WorldWideScience

Sample records for physical organic chemistry

  1. Physical organic chemistry in the making

    NARCIS (Netherlands)

    Engberts, J.B.F.N.

    The discipline of physical organic chemistry will continue to occupy a central position in chemistry. The rapid increase in instrumentation and important theoretical developments allow the investigation of many problems of great complexity and challenge. In the next century the leading theme will

  2. Progress in organic and physical chemistry structures and mechanisms

    CERN Document Server

    Zaikov, Gennady E; Lobanov, Anton V

    2013-01-01

    Progress in Organic and Physical Chemistry: Structures and Mechanisms provides a collection of new research in the field of organic and physical properties, including new research on: The physical principles of the conductivity of electrical conducting polymer compounds The dependence on constants of electromagnetic interactions upon electron spacial-energy characteristics Effects of chitosan molecultural weight on rehological behavior of chitosan modified nanoclay at hight hydrated state Bio-structural energy criteria of functional states in normal and pathological conditions Potentiometric study on the international between devalent cations and sodium carboxylates in aqueous solutions Structural characteristic changes in erythrocyte membranes of mice bearing Alzheimer's-like disease caused by the olfactory bulbetomy This volume is intended to provide an overview of new studies and research for engineers, faculty, researchers, and upper-level students in the field of organic and physical chemistry.

  3. MIANN models in medicinal, physical and organic chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  4. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  5. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  6. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  7. Delayed Reaction: The Tardy Embrace of Physical Organic Chemistry by the German Chemical Community.

    Science.gov (United States)

    Weininger, Stephen J

    2018-02-01

    The emergence of physical organic chemistry, which focuses on the mechanisms and structures of organic reactions and molecules using the tools of physical chemistry, was a major development in twentieth-century chemistry. It first flourished in the interwar period, in the UK and then in the US. Germany, by contrast, did not embrace the field until almost a half century later. The great success of classical organic chemistry, especially in synthesis, encouraged indifference to the new field among German chemists, as did their inductivist research philosophy, as enunciated by Walter Hückel's ground-breaking textbook (1931). This author also resisted new concepts and representations, especially those of the American theoretician, Linus Pauling. The arrival of the Nazi regime reinforced such resistance. Postwar conditions initiated a reaction against this conservative, nationalistic attitude, especially in the American Occupation Zone. Exposure to American textbooks and visiting lecturers influenced attitudes of younger chemists. The accompanying shift towards a more explanatory, less hierarchical mode of pedagogy was consonant with larger social and political developments.

  8. Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions.

    Science.gov (United States)

    Moeller, Kevin D

    2018-05-09

    While organic electrochemistry can look quite different to a chemist not familiar with the technique, the reactions are at their core organic reactions. As such, they are developed and optimized using the same physical organic chemistry principles employed during the development of any other organic reaction. Certainly, the electron transfer that triggers the reactions can require a consideration of new "wrinkles" to those principles, but those considerations are typically minimal relative to the more traditional approaches needed to manipulate the pathways available to the reactive intermediates formed downstream of that electron transfer. In this review, three very different synthetic challenges-the generation and trapping of radical cations, the development of site-selective reactions on microelectrode arrays, and the optimization of current in a paired electrolysis-are used to illustrate this point.

  9. Organic chemistry experiment

    International Nuclear Information System (INIS)

    Mun, Seok Sik

    2005-02-01

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  10. The Logical and Psychological Structure of Physical Chemistry and Its Relevance to the Organization/Sequencing of the Major Areas Covered in Physical Chemistry Textbooks

    Science.gov (United States)

    Tsaparlis, Georgios

    2014-01-01

    Jensen's scheme for the logical structure of chemistry is taken as reference to study the logical structure of physical chemistry. The scheme distinguishes three dimensions (composition and structure, energy, and time), with each dimension treated at one of the three levels (molar, molecular, and electrical). Such a structure places the outer…

  11. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  12. Integration of Computational and Preparative Techniques to Demonstrate Physical Organic Concepts in Synthetic Organic Chemistry: An Example Using Diels-Alder Reaction

    Science.gov (United States)

    Palmer, David R. J.

    2004-01-01

    The Diels-Alder reaction is used as an example for showing the integration of computational and preparative techniques, which help in demonstrating the physical organic concepts in synthetic organic chemistry. These experiments show that the students should not accept the computational results without questioning them and in many Diels-Alder…

  13. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  14. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  15. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  16. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  17. Organic Chemistry in Space

    Science.gov (United States)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  18. Physical chemistry II essentials

    CERN Document Server

    REA, The Editors of

    1992-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Physical Chemistry II includes reaction mechanisms, theoretical approaches to chemical kinetics, gravitational work, electrical and magnetic work, surface work, kinetic theory, collisional and transport properties of gases, statistical mechanics, matter and waves, quantum mechanics, and rotations and vibrations of atoms and molecules.

  19. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    Science.gov (United States)

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  20. Organic chemistry on Titan

    Science.gov (United States)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  1. Physics, radiology, and chemistry. 7. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1986-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore, connections with biology and medicine are considered. The chapters on physiological chemistry, computer and information theory, chemistry and ecology, and metabolism have been rewritten. (orig./HP) [de

  2. Physics, radiology, and chemistry. 5. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1978-01-01

    This book is an introduction into physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of colid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, anorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Futhermore connections with biology and medicine are considered. (HSI) [de

  3. The physical basis of chemistry

    CERN Document Server

    Warren, Warren S

    2000-01-01

    If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, The Physical Basis of Chemistry, Second Edition, offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning eve

  4. Innovation Developments of Coal Chemistry Science in L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine

    Directory of Open Access Journals (Sweden)

    Shendrik, T.G.

    2015-11-01

    Full Text Available The article presents short historical review and innovation developments of Coal Chemistry Department of L.M. Litvinenko Institute, NAS of Ukraine connected with coal mine exploitation problems, search for decisions toward prevention of spontaneous combustion, dust control in mines, establishing structural chemical features of coal with different genesis and stages of metamorphism with the aim to develop new methods of their modification and rational use. The methods of obtaining inexpensive sorbents from Ukrainian raw materials (including carbon containing waste are proposed. The problems of modern coal chemistry science in IPOCC of NAS of Ukraine are outlined.

  5. Praxeological Organization of School Knowledge: A comparison of the Clapeyron equation approach in both physics and chemistry textbooks

    Directory of Open Access Journals (Sweden)

    Danilo Claro Zanardi

    2013-12-01

    Full Text Available This paper presents an overview of the Didactic Transposition and Anthropological Theory of Didactic of Chevallard and the relationship between them in order to use them as an analysis tool to understand the appearance of content on the Clapeyron equation in both books of Physics and Chemistry. Praxeological analysis revealed a common core to these two science courses, complemented by some concepts which are contextualized to each one of them. This analysis can provide elements that guide the internal didactical transposition, helping teachers of physics and chemistry to minimize the fragmentation of this content in both science courses.

  6. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    Science.gov (United States)

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  7. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  8. Organic Chemistry Masterclasses

    Indian Academy of Sciences (India)

    of Science Education that is published monthly by the Academy since January 1996. ...... Modern chemistry is also emerging from molecules derived from the .... photochemical reactions, the traditional correlation diagram approach is more ...

  9. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)

  10. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    Science.gov (United States)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of

  11. Organic chemistry in space

    Science.gov (United States)

    Johnson, R. D.

    1977-01-01

    Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.

  12. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  13. Titan's organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  14. Textbook of physical chemistry

    International Nuclear Information System (INIS)

    Wedler, G.

    1982-01-01

    The textbook presents an introduction to physical-chemical fundamentals and working methods, deals with the chemical thermodynamics, structure of matter, the statistical theory of matter, and transport phenomena. The kinetics are presented by means of experimental methods and the evaluation of kinetic measurements; furtheron formal kinetic of more complicated reactions, reaction mechanisms, the theory of kinetics, the kinetics of reactions in solution, of heterogeneous reactions of electrode processes, and the catalysis are described. A mathematical appendix (determinants, vectors, operators, series, integrals, differential equations, Schroedinger equation, wave functions) and the solutions of the numerical calculation examples complete this book. (HK) [de

  15. Interstellar organic chemistry.

    Science.gov (United States)

    Sagan, C.

    1972-01-01

    Most of the interstellar organic molecules have been found in the large radio source Sagittarius B2 toward the galactic center, and in such regions as W51 and the IR source in the Orion nebula. Questions of the reliability of molecular identifications are discussed together with aspects of organic synthesis in condensing clouds, degradational origin, synthesis on grains, UV natural selection, interstellar biology, and contributions to planetary biology.

  16. Organic Chemistry of Meteorites

    Science.gov (United States)

    Chang, S.; Morrison, David (Technical Monitor)

    1994-01-01

    Studies of the molecular structures and C,N,H-isotopic compositions of organic matter in meteorites reveal a complex history beginning in the parent interstellar cloud which spawned the solar system. Incorporation of interstellar dust and gas in the protosolar nebula followed by further thermal and aqueous processing on primordial parent bodies of carbonaceous, meteorites have produced an inventory of diverse organic compounds including classes now utilized in biochemistry. This inventory represents one possible set of reactants for chemical models for the origin of living systems on the early Earth. Evidence bearing on the history of meteoritic organic matter from astronomical observations and laboratory investigations will be reviewed and future research directions discussed.

  17. Radiation applications of physical chemistry

    International Nuclear Information System (INIS)

    Talrose, V.L.

    1993-01-01

    Many chemical energy problems have a physical chemistry nature connected with chemical kinetics and thermodynamics. In our country, the development in this field is associated with the name N.N. Semenov, who was involved in a large number of fundamental and applied physical chemistry problems.Energy development during the last decades created or sharpened new problems. Our new Institute, the Institute of Energy problems of Chemical Physics, USSR Academy of Sciences, is dealing with some of them. The present article is an overview of our work on radiation applications. Examples of the use of radiation in power industry (such as coal gasification), tire production, mechanical joints, metal powder production and sterilization of pharmaceutical products are given. Methods and problems involved in these applications are discussed and the great potential for vast utilization is demonstrated. (authors)

  18. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  19. Physical Chemistry Chemical Kinetics and Reaction Mechanism

    CERN Document Server

    Trimm, Harold H

    2011-01-01

    Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This

  20. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    Science.gov (United States)

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  1. Organic Chemistry Self Instructional Package 2: Methane.

    Science.gov (United States)

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  2. Organic Chemistry Self Instructional Package 12: Alkynes.

    Science.gov (United States)

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  3. Reaction-Map of Organic Chemistry

    Science.gov (United States)

    Murov, Steven

    2007-01-01

    The Reaction-Map of Organic Chemistry lists all the most commonly studied reactions in organic chemistry on one page. The discussed Reaction-Map will act as another learning aide for the students, making the study of organic chemistry much easier.

  4. Supplemental Instruction in Physical Chemistry I

    Science.gov (United States)

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  5. Furfural - from biomass to organic chemistry laboratory

    International Nuclear Information System (INIS)

    Ribeiro, Paulo Roberto; Carvalho, Jose Roque Mota; Geris, Regina; Queiroz, Vinicius; Fascio, Miguel

    2012-01-01

    The goal of this manuscript is provide to students of Chemistry and related areas an alternative experiment in which they can obtain a compound and learn to observe and interpret properties and predict organic structure by obtaining furfural from biomass. Furfural is an organic compound, obtained through acid hydrolysis of pentosans, commonly used in the chemical and pharmaceutical industries. Students are guided to get furfural through extractive procedures and chemical reactions adapted to semi-micro laboratory scale. Characterization of furfural was done by chemical tests and physical properties. Identification was accomplished by a series of spectroscopic and spectrometric techniques. (author)

  6. Organic chemistry of elemental phosphorus

    International Nuclear Information System (INIS)

    Milyukov, V A; Budnikova, Yulia H; Sinyashin, Oleg G

    2005-01-01

    The principal achievements and the modern trends in the development of the chemistry of elemental phosphorus are analysed, described systematically and generalised. The possibilities and advantages of the preparation of organophosphorus compounds directly from white phosphorus are demonstrated. Attention is focused on the activation and transformation of elemental phosphorus in the coordination sphere of transition metal complexes. The mechanisms of the reactions of white phosphorus with nucleophilic and electrophilic reagents are discussed. Electrochemical approaches to the synthesis of organic phosphorus derivatives based on white phosphorus are considered.

  7. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    Science.gov (United States)

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  8. Chemistry of Covalent Organic Frameworks.

    Science.gov (United States)

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    growing library of linkers amenable to the synthesis of COFs is now available, and new COFs and topologies made by reticular synthesis are being reported. Much research is also directed toward the development of new methods of linking organic building units to generate other crystalline COFs. These efforts promise not only new COF chemistry and materials, but also the chance to extend the precision of molecular covalent chemistry to extended solids.

  9. Bio-organic chemistry at BARC

    International Nuclear Information System (INIS)

    Sharma, A.; Ghosh, S.K.; Chattopadhyay, S.

    2009-01-01

    Bioorganic chemistry plays a pivotal role of co-ordination amongst the research and developmental activities of physical, biological, material and nuclear sciences. Understandably, the domain of bioorganic chemistry encompasses overlapping scientific fields, and often involves multi-disciplinary subjects. The research activities of bioorganic research at BARC are, therefore directed with reference to deliverables, relevant to various nuclear and non-nuclear programmes of the department. Also, the activities of the division are fine tuned to address the contemporary needs. It is now well recognized that organic compounds are essential in various programmes of nuclear technology. These include solvents and membranes for the back-end process, carrier molecules for radiopharmaceuticals, optoelectrical materials and sensors for high tech applications etc. Coupled with this, bioorganics also form integral part of the departmental mission-oriented societal programmes in the areas of health and agriculture

  10. Incorporation of Medicinal Chemistry into the Organic Chemistry Curriculum

    Science.gov (United States)

    Forbes, David C.

    2004-01-01

    Application of concepts presented in organic chemistry lecture using a virtual project involving the sythesis of medicinally important compounds is emphasized. The importance of reinforcing the concepts from lecture in lab, thus providing a powerful instructional means is discussed.

  11. Microwaves in organic chemistry and organic chemical

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2005-01-01

    Full Text Available The usual way of applying heat to a chemical reaction is the use of a Bunsen burner, an oil or some other type of bath, or an electric heater. In inorganic chemistry, microwave technology has been used since the late 1970s while it has been implemented in organic chemistry since the mid-1980s. Microwave heating has been used in the food industry for almost fifty years. The shorter reaction times and expanded reaction range that is offered by microwave technology are suited to the increased demands in industry. For example, there is a requirement in the pharmaceutical industry for a higher number of a novel chemical entities to be produced, which requires chemists to employ a number of resources to reduce time for the production of compounds. Also, microwaves are used in the food industry, as well as in the pyrolysis of waste materials, sample preparation, the solvent extraction of natural products and the hydrolysis of proteins and peptides.

  12. Cobalt oxides from crystal chemistry to physics

    CERN Document Server

    Raveau, Bernard

    2012-01-01

    Unparalleled in the breadth and depth of its coverage of all important aspects, this book systematically treats the electronic and magnetic properties of stoichiometric and non-stoichiometric cobaltites in both ordered and disordered phases. Authored by a pioneer and a rising star in the field, the monograph summarizes, organizes and streamlines the otherwise difficult-to-obtain information on this topic. An introductory chapter sets forth the crystal chemistry of cobalt oxides to lay the groundwork for an understanding of the complex phenomena observed in this materials class. Special emphasis is placed on a comprehensive discussion of cobaltite physical properties in different structural families. Providing a thorough introduction to cobalt oxides from a chemical and physical viewpoint as a basis for understanding their intricacies, this is a must-have for both experienced researchers as well as entrants to the field.

  13. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  14. Undergraduate Organic Chemistry Laboratory Safety

    Science.gov (United States)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  15. The 2016 Nobel Prize: Chemistry and Physics

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2017-08-01

    Full Text Available In this article, we will deal with the 2016 Nobel Prizes: Chemistry and Physics, since they are related to the same theme: nanostructures / molecular machines (conception, fabrication and topological theoretical explanation.

