, Hongwei; Xiong, Xiaolu; Lu, Xionggang; Xu, Cong; Lu, Changyuan; Zou, Xingli; Xu, Qian

    2017-06-12

    The oxidation mechanism of sulfides is the key issue during the sulphide-metallurgy process. In this study, the phase transformation and element migration were clearly demonstrated by in-situ laboratory-based X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS), respectively. The reaction sequence and a four-step oxidation mechanism were proposed and identified. The elemental distribution demonstrated that at a low temperature, the Fe atoms diffused outward and the Ni/Cu atoms migrated toward the inner core, whereas the opposite diffusion processes were observed at a higher temperature. Importantly, the unique visual presentation of the oxidation behaviour provided by the combination of in-situ XRD and EDS might be useful for optimising the process parameters to improve the Ni/Cu extraction efficiency during Ni-Cu sulphide metallurgy.

  12. Effect of alloying elements on solidification of primary austenite in Ni-Mn-Cu cast iron

    Directory of Open Access Journals (Sweden)

    A. Janus

    2011-04-01

    Full Text Available Within the research, determined were direction and intensity of alloying elements influence on solidification way (directional orvolumetric of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu. 50 cast shafts dia. 20 mm were analysed.Chemical composition of the alloy was as follows: 1.7 to 3.3 % C, 1.4 to 3.1 % Si, 2.8 to 9.9 % Ni, 0.4 to 7.7 % Mn, 0 to 4.6 % Cu, 0.14 to0.16 % P and 0.03 to 0.04 % S. The discriminant analysis revealed that carbon influences solidification of primary austenite dendrites most intensively. It clearly increases the tendency to volumetric solidification. Influence of the other elements is much weaker. This means that the solidification way of primary austenite dendrites in hypoeutectic austenitic cast iron Ni-Mn-Cu does not differ from that in an unalloyed cast iron.

  13. Crystallization of Pd40CU30Ni10P20 bulk metallic glass with and without pressure

    DEFF Research Database (Denmark)

    Yang, B.; Jiang, Jianzhong; Zhuang, Yanxin

    2007-01-01

    The glass-transition behavior of Pd40Cu30Ni10P20 bulk metallic glass was investigated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD). The effect of pressure on the crystallization behavior of Pd40Cu30Ni10P20 bulk glass was studied by in situ high-pressure and high...

  14. Bioaccessibility of As, Cd, Cu, Ni, Pb, and Sb in toys and low-cost jewelry.

    Science.gov (United States)

    Guney, Mert; Zagury, Gerald J

    2014-01-21

    Children can be exposed to toxic elements in toys and jewelry following ingestion. As, Cd, Cu, Ni, Pb, and Sb bioavailability was assessed (n = 24) via the in vitro gastrointestinal protocol (IVG), the physiologically based extraction test (PBET), and the European Toy Safety Standard protocol (EN 71-3), and health risks were characterized. Cd, Cu, Ni, and Pb were mobilized from 19 metallic toys and jewelry (MJ) and one crayon set. Bioaccessible Cd, Ni, or Pb exceeded EU migratable concentration limits in four to six MJ, depending on the protocol. Using two-phase (gastric + intestinal) IVG or PBET might be preferable over EN 71-3 since they better represent gastrointestinal physiology. Bioaccessible and total metal concentrations were different and not always correlated, indicating that bioaccessibility measurement may provide more accurate risk characterization. More information on impacts of multiple factors affecting metals mobilization from toys and jewelry is needed before recommending specific tests. Hazard index (HI) for Cd, Ni, or Pb were >1 for all six MJ exceeding the EU limits. For infants (6-12 mo old), 10 MJ had HI > 1 for Cd, Cu, Ni, or Pb (up to 75 for Cd and 43 for Pb). Research on prolonged exposure to MJ and comprehensive risk characterization for toys and jewelry exposure is recommended.

  15. Effect of precipitation on the shape memory effect of Ti50Ni25Cu25 melt-spun ribbon

    International Nuclear Information System (INIS)

    Tong Yunxiang; Liu Yong; Xie Zeliang; Zarinejad, Mehrdad

    2008-01-01

    The present research aims to provide accurate understanding of the relation between precipitation (volume fraction, morphology, type) and shape memory effect of Ti 50 Ni 25 Cu 25 melt-spun ribbon. Rapid thermal annealing was used to control the microstructural development while the shape memory effect of the ribbon was determined under constraint thermal cycling. The results show that the precipitation process takes the following sequence: B11 TiCu → B11 TiCu + Ti 2 (Ni, Cu) → Ti 2 (Ni, Cu) with increasing annealing temperature or duration. The shape memory effect is found to depend on both the volume fraction and the distribution of the precipitates. The former affects the shape recovery strain through reduction of the transformation volume participating the shape recovery. The latter affects the shape recovery strain through strengthening the matrix thus reducing the martensite strain which is more predominant under low constraint stresses. Precipitation strengthening, on the other hand, reduces the tendency of dislocation generation/movement, thus reducing the irreversible strain and improving shape recovery strain. This understanding provides guidelines on the optimization of the shape memory properties of the Ti 50 Ni 25 Cu 25 melt-spun ribbon via post-processing annealing

  16. Search for positron localization near transition-metal solutes of negative effective charge in Ni and Cu

    International Nuclear Information System (INIS)

    Hunter, D.M.; Grynszpan, R.I.; Arrott, A.S.

    1993-01-01

    Results of an early (1973) angular correlation (ACAR) study of dilute (0.5 at.%) Cu based alloys by a Japanese group were interpreted in terms of an attraction of e + by transition metal solutes of effective negative charge. Doppler Broadening (DB) measurements reveal no such an effect for Cu(Mn) and Cu(Ni) solid solutions as well as for Ni alloys with 3d, 4d and 5d transition metal solutes (0.1 to 1.5 at.%) i.e. no evidence of e + localization near these impurities is seen. Our results strongly suggest that the ACAR results are due to the metallurgical state of the samples. In contrast, significant DB lineshape parameter variations, observed for our Ni(Zr) alloys, are attributed to positron trapping in and near Ni 5 Zr precipitates. Our DB results for a series of Ni(Au) alloys are understood in terms of a combination of the effect of an overall lattice expansion and a positron preference for clusters of Au atoms. The above comparison between DB and ACAR results is supported by our 'spin polarized' DB results for a (001) Ni single crystal which resemble those obtained by other groups using a 'spin polarized' 2D-ACAR technique. (orig.)

  17. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Safaa N. Saud

    2017-01-01

    Full Text Available The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery, and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  18. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys.

    Science.gov (United States)

    Saud, Safaa N; Hamzah, E; Bakhsheshi-Rad, H R; Abubakar, T

    2017-01-01

    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  19. ERGO grown on Ni-Cu foam frameworks by constant potential method as high performance electrodes for supercapacitors

    Science.gov (United States)

    Mirzaee, Majid; Dehghanian, Changiz; Sabet Bokati, Kazem

    2018-04-01

    This study presents composite electrode materials based on Electrochemically Reduced graphene oxide (ERGO) and Ni-Cu Foam for supercapacitor applications. Constant potential (CP) method was used to form reduced graphene oxide on Ni-Cu foam and characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-Ray Photoelectron Spectra (XPS), Raman Spectroscopy and electrochemical measurements. ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure. The ERGO served as a conductive network to facilitate the collection and transportation of electrons during the cycling, improved the conductivity of Ni-Cu foam, and allowed for a larger specific surface area. The irregular porous structure allowed for the easy diffusion of the electrolyte into the inner region of the electrode. Moreover, the nanocomposite directly fabricated on Ni-Cu foam with a better adhesion and avoided the use of polymer binder. This method efficiently reduced ohmic polarization and enhanced the rate capability. As a result, the Ni-Cu foam/ERGO nanocomposite exhibited a specific capacitance of 1259.3 F g-1 at 2 A g-1and about 99.3% of the capacitance retained after 5000 cycles. The capacitance retention was about 3% when the current density increased from 2 A g-1 to 15 A g-1. This two-step process drop cast and GO reduction by potentiostatic method is nontoxic and scalable and holds promise for improved energy density from redox capacitance in comparison with the conventional double layer supercapacitors.

  20. Stress overshoot in stress-strain curves of Zr65Al10Ni10Cu15 metallic glass

    International Nuclear Information System (INIS)

    Kawamura, Y.; Shibata, T.; Inoue, A.; Masumoto, T.

    1997-01-01

    The essential features of the stress overshoot in the stress-strain curves of Zr 65 Al 10 Ni 10 Cu 15 (at.%) metallic glass that has a wide supercooled liquid region were revealed. The stress overshoot was dependent on temperature, strain rate, and stress relaxation. During the stretch, a change in strain rate gave rise to stress overshoot or undershoot which was sensitive to the variable quantities in the strain rate. copyright 1997 American Institute of Physics

  1. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shun; Ge, Zhen-Hua [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Bo-Ping, E-mail: bpzhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yao, Yao [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Huan-Chun [School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Yang, Jing; Li, Yan; Gao, Chao [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lin, Yuan-Hua [School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-10-30

    Highlights: • CuS quantum dots (<5 nm) were synthesized by mechanochemical ball milling. • Defects was observed in the CuS quantum dots. • They show good visible light photocatalytic activity as Fenton-like reagents. - Abstract: We report a simple mechanochemical ball milling method for synthesizing monodisperse CuS quantum dots (QDs) with sizes as small as sub-5 nm. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The CuS QDs exhibited excellent visible-light-driven photocatalytic activity and stability for degradation of Rodanmine B aqueous solution as Fenton-like reagents. Our study opens the opportunity to low-cost and facile synthesis of QDs in large scale for future industrial applications.

  2. Preconcentration and solid phase extraction method for the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples using activated carbon by FAAS

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, K. [Department of Environmental Sciences, S. V. University, Tirupati 517502, AP (India); Suresh Kumar, K. [Department of Chemistry, S. V. University, Tirupati 517502, AP (India); Suvardhan, K. [Department of Chemistry, S. V. University, Tirupati 517502, AP (India); Janardhanam, K. [Department of Environmental Sciences, S. V. University, Tirupati 517502, AP (India)]. E-mail: kandukurijanardhanam@gmail.com; Chiranjeevi, P. [Department of Chemistry, S. V. University, Tirupati 517502, AP (India)

    2007-08-17

    2-{l_brace}[1-(2-Hydroxynaphthyl) methylidene] amino{r_brace} benzoic acid (HNMABA) was synthesized for solid phase extraction (SPE) to the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples by flame atomic absorption spectrophotometry (FAAS). These metals were sorbed as HNMABA complexes on activated carbon (AC) at the pH range of 5.0 {+-} 0.2 and eluted with 6 ml of 1 M HNO{sub 3} in acetone. The effects of sample volume, eluent volume and recovery have been investigated to enhance the sensitivity and selectivity of proposed method. The effect of interferences on the sorption of metal ions was studied. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The detection limits for the metals studied were in the range of 0.75-3.82 {mu}g ml{sup -1}. The proposed system produced satisfactory results for the determination of Co, Cu, Ni, Zn and Cd metals in environmental and biological samples.

  3. Preconcentration and solid phase extraction method for the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples using activated carbon by FAAS

    International Nuclear Information System (INIS)

    Kiran, K.; Suresh Kumar, K.; Suvardhan, K.; Janardhanam, K.; Chiranjeevi, P.

    2007-01-01

    2-{[1-(2-Hydroxynaphthyl) methylidene] amino} benzoic acid (HNMABA) was synthesized for solid phase extraction (SPE) to the determination of Co, Cu, Ni, Zn and Cd in environmental and biological samples by flame atomic absorption spectrophotometry (FAAS). These metals were sorbed as HNMABA complexes on activated carbon (AC) at the pH range of 5.0 ± 0.2 and eluted with 6 ml of 1 M HNO 3 in acetone. The effects of sample volume, eluent volume and recovery have been investigated to enhance the sensitivity and selectivity of proposed method. The effect of interferences on the sorption of metal ions was studied. The concentration of the metal ions detected after preconcentration was in agreement with the added amount. The detection limits for the metals studied were in the range of 0.75-3.82 μg ml -1 . The proposed system produced satisfactory results for the determination of Co, Cu, Ni, Zn and Cd metals in environmental and biological samples

  4. Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Removal from Water

    Directory of Open Access Journals (Sweden)

    Yixin Zhang

    2018-03-01

    Full Text Available There are increasing demands and great potential of coal gasification in China, but there is a lack of studies focused on the disposal and utilization of coal fly ash produced by the gasification process. In this study, a coal fly ash sample derived from a gasifier in Jincheng, China, was utilized as raw material for the synthesis of zeolite by alkali fusion followed by hydrothermal treatments. The effects of operation conditions on the cation exchange capacity (CEC of synthesized zeolite were investigated. The synthesized zeolite with the highest CEC (270.4 meq/100 g, with abundant zeolite X and small amount of zeolite A, was produced by 1.5 h alkali fusion under 550 °C with NaOH/coal fly ash ratio 1.2 g/g followed by 15 h hydrothermal treatment under 90 °C with liquid/solid ratio 5 mL/g and applied in Ni2+ removal from water. The removal rate and the adsorption capacity of Ni2+ from water by the synthesized zeolite were determined at the different pH, contact time, adsorbent dose and initial Ni2+ concentration. The experimental data of adsorption were interpreted in terms of Freundlich and Langmuir equations. The adsorption of Ni2+ by the synthesized zeolite was found to fit sufficient using the Langmuir isotherm. More than 90% of Ni2+ in water could be removed by synthesized zeolite under the proper conditions. We show that the coal fly ash produced by the gasification process has great potential to be used as an alternative and cheap source in the production of adsorbents.

  5. Thermoluminescence properties of Li2B4O7:Cu, B phosphor synthesized using solution combustion technique

    Science.gov (United States)

    Ozdemir, A.; Altunal, V.; Kurt, K.; Depci, T.; Yu, Y.; Lawrence, Y.; Nur, N.; Guckan, V.; Yegingil, Z.

    2017-12-01

    To determine the effects of various concentrations of the activators copper (Cu) and boron (B) on the thermoluminescence (TL) properties of lithium tetraborate, the phosphor was first synthesized and doped with five different concentrations of copper (0.1-0.005 wt%) using solution combustion method. 0.01 wt% Cu was the concentration which showed the most significant increase in the sensitivity of the phosphor. The second sort of Li2B4O7:Cu material was prepared by adding B (0.001-0.03 wt%) to it. The newly developed copper-boron activated lithium tetraborate (Li2B4O7:Cu, B) material with 0.01 wt% Cu and 0.001 wt% B impurity concentrations was shown to have promise as a TL phosphor. The material formation was examined using powder x-Ray Diffraction (XRD) analysis and Scanning Electron Microscope (SEM) imaging. Fourier Transform Infrared (FT-IR) spectrum of the synthesized polycrystalline powder sample was also recorded. The TL glow curves were analyzed to determine various dosimetric characteristics of the synthesized luminophosphors. The dose response increased in a ;linear; way with the beta-ray exposure between 0.1-20 Gy, a dose range being interested in medical dosimetry. The response with changing photon and electron energy was studied. The rate of decay of the TL signal was investigated both for dark storage and under direct sunlight. Li2B4O7:Cu, B showed no individual variation of response in 9 recycling measurements. The fluorescence spectrum was determined. The kinetic parameters were estimated by different methods and the results discussed. The studied properties of synthesized Li2B4O7:Cu, B were found all favorable for dosimetric purposes.

  6. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Chakrabarti, P., E-mail: pchakrabarti.ece@iitbhu.ac.in [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-08-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  7. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    International Nuclear Information System (INIS)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta; Chakrabarti, P.

    2016-01-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  8. Features of Crystallization of Rapidly Quenched Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 Alloys from Melt with High-Temperature Shape Memory Effect

    Science.gov (United States)

    Pushin, A. V.; Pushin, V. G.; Kuntsevich, T. E.; Kuranova, N. N.; Makarov, V. V.; Uksusnikov, A. N.; Kourov, N. I.

    2017-12-01

    A comparative study of the structure and the chemical and phase composition of Ni45Ti32Hf18Cu5 and Ni25Ti32Hf18Cu25 amorphous alloys obtained by fast-quenching of melt stream by spinning has been carried out by transmission and scanning electron microscopy and X-ray diffraction. The critical temperatures of their devitrification were determined by the data of temperatures measurements of electrical resistance. The features of the formation of ultrafine structure and the phase transformation at the vitrification depending on the regimes of heat treatment and chemical composition of alloy have been established.

  9. Preparation of Zr50Al15-xNi10Cu25Yx amorphous powders by mechanical alloying and thermodynamic calculation

    International Nuclear Information System (INIS)

    Long, Woyun; Li, Jing; Lu, Anxian

    2013-01-01

    Amorphous Zr 50 Al 15-x Ni 10 Cu 25 Y x powders were fabricated by mechanical alloying at a low rotation speed from commercial pure element powders. The beneficial effect of Al partially substituted by Y in Zr 50 Al 15 Ni 10 Cu 25 on glass-forming ability was investigated. The as-milled powders were characterized by X-ray diffraction and transmission electron microscopy. The results show that partial substitution of Al by Y can improve the glass-forming ability of Zr 50 Al 15 Ni 10 Cu 25 Y alloy. Thermodynamic calculation of equivalent free energy shows that Zr 50 Al 13.8 Ni 10 Cu 25 Y 1.2 alloy has the highest glass-forming ability, which is in good agreement with the report of orthogonal experiments. (author)

  10. Comparison of properties and microstructures of Trefimetaux CuNiBe and Hycon 3HP TM before and after neutron irradiation. (ITER R and D Task no. T213)

    International Nuclear Information System (INIS)

    Edwards, D.J.; Eldrup, M.; Toft, P.; Singh, B.N.

    2000-07-01

    The precipitation strengthened CuNiBe alloys are among the three candidate copper alloys that are being evaluated for application in the first wall, divertor, and limiter components of ITER. Generally, CuNiBe alloys have higher strength but poorer conductivity compared to CuCrZr and Cu-A1 2 O 3 alloys. Brush-Wellman Inc. has developed an improved version of their Hycon CuNiBe alloy that has higher conductivity while maintaining a reasonable level of strength. In the present work we have investigated the physical and mechanical properties of the Hycon 3HP TM alloy both before and after neutron irradiation and have compared its microstructure and properties with the European CuNiBe candidate alloy manufactured by Trefimetaux. Tensile specimens of both alloys were irradiated in the DR-3 reactor at Risoe to displacement dose levels of up to 0.3 dpa at 100, 250 and 350 d eg C . Both alloys were tensile tested in vacuum in the unirradiated and irradiated conditions at 100, 250 and 350 d eg C and the microstructures of the alloys were investigated using transmission electron microscopy. Electrical resistivity measurements were made on tensile specimens be-fore and after irradiation; all measurements were made at 23 d eg C . Results of these investigations are presented and discussed in terms of the sensitivity of these alloys to test temperature, which becomes increasingly problematic when the irradiation and test temperature reaches 250 d eg C and above. (au)

  11. Observation of martensitic structure evolution in Cu-Al-Ni single crystals with shape memory effect under external load using photoacoustic microscopy

    International Nuclear Information System (INIS)

    Muratikov, K.L.; Glazov, A.L.; Nikolaev, V.I.; Pul'nev, S.A.

    2006-01-01

    Photoacoustic microscopy is applied to observe the surface structure of Cu-Al-Ni shape-memory single crystals in both the loaded and unloaded states. Visualizing the early stages of the loading-induced martensitic transformation in Cu-Al-Ni single crystals is demonstrated to be feasible. The photoacoustic images are distinguished to advantage from the corresponding optical images by a higher contrast between different phases of the Cu-Al-Ni shape-memory alloy [ru

  12. Preparation and electric and photoelectric properties of thin deposits of Fe, Co, Ni, Cu, Ag, Au and Pd

    International Nuclear Information System (INIS)

    Heras, J.M.; Albano, E.V.; Asensio, M.C.; Viscido, L.

    1984-01-01

    The physics chemical properties of desordered metallic thin films of Fe, Co, Ni, Pd, Ag, Cu and Au are of great interest for its catalitic activity and for its application in radiation absorption of solar cells and micro electronic devices. This work has the purpose of reporting the experimental results obtained by evaporated films of these metals, which present desordered characteristics, small crystal size and high surface-volume rate. (A.C.A.S.) [pt

  13. Wetting behaviour of lead-free Sn-based alloys on Cu and Ni substrates

    International Nuclear Information System (INIS)

    Amore, S.; Ricci, E.; Borzone, G.; Novakovic, R.

    2008-01-01

    The present work was carried out in the framework of the study of new lead-free solder alloys for technical applications in electronic devices. In the focus of this characterisation the wetting behaviour of several Sn-rich alloys belonging to the In-Sn, Au-Sn and Cu-Sn systems has been studied by measuring the contact angle variations on Cu and Ni substrates as a function of time and temperature. The interface between the alloy and the substrate has been analysed by the use of optical microscopy and scanning electron microscopy combined with energy-dispersive X-ray spectrometry in order to study the reaction between the alloy and the solid substrate and the possible formation of different compounds at the interface. A remarkable effect of the two different substrates on the behaviour of the contact angle as a function of temperature and on the morphology of the interface between the liquid solder and the solid substrate was observed for the In-Sn and Cu-Sn, while the Au-Sn system shows a very similar wetting behaviour on Cu and Ni

  14. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    Science.gov (United States)

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  15. Thermoluminescence properties of Li2B4O7:Cu, B phosphor synthesized using solution combustion technique

    International Nuclear Information System (INIS)

    Ozdemir, A.; Altunal, V.; Kurt, K.; Depci, T.; Yu, Y.; Lawrence, Y.; Nur, N.; Guckan, V.; Yegingil, Z.