  16. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 4. Organic chemistry

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 2 - Organic chemistry) there are the abstracts concerning different aspects of organic chemistry: synthesis and study of properties of heterocyclic, organometallic, biologically active, medicinal compounds, new ion exchange materials, reagents for analytic chemistry, etc [ru

  17. Contributing Chemistry and Compelling Physics

    Directory of Open Access Journals (Sweden)

    Editorial

    2013-04-01

    Full Text Available Chemistry as an integral part of biology has been studied and utilised to yield numerous solutions in healthcare. Both the in vivo and in vitro applications of chemically synthesized compounds as drugs and the culture media used for cell culture respectively have been an indispensable tool in therapeutic and research arena in healthcare. The evolving specialty of regenerative medicine has been exploring the physical characteristics of the cell culture environment to see its effect on the behaviour of cells in vitro. For instance, mere change of matrix stiffness gives rise to a cascade of chemical events leading to different biological outputs as reported (1 in which softer matrices induced the mesenchymal stem cells to give rise to neuronal cells and increasing the matrix stiffness made the same stem cells to differentiate into chondrogenic and osteogenic lineages. The regulated movement of ions across membranes have been found to influence cell morphogenesis and stem cell regeneration (2. The influence of variety of media, reagents, growth factors, scaffolds etc. on the different types of cells and the varying needs of each type of cell are being continuously studied with an aim of advancing regenerative medicine based solutions. In this issue, the article by Kazemnejad et al is reporting the role of wnt signalling on menstrual blood derived stem cells (MenSCs by studying the influence of Lithium chloride on the proliferation of these cells. They have come out results that prove that the MenSCs have unique immunophenotyping properties and that Wnt signaling pathway regulates MenSCs proliferation via the trans-localization of activated-ß-catenin protein. Another article by Sharma et al has focussed on the gene expression pathways and on the specific modification or modulation of a key molecular player of homing and engraftment of the hematopoietic progenitor cells which will help in enhancing the efficacy of hematopoietic stem cell

  18. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  19. Calorimetric analysis points out the physical-chemistry of organic olive oils and reveals the geographical origin

    Science.gov (United States)

    Mallamace, Domenico; Vasi, Sebastiano; Corsaro, Carmelo; Naccari, Clara; Clodoveo, Maria Lisa; Dugo, Giacomo; Cicero, Nicola

    2017-11-01

    The thermal properties of many organic extra Virgin Olive Oils (eVOOs) coming from different countries of the world were investigated by Differential Scanning Calorimetry (DSC). This technique, through a series of heating and cooling cycles, provides a specific curve, i.e., a thermogram, which represents the fingerprint of each eVOO sample. In fact, variations due to the different cultivars, geographical origin or chemical composition can be highlighted because they produce changes in the corresponding thermogram. In particular, in this work, we show the results of an unsupervised multivariate statistical analysis applied to the DSC thermograms of many organic eVOOs. This analysis allows us to discriminate the geographical origin of the different studied samples in terms of the peculiar features shown by the melting profiles of the triacylglycerol moieties.

  20. Learning Organic Chemistry Through Natural Products -12 ...

    Indian Academy of Sciences (India)

    Higher Learning. Generations of students would vouch for the fact that he has the uncanny ability to present the chemistry of natural products logically and with feeling. The most interesting chemical aspect of a molecule is its. reactivHy pattern. NR Krishnaswamy. In this part of the series, dynamic organic chemistry and.

  1. A Colorful Solubility Exercise for Organic Chemistry

    Science.gov (United States)

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  2. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Learning Organic Chemistry Through Natural Products Architectural Designs in Molecular Constructions. N R Krishnaswamy. Series Article Volume 1 Issue 10 October 1996 pp 37-43 ...

  3. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Learning Organic Chemistry Through Natural Products Determination of Absolute Stereochemistry. N R Krishnaswamy. Series Article Volume 1 Issue 2 February 1996 pp 40-46 ...

  4. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 7. Learning Organic Chemistry Through Natural engine Products - Structure and Biological Functions. N R Krishnaswamy. Series Article Volume 1 Issue 7 July 1996 pp 23-30 ...

  5. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Learning Organic Chemistry Through Natural Products - Architectural Designs in Molecular Constructions. N R Krishnaswamy. Volume 16 Issue 12 December 2011 pp 1287-1293 ...

  6. Organic chemistry - Fast reactions 'on water'

    NARCIS (Netherlands)

    Klijn, JE; Engberts, JBFN

    2005-01-01

    Efficient reactions in aqueous organic chemistry do not require soluble reactants, as had been thought. A newly developed ‘on-water’ protocol is characterized by short reaction times, and the products are easy to isolate.

  7. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Higher Learning. ... The Series on "learning Organic Chemistry Through Natural Products". Nature is a remarkable ... skeletal structure to the interior electronic configu- ration ... Among the advantages of this approach are the fact that unlike the.

  8. Plasma chemistry and organic synthesis

    Science.gov (United States)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  9. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  10. Organics in environmental ices: sources, chemistry, and impacts

    Directory of Open Access Journals (Sweden)

    V. F. McNeill

    2012-10-01

    Full Text Available The physical, chemical, and biological processes involving organics in ice in the environment impact a number of atmospheric and biogeochemical cycles. Organic material in snow or ice may be biological in origin, deposited from aerosols or atmospheric gases, or formed chemically in situ. In this manuscript, we review the current state of knowledge regarding the sources, properties, and chemistry of organic materials in environmental ices. Several outstanding questions remain to be resolved and fundamental data gathered before an accurate model of transformations and transport of organic species in the cryosphere will be possible. For example, more information is needed regarding the quantitative impacts of chemical and biological processes, ice morphology, and snow formation on the fate of organic material in cold regions. Interdisciplinary work at the interfaces of chemistry, physics and biology is needed in order to fully characterize the nature and evolution of organics in the cryosphere and predict the effects of climate change on the Earth's carbon cycle.

  11. Physics, radiology and chemistry. 6. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1981-01-01

    The scientific basic disciplines of physics and chemistry are the beginning of all medical teaching. They are suitable to clarify medical and biochemical problems in their causality by means of their own thinking methodics as well as by the information provided. This book attempts to point out the relationships of physics, radiology and chemistry to neighbouring disciplines, especially to practical medicine. Greater importance must naturally be given here to the examples of individual fundamental facts than to the conveying of pure theory from books. The statements and questions on self control ordered according to chapter represent a minimum learning for the students which can be extended as required. (orig./ORU) [de

  12. Collection of problems in physical chemistry

    CERN Document Server

    Bareš, Jirí; Fried, Vojtech

    1961-01-01

    Collection of Problems in Physical Chemistry provides illustrations and problems covering the field of physical chemistry. The material has been arranged into illustrations that are solved and supplemented by problems, thus enabling readers to determine the extent to which they have mastered each subject. Most of the illustrations and problems were taken from original papers, to which reference is made. The English edition of this book has been translated from the manuscript of the 2nd Czech edition. It has been changed slightly in some places and enlarged on in others on the basis of further

  13. Love Story: Oxygen in Organic Chemistry

    Science.gov (United States)

    Roberts, John D.

    1974-01-01

    Significant discoveries and developments regarding oxygen and organic compounds are recounted to show that research in this specific area is worthwhile and relevant and to point out that research in other areas of organic chemistry deserves continued encouragement as well. (DT)

  14. Astroparticle physics gets organized!

    CERN Multimedia

    2008-01-01

    Astroparticle physics is a rapidly growing field of research at the intersection of astrophysics, particle physics and cosmology. But unlike particle physics it has no permanent organizations like CERN to plan for the long-term future. But this is starting to change, and CERN may be able to help.

  15. Dilution physics modeling: Dissolution/precipitation chemistry

    International Nuclear Information System (INIS)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics

  16. Basic radiation physics and chemistry of composites

    International Nuclear Information System (INIS)

    Przybytniak, G.; Zagorski, Z.P.

    2006-01-01

    Composites are increasingly more important in the applied and fundamental polymer science, and the participation of radiation processing of these systems increase. In presented paper the newest achievements of radiation physics and chemistry of composites are reviewed. It is stressed, that although main experimental effort is directed towards the development of composites as such, and investigation of their specific properties, mechanical, physicochemical and physical, the radiation processing will enter the field on the wider scale, especially as concerns specialized plastics

  17. Titan: a laboratory for prebiological organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  18. Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry

    National Research Council Canada - National Science Library

    Wilson, Charles Owens; Beale, John Marlowe; Block, John H

    2011-01-01

    "For over half a century, Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry has served the discipline of medicinal chemistry for both graduate and undergraduate pharmacy...

  19. Physics and Chemistry of Earth Materials

    Science.gov (United States)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  20. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  1. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    SERIES I ARTICLE. Learning Organic Chemistry. Through Natural Products. 2. Determination of Absolute Stereochemistry. N R Krishnaswamy was initiated into the world of natural products by T R. Seshadri at University of. Delhi and has carried on the glorious traditions of his mentor. He has taught at Bangalore University,.

  2. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Learning Organic Chemistry Through Natural Products From Molecular and Electronic Structures to Reactivity. N R Krishnaswamy. Series Article Volume 1 Issue 5 May 1996 pp 12-18 ...

  3. Microwave-assisted organic and polymer chemistry

    NARCIS (Netherlands)

    Hoogenboom, R.; Schubert, U.S.

    2009-01-01

    The first ACS symposium on Microwave-Assisted Chemistry: Organic and Polymer Synthesis, held as part of the ACS National meeting in Philadelphia, in August 2008, aimed at various topics of the use of microwave irradiation. The symposium found that specific heating effects, such as higher microwave

  4. Experimental interstellar organic chemistry - Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  5. Measuring Student Performance in General Organic Chemistry

    Science.gov (United States)

    Austin, Ara C.; Ben-Daat, Hagit; Zhu, Mary; Atkinson, Robert; Barrows, Nathan; Gould, Ian R.

    2015-01-01

    Student performance in general organic chemistry courses is determined by a wide range of factors including cognitive ability, motivation and cultural capital. Previous work on cognitive factors has tended to focus on specific areas rather than exploring performance across all problem types and cognitive skills. In this study, we have categorized…

  6. Physics and chemistry of irradiated protostars

    DEFF Research Database (Denmark)

    Lindberg, Johan

    not resemble so-called hot corinos or warm carbon-chain chemistry sources (the previously known types of low-mass Class 0 objects as defined by their chemistry). The absence of complex organic molecules in combination with high abundances of radicals such as cyanide (CN) and hydroxyl (OH) suggest...... that the chemistry is dominated by radiation from R CrA. In the high-resolution interferometry data we also detect signs of a 100 AU Keplerian disc around the Class 0/I object IRS7B. The disc may be responsible for the lack of detections of complex organic molecules on the smaller scales as it may have flattened......) and chemistry (such as molecular abundances) in low-mass protostellar envelopes is studied. The work studies the nearby low-mass star-forming region Corona Australis, in which a large proportion of the youngest low-mass protostars (so-called Class 0 and Class I objects) are located in a dense cloud situated...

  7. Life is physics and chemistry and communication.

    Science.gov (United States)

    Witzany, Guenther

    2015-04-01

    Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life. © 2014 New York Academy of Sciences.

  8. Experimental interstellar organic chemistry: Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1971-01-01

    In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.

  9. Organic Chemistry in Action! What Is the Reaction?

    Science.gov (United States)

    O'Dwyer, Anne; Childs, Peter

    2015-01-01

    The "Organic Chemistry in Action!" ("OCIA!") program is a set of teaching resources designed to facilitate the teaching and learning of introductory level organic chemistry. The "OCIA!" program was developed in collaboration with practicing and experienced chemistry teachers, using findings from Chemistry Education…

  10. The Distribution of Macromolecular Principles throughout Introductory Organic Chemistry

    Science.gov (United States)

    Shulman, Joel I.

    2017-01-01

    Many of the principles of organic polymer chemistry are direct extensions of the information contained in the standard introductory organic chemistry course. Often, however, the discussion of macromolecules is relegated to a chapter at the end of the organic chemistry text and is covered briefly, if at all. Connecting the organic-chemical…

  11. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  12. Cellular uptake: lessons from supramolecular organic chemistry.

    Science.gov (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  13. Evaluation of Chemical Representations in Physical Chemistry Textbooks

    Science.gov (United States)

    Nyachwaya, James M.; Wood, Nathan B.

    2014-01-01

    That different levels of representation are important for complete understanding of chemistry is an accepted fact in the chemistry education community. This study sought to uncover types of representations used in given physical chemistry textbooks. Textbooks play a central role in the teaching and learning of science (chemistry), and in some…

  14. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  15. Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry

    Science.gov (United States)

    Kurth, Laurie L.; Kurth, Mark J.

    2014-01-01

    Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…

  16. Russian science readings (chemistry, physics, biology)

    CERN Document Server

    Light, L

    1949-01-01

    Some years' experience in teaching Russian to working scientists who had already acquired the rudiments of the grammar convinced me of the need for a reader of the present type that would smooth the path of those wishing to study Russian scientific literature in the original. Although the subject matter comprises what I have described for convenience as chemistry, physics and biology, it could be read with equal profit by those engaged in any branch of pure or applied science. All the passages are taken from school textbooks, and acknowledgements are due to the authors of the works listed at the foot of the contents page.

  17. Academic excellence workshops in chemistry and physics

    Science.gov (United States)

    Mills, Susan Rose

    In the mid-1970's, Uri Treisman, at the University of California, Berkeley, developed an academic excellence workshop program that had important successes in increasing minority student achievement and persistence in calculus. The present dissertation research is an in-depth study of chemistry and physics workshops at the California State Polytechnic University, Pomona. Data for the first, longitudinal component of this study were obtained by tracking to Spring 1998 all workshop minority students, i.e., Latino, African American, and Native American workshop students, a random sample of non-workshop minority students, and a random sample of non-targeted students, i.e., Anglo and Asian students, enrolled in first-quarter General Chemistry or Physics during specific quarters of 1992 or 1993. Data for the second component were obtained by administering questionnaires, conducting interviews, and observing science students during Fall, 1996. Workshop participation was a significant predictor of first-quarter course grade for minority students in both chemistry and physics, while verbal and mathematics Scholastic Aptitude Test (SAT) scores were not significant predictors of beginning course grade for minority science students. The lack of predictive ability of the SAT and the importance of workshop participation in minority students' beginning science course performance are results with important implications for educators and students. In comparing pre-college achievement measures for workshop and non-targeted students, non-targeted students' mathematics SAT scores were significantly higher than chemistry and physics workshop students' scores. Nonetheless, workshop participation "leveled the field" as workshop and non-targeted students performed similarly in beginning science courses. Positive impacts of workshop participation on achievement, persistence, efficiency, social integration, and self-confidence support the continued and expanded funding of workshop programs

  18. The Contributions of James Moir to Physical Chemistry

    African Journals Online (AJOL)

    NICO

    Physical chemistry, spectroscopy, ruby, solar spectrum, history of chemistry. 1. Introduction ... band in the green, which appears and disappears as the gem is rotated. ..... (5) He also used various screens, such as a methylviolet screen to.

  19. Bioscience methodologies in physical chemistry an engineering and molecular approach

    CERN Document Server

    D'Amore, Alberto

    2013-01-01

    The field of bioscience methodologies in physical chemistry stands at the intersection of the power and generality of classical and quantum physics with the minute molecular complexity of chemistry and biology. This book provides an application of physical principles in explaining and rationalizing chemical and biological phenomena. It does not stick to the classical topics that are conventionally considered as part of physical chemistry; instead it presents principles deciphered from a modern point of view, which is the strength of this book.

  20. Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts

    Science.gov (United States)

    Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan

    2016-01-01

    This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…

  1. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  2. Investigating Students' Similarity Judgments in Organic Chemistry

    Science.gov (United States)

    Graulich, N.; Bhattacharyya, G.

    2017-01-01

    Organic chemistry is possibly the most visual science of all chemistry disciplines. The process of scientific inquiry in organic chemistry relies on external representations, such as Lewis structures, mechanisms, and electron arrows. Information about chemical properties or driving forces of mechanistic steps is not available through direct…

  3. Atmospheric chemistry and physics from air pollution to climate change

    CERN Document Server

    Seinfeld, John H

    2016-01-01

    Expanded and updated with new findings and new features Since the second edition of Seinfeld and Pandis’ classic textbook, significant progress has taken place in the field of atmospheric chemistry and physics, particularly in the areas of tropospheric chemistry, aerosols, and the science of climate change. A new edition of this comprehensive work has been developed by the renowned author team. Atmospheric Chemistry and Physics, 3rd Edition, as the previous two editions have done, provides a rigorous and comprehensive treatment of the chemistry and physics of the atmosphere – including the chemistry of the stratosphere and troposphere, aerosol physics and chemistry, atmospheric new particle formation, physical meteorology, cloud physics, global climate, statistical analysis of data, and mathematical chemical/transport models of the atmosphere. Each of these topics is covered in detail and in each area the central results are developed from first principles. In this way the reader gains a significant un...

  4. Analysis of Students’ Missed Organic Chemistry Quiz Questions that Stress the Importance of Prior General Chemistry Knowledge

    OpenAIRE

    Julie Ealy

    2018-01-01

    A concern about students’ conceptual difficulties in organic chemistry prompted this study. It was found that prior knowledge from general chemistry was critical in organic chemistry, but what were some of the concepts that comprised that prior knowledge? Therefore an analysis of four years of organic chemistry quiz data was undertaken. Multiple general chemistry concepts were revealed that are essential prior knowledge in organic chemistry. The general chemistry concepts that were foun...