    2017-01-01

    To determine the effects of various concentrations of the activators copper (Cu) and boron (B) on the thermoluminescence (TL) properties of lithium tetraborate, the phosphor was first synthesized and doped with five different concentrations of copper (0.1–0.005 wt%) using solution combustion method. 0.01 wt% Cu was the concentration which showed the most significant increase in the sensitivity of the phosphor. The second sort of Li 2 B 4 O 7 :Cu material was prepared by adding B (0.001–0.03 wt%) to it. The newly developed copper-boron activated lithium tetraborate (Li 2 B 4 O 7 :Cu, B) material with 0.01 wt% Cu and 0.001 wt% B impurity concentrations was shown to have promise as a TL phosphor. The material formation was examined using powder x-Ray Diffraction (XRD) analysis and Scanning Electron Microscope (SEM) imaging. Fourier Transform Infrared (FT-IR) spectrum of the synthesized polycrystalline powder sample was also recorded. The TL glow curves were analyzed to determine various dosimetric characteristics of the synthesized luminophosphors. The dose response increased in a “linear” way with the beta-ray exposure between 0.1–20 Gy, a dose range being interested in medical dosimetry. The response with changing photon and electron energy was studied. The rate of decay of the TL signal was investigated both for dark storage and under direct sunlight. Li 2 B 4 O 7 :Cu, B showed no individual variation of response in 9 recycling measurements. The fluorescence spectrum was determined. The kinetic parameters were estimated by different methods and the results discussed. The studied properties of synthesized Li 2 B 4 O 7 :Cu, B were found all favorable for dosimetric purposes. - Highlights: • Li 2 B 4 O 7 :Cu, B synthesis using solution combustion method with various concentrations. • Structure analysis of Li 2 B 4 O 7 :Cu, B using XRD, SEM and FTIR methods. • Investigation of thermoluminescent properties of Li 2 B 4 O 7 :Cu, B. • Relatively good

  16. Crystal structure, DNA binding, cleavage, antioxidant and antibacterial studies of Cu(II), Ni(II) and Co(III) complexes with 2-((furan-2-yl)methylimino)methyl)-6-ethoxyphenol Schiff base

    Science.gov (United States)

    Venkateswarlu, Kadtala; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Daravath, Sreenu; Rangan, Krishnan; Shivaraj

    2018-05-01

    Three novel binary metal complexes; 1 [Cu(L)2], 2 [Ni(L)2] and 3 [Co(L)3] where, L (2-(((furan-2-yl) methylimino)methyl)-6-ethoxyphenol, C14H15NO3), were synthesized and characterized by various spectral techniques. Based on spectral studies square planar geometry is assigned for Cu(II) and Ni(II) complexes, whereas Co(III) owned octahedral geometry. Ligand, [Cu(L)2] and [Ni(L)2] are crystallized and found to be monoclinic crystal systems. CT-DNA absorption binding studies revealed that the complexes show good binding propensity (Kb = 5.02 × 103 M-1, 2.77 × 103 M-1, 1.63 × 104 M-1 for 1, 2 and 3 respectively). The role of these complexes in the oxidative and photolytic cleavage of supercoiled pBR322 DNA was studied and found that the complexes cleave the pBR322 DNA effectively. The catalytic ability of 1, 2 and 3 follows the order: 3 > 1 >2. Antioxidant studies of the new complexes revealed that they exhibit significant antioxidant activity against DPPH radical. The Schiff base and its metal complexes have been screened for antibacterial studies by Minimum Inhibitory Concentration method. It is observed that all metal complexes showed more activity than free ligand.

  17. Resistance pressure sensor based on Ag/Cu/sub 2/O-PEPC-NiPc/Al composite

    International Nuclear Information System (INIS)

    Khan, A.; Karimov, K.S.; Shah, M.

    2011-01-01

    This work reports on the fabrication and investigation of pressure sensor based on Ag/Cu/sub 2/O-PEPC-NiPc/Al composite. The active layer of the composite was deposited by drop-casting of the blend Cu/sub 2/O-PEPC-NiPc on flexible substrate. The thin film of the blend consist of cuprous oxide (Cu/sub 2/O) micropowder, (5 wt. %), poly-N-epoxypropyl carbazole (PEPC), (2 wt. %) and nickel phthalocyanine (NiPc) micropowder, (3 wt. %) in benzol (1 ml). The film thickness of the composite is in the range of 20-30 mu m. It is found that the fabricated sensor is sensitive to pressure and showed good repeatability. The decrease in resistance of the sensor is observed 10 times by increasing the external uniaxial pressure up to 11.7 kNm/sup -2/. The experimentally obtained results are compared with the simulated results and showed reasonable agreement with each other. (author)

  18. Nonlinear elastic properties of bulk metallic glasses Zr52.5Ti5Cu17.9Ni14.6Al10 and Pd40Cu30Ni10P20

    International Nuclear Information System (INIS)

    Kobelev, N.P.; Kolyvanov, E.L.; Khonik, V.A.

    2005-01-01

    The influence of uniaxial compression on the propagation of ultrasonic vibrations in Zr 52.5 Ti 5 Cu 17.9 Ni 14.6 Al 10 and Pd 40 Cu 30 Ni 10 P 20 bulk metallic glasses produced by melt quenching at a rate of 100 K/s is investigated. Elastic deformation was realized by compression of the samples along their long axis up to strains of about 1 GPa. Deriving of major ratios used during the calculation of the third-order elastic moduli of the glasses is described in brief, the results of the calculations being provided. A qualitative agreement between the calculated results and available data on the influence of the uniform pressure on the sound wave propagation rate was obtained [ru

  19. Glass forming ability: Miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Chemical, Materials and Biomolecular Engineering, 191 Auditorium Road, University of Connecticut, Storrs 06269, CT (United States)], E-mail: jbasu@engr.uconn.edu; Murty, B.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ranganathan, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2008-10-06

    Miedema's approach has been useful in determining the glass forming composition range for a particular alloy system. The concept of mixing enthalpy and mismatch entropy can be used in order to quantify Inoue's criteria of bulk metallic glass formation. In the present study, glass forming composition range has been determined for different binary and ternary (Zr, Ti, Hf)-(Cu, Ni) alloys based on the mixing enthalpy and mismatch entropy calculations. Though copper and nickel appear next to each other in the periodic table, the glass forming ability of the copper and nickel bearing alloys is different. Thermodynamic analysis reveals that the glass forming behaviour of Zr and Hf is similar, whereas it is different from that of Ti. The smaller atomic size of Ti and the difference in the heat of mixing of Ti, Zr, Hf with Cu and Ni leads to the observed changes in the glass forming behaviour. Enthalpy contour plots can be used to distinguish the glass forming compositions on the basis of the increasing negative enthalpy of the composition. This method reveals the high glass forming ability of binary Zr-Cu, Hf-Cu, Hf-Ni systems over a narrow composition range.

  20. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    Science.gov (United States)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  1. Influence of the Si content on the microstructure and mechanical properties of Ti-Ni-Cu-Si-Sn nanocomposite alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fornell, J., E-mail: Jordinafornell@gmail.com [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Van Steenberge, N. [OCAS N.V., Pres. J.F. Kennedylaan 3, BE-9060 Zelzate (Belgium); Surinach, S.; Baro, M.D. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Sort, J. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institucio Catalana de Recerca i Estudis Avancats (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer We study the effects of Si addition of Ti-Ni-Cu-Si-Sn alloy. Black-Right-Pointing-Pointer The microstructure evolution is correlated with the obtained mechanical and elastic properties. Black-Right-Pointing-Pointer Higher Young's modulus and larger hardness values are obtained in samples with higher Si contents. - Abstract: (Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4}){sub 100-x}Si{sub x} (x = 0, 2, 4 and 6) alloys were prepared by levitation melting mixtures of the high purity elements in an Ar atmosphere. Rods of 3 mm in diameter were obtained from the melt by copper mould casting. The effects of Si addition on the microstructure, elastic and mechanical properties of the Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} alloy were investigated by scanning electron microscopy, X-ray diffraction, acoustic measurements and nanoindentation. The main phases composing the Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} alloy are B2 NiTi, B19 Prime NiTi and tetragonal Ti{sub 2}Ni. Additional phases, like Ti{sub 5}Si{sub 3} or Ni{sub 2}Ti{sub 2}Si, become clearly visible in samples with higher Si contents. The microstructure evolution is correlated with the obtained mechanical and elastic properties. These alloys exhibit very high hardness values, which increase with the Si content, from 9 GPa (for x = 0) to around 10.5 GPa (for x = 6). The Young's modulus of Ti{sub 48}Ni{sub 32}Cu{sub 8}Si{sub 8}Sn{sub 4} (around 115 GPa) also increases significantly with Si addition, up to 160 GPa for x = 6.

  2. Heterospin systems constructed from [Cu2Ln]3+ and [Ni(mnt)2]1-,2- Tectons: First 3p-3d-4f complexes (mnt = maleonitriledithiolato).

    Science.gov (United States)

    Madalan, Augustin M; Avarvari, Narcis; Fourmigué, Marc; Clérac, Rodolphe; Chibotaru, Liviu F; Clima, Sergiu; Andruh, Marius

    2008-02-04

    New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a

  3. High efficient conversion of furfural to 2-methylfuran over Ni-Cu/Al2O3 catalyst with formic acid as a hydrogen donor

    DEFF Research Database (Denmark)

    Fu, Zhaolin; Wang, Ze; Lin, Weigang

    2017-01-01

    Conversion of furfural to 2-methylfuran over Cu/Al2O3, Ni/Al2O3 and Ni-Cu/Al2O3 catalysts were investigated with formic acid as a hydrogen donor. Ni/Al2O3 showed a high catalytic activity but a moderate selectivity to 2-methylfuran. Contrarily, Cu/Al2O3 showed a low catalytic activity but a high...... selectivity for carbonyl reduction. Over the bimetallic catalysts Ni-10%Cu/Al2O3, by increasing Ni content, more furfural was converted with the reduction of carbonyl primarily. The effect of reaction solvent and the fraction of formic acid were also studied. The result showed that isopropanol solvent could...

  4. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation

    Energy Technology Data Exchange (ETDEWEB)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng, E-mail: hbchew@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C–C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C–C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C–C bonding over C–Cu bonding, which results in C–C dimer pair formation near the surface. The dramatically different C–C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  5. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation.

    Science.gov (United States)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  6. Structural Transformations in High-Capacity Li 2 Cu 0.5 Ni 0.5 O 2 Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruther, Rose; Pandian, Amaresh S.; Yan, Pengfei; Weker, Johanna N.; Wang, Chongmin; Nanda, Jagjit

    2017-03-21

    Cathode materials that can cycle > 1 Li+ per transition metal are of substantial interest to increase the overall energy density of lithium-ion batteries. Li2Cu0.5Ni0.5O2 has a very high theoretical capacity of ~ 500 mAh/g assuming both Li+ are cycled reversibly. The Cu2+/3+ and Ni2+/3+/4+ redox couples are also at high voltage, which could further boost the energy density of this system. Despite such promise, Li2Cu0.5Ni0.5O2 undergoes irreversible phase changes during charge (delithiation) that result in large first-cycle irreversible loss and poor long-term cycling stability. Oxygen is evolved before the Cu2+/3+ or Ni3+/4+ transitions are accessed. In this contribution, XRD, TEM, and TXM-XANES are used to follow the chemical and structural changes that occur in Li2Cu0.5Ni0.5O2 during electrochemical cycling. Li2Cu0.5Ni0.5O2 is a solid solution of orthorhombic Li2CuO2 and Li2NiO2, but the structural changes more closely mimic the Li2NiO2 endmember. Li2Cu0.5Ni0.5O2 loses long-range order during charge, but TEM analysis provides clear evidence for particle exfoliation and the transformation from orthorhombic to a partially layered structure. Linear combination fitting and principal component analysis of TXM-XANES are used to map the different phases that emerge during cycling ex situ and in situ. Significant changes in the XANES at the Cu and Ni K-edges correlate with the onset of oxygen evolution.

  7. In-situ GISAXS study on the oxidation behavior of liquid Ga on Ni(Cu)/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weidong [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Liu, Mingling [Department of Mechanical and Electrical Engineering, Qinhuangdao Institute of Technology, Qinhuangdao 066100 (China); Wu, Zhaojun [Department of Practice Teaching and Equipment Management, Qiqihar University, Qiqihar 161006 (China); Xing, Xueqing; Mo, Guang; Wu, Zhonghua [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, Hong, E-mail: lhong68@sina.com.cn [School of Biomedical Engineering, Capital Medical University, Beijing 100069 (China)

    2015-11-01

    Liquid Ga could be used as a flexible heat-transfer medium or contact medium in the synchrotron-radiation-based instruments. The chemical stability of liquid Ga on other metal surface determines the serviceability of liquid Ga. In this paper, the oxidation evolutions of liquid Ga on Ni and Cu substrates have been investigated by in-situ grazing incidence small angle X-ray scattering (GISAXS) as a function of substrate temperature. The liquid Ga on Ni and Cu substrates shows different oxidation behaviors. A successive and slower oxidation from oxide clusters to oxide layer takes place with temperature increasing from 25 to 190 °C on the surface of the Ga/Ni/Si specimen, but a quick oxidation occurs on the entire surface of the Ga/Cu/Si specimen at the initial 25 °C. The subsequent heating increases the surface roughness of both liquid Ga, but increases simultaneously the surface curvature of the Ga/Cu/Si specimen. The understanding of the substrate-dependent oxidation behavior of liquid Ga is beneficial to its application as a heat-transfer medium.

  8. Magnetization reversal process and nonlinear magneto-impedance in Cu/NiFe and Nb/NiFe composite wires

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.S.; Buznikov, N.A. E-mail: n_buznikov@mail.ru; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M

    2002-08-01

    The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors.

  9. Magnetization reversal process and nonlinear magneto-impedance in Cu/NiFe and Nb/NiFe composite wires

    International Nuclear Information System (INIS)

    Antonov, A.S.; Buznikov, N.A.; Granovsky, A.B.; Iakubov, I.T.; Prokoshin, A.F.; Rakhmanov, A.L.; Yakunin, A.M.

    2002-01-01

    The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors

  10. Cu hydrotalcite-like compounds: Morphological, structural and microstructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, D. Rosales [Instituto Politecnico Nacional, ESIQIE, Av. IPN s/n, Edif. 8, UPALM, Mexico D.F. 07738 (Mexico); Zeifert, B.H. [Instituto Politecnico Nacional, ESIQIE, Av. IPN s/n, Edif. 8, UPALM, Mexico D.F. 07738 (Mexico)]. E-mail: bzeifert@yahoo.com; Garduno, M. Hesiquio [Instituto Politecnico Nacional, ESFM, Av. IPN s/n, Edif. 9, UPALM, Mexico D.F. 07738 (Mexico)]. E-mail: miguelhg@esfm.ipn.mx; Blasquez, J. Salmones [Instituto Politecnico Nacional, ESIQIE, Av. IPN s/n, Edif. 8, UPALM, Mexico D.F. 07738 (Mexico)]. E-mail: jose_salmones@yahoo.com.mx; Serrano, A. Romero [Instituto Politecnico Nacional, ESIQIE, Av. IPN s/n, Edif. 8, UPALM, Mexico D.F. 07738 (Mexico)

    2007-05-31

    Copper containing mixed oxides are widely employed as catalysts for the synthesis of methanol, higher alcohol, hydrocarbons from syngas at low temperature and pressure, and for NiO {sub x} reduction. In this work, a series of Mg-Al-Cu, as hydrotalcite-like compounds (Cu-HTlcs) precursors of mixed oxides were synthesized by direct coprecipitation. The effect of pH, Cu content and mechanical milling on the structure and texture of these materials was investigated. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning and transmission electron microscopy and BET surface area measurements. The results showed that the materials were nanocrystalline powders. The Cu-HTlcs has a hexagonal unit cell. The a and c parameters increased as a function of the Cu content in both milled and non-milled samples. Crystallite size also increased with Cu content in both cases and smaller for non-milled samples. In contrast, microstrain values were greater for milled samples. BET area decreased with Cu content and showed that materials synthesized were mesoporous type. Mechanical milling did not destroy the morphology of the samples.

  11. Cu hydrotalcite-like compounds: Morphological, structural and microstructural properties

    International Nuclear Information System (INIS)

    Suarez, D. Rosales; Zeifert, B.H.; Garduno, M. Hesiquio; Blasquez, J. Salmones; Serrano, A. Romero

    2007-01-01

    Copper containing mixed oxides are widely employed as catalysts for the synthesis of methanol, higher alcohol, hydrocarbons from syngas at low temperature and pressure, and for NiO x reduction. In this work, a series of Mg-Al-Cu, as hydrotalcite-like compounds (Cu-HTlcs) precursors of mixed oxides were synthesized by direct coprecipitation. The effect of pH, Cu content and mechanical milling on the structure and texture of these materials was investigated. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning and transmission electron microscopy and BET surface area measurements. The results showed that the materials were nanocrystalline powders. The Cu-HTlcs has a hexagonal unit cell. The a and c parameters increased as a function of the Cu content in both milled and non-milled samples. Crystallite size also increased with Cu content in both cases and smaller for non-milled samples. In contrast, microstrain values were greater for milled samples. BET area decreased with Cu content and showed that materials synthesized were mesoporous type. Mechanical milling did not destroy the morphology of the samples

  12. Interphase Constituent of Laminated Composites Ti46Zr26Cu17Ni11

    Directory of Open Access Journals (Sweden)

    XU Bingtong

    2017-10-01

    Full Text Available Thermal analysis of the Ti46Zr26Cu17Ni11 amorphous ribbon prepared by melt spinning was conducted by using DSC. Accordingly the amorphous alloy was treated by vacuum heat treatment at 693 K (Tg, 753 K (Tg-Tx1 and 813 K (> Tx1 for different time to analyze the crystallization behavior. Taking Ti46Zr26Cu17Ni11 amorphous alloy, TA2 and pure Al as raw materials, laminated composites were fabricated by Gleeble-3500 thermal simulator at 873 K, 10 MPa and 8 h. The phase composition, precipitation order and properties of interface layers were investigated by SEM, TEM, micro hardness tester, combined thermodynamics and element diffusion theory. The results indicate that the glass transition temperature Tg of Ti46Zr26Cu17Ni11 amorphous is 720 K and the initial crystallization temperature Tx1 is 788 K. The I phase is crystallized from the amorphous at first, followed by a ternary or quaternary Laves phase and a TiNi phase precipited. After hot pressing, the interface between pure Al and crystallization layer is divided into two parts, which are Al3Ni with small thickness and Al3(Ti0.6Zr0.4 with fine grain and uniform microstructure. The interfaces are straight and there are no defects, with a thickness ratio of about 6.5:1 compared with interface layer between pure Ti with Al. The hardness of Al3(Ti0.6Zr0.4 and Al3Ti are 564.2HV and 579.8HV respectively. The plasticity of Al3(Ti0.6Zr0.4 layer is better.

  13. Structural characterization of two new quaternary chalcogenides: CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E.; Grima-Gallardo, Pedro; Nieves, Luis, E-mail: gerzon@ula.ve [Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Cabrera, Humberto [Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Cientificas (IVIC), Merida (Venezuela, Bolivarian Republic of); Glenn, Jennifer R.; Aitken, Jennifer A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA (United States)

    2016-11-15

    The crystal structure of the chalcogenide compounds CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4} , two new members of the I-II{sub 2}-III-VI{sub 4} family, were characterized by Rietveld refinement using X-ray powder diffraction data. Both materials crystallize in the tetragonal space group I4-bar 2m (No. 121), Z = 2, with a stannite-type structure, with the binaries CoTe and NiTe as secondary phases. (author)

  14. The mobility of growth twins synthesized by sputtering: Tailoring the twin thickness

    International Nuclear Information System (INIS)

    Velasco, Leonardo; Hodge, Andrea M.

    2016-01-01

    The current work presents a protean twin thickness contour zone map that illustrates how the nucleation and the mobility of twin boundaries affects the twin thickness of sputtered films. The twin thickness contour zone map can be used as a versatile guide to synthesize fully nanotwinned films with tailored twin thicknesses in materials with a wide range of stacking fault energies. The nucleation and mobility of twin boundaries was studied in four Cu alloys of different compositions (Cu-6wt.%Al, Cu-4wt.%Al, Cu-2wt.%Al, and Cu-10wt.%Ni), having stacking fault energies ranging from 6 mJ/m 2 to 60 mJ/m 2 . The films were synthesized by magnetron sputtering and characterized by transmission electron microscopy, where the twin thickness varied from 2 nm to 35 nm. Our experimental results show that it is possible to control the twin thickness. Three main mechanisms are explained to describe twin nucleation and twin boundary mobility, which are correlated to the interplay of specific sputtering conditions and the deposition temperature.

  15. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu-Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu-Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2-18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than -19 dB in 2-18 GHz, and the maximum of -23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu-Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu-Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  16. Artificial neural networks study of the catalytic reduction of resazurin: stopped-flow injection kinetic-spectrophotometric determination of Cu(II) and Ni(II)

    International Nuclear Information System (INIS)

    Magni, Diana M.; Olivieri, Alejandro C.; Bonivardi, Adrian L.

    2005-01-01

    An artificial neural network (ANN) procedure was used in the development of a catalytic spectrophotometric method for the determination of Cu(II) and Ni(II) employing a stopped-flow injection system. The method is based on the catalytic action of these ions on the reduction of resazurin by sulfide. ANNs trained by back-propagation of errors allowed us to model the systems in a concentration range of 0.5-6 and 1-15 mg l -1 for Cu(II) and Ni(II), respectively, with a low relative error of prediction (REP) for each cation: REP Cu(II) = 0.85% and REP Ni(II) = 0.79%. The standard deviations of the repeatability (s r ) and of the within-laboratory reproducibility (s w ) were measured using standard solutions of Cu(II) and Ni(II) equal to 2.75 and 3.5 mg l -1 , respectively: s r [Cu(II)] = 0.039 mg l -1 , s r [Ni(II)] = 0.044 mg l -1 , s w [Ni(II)] = 0.045 mg l -1 and s w [Ni(II)] = 0.050 mg l -1 . The ANNs-kinetic method has been applied to the determination of Cu(II) and Ni(II) in electroplating solutions and provided satisfactory results as compared with flame atomic absorption spectrophotometry method. The effect of resazurin, NaOH and Na 2 S concentrations and the reaction temperature on the analytical sensitivity is discussed

  17. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics

    International Nuclear Information System (INIS)

    Pršić, S.; Savić, S.M.; Branković, Z.; Vrtnik, S.; Dapčević, A.; Branković, G.

    2015-01-01

    Highlights: • Sodium cobaltite was synthesized by mechanochemically assisted solid-state reaction and citric acid complex (CAC) method. • We investigated effect of Cu-doping in NaCo 2−x Cu x O 4 (x = 0, 0.01, 0.03, 0.05). • ICP analysis showed that the controlling of the samples composition is easier by the CAC method. • The Seebeck coefficient in Cu-doped samples was higher compared to the undoped one. • The highest figure of merit was observed in the sample with the lowest Cu concentration. - Abstract: In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo 2−x Cu x O 4 (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 °C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to γ-NaCo 2 O 4 and confirmed that desired compound was obtained in both syntheses procedures. The advantages and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu 2+ substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by the CAC method, and it was almost twice

  18. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pršić, S., E-mail: sanjaprsic@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Savić, S.M., E-mail: slavicas@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Branković, Z., E-mail: zorica.brankovic@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Vrtnik, S., E-mail: stane.vrtnik@ijs.si [Institute Jožef Stefan, Condensed Matter Physics, Jamova cesta 39, 1000 Ljubljana (Slovenia); Dapčević, A., E-mail: hadzi-tonic@tmf.bg.ac.rs [Department of General and Inorganic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Branković, G., E-mail: goran.brankovic@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia)

    2015-08-15

    Highlights: • Sodium cobaltite was synthesized by mechanochemically assisted solid-state reaction and citric acid complex (CAC) method. • We investigated effect of Cu-doping in NaCo{sub 2−x}Cu{sub x}O{sub 4} (x = 0, 0.01, 0.03, 0.05). • ICP analysis showed that the controlling of the samples composition is easier by the CAC method. • The Seebeck coefficient in Cu-doped samples was higher compared to the undoped one. • The highest figure of merit was observed in the sample with the lowest Cu concentration. - Abstract: In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo{sub 2−x}Cu{sub x}O{sub 4} (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 °C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to γ-NaCo{sub 2}O{sub 4} and confirmed that desired compound was obtained in both syntheses procedures. The advantages and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu{sup 2+} substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by

  19. Discontinuous precipitation and ordering in Ni/sub 2/V-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V D; Boyarshinova, T S; Shashkov, O D

    1986-12-01

    Ni-V-Cu system alloys were used to investigate the effect of ordering on over-saturated solid solution decomposition. It was discovered that ordering in the process of grain boundary migration (discontinuous disordering), stimulated changing of continuous precipitation mechanism for discontinuous one.