  5. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  6. Organic Chemistry in Action! Developing an Intervention Program for Introductory Organic Chemistry to Improve Learners' Understanding, Interest, and Attitudes

    Science.gov (United States)

    O'Dwyer, Anne; Childs, Peter

    2014-01-01

    The main areas of difficulty experienced by those teaching and learning organic chemistry at high school and introductory university level in Ireland have been identified, and the findings support previous studies in Ireland and globally. Using these findings and insights from chemistry education research (CER), the Organic Chemistry in Action!…

  7. Physics, radiology, and chemistry. An introduction to natural science. 8. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1991-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore connections with biology and medicine are considered. (orig./HP) With 104 figs., 51 tabs [de

  8. Novel Aryne Chemistry in Organic Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhijian [Iowa State Univ., Ames, IA (United States)

    2006-12-12

    Arynes are among the most intensively studied systems in chemistry. However, many aspects of the chemistry of these reactive intermediates are not well understood yet and their use as reagents in synthetic organic chemistry has been somewhat limited, due to the harsh conditions needed to generate arynes and the often uncontrolled reactivity exhibited by these species. Recently, o-silylaryl triflates, which can generate the corresponding arynes under very mild reaction conditions, have been found very useful in organic synthesis. This thesis describes several novel and useful methodologies by employing arynes, which generate from o-silylaryl triflates, in organic synthesis. An efficient, reliable method for the N-arylation of amines, sulfonamides and carbamates, and the O-arylation of phenols and carboxylic acids is described in Chapter 1. Amines, sulfonamides, phenols, and carboxylic acids are good nucleophiles, which can react with arynes generated from a-silylaryl triflates to afford the corresponding N- and O-arylated products in very high yields. The regioselectivity of unsymmetrical arynes has also been studied. A lot of useful, functional groups can tolerate our reaction conditions. Carbazoles and dibenzofurans are important heteroaromatic compounds, which have a variety of biological activities. A variety of substituted carbazoles and dibenzofwans are readily prepared in good to excellent yields starting with the corresponding o-iodoanilines or o-iodophenols and o-silylaryl triflates by a treatment with CsF, followed by a Pd-catalyzed cyclization, which overall provides a one-pot, two-step process. By using this methodology, the carbazole alkaloid mukonine has been concisely synthesized in a very good yield. Insertion of an aryne into a σ-bond between a nucleophile and an electrophile (Nu-E) should potentially be a very beneficial process from the standpoint of organic synthesis. A variety of substituted ketones and sulfoxides have been synthesized in good

  9. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Petelenz, B.

    1999-01-01

    , UJ) and use of Pu and Cs contaminations as tracers to follow-up natural processes in peat bog (University of Agriculture, Cracow); d) preparation of α-spectrometric sources by electrodeposition (other groups of the Department) and determination of 241 Pu in α-spectrometric Pu sources (Silesian University, Katowice, Poland); e) comparative measurements of γ-background dose rate, using the PMS station, TL detectors and Gamma-Tracer probe (Health Physics Section of the Institute). In recognition of his expertise in radioecology, Dr Mietelski has been admitted as a Regular Member of the U.I.R. (Union Internationale de Radioecologie). Mrs Jasinska, Mr Kozak and Dr Mietelski received the Prize of the President of the City of Cracow for ''Organising and conducting continuous radiological monitoring of the air in Cracow and for the researches at the radioactive contamination of the environment''. The project on construction of the internal target assembly for isotope production was continued in the Laboratory of Physical Chemistry, in cooperation with the Cyclotron Section and Division of Mechanical Constructions of the Institute, and with the JINR, Dubna. In the meantime, in pilot experiments on the internal beam of the AIC-144 cyclotron, small activities of 11 C PET tracer were obtained from proton irradiated B 2 0 3 targets. A joint project with the Silesian Medical Academy, on applications of 32 P sources pure (β - emitter) in intravascular brachytherapy (IVBT), was started. Chemical and ionic methods of preparation of 32 P sources and their TL dosimetry were tested in cooperation with the Laboratory of the Ion Implanter and with the Health Physics Section of the Institute. Measurements of the activity of selenoenzymes in the context of human thyroid health or disease were continued in cooperation with the Medical College of the Jagiellonian University, and with the Rowett Research Institute, Aberdeen, Scotland

  10. Understanding the Impact of a General Chemistry Course on Students' Transition to Organic Chemistry

    Science.gov (United States)

    Collins-Webb, Alexandra; Jeffery, Kathleen A.; Sweeder, Ryan D.

    2016-01-01

    The move from general chemistry to organic chemistry can be a challenge for students as it often involves a transition from quantitatively-oriented to mechanistically-oriented thinking. This study found that the design of the general chemistry course can change the student experience of this transition as assessed by a reflective survey. The…

  11. Atmospheric Prebiotic Chemistry and Organic Hazes

    Science.gov (United States)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  12. Practicing What We Preach: Assessing "Critical Thinking" in Organic Chemistry

    Science.gov (United States)

    Stowe, Ryan L.; Cooper, Melanie M.

    2017-01-01

    Organic chemistry is often promoted as a course designed to cultivate skill in scientific "ways of thinking." Expert organic chemists perceive their field as one in which plausible answers to complex questions are arrived at through analytical thought processes. They draw analogy between problem solving in organic chemistry and diagnosis…

  13. Benchmarking Problems Used in Second Year Level Organic Chemistry Instruction

    Science.gov (United States)

    Raker, Jeffrey R.; Towns, Marcy H.

    2010-01-01

    Investigations of the problem types used in college-level general chemistry examinations have been reported in this Journal and were first reported in the "Journal of Chemical Education" in 1924. This study extends the findings from general chemistry to the problems of four college-level organic chemistry courses. Three problem…

  14. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglewski, S.

    2002-01-01

    Full text: Research in the Department of Nuclear Physical Chemistry concentrates on three main topics: 1. Radiochemistry of transactinide elements; 2. Environmental radioactivity and related problems; 3. Preparation and applications of radioactive isotopes. The investigations on radiochemistry of transactinide elements are carried out in the Laboratory of Chemistry and Radiochemistry. Practical difficulties due to short half-lives and very low cross sections of formation of the superheavy nuclei are being overcome by developing fast and efficient methods of chemical separation, basing mostly on ion-exchange processes which are thoroughly studied via model experiments on lighter homologues of the elements of interest. During the year 2001, work with composite ferrocyanide sorbents was continued, and the efforts resulted in a patent application. The developed ion-exchangers (whose characteristics are constantly checked and improved in the laboratory) can find practical applications in environmental protection as well as in fundamental studies on the most exotic elements: 104 Rf, 105 Db, 106 Sg, 107 Bh, 108 Hs, and more. As to the latter, the discovery in Dubna of the relatively long-lived element 114 (t 1/2 =30s) gives hope that studies on aqueous chemistry of the elements Z =107 would be feasible. In this context, chemical methods of separation and identification of the heaviest elements are necessary to know the behaviour of the whole decay chains, for example: 114 -α-112 -α-110 -α-108 -α-106. The group is contributing its expertise to the top specialist international co-operation, involving the Joint Institute of Nuclear Research, Dubna, Russia, the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia, and three German institutions: the Technical University of Dresden, the University of Mainz, and the GSI Darmstadt. The Environmental Radioactivity Laboratory is following up traces of α, β, and γ radioactive

  15. Nomenclature and Terminology of Organic Chemistry. I. Sixty Years of Croatian Nomenclature of Organic Chemistry

    OpenAIRE

    Rapić, V.; Varga-Defterdarović, L.

    2013-01-01

    This article describes the history and development of the Croatian nomenclature of organic chemistry from the publication of the first translation of international nomenclature recommendations to the present age. In the Introduction, trivial, common, systematic (rational), and semisystematic names are defined, and the etymology and meaning of terms nomenclature and terminology are clarified.At the beginning of the central part of this article, attention is focused on the need to create our na...

  16. Physics and chemistry of the solar nebula.

    Science.gov (United States)

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  17. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglowski, Z.

    2000-01-01

    taking part in the proficiency test on the determination of 239 Pu, 241 Pu and 241 Am in mineral matrix, organised by the IAEA. Ten dust samples, delivered by the University of Bremen (Germany) were analysed for the presence of 238 Pu, 239+240 Pu, 241 Pu, 241 Am and 244 Cm. In 1999, the equipment of the Environmental Radioactivity Laboratory was enriched with a low- background liquid scintillator spectrometer (Wallac 1414-003 Guardian), which opened a whole new branch of possible work connected with determination of pure beta-emitters. First isotopes of interest were 90 Sr and 241 Pu accumulated in animal bones. For 90 Sr measurements, an extensive library of scintillation quenching corrections was prepared. The spectrometer was also applied for tests of the purity of 32 P for the Laboratory of Physical Chemistry. A new project on transfer of plutonium from forest soil and litter to fungi and plants has been started. It is a pilot study for a planned in-Lab experiment to be performed during the incoming year at the University of Extremadura, Caceres, Spain. Other projects conducted during 1999 in the Environmental Radioactivity Laboratory are described in short abstracts below. In the Laboratory of Physical Chemistry, the project on construction of the internal target assembly for isotope production was continued, in cooperation with the Institute's Division of Mechanical Construction and with the Cyclotron Section. At the same time, much investment was made into necessary renovations in the radiochemical laboratory. Research in the Laboratory was concentrated on preparation and evaluation of 32 P sources for intravascular brachytherapy. With the help of the Institute's Health Physics Laboratory, liquid Na 2 H 32 PO 4 sources were calibrated by TL dosimetry, and in cooperation with the Department of Nuclear Spectroscopy, some solid state sources containing 32 P were prepared. Liquid 32 P sources calibrated in the Institute were first applied in pre-clinical intravascular

  18. Physics of metabolic organization

    Science.gov (United States)

    Jusup, Marko; Sousa, Tânia; Domingos, Tiago; Labinac, Velimir; Marn, Nina; Wang, Zhen; Klanjšček, Tin

    2017-03-01

    We review the most comprehensive metabolic theory of life existing to date. A special focus is given to the thermodynamic roots of this theory and to implications that the laws of physics-such as the conservation of mass and energy-have on all life. Both the theoretical foundations and biological applications are covered. Hitherto, the foundations were more accessible to physicists or mathematicians, and the applications to biologists, causing a dichotomy in what always should have been a single body of work. To bridge the gap between the two aspects of the same theory, we (i) adhere to the theoretical formalism, (ii) try to minimize the amount of information that a reader needs to process, but also (iii) invoke examples from biology to motivate the introduction of new concepts and to justify the assumptions made, and (iv) show how the careful formalism of the general theory enables modular, self-consistent extensions that capture important features of the species and the problem in question. Perhaps the most difficult among the introduced concepts, the utilization (or mobilization) energy flow, is given particular attention in the form of an original and considerably simplified derivation. Specific examples illustrate a range of possible applications-from energy budgets of individual organisms, to population dynamics, to ecotoxicology.

  19. Who Says Organic Chemistry Is Difficult? Exploring Perspectives and Perceptions

    Science.gov (United States)

    O'Dwyer, Anne; Childs, Peter E.

    2017-01-01

    Much research has identified organic chemistry as an area of difficulty for learners. There is also much literature pertaining to the factors that contribute to learners' difficulties. This paper explores the intersections of teachers' and learners' perceptions of teaching and learning organic chemistry respectively. Understanding these nuances…

  20. Organic Chemistry Trivia: A Way to Interest Nonchemistry Majors

    Science.gov (United States)

    Farmer, Steven C.

    2011-01-01

    The use of in-class stories is an excellent way to keep a class interested in subject matter. Many organic chemistry classes are populated by nonchemistry majors, such as pre-med, pre-pharm, and biology students. Trivia questions are presented that are designed to show how organic chemistry is an important subject to students regardless of their…

  1. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  2. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry

    OpenAIRE

    Luis R. Domingo

    2016-01-01

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through ...

  3. A Comparison of How Undergraduates, Graduate Students, and Professors Organize Organic Chemistry Reactions

    Science.gov (United States)

    Galloway, Kelli R.; Leung, Min Wah; Flynn, Alison B.

    2018-01-01

    To explore the differences between how organic chemistry students and organic chemistry professors think about organic chemistry reactions, we administered a card sort task to participants with a range of knowledge and experience levels. Beginning students created a variety of categories ranging from structural similarities to process oriented…

  4. Hot atom chemistry of monovalent atoms in organic condensed phases

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1975-01-01

    The advantages and disadvantages of hot atom studies in condensed organic phases are considered, and recent advances in condensed phase organic hot atom chemistry of recoil tritium and halogen atoms are discussed. Details are presented of the present status and understanding of liquid phase hot atom chemistry and also that of organic solids. The consequences of the Auger effect in condensed organic systems are also considered. (author)

  5. Education-oriented Physics-Chemistry for Universities

    Directory of Open Access Journals (Sweden)

    B. Spoelstra

    1985-03-01

    Full Text Available The shortage of well-qualified Science teachers is discussed, and possible contributing factors are mentioned. The need for an education-oriented university education in Physics and Chemistry, parallel to the existing courses in Physics and Chemistry, is justified. At the University of Zululand a subject called “Physical Science” (“Natuurwetenskap” was established, bearing in mind the specific requirements of a teaching career in Physical Science at secondary level. “Physical Science” is offered at second and third year level and the syllabus covers equal amounts of Chemistry and Physics. A less formal-mathematical and more descriptive approach is followed, and as wide a field as possible is covered which includes new developments in the physical sciences. We believe that this new course will enhance the training of well-prepared teachers of Physical Science for secondary schools, where a severe shortage prevails. Special reference is made here to the situation in Black schools.

  6. How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?

    Science.gov (United States)

    Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.

    2001-08-01

    Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.

  7. Terminology dictionary for physics and chemistry

    International Nuclear Information System (INIS)

    Kim, Jong Deuk

    1988-03-01

    This book introduces as many as terms covering from basic chemistry and applied chemistry to general industry and tries to explain them correctly. If it is not needed to explain the terms or they are not general, it omits explanation. However, it accurately and precisely, without omitting, describes elementary reaction and operation, representative materials, naming, idiom, and method of measurement. It also adds to supplement all the materials which are helpful in daily lives and are convenient to studying and understanding.

  8. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  9. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  10. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  11. Using Physics Principles in the Teaching of Chemistry.

    Science.gov (United States)

    Gulden, Warren

    1996-01-01

    Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…

  12. Nomenclature and Terminology of Organic Chemistry. I. Sixty Years of Croatian Nomenclature of Organic Chemistry

    Directory of Open Access Journals (Sweden)

    Rapić, V.

    2013-07-01

    Full Text Available This article describes the history and development of the Croatian nomenclature of organic chemistry from the publication of the first translation of international nomenclature recommendations to the present age. In the Introduction, trivial, common, systematic (rational, and semisystematic names are defined, and the etymology and meaning of terms nomenclature and terminology are clarified.At the beginning of the central part of this article, attention is focused on the need to create our national nomenclature. The very first such project, initiated by the Croatian Chemical Society (CCS, was the translation of the Geneva (1892 and Lie`ge rules (1930 published in 1954. In 1979 comprehensive general IUPAC rules appeared, and the Croatian Society of Chemical Engineers (CSCE in two volumes printed the Croatian edition of this important document, known as the Blue Book, in 1985 and 1988. A Guide to IUPAC Nomenclature of Organic Compounds (1993 expanded the main principles and rules from the Blue Book, and introduced a higher degree of organic nomenclature systematization. The Croatian translation of the Guide was published in 2002. In the last six decades, almost fifty translations of international rules have been issued, and almost all of them represented the official recommendations of the CCS/CSCE. Finally, the nomenclature in the translations of five comprehensive textbooks fororganic chemistry is analysed.In conclusion, readers are informed that the Croatian version of IUPAC rules is applied in our secondary school and university education, in Croatian encyclopaedism and mass media, as well.

  13. 11th National Meeting of Organic Chemistry and 4th Meeting of Therapeutic Chemistry

    Directory of Open Access Journals (Sweden)

    Maria Emília Sousa

    2016-03-01

    Full Text Available For the first time under the auspices of Sociedade Portuguesa de Química, the competences of two important fields of Chemistry are brought together into a single event, the 11st National Organic Chemistry Meeting and the the 4th National Medicinal Chemistry Meeting, to highlight complementarities and to promote new synergies. Abstracts of plenary lectures, oral communications, and posters presented during the meeting are collected in this report.

  14. 11th National Meeting of Organic Chemistry and 4th Meeting of Therapeutic Chemistry

    Science.gov (United States)

    Sousa, Maria Emília; Araújo, Maria João; do Vale, Maria Luísa; Andrade, Paula B.; Branco, Paula; Gomes, Paula; Moreira, Rui; Pinho e Melo, Teresa M.V.D.; Freitas, Victor

    2016-01-01

    For the first time under the auspices of Sociedade Portuguesa de Química, the competences of two important fields of Chemistry are brought together into a single event, the 11st National Organic Chemistry Meeting and the the 4th National Medicinal Chemistry Meeting, to highlight complementarities and to promote new synergies. Abstracts of plenary lectures, oral communications, and posters presented during the meeting are collected in this report. PMID:27102166

  15. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  16. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  17. Physics and chemistry of plasma pollution control technology

    International Nuclear Information System (INIS)

    Chang, J S

    2008-01-01

    Gaseous pollution control technologies for acid gases (NO x , SO x , etc), volatile organic compounds, greenhouse gases, ozone layer depleting substances, etc have been commercialized based on catalysis, incineration and adsorption methods. However, non-thermal plasma techniques based on electron beams and corona discharges are becoming significant due to advantages such as lower costs, higher removal efficiency and smaller space volume. In order to commercialize this new technology, the pollution gas removal rate, energy efficiency of removal, pressure drop of reactors and useable by-product production rates must be improved and identification of major fundamental processes and optimizations of reactor and power supply for an integrated system must be investigated. In this work, the chemistry and physics of plasma pollution control are discussed and the limitation of this type of plasma is outlined based on the plasma parameters.

  18. Inorganic and organic radiation chemistry: state and problems

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Bugaenko, L.T.

    1990-01-01

    Radiation inorganic and organic chemistry is presented on the basis of the general scheme and classification of radiolysis products and elementary processes, by which evolution of radiation-affected substances up to the final radiolysis products takes place. The evolution is traced for the representatives of inorganic and organic compounds. The contribution of radiation inorganic and organic chemistry to radiation technology, radiation materials technology, radiation ecology and medicine, is shown. Tendencies in the development of radiation chemistry and prediction of its certain directions are considered

  19. Workshop on Processing Physic-Chemistry Advanced – WPPCA

    International Nuclear Information System (INIS)

    2016-01-01

    In the present volume of Journal of Physics: Conference Series we publish the proceedings of the “2nd Workshop on Processing Physic-Chemistry advanced (WPPCA)”, that was held from, April 4-8, 2016, at the Universidad Industrial de Santander (UIS), Bucaramanga, Colombia. The proceedings consist of 17 contributions that were presented as plenary talks at the event. The abstracts of all participants contributions were published in the Abstract Book with ISSN 2500-8420. The scientific program of the 2nd WPPCA consisted of 12 Magisterial Conferences, 28 Poster Presentations and 2 Courses with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Spain, Unite States of America, Mexico and Chile. Moreover, the 2nd WPPCA allowed to establish a shared culture of the research and innovation that enriches the area of the processing physical-chemistry of the materials and the industrial applications. All papers in these Proceedings refer to one from the following topics: Semiconductors, Superconductivity, Nanostructure Materials and Modelling, Simulation and Diagnostics. The editor hopes that those interested in the area of the science of materials can to enjoy this reading, that reflects a wide variety of current issues. On behalf of the organizing committee of the 2nd WPPCA, we are extremely thankful to all authors for providing their valuable contributions for these Proceedings as well as the reviewers for their constructive recommendations and criticism aiding to improve the presented articles. Besides, especially we appreciate the great support provided by the Sponsors and Partners. (paper)

  20. Aspects and prospects of the chemistry of organic heterocycles (review)

    International Nuclear Information System (INIS)

    Schroth, W.

    1986-01-01

    The systematics of heterocycles, their place in organic chemistry, and their significance for theory and practice are discussed. Problems of the chemistry of heterocycles are discussed on the examples of systems with various types of conjugation and ring sizes. The focus is on the principles of synthesis of heterocycles, in particular, those based on acetylene, various C 3 fragments, carbon disulfide, and maleic anhydride. Individual sections of the survey are devoted to the role of heterocycles in biosynthesis, as well as certain problems common to the chemistry of heterocycles, biochemistry, and macromolecular chemistry

  1. Evaluation of Learning Processes in an Organic Chemistry Course.

    Science.gov (United States)

    Maroto, B.; Camusso, C.; Cividini, M.

    1997-01-01

    Reviews a subjective exercise completed by students at the end of each of six units in an introductory organic chemistry course. Argues that instruction should be shaped by Ausubel's concept of meaningful learning. (DDR)

  2. Improvements to the Characterization of Organic Nitrogen Chemistry

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  3. Annual progress report of the physical chemistry department. Basic research 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given [fr

  4. Looking forward: a glance into the future of organic chemistry

    International Nuclear Information System (INIS)

    Compain, Ph.; Desvergnes, V.; Suzenet, F.; Ollivier, C.; Robert, F.; Mihail, Barboiu; Belmont, Ph.; Bleriot, Y.; Bolze, F.; Bouquillon, S.; Bourguet, E.; Braida, B.; Constantieux, Th.; Desaubry, L.; Dupont, D.; Gastaldi, St.; Jerome, F.; Legoupy, St.; Marat, X.; Migaud, M.; Moitessier, N.; Papot, S.; Peri, F.; Petit, M.; Py, S.; Schulz, E.; Tranoy-Opalinski, I.; Vauzeilles, B.; Vayron, Ph.; Vergnes, L.; Vidal, S.; Wilmouth, S.

    2006-01-01

    What will organic chemistry do in the next forty years? This Perspective lists six tasks that have emerged during the first edition of ESYOP, a symposium devoted to the future of organic chemistry. The collective answer presented has been elaborated following a 4-step process: stimulating plenary lectures given by outstanding chemists and philosophers, short presentations given by each participant (average age: 34 years old), think-tank sessions and writing of the final report after the symposium. (authors)

  5. Novel Organic Synthesis through Ultrafast Chemistry.

    Science.gov (United States)

    Wirth, Thomas

    2017-01-16

    How fast are flashes? The field of flow chemistry has recently received increasing attention owing to the availability of commercial flow equipment. New syntheses with very short-lived intermediates have been enabled by sub-millisecond mixing and reaction regimes in tailor-made flow devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Organic chemistry in a CO2 rich early Earth atmosphere

    Science.gov (United States)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  7. General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Gómez-SanJuan, Asier; Sotomayor, Nuria; Lete, Esther; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    In general perturbation methods starts with a known exact solution of a problem and add "small" variation terms in order to approach to a solution for a related problem without known exact solution. Perturbation theory has been widely used in almost all areas of science. Bhor's quantum model, Heisenberg's matrix mechanincs, Feyman diagrams, and Poincare's chaos model or "butterfly effect" in complex systems are examples of perturbation theories. On the other hand, the study of Quantitative Structure-Property Relationships (QSPR) in molecular complex systems is an ideal area for the application of perturbation theory. There are several problems with exact experimental solutions (new chemical reactions, physicochemical properties, drug activity and distribution, metabolic networks, etc.) in public databases like CHEMBL. However, in all these cases, we have an even larger list of related problems without known solutions. We need to know the change in all these properties after a perturbation of initial boundary conditions. It means, when we test large sets of similar, but different, compounds and/or chemical reactions under the slightly different conditions (temperature, time, solvents, enzymes, assays, protein targets, tissues, partition systems, organisms, etc.). However, to the best of our knowledge, there is no QSPR general-purpose perturbation theory to solve this problem. In this work, firstly we review general aspects and applications of both perturbation theory and QSPR models. Secondly, we formulate a general-purpose perturbation theory for multiple-boundary QSPR problems. Last, we develop three new QSPR-Perturbation theory models. The first model classify correctly >100,000 pairs of intra-molecular carbolithiations with 75-95% of Accuracy (Ac), Sensitivity (Sn), and Specificity (Sp). The model predicts probabilities of variations in the yield and enantiomeric excess of reactions due to at least one perturbation in boundary conditions (solvent, temperature

  8. The link between physics and chemistry in track modelling

    International Nuclear Information System (INIS)

    Green, N.J.B.; Bolton, C.E.; Spencer-Smith, R.D.

    1999-01-01

    The physical structure of a radiation track provides the initial conditions for the modelling of radiation chemistry. These initial conditions are not perfectly understood, because there are important gaps between what is provided by a typical track structure model and what is required to start the chemical model. This paper addresses the links between the physics and chemistry of tracks, with the intention of identifying those problems that need to be solved in order to obtain an accurate picture of the initial conditions for the purposes of modelling chemistry. These problems include the reasons for the increased yield of ionisation relative to homolytic bond breaking in comparison with the gas phase. A second area of great importance is the physical behaviour of low-energy electrons in condensed matter (including thermolisation and solvation). Many of these processes are not well understood, but they can have profound effects on the transient chemistry in the track. Several phenomena are discussed, including the short distance between adjacent energy loss events, the molecular nature of the underlying medium, dissociative attachment resonances and the ability of low-energy electrons to excite optically forbidden molecular states. Each of these phenomena has the potential to modify the transient chemistry substantially and must therefore be properly characterised before the physical model of the track can be considered to be complete. (orig.)

  9. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    Science.gov (United States)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  10. Synthesis Road Map Problems in Organic Chemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Jones, T. Nicholas

    2014-01-01

    Road map problems ask students to integrate their knowledge of organic reactions with pattern recognition skills to "fill in the blanks" in the synthesis of an organic compound. Students are asked to identify familiar organic reactions in unfamiliar contexts. A practical context, such as a medicinally useful target compound, helps…

  11. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  12. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  13. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  14. Radiation physical chemistry effects on organic detectors

    International Nuclear Information System (INIS)

    Mesquita, C.H.; Duarte, C.L.; Hamada, M.M.

    2003-01-01

    The radiation damage effect on a liquid scintillating system was evaluated in the PPO and POPOP solutes. Samples containing PPO (1%w/v) and POPOP (0.2%w/v) diluted in toluene were irradiated at different doses, using a 60 Co irradiator at 1.8 Gy/s. The transmittance and the chemical degradation of those solutes were evaluated as a function of dose. The PPO transmittance at 360 nm decayed exponentially with the dose, while the POPOP transmittance at 420 nm decayed linearly. The chemical degradation on the PPO and POPOP was fitted to a bi-exponential mathematical model as a function of dose. The first exponential (fast slope) was interpreted as damage produced by toluene radiolytics whereas the second exponential (slow slope) was interpreted as the damage caused by primary interaction of the γ-radiation with targets, i.e., γ photons that hit PPO and POPOP directly. The w (eV/damage molecule) and G (damaged molecules/100 eV) parameters were estimated in this paper

  15. Misconception of pre-service chemistry teachers about the concept of resonances in organic chemistry course

    Science.gov (United States)

    Widarti, Hayuni Retno; Retnosari, Rini; Marfu'ah, Siti

    2017-08-01

    A descriptive quantitative research has been done to identify the level of understanding and misconceptions of the pre-service chemistry teachers related to the concept of resonance in the organic chemistry course. The subjects of the research were 51 students of State University of Malang, majoring Chemistry Education, currently in their fourth semester, 2015-2016 academic year who have taken the course of Organic Chemistry I. The instruments used in this research is a combination of 8 numbers of multiple choice tests with open answer questions and certainty of response index (CRI). The research findings revealed that there are still misconceptions found in the organic chemistry course, especially about the concept of resonance. There were several misconceptions of the pre-service chemistry teachers, such as resonance structures are in equilibrium with each other; resonance structures are two or more Lewis structures with different in arrangement of both atom and electron; resonance structures are only structures containing charged atoms; formal charge and resonance structures are not related; and the stability of resonance structures are only determined by location of charges in atoms found in such structures. There is also a lack of understanding of curved arrows notation to show electron pair movement.

  16. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  17. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  18. Organic chemistry on Titan: Surface interactions

    Science.gov (United States)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  19. The Organic Chemistry of Conducting Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Laren Malcolm [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  20. #IHeartChemistryNCSU: Free Choice, Content, and Elements of Science Communication as the Framework for an Introductory Organic Chemistry Project

    Science.gov (United States)

    Frohock, Bram H.; Winterrowd, Samantha T.; Gallardo-Williams, Maria T.

    2018-01-01

    Students in a large introductory organic chemistry class were given the freedom to choose an organic compound of interest and were challenged to develop an educational object (physical or digital) designed to be shared with the broader public via social media. Analysis of the project results shows that most students appreciated the open nature of…

  1. Physics and chemistry of aging - early developments

    International Nuclear Information System (INIS)

    Va'vra, J.

    2003-01-01

    The aging phenomena are very complex physical and chemical processes. The author attempts to qualitatively discuss various physical processes contributing to aging. A satisfactory quantitative explanation is not presently available. In this sense, little progress has been made since the 1986 LBL Aging Workshop. However, what was accomplished during the past decade is a heightened awareness from the research and management sides to pay more attention to this problem, and as a result a number of aging tests have increased in quantity and quality. These efforts will undoubtedly yield some new results in the future. Examples in this paper are mainly from a 'pre-LHC and pre-HERA-B era of aging', where the total charge doses are limited to much less than 1 C/cm

  2. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  3. "Drug" Discovery with the Help of Organic Chemistry.

    Science.gov (United States)

    Itoh, Yukihiro; Suzuki, Takayoshi

    2017-01-01

    The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.

  4. Charge Migration in DNA Perspectives from Physics, Chemistry, and Biology

    CERN Document Server

    Chakraborty, Tapash

    2007-01-01

    Charge migration through DNA has been the focus of considerable interest in recent years. A deeper understanding of the nature of charge transfer and transport along the double helix is important in fields as diverse as physics, chemistry and nanotechnology. It has also important implications in biology, in particular in DNA damage and repair. This book presents contributions from an international team of researchers active in this field. It contains a wide range of topics that includes the mathematical background of the quantum processes involved, the role of charge transfer in DNA radiation damage, a new approach to DNA sequencing, DNA photonics, and many others. This book should be of value to researchers in condensed matter physics, chemical physics, physical chemistry, and nanoscale sciences.

  5. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    Science.gov (United States)

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  6. Empowering Girls with Chemistry, Exercise and Physical Activity

    Science.gov (United States)

    Clapham, Emily D.; Ciccomascolo, Lori E.; Clapham, Andrew J.

    2015-01-01

    Research suggests that a girl's career interests in the areas of science, technology, engineering and mathematics (STEM) declines between grades 6 and 8. Similarly, in middle school, there is a decrease in physical activity among girls. Researchers at the University of Rhode Island (URI) conducted a chemistry-based science camp that took place…

  7. Solar Energy Education. Renewable energy activities for chemistry and physics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  8. The Critical Role of Organic Chemistry in Drug Discovery.

    Science.gov (United States)

    Rotella, David P

    2016-10-19

    Small molecules remain the backbone for modern drug discovery. They are conceived and synthesized by medicinal chemists, many of whom were originally trained as organic chemists. Support from government and industry to provide training and personnel for continued development of this critical skill set has been declining for many years. This Viewpoint highlights the value of organic chemistry and organic medicinal chemists in the complex journey of drug discovery as a reminder that basic science support must be restored.

  9. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry

    Directory of Open Access Journals (Sweden)

    Luis R. Domingo

    2016-09-01

    Full Text Available A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT, is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT, the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  10. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.

    Science.gov (United States)

    Domingo, Luis R

    2016-09-30

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  11. Developments in muonium chemistry and chemical physics

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1987-12-01

    The experimental technique of muon Level Crossing Resonance is described, as applied to molecular species containing Muonium. The results of measurements by this technique are reviewed for two classes of paramagnetic species - organic radicals and Muonium defect centres. Some old questions concerning the nature of these species, i.e. their structure and the distributions of spin density, the mechanism of their formation following muon implantation in the host material, and the origin of the hyperfine isotope effect are examined in the light of the new results. Various proposals for new studies are made. The text is divided into two parts, corresponding to invited talks given at the 2nd International Symposium on Muon and Pion Interactions with Matter (Dubna, June 30-July 4, 1987). (author)

  12. Chemistry and physical properties of estolides

    International Nuclear Information System (INIS)

    Isbell, T.A.

    2011-01-01

    Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to -36 degrees centigrade but suffer poor oxidative stability with RPVOT times of 29 - 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of -36 to - 54 degrees centigrade. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point -5 to -39 degrees centigrade) and good oxidative stability. Estolides from meadow foam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties. (Author).

  13. Lunar Science Conference, 4th, Houston, Tex., March 5-8, 1973, Proceedings. Volume 1 - Mineralogy and petrology. Volume 2 - Chemical and isotope analyses. Organic chemistry. Volume 3 - Physical properties

    Science.gov (United States)

    Gose, W. A.

    1973-01-01

    The mineralogy, petrology, chemistry, isotopic composition, and physical properties of lunar materials are described in papers detailing methods, results, and implications of research on samples returned from eight lunar landing sites: Apollo 11, 12, 14, 15, 16, 17, and Luna 16 and 20. The results of experiments conducted or set up on the lunar surface by the astronauts are also described along with observations taken from Command Modules and subsatellites. Major topics include general geology, soil and breccia studies, petrologic studies, mineralogic analyses, elemental compositions, radiometric age determinations, rare gas chemistry, radionuclides, organogenic compounds, particle track records, thermal properties, seismic studies, resonance studies, orbital mapping, lunar atmosphere, magnetic studies, electrical studies, optical properties, and microcratering. Individual items are announced in this issue.