  20. The evaluation of Young's modulus and residual stress of Cu films by NiFe/Cu bilayer film microbridge tests

    International Nuclear Information System (INIS)

    Zhou Zhimin; Zhou Yong; Cao Ying; Ding Wen; Mao Haiping

    2008-01-01

    This paper proposes a method to estimate the thickness limit for single-layer microbridge tests and also the thickness limit of one film on another film with known thickness for bilayer microbridge tests. To evaluate the mechanical properties of the Cu film, which could not be measured by single-layer microbridge tests, the NiFe single-layer film and NiFe/Cu bilayer film on silicon substrate are fabricated onto the microbridge by the MEMS technique. A load–deflection experiment is conducted upon the ceramic shaft adhered to the microbridge center by means of the XP nanoindenter system. From single-layer microbridge theory, Young's modulus and the residual stress of the NiFe film are deduced to be 192.74 ± 8.10 GPa and 287.75 ± 16.18 MPa, respectively. The data are introduced into bilayer microbridge theory and Young's modulus and the residual stress of the copper film are calculated to be 118.71 ± 6.54 GPa and 41.34 ± 4.42 MPa, respectively. The experimental results correspond well with those of nanoindentation

  1. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep Chand, E-mail: dkuldeep.physics@gmail.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Kotnala, R.K., E-mail: rkkotnala@gmail.com [CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2017-02-15

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-T{sub c} ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni{sup 2+}, Cu{sup 2+}, Ce{sup 3+} ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism. - Graphical abstract: The lattice defects/vacancies attributed by Ni and Ce ions in the wurtzite ZnO structure are responsible in high T{sub c} -ferromagnetism due to long-range magnetic

  2. A study of the annealing and mechanical behaviour of electrodeposited Cu-Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pickup, C.J.

    1997-08-01

    The mechanical strength of electrodeposited Cu-Ni multilayers is known to vary with deposition wavelength. Since layered coatings are harder and more resistant to wear and abrasion than non-layered coatings, this technique is of industrial interest. Optimisation of the process requires a better understanding of the strengthening mechanisms and the microstructural changes which affect such mechanisms. The work presented in this thesis presents the characterisation a series of Cu-Ni multilayers, covering a wide range of thicknesses of the individual layers in the multilayer, using X-ray diffraction, cross-section TEM, hardness testing and tensile testing. Further, the effects of high temperature annealing on interdiffusion and on changes in internal stresses are documented. (au). 176 refs.

  3. A study of the annealing and mechanical behaviour of electrodeposited Cu-Ni multilayers

    International Nuclear Information System (INIS)

    Pickup, C.J.

    1997-08-01

    The mechanical strength of electrodeposited Cu-Ni multilayers is known to vary with deposition wavelength. Since layered coatings are harder and more resistant to wear and abrasion than non-layered coatings, this technique is of industrial interest. Optimisation of the process requires a better understanding of the strengthening mechanisms and the microstructural changes which affect such mechanisms. The work presented in this thesis presents the characterisation a series of Cu-Ni multilayers, covering a wide range of thicknesses of the individual layers in the multilayer, using X-ray diffraction, cross-section TEM, hardness testing and tensile testing. Further, the effects of high temperature annealing on interdiffusion and on changes in internal stresses are documented. (au)

  4. A study on the cementation of Cu, Ni and Co ions with Mn powders in chloride solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Jae-Woo [Daejin University, Pochun-gun(Korea); Ahn, Jong-Gwan [Korea Univ., Seoul(Korea); Park, Kyung-Ho [Korea Institute of Geology Mining and Materials, Taejeon (Korea)

    2000-06-30

    A study on the cementation for the recovery of Cu, Ni and Co with Mn metallic powders in leaching solution from the manganese nodule that have removed Fe ions was studied. The results showed that the recovery efficiencies of metal ions with Mn powders increased when the temperature, pH and the concentration of chloride ions were increased in mixed solution. And the recovery efficiencies of Cu was 98% and not changed with the addition amounts of Mn powders but, in case of Co and Ni, the recovery efficiencies were increased with the addition amounts. The particle size of precipitate was about 5 {mu}m. From the results of experiment we proposed the two-step cementation process for the recovery of Cu, Ni and Co with Mn powders. (author). 9 refs., 4 tabs., 14 figs.

  5. Thermal and mechanical properties of the Zr53Cu30Ni9Al8 based bulk metallic glass microalloyed with silicon

    International Nuclear Information System (INIS)

    Jang, Jason S.C.; Jian, S.R.; Chang, C.F.; Chang, L.J.; Huang, Y.C.; Li, T.H.; Huang, J.C.; Liu, C.T.

    2009-01-01

    The amorphous alloy rods of (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x (x = 0.25, 0.5, 0.75, 1) with a diameter of 2-6 mm were prepared by drop casting method in an Ar atmosphere. The thermal properties, including glass forming ability (GFA) and thermal stability during isothermal annealing of these amorphous alloys, and the mechanical properties have been systematic investigated by the combination of DSC, XRD, SEM, TEM, and compression test. The result of X-ray diffraction reveals that these entire (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloy rods exhibit a typical amorphous diffraction pattern with only a broad maximum around 2θ around 40 degree. Both T g (glass transition temperature) and T x (crystallization temperature) of these (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloys increase with the silicon addition. In addition, both the activation energy of crystallization and the incubation time of isothermal annealing these (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x amorphous alloys indicate that the (Zr 53 Cu 30 Ni 9 Al 8 ) 99.25 Si 0.75 alloy possesses the best thermal stability in the (Zr 53 Cu 30 Ni 9 Al 8 ) 100-x Si x alloy system. In parallel, the result of compression test shows that the yield strength increases with the addition of Si content and reaches to a maximum value about 1750 MPa with 3% plastic strain for the (Zr 53 Cu 30 Ni 9 Al 8 ) 99.25 Si 0.75 amorphous alloy.

  6. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mani Menaka, S., E-mail: manimenaka.phy@gmail.com [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Umadevi, G. [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Manickam, M. [SRMV College of Arts and Science, Coimbatore, 641020, Tamilnadu (India)

    2017-04-15

    The spray pyrolysis (SP) technique is an important and powerful method for the preparation of nickel oxide (NiO) and copper-doped nickel oxide thin films. The best films were obtained when the substrate temperature, T{sub s} = 450 °C on glass substrates. Copper (Cu) concentrations in the films were varied from 0 to 8%. The effect of Cu concentration on the structural, morphological, spectral, optical, and electrical properties of the thin films were studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), UV–vis–NIR spectrophotometer, Hot probe and Hall system. The X-ray diffraction result shows the polycrystalline cubic structure of sprayed films with (200) preferred orientation. The variations of the structural parameters such as lattice parameters and grain sizes were investigated. The SEM image displays the surface morphology of the NiO and Cu:NiO thin films. The FTIR of the as-deposited films were associated with chemical identification. The optical transmittance and absorbance spectra of the films were measured by UV–vis–NIR spectrophotometer. The absorption coefficient and band gaps of the films were calculated using the optical method. All the NiO and Cu:NiO films were p-type. The resistivity of the above films decreases with the increase in copper concentration and so the conductivity of the films depend on the precursor concentration. - Highlights: • Pure and Cu:NiO films were deposited by Spray pyrolysis technique. • The XRD result shows the polycrystalline nature of pure and Cu:NiO films. • The formation of pure and Cu:NiO were confirmed by FTIR analysis. • Band gap values of pure and Cu:NiO decreases. • All the pure and Cu:NiO films were p-type.

  7. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Mani Menaka, S.; Umadevi, G.; Manickam, M.

    2017-01-01

    The spray pyrolysis (SP) technique is an important and powerful method for the preparation of nickel oxide (NiO) and copper-doped nickel oxide thin films. The best films were obtained when the substrate temperature, T_s = 450 °C on glass substrates. Copper (Cu) concentrations in the films were varied from 0 to 8%. The effect of Cu concentration on the structural, morphological, spectral, optical, and electrical properties of the thin films were studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), UV–vis–NIR spectrophotometer, Hot probe and Hall system. The X-ray diffraction result shows the polycrystalline cubic structure of sprayed films with (200) preferred orientation. The variations of the structural parameters such as lattice parameters and grain sizes were investigated. The SEM image displays the surface morphology of the NiO and Cu:NiO thin films. The FTIR of the as-deposited films were associated with chemical identification. The optical transmittance and absorbance spectra of the films were measured by UV–vis–NIR spectrophotometer. The absorption coefficient and band gaps of the films were calculated using the optical method. All the NiO and Cu:NiO films were p-type. The resistivity of the above films decreases with the increase in copper concentration and so the conductivity of the films depend on the precursor concentration. - Highlights: • Pure and Cu:NiO films were deposited by Spray pyrolysis technique. • The XRD result shows the polycrystalline nature of pure and Cu:NiO films. • The formation of pure and Cu:NiO were confirmed by FTIR analysis. • Band gap values of pure and Cu:NiO decreases. • All the pure and Cu:NiO films were p-type.

  8. Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder

    International Nuclear Information System (INIS)

    Bohlouli-Zanjani, Golnaz; Wen, John Z.; Hu, Anming; Persic, John; Ringuette, Sophie; Zhou, Y. Norman

    2013-01-01

    Highlights: • First study on the copper modified powder-type Al nanoparticle and NiO nanowire composites. • Experimental findings were unique in identifying the AlNi formation and comparing with the Al/CuO thermite. • Potential applications in material joining and bonding. - Abstract: Thermo-chemical properties of the Al nanoparticle and NiO nanowire composites modified by the micro-sized copper additive were investigated experimentally. Their onset temperatures of ignition and energy release data per mass were characterized using differential thermal analysis measurements. These microstructures and chemical compositions of reaction products were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The fuel-rich Al/NiO/Cu composites produced two types of metallic spheres. Copper spheres were formed from melting and solidification of the copper additive, while AlNi composite spheres were identified by the energy dispersive X-ray spectroscopy and X-ray diffraction analyses. It was found that the amount of the copper additive did not significantly influence the onset temperature of thermite peaks, but caused a dramatic change in energy release. The aforementioned ignition and energetic properties were compared with these from the Al nanoparticle and CuO nanowire composites

  9. Microstructure, texture and magnetic properties of Ni-Cu-W substrates for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Andersen, Niels Hessel

    2013-01-01

    concentrations of copper, increasing the Cu-content to 10 at% and 15 at% leads to increased frequencies of annealing twins in the cube-textured matrix. It is suggested that the (Ni 95W5)100-xCux alloy with x=5 at% Cu may be a good candidate material for using as a substrate for coated conductors. © 2012 Elsevier...

  10. GRAIN-REFINEMENT AND THE RELATED PHENOMENA IN QUATERNARY Cu-Al-Ni-Ti SHAPE MEMORY ALLOYS

    OpenAIRE

    Sugimoto , K.; Kamei , K.; Matsumoto , H.; Komatsu , S.; Akamatsu , K.; Sugimoto , T.

    1982-01-01

    It was reported that the addition of a small amount of titanium (0.5 - 3.99%) to a Cu-13.93%Al-3.36%Ni ternary alloy resulted in a remarkable grain-refining. The original grain-size of about 750 microns under hot-rolled and quenched conditions of the ternary alloy was reduced to that of the order of about 100 microns by addition of tiatanium. It was suggested that several technical improvements of the mechanical properties of Cu-Al-Ni shape memory alloys, such as better formability, less crac...

  11. Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples

    Science.gov (United States)

    Fang, Gu; Chen, Chih-chi

    2015-07-01

    Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

  12. Structural evolution, thermomechanical recrystallization and electrochemical corrosion properties of Ni-Cu-Mg amorphous coating on mild steel fabricated by dual-anode electrolytic processing

    Energy Technology Data Exchange (ETDEWEB)

    Abdulwahab, M., E-mail: mabdulwahab@abu.edu.ng [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria (Nigeria); Fayomi, O.S.I., E-mail: ojosundayfayomi3@gmail.com [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Mechanical Engineering, Covenant University, Ota (Nigeria); Popoola, A.P.I., E-mail: popoolaapi@tut.ac.za [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa)

    2016-07-01

    Highlights: • The surface of the coat containing Ni-Cu-Mg alloy on mild steel have sufficiently enhanced the properties. • Isothermally treated composites demonstrated 45% increase in the micro-hardness and 79.6% corrosion resistance. • The thermal stability of the developed Ni-Cu-Mg thin films on mild steel was excellent. - Abstract: The electrolytic Ni-Cu based alloy coating with admixed interfacial blend of Mg have been successfully prepared on mild steel substrate by dual anode electroplating processes over a range of applied current density and dwell time. The electrocodeposition of Ni-Cu-Mg coating was investigated in the presence of other bath additives. The influence of deposition current on surface morphology, adhesion behavior, preferred crystal orientation, surface topography and electrochemical activity of Ni-Cu-Mg alloy coating on mild steel were systematically examined. The thermal stability of the developed composite materials was examined via isothermal treatment. Scanning electron microscope equipped with EDS, X-ray diffraction, Atomic force microscope, micro-hardness tester and 3 μmetrohm Potentiostat/galvanostat were used to compare untreated and isothermally treated electrocodeposited composite. The induced activity of the Ni-Cu-Mg alloy changed the surface modification and results to crystal precipitation within the structural interface by the formation of Cu{sub ,} Ni{sub 2}Mg{sub 3} phase. The obtained results showed that the introduction of Mg particles in the plating bath generally modified the surface and brings an increase in the hardness and corrosion resistance of Ni-Cu-Mg layers fabricated. Equally, isothermally treated composites demonstrated an improved properties indicating 45% increase in the micro-hardness and 79.6% corrosion resistance which further showed that the developed composite is thermally stable.

  13. Nanostructure investigation of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} synthesized by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Pransisco, Prengki, E-mail: prengkipransisco@gmail.com [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Badan Lingkungan Hidup Derah Kabupaten Empat Lawang South of Sumatera (Indonesia); Shafie, Afza, E-mail: afza@petronas.com.my; Guan, Beh Hoe, E-mail: beh.hoeguan@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} was successfully prepared by using sol-gel method. Heat treatment on material is always giving defect on properties of material. This paper investigates the effect of heat treatment on nanostructure of magnetic nanomaterial Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4}. According to thermo gravimetric analysis (TGA) that after 600°C there is no more weight loss detected and it was decided as minimum calcination temperature. Intensity, crystallite size, structure, lattice parameter and d-spacing of the material were investigated by using X-ray diffraction (XRD). High resolution transmission electron microscope (HRTEM) was used to examine nanostructure, nanosize, shape and distribution particle of magnetic material Ni{sub 0.5}Zn{sub 0.3}Cu{sub 0.2}Fe{sub 2}O{sub 4} and variable pressure field emission scanning electron microscope (VP-FESEM) was used to investigate the surface morphology and topography of the material. The XRD result shows single-phase cubic spinel structure with average crystallite size in the range of 25.6-95.9 nm, the value of the intensity of the material was increased with increasing temperature, and followed by lattice parameter was increased with increasing calcination temperature, value of d-spacing was relatively decreased with accompanied increasing temperature. From HRTEM result the distribution of particles was tend to be agglomerates with particle size of 7.8-17.68 nm. VP-FESEM result shows that grain size of the material increases with increasing calcination temperature and the surface morphology shows that the material is in hexagonal shape and it was also proved by mapping result which showing the presence each of constituents inside the compound.

  14. Construction of Hierarchical CuO/Cu₂O@NiCo₂S₄ Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes.

    Science.gov (United States)

    Zhou, Luoxiao; He, Ying; Jia, Congpu; Pavlinek, Vladimir; Saha, Petr; Cheng, Qilin

    2017-09-15

    Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu₂O@NiCo₂S₄) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu₂O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo₂S₄ nanosheets on the surface of CuO/Cu₂O nanowires to form the CuO/Cu₂O@NiCo₂S₄ core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo₂S₄ nanosheets is ~20 nm and the diameter of CuO/Cu₂O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm -2 at 10 mA cm -2 , good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm -2 ) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm -2 . These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  15. Structural and antimicrobial studies of coordination compounds of VO(II, Co(II, Ni(II and Cu(II with some Schiff bases involving 2-amino-4-chlorophenol

    Directory of Open Access Journals (Sweden)

    A. P. MISHRA

    2009-05-01

    Full Text Available Complexes of tailor-made ligands with life essential metal ions may be an emerging area to answer the problem of multi-drug resistance (MDR. The coordination complexes of VO(II, Co(II, Ni(II and Cu(II with the Schiff bases derived from 2-hydroxyacetophenone/2-chlorobenzaldehyde with 2-ami¬no-4-chlorophenol were synthesized and characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, ESR, FAB mass, thermal and magnetic susceptibility measurements. The FAB mass and thermal data show degradation of the complexes. The ligand A (2-hydroxyacetophenone-2amino-4-chlorophenol behaved as tridentate and ligand B (2-chlorobenzylidene-2-amino-4-chlorophenol as bidentate, coordinating through O and N donors. The complexes [VO(A(H2O]×xH2O, [M(A(H2On]×xH2O for Co and Ni, [Cu(A(H2O] and [VO(B2]×xH2O, [M(B2(H2On] for Co and Cu and [Ni(B2] exhibited coordination numbers 4, 5 or 6. X-ray powder diffraction data (a = 11.00417 Å, b = 11.706081 Å and c = 54.46780 Å showed that [Cu(CACP2(H2O2], complex 8, crystallized in the orthorhombic system. The in vitro biological screening effects of the investigated compounds were tested against the bacteria Escherichia coli, Staphylococcus aureus and Streptococcus fecalis and the fungi Aspergillus niger, Trichoderma polysporum and Candida albicans by the serial dilution method. A comparative study of the MIC values of the Schiff base and their [M(B2(H2O2] complexes (Co(II, complex 6 and Cu(II, complex 8, indicated that the metal complexes exhibited a higher or lower antimicrobial activity than 2-chlorobenzylidene-2-amino-4-chlorophenol as the free ligand (B.

  16. Microanalysis on CuInSe2 compound synthesized by mechanochemical processing

    International Nuclear Information System (INIS)

    Wu Sumei; Xue Yuzhi; Zhang Zhihua

    2010-01-01

    CuInSe 2 (CIS) compound has been synthesized by mechanochemical processing (MCP) with different process parameters. The effect of milling time and different molar ratios of Cu:In:Se was investigated. The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) for evaluating their crystal structure, grain size, morphology and composition. Field emission transmission electron microscopy (FETEM) was used to detect the smog particles produced during the milling. The results revealed that the obtained powder was chalcopyrite CuInSe 2 and the particle size was smaller than 5 μm after milling for 60 min. The EDS analysis indicated that the smog was volatile selenium. The composition of the products deviated from those of starting materials after MCP. The mechanism about mechanically induced self-propagating reaction which occurred during milling copper, indium and selenium powders was also discussed.

  17. Syntheses, spectroscopic and thermal analyses of cyanide bridged heteronuclear polymeric complexes: [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine or N-ethylethylenediamine; Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II))

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla

    2016-02-01

    Polymeric tetracyanonickelate(II) complexes of the type [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine (men) or N-ethylethylenediamine (neen); Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II)) have been prepared and characterized by FT-IR, Raman spectroscopy, thermal and elemental analysis techniques. Additionally, FT-IR and Raman spectral analyses of men and neen have experimentally and theoretically investigated in the range of 4000-250 cm-1. The corresponding vibration assignments of men and neen are performed by using B3LYP density functional theory (DFT) method together with 6-31 G(d) basis set. The spectral features of the complexes suggest that the coordination environment of the M(II) ions are surrounded by the two symmetry related men and neen ligands and the two symmetry related N atom of cyanide groups, whereas the Ni(II) atoms are coordinated with a square-planar to four C atoms of the cyanide groups. Polymeric structures of the complexes consist of one dimensional alternative chains of [M(L)2]2+ and [Ni(CN)4]2- moieties. The thermal decompositions in the temperature range 30-700 °C of the complexes were investigated in the static air atmosphere.

  18. Analysis, manufacture and characterization of Ni/Cu functionally graded structures

    International Nuclear Information System (INIS)

    Rubio, Wilfredo Montealegre; Paulino, Glaucio H.; Silva, Emilio Carlos Nelli

    2012-01-01

    Highlights: ► Functionally graded structures (FGSs) of nickel and copper can be manufactured. ► The hardness curve of FGS can be used for approximating the gradation function of elastic properties. ► The graded finite element approaches with great accuracy the FGS resonance frequencies obtained experimentally. -- Abstract: In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni–Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young’s modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young’s modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained.

  19. Cr(III,Mn(II,Fe(III,Co(II,Ni(II,Cu(II and Zn(II Complexes with Diisobutyldithiocarbamato Ligand

    Directory of Open Access Journals (Sweden)

    Mohammad Tarique

    2011-01-01

    Full Text Available The synthesis of sulphur and nitrogen containing dithiocarbamato ligand derived from diisobutylamine as well as its coordination compounds with 3d series transition metals is presented. These synthesized compounds were characterized on the basis of elemental analysis, conductometric measurements and IR spectral studies. The analytical data showed the stoichiometry 1:2 and 1:3 for the compounds of the types ML2 {M=Mn(II, Co(II, Ni(II, Cu(II and Zn(II} and M'L3{M'=Cr(III and Fe(III} respectively. The conductometric measurements proved the non-electrolytic behaviour of all the compounds. The bidentate nature of dithiocarbamato moiety was confirmed on the basis of IR spectral data.