  14. Microfluidics and nanofluidics handbook chemistry, physics, and life science principles

    CERN Document Server

    Mitra, Sushanta K

    2011-01-01

    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fun...

  15. Piaget and Organic Chemistry: Teaching Introductory Organic Chemistry through Learning Cycles

    Science.gov (United States)

    Libby, R. Daniel

    1995-07-01

    This paper describes the first application of the Piaget-based learning cycle technique (Atkin & Karplus, Sci. Teach. 1962, 29, 45-51) to an introductory organic chemistry course. It also presents the step-by-step process used to convert a lecture course into a discussion-based active learning course. The course is taught in a series of learning cycles. A learning cycle is a three phase process that provides opportunities for students to explore new material and work with an instructor to recognize logical patterns in data, and devise and test hypotheses. In this application, the first phase, exploration, involves out-of-class student evaluation of data in attempts to identify significant trends and develop hypotheses that might explain the trends in terms of fundamental scientific principles. In the second phase, concept invention, the students and instructor work together in-class to evaluate student hypotheses and find concepts that work best in explaining the data. The third phase, application, is an out-of-class application of the concept to new situations. The development of learning cycles from lecture notes is presented as an 8 step procedure. The process involves revaluation and restructuring of the course material to maintain a continuity of concept development according to the instructor's logic, dividing topics into individual concepts or techniques, and refocusing the presentation in terms of large numbers of examples that can serve as data for students in their exploration and application activities. A sample learning cycle and suggestions for ways of limited implementation of learning cycles into existing courses are also provided.

  16. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    Science.gov (United States)

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  17. Medical Mycology and the Chemistry Classroom: Germinating Student Interest in Organic Chemistry

    Science.gov (United States)

    Bliss, Joseph M.; Reid, Christopher W.

    2013-01-01

    Efforts to provide active research context to introductory courses in basic sciences are likely to better engage learners and provide a framework for relevant concepts. A simple teaching and learning experiment was conducted to use concepts in organic chemistry to solve problems in the life sciences. Bryant University is a liberal arts university…

  18. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    Science.gov (United States)

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  19. Academia–Industry Symbiosis in Organic Chemistry

    Science.gov (United States)

    2015-01-01

    Conspectus Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial “sponsoring” is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry’s point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry’s desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply “pure science” research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the “real world” at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate

  20. Academia-industry symbiosis in organic chemistry.

    Science.gov (United States)

    Michaudel, Quentin; Ishihara, Yoshihiro; Baran, Phil S

    2015-03-17

    Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial "sponsoring" is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry's point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry's desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply "pure science" research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the "real world" at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate groups, thereby presenting an

  1. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  2. Synthesis of Bisphenol Z: An Organic Chemistry Experiment

    Science.gov (United States)

    Gregor, Richard W.

    2012-01-01

    A student achievable synthesis of bisphenol Z, 4,4'-(cyclohexane-1,1-diyl)diphenol, from the acid-catalyzed reaction of phenol with cyclohexanone is presented. The experiment exemplifies all the usual pedagogy for the standard topic of electrophilic aromatic substitution present in the undergraduate organic chemistry curriculum, while providing…

  3. Learning Organic Chemistry Through Natural Products A Practical ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Learning Organic Chemistry Through Natural Products A Practical Approach. N R Krishnaswamy. Series Article Volume 1 Issue 9 September 1996 pp 25-33. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Application and Utilization of Electrochemistry in Organic Chemistry

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš

    2011-01-01

    Roč. 15, č. 17 (2011), s. 2921-2922 ISSN 1385-2728 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * organic chemistry * applications Subject RIV: CG - Electrochemistry Impact factor: 3.064, year: 2011

  5. Green chemistry principles in organic compound synthesis and analysis

    Directory of Open Access Journals (Sweden)

    Ruchi Verma

    2014-03-01

    Full Text Available The present review focus on various green chemistry approaches which could be utilized in the organic compounds in practical classes for undergraduate level in comparison of conventional methods. These methods avoid the usage of hazardous substances and are environmental friendly.

  6. Does Mechanistic Thinking Improve Student Success in Organic Chemistry?

    Science.gov (United States)

    Grove, Nathaniel P.; Cooper, Melanie M.; Cox, Elizabeth L.

    2012-01-01

    The use of the curved-arrow notation to depict electron flow during mechanistic processes is one of the most important representational conventions in the organic chemistry curriculum. Our previous research documented a disturbing trend: when asked to predict the products of a series of reactions, many students do not spontaneously engage in…

  7. Synthesis and Chemistry of Organic Geminal Di- and Triazides.

    Science.gov (United States)

    Häring, Andreas P; Kirsch, Stefan F

    2015-11-06

    This review recapitulates all available literature dealing with the synthesis and reactivity of geminal organic di- and triazides. These compound classes are, to a large extent, unexplored despite their promising chemical properties and their simple preparation. In addition, the chemistry of carbonyl diazide (2) and tetraazidomethane (105) is described in separate sections.

  8. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives

    Science.gov (United States)

    Silverman, Julian R.

    2016-01-01

    As nonrenewable resources deplete and educators seek relevant interdisciplinary content for organic chemistry instruction, biobased laboratory experiments present themselves as potential alternatives to petroleum-based transformations, which offer themselves as sustainable variations on important themes. Following the principles of green chemistry…

  9. Biodiesel from Seeds: An Experiment for Organic Chemistry

    Science.gov (United States)

    Goldstein, Steven W.

    2014-01-01

    Plants can store the chemical energy required by their developing offspring in the form of triglycerides. These lipids can be isolated from seeds and then converted into biodiesel through a transesterification reaction. This second-year undergraduate organic chemistry laboratory experiment exemplifies the conversion of an agricultural energy…

  10. Integrating Symmetry in Stereochemical Analysis in Introductory Organic Chemistry

    Science.gov (United States)

    Taagepera, Mare; Arasasingham, Ramesh D.; King, Susan; Potter, Frank; Martorell, Ingrid; Ford, David; Wu, Jason; Kearney, Aaron M.

    2011-01-01

    We report a comparative study using "knowledge space theory" (KAT) to assess the impact of a hands-on laboratory exercise that used molecular model kits to emphasize the connections between a plane of symmetry, Charity, and isomerism in an introductory organic chemistry course. The experimental design compared three groups of…

  11. Chemistry and physical properties of estolides

    Directory of Open Access Journals (Sweden)

    Isbell, Terry A.

    2011-03-01

    Full Text Available Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to –36ºC but suffer poor oxidative stability with RPVOT times of 29 – 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of –36 to –54ºC. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point –5 to – 39ºC and good oxidative stability. Estolides from meadowfoam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties.

    Los estólidos son una familia de compuestos sintetizados a partir de aceites hidroxilados como los de ricino o lesquerella o mediante la condensación de ácidos grasos sobre el doble enlace de un segundo ácido graso insaturado. Los estólidos de ricino y lesquerela se derivan tanto de sus triglicéridos como de sus ácidos grasos libres empleándose el residuo hidroxilo para formar los ésteres estólidos de los mismos. Los triglicéridos estólidos tienen puntos de fluidez crítica de entre 9 y -36ºC y baja estabilidad, con tiempos de oxidación en recipiente vacío a presión (RPVOT de entre 29 y 52 minutos incluso con la adición de un 1% de una mezcla antioxidante a las

  12. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  13. The radiation chemistry of organic solids

    International Nuclear Information System (INIS)

    Willard, J.E.

    1987-01-01

    The yields of primary products (ions, electrons, and excited state) produced by exposure of an organic compound to ionizing radiation are essentially independent of whether it is in the gas, liquid, or solid state. However, the nature and yields of the final products are often dependent on the state. This is the result of the effects of density and temperature on the relative probabilities of competing reactions of the primary species and of the radicals which they produce. The density effects are of two types. First, the dose proximity of neighboring molecules in the solid favors reactivation rather than decomposition of excited molecules and favors prompt recombination in the parent cage of the fragments of any that do decompose. Second, since the distance traveled by an energetic electron is depositing its energy is inversely proportional to the density of the medium, the tracks are shorter and the spur radii smaller in the solid than in the liquid (and in great contrast to the gas, where spur effects are negligible). The increased role of intraspur reactions of radicals, electrons, and cations in solids is shown by the results discussed in this chapter

  14. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  15. The physics and chemistry of the Schottky barrier height

    International Nuclear Information System (INIS)

    Tung, Raymond T.

    2014-01-01

    The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface

  16. Preparing Physics and Chemistry Teachers at the University of Arizona

    Science.gov (United States)

    Novodvorsky, Ingrid

    2006-04-01

    Beginning in 2000, science majors at the University of Arizona who wish to teach in middle or high schools have enrolled in the College of Science Teacher Preparation Program (CoS TPP). Students in the program take General Education courses, content courses, and science pedagogy courses that make them eligible for teacher certification. Students can remain in their science degree programs, and take the required science pedagogy courses, or they can enroll in a BS in Science Education degree that includes the pedagogy courses, with concentrations available in Biology, Chemistry, Earth Science, and Physics. Science educators from six different departments, two permanent Adjunct Instructors, and two Teachers in Residence teach the program's courses. (One of the Teachers in Residence is supported by the PhysTEC project.) Most of the pedagogy courses include field experiences in area science classrooms; the program works with some 115 mentor teachers from throughout the Tucson area, who host preservice teachers in their field experiences. In the first six years of the program, 14 program graduates have been chemistry and physics teachers. This compares to a total of six chemistry and physics teachers produced by the College of Education program in the four years preceding the creation of the CoS TPP. In this presentation, I will describe the unique features of the courses that prospective chemistry and physics teachers take and the field experiences in which they participate. In addition, I will describe how PhysTEC-supplied resources have been used to improve the program, and the ways in which we are assessing the program's success.

  17. Expression of results in quantum chemistry physical chemistry division commission on physicochemical symbols, terminology and units

    CERN Document Server

    Whiffen, D H

    2013-01-01

    Expression of Results in Quantum Chemistry recommends the appropriate insertion of physical constants in the output information of a theoretical paper in order to make the numerical end results of theoretical work easily transformed to SI units by the reader. The acceptance of this recommendation would circumvent the need for a set of atomic units each with its own symbol and name. It is the traditional use of the phrase """"atomic units"""" in this area which has obscured the real problem. The four SI dimensions of length, mass, time, and current require four physical constants to be permitte

  18. NREL Senior Research Fellow Honored by The Journal of Physical Chemistry |

    Science.gov (United States)

    News | NREL 7 » NREL Senior Research Fellow Honored by The Journal of Physical Chemistry News Release: NREL Senior Research Fellow Honored by The Journal of Physical Chemistry January 10, 2007 The Journal of Physical Chemistry B. The Dec. 21 issue was titled The Arthur J. Nozik Festschrift (Volume 110

  19. The Importance of Undergraduate General and Organic Chemistry to the Study of Biochemistry in Medical School.

    Science.gov (United States)

    Scimone, Anthony; Scimone, Angelina A.

    1996-01-01

    Investigates chemistry topics necessary to facilitate the study of biochemistry in U.S. medical schools. Lists topics considered especially important and topics considered especially unimportant in general chemistry and organic chemistry. Suggests that in teaching undergraduate general or organic chemistry, the topics categorized as exceptionally…

  20. Tc Chemistry in HLW: Role of Organic Complexants

    International Nuclear Information System (INIS)

    Hess, Nancy S.; Conradsen, Steven D.

    2003-01-01

    Tc complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remove Tc from high-level nuclear waste prior to waste immobilization can be developed and so that long-term consequences of Tc remaining in residual waste after sludge removal can be evaluated. Only limited data on the stability of Tc-organic complexes exists and even less thermodynamic data on which to develop predictive models of Tc chemical behavior is available. To meet these challenges we are conducting a research program to study to develop thermodynamic data on Tc-organic complexation over a wide range of chemical conditions. We will attempt to characterize Tc-speciation in actual tank waste using state-of-the-art analytical organic chemistry, separations, and speciation techniques to validate our model. On the basis of such studies we will develop credible model of Tc chemistry in HLW that will allow prediction of Tc speciation in tank waste and Tc behavior during waste pretreatment processing and in waste tank residuals

  1. QM/MM investigations of organic chemistry oriented questions.

    Science.gov (United States)

    Schmidt, Thomas C; Paasche, Alexander; Grebner, Christoph; Ansorg, Kay; Becker, Johannes; Lee, Wook; Engels, Bernd

    2014-01-01

    About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar

  2. A Forty Year Odyssey in Metallo-Organic Chemistry.

    Science.gov (United States)

    Nicholas, Kenneth M

    2015-07-17

    In this invited Perspective, I provide a personal account highlighting several of my group's research contributions in metallo-organic chemistry over the past 40 years. Our early work focused primarily in stoichiometric structure/reactivity of transition metal-organic compounds and their use in organic synthesis. More recent efforts have centered on the discovery and development of new metal-catalyzed organic reactions via reactive metal-organic intermediates. The major research findings that are described here include (1) propargyl-cobalt complexes as electrophilic agents for C-C and C-Nu coupling; (2) the activation of carbon dioxide by metal complexes; (3) metal-promoted C-H nitrogenation reactions; (4) oxo-metal catalyzed deoxygenation reactions; and (5) catalyst discovery via dynamic templating with substrate- and transition-state analogues.

  3. Improving Students' Understanding of Molecular Structure through Broad-Based Use of Computer Models in the Undergraduate Organic Chemistry Lecture

    Science.gov (United States)

    Springer, Michael T.

    2014-01-01

    Several articles suggest how to incorporate computer models into the organic chemistry laboratory, but relatively few papers discuss how to incorporate these models broadly into the organic chemistry lecture. Previous research has suggested that "manipulating" physical or computer models enhances student understanding; this study…

  4. Mixed-Methods Study of Online and Written Organic Chemistry Homework

    Science.gov (United States)

    Malik, Kinza; Martinez, Nylvia; Romero, Juan; Schubel, Skyler; Janowicz, Philip A.

    2014-01-01

    Connect for organic chemistry is an online learning tool that gives students the opportunity to learn about all aspects of organic chemistry through the ease of the digital world. This research project consisted of two fundamental questions. The first was to discover whether there was a difference in undergraduate organic chemistry content…

  5. Organic Chemistry Educators' Perspectives on Fundamental Concepts and Misconceptions: An Exploratory Study

    Science.gov (United States)

    Duis, Jennifer M.

    2011-01-01

    An exploratory study was conducted with 23 organic chemistry educators to discover what general chemistry concepts they typically review, the concepts they believe are fundamental to introductory organic chemistry, the topics students find most difficult in the subject, and the misconceptions they observe in undergraduate organic chemistry…

  6. Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability

    Science.gov (United States)

    Turtle, E. P.; Barnes, J. W.; Trainer, M. G.; Lorenz, R. D.

    2017-12-01

    Titan's abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and document the habitability of an extraterrestrial environment. Titan exploration is a high science priority due to the level of organic synthesis that it supports. Moreover, opportunities for organics to have interacted with liquid water at the surface (e.g., in impact melt sheets) increase the potential for chemical processes to progress further, providing an unparalleled opportunity to investigate prebiotic chemistry, as well as to search for signatures of potential water-based or even hydrocarbon-based life. The diversity of Titan's surface materials and environments drives the scientific need to be able to sample a variety of locations, thus mobility is key for in situ measurements. Titan's atmosphere is 4 times denser than Earth's reducing the wing/rotor area required to generate a given amount of lift, and the low gravity reduces the required magnitude of lift, making heavier-than-air mobility highly efficient. Dragonfly is a rotorcraft lander mission proposed to NASA's New Frontiers Program to take advantage of Titan's unique natural laboratory to understand how far chemistry can progress in environments that provide key ingredients for life. Measuring the compositions of materials in different environments will reveal how far organic chemistry has progressed. Surface material can be sampled into a mass spectrometer to identify the chemical components available and processes at work to produce biologically relevant compounds. Bulk elemental surface composition can be determined by a neutron-activated gamma-ray spectrometer. Meteorology measurements can characterize Titan's atmosphere and diurnal and spatial variations therein. Geologic features can be characterized via remote-sensing observations, which also provide context for samples. Seismic sensing can probe subsurface

  7. Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry.

    Science.gov (United States)

    Glasius, Marianne; Goldstein, Allen H

    2016-03-15

    Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry.

  8. Gamification and Physics and Chemistry of Secondary Education

    Directory of Open Access Journals (Sweden)

    Felipe QUINTANAL PEREZ

    2016-12-01

    Full Text Available Research proposal was made during the 2014–2015 school year with 4th year’s students of Secondary Education who have chosen as optional the subject of Physics and Chemistry. This project is based on the use of various gamebased strategies applied to the subject of Physics and Chemistry. We have chosen this theme by the pedagogical benefits that games have on the attraction of students and the development of their motivation. Students have participated individually, in pairs and in teams. Games used have been “chemical formulas on the run”, “chemical formulas championship”, “wheel of Physics and Chemistry”, “the sunken treasure” and “challenge problems”. The students have also developed a game based on the theme of waves and several teams did using Scratch. Finally there has been an increase in the academic performance of the subject. This experience was a success according to the results of the evaluation by the students. They have highlighted chemical formulas championship, the sunken treasure and the development of the game based on waves. As conclusions are that gamifying is not limited to only use video games, it can be gamify with little technology, personal, social and intellectual skills are developed and the method employed can be extrapolated to other subjects and courses.

  9. Chemistry in South Africa - yesterday, today and tomorrow

    International Nuclear Information System (INIS)

    1987-01-01

    The jubilee convention of the South African Chemical Institute covered the development of chemistry in South Africa. Specialists in the field of chemistry covered topics with reference to organic chemistry, extraction metallurgy, analytical chemistry, mass spectroscopy, instrumentation, theoretical chemistry, physical chemistry, chromatography, industrial chemistry and solid state chemistry

  10. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    Science.gov (United States)

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  11. Introduction to Physics and Chemistry of Combustion Explosion, Flame, Detonation

    CERN Document Server

    Liberman, Michael A

    2008-01-01

    Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and

  12. Dynamic light scattering with applications to chemistry, biology, and physics

    CERN Document Server

    Berne, Bruce J

    2000-01-01

    Lasers play an increasingly important role in a variety of detection techniques, making inelastic light scattering a tool of growing value in the investigation of dynamic and structural problems in chemistry, biology, and physics. Until the initial publication of this work, however, no monograph treated the principles behind current developments in the field.This volume presents a comprehensive introduction to the principles underlying laser light scattering, focusing on the time dependence of fluctuations in fluid systems; it also serves as an introduction to the theory of time correlation f

  13. Challenges in Creating Online Exercises and Exams in Organic Chemistry.

    Science.gov (United States)

    Jaun, Bernhard; Thilgen, Carlo

    2018-02-01

    e-Learning has become increasingly important in chemical education and online exams can be an attractive alternative to traditional exams written on paper, particularly in classes with a large number of students. Ten years ago, we began to set up an e-course complementing our lecture courses Organic Chemistry I and II within the open-source e-learning environment Moodle. In this article, we retrace a number of decisions we took over time, thereby illustrating the challenges one faces when creating online exercises and exams in (organic) chemistry. Special emphasis is put on the development of MOSFECCS (MOlecular Structural Formula Editor and Calculator of Canonical SMILES), our new editor for drawing structural formulae and converting them to alphanumeric SMILES codes that can be submitted as answers to e-problems. Convinced that the possibility for structure input is essential to set up sensible chemistry quizzes and exams, and realising that existing tools present major flaws in an educational context, we decided to embark on the implementation of MOSFECCS which takes into account a number of didactic aspects.

  14. What are the Limitations of Enzymes in Synthetic Organic Chemistry?

    Science.gov (United States)

    Reetz, Manfred T

    2016-12-01

    Enzymes have been used in organic chemistry and biotechnology for 100 years, but their widespread application has been prevented by a number of limitations, including the often-observed limited thermostability, narrow substrate scope, and low or wrong stereo- and/or regioselectivity. Directed evolution provides a means to address and generally solve these problems, especially since recent methodology development has made this protein engineering method faster, more efficient, and more reliable than in the past. This Darwinian approach to asymmetric catalysis has led to a number of industrial applications. Metabolic-pathway engineering, mutasynthesis, and fermentation are likewise enzyme-based techniques that enrich chemistry. This account outlines the scope, and particularly, the limitations, of biocatalysis. The complementary nature of enzymes and man-made catalysts is emphasized. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    International Nuclear Information System (INIS)

    Lehn, Jean-Marie

    2004-01-01

    supramolecular polymers and liquid crystals, and provide an original approach to nanoscience and nanotechnology. In particular, the spontaneous but controlled generation of well-defined, functional supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of nanomaterials. Supramolecular chemistry is intrinsically a dynamic chemistry, in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when a molecular entity contains covalent bonds that may form and break reversibly, so as to make possible a continuous change in constitution and structure by reorganization and exchange of building blocks. This behaviour defines a constitutional dynamic chemistry that allows self-organization by selection as well as by design at both the molecular and supramolecular levels. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization by selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation in a Darwinistic fashion. The merging of the features, information and programmability, dynamics and reversibility, constitution and structural diversity, points towards the emergence of adaptative and evolutionary chemistry. Together with the corresponding fields of physics and biology, it constitutes a science of informed matter, of organized, adaptative complex matter

  16. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R"."+), carbon-centered radicals (R".), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R"."+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  17. Technetium Chemistry in HLW: Role of Organic Complexants

    International Nuclear Information System (INIS)

    Hess, Nancy J.; Blanchard, David L. Jr.; Campbell, James A.; Cho, Herman M.; Rai, Dhanpat Rai; Xia, Yuanxian; Conradson, Steven D.

    2002-01-01

    Technetium complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remove Tc from high-level nuclear waste prior to waste immobilization can be developed and so that longterm consequences of Tc remaining in residual waste after sludge removal can be evaluated. Only limited data on the stability of Tc-organic complexes exists, and even less thermodynamic data on which to develop predictive models of Tc chemical behavior is available. To meet these challenges, we present a research program to study Tc-speciation in actual tank waste using state-of-the-art analytical organic chemistry, separations, and speciation techniques. On the basis of such studies, we will acquire thermodynamic data for the identified Tc-organic complexes over a wide range of chemical conditions in order to develop credible models to predict Tc speciation in tank waste and Tc behavior during waste pretreatment processing and in waste tank residuals

  18. The chemistry of separations ligand degradation by organic radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S.P.; Horne, G.P. [California State University at Long Beach, Long Beach, CA 90840 (United States); Mincher, B.J.; Zalupski, P.R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cook, A.R.; Wishart, J.F. [Chemistry Department, Brookhaven National Laboratory, New York, 11973 (United States)

    2016-07-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R{sup .+}), carbon-centered radicals (R{sup .}), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R{sup .+} as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  19. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics.

    Science.gov (United States)

    Głowacki, Eric Daniel; Voss, Gundula; Sariciftci, Niyazi Serdar

    2013-12-17

    Indigo and its derivatives are dyes and pigments with a long and distinguished history in organic chemistry. Recently, applications of this 'old' structure as a functional organic building block for organic electronics applications have renewed interest in these molecules and their remarkable chemical and physical properties. Natural-origin indigos have been processed in fully bio-compatible field effect transistors, operating with ambipolar mobilities up to 0.5 cm(2) /Vs and air-stability. The synthetic derivative isoindigo has emerged as one of the most successful building-blocks for semiconducting polymers for plastic solar cells with efficiencies > 5%. Another isomer of indigo, epindolidione, has also been shown to be one of the best reported organic transistor materials in terms of mobility (∼2 cm(2) /Vs) and stability. This progress report aims to review very recent applications of indigoids in organic electronics, but especially to logically bridge together the hereto independent research directions on indigo, isoindigo, and other materials inspired by historical dye chemistry: a field which was the root of the development of modern chemistry in the first place. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The chemistry of cyborgs--interfacing technical devices with organisms.

    Science.gov (United States)

    Giselbrecht, Stefan; Rapp, Bastian E; Niemeyer, Christof M

    2013-12-23

    The term "cyborg" refers to a cybernetic organism, which characterizes the chimera of a living organism and a machine. Owing to the widespread application of intracorporeal medical devices, cyborgs are no longer exclusively a subject of science fiction novels, but technically they already exist in our society. In this review, we briefly summarize the development of modern prosthetics and the evolution of brain-machine interfaces, and discuss the latest technical developments of implantable devices, in particular, biocompatible integrated electronics and microfluidics used for communication and control of living organisms. Recent examples of animal cyborgs and their relevance to fundamental and applied biomedical research and bioethics in this novel and exciting field at the crossroads of chemistry, biomedicine, and the engineering sciences are presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Organic radiation chemistry--the present state and problems

    International Nuclear Information System (INIS)

    Sareava, V.V.; Kalyazin, E.P.

    1985-01-01

    The authors pose the principal problems to be solved in organic radiation chemistry: 1) to derive from the structural formula of a given organic compound the composition of the products from its radiolysis under standard conditions; 2) to use a number of physicochemical properties of a given compound at the molecular and material levels to predict the variation in composition and fraction of products from the radiolysis of the compounds with a change in irradiation conditions, i.e., the parameters of the acting radiation and the state of the substance, to indicate the direction of the principal radiation chemical processes in complex mixtures of natural or technical origin. Having stated the problems, the authors attempt to show the level of understanding of the radiolysis of organic compounds, using aliphatic hydrocarbons as principal discussion subjects

  2. Biocatalysis in organic chemistry and biotechnology: past, present, and future.

    Science.gov (United States)

    Reetz, Manfred T

    2013-08-28

    Enzymes as catalysts in synthetic organic chemistry gained importance in the latter half of the 20th century, but nevertheless suffered from two major limitations. First, many enzymes were not accessible in large enough quantities for practical applications. The advent of recombinant DNA technology changed this dramatically in the late 1970s. Second, many enzymes showed a narrow substrate scope, often poor stereo- and/or regioselectivity and/or insufficient stability under operating conditions. With the development of directed evolution beginning in the 1990s and continuing to the present day, all of these problems can be addressed and generally solved. The present Perspective focuses on these and other developments which have popularized enzymes as part of the toolkit of synthetic organic chemists and biotechnologists. Included is a discussion of the scope and limitation of cascade reactions using enzyme mixtures in vitro and of metabolic engineering of pathways in cells as factories for the production of simple compounds such as biofuels and complex natural products. Future trends and problems are also highlighted, as is the discussion concerning biocatalysis versus nonbiological catalysis in synthetic organic chemistry. This Perspective does not constitute a comprehensive review, and therefore the author apologizes to those researchers whose work is not specifically treated here.

  3. Modern electronic structure theory and applications in organic chemistry

    CERN Document Server

    Davidson, ER

    1997-01-01

    This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is n

  4. Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry

    National Research Council Canada - National Science Library

    Wilson, Charles Owens; Beale, John Marlowe; Block, John H

    2011-01-01

    ... and chemistry students as well as practicing pharmacists. Fully updated for the Twelfth Edition, the book begins with the fundamental principles of chemistry, biochemistry, and biology that underlie the discipline of medicinal chemistry...

  5. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  6. Stimulated Raman adiabatic passage in physics, chemistry, and beyond

    Science.gov (United States)

    Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas

    2017-01-01

    The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 by Gaubatz et al.. Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry, and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2001, the time when the last major review on the topic was written (Vitanov, Fleischhauer et al.). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multilevel systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, semiconductor quantum dots and wells), and even some applications in classical physics (including waveguide optics, polarization optics, frequency conversion, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, precision experiments, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, population transfer with x-ray pulses, etc.).

  7. Determination of Molecular Self-Diffusion Coefficients Using Pulsed-Field-Gradient NMR: An Experiment for Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Harmon, Jennifer; Coffman, Cierra; Villarrial, Spring; Chabolla, Steven; Heisel, Kurt A.; Krishnan, Viswanathan V.

    2012-01-01

    NMR spectroscopy has become one of the primary tools that chemists utilize to characterize a range of chemical species in the solution phase, from small organic molecules to medium-sized proteins. A discussion of NMR spectroscopy is an essential component of physical and biophysical chemistry lecture courses, and a number of instructional…

  8. On the Applicability of the Green Chemistry Principles to Sustainability of Organic Matter on Asteroids

    OpenAIRE

    Vera M. Kolb

    2010-01-01

    The connection between astrobiology and green chemistry represents a new approach to sustainability of organic matter on asteroids or similar bodies. Green chemistry is chemistry which is environmentally friendly. One obvious way for chemistry to be green is to use water as a solvent, instead of more toxic organic solvents. Many astrobiological reactions occur in the aqueous medium, for example in the prebiotic soup or during the aqueous alteration period on asteroids. Thus any advances in th...

  9. Gender Differences in Cognitive and Noncognitive Factors Related to Achievement in Organic Chemistry

    Science.gov (United States)

    Turner, Ronna C.; Lindsay, Harriet A.

    2003-05-01

    For many college students in the sciences, organic chemistry poses a difficult challenge. Indeed, success in organic chemistry has proven pivotal in the careers of a vast number of students in a variety of science disciplines. A better understanding of the factors that contribute to achievement in this course should contribute to efforts to increase the number of students in the science disciplines. Further, an awareness of gender differences in factors associated with achievement should aid efforts to bolster the participation of women in chemistry and related disciplines. Using a correlation research design, the individual relationships between organic chemistry achievement and each of several cognitive variables and noncognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. Cognitive variables included the second-semester general chemistry grade, the ACT English, math, reading, and science-reasoning scores, and scores from a spatial visualization test. Noncognitive variables included anxiety, confidence, effectance motivation, and usefulness. The second-semester general chemistry grade was found to be the best indicator of performance in organic chemistry, while the effectiveness of other predictors varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between predictor variables and organic chemistry achievement than females.

  10. Benchmarking uranyl peroxide capsule chemistry in organic media

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Harrison A.; Nyman, May [Department of Chemistry, Oregon State University, Corvallis, OR (United States); Szymanowski, Jennifer; Fein, Jeremy B.; Burns, Peter C. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN (United States)

    2017-01-03

    Uranyl peroxide capsules are a recent addition to polyoxometalate (POM) chemistry. Ten years of development has ensued only in water, while transition metal POMs are commonly exploited in aqueous and organic media, controlled by counterions or ligation to render the clusters hydrophilic or hydrophobic. Here, new uranyl POM behavior is recognized in organic media, including (1) stabilization and immobilization of encapsulated hydrophilic countercations, identified by Li nuclear magnetic resonance (NMR) spectroscopy, (2) formation of new cluster species upon phase transfer, (3) extraction of uranyl clusters from different starting materials including simulated spent nuclear fuel, (4) selective phase transfer of one cluster type from a mixture, and (5) phase transfer of clusters from both acidic and alkaline media. The capsule morphology of the uranyl POMs renders accurate characterization by X-ray scattering, including the distinction of geometrically similar clusters. Compositional analysis of the aqueous phase post-extraction provided a quantitative determination of the ion exchange process that enables transfer of the clusters into the organic phase. Preferential partitioning of uranyl POMs into organic media presents new frontiers in metal ion behavior and chemical reactions in the confined space of the cluster capsules in hydrophobic media, as well as the reactivity of clusters at the organic/aqueous interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Benchmarking uranyl peroxide capsule chemistry in organic media

    International Nuclear Information System (INIS)

    Neal, Harrison A.; Nyman, May; Szymanowski, Jennifer; Fein, Jeremy B.; Burns, Peter C.

    2017-01-01

    Uranyl peroxide capsules are a recent addition to polyoxometalate (POM) chemistry. Ten years of development has ensued only in water, while transition metal POMs are commonly exploited in aqueous and organic media, controlled by counterions or ligation to render the clusters hydrophilic or hydrophobic. Here, new uranyl POM behavior is recognized in organic media, including (1) stabilization and immobilization of encapsulated hydrophilic countercations, identified by Li nuclear magnetic resonance (NMR) spectroscopy, (2) formation of new cluster species upon phase transfer, (3) extraction of uranyl clusters from different starting materials including simulated spent nuclear fuel, (4) selective phase transfer of one cluster type from a mixture, and (5) phase transfer of clusters from both acidic and alkaline media. The capsule morphology of the uranyl POMs renders accurate characterization by X-ray scattering, including the distinction of geometrically similar clusters. Compositional analysis of the aqueous phase post-extraction provided a quantitative determination of the ion exchange process that enables transfer of the clusters into the organic phase. Preferential partitioning of uranyl POMs into organic media presents new frontiers in metal ion behavior and chemical reactions in the confined space of the cluster capsules in hydrophobic media, as well as the reactivity of clusters at the organic/aqueous interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Bioceramics for Hip Joints: The Physical Chemistry Viewpoint

    Directory of Open Access Journals (Sweden)

    Giuseppe Pezzotti

    2014-06-01

    Full Text Available Which intrinsic biomaterial parameter governs and, if quantitatively monitored, could reveal to us the actual lifetime potential of advanced hip joint bearing materials? An answer to this crucial question is searched for in this paper, which identifies ceramic bearings as the most innovative biomaterials in hip arthroplasty. It is shown that, if in vivo exposures comparable to human lifetimes are actually searched for, then fundamental issues should lie in the physical chemistry aspects of biomaterial surfaces. Besides searching for improvements in the phenomenological response of biomaterials to engineering protocols, hip joint components should also be designed to satisfy precise stability requirements in the stoichiometric behavior of their surfaces when exposed to extreme chemical and micromechanical conditions. New spectroscopic protocols have enabled us to visualize surface stoichiometry at the molecular scale, which is shown to be the key for assessing bioceramics with elongated lifetimes with respect to the primitive alumina biomaterials used in the past.