  20. Effects of microstructure and CaO addition on the magnetic and mechanical properties of NiCuZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sea-Fue, E-mail: sfwang@ntut.edu.tw; Hsu, Yung-Fu; Liu, Yi-Xin; Hsieh, Chung-Kai

    2015-11-15

    In this study, the effects of grain size and the addition of CaCO{sub 3} on the magnetic and mechanical properties of Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramics were investigated. The bending strength of the ferrites increased from 66 to 84 MPa as the grain size of the sintered ceramics decreased from 10.25 μm to 7.53 μm, while the change in hardness was insignificant. The addition of various amounts of CaCO{sub 3} densified the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramics at 1075 °C. In the pure Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic, second phase CuO was segregated at the grain boundaries. With the CaCO{sub 3} content ≥1.5 wt%, a small amount of discrete plate-like second phase Fe{sub 2}CaO{sub 4} was observed, together with the disappearance of the second phase CuO. The grain size of the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic dropped from 7.80 μm to 4.68 μm, and the grain size distribution widened as the CaCO{sub 3} content increased from 0 to 5 wt%. Initially rising to 807 after CaCO{sub 3} addition up to 2.0 wt%, due to a reduced grain size, the Vickers hardness began to drop as the CaCO{sub 3} content increased. The bending strength grew linearly with the CaCO{sub 3} content and reached twice the value for the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic with an addition of 5.0 wt% CaCO{sub 3}. The initial permeability of the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic decreased substantially from 402 to 103 as the addition of CaCO{sub 3} in ferrite increased from 0 to 5 wt%, and the quality factor of the Ni{sub 0.5}Cu{sub 0.3}Zn{sub 0.2}Fe{sub 2}O{sub 4} ceramic was maximized at 95 for 1.0 wt% CaCO{sub 3} addition. - Highlights: • Effects of grain size and CaCO{sub 3} on the properties of NiCuZn ferrite were studied. • Bending strength increased with grain size of the ferrite but not in the hardness. • Bending strength reached a twice value for

  1. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Wang, Kunchan; Xia, Ming; Xiao, Tao; Lei, Ting; Yan, Weishan

    2017-01-01

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  2. Metallurgically prepared NiCu alloys as cathode materials for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kunchan; Xia, Ming [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Weishan [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-01-15

    Ni−Cu bimetallic alloys with Cu content of 5, 10, 20, 30 and 50 wt% are prepared by powder metallurgy method, which consisted of powder mixing, pressing and sintering processes. The X-ray diffraction (XRD) measurement confirms that all the five Ni−Cu alloys possess the f.c.c. structure. The hydrogen evolution reaction (HER) activity of the prepared Ni−Cu alloy electrodes was studied in 6 M KOH solution by cathodic current-potential curves and electrochemical impedance spectroscopy (EIS) techniques. It was found that the electrocatalytic activity for the HER depended on the composition of Ni−Cu alloys, where Ni−10Cu alloy exhibited considerably higher HER activity than Ni plate and other Ni−Cu alloys, indicative of its chemical composition related intrinsic activity. - Highlights: • Ni−Cu alloys with various Cu contents were prepared by powder metallurgy method. • Ni−Cu alloy exhibits chemical composition related synergistic effect for HER activity. • Ni−10Cu alloy electrode presents a most efficient activity for HER. • Two time constants are observed in Nyquist curve and both of them related to the kinetics of HER.

  3. Novel method for fabrication of integrated resistors on bilayer Ag/YBa2Cu3O7 films using Ni implantation

    International Nuclear Information System (INIS)

    LaGraff, J.R.; Chan, H.; Murduck, J.M.; Hong, S.H.; Ma, Q.Y.

    1997-01-01

    A novel ion implantation method is described for fabricating low inductance integrated resistors on Ag/YBa 2 Cu 3 O 7 (YBCO) bilayer thin films. Parallel high and low value resistors were simultaneously formed by patterning bilayer films into 10-μm-wide lines, then masking and implanting with Ni to selectively inhibit superconductivity in YBCO. Low value resistors (<1Ω/sq) were formed at 77 K as the supercurrent bypassed the Ni-doped nonsuperconducting YBCO and was shunted through the overlying low resistivity Ag metal. High value resistors (20 - 140 Ω/sq) were formed by removing Ag from above the implanted YBCO forcing the current through the implanted YBCO region. The sheet resistance of both types of resistors was found to increase systematically with increasing Ni implant energy. copyright 1997 American Institute of Physics

  4. Separations on a cellulose exchanger with salicylic acid as functional group. [Fe/sup 3//sup+//Cu/sup 2//sup+/, Cu/sup 2//sup+//Ni/sup 2//sup+//, and Cu/sup 2//sup+//Cu complex separations

    Energy Technology Data Exchange (ETDEWEB)

    Burba, P; Lieser, K H [Technische Hochschule Darmstadt (F.R. Germany). Fachbereich Anorganische Chemie und Kernchemie

    1976-07-01

    The use of a cellulose compound containing salicylic acid as functional group (capacity 0.6 mequ./g) for different problems is described. The seperations Fe/sup 3 +//Cu/sup 2 +/ and Cu/sup 2 +//Ni/sup 2 +/ in aqueous solutions are achieved smoothly at pH 2 and 2.5 resp. In organic solvents (pyridine) copper ions are separated from copper complexes as shown by the examples Cu/sup 2 +//(Cu(mnt)/sub 2/)/sup 2 -/ (mnt = maleonitril-1,2-dithiolate) and Cu/sup 2 +//dibenzo(b.i.)(5.9.14.18)tetraazacyclotetradecene-copper (Cu(chel)). The complex (Cu(mnt)/sub 2/)/sup 2 -/ can be labelled with Cu-64 on a separation column, whereas (Cu-(chel)) is substition inert.

  5. Au-controlled enhancement of photoluminescence of NiS nanostructures synthesized via a microwave-assisted hydrothermal technique

    International Nuclear Information System (INIS)

    Linganiso, Ella Cebisa; Mwakikunga, Bonex Wakufwa; Mhlanga, Sabelo Dalton; Coville, Neil John

    2014-01-01

    Nickel sulphide (NiS) nanostructures decorated with gold (Au) nanoparticles (NPs) were synthesized via a microwave-assisted hydrothermal technique. Binary phase NiS (α and β) crystalline nanostructures, bare, and decorated with Au NPs were obtained and confirmed by X-ray diffraction (XRD) studies. TEM analysis revealed that the NiS nanostructures were of various shapes. A quantum confinement effect was confirmed by the blue shift PL emissions and high optical energy band gap observed for the as-synthesized sample. A threefold light emission enhancement due to Au NP coatings was obtained when Au metal NP decoration concentrations was varied from 1% to 10%. These enhancements were attributed to the surface plasmon resonance (SPR) excitation of the surface decorated metal NPs which results in an increased rate of spontaneous emission. The PL enhancement factor was observed to vary at different NiS emissions as well as with the size of the Au NPs. The effect of metal NP decoration on the PL emission of NiS is to the best of our knowledge, presented for the first time. - Highlights: • Binary phase NiS decorated with gold nanoparticles. • Quantum confinement effect confirmed by PL analysis. • PL enhancement depending more on particle size distribution. • Effect of gold on NiS PL is to the best of our knowledge reported for the first time

  6. Impact of deposition rate on the structural and magnetic properties of sputtered Ni/Cu multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karpuz, Ali [Karamanoglu Mehmetbey Univ., Karaman (Turkey). Dept. of Physics; Colmekci, Salih; Kockar, Hakan; Kuru, Hilal; Uckun, Mehmet [Balikesir Univ. (Turkey). Dept. of Physics

    2018-04-01

    The structural and corresponding magnetic properties of Ni/Cu films sputtered at low and high deposition rates were investigated as there is a limited number of related studies in this field. 5[Ni(10 nm)/Cu(30 nm)] multilayer thin films were deposited using two DC sputtering sources at low (0.02 nm/s) and high (0.10 nm/s) deposition rates of Ni layers. A face centered cubic phase was detected for both films. The surface of the film sputtered at the low deposition rate has a lot of micro-grains distributed uniformly and with sizes from 0.1 to 0.4 μm. Also, it has a vertical acicular morphology. At high deposition rate, the number of micro-grains considerably decreased, and some of their sizes increased up to 1 μm. The surface of the Ni/Cu multilayer deposited at the low rate has a relatively more grainy and rugged structure, whereas the surface of the film deposited at the high rate has a relatively larger lateral size of surface grains with a relatively fine morphology. Saturation magnetisation, M{sub s}, values were 90 and 138 emu/cm{sup 3} for deposition rates of 0.02 and 0.10 nm/s, respectively. Remanence, M{sub r}, values were also found to be 48 and 71 emu/cm{sup 3} for the low and high deposition rates, respectively. The coercivity, H{sub c}, values were 46 and 65 Oe for the low and high Ni deposition rates, respectively. The changes in the film surfaces provoked the changes in the H{sub c} values. The M{sub s}, M{sub r}, and H{sub c} values of the 5[Ni(10 nm)/Cu(30 nm)] films can be adjusted considering the surface morphologies and film contents caused by the different Ni deposition rates.

  7. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    Science.gov (United States)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  8. Temperature dependence of magnetic properties of Cu80Co19Ni1 thin microwires

    International Nuclear Information System (INIS)

    Garcia, C.; Zhukov, A.; Zhukova, V.; Larin, V.; Gonzalez, J.; Val, J.J. del; Knobel, M.

    2007-01-01

    In the present work, we report the studies of temperature dependence of magnetic properties in thin microwires with composition Cu 80 Co 19 Ni 1 . An extensive study of structural and magnetic characterization was realized. The structure was observed using X-ray diffraction with CuK α radiation. The magnetic measurements were carried out using a SQUID at temperatures between 5 and 300 K. The as-prepared Cu 80 Co 19 Ni 1 microwire presents a coercivity of about 80 Oe. The variation of the coercivity and remanent magnetization at 5-300 K were obtained from the hysteresis loops. From the difference of the ZFC and FC curves below T=100 K, we can assume the presence of small superparamagnetic grains embedded in the Cu matrix. Those superparamagnetic grains should be blocked at temperatures below the maximum of the magnetization observed below 50 K. The measurements show an unusual temperature dependence of the coercive field, consequence of a coexistence of blocked and unblocked particles, and the typical decreasing behaviour of the remanence increasing temperature

  9. CuCo_2O_4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications

    International Nuclear Information System (INIS)

    Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun

    2017-01-01

    Graphical abstract: The Ni- foam supported CuCo_2O_4 flowers exhibits a high specific capacity with superior long term cyclic stability. - Highlights: • This paper reports the hydrothermal preparation of CuCo_2O_4 flowers on Ni-foam. • The CuCo_2O_4 flowers exhibits maximum specific capacity of 645.1C g"−"1. • After 2000 cycles, 109% of the initial specific capacity was retained. - Abstract: The battery type CuCo_2O_4 electrode was evaluated as a positive electrode material for its hybrid supercapacitor applications. CuCo_2O_4 flowers were prepared on Ni-foam through a simple hydrothermal process and post calcination treatment. The structure and morphology of the CuCo_2O_4 flowers/Ni-foam was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy. FESEM clearly revealed the flower-like morphology, which was composed of large number of petals. The length and width of the petals ranged from approximately 5–8 μm and approximately 50–150 nm, respectively. The CuCo_2O_4 flowers/Ni-foam electrode was employed for electrochemical characterization for hybrid supercapacitor applications. The specific capacity of the CuCo_2O_4 flower-like electrode was 692.4C g"−"1 (192.3 mA h g"−"1) at a scan rate of 5 mV s"−"1. The flower-like CuCo_2O_4 electrode exhibited a maximum specific capacity of 645.1C g"−"1 (179.2 mA h g"−"1) at a specific current of 1 A g"−"1 and good long term cyclic stability. The high specific capacity, good cyclic stability, and low internal and charge transfer resistance of the CuCo_2O_4 flowers/Ni-foam electrode confirmed the suitability of the prepared material as a positive electrode for hybrid supercapacitor applications.

  10. Effects of Glucopone 215 CSUP Concentration on Size and Magnetic Property of Co-Ni-Cu Nanoparticles Prepared by Electrodeposition Method

    International Nuclear Information System (INIS)

    Abdul Razak Daud; Setia Budi; Shahidan Radiman

    2011-01-01

    Co-Ni-Cu nanoparticles were prepared by electrodeposition method at co-deposition potential of -925 mV (SCE) from sulphate solution (0.018 M Co 2+ + 0.180 M Ni 2+ + 0.002 M Cu 2+ ), both in the presence and in the absence of surfactant, Glucopone 215 CSUP. The effect of surfactant concentration on size and magnetic properties of Co-Ni-Cu nanoparticles produced was investigated. Surface morphology was analyzed using a field emission scanning electron microscope (FESEM) while its magnetic properties were investigated by a vibrating sampel magnetometer (VSM). Co-Ni-Cu nanoparticles prepared from the Glucopone 215 CSUP- containing solution were spherical with nanometer size. The finest particles were about 50 nm obtained when 5 v% of surfactant was used which was the highest surfactant concentration studied in this work. Coercivity (H c ) of the samples prepared from electrolytes containing surfactant was higher than those of prepared without surfactant. (author)

  11. Complexation of Cu2+, Ni2+ and UO22+ by radiolytic degradation products of bitumen

    International Nuclear Information System (INIS)

    Loon, L.R. Van; Kopajtic, Z.

    1990-05-01

    The radiolytic degradation of bitumen was studied under conditions which reflect those which will exist in the near field of a cementitious radioactive waste repository. The potential complexation capacity of the degradation products was studied and complexation experiments with Cu 2+ , Ni 2+ and UO 2 2+ were performed. In general 1:1 complexes with Cu 2+ , Ni 2+ and UO 2 2+ , with log K values of between 5.7 and 6.0 for Cu 2+ , 4.2 for Ni 2+ and 6.1 for UO 2 2+ , were produced at an ionic strength of 0.1 M. The composition of the bitumen water was analysed by GC-MS and IC. The major proportion of the bitumen degradation products in solution were monocarboxylic acids (acetic acid, formic acid, myric acid, stearic acid ...), dicarboxylic acids (oxalic acid, phthalic acid) and carbonates. The experimentally derived log K data are in good agreement with the literature and suggest that oxalate determines the speciation of Cu 2+ , Ni 2+ and UO 2 2+ in the bitumen water below pH=7. However, under the high pH conditions typical of the near field of a cementitious repository, competition with OH-ligands will be large and oxalate, therefore, will not play a significant role in the speciation of radionuclides. The main conclusion of the study is that the radiolytic degradation products of bitumen will have no influence on radionuclide speciation in a cementitious near field and, as such, need not to be considered in the appropriate safety assessment models. (author) 12 figs., 11 tabs., 31 refs

  12. Thermal stability and electrical characteristics of NiSi films with electroplated Ni(W) alloy

    International Nuclear Information System (INIS)

    Xin Yuhang; Hu Anmin; Li Ming; Mao Dali

    2011-01-01

    In this study, an electroplating method to deposited Ni, crystalline NiW(c-NiW), amorphous NiW (a-NiW) films on P-type Si(1 0 0) were used to form Ni-silicide (NiSi) films. After annealed at various temperatures, sheet resistance of Ni/Cu, c-NiW/Cu and a-NiW/Cu was measured to observe the performance of those diffusion barrier layers. With W added in the barrier layer, the barrier performance was improved. The results of XRD and resistance measurement of the stacked Si/Ni(W)/Cu films reveal that Cu atom could diffuse through Ni barrier layer at 450 deg. C, could diffuse through c-NiW at 550 deg. C, but could hardly diffuse through a-NiW barrier layer. c-NiW layer has a better barrier performance than Ni layer, meanwhile the resistance is lower than a-NiW layer.

  13. Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes.

    Science.gov (United States)

    Zhao, Zilong; Dong, Wenyi; Wang, Hongjie; Chen, Guanhan; Tang, Junyi; Wu, Yang

    2018-05-15

    This research explored the application of electro-Fenton (E-Fenton) technique for the simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by using iron sacrificing electrodes. Standard discharge (0.3 mg L -1 for Cu and 0.1 mg L -1 for Ni in China) could be achieved after 30 min reaction under the optimum conditions (i.e. initial solution pH of 2.0, H 2 O 2 dosage of 6 mL L -1  h -1 , current density of 20 mA/cm 2 , inter-electrode distance of 2 cm, and sulfate electrolyte concentration of 2000 mg L -1 ). The distinct differences in apparent kinetic rate constants (k app ) and intermediate removal efficiencies corresponding to mere and blended systems indicated the mutual promotion effect toward the decomplexation between Cu(II) and Ni(II). Massive accumulation of Fe(Ⅲ) favored the further removal of Cu(II) and Ni(II) by metal ion substitution. Species distribution results demonstrated that the decomplexation of metal-EDTA in E-Fenton process was mainly contributed to the combination of various reactions, including Fenton reaction together with the anodic oxidation, electro-coagulation (E-coagulation) and electrodeposition. Unlike hypophosphite and citrate, the presence of chlorine ion displayed favorable effects on the removal efficiencies of Cu(II) and Ni(II) at low dosage, but facilitated the ammonia nitrogen (NH 4 + -N) removal only at high dosage. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Evaluation of catalytic ferrispinel MFe_2O_4 (M = Cu, Co, Mn and Ni) in transesterification reaction

    International Nuclear Information System (INIS)

    Pereira, Kleberson Ricardo de Oliveira; Dantas, Joelda; Costa, Ana Cristina Figueiredo de Melo; Silva, Adriano Sant'Ana; Cornejo, Daniel Reinaldo

    2014-01-01

    Among the existing biofuels, biodiesel has achieved great economic and technological, for its potential to replace petroleum diesel and being biodegradable, have low emission of gaseous and be from renewable sources highlighted. In this context we propose to evaluate the performance of ferrispinel type MFe_2O_4, where M represents divalent metals (Cu, Co, Ni and Mn) in methyl transesterification reaction of soybean oil. The ferrispinel were synthesized by combustion reaction and characterized by XRD, FTIR and magnetic measurements. The results indicate that the synthesis is conducive to the production of ferrispinel with magnetization values ranging from 11.0 to 58.0 emu/g. The conversion values were 53; 55; 57 and 52 %, respectively, concluding that the type of divalent metal affects the morphology and hence the catalytic conversion. (author)

  15. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    Energy Technology Data Exchange (ETDEWEB)

    San Juan, J., E-mail: jose.sanjuan@ehu.es; Gómez-Cortés, J. F. [Dpto. Física Materia Condensada, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); López, G. A.; Nó, M. L. [Dpto. Física Aplicada II, Facultad de Ciencia y Tecnología, Univ. del País Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Jiao, C. [FEI, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  16. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films

    Science.gov (United States)

    Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.

    2013-04-01

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  17. Comparison of properties and microstructures of Trefimetaux CuNiBe and Hycon 3HP {sup TM} before and after neutron irradiation. (ITER R and D Task no. T213)

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Materials Development. Group, Richland (United States); Eldrup, M.; Toft, P.; Singh, B.N

    2000-07-01

    The precipitation strengthened CuNiBe alloys are among the three candidate copper alloys that are being evaluated for application in the first wall, divertor, and limiter components of ITER. Generally, CuNiBe alloys have higher strength but poorer conductivity compared to CuCrZr and Cu-A1{sub 2}O{sub 3} alloys. Brush-Wellman Inc. has developed an improved version of their Hycon CuNiBe alloy that has higher conductivity while maintaining a reasonable level of strength. In the present work we have investigated the physical and mechanical properties of the Hycon 3HP{sup TM} alloy both before and after neutron irradiation and have compared its microstructure and properties with the European CuNiBe candidate alloy manufactured by Trefimetaux. Tensile specimens of both alloys were irradiated in the DR-3 reactor at Risoe to displacement dose levels of up to 0.3 dpa at 100, 250 and 350 {sup d}eg{sup C}. Both alloys were tensile tested in vacuum in the unirradiated and irradiated conditions at 100, 250 and 350 {sup d}eg{sup C} and the microstructures of the alloys were investigated using transmission electron microscopy. Electrical resistivity measurements were made on tensile specimens be-fore and after irradiation; all measurements were made at 23 {sup d}eg{sup C}. Results of these investigations are presented and discussed in terms of the sensitivity of these alloys to test temperature, which becomes increasingly problematic when the irradiation and test temperature reaches 250 {sup d}eg{sup C} and above. (au)

  18. Removal of Cu2+ from Wastewater Using Synthesized Magnetite Bentonite Nano-absorbent

    Directory of Open Access Journals (Sweden)

    Gholamhossein Nourmohammadi

    2015-12-01

    Full Text Available The objective of the present study was to investigate absorption of copper from wastewater using the synthesized magnetite (Fe3O4 bentonite nanoadsorbent. Synthesized magnetite-bentonite nanoparticles (20‒40 nm were produced using the coprecipitation method and subsequently subjected to Scanning Electron Microscopy (SEM, X-Ray Diffraction (XRD, and Fourier Transform Infrared Spectroscopy (FT-IR for analysis and evaluation. The nanoparticles were finally used as an adsorbent in wastewater treatment. Experiments were also designed using the Design of Experiment (DOE software. Absorbent quantity, contact time, Cu+2 concentration , and pH were the most important factors selected for investigation. In a second step, the CCD design model was used to identify the optimum conditions for achieving the best metal ion absorption (removal efficiency. It was found that 89% of Copper metal ions were absorbed under optimum conditions. Finally, experiments were performed on the inorganic effluent (from the Sarcheshme Copper Mines under the optimum conditions. Results revealed a sorption content of 30% for Cu2+..

  19. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.

    2010-11-01

    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  20. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route

    International Nuclear Information System (INIS)

    Aslani, Alireza; Oroojpour, Vahid

    2011-01-01

    CuO nanostructures with different morphologies and sizes were grown in a controlled manner using a simple low-temperature hydrothermal technique. By controlling the pH of reaction mixture, spherical nanoparticles and cloudlike CuO structures were synthesized at 100-150 o C with excellent efficiency. These CuO nanostructures have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluated the surface resistance of the deposited layer as a function of operating temperature and CO concentrations. The gas sensitivity tests have demonstrated that the CuO nanostructures, especially cloudlike morphology, exhibit high sensitivity to CO proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of CuO is also discussed.

  1. Using precipitated Cr on the surface of Cu-Cr alloy powders as catalyst synthesizing CNTs/Cu composite powders by water-assisted CVD

    Science.gov (United States)

    Zhou, Honglei; Liu, Ping; Chen, Xiaohong; Bi, Liming; Zhang, Ke; Liu, Xinkuan; Li, Wei; Ma, Fengcang

    2018-02-01

    Given that the conventional catalyst is easily soluble in the matrix to result in the poor performance of the CNTs/Cu composite materials, the Cr nano-particles precipitated on the surface of Cu-Cr particles are first used as catalysts to prepare the CNTs/Cu composite powders by means of water-assisted chemical vapor deposition in situ synthesis. The results show that the morphological difference of the precipitated Cr nano-particle is obvious with the change of solution and aging treatment, and the morphology, length and diameter of the synthetic CNTs are also different. The catalyst of Cr nano-particle has the best morphology and the synthesized CNTs had a good wettability with Cu particles when the Cu-Cr composite powders was solution-treated at 1023 K for 60 min and then was aged at 723 K for 120 min. The length, diameter, yield and purity of the synthesized CNTs can be also affected by the moisture content in the reaction gas. It is the most suitable for the growth of CNTs when the moisture content is 0.4%, and the high purity and defect-free CNTs with the smooth pipe wall, a diameter of 20 ˜ 30 nm and a length of up to 1800 nm can be obtained. The yield of CNTs with the moisture content of 0.4% reached to 138%, which was increased by 119% to compare with that without moisture. In this paper, a feasible technology was offered for the preparation of high performance CNTs/Cu composites.

  2. Effect of Nickel Equivalent on Austenite Transition Ratio in Ni-Mn-Cu Cast Iron

    Directory of Open Access Journals (Sweden)

    Janus A.

    2013-06-01

    Full Text Available Determined was quantitative effect of nickel equivalent value on austenite decomposition degree during cooling-down castings of Ni-Mn- Cu cast iron. Chemical composition of the alloy was 1.8 to 5.0 % C, 1.3 to 3.0 % Si, 3.1 to 7.7 % Ni, 0.4 to 6.3 % Mn, 0.1 to 4.9 % Cu, 0.14 to 0.16 % P and 0.03 to 0.04 % S. Analysed were castings with representative wall thickness 10, 15 and 20 mm. Scope of the examination comprised chemical analysis (including WDS, microscopic observations (optical and scanning microscopy, image analyser, as well as Brinell hardness and HV microhardness measurements of structural components.