  13. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  14. Introduction: the changing face of accelerator target physics and chemistry

    International Nuclear Information System (INIS)

    Sunderland, J.J.

    1992-01-01

    The explosive growth of the small accelerator industry, an offshoot of the expansion of both clinical and research PET imaging, is driving a changing perspective in the field of accelerator targetry. To meet the new demands placed on targetry by the increasingly active and demanding PET institutions it has become necessary to design targets capable of producing large amounts of the four common positron-emitting radionuclides ( 15 O, 13 N, 11 C, 18 F) with unfailing reliability and simplicity. The economic clinical and research survival of PET absolutely relies upon these capabilities. In response to this perceived need, the lion's share of the effort in the field of target physics and chemistry is being directed toward the profuse production of these four common radioisotopes. (author)

  15. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  16. Physical Chemistry of Bile: Detailed Pathogenesis of Cholelithiasis.

    Science.gov (United States)

    Itani, Malak; Dubinsky, Theodore J

    2017-09-01

    Despite the overwhelming prevalence of cholelithiasis, many health care professionals are not familiar with the basic pathophysiology of gallstone formation. This article provides an overview of the biochemical pathways related to bile, with a focus on the physical chemistry of bile. We describe the important factors in bile synthesis and secretion that affect the composition of bile and consequently its liquid state. Within this biochemical background lies the foundation for understanding the clinical and sonographic manifestation of cholelithiasis, including the pathophysiology of cholesterol crystallization, gallbladder sludge, and gallstones. There is a brief discussion of the clinical manifestations of inflammatory and obstructive cholestasis and the impact on bile metabolism and subsequently on liver function tests. Despite being the key modality in diagnosing cholelithiasis, ultrasound has a limited role in the characterization of stone composition.

  17. Materials of 4. international meeting on pulse investigations in physics, chemistry and biology. PULS'94

    International Nuclear Information System (INIS)

    1994-01-01

    4. International Meeting on Pulse Investigations in Physics, Chemistry and Biology, PULS'94 has been organized in honor of Professor Jerzy Kroh, the precursor of radiation chemistry in Poland. The meeting has been divided into three sessions: the historical session (H) with four review lectures, lecture session (L) collected 23 papers and poster session (P) with 39 posters. The fundamental studies on early stages of radiolysis have been presented for different systems being irradiated. The pulse radiolysis and flash photolysis methods has been predominantly used in reported experimental works. The reaction of intermediate products of radiolysis and photolysis such a trapped and solvated electrons, ions and radicals has been extensively studied. The reaction mechanisms and kinetics have been also discussed

  18. Physics and Chemistry of Star and Planet Formation in the Alma ERA

    Science.gov (United States)

    Bergin, Edwin

    2014-06-01

    ALMA will open up new avenues of exploration encompassing the wide range of star formation in our galaxy and peering into the central heart of planet-forming circumstellar disks. As we seek to explore the origins of stars and planets molecular emission will be at the front and center of many studies probing gas physics and chemistry. In this talk I will discus some of the areas where we can expect significant advances due to the increased sensitivity and superb spatial resolution of ALMA. In star-forming cores, a rich chemistry is revealed that may be the simpler molecular precursors to more complex organics, such as amino acids, seen within primitive rocks in our own solar system. ALMA will provide new information regarding the relative spatial distribution within a given source for a host of organics, sampling tens to hundreds of transitions of a variety of molecules, including presumably new ones. In this area there is a rich synergy with existing ground and space-based data, including Herschel/Spitzer. Here the increased sampling of sources to be enabled by ALMA should bring greater clarity toward the key products of interstellar chemistry and further constrain processes. On smaller Solar System scales, for over a decade most observations of planet-forming disks focused on the dust thermal continuum emission as a probe of the gas content and structure. ALMA will enable reliable and direct studies of gas to explore the evolving physics of planet-formation, the gas dissipation timescales (i.e. the upper limit to the timescale for giant planet birth), and also the chemistry. It is this chemistry that sets the composition of gas giants and also influences the ultimate composition of water and organic materials that are delivered to terrestrial worlds. Here I will show how we can use molecular emission to determine the gas thermal structure of a disk system and the total gas content - key astrophysical quantities. This will also enable more constrained chemical

  19. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan [PI, Emory Univ.

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  20. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  1. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)

  2. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    Science.gov (United States)

    Offroy, Marc; Duponchel, Ludovic

    2016-03-03

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Impact of a Library Instruction Session on Bibliographies of Organic Chemistry Students

    Science.gov (United States)

    Kromer, John

    2015-01-01

    Students in Chemistry 254: Organic Chemistry for Majors were required to write a paper about an organic name reaction. Before turning in this assignment, students had the option of attending a one-hour library instruction session covering SciFinder, sources for spectra, ACS Style, and print resources about organic name reactions. Twenty-five…

  4. Concept-Oriented Task Design: Making Purposeful Case Comparisons in Organic Chemistry

    Science.gov (United States)

    Graulich, Nicole; Schween, Michael

    2018-01-01

    Acquiring conceptual understanding seems to be one of the main challenges students face when studying organic chemistry. Traditionally, organic chemistry presents an extensive variety of chemical transformations, which often lead students to recall an organic transformation rather than apply conceptual knowledge. Strong surface level focus and…

  5. Organic Chemistry Students' Ideas about Nucleophiles and Electrophiles: The Role of Charges and Mechanisms

    Science.gov (United States)

    Anzovino, Mary E.; Bretz, Stacey Lowery

    2015-01-01

    Organic chemistry students struggle with reaction mechanisms and the electron-pushing formalism (EPF) used by practicing organic chemists. Faculty have identified an understanding of nucleophiles and electrophiles as one conceptual prerequisite to mastery of the EPF, but little is known about organic chemistry students' knowledge of nucleophiles…

  6. What Does the Acid Ionization Constant Tell You? An Organic Chemistry Student Guide

    Science.gov (United States)

    Rossi, Robert D.

    2013-01-01

    Many students find the transition from first-year general chemistry to second-year organic chemistry a daunting task. There are many reasons for this, not the least of which is their lack of a solid understanding and appreciation of the importance of some basic concepts and principles from general chemistry that play an extremely critical role in…

  7. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    Science.gov (United States)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  8. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  9. 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008. Abstracts

    International Nuclear Information System (INIS)

    2008-01-01

    The Report comprises abstracts of 68 communications (oral and posters) presented during the 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008, held on September 6 - 12, 2008 in Cracow. Presentations cover a variety of research fields representing different fields of pulse radiolysis in chemistry, biology and physics

  10. 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Report comprises abstracts of 68 communications (oral and posters) presented during the 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008, held on September 6 - 12, 2008 in Cracow. Presentations cover a variety of research fields representing different fields of pulse radiolysis in chemistry, biology and physics.

  11. Green analytical chemistry - the use of surfactants as a replacement of organic solvents in spectroscopy

    Science.gov (United States)

    Pharr, Daniel Y.

    2017-07-01

    This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.

  12. Development and Implementation of a Two-Semester Introductory Organic-Bioorganic Chemistry Sequence: Conclusions from the First Six Years

    Science.gov (United States)

    Goess, Brian C.

    2014-01-01

    A two-semester second-year introductory organic chemistry sequence featuring one semester of accelerated organic chemistry followed by one semester of bioorganic chemistry is described. Assessment data collected over a six-year period reveal that such a course sequence can facilitate student mastery of fundamental organic chemistry in the first…

  13. mu SR in Organic and Free Radical Chemistry

    CERN Multimedia

    2002-01-01

    Experiment SC82 was begun as a simple attempt to substitute positive muons into polymer molecules, and thereby to use the @mSR technique to study the mechanical relaxation of the different molecular groups. \\\\ \\\\ The experiment has since developed in several directions and has produced a wealth of information on the properties of muonic molecules, and adequately demonstrated the potential of @mSR as applied to molecular physics and chemistry. Physics aspects are now covered by a new experiment code SC95.\\\\ \\\\ The present experiment includes studies where the position occupied by the muon in the molecule (or crystal lattice) is readily established and the @mSR signal is exploited to reveal the intrinsic properties of the material. In this respect the @mSR techniques may be regarded simply as an experimental tool to probe the molecular behaviour of a chemical system. \\\\ \\\\ Two main classes of application include the measurement of isotope effects, where differences between muonic and corresponding photonic radi...

  14. Peatland Organic Matter Chemistry Trends Over a Global Latitudinal Gradient

    Science.gov (United States)

    Verbeke, B. A.; Hodgkins, S. B.; Carson, M. A.; Lamit, L. J.; Lilleskov, E.; Chanton, J.

    2017-12-01

    Peatlands contain a significant amount of the global soil carbon, and the climate feedback of carbon cycling within these peatland systems is still relatively unknown. Organic matter composition of peatlands plays a major role in determining carbon storage, and while high latitude peatlands seem to be the most sensitive to climate change, a global picture of peat organic matter chemistry is required to improve predictions and models of greenhouse gas emissions fueled by peatland decomposition. The objective of this research is to test the hypothesis that carbohydrate content of peatlands near the equator will be lower than high latitude peatlands, while aromatic content will be higher. As a part of the Global Peatland Microbiome Project (GPMP), around 2000 samples of peat from 10 to 70 cm across a latitudinal gradient of 79 N to 53 S were measured with Fourier transform infrared spectroscopy (FTIR) to examine the organic matter functional groups of peat. Carbohydrate and aromatic content, as determined by FTIR, are useful proxies of decomposition potential and recalcitrance, respectively. We found a highly significant relationship between carbohydrate and aromatic content, latitude, and depth. Carbohydrate content of high latitude sites were significantly greater than at sites near the equator, in contrast to aromatic content which showed the opposite trend. It is also clear that carbohydrate content decreases with depth while aromatic content increases with depth. Higher carbohydrate content at higher latitudes indicates a greater potential for lability and resultant mineralization to form the greenhouse gases, carbon dioxide and methane, whereas the composition of low latitude peatlands is consistent with their apparent stability. We speculate that the combination of low carbohydrates and high aromatics at warmer locations near the equator could foreshadow the organic matter composition of high latitude peat transitioning to a more recalcitrant form with a

  15. Recent advances in the organic chemistry of astatine

    International Nuclear Information System (INIS)

    Berei, K.; Vasaros, L.

    1994-03-01

    Investigation on the chemical behaviour of astatine in the last decade are surveyed. The survey covers the physical and chemical properties of astatine, synthesis and identification of organic astatine compounds, their physicochemical properties. A special chapter is devoted to biomedical applications, including inorganic 211 At species, 211 At-labelled proteins and drugs. An extensive bibliography of the related literature is given. (N.T.) 129 refs.; 12 figs.; 14 tabs

  16. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    Science.gov (United States)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  17. Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)

    Science.gov (United States)

    Suh, Yung Doug; Kim, Hyun Woo

    2017-08-01

    Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.

  18. Perception of the Relevance of Organic Chemistry in a German Pharmacy Students' Course.

    Science.gov (United States)

    Wehle, Sarah; Decker, Michael

    2016-04-25

    Objective. To investigate German pharmacy students' attitudes toward the relevance of organic chemistry training in Julius Maximilian University (JMU) of Würzburg with regard to subsequent courses in the curricula and in later prospective career options. Methods. Surveys were conducted in the second-year organic chemistry course (50 participants) as well as during the third-year and fourth-year lecture cycle on medicinal and pharmaceutical chemistry (66 participants) in 2014. Results. Students' attitudes were surprisingly consistent throughout the progress of the degree course. Students considered organic chemistry very relevant to the pharmacy study program (95% junior and 97% senior students), and of importance for their future pharmacy program (88% junior and 94% senior students). With regard to prospective career options, the perceived relevance was considerably lower and attitudes were less homogenous. Conclusions. German pharmacy students at JMU Würzburg consider organic chemistry of high relevance for medicinal chemistry and other courses in JMU's pharmacy program.

  19. Trends in metallo-organic chemistry of scandium, yttrium, and the lanthanides

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Several interesting aspects of the metallo-organic chemistry of group 3 and the lanthanides have been highlighted, which include: (a) the chemistry of a few notable organolanthanide compounds, alkoxo and aryloxo derivatives derived from sterically demanding ligands, (b) new trends in the chemistry of lanthanide heterometallic alkoxides, (c) an account of zero valent organometallics of yttrium and the lanthanides, and (d) aspects of agostic interactions in the lanthanide metallo-organic compounds. (author). 49 refs

  20. The tip of the iceberg in organic chemistry classes : how do students deal with the invisible?

    OpenAIRE

    Graulich, Nicole

    2015-01-01

    Organic chemistry education is one of the youngest research areas among all chemistry related research efforts, and its published scholarly work has become vibrant and diverse over the last 15 years. Research on problem-solving behavior, students´ use of the arrow-pushing formalism, the investigation of students´ conceptual knowledge and their cognitive skills have shaped our understanding of college students´ understanding in organic chemistry classes. This review provides an overview of res...

  1. The integration of the contents of the subject Physics-Chemistry (I in Biology-Chemistry specialty

    Directory of Open Access Journals (Sweden)

    M. Sc. Luis AZCUY LORENZ

    2017-12-01

    Full Text Available This work is the result of a research task developed in the Natural Sciences Education Department during 2013-2014 academic year, and it emerged from the necessity of solving some insufficiencies in the use of the real potentialities offered by the content of the subject Physics-Chemistry (I, that is part of the curriculum of the Biology-Chemistry career. Its main objective is to offer a set of exercises to contribute to achieve the integration of contents from the subject Physics-chemistry (I in the mentioned career at «Ignacio Agramonte Loynaz» University of Camaguey. The exercises proposed are characterized for being related to the real practice and to other subjects of the career. Their implementation through review lessons, partial tests and final evaluations during the formative experiment made possible a better academic result in the learners overall performance.

  2. Analysis of the Effect of Sequencing Lecture and Laboratory Instruction on Student Learning and Motivation Towards Learning Chemistry in an Organic Chemistry Lecture Course

    Science.gov (United States)

    Pakhira, Deblina

    2012-01-01

    Exposure to organic chemistry concepts in the laboratory can positively affect student performance, learning new chemistry concepts and building motivation towards learning chemistry in the lecture. In this study, quantitative methods were employed to assess differences in student performance, learning, and motivation in an organic chemistry…

  3. Stepwise Approach to Writing Journal-Style Lab Reports in the Organic Chemistry Course Sequence

    Science.gov (United States)

    Wackerly, Jay Wm.

    2018-01-01

    An approach is described that gradually transitions second-year organic chemistry students to writing full "The Journal of Organic Chemistry" ("JOC") style lab reports. The primary goal was to introduce students to and build rhetorical skills in scientific and technical writing. This was accomplished by focusing on four main…

  4. Beyond Rote Learning in Organic Chemistry: The Infusion and Impact of Argumentation in Tertiary Education

    Science.gov (United States)

    Pabuccu, Aybuke; Erduran, Sibel

    2017-01-01

    There exists bias among students that learning organic chemistry topics requires rote learning. In this paper, we address such bias through an organic chemistry activity designed to promote argumentation. We investigated how pre-service science teachers engage in an argumentation about conformational analysis. Analysis of the outcomes concentrated…

  5. Evaluation of a Flipped, Large-Enrollment Organic Chemistry Course on Student Attitude and Achievement

    Science.gov (United States)

    Mooring, Suazette R.; Mitchell, Chloe E.; Burrows, Nikita L.

    2016-01-01

    Organic Chemistry is recognized as a course that presents many difficulties and conceptual challenges for students. To combat the high failure rates and poor student attitudes associated with this challenging course, we implemented a "flipped" model for the first-semester, large-enrollment, Organic Chemistry course. In this flipped…

  6. Organic Chemistry and the Native Plants of the Sonoran Desert: Conversion of Jojoba Oil to Biodiesel

    Science.gov (United States)

    Daconta, Lisa V.; Minger, Timothy; Nedelkova, Valentina; Zikopoulos, John N.

    2015-01-01

    A new, general approach to the organic chemistry laboratory is introduced that is based on learning about organic chemistry techniques and research methods by exploring the natural products found in local native plants. As an example of this approach for the Sonoran desert region, the extraction of jojoba oil and its transesterification to…

  7. Student Perceptions of Online Homework Use for Formative Assessment of Learning in Organic Chemistry

    Science.gov (United States)

    Richards-Babb, Michelle; Curtis, Reagan; Georgieva, Zornitsa; Penn, John H.

    2015-01-01

    Use of online homework as a formative assessment tool for organic chemistry coursework was examined. Student perceptions of online homework in terms of (i) its ranking relative to other course aspects, (ii) their learning of organic chemistry, and (iii) whether it improved their study habits and how students used it as a learning tool were…

  8. Using Structure-Based Organic Chemistry Online Tutorials with Automated Correction for Student Practice and Review

    Science.gov (United States)

    O'Sullivan, Timothy P.; Hargaden, Gra´inne C.