  3. Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Roseker, W.; Sikorski, M.

    2004-01-01

    Pressure effects on glass transition temperature and supercooled liquid region of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass have been investigated by performing in situ high-temperature and high-pressure x-ray powder diffraction measurements using synchrotron radiation. The glass transition was det...... range of 0-2.2 GPa. This method opens a possibility to study the pressure effect of glass transition process in glassy systems under high pressures (>1 GPa). (C) 2004 American Institute of Physics.......Pressure effects on glass transition temperature and supercooled liquid region of a Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass have been investigated by performing in situ high-temperature and high-pressure x-ray powder diffraction measurements using synchrotron radiation. The glass transition...... was detected from the change of the slope of peak position as a function of temperature. It is found that the glass transition temperature increases with pressure by 4.4 K/GPa for the Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk glass, and the supercooled liquid range decreases with pressure by 2.9 K/GPa in a pressure...

  4. Thermolysis synthesis of pure phase NiO from novel sonochemical synthesized Ni(II) nano metal-organic supramolecular architecture.

    Science.gov (United States)

    Hanifehpour, Younes; Morsali, Ali; Mirtamizdoust, Babak; Joo, Sang Woo; Soltani, Behzad

    2017-07-01

    Nano-structures of a new supramolecular coordination compound of divalent nickel with the pyrazol (pzH) containing the terminal azide anions, [Ni(pzH) 2 (N 3 ) 2 ] (1), with discrete molecular architecture (DMA) in solid state was synthesized via sonochemical method. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction, IR, and elemental analysis. Compound 1 was structurally characterized by single crystal X-ray diffraction and the single-crystal X-ray data shows that the coordination number of Ni (II) ions is six, (NiN 6 ), with four N-donor atoms from neutral "pzH" ligands and two N-donors from two terminal azide anions. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are consistent with the crystal structure. The NiO nanoparticles were obtained by thermolysis of 1 at 180°C with oleic acid as a surfactant. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Teores de Fe, Mn, Zn, Cu, Ni E Co em solos de referência de Pernambuco

    Directory of Open Access Journals (Sweden)

    Caroline Miranda Biondi

    2011-06-01

    Full Text Available Metais pesados formam um grupo de elementos com particularidades relevantes e de ocorrência natural no ambiente, como elementos acessórios na constituição de rochas. Esses elementos, apesar de associados à toxidez, exigem tratamento diferenciado em relação aos xenobióticos, uma vez que diversos metais possuem essencialidade (Fe, Mn, Cu, Zn e Ni e benefício (Co comprovados para as plantas. Nesse contexto, o objetivo deste trabalho foi determinar os teores naturais dos metais Fe, Mn, Zn, Ni, Cu e Co nos solos de referência de Pernambuco. Foram coletadas amostras de solo nas três regiões fisiográficas (Zona da Mata, Agreste e Sertão, dos dois primeiros horizontes dos 35 solos de referência do Estado de Pernambuco. A digestão das amostras baseou-se no método 3051A (USEPA, 1998, e a determinação foi efetuada em ICP-OES. Correlações significativas foram estabelecidas entre os metais e entre estes e a fração argila do solo, em ambos os horizontes, indicando a associação comum da maioria dos metais com solos mais argilosos. A maioria dos solos apresentou teores de Fe, Mn, Zn, Cu, Ni e Co menores que os de solos de outras regiões do País, com litologia mais máfica, o que corrobora o fato de que os teores desses elementos são mais diretamente relacionados aos minerais Fe-magnesianos. Os resultados indicam baixo potencial dos solos de Pernambuco em liberar Cu, Co e Ni para plantas, enquanto deficiências de Zn, Fe e Mn são menos prováveis. Os teores naturais de Fe, Mn, Zn, Cu, Ni e Co determinados podem ser utilizados como base para definição dos Valores de Referência de Qualidade para os solos de Pernambuco, de acordo com o preconizado pela legislação nacional.

  6. Fracture behaviour of Cu-Al-Ni shape memory alloys obtained by powder metallurgy

    International Nuclear Information System (INIS)

    Rodriguez, P. P.; Perez-Saez, R. B.; Recarte, V.; San Juan, J.M.; Ruano, O. A.; No, M. L.

    2001-01-01

    Polycrystalline Cu-Al-Ni shape memory alloys have been scarcely employed for technological applications due to their high brittleness. The development of a new elaboration technique based on powder metallurgy has recently overcome this problem, through the improvement of the ductility of the produced alloys without affecting its shape memory properties. The fracture behaviour of an alloy obtained using the elaboration technique has been studied by means of Scanning Electron Microscopy and mechanical testing. The results show a ductile fracture with a maximum strain close to 13%, which is the best fracture behaviour obtained for Cu-Al-Ni polycrystals. The microstructure of such alloys ha been studied by means of Transmission Electron Microscopy, showing a poligonyzed structure in which martensite plated passing through the subboundaries easily. (Author) 19 refs

  7. A novel sol–gel process to facilely synthesize Ni{sub 3}Fe nanoalloy nanoparticles supported with carbon and silica

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.Q. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); School of Physics and Information Technology, Ningxia Teachers University, Guyuan, Ningxia 756000 (China); Chen, L.Y.; Huang, H.F.; Xie, R.; Xia, W.B.; Wei, J.; Zhong, W. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); Tang, S.L., E-mail: tangsl@nju.edu.cn [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China); Du, Y.W. [Institute of Materials Engineering, Nanjing National Laboratory of Microstructures, Jiangsu Provincial Laboratory for Nanotechnology and School of Physics, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Graphical abstract: The TEM and HRTEM images and the magnetization curves taken in both zero-field-cooled (ZFC) and field-cooled (FC) modes of Ni{sub 3}Fe nanoparticles calcined at 300 °C for 2 h under Ar flowing. Display Omitted - Highlights: • Ultrafine Ni{sub 3}Fe nanoalloy nanoparticles were synthesized via a modified novel sol–gel process. • The prepared Ni{sub 3}Fe nanoalloy nanoparticles have a narrow size distribution. • The Ni{sub 3}Fe nanoparticles exhibit superparamagnetic behaviors at room temperature. - Abstract: In this paper, we present a modified novel silica sol–gel process and explored the possibility, for the first time, to synthesize binary nanoalloy nanoparticles. We successfully prepared ultrafine Ni{sub 3}Fe nanoparticles supported with carbon and silica via this simple one-pot reaction without H{sub 2} reduction. X-ray diffraction (XRD) and selected area electron diffraction (SAED) investigations of the Ni{sub 3}Fe nanoparticles show that the nanoparticles have a face-centered-cubic (fcc) crystal structure. The TEM images show that grain sizes of Ni{sub 3}Fe nanoparticles have a narrow size distribution. Moreover, the grain size of the nanoparticles is not very sensitive to the elevated annealing temperature. The Ni{sub 3}Fe nanoparticles exhibit typical superparamagnetic behavior at room temperature, and the blocking temperatures (T{sub B}) are determined by the temperature-dependent magnetization (M–T curves) measurements. This novel silica sol–gel method is expected to have broad applications in synthesizing nanoalloy nanoparticles.

  8. Microprobe measurements to determine phase boundaries and diffusion paths in ternary phase diagrams taking a Cu-Ni-Al system as an example

    International Nuclear Information System (INIS)

    Rudolph, G.

    1983-01-01

    With the aid of quantitative microprobe tests, diffusion phenomena and phase formation in the ternary CuNiAl system at 600 - 900 0 C were investigated taking as an example the diffusion couple CuNi5Al5-nickel. The diffusion paths in the ternary system are dependent on temperature and assume an S-form in the copper corner of the phase diagram. In the copper corner, the curves swing away from the more rapid component aluminium towards the copper. Due to this non-linear course of the curves, the intermetallic theta-phase of the type (Ni,Cu) 3 Al can be observed as a layer at all temperatures in the boundary zone. At 800 0 C and to a lesser extend at 900 0 C the solubility of α-CuNi40 for aluminium, at around 5 mass-%, is higher than the value given by W.O. Alexander (1938). As far as it is possible with the diffusion couple under analysis, the microprobe measurements taken otherwise conform at 700 and 600 0 C the position of the phase boundary α-(Cu,Ni)/(α+theta)-miscibility gap indicated in W.O. Alexander (1938). (Author)

  9. Indolenine meso-substituted dibenzotetraaza[14]annulene and its coordination chemistry toward the transition metal ions Mn(III), Fe(III), Co(II), Ni(II), Cu(II), and Pd(II).

    Science.gov (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Ali, Hapipah Mohd; Thomas, Noel F

    2013-02-18

    A new dibenzotetraaza[14]annulene bearing two 3,3-dimethylindolenine fragments at the meso positions (LH(2)), has been synthesized through a nontemplate method. X-ray crystallography shows that the whole molecule is planar. The basicity of the indolenine ring permits the macrocycle to be protonated external to the core and form LH(4)(2+)·2Cl(-). Yet another structural modification having strong C-H···π interactions was found in the chloroform solvate of LH(2). The latter two modifications are accompanied by a degree of nonplanar distortion. The antiaromatic core of the macrocycle can accommodate a number of metal ions, Mn(III), Fe(III), Co(II), Ni(II) and Cu(II), to form complexes of [Mn(L)Br], [Mn(L)Cl], [Fe(LH(2))Cl(2)](+)·Cl(-), [Co(L)], [Ni(L)], and [Cu(L)]. In addition, the reaction of LH(2) with the larger Pd(II) ion leads to the formation of [Pd(2)(LH(2))(2)(OAc)(4)] wherein the macrocycle acts as a semiflexible ditopic ligand to coordinate pairs of metal ions via its indolenine N atoms into dinuclear metallocycles. The compounds LH(2), [Co(L)], and [Ni(L)] are isostructural and feature close π-stacking as well as linear chain arrangements in the case of the metal complexes. Variable temperature magnetic susceptibility measurements showed thermally induced paramagnetism in [Ni(L)].

  10. Typical failures of CuNi 90/10 seawater tubing systems and how to avoid them

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Wilhelm [Technical Advisory Service, KM Europa Metal AG, Klosterstr. 29, 49074 Osnabrueck (Germany)

    2004-07-01

    For many decades, copper-nickel alloy CuNi 90/10 (UNS C70600) has extensively been used as a piping material for seawater systems in shipbuilding, offshore, and desalination industries. Attractive characteristics of this alloy combine excellent resistance to uniform corrosion, remarkable resistance to localised corrosion in chlorinated seawater, and higher erosion resistance than other copper alloys and steel. Furthermore, CuNi 90/10 is resistant to biofouling providing various economic benefits. In spite of the appropriate properties of the alloy, instances of failure have been experienced in practice. The reasons are mostly attributed to the composition and production of CuNi 90/10 products compounds, occurrence of erosion-corrosion and corrosion damage in polluted waters. This paper covers important areas which have to be considered to ensure successful application of the alloy for seawater tubing. For this purpose, the optimum and critical operating conditions are evaluated. It includes metallurgical, design and fabrication considerations. For the prevention of erosion-corrosion, the importance of hydrodynamics is demonstrated. In addition, commissioning, shut-down and start-up measures are compiled that are necessary for the establishment and re-establishment of the protective layer. (author)

  11. Growth and microstructure formation of isothermally-solidified Zircaloy-4 joints brazed by a Zr-Ti-Cu-Ni amorphous alloy ribbon

    Science.gov (United States)

    Kim, K. H.; Lim, C. H.; Lee, J. G.; Lee, M. K.; Rhee, C. K.

    2013-10-01

    The microstructure and growth characteristics of Zircaloy-4 joints brazed by a Zr48Ti16Cu17Ni19 (at.%) amorphous filler metal have been investigated with regard to the controlled isothermal solidification and intermetallic formation. Two typical joints were produced depending on the isothermal brazing temperature: (1) a dendritic growth structure including bulky segregation in the central zone (at 850 °C), and (2) a homogeneous dendritic structure throughout the joint without segregation (at 890 °C). The primary α-Zr phase was solidified isothermally, nucleating to grow into a joint with a cellular or dendritic structure. Also, the continuous Zr2Ni and particulate Zr2Cu phases were formed in the segregated center zone and at the intercellular region, respectively, owing to the different solubility and atomic mobility of the solute elements (Ti, Cu, and Ni) in the α-Zr matrix. A disappearance of the central Zr2Ni phase was also rate-controlled by the outward diffusion of the Cu and Ni elements. When the detrimental Zr2Ni intermetallic phase was eliminated by a complete isothermal solidification at 890 °C, the strengths of the joints were high enough to cause yielding and fracture in the base metal, exceeding those of the bulk Zircaloy-4, at room temperature as well as at elevated temperatures (up to 400 °C).

  12. Corrosion Inhibition Study of Al-Cu-Ni Alloy in Simulated Sea-Water ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: A study on the inhibition of Al-Cu-Ni alloy in simulated ... which the percentage of Copper, and Nickel were kept .... proceed based on equation of reaction in eqn (4). Al .... Sodium-Modified A356.0-Type Al-Si-Mg Alloy in Simulated.

  13. HEAVY METALS (Ni, Cu, Zn AND Cd CONTENT IN SERUM OF RAT FED GREEN MUSSELS

    Directory of Open Access Journals (Sweden)

    Muhammad Yudhistira Azis

    2015-11-01

    Full Text Available Green mussel (Perna viridis can playing role as bio-indicator or biomonitoring agent for heavy-metalcontaminations in the sea. In this research, the concentrations of four elements Ni, Cu, Zn and Cd in P. viridis and in the serum of rat which orally feed by P. viridis were determined by Atomic Absorption Spectrometry (AAS following dry acid digestion. Parameter analysis was evaluated by determining confidence limit for the obtained results. The result showed that there was a sequence of heavy-metal content in green mussels sample and laboratory rats serum, such as Ni < Cd < Cu < Zn. Keywords: heavy metals, green mussels, laboratory rats serum, AAS

  14. Designing a New Ni-Mn-Sn Ferromagnetic Shape Memory Alloy with Excellent Performance by Cu Addition

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2018-02-01

    Full Text Available Both magnetic-field-induced reverse martensitic transformation (MFIRMT and a high working temperature are crucial for the application of Ni-Mn-Sn magnetic shape memory alloys. Here, by first-principles calculations, we demonstrate that the substitution of Cu for Sn is effective not only in enhancing the MFIRMT but also in increasing martensitic transformation, which is advantageous for its application. Large magnetization difference (ΔM in Ni-Mn-Sn alloy is achieved by Cu doping, which arises from the enhancement of magnetization of austenite due to the change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. This directly leads to the enhancement of MFIRMT. Meanwhile, the martensitic transformation shifts to higher temperature, owing to the energy difference between the austenite L21 structure and the tetragonal martensite L10 structure increases by Cu doping. The results provide the theoretical data and the direction for developing a high temperature magnetic-field-induced shape memory alloy with large ΔM in the Ni-Mn-Sn Heusler alloy system.

  15. Characterisation of the early stages of solute clustering in 1Ni-1.3Mn welds containing Cu

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J.M., E-mail: jonathan.hyde@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); National Nuclear Laboratory Ltd, B168 Harwell, Didcot, Oxon OX11 0QJ (United Kingdom); Burke, M.G. [Bechtel Bettis Inc., 814 Pittsburgh-McKeesport Blvd, West Mifflin, Pittsburgh 15122-0079 (United States); Boothby, R.M.; English, C.A. [National Nuclear Laboratory Ltd, B168 Harwell, Didcot, Oxon OX11 0QJ (United Kingdom)

    2009-04-15

    Microstructural characterisation of neutron irradiated low alloy steels is important for developing mechanistic understanding of irradiation embrittlement. This work is focused on the early stages of irradiation-induced clustering in a low Cu (0.03 wt%), high Ni ({approx}1 wt%) weld. The weld was irradiated at a very high dose rate and then examined by atom probe (energy-compensated position-sensitive atom probe (ECOPoSAP) and local electrode atom probe (LEAP)) with supporting microstructural information obtained by small angle neutron scattering (SANS) and positron annihilation (PALA). It was demonstrated that extreme care must be taken optimising parameters used to characterise the extent of clustering. This is particularly important during the early stages of irradiation-damage when the clusters are poorly defined and significant compositional variations are present in what is traditionally described as matrix. Analysis of the irradiated materials showed increasing clustering of Cu, Mn, Ni and Si with dose. In the low Cu steel the results showed that initially the irradiation damage results in clustering of Mn, Ni and Si, but at very high doses, at very high dose rates, redistribution of Si is significantly more advanced than that for Mn and Ni.

  16. Study on the occurrence of platinum in Xinjie Cu-Ni sulfide deposits by a combination of SPM and NAA

    International Nuclear Information System (INIS)

    Li Xiaolin; Zhu Jieqing; Lu Rongrong; Gu Yingmei; Wu Xiankang; Chen Youhong

    1997-01-01

    A combination of neutron-activation analysis (NAA) and scanning proton microprobe (SPM) was used to study the distribution of platinum-group elements (PGEs) in rocks and ores from Xinjie Cu-Ni deposit. The minimum detection limits of PGEs by NAA had been much improved by means of a nickel-sulfide fire-assay technique for pre-concentration of PGEs in the ore samples. A simple and effective method was developed for true element mapping in SPM experiments. A pair of moveable absorption filters was set up in the target chamber for high sensitivities of both major and trace elements. The bulk analysis results by NNA indicated that the PGE mineralization occurred at the base of Xinjie layered intrusion in clino-pyroxenite rocks and the Cu-Ni sulfide minerals disseminated within the rocks had high abundance level of PGEs. However, the micro-PIXE analysis of the Cu-Ni sulfide mineral grains did not find PGEs above the MDL of (6-9) x 10 -6 for Rh, Ru and Pd, and 6- x 10 -6 for Pt. The search for platinum occurrence in sulfide minerals was followed by scanning analysis of SPM when some smaller platinum enriched grains were found in the sulfide minerals. The microscopic analysis results suggested that platinum occurred in the Cu-Ni sulfide matrix as independent arsenide mineral grains. The chemical formula of the arsenide sperrylite was PtAs2. The information of the platinum occurrence was helpful to future mineralogical research and mineral processing and beneficiation of the Cu-Ni deposit

  17. Crystallization of Zr2PdxCu1-x and Zr2NixCu1-x Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Min [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    One interesting aspect of rretallic glasses is the numerous instances of the deviation of the phase selection from the amorphous state to thermodynamically stable phases during the crystallization process. Their devitrification pathways allow us to study the relationship between the original amorphous structure and their crystalline counter parts. Among the various factors of phase selections, size and electronic effects have been most extensively studied. Elucidating the phase selection process of a glassy alloy will be helpful to fill in the puzzle of the changes from disordered to ordered structures. In this thesis, Two model Zr2PdxCu1-x and Zr2NixCu1-x (x = 0, 0.25, 0.5, 0.75 and 1) glassy systems were investigated since: (1) All of the samples can be made into a homogenous metallic glass; (2) The atomic radii differ from Pd to Cu is by 11%, while Ni has nearly the identical atomic size compare to Cu. Moreover, Pd and Ni differ by only one valence electron from Cu. Thus, these systems are ideal to test the idea of the effects of electronic structure and size factors; (3) The small number of components in these pseudo binary systems readily lend themselves to theoretical modeling. Using high temperature X-ray diffraction (HTXRD) and thermal analysis, topological, size, electronic, bond and chemical distribution factors on crystallization selections in Zr2PdxCu1-x and Zr2NixCu1-x metallic glass have been explored. All Zr2PdxCu1-x compositions share the same Cu11b phase with different pathways of meta-stable, icosahedral quasicrystalline phase (i-phase), and C16 phase formations. The quasicrystal phase formation is topologically related to the increasing icosahedral short range order (SRO) with Pd content in Zr2PdxCu1-x system. Meta-stable C16 phase is competitive with

  18. Effect of Ni doping on structural and optical properties of Zn{sub 1−x}Ni{sub x}O nanopowder synthesized via low cost sono-chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Budhendra, E-mail: bksingh@ua.pt [TEMA-NRD, Mechanical Engineering Department, Aveiro Institute of Nanotechnology (AIN), University of Aveiro, 3810-193 Aveiro (Portugal); Kaushal, Ajay, E-mail: ajay.kaushal@ua.pt [Department of Ceramic and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, Igor [TEMA-NRD, Mechanical Engineering Department, Aveiro Institute of Nanotechnology (AIN), University of Aveiro, 3810-193 Aveiro (Portugal); Venkata Saravanan, K. [Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610101 (India); Ferreira, J.M.F. [Department of Ceramic and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-10-15

    Highlights: • Pure and Ni doped ZnO nanopowders were synthesized by low cost sonochemical method. • The optical properties of Zn{sub 1−x}Ni{sub x}O nanopowders can be tuned by varying Ni content. • The results reveal the solubility limit of Ni into ZnO matrix as below 8%. - Abstract: Zn{sub 1−x}Ni{sub x}O nanopowders with different Ni contents of x = 0.0, 0.04 and 0.08 were synthesized via cost effective sonochemical reaction method. X-ray diffraction (XRD) pattern reveals pure wurtzite phase of prepared nanostructures with no additional impurity peaks. The morphology and dimensions of nanoparticles were investigated using scanning electron microscope (SEM). A sharp and strong peak for first order optical mode for wurtzite zinc oxide (ZnO) structure was observed at ∼438 cm{sup −1} in Raman spectra. The calculated optical band gap (E{sub g}) from UV–vis transmission data was found to decrease with increase in Ni content. The observed red shift in E{sub g} with increasing Ni content in ZnO nanopowders were in agreement with band gap behaviours found in their photoluminescence (PL) spectra. The synthesised ZnO nanopowders with controlled band gap on Ni doping reveals their potential for use in various electronic and optical device applications. The results were discussed in detail.

  19. Crystal field and low energy excitations measured by high resolution RIXS at the L edge of Cu, Ni and Mn

    DEFF Research Database (Denmark)

    Ghiringhelli, G.; Piazzalunga, A.; Wang, X.

    2009-01-01

    of the 3d transition metals with unprecedented energy resolution, of the order of 100 meV for Mn, Ni and Cu. We present here some preliminary spectra on CuO, malachite, NiO, , MnO and . The dd excitations are very well resolved allowing accurate experimental evaluation of 3d state energy splitting. The low...

  20. (Cu,C)Ba2Ca3Cu4Ox (LiF)y: addition of LiF—an effective way to synthesize overdoped superconductor

    Science.gov (United States)

    Badica, P.; Iyo, A.; Aldica, G.; Kito, H.; Crisan, A.; Tanaka, Y.

    2004-03-01

    (Cu,C)Ba2Ca3Cu4Ox superconductor with addition of y mol LiF has been synthesized by a high-pressure method. For the same synthesis conditions it was found that (almost) single-phase Cu, C-1234 samples can be synthesized for yLiF = 0-0.1 if the amount of z mol AgO oxidizer is increased linearly from zAgO = 0.45 to 0.73 and for yLiF = 0.1-0.2 if zAgO = 0.73 = constant. Transport measurements (rgr(T) and room-temperature Seebeck coefficient) have shown that these samples are overdoped: LiF is an effective addition for synthesis of overdoped Cu, C-1234 with a controlled level of carriers. LiF addition continuously decreases Tc. The critical point at yLiF = 0.1 is discussed as the solubility limit of LiF and/or the point where the doping mechanism changes. It is proposed that the reason is the reaction of extra Li with C and O to form Li2CO3, inducing a lower concentration of C in Cu, C-1234/LiF crystals, and at the same time a possible substitution of Li not only for the Cu site but also for the Ca site, resulting in formation of a higher amount of residual Ca0.828CuO2 (for yLiF>0.1). LiF induces the formation of a liquid phase and acts as a flux promoting the formation of Cu,C-12 (n-1)n with n \\ge 4 . LiF modifies to some degree the grain growth from a 3D to a 2D type (thinner platelike grains have been observed in the LiF added samples).

  1. (Cu,C)Ba2Ca3Cu4Ox-(LiF)y: addition of LiF-an effective way to synthesize overdoped superconductor

    International Nuclear Information System (INIS)

    Badica, P; Iyo, A; Aldica, G; Kito, H; Crisan, A; Tanaka, Y

    2004-01-01

    (Cu,C)Ba 2 Ca 3 Cu 4 O x superconductor with addition of y mol LiF has been synthesized by a high-pressure method. For the same synthesis conditions it was found that (almost) single-phase Cu, C-1234 samples can be synthesized for y LiF = 0-0.1 if the amount of z mol AgO oxidizer is increased linearly from z AgO = 0.45 to 0.73 and for y LiF 0.1-0.2 if z AgO = 0.73 constant. Transport measurements (ρ(T) and room-temperature Seebeck coefficient) have shown that these samples are overdoped: LiF is an effective addition for synthesis of overdoped Cu, C-1234 with a controlled level of carriers. LiF addition continuously decreases T c . The critical point at y LiF = 0.1 is discussed as the solubility limit of LiF and/or the point where the doping mechanism changes. It is proposed that the reason is the reaction of extra Li with C and O to form Li 2 CO 3 , inducing a lower concentration of C in Cu, C-1234/LiF crystals, and at the same time a possible substitution of Li not only for the Cu site but also for the Ca site, resulting in formation of a higher amount of residual Ca 0.828 CuO 2 (for y LiF >0.1). LiF induces the formation of a liquid phase and acts as a flux promoting the formation of Cu,C-12 (n-1)n with n ≥ 4. LiF modifies to some degree the grain growth from a 3D to a 2D type (thinner platelike grains have been observed in the LiF added samples)

  2. Direct production of carbon nanofibers decorated with Cu2O by thermal chemical vapor deposition on Ni catalyst electroplated on a copper substrate

    Directory of Open Access Journals (Sweden)

    MA Vesaghi

    2012-12-01

    Full Text Available  Carbon nanofibers (CNFs decorated with Cu2O particles were grown on a Ni catalyst layer deposited on a Cu substrate by thermal. chemical vapor deposition from liquid petroleum gas. Ni catalyst nanoparticles with different sizes were produced in an electroplating system at 35˚C. These nanoparticles provide the nucleation sites for CNF growth, removing the need for a buffer layer. High temperature surface segregation of the Cu substrate into the Ni catalyst layer and its exposition to O2 at atmospheric environment, during the CNFs growth, lead to the production of CNFs decorated with Cu2O particles. The surface morphology of the Ni catalyst films and grown CNFs over it was studied by scanning electron microscopy. Transmission electron microscopy and Raman spectroscopy revealed the formation of CNFs. The selected area electron diffraction pattern and electron diffraction studies show that these CNFs were decorated with Cu2O nanoparticles.

  3. Assessment of Pb, Zn, Cu, Ni and Cr in vegetables grown around Zanjan

    Directory of Open Access Journals (Sweden)

    A. Afshari

    2017-05-01

    Full Text Available This study was conducted aimed to assess the potential risk of heavy metals on human health resulting from consumption of vegetables. To this end, the vegetables grown around town and industrial center of Zanjan were sampled randomly. Plant samples were digested using hydrochloric acid (HCL 2 M and concentration of elements (Pb, Zn, Cu, Ni and Cr were recorded by atomic absorption. Obtained means of heavy metals in all vegetables (N= 32 for Zn, Pb, Cu, Ni and Cr is 98.8, 31.9, 19.3, 4.4 and 2.3 mg/kg, respectively. The highest amount of metal pollution index (MPI in the basil and the lowest was observed in the garden cress (respectively 16.46 and 4.88. Daily intake (EDI for zinc, copper and chromium in all age groups was lower than the provisional tolerable daily intake (PTDI. This amount for nickel was 2, 1.6 and 1.3 %, and for Pb 28.1, 22 and 19 % higher than PTDI in children, adults and seniors, respectively. The potential risk (THQ was calculated in all age groups as Pb>>Cu>Zn>Ni>Cr. The potential risks (THQ of chromium, nickel and zinc were calculated lower than 1, for copper a bit more of 1 and for lead much higher than 1. Health index (HI for children, adults and the elderly was estimated 31.331, 24.58 and 21.14, respectively, with the largest contribution of the lead (89.7%.

  4. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    International Nuclear Information System (INIS)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-01-01

    Highlights: •LaNiO 2 films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO 2 . •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO 2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO 2 is isostructural to SrCuO 2 , the parent compound of high-T c Sr 0.9 La 0.1 CuO 2 with T c = 44 K, and has 3d 9 configuration, which is very rare in oxides but common to high-T c copper oxides. The bulk synthesis of LaNiO 2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO 2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO 2 . The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures

  5. Crystallization behavior and the thermal properties of Zr63Al7.5Cu17.5Ni10B2 bulk amorphous alloy

    International Nuclear Information System (INIS)

    Jang, J.S.C.; Chang, L.J.; Jiang, Y.T.; Wong, P.W.

    2003-01-01

    The ribbons of amorphous Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys with 0.1 mm thickness were prepared by melt spinning method. The thermal properties and micro structural development during the annealing of amorphous alloy have been investigated by a combination of differential thermal analysis, differential scanning calorimetry, high-temperature optical microscope, X-ray diffractometry and TEM. The glass transition temperature for the Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloys are measured about 645 K (372 C). This alloy also obtains a large temperature interval ΔT x about 63 K. Meanwhile, the calculated T rg for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy presents the value of 0.57. The activation energy of crystallization for the alloy Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 was about 370± 10 kJ/mole as determined by the Kissinger and Avrami plot, respectively. These values are about 20% higher than the activation energy of crystallization for the Zr 65 Al 7.5 Cu 17.5 Ni 10 alloy (314 kJ/mol.). This implies that the boron additions exhibit the effect of improving the thermal stability for the Zr-based alloy. The average value of the Avrami exponent n were calculated to be 1.75±0.15 for Zr 63 Al 7.5 Cu 17.5 Ni 10 B 2 alloy. This indicates that this alloy presents a crystallization process with decreasing nucleation rate. (orig.)

  6. Effects of Fabrication Parameters on Interface of Zirconia and Ti-6Al-4V Joints Using Zr55Cu30Al10Ni5 Amorphous Filler

    Science.gov (United States)

    Liu, Yuhua; Hu, Jiandong; Shen, Ping; Guo, Zuoxing; Liu, Huijie

    2013-09-01

    ZrO2 was brazed to Ti-6Al-4V using a Zr55Cu30Al10Ni5 (at.%) amorphous filler in a high vacuum at 1173-1273 K. The influences of brazing temperature, holding time, and cooling rate on the microstructure and shear strength of the joints were investigated. The interfacial microstructures can be characterized as ZrO2/ZrO2- x + TiO/(Zr,Ti)2(Cu,Ni)/(Zr,Ti)2(Cu,Ni,Al)/acicular Widmanstäten structure/Ti-6Al-4V. With the increase in the brazing temperature, both the thickness of the ZrO2- x + TiO layer and the content of the (Zr,Ti)2(Cu,Ni) phase decreased. However, the acicular Widmanstäten structure gradually increased. With the increase in the holding time, the (Zr,Ti)2(Cu,Ni) phase decreased, and the thickness of the (Zr,Ti)2(Cu,Ni) + (Zr,Ti)2(Cu,Ni,Al) layer decreased. In addition, cracks formed adjacent to the ZrO2 side under rapid cooling. The microstructures produced under various fabrication parameters directly influence the shear strength of the joints. When ZrO2 and Ti-6Al-4V couples were brazed at 1173 K for 10 min and then cooled at a rate of 5 K/min, the maximum shear strength of 95 MPa was obtained.

  7. Specific heat of the chiral-soliton-lattice phase in Yb(Ni0.94Cu0.06)3Al9

    Science.gov (United States)

    Ninomiya, Hiroki; Sato, Takaaki; Inoue, Katsuya; Ohara, Shigeo

    2018-05-01

    We have studied the monoaxial-chiral helimagnet YbNi3Al9 and its-substituted analogue Yb(Ni0.94Cu0.06)3Al9. These compounds belong to a chiral space group R32. In Yb(Ni0.94Cu0.06)3Al9 with the magnetic ordering temperature TM = 6.4 K , only when the magnetic field is applied perpendicular to the helical axis, the chiral soliton lattice is observed below Hc = 10 kOe . YbNi3Al9 with TM = 3.4 K exhibits a metamagnetic transition at Hc = 1 kOe in 2 K. To study the formation of chiral helimagnetic state and chiral soliton lattice, we have measured the specific heat in magnetic fields applied parallel and perpendicular to the helical axis. In zero field, with decreasing temperature, specific heat shows λ-type phase transition from paramagnetic state to chiral helimagnetic one. At the temperature where the chiral soliton lattice emerges, we have found that the specific heat shows a sharp peak. In addition, at around the crossover between paramagnetic state and forced-ferromagnetic one, a broad maximum has been observed. We have determined the magnetic phase diagrams of YbNi3Al9 and Yb(Ni0.94Cu0.06)3Al9.

  8. Nonmonotonic behaviour of superconducting critical temperature of Nb/CuNi bilayers with a nanometer range of layer thickness

    International Nuclear Information System (INIS)

    Morari, R.; Antropov, E.; Socrovisciuc, A.; Prepelitsa, A.; Zdravkov, V.I.; Tagirov, L.R.; Kupriyanov, M.Yu.; Sidorenko, A.S.

    2009-01-01

    Present work reports the result of the proximity effect investigation for superconducting Nb/CuNi-bilayers with the thickness of the ferromagnetic layer (Cu x Ni 1-x ) being in the sub-nanometer range. It was found a non-monotonic behavior of the critical temperature T c , i.e. its growth with the increasing of the ferromagnetic layer thickness dF, for the series of the samples with constant thickness of Nb layer, (d Nb = const). (authors)

  9. A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE).

    Science.gov (United States)

    Liu, Bo; Zhang, Hao; Lu, Qi; Li, Guanghe; Zhang, Fang

    2018-09-01

    To address the challenges of low hydrodechlorination efficiency by non-noble metals, a CuNi bimetallic cathode with nanostructured copper array film was fabricated for effective electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution. The CuNi bimetallic cathodes were prepared by a simple one-step electrodeposition of copper onto the Ni foam substrate, with various electrodeposition time of 5/10/15/20 min. The optimum electrodeposition time was 10 min when copper was coated as a uniform nanosheet array on the nickel foam substrate surface. This cathode exhibited the highest TCE removal, which was twice higher compared to that of the nickel foam cathode. At the same passed charge of 1080C, TCE removal increased from 33.9 ± 3.3% to 99.7 ± 0.1% with the increasing operation current from 5 to 20 mA cm -2 , while the normalized energy consumption decreased from 15.1 ± 1.0 to 2.6 ± 0.01 kWh log -1  m -3 . The decreased normalized energy consumption at a higher current density was due to the much higher removal efficiency at a higher current. These results suggest that CuNi cathodes prepared by simple electrodeposition method represent a promising and cost-effective approach for enhanced electrochemical dechlorination. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Spin glass and ferromagnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys: Multicritical points in the magnetic phase diagram

    International Nuclear Information System (INIS)

    Synoradzki, K.; Toliński, T.

    2016-01-01

    We report on the CeNi_4Mn (ferromagnet FM) - CeCu_4Mn (spin-glass SG) transformation leading to a complex magnetic phase diagram (MPD). It is verified that all the Ce(Cu_1_-_xNi_x)_4Mn alloys are isostructural and the transformation is governed only by the Cu-Ni substitution. MPD is built based on the magnetic dc/ac susceptibility measurements and reveals SG formation as well as the region of the coexistence of the FM and SG state in the middle range of the Ni concentration. The complex MPD is explained by clusters formation and a competition of interactions between various crystallographic sites of the hexagonal CaCu_5-type structure, mainly the 3g-3g and 3g-2c interactions. The predominance of the SG state is confirmed by the analysis of the frequency dependence of the ac magnetic susceptibility components and the relaxation of the remanent magnetization. Additionally, the presence of two multicritical points is observed. - Highlights: • We fully characterized the magnetic properties of Ce(Cu_1_-_xNi_x)_4Mn alloys. • We show the presence of complex magnetic behaviour due to atomic-site disorder. • Magnetic phase diagram revels mixed-phase ground state. • Two multicritical points on magnetic phase diagram occurs.

  11. Growth and characterization of NixCu1-x alloy films, NixCu1-x/NiyCu1-y multilayers, and nanowires

    International Nuclear Information System (INIS)

    Kazeminezhad, I.

    2001-12-01

    It was found that it is possible to grow Ni x Cu 1-x alloy systems of arbitrary composition by electrodepositing well-defined sub-monolayer quantities of Ni and Cu in alternation using a new method based on that used previously to prepare potentiostatically deposited magnetic multilayers from a single sulphamate-based electrolyte. Following growth, the chemical composition of Ni x Cu 1-x alloy films was obtained by ZAF-corrected energy dispersive X-Ray (EDX) analysis and less than a 4% difference between the nominal and actual composition was observed. The structure of the films was investigated by high-angle X-ray diffractometry (HAXRD) and transmission electron microscopy (TEM). The films grown on polycrystalline Cu substrates had (100) texture, while those grown on Au-coated glass had (111) texture. Some evidence of Ni clustering was obtained by vibrating sample magnetometry (VSM). Self-organisation of the deposited metal was suggested for Ni potentials more positive than ∼-1.4V. The transition from a Ni/Cu multilayer to a Ni x Cu 1-x alloy was also studied and an interesting aspect, namely a plateau region in a plot of magnetisation as a function of Ni layer thickness was observed, suggesting a preferred Ni cluster size in these alloy films. Anisotropic magnetoresistance (AMR) of the films decreased with increasing Cu content at 300K and 77K. SQUID measurements for Ni 0.52 Cu 0.48 and Ni 0.62 CU 0.38 films showed that they become much more strongly ferromagnetic at low temperatures. Evidence for blocked -superparamagnetic behaviour above a blocking temperature (T B ) of the films was obtained from zero-field-cooled (ZFC) and field-cooled (FC) magnetic susceptibility measurements. Ni x Cu 1-x /Ni y Cu 1-y alloy/alloy multilayer films with short repeat distance were successfully fabricated using this method. Up to third order satellite peaks observed in HAXRD showed that the interface is sharp. Room temperature longitudinal magnetoresistance measurements showed

  12. Internal friction of Ti-Ni-Cu ternary shape memory alloys

    International Nuclear Information System (INIS)

    Yoshida, I.; Monma, D.; Iino, K.; Ono, T.; Otsuka, K.; Asai, M.

    2004-01-01

    Low frequency internal friction was measured on three specimens of Ti-Ni-Cu ternary alloys, the Cu content varying from 10 to 20 at.%, while Ti content was fixed at 50 at.%. The internal friction spectrum consists mainly of two peaks, a sharper one associated with the B2-B19 transformation and the other one at around 250 K, which is much broader and higher than the former. The peak height of the latter is 0.2 for the specimen containing 20% Cu, which shows that this alloy can be an excellent high damping material. Transformation behavior was studied by electrical resistivity, thermopower and DSC measurements, and was compared with the result of internal friction measurements. Solution treatment at higher temperatures lowers the internal friction peak markedly. Scanning electron microscopy observation reveals that the behaviors of precipitates are different for different solution treatment temperature, suggesting that the precipitation behavior is crucial in the damping properties

  13. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    Science.gov (United States)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  14. 3d-metal doping (Fe,Co,Ni,Zn) of the high Tc perovskite YBa2Cu3O(7-y)

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Greene, L.H.; Hull, G.W.; Bagley, B.G.

    1988-01-01

    The structural, magnetic and superconducting properties of the mixed compounds YBa 2 Cu(3-x)M(x)O(7-y) (M = Ni,Zn,Fe, and Co) are reported. Values of y, determined by titration, are found to be dependent on the nature and amount of the doping. The range of solubility is greater for the Fe and Co compounds (x = 1) than for those with Ni or Zn (x = 0.3). The undoped material is orthorhombic and remains orthorhombic after substitution for Cu by Ni or Zn, whereas a tetragonal phase is observed when Fe, Co are substituted for Cu. DC resistance and AC susceptibility measurements show that Tc is depressed from 90K (x = 0) to 45K (x = 0.2) for both the Ni- and Zn-doped compounds, and Tc is destroyed in the Fe- and Co-doped compounds when x reaches 0.4. It is suggested that a valence of two be assigned to the Ni and Zn and three to the Fe and Co ions. 8 references

  15. Physical properties of Zr50Cu40-xAl10Pdx bulk glassy alloys

    International Nuclear Information System (INIS)

    Wencka, M.; Jagodic, M.; Gradisek, A.; Kocjan, A.; Jaglicic, Z.; McGuiness, P.J.; Apih, T.; Yokoyama, Y.; Dolinsek, J.

    2010-01-01

    It was shown recently (Yokoyama et al. ) that the addition of a small amount of Pd to the Zr 50 Cu 40 Al 10 bulk glassy alloy (BGA) has a beneficial effect on fatigue-strength enhancement, where the composition Zr 50 Cu 37 Al 10 Pd 3 behaved in a resonant-like way by showing the highest fatigue limit of 1050 MPa and the minimum Vickers hardness. We performed a study of the magnetic properties, the specific heat, the electrical resistivity and the hydrogen-diffusion constant for a series of compositions Zr 50 Cu 40-x Al 10 Pd x (x = 0-7 at.%), in order to determine their physical properties and to check for the influence of the Pd content on these properties. The Zr 50 Cu 40-x Al 10 Pd x BGAs are nonmagnetic, conducting alloys, where the Pauli spin susceptibility of the conduction electrons is the only source of paramagnetism. The low-temperature specific heat indicates an enhancement of the conduction-electron effective mass m* below 5 K, suggesting that the Zr 50 Cu 40-x Al 10 Pd x BGAs are not free-electron-like compounds. The electrical resistivities of the Zr 50 Cu 40-x Al 10 Pd x BGAs amount to about 200 μΩ cm and show a small, negative temperature coefficient (NTC) with an increase from 300 to 2 K of 4%. The hydrogen self-diffusion constant D in hydrogen-loaded samples shows classical over-barrier-hopping temperature dependence and is of comparable magnitude to the related icosahedral and amorphous Zr 69.5 Cu 12 Ni 11 Al 7.5 hydrogen-storage alloys. No correlation between the investigated physical parameters and the Pd content of the samples could be observed.

  16. Ion scattering studies of ordered alloy surfaces: CuAu(1 0 0) and NiAl

    International Nuclear Information System (INIS)

    Beikler, R.; Taglauer, E.

    2000-01-01

    The composition and structure of alloy surfaces can differ from the corresponding bulk properties due to segregation and relaxation effects. We studied the (1 0 0) surface of the ordered alloy CuAu and amorphous Ni and Al by low-energy Ne + and Na + ion scattering. The interpretation of the experimental results is supported by numerical simulations using the MARLOWE code. In the CuAu system a certain geometry was found to be very sensitive to Au presence in the 2nd layer. Comparison with MARLOWE results also allows to study variations in the ion yields arising from neutralization effects. By trajectory analysis ion survival probabilities are estimated for Ni and Al

  17. Evaluation of catalytic ferrispinel MFe{sub 2}O{sub 4} (M = Cu, Co, Mn and Ni) in transesterification reaction; Avaliacao catalitica de ferroespinelios MFe{sub 2}O{sub 4} (M = Cu, Co, Mn e Ni) em reacao de transesterificacao visando obtencao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Kleberson Ricardo de Oliveira; Dantas, Joelda; Costa, Ana Cristina Figueiredo de Melo; Silva, Adriano Sant' Ana, E-mail: klebersonric@usp.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Cornejo, Daniel Reinaldo [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2014-07-01

    Among the existing biofuels, biodiesel has achieved great economic and technological, for its potential to replace petroleum diesel and being biodegradable, have low emission of gaseous and be from renewable sources highlighted. In this context we propose to evaluate the performance of ferrispinel type MFe{sub 2}O{sub 4}, where M represents divalent metals (Cu, Co, Ni and Mn) in methyl transesterification reaction of soybean oil. The ferrispinel were synthesized by combustion reaction and characterized by XRD, FTIR and magnetic measurements. The results indicate that the synthesis is conducive to the production of ferrispinel with magnetization values ranging from 11.0 to 58.0 emu/g. The conversion values were 53; 55; 57 and 52 %, respectively, concluding that the type of divalent metal affects the morphology and hence the catalytic conversion. (author)

  18. The Structure and Mechanical Properties of Ni-Mo PM Steels with Addition of Mn And Cu

    Science.gov (United States)

    Lichańska, E.; Kulecki, P.; Pańcikiewicz, K.

    2017-12-01

    The aim of the study was to evaluate the effect of chemical composition on the structure and mechanical properties of Mn-Ni-Mo and Ni-Mo-Cu PM steels. Pre-alloyed powder Astaloy 85Mo, diffusion alloyed powders Distaloy AQ and Distaloy AB produced by Höganäs, low carbon ferromanganese, carbonyl nickel powder T255 with three-dimensional filamentary structure and graphite CU-F have been used as the basic powders. Three mixtures with compositions of Fe-1%Mn-(0.5/1.75)%Ni-(0.5/0.85)%Mo-0.8%C and Fe-1.75%Ni-0.5%Mo-1.5%Cu-0.8%C were prepared in a Turbula mixer. Green compacts were single pressed in a steel die at 660 MPa according to PN-EN ISO 2740 standard. Sinterhardening was carried out at 1250°C in a mixture of 95% N2+5% H2 for 60 minutes. Mechanical tests (tensile, bend, hardness) and microstructural investigations were performed. Additionally, XRD and EDS analysis, fractographic investigations were carried out. The microstructures of steels investigated were mainly bainitic or bainitic-martensitic. Addition 1% Mn to Distaloy AQ based steel caused increase of tensile properties (YS from 422 to 489 MPa, UTS from 522 to 638 MPa, TRS from 901 to 1096 MPa) and decrease of plasticity (elongation from 3.65 to 2.84%).

  19. Spectrophotometric studies, synthesis and magnetic properties of Co(2), Cu(2), Ni(2) and UO2(6) complexes of 1,2-O-iso-propylidene-4-aza-7-aminoheptane

    International Nuclear Information System (INIS)

    Memet Sekerci

    2000-01-01

    1,2-O-iso-propylidene-4-aza-7-aminoheptane (L) is synthesized from 1-chloro-2,3-O-iso-propylidenepropane. In turn the last is prepared from the epichlorhydrine and acetone. Then the complexes of this ligand with Co(2), Cu(2), Ni(2) and UO 2 (6) salts are obtained. The structure of the ligand and its complexes is proposed according to the data of 1 H and 13 C NMR method, IR spectroscopy, element, thermogravimetric and differential thermal analyses and magnetic susceptibility measurements [ru

  20. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    Science.gov (United States)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  1. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    Science.gov (United States)

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  2. A CuNi/C Nanosheet Array Based on a Metal-Organic Framework Derivate as a Supersensitive Non-Enzymatic Glucose Sensor

    Science.gov (United States)

    Zhang, Li; Ye, Chen; Li, Xu; Ding, Yaru; Liang, Hongbo; Zhao, Guangyu; Wang, Yan

    2018-06-01

    Bimetal catalysts are good alternatives for non-enzymatic glucose sensors owing to their low cost, high activity, good conductivity, and ease of fabrication. In the present study, a self-supported CuNi/C electrode prepared by electrodepositing Cu nanoparticles on a Ni-based metal-organic framework (MOF) derivate was used as a non-enzymatic glucose sensor. The porous construction and carbon scaffold inherited from the Ni-MOF guarantee good kinetics of the electrode process in electrochemical glucose detection. Furthermore, Cu nanoparticles disturb the array structure of MOF derived films and evidently enhance their electrochemical performances in glucose detection. Electrochemical measurements indicate that the CuNi/C electrode possesses a high sensitivity of 17.12 mA mM-1 cm-2, a low detection limit of 66.67 nM, and a wider linearity range from 0.20 to 2.72 mM. Additionally, the electrode exhibits good reusability, reproducibility, and stability, thereby catering to the practical use of glucose sensors. Similar values of glucose concentrations in human blood serum samples are detected with our electrode and with the method involving glucose-6-phosphate dehydrogenase; the results further demonstrate the practical feasibility of our electrode.

  3. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Atteq ur Rehman

    2014-02-01

    Full Text Available Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.

  4. Improved conductivity of infinite-layer LaNiO{sub 2} thin films by metal organic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Ai [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Manabe, Takaaki [National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan); Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan)

    2013-12-15

    Highlights: •LaNiO{sub 2} films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO{sub 2}. •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO{sub 2} thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO{sub 2} is isostructural to SrCuO{sub 2}, the parent compound of high-T{sub c} Sr{sub 0.9}La{sub 0.1}CuO{sub 2} with T{sub c} = 44 K, and has 3d{sup 9} configuration, which is very rare in oxides but common to high-T{sub c} copper oxides. The bulk synthesis of LaNiO{sub 2} is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO{sub 2} is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO{sub 2}. The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures.

  5. Multidimensional effects in dissociative chemisorption: H2 on Cu and Ni surfaces

    DEFF Research Database (Denmark)

    Engdahl, C.; Lundqvist, Bengt; Nielsen, U.

    1992-01-01

    It is shown that, in order to describe and understand the trends found experimentally for the variation of the H2 sticking probability with crystal face on Cu and Ni surfaces, the dynamics of all six molecular degrees of freedom must be included. The effective-medium theory is used to estimate...

  6. Application of a new bifunctionalized chitosan derivative with zwitterionic characteristics for the adsorption of Cu(2+), Co(2+), Ni(2+), and oxyanions of Cr(6+) from aqueous solutions: Kinetic and equilibrium aspects.

    Science.gov (United States)

    de Almeida, Francine Tatiane Rezende; Ferreira, Bruno Christiano Silva; Moreira, Ana Luísa da Silva Lage; de Freitas, Rossimiriam Pereira; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves

    2016-03-15

    This study describes the synthesis of a new chitosan derivative (C2) with zwitterionic characteristics and its use for the removal of cationic species Cu(2+), Co(2+), and Ni(2+) and anionic species of Cr(6+) in a single aqueous solution. The new adsorbent was synthesized by quaternization of the amine group of chitosan and esterification of hydroxyl groups with EDTA dianhydride. These combined reactions gave both cationic and anionic characteristics to C2 with the release of quaternary ammonium groups and carboxylic groups. The capacity of C2 to adsorb Cu(2+), Co(2+), Ni(2+), and oxyanions of Cr(6+) was evaluated in a batch process with different contact times, pH values, and initial concentrations. Adsorption isotherms were best fitted to the Langmuir and Sips models. The maximum adsorption capacities (Q(max)) of C2 for adsorption of Cu(2+), Co(2+), Ni(2+), and Cr(6+) were 0.698, 1.125, 0.725, and 1.910 mmol/g, respectively. The Δ(ads)G° values were in the range from -20 to -28 kJ/mol. These values suggest a mixed mechanism controlling adsorption. Desorption studies using an aqueous solution consisting of 0.1 mol/L HNO3 were carried out. The reusability of the recovered C2 adsorbent after desorption was also evaluated. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Microstructural and electrical investigation of Cu-Ni-Cr alloys obtained by powder metallurgy method

    International Nuclear Information System (INIS)

    Carrio, Juan A.G.; Carvalhal, M.A.; Ayabe, L.M.; Monteiro, W.A.

    2009-01-01

    The aim of this work, using the powder metallurgy process, is to synthesize metallic alloys with high mechanical strength and high electric conductivity, after melting optimizing and thermal treatments. The Cu-Ni-Cr (wt%) alloys are characterized in their mechanical and electrical properties as well as the obtained microstructure. Through the process of powder metallurgy, contacts and structural parts can be obtained. The alloys elements are added to copper with the intention to improve their strength, ductility and thermal stability, without causing considerable damages in their form, electrical and thermal conductivity, and corrosion resistance. The metallic powders were mixed for a suitable time and then they were pressed in a cold uniaxial pressing (1000 kPa). Afterwards, the specimens were sintered in temperatures varying from 700 up to 800 deg C under vacuum. At last, the samples were homogenized at 550 deg C under vacuum, for special times. The comparative analysis is based on the sintered density, densification parameter, hardness, macrostructures and microstructures of the samples. The alloys were characterized by optical microscopy, X-rays powder diffraction, electrical conductivity and Vickers hardness. (author)

  8. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    Science.gov (United States)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  9. Preparation and characterization of monel (70% Ni-30% Cu) metallic filters; Preparacao e caracterizacao de filtro metalico monel (70% Ni-30% Cu)

    Energy Technology Data Exchange (ETDEWEB)

    Camargo Lavos, I de

    1994-12-31

    This work investigates a process for the fabrication and characterization of monel (Ni-Cu) filters. The powder consolidation was made by vibration or by pressing at various pressures (200, 300 e 400 MPa). The sintering was carried out at 1100{sup 0} C during 1 hour under H{sub 2} atmosphere. The filter characterization was performed by measuring its density, porosity, filtering capacity and permeability. It was obtained a correlation between the processing variables (consolidation and sintering), including powder properties, and the filters characteristics. (author). 59 refs, 41 figs, 7 tabs.

  10. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve; Cavallo, Luigi; Poater, Albert; Vummaleti, Sai V. C.; Talarico, Giovanni

    2015-01-01

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  11. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    KAUST Repository

    Nolan, Steve

    2015-11-27

    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  12. Syntheses and Characterization of Some Tetradentate Schiff-Base Complexes and Their Heteroleptic Analogues

    Directory of Open Access Journals (Sweden)

    A. A. Osowole

    2008-01-01

    Full Text Available VO(IV, Ni(II and Cu(II complexes of the asymmetric Schiff base [(HOC6H3(OCH3C(C6H5:N(CH2CH2N:C(CH3CH:C(C6H5OH], and their heteroleptic analogues with triphenyl phosphine and 2,2’-bipyridine have been synthesized and characterized by elemental analyses, conductance, magnetic, infrared and electronic spectral measurements. The ligand is tetradentate coordinating via the imine N and enolic O atoms. The Ni(II and Cu(II complexes adopt a four coordinate square planar geometry, the VO(IV complex is five coordinate square-pyramidal and the heteroleptic complexes are 6-coordinate, octahedral. The assignment of geometry is collaborated by magnetic moments and electronic spectra measurements. The compounds are non-electrolyte in nitromethane and are magnetically dilute.

  13. Martensitic transformations of Cu-Al-Ni single crystals in tension/compression

    Energy Technology Data Exchange (ETDEWEB)

    Novak, V.; Sittner, P. [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Physics; Humbeeck, J. van [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Inst. of Physics; Catholic Univ. of Leuven, Heverlee (Belgium). MTM Dept.

    2001-11-01

    Cu-Al-Ni alloys, similarly as other Cu-base shape memory alloys, transform into more martensitic structures {alpha}{sub 1}' (6R), {beta}{sub 1}' (18R) and {gamma}{sub 1}' (2H), depending on the temperature, stress, load axis orientation, sense of loading and composition. The transformation stress-temperature conditions at which individual transitions take place are beneficially represented in so called non-equilibrium stress-temperature phase diagrams. On the basis of the {sigma}-T diagrams, complex history dependent thermomechanical behaviors of SMA single crystals undergoing sequentially multiple solid state transitions can be easily understood and predicted. Since chemical composition of the alloy crystals affects mainly the equilibrium transformation temperatures, T{sub 0}, and only slightly the slopes of the transformation lines in the {sigma}-T diagrams, the diagrams mainly shift in the temperature range (over {proportional_to}200K) with the compositional variations. The shape of the diagrams, however, may change significantly when the T{sub 0} shifts for individual transitions are different. Knowledge of the compositional dependence of {sigma}-T diagrams would be beneficial for the development of shape memory alloys with specific required thermomechanical properties. The aim of the present work is experimental investigation of the martensitic transformations and construction of the {sigma}-T diagram for Cu-Al-Ni alloy with lower Al content (T{sub 0}>363K) and comparison with our previous results obtained on alloys with higher Al content (T{sub 0}<263K). (orig.)

  14. Low-Temperature Catalytic Performance of Ni-Cu/Al2O3 Catalysts for Gasoline Reforming to Produce Hydrogen Applied in Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Le Anh Tuan

    2016-03-01

    Full Text Available The performance of Ni-Cu/Al2O3 catalysts for steam reforming (SR of gasoline to produce a hydrogen-rich gas mixture applied in a spark ignition (SI engine was investigated at relatively low temperature. The structural and morphological features and catalysis activity were observed by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and temperature programmed reduction (TPR. The results showed that the addition of copper improved the dispersion of nickel and therefore facilitated the reduction of Ni at low temperature. The highest hydrogen selectivity of 70.6% is observed over the Ni-Cu/Al2O3 catalysts at a steam/carbon ratio of 0.9. With Cu promotion, a gasoline conversion of 42.6% can be achieved at 550 °C, while with both Mo and Ce promotion, the gasoline conversions were 31.7% and 28.3%, respectively, higher than with the conventional Ni catalyst. On the other hand, initial durability testing showed that the conversion of gasoline over Ni-Cu/Al2O3 catalysts slightly decreased after 30 h reaction time.

  15. Investigation of physical properties and surface morphology of Cu nanolayer deposited on glass and (Al, Fe) thin films by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, P.A. [Islamic Azad Univ., North Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Islamic Azad Univ., Tabriz (Iran, Islamic Republic of). Dept. of Science-Applied Chemistry; Laheghi, S.N.; Ghoranneviss, M. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Plasma Research Center; Moradi, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Aberumand, P. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Laboratory Complex

    2008-07-01

    The applications for copper (Cu) thin films with micro or nanostructural dimensions range from catalysis to microelectronic devices. This paper reported on a study in which DC magnetron sputtering was used to coat iron (Fe), copper (Cu) and aluminum (Al) on glass substrate under a particular voltage, time and optimized deposition pressure. The samples were then coated with Cu using the same technique in preparation of different multilayers. Physical properties such as transmission and reflection per cent, magnetic and electrical properties, size and surface morphology were analyzed using data from AFM, XRD, SEM, Four point probe, and magneto resistive spectrophotometers. The study showed that the size, surface morphology and some physical properties of Cu nanolayer depend on substrate materials, surface morphology and physical properties below the nanolayer. Future work will focus on chemical properties such as catalytic and electrochemical properties. Copper nanoparticles will also be synthesized on other materials such as ZnO. 14 refs., 1 tab., 3 figs.

  16. Sensitive and selective detection of Hg2+ and Cu2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method

    Science.gov (United States)

    Liu, Jing; Ren, Xiangling; Meng, Xianwei; Fang, Zheng; Tang, Fangqiong

    2013-09-01

    An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a reusable detection method for Cu2+. Furthermore, the different quenching phenomena caused by the two metals ions such as changes in visible colour, shifts of UV absorbance peaks and changes in size of Ag NCs make it easy to distinguish between them. Therefore the easily synthesized fluorescent Ag NCs may have great potential as Hg2+ and Cu2+ ions sensors.An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a

  17. The Relevant Role of Dislocations in the Martensitic Transformations in Cu-Al-Ni Single Crystals

    Science.gov (United States)

    Gastien, R.; Sade, M.; Lovey, F. C.

    2018-03-01

    The interaction between dislocations and martensitic transformations in Cu-Al-Ni alloys is shortly reviewed. Results from many researchers are critically analyzed towards a clear interpretation of the relevant role played by dislocations on the properties of shape memory alloys in Cu-based alloys. Both thermally and stress-induced transformations are considered and focus is paid on two types of transitions, the β→β' and the formation of a mixture of martensites: β→β' + γ'. After cycling in the range where both martensites are formed, the twinned γ' phase is inhibited and cycling evolves into the formation of only β'. A model which considers the difference in energy of each γ' twin variant due to the introduced dislocations quantitatively explains the inhibition of γ' in both thermally and stress-induced cycling. The type of dislocations which are mainly introduced, mixed with Burgers vector belonging to the basal plane of the β' martensite, enables also to explain the unmodified mechanical behavior during β→β' cycling. The reported behavior shows interesting advantages of Cu-Al-Ni single crystals if mechanical properties are comparatively considered with those in other Cu-based alloys.

  18. The Pobei Cu-Ni and Fe ore deposits in NW China are comagmatic evolution products: evidence from ore microscopy, zircon U-Pb chronology and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.I.; Li, W.Y.; Lu, X.B.; Huo, Y.H.; Zhang, B.

    2017-11-01

    The Pobei mafic-ultramafic complex in northwestern China comprises magmatic Cu-Ni sulfide ore deposits coexisting with Fe-Ti oxide deposits. The Poshi, Poyi, and Podong ultramafic intrusions host the Cu-Ni ore. The ultramafic intrusions experienced four stages during its formation. The intrusion sequence was as follows: dunite, hornblende-peridotite, wehrlite and pyroxenite. The wall rock of the ultramafic intrusions is the gabbro intrusion in the southwestern of the Pobei complex. The Xiaochangshan magmatic deposit outcrops in the magnetitemineralized gabbro in the northeastern part of the Pobei complex. The main emplacement events related to the mineralization in the Pobei complex, are the magnetite-mineralized gabbro related to the Xiaochangshan Fe deposit, the gabbro intrusion associated to the Poyi, Poshi and Podong Cu-Ni deposits, and the ultramafic intrusions that host Cu-Ni deposits (Poyi and Poshi). The U-Pb age of the magnetite-mineralized gabbro is 276±1.7Ma, which is similar to that of the Pobei mafic intrusions. The εHf(t) value of zircon in the magnetite-mineralized gabbro is almost the same as that of the gabbro around the Poyi and Poshi Cu-Ni deposits, indicating that the rocks related to Cu-Ni and magnetite deposits probably originated from the same parental magma. There is a trend of crystallization differentiation evolution in the Harker diagram from the dunite in the Cu-Ni deposit to the magnetite-mineralized gabbro. The monosulfide solid solution fractional crystallization was weak in Pobei; thus, the Pd/Ir values were only influenced by the crystallization of silicate minerals. The more complete the magma evolution is, the greater is the Pd/Ir ratio. The Pd/Ir values of dunite, the lithofacies containing sulfide (including hornblende peridotite, wehrlite, and pyroxenite) in the Poyi Cu-Ni deposit, magnetite-mineralized gabbro, and massive magnetite, are 8.55, 12.18, 12.26, and 18.14, respectively. Thus, the massive magnetite was probably the

  19. The Pobei Cu-Ni and Fe ore deposits in NW China are comagmatic evolution products: evidence from ore microscopy, zircon U-Pb chronology and geochemistry

    International Nuclear Information System (INIS)

    Liu, G.I.; Li, W.Y.; Lu, X.B.; Huo, Y.H.; Zhang, B.

    2017-01-01

    The Pobei mafic-ultramafic complex in northwestern China comprises magmatic Cu-Ni sulfide ore deposits coexisting with Fe-Ti oxide deposits. The Poshi, Poyi, and Podong ultramafic intrusions host the Cu-Ni ore. The ultramafic intrusions experienced four stages during its formation. The intrusion sequence was as follows: dunite, hornblende-peridotite, wehrlite and pyroxenite. The wall rock of the ultramafic intrusions is the gabbro intrusion in the southwestern of the Pobei complex. The Xiaochangshan magmatic deposit outcrops in the magnetitemineralized gabbro in the northeastern part of the Pobei complex. The main emplacement events related to the mineralization in the Pobei complex, are the magnetite-mineralized gabbro related to the Xiaochangshan Fe deposit, the gabbro intrusion associated to the Poyi, Poshi and Podong Cu-Ni deposits, and the ultramafic intrusions that host Cu-Ni deposits (Poyi and Poshi). The U-Pb age of the magnetite-mineralized gabbro is 276±1.7Ma, which is similar to that of the Pobei mafic intrusions. The εHf(t) value of zircon in the magnetite-mineralized gabbro is almost the same as that of the gabbro around the Poyi and Poshi Cu-Ni deposits, indicating that the rocks related to Cu-Ni and magnetite deposits probably originated from the same parental magma. There is a trend of crystallization differentiation evolution in the Harker diagram from the dunite in the Cu-Ni deposit to the magnetite-mineralized gabbro. The monosulfide solid solution fractional crystallization was weak in Pobei; thus, the Pd/Ir values were only influenced by the crystallization of silicate minerals. The more complete the magma evolution is, the greater is the Pd/Ir ratio. The Pd/Ir values of dunite, the lithofacies containing sulfide (including hornblende peridotite, wehrlite, and pyroxenite) in the Poyi Cu-Ni deposit, magnetite-mineralized gabbro, and massive magnetite, are 8.55, 12.18, 12.26, and 18.14, respectively. Thus, the massive magnetite was probably the

  20. Stability of nanosized alloy thin films: Faulting and phase separation in metastable Ni/Cu/Ag-W films

    International Nuclear Information System (INIS)

    Csiszár, G.; Kurz, S.J.B.; Mittemeijer, E.J.

    2016-01-01

    A comparative study of Me(=Ni/Cu/Ag)-based, W-alloyed, nanocrystalline, heavily faulted thin films was carried out to identify parameters stabilizing the nanocrystalline nature upon thermal treatment. The three systems, initially of comparably, heavily twinned (twin boundaries at spacings of 1–5 nm) microstructures showed similarities but also strikingly different behaviours upon annealing, as observed by application of in particular X-ray diffraction (line-broadening) analysis and (high resolution) transmission electron microscopy. During annealing in the range of 30–600 °C, (i) segregation at the planar faults (for Me = Ni) and at grain boundaries (for Me = Ni,Cu,Ag), as well as nanoscale phase separation (for Me = Cu,Ag) take place, (ii) distinct grain growth does not occur and (iii) the twin boundaries either are largely preserved ((Ni(W) and Ag(W)) or disappear totally (Cu(W))), which was ascribed to an altered faulting energy, due to change of the amount of W segregated at the twin boundaries, and to the evolution of nano-precipitates. The nanosized films exhibit very large internal (macro)stresses parallel to the surface, which change during annealing in the range of 1 GPa (tensile) to −3 GPa (compressive) and thus are sensitive to the microstructural changes in the films (decomposition and relaxation) that happen on a nanoscale. The results are discussed in terms of thermodynamic and/or kinetic constraints controlling these processes and thus the thermal stability of the systems concerned.

  1. Effects of Cu and Ni additions on the heat affected zone (HAZ) microstructure and mechanical properties of a C-Mn niobium microalloyed steel

    International Nuclear Information System (INIS)

    Ale, Ricardo Miranda; Rebello, Joao Marques A.; Charlier, Jacques

    1996-01-01

    The influence of small additions of Cu and Ni on the heat affected zone microstructure and mechanical properties, particularly toughness, of C-Mn microalloyed steel has been evaluated. Cu and Ni additions improved the toughness of both coarse grained region and coarse grained region reheated intercritically due to the formation of lower bainite and avoiding Nb precipitation hardening, respectively. With Cu and Ni additions the embrittlement of the coarse grained region reheated intercritically, due to MA constituent, is counterbalanced by the formation of fine ferrite recrystallized grains near the prior austenite grain boundaries and the stabilisation of austenite between ferrite laths. (author)

  2. Thermal dependence of coercivity in granular CoNiCu glass coated microwires

    International Nuclear Information System (INIS)

    Zhukova, V.; Zhukov, A.; Palomares, F.J.; Pigazo, F.; Cebollada, F.; Del Val, J.J.; Garcia, C.; Gonzalez, J.M.; Gonzalez, J.

    2007-01-01

    Cu 80 Co 19 Ni 1 glass covered microwire samples with different geometric ratio, 0.13≤ρ≤0.5, has been investigated by using X-ray diffraction (XRD) and VSM technique. Our results show (i) the presence of FCC Co crystallites dispersed on the Cu matrix, (ii) the observation in all the samples of the coercivity, at room temperature, of the order of kA, exhibiting a maximum and decreased down to a value of the order of the room temperature one at 25 K. These results are discussed in terms of a distribution of superparamagnetic Co nanoparticles

  3. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    Science.gov (United States)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  4. Hydrazine-hydrothermal syntheses, characterizations and photoelectrochemical properties of two quaternary chalcogenidoantimonates(III) BaCuSbQ{sub 3} (Q = S, Se)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Hou, Peipei [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chai, Wenxiang [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Tian, Jiawei; Zheng, Xuerong; Shen, Yaying; Zhi, Mingjia; Zhou, Chunmei [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Yi, E-mail: liuyimse@zju.edu.cn [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-15

    Two isostructural quaternary chalcogenidoantimonates(III) BaCuSbQ{sub 3} (Q = S, Se): BaCuSbS{sub 3} (1) and BaCuSbSe{sub 3} (2) have been successfully synthesized through a facile hydrazine-hydrothermal method. Both two compounds crystallize in the orthorhombic space group and feature a three-dimensional (3D) channeled [Cu{sub 2}Sb{sub 2}Q{sub 6}]{sup 4-} framework, which is constructed by the distorted tetrahedral CuQ{sub 4} and pyramid SbQ{sub 3} units via vertex sharing. Both optical properties and theoretical studies show 1 and 2 are semiconductors with narrow band gaps. In addition, their photoelectrochemical properties have been investigated. - Highlights: • BaCuSbQ{sub 3} (Q = S, Se) were synthesized through a hydrazine-hydrothermal method. • BaCuSbQ{sub 3} (Q = S, Se) feature a 3D framework by single-crystal X-ray diffraction. • Experimental and theoretical studies confirm BaCuSbQ{sub 3} (Q = S, Se) are semiconductors. • Photoelectrochemical properties of BaCuSbQ{sub 3} (Q = S, Se) have been investigated.

  5. Synthesis, spectroscopic studies and antimicrobial activity of chelates 2-(acetyloxy)-benzoic acid with transition metals (CR+3, MN+2, NI+2 AND CU+2)

    International Nuclear Information System (INIS)

    Khan, B.; Mateen, B.; Ahmed, F.; Ahmed, F.

    2007-01-01

    2-(acetyloxy)-Benzoic acid chelates with Cr+3, Mn+2, Ni+2 and Cu+2 were synthesized and characterized by the melting point, solubility, Fourier Transform Infrared (FT-IR) Spectroscopy, Atomic Absorption Spectroscopy (AAS), X-Ray Diffraction (XRD) method and evaluated by antimicrobial activity. The functional group present in the chelates was determined by Fourier Transform Infrared Spectroscopy, by X-Ray Diffraction analysis crystal data of chelates, their inter-atomic and inter-planer spacing was also determined. The amount of metal in the chelates was estimated by Atomic Absorption Spectroscopy and their Antimicrobial Activity was studied against Pseudomonas aeruginosa, Escherisha coli and Staphylococcus aureus. (author)

  6. Hydrogen storage thermodynamics and kinetics of LaMg11Ni + x wt.% Ni (x = 100, 200) alloys synthesized by mechanical milling

    International Nuclear Information System (INIS)

    Zhang, Yanghuan; Jia, Zhichao; Central Iron and Steel Research Institute, Beijing; Yuan, Zeming; Qi, Yan; Zhao, Dongliang; Hou, Zhonghui

    2016-01-01

    LaMg 11 Ni + x wt.% Ni (x = 100, 200) composite hydrogen storage alloys with a nanocrystalline/amorphous structure were synthesized using ball milling technology. The effects of Ni content and milling time on hydrogen storage thermodynamics and dynamics of the alloys were investigated systematically. The hydrogen desorption properties were assessed using a Sieverts apparatus and differential scanning calorimetry. The thermodynamic parameters for the hydrogen absorption and desorption were calculated using the Van't Hoff equation. The hydrogen desorption activation energies of the hydrogenated alloys were also estimated by Arrhenius and Kissinger methods. Results indicate that the amount of Ni added has no effect on the thermodynamics of the alloys, but it significantly improves their absorption and desorption kinetics. Furthermore, the milling time has a great influence on the hydrogen storage properties. To be specific, the hydrogen absorption capacities reach the maximum values with the variation of milling time, and the hydrogen desorption activation energy obviously decreases with increasing milling time.

  7. Nanoparticles from Cu-Zn-Al shape memory alloys physically synthesized by ion milling deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pavon, Luis Alberto Lopez [Universidad Autonoma de Nuevo Leon (UANL), Nuevo Leon (Mexico); Cuellara, Enrique Lopez; Castro, Alejandro Torres; Cruza, Azael Martinez de la [Universidad Autonoma de Nuevo Leon (CIIDIT/UANL), Nuevo Leon (Mexico). Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia; Ballesteros, Carmen [Universidad Carlos III de Madrid, Madrid (Spain). Departamento de Fisica; Araujo, Carlos Jose de [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Departamento de Engenharia Mecanica

    2012-05-15

    In this research, an ion milling equipment was used to elaborate nanoparticles from Cu-Zn-Al alloys with shape memory effect. Two different compositions were used, target A: 75.22Cu-17.12Zn-7.66Al at % with an Ms of -9 deg C and target B: 76.18Cu-15.84Zn-7.98Al with an Ms of 20 degree C. Nanoparticles were characterized by High Resolution Transmission Electron Microscopy, Electron Diffraction and Energy Dispersive X-ray Spectroscopy. The obtained nanoparticles showed a small dispersion, with a size range of 3.2-3.5 nm. Their crystal structure is in good agreement with the bulk martensitic structure of the targets. In this sense, results on morphology, composition and crystal structure have indicated that it is possible to produce nanoparticles of CuZnAl shape memory alloys with martensitic structure in a single process using Ion Milling. (author)

  8. Nanoparticles from Cu-Zn-Al shape memory alloys physically synthesized by ion milling deposition

    International Nuclear Information System (INIS)

    Pavon, Luis Alberto Lopez; Cuellara, Enrique Lopez; Castro, Alejandro Torres; Cruza, Azael Martinez de la; Ballesteros, Carmen; Araujo, Carlos Jose de

    2012-01-01

    In this research, an ion milling equipment was used to elaborate nanoparticles from Cu-Zn-Al alloys with shape memory effect. Two different compositions were used, target A: 75.22Cu-17.12Zn-7.66Al at % with an Ms of -9 deg C and target B: 76.18Cu-15.84Zn-7.98Al with an Ms of 20 degree C. Nanoparticles were characterized by High Resolution Transmission Electron Microscopy, Electron Diffraction and Energy Dispersive X-ray Spectroscopy. The obtained nanoparticles showed a small dispersion, with a size range of 3.2-3.5 nm. Their crystal structure is in good agreement with the bulk martensitic structure of the targets. In this sense, results on morphology, composition and crystal structure have indicated that it is possible to produce nanoparticles of CuZnAl shape memory alloys with martensitic structure in a single process using Ion Milling. (author)

  9. Corrosion behavior of oxide-covered Cu47Ti34Zr11Ni8 (Vitreloy 101) in chloride-containing solutions

    International Nuclear Information System (INIS)

    Baca, N.; Conner, R.D.; Garrett, S.J.

    2014-01-01

    Highlights: • Enrichment of Ti/Zr (as TiO 2 /ZrO 2 ) and depletion of Cu/Ni due to thermodynamically driven segregation. • Dominant corrosion mechanism is pitting. • Pit interiors were depleted of Ti and Zr due to equilibrium solubilization of oxide layer. • Corrosion can be explained by equilibrium and metal nobility arguments. - Abstract: The corrosion resistance of oxides that form in air on Vitreloy 101 (Cu 47 Ti 34 Zr 11 Ni 8 ) metallic glass ribbons in NaCl and HCl solutions was studied by scanning electron microscopy, X-ray photoelectron spectroscopy and potentiodynamic polarization. The air-exposed alloy was covered by a TiO 2 /ZrO 2 layer overlying a Cu-enriched region beneath. Ni was absent at the surface. Segregation of Ti and Zr was driven by exothermic oxide formation. Immersion in NaCl or HCl caused pitting corrosion by local Galvanic reactions that depleted less noble Ti, Zr and Ni from the pit interiors, leaving them rich in more noble Cu. Corrosion products containing Ti and Zr accumulated around the pit. Pits were most numerous in 1.0 M HCl due to TiO 2 (s)/Ti 3+ (aq) equilibrium that resulted in rapid solubilization of the oxide, creating local weaknesses and an increased rate of pit formation. On average, Ti preferentially dissolved from the oxide in accord with metal nobility arguments

  10. Antibacterial studies of novel Cu2WS4 ternary chalcogenide synthesized by hydrothermal process

    Science.gov (United States)

    Kannan, Selvaraj; Vinitha, Perumal; Mohanraj, Kannusamy; Sivakumar, Ganesan

    2018-02-01

    This is the first report for the synthesis of L-cysteine mediated Cu2WS4 nanoparticles for different temperatures by an inexpensive and less pollutive hydrothermal method. The as-synthesized particles were characterized by XRD, FTIR, FESEM, UV-vis diffuse reflectance and PL spectra technique respectively. The phase purity and structural confirmation were studied by X-ray powder diffraction technique. It is observed that the synthesis temperature affecting the crystalline size. The optical analysis of the Cu2WS4 nanoparticles showed direct band gap in the range of 2.1-2.3 eV. The intensity of the PL emission spectra decreases with increase of reaction temperature. The antibacterial performance of Cu2WS4 nanoparticles were investigated by agar well diffusion method and the results confirm that the antibacterial activity of Cu2WS4 against Gram-positive (B. subtilis, M. luteus) and Gram-negative (E. coli, P. aeruginosa and K. pneumoniae) bacteria.

  11. New indides Sc{sub 6}Co{sub 2.18}In{sub 0.82}, Sc{sub 10}Ni{sub 9}In{sub 19.44} and ScCu{sub 4}In-synthesis, structure, and crystal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, R.I.; Rodewald, U. Ch.; Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Univ. Muenster (Germany); Kalychak, Y.M.; Zaremba, V.I. [Inorganic Chemistry Dept., Ivan Franko National Univ. of Lviv, Lviv (Ukraine)

    2006-08-15

    New indides Sc{sub 6}Co{sub 2.18}In{sub 0.82}, Sc{sub 10}Ni{sub 9}In{sub 19.44} and ScCu{sub 4}In have been synthesized from the elements by arc-melting. Single crystals were grown by special annealing modes. The thee indides were investigated via X-ray powder and single crystal diffraction: Ho{sub 6}Co{sub 2}Ga type, Immm, a = 886.7(3), b = 878.0(2), c = 932.1(3) pm, wR2 = 0.0517, 711 F{sup 2} values, 35 variables for Sc{sub 6}Co{sub 2.18}In{sub 0.82}, Ho{sub 10}Ni{sub 9}In{sub 20} type, P4/nmm, a = 1287.5(2), c = 884.7(1) pm, wR2 = 0.0642, 1221 F{sup 2} values, 63 variables for Sc{sub 10}Ni{sub 9}In{sub 19.44}, and MgCu{sub 4}Sn type, anti F 43m, a = 704.03(7) pm, wR2 = 0.0267, 101 F{sup 2} values, and 7 variables for ScCu{sub 4}In. The scandium rich indide Sc{sub 6}Co{sub 2.18}In{sub 0.82} contains two Co{sub 2} dumb-bells at Co-Co distances of 221 and 230 pm. Each cobalt atom within these dumb-bells has a tricapped trigonal prismatic coordination. The In1 site has a distorted cube-like coordination by scandium and shows a mixed occupancy (36%) with cobalt. The In2 atoms have distorted icosahedral scandium coordination. As a consequence of the small size of the scandium atoms, the In4 site in Sc{sub 10}Ni{sub 9}In{sub 19.44} shows defects and was furthermore refined with a split model leading to a new distorted variant within the family of Ho{sub 10}Ni{sub 9}In{sub 20} compounds. ScCu{sub 4}In is an ordered version of the cubic Laves phase with scandium and indium atoms in the CN16 voids of the copper substructure. The Cu-Cu distances within the three-dimensional network of corner-sharing tetrahedra are 248.6 and 249.2 pm. The crystal chemical peculiarities of these three indide structures are briefly discussed. (orig.)

  12. Foam separation of Cu (II) and Ni(II) from aqueous solutions and simulated wastewaters

    International Nuclear Information System (INIS)

    Shakir, K.; Beheir, Sh.G.; Aziz, M.

    2003-01-01

    Batch experiments on the removal of Cu(II) and Ni(II) from aqueous solutions were performed through two foam separation techniques: precipitate flotation (PTF) an adsorbing colloid flotation (ACF). In ACF, Fe(III), oxyhydroxide was used as co precipitant and/or adsorbing colloid and sodium lauryl sulfate was used as a collector. ACF required a lower collector concentration than PTF. foreign ions were found to decrease the percent removal, the extent of decrease being higher by divalent ions than that by monovalent ones. However, the percent removal could be improved, even in presence of foreign ions, by addition of Al(II) as an activator. High removals could be attained for Cu(II) and Ni(II) from simulated wastewaters containing different concentrations of both metal ions. The addition of concentrations below the limits recommended by the egyptian regulations for environmental discharge

  13. Magnetic and crystallographic properties of Gd(Cu/sub 1-x/Ni/sub x/)2 and Gd(Cu/sub 1-x/Al/sub x/)2 intermetallic compounds

    International Nuclear Information System (INIS)

    Borombaev, M.K.; Levitin, R.Z.; Markosyan, A.S.; Snegirev, V.V.

    1986-01-01

    Magnetization, paramagnetic susceptibility, and temperature dependence of lattice parameters of Gd(Cu/sub 1-x/Ni/sub x/) 2 (0 2 (0 2 -type structure have been studied in a wide range of temperatures. Below the ordering temperature anomalies in thermal expansion along the crystallographic axes a, b, and c enabled to distinguish between various types of magnetic arrangements. The Gd(Cu/sub 1-x/Ni/sub x/) 2 system has two types of antiferromagnetic phases: AF1 (0 = 0.13 the system orders ferromagnetically. In the Gd(Cu/sub 1-x/Al/sub x/) 2 system two magnetic phases AF1 and AF3 occur in the concentration regions 0 <= x <= 0.035 and 0.04 <= x <= 0.07, respectively. The obtained results are discussed in terms of the RKKY model via the changing conduction electron concentration. (author)

  14. Back interface effect on the topography and magnetism relationship studied from Ni nano-coatings: role of ITO and Cu substrates

    International Nuclear Information System (INIS)

    Ebothé, Jean; Nzoghe-Mendome, Lény; Khamis Aloufy, Affaf

    2015-01-01

    A comparative study is here reported on the role of ITO and Cu substrates in the surface growth, topography and the magnetism of mesoscopic scale thick nanocrystallized Ni electrocoatings in the thickness interval 60 < d < 1200 nm. The cathodic voltammetry (C-V) technique used for the coating formation engenders conglomerated grain patterns with ITO and spaced needle-like features with Cu. These surface configurations are particularly marked with the thinnest samples. They undergo a noticeable smoothing with the coating thickness increase. The magnetic reversal (MR) of the Ni samples on Cu is ruled by the spin rotation mechanism. A transition from the domain wall (DW) motion mechanism to the spin rotation one occurs with ITO while the d value increases. The study of the topography-magnetism relationship reveals that the spin rotation mechanism of the Ni samples is incoherent with both substrates. The co-existence of the Bloch magnetic domains (MD) B and the Néel domain wall (DW) N types is identified for ITO in the thinner (rougher) Ni samples associated with the DW motion MR. The same sequence occurs for Cu for the thicker (smoother) samples linked to the spin rotation MR, as long as their normalized roughness values are confined below σ o ′ ≈ 0.15. (paper)

  15. The Formation of Metal (M=Co(II), Ni(II), and Cu(II)) Complexes by Aminosilanes Immobilized within Mesoporous Molecular Sieves

    International Nuclear Information System (INIS)

    Park, Dong Ho; Park, Sung Soo; Choe, Sang Joon

    1999-01-01

    The immobilization of APTMS(3-(2-aminoethylamino)propyltrimethoxysilane) and AAPTMS(3-(2-(2-aminoethyl) aminoethylamino)propyltrimethoxysilane) on the surface of high quality mesoporous molecular sieves MCM-41 and MCM-48 have been confirmed by F.T.-IR spectroscopy, Raman spectroscopy, 29 Si solid state NMR, and a surface polarity measurement using Reichardt's dye. The formation of metal (Co(II), Ni(II), and Cu(II)) complexes by immobilized aminosilanes have been investigated by photoacoustic spectroscopy(PAS). The assignment of UV-Vis. PAS bands makes it possible to identify the structure of metal complexes within mesoporous molecular sieves. Co(II) ion may be coordinated mainly in a tetrahedral symmetry by two APTMS onto MCM-41, and in an octahedral one by two AAPTMS. Both Ni(II) and Cu(II) coordinated by aminosilanes within MCM-41 form possibly the octahedral complexes such as [Ni(APTMS) 2 (H 2 O) 2 ] 2+ , [Ni(AAPTMS) 2 ] 2+ , [Cu(APTMS) 2 (H 2 O) 2 ] 2+ , and [Cu(AAPTMS)(H 2 O) 3 ] 2+ , respectively. The PAS band shapes of complexes onto MCM-48 are similar to those of corresponding MCM-41 with the variation of PAS intensity. Most of metal ion(II) within MCM-41 and MCM-48 are coordinated by aminosilanes without the impregnation on the surface

  16. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn

    International Nuclear Information System (INIS)

    Gineys, N.; Aouad, G.; Sorrentino, F.; Damidot, D.

    2011-01-01

    This paper aims at defining precisely, the threshold limits for several trace elements (Cu, Ni, Sn or Zn) which correspond to the maximum amount that could be incorporated into a standard clinker whilst reaching the limit of solid solution of its four major phases (C 3 S, C 2 S, C 3 A and C 4 AF). These threshold limits were investigated through laboratory synthesised clinkers that were mainly studied by X-ray Diffraction and Scanning Electron Microscopy. The reference clinker was close to a typical Portland clinker (65% C 3 S, 18% C 2 S, 8% C 3 A and 8% C 4 AF). The threshold limits for Cu, Ni, Zn and Sn are quite high with respect to the current contents in clinker and were respectively equal to 0.35, 0.5, 0.7 and 1 wt.%. It appeared that beyond the defined threshold limits, trace elements had different behaviours. Ni was associated with Mg as a magnesium nickel oxide (MgNiO 2 ) and Sn reacted with lime to form a calcium stannate (Ca 2 SnO 4 ). Cu changed the crystallisation process and affected therefore the formation of C 3 S. Indeed a high content of Cu in clinker led to the decomposition of C 3 S into C 2 S and of free lime. Zn, in turn, affected the formation of C 3 A. Ca 6 Zn 3 Al 4 O 15 was formed whilst a tremendous reduction of C 3 A content was identified. The reactivity of cements made with the clinkers at the threshold limits was followed by calorimetry and compressive strength measurements on cement paste. The results revealed that the doped cements were at least as reactive as the reference cement.

  17. Effect on the Inhibitory Activity of Potential Microbes on the Complexation of Methyl Anthranilate Derived Hydrazide with Cu, Ni and Zn (II) Metal Ions

    International Nuclear Information System (INIS)

    Ikram, M.; Rehman, S.; Khan, K.

    2013-01-01

    The hydrazide ligand 2-amino-(N-aminobezoyl)benzohydrazide (ABH) have been synthesized and characterized by 1H-NMR, 13C-NMR, ES+-MS, elemental analyses and infrared studies. The ligand was complexed with Ni(II), Cu(II) and Zn(II) metal ions and were characterized by analytical and spectroscopic methods including elemental analyses, ES+-MS, conductance, infrared, UV-Visible and magnetic susceptibilities studies. Infrared spectra show that the ligand form complexes through -NH2 and carbonyl moieties, the elemental studies suggested the M(ABH)X2 composition of the coordination compounds. The synthesized complexes were studied for their biological activities against gram negative bacteria including Escherichia coli, Salmonella typhi, Enterobacter aerogenes, Proteus vulgaris, Pseudomonas aeruginosa, Gram positive bacterial strains like Staphylococcus aureus and fungus like Candida albican. These activities show that the metal complexes are more active to the tested microbes as compared to neat ligand. (author)

  18. Syntheses, crystal structures, and characterization of two new Tl{sup +}-Cu{sup 2+}-Te{sup 6+} oxides: Tl{sub 4}CuTeO{sub 6} and Tl{sub 6}CuTe{sub 2}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Jeongho; Kim, Sang-Hwan [Department of Chemistry, University of Houston, 136 Fleming Building, Houston, TX 77204-5003 (United States); Green, Mark A. [Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742-2115 and NIST Center for Neutron Research, National Institute of Standard and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6103 (United States); Bhatti, Kanwal Preet; Leighton, C. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 (United States); Shiv Halasyamani, P., E-mail: psh@uh.edu [Department of Chemistry, University of Houston, 136 Fleming Building, Houston, TX 77204-5003 (United States)

    2012-12-15

    Crystals and polycrystalline powders of two new oxide materials, Tl{sub 4}CuTeO{sub 6} and Tl{sub 6}CuTe{sub 2}O{sub 10}, have been synthesized by hydrothermal and solid-state methods. The materials were structurally characterized by single-crystal X-ray diffraction. Tl{sub 4}CuTeO{sub 6} and Tl{sub 6}CuTe{sub 2}O{sub 10} exhibit one dimensional anionic slabs of [CuTeO{sub 6}]{sup 4-} and [CuTe{sub 2}O{sub 10}]{sup 6-}, respectively. Common to both slabs is the occurrence of Cu{sup 2+}O{sub 4} distorted squares and Te{sup 6+}O{sub 6} octahedra. The slabs are separated by Tl{sup +} cations. For Tl{sub 4}CuTeO{sub 6}, magnetic measurements indicate a maximum at {approx}8 K in the temperature dependence of the susceptibility. Low temperature neutron diffraction data confirm no long-range magnetic ordering occurs and the susceptibility was adequately accounted for by fits to a Heisenberg alternating chain model. For Tl{sub 6}CuTe{sub 2}O{sub 10} on the other hand, magnetic measurements revealed paramagnetism with no evidence of long-range magnetic ordering. Infrared, UV-vis spectra, thermogravimetric, and differential thermal analyses are also reported. Crystal data: Tl{sub 4}CuTeO{sub 6}, Triclinic, space group P-1 (No. 2), a=5.8629(8) A, b=8.7848(11) A, c=9.2572(12) A, {alpha}=66.0460(10), {beta}=74.2010(10), {gamma}=79.254(2), V=417.70(9) A{sup 3}, and Z=2; Tl{sub 6}CuTe{sub 2}O{sub 10}, orthorhombic, space group Pnma (No. 62), a=10.8628(6) A, b=11.4962(7) A, c=10.7238(6) A, V=1339.20(13) A{sup 3}, and Z=4. - Graphical Abstract: Two new oxide materials, Tl{sub 4}CuTeO{sub 6} and Tl{sub 6}CuTe{sub 2}O{sub 10}, have been synthesized and characterized. The materials exhibit one dimensional crystal structures consisting of CuO{sub 4} and TeO{sub 6} polyhedra. Highlights: Black-Right-Pointing-Pointer Two New Tl-Te-Cu-oxides have been synthesized and structurally characterized. Black-Right-Pointing-Pointer For Tl{sub 4}CuTeO{sub 6}, magnetic measurements indicate a

  19. Tensile and electrical properties of unirradiated and irradiated Hycon 3HP{trademark} CuNiBe

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The unirradiated tensile properties of two different heats of Hycon 3HP{trademark} CuNiBe (HT Temper) have been measured over the temperature range of 20-500{degrees}C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for both heats. Both heats exhibited a very good combination of strength and conductivity at room temperature. The strength remained relatively high at all test temperatures, with a yield strength of 420-520 MPa at 500{degrees}C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250{degrees}C, due to flow localization adjacent to grain boundaries. Fission neutron irradiation to a dose of {approximately}0.7 dpa at temperatures between 100 and 240{degrees}C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of {approximately}3.3% observed at 240{degrees}C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. The data indicate that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250{degrees}C, and may be suitable for certain fusion energy structural applications.

  20. Adsorption of Cu 2+ and Ni 2+ ions from their aqueous solutions ...

    African Journals Online (AJOL)

    The adsorption of Cu2+ and Ni2+ions at room temperature (27°C) onto two types of biomass produced from orange mesocarp namely: untreated orange mesocarp (Me) of 250 μm particle size and xanthated orange mesocarp (XMe) produced from Me of 250 μm particle size were studied. The results obtained showed that ...