    2014-01-01

    This article describes the development and implementation of an open-access organic chemistry question bank for online tutorials and assessments at University College Cork and Dublin Institute of Technology. SOCOT (structure-based organic chemistry online tutorials) may be used to supplement traditional small-group tutorials, thereby allowing…

  9. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    Science.gov (United States)

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-01-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…

  10. Introducing Undergraduates to Research Using a Suzuki-Miyaura Cross-Coupling Organic Chemistry Miniproject

    Science.gov (United States)

    Oliveira, Deyvid G. M.; Rosa, Clarissa H.; Vargas, Bruna P.; Rosa, Diego S.; Silveira, Ma´rcia V.; de Moura, Neusa F.; Rosa, Gilber R.

    2015-01-01

    A five-week miniproject is described for an upper-division experimental organic chemistry course. The activities include synthesis of a phenylboronic acid via a Grignard reaction and its use in a Suzuki-Miyaura cross-coupling reaction. Technical skills and concepts normally presented in practical organic chemistry courses are covered, including…

  11. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.

    2014-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  12. Sunscreen synthesis and their immobilisation on polymethylmethacrylate: an integrated project in organic chemistry, polymer chemistry and photochemistry

    International Nuclear Information System (INIS)

    Murtinho, Dina Maria B.; Serra, Maria Elisa S.; Pineiro, Marta

    2010-01-01

    Dibenzalacetone and other aldol condensation products are known sunscreens commonly used in cosmetics. This type of compounds can easily be prepared in an Organic Chemistry Lab by reaction of aldehydes with ketones in basic medium. These compounds can be incorporated in poly(methyl methacrylate) and used as UV light absorbers, for example in sunglasses. This project has the advantage of using inexpensive reagents which are readily available in Chemistry Laboratories. This experiment can also be a base starting point for discussions of organic, polymer and photochemistry topics. (author)

  13. A context based approach using Green Chemistry/Bio-remediation principles to enhance interest and learning of organic chemistry in a high school AP chemistry classroom

    Science.gov (United States)

    Miller, Tricia

    The ability of our planet to sustain life and heal itself is not as predictable as it used to be. Our need for educated future scientists who know what our planet needs, and can passionately apply that knowledge to find solutions should be at the heart of science education today. This study of learning organic chemistry through the lens of the environmental problem "What should be done with our food scraps?" explores student interest, and mastery of certain concepts in organic chemistry. This Green Chemistry/ Bio-remediation context-based teaching approach utilizes the Nature MillRTM, which is an indoor food waste composting machine, to learn about organic chemistry, and how this relates to landfill reduction possibilities, and resource production. During this unit students collected food waste from their cafeteria, and used the Nature MillRTM to convert food waste into compost. The use of these hands on activities, and group discussions in a context-based environment enhanced their interest in organic chemistry, and paper chromatography. According to a one-tailed paired T-test, the result show that this context-based approach is a significant way to increase both student interest and mastery of the content.

  14. Comparing Recent Organizing Templates for Test Content between ACS Exams in General Chemistry and AP Chemistry

    Science.gov (United States)

    Holme, Thomas

    2014-01-01

    Two different versions of "big ideas" rooted content maps have recently been published for general chemistry. As embodied in the content outline from the College Board, one of these maps is designed to guide curriculum development and testing for advanced placement (AP) chemistry. The Anchoring Concepts Content Map for general chemistry…

  15. Physical properties of organic soils. Chapter 5.

    Science.gov (United States)

    Elon S. Verry; Don H. Boelter; Juhani Paivanen; Dale S. Nichols; Tom Malterer; Avi Gafni

    2011-01-01

    Compared with research on mineral soils, the study of the physical properties of organic soils in the United States is relatively new. A comprehensive series of studies on peat physical properties were conducted by Don Boelter (1959-1975), first at the Marcell Experimental Forest (MEF) and later throughout the northern Lakes States to investigate how to express bulk...

  16. Factors related to achievement in sophomore organic chemistry at the University of Arkansas

    Science.gov (United States)

    Lindsay, Harriet Arlene

    The purpose of this study was to identify the significant cognitive and non-cognitive variables that related to achievement in the first semester of organic chemistry at the University of Arkansas. Cognitive variables included second semester general chemistry grade, ACT composite score, ACT English, mathematics, reading, and science reasoning subscores, and spatial ability. Non-cognitive variables included anxiety, confidence, effectance motivation, and usefulness. Using a correlation research design, the individual relationships between organic chemistry achievement and each of the cognitive variables and non-cognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. The samples consisted of volunteers from the Fall 1999 and Fall 2000 sections of Organic Chemistry I at the University of Arkansas. All students in each section were asked to participate. Data for spatial ability and non-cognitive independent variables were collected using the Purdue Visualization of Rotations test and the modified Fennema-Sherman Attitude Scales. Data for other independent variables, including ACT scores and second semester general chemistry grades, were obtained from the Office of Institutional Research. The dependent variable, organic chemistry achievement, was measured by each student's accumulated points in the course and consisted of scores on quizzes and exams in the lecture section only. These totals were obtained from the lecture instructor at the end of each semester. Pearson correlation and stepwise multiple regression analyses were used to measure the relationships between organic chemistry achievement and the independent variables. Prior performance in chemistry as measured by second semester general

  17. Biomaterials — where biology, physics, chemistry, engineering and medicine meet

    Science.gov (United States)

    Hing, K. A.

    2008-03-01

    The success or failure of an implant material in the body depends on a complex interaction between a synthetic 'foreign body' and the 'host tissue'. These interactions occur at many levels from the sub-microscopic level, where subtle changes in the surface physio-chemistry can substantially alter the nature of the biomaterial-host tissue interface, through the microscopical level (e.g. sensitivity to surface topography) to the macrostructural level (e.g. dependence on scaffold porosity). Thus the factors that control these responses are not only biologically determined but also mechanically, physically and chemically mediated, although identifying where one starts and the other finishes can be difficult. Design of a successful medical device has therefore to call on expertise within a wide range of disciplines. In terms of both investigating the basic science behind the factors which orchestrate a biological response and developing research tools that enable study of these responses. However, a medical device must also meet the economic and practical demands of health care professionals who will ultimately be using it in the clinic. Bone graft substitute materials are used in orthopaedics as an alternative or adjunct to autografting, a practice where the patient 'donates' bone from a healthy site to aid bone repair at a damaged or diseased site. These materials are used in a wide range of procedures from total hip revision to spinal fusion and their evolution over the last 10 years illustrates how an interdisciplinary approach has benefited their development and may lead to further innovation in the future.

  18. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  19. Physical properties of organic coolants

    International Nuclear Information System (INIS)

    Debbage, A.G.; Garton, D.A.; Kinneir, J.H.

    1963-03-01

    Density, viscosity, specific heat, vapour pressure and calorific value were measured within the temperature range 100 - 400 deg C for mixtures of Santowax R with pyrolytic high boiler and Santowax R with O.M.R.E. radiolytic high boiler; in addition measurements were made on Santowax OM, X-7 standard, X-7 loop coolant and O.M.R.E. coolant supplied by Atomic Energy of Canada Ltd. The accuracy of the measurements made were density (± 1/4%), viscosity (± 2%), specific heat (± 2%), vapour pressure (± 2%) and calorific value (± 1/2%). Thermal conductivity was calculated from an improved form of the Smiths equation with an accuracy within ± 6%. Equations fitted to the vapour pressure results were used to provide data outside the experimental range for burnout correlation purposes. The general effect of high boiler content on the specific heat and calorific values was small. The differences in physical property values for corresponding values of either pyrolytic or radiolytic high boiler were small for density (0.3%) and specific heat (2%), but quite large for viscosity (70%) with the pyrolytic high boiler mixture giving the higher value. The chemical analysis of all materials was based on gas chromatography and the relationship between this and an earlier distillation method established. (author)

  20. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    Science.gov (United States)

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  1. Fusing a Reversed and Informal Learning Scheme and Space: Student Perceptions of Active Learning in Physical Chemistry

    Science.gov (United States)

    Donnelly, Julie; Hernández, Florencio E.

    2018-01-01

    Physical chemistry students often have negative perceptions and low expectations for success in physical chemistry, attitudes that likely affect their performance in the course. Despite the results of several studies indicating increased positive perception of physical chemistry when active learning strategies are used, a recent survey of faculty…

  2. Chemistry and physics of fogwater collection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeschke, W.; Enderle, K.H. (eds.)

    1988-01-01

    Increasing interest in the problems of air pollution and source receptor relationships has led to a significant expansion of knowledge in the field of atmospheric chemistry. In recent years the multiphase atmospheric chemistry was given great scholarly attention, and slogans like acid precipitation, dirty cloud or killer fog indicated these phenomena. The report describes results of collection and chemical analysis of fog water with emphasis or fog microphysics, of the heterogeneous atmospheric chemistry project in the Po-valley, of the development of the Great Dun Fell project, of the mountain cloud chemistry project in eastern U.S., of the design of fog water collectors and of the numerical study of the radiation fog event on October 10/11, 1982 in Albany, N.Y.

  3. The Gravity of Regenerative Medicine; Physics, Chemistry & Biology behind it

    Directory of Open Access Journals (Sweden)

    Dedeepiya V

    2008-01-01

    Full Text Available The in-vitro expansion of cells of the organs/tissues and their re-implantation into the affected region/ tissue for treating cell/organ failure have been in practice for long, but in limited specialties. The in-vitro cell culture protocols use variety of biological reagents derived from animal sources and recombinant technologies. However, the optimal quantity of such biological components such as growth factors, cytokines etc.,needed for such cells to be grown in a non-physiological environment is still unknown. The use of such biological components have started to stir a controversy of late, due to the recognition of its potential hazards such as spread of prion diseases and contamination with non-human sialic acid proteins. Therefore synthetic reproducible biomaterials are gaining popularity in cell culture and tissue engineering. The biomaterials made of several chemical components based on physical parameters are starting to change certain concepts about the niche of cell culture and that of stem cell expansion and differentiation to specific lineages. Engler et al have already proven that a simple change in the matrix elasticity alone could change the lineage of the cells. Spencer et al have reported that a change in bioelectricity could change the morphogenesis during development. NCRM has been involved in cell culture and tissue engineering using approximately 240 different materials ranging from polymer hydrogel, gel with adherent inserts, nano composite materials, nano-coating technologies, nano-sheets and nano-films. These materials are used in cell culture in different hybrid combinations such as Floating 3D cell culture without adherent components in a homogenous hydrogel. Floating 3D cell culture with anchorage inserts. Flat surface- 2D adherent cell culture. Combined flat surface 2D cell culture (for differentiating cells and floating 3D culture (for undifferentiated cells. These combinations have started yielding several

  4. Phase Equilibrium, Chemical Equilibrium, and a Test of the Third Law: Experiments for Physical Chemistry.

    Science.gov (United States)

    Dannhauser, Walter

    1980-01-01

    Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)

  5. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Isotopic Labeling with Sodium Borodeuteride in the Introductory Organic Chemistry Laboratory

    Science.gov (United States)

    Kjonaas, Richard A.; Fitch, Richard W.; Noll, Robert J.

    2017-01-01

    A microscale isotopic labeling experiment is described for the introductory organic chemistry laboratory course wherein half of the students use sodium borohydride (NaBH[subscript 4]) and the other half use sodium borodeuteride (NaBD[subscript 4]) to reduce acetophenone to 1-phenylethanol and then compare spectral data. The cost is reasonable, and…

  6. BIO-ORGANIC CHEMISTRY QUARTERLY REPORT. June through August1963

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1963-10-02

    This report covers the following titles: (1) The Effects of 8-Methyl Lipoic Acid on the Evolution of Oxygen and Reduction of Carbon Dioxide during Photosynthesis; (2) Further {sup 14}C and {sup 15}N Tracer Studies of Amino Acid Synthesis during Photosynthesis by Chlorella Pyrenoidosa; (3) Two-Dimensional High Voltage, Low-Temperature Paper Electrophoresis of {sup 14}C-Labeled Products of Photosynthesis with {sup 14}CO{sub 2}; (4) A Search for Enzymic and Nonenzymic Reactions Between Thiamine Derivatives and Sugar Phosphates; (5) The Cytochrome Content of Purified Spinach Chloroplast Lamellae; (6) The Osmium Tetroxide Fixation of Chloroplast Lamellae; (7) Kinetics of Exoenzymes and Applications to the Determination of the Sequence of Nucleic Acids; (8) Brain Biochemistry and Behavior in Rats; (9) Experiments on Classical Conditioning and Light Habituation in Planarians; (10) Operant Conditioning in Planarians; (11) Manganese Porphyrin Complexes; (12) EPR Studies of Some Complex Organic Solutions; (13) Transient Response of Light-induced Photosynthetic Electron Paramagnetic Resonance Signals: Rhodospirillum rubrum Chromatophores; (14) Studies of the Tautomerism of Amides; (15) Structure and Mechanism of Hydrolysis of the Product of Reaction of PZ05 and Ethyl Ether; (16) A Study of the Irradiation Products of Several Nitrones; (17) Biosynthesis of the Opium Alkaloids; (18) Synthesis of methyl-{beta}-D-thiogalactoside-{sup 35}S; (19) Effect of Acridine Orange and Visible Light on Thymine Dimer Formation and Disruption; (20) Some Aspects of the Radiation Chemistry of DNA; (21) Nuclear Magnetic Resonance; and (22) Studies on the Inhibition of the Photoreduction of FMN.

  7. Advance Organizers and Examining of their Usage in 9th Grade Chemistry Textbooks

    OpenAIRE

    Canan NAKİBOĞLU; Nihan KAŞMER; Cem GÜLTEKİN; Füsun DÖNMEZ

    2010-01-01

    An advance organizer is the tool that is presented prior to the material to be learned, and that helps learners to organize and interpret new incoming information. In this study, a concept map concerning the classification of advance organizer was developed. Then, 9th grade chemistry textbooks written according to both current (year 2007) and past (year 1996) high school chemistry curriculum were examined by taking into account the concept map prepared. Next, the findings of each textbook ana...

  8. Radiological and Environmental Research Division annual report, October 1979-September 1980: fundamental molecular physics and chemistry

    International Nuclear Information System (INIS)

    1981-09-01

    Research is reported on the physics and chemistry of atoms, ions, and molecules, especially their interactions with external agents such as photons and electrons. Individual items from the report were prepared separately for the data base

  9. Organic carbamates in drug design and medicinal chemistry.

    Science.gov (United States)

    Ghosh, Arun K; Brindisi, Margherita

    2015-04-09

    The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.

  10. Quantum Chemistry; A concise introduction for students of physics, chemistry, biochemistry and materials science

    Science.gov (United States)

    Thakkar, Ajit J.

    2017-09-01

    This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.

  11. Horizons of organic and organoelemental chemistry. 7. All-Russian conference on organometallic chemistry. Program and summaries of communications. V. 1

    International Nuclear Information System (INIS)

    1999-01-01

    Abstracts of the seventh All-Russian conference on organometallic chemistry are presented. The synthesis of organometallic compounds of rare earth, transition elements, the synthesis of organic boron compounds are played an important role in modern organic chemistry and the main part of reports are devoted to these problems. Methods of labelling by radioactive isotopes of organic compounds used in medicine are discussed

  12. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  13. Integrating Chemical Information Instruction into the Chemistry Curriculum on Borrowed Time: A Multiyear Case Study of a Capstone Research Report for Organic Chemistry

    Science.gov (United States)

    Jacobs, Danielle L.; Dalal, Heather A.; Dawson, Patricia H.

    2016-01-01

    To develop information literacy skills in chemistry and biochemistry majors at a primarily undergraduate institution, a multiyear collaboration between chemistry faculty and librarians has resulted in the establishment of a semester-long capstone project for Organic Chemistry II. Information literacy skills were instilled via a progressive…

  14. Intuitive Judgments Govern Students' Answering Patterns in Multiple-Choice Exercises in Organic Chemistry

    Science.gov (United States)

    Graulich, Nicole

    2015-01-01

    Research in chemistry education has revealed that students going through their undergraduate and graduate studies in organic chemistry have a fragmented conceptual knowledge of the subject. Rote memorization, rule-based reasoning, and heuristic strategies seem to strongly influence students' performances. There appears to be a gap between what we…

  15. The Tip of the Iceberg in Organic Chemistry Classes: How Do Students Deal with the Invisible?

    Science.gov (United States)

    Graulich, Nicole

    2015-01-01

    Organic chemistry education is one of the youngest research areas among all chemistry related research efforts, and its published scholarly work has become vibrant and diverse over the last 15 years. Research on problem-solving behavior, students' use of the arrow-pushing formalism, the investigation of students' conceptual knowledge and…

  16. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.

    2016-01-01

    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  17. Comparable Educational Benefits in Half the Time: An Alternating Organic Chemistry Laboratory Sequence Targeting Prehealth Students

    Science.gov (United States)

    Young, Sherri C.; Colabroy, Keri L.; Baar, Marsha R.

    2016-01-01

    The laboratory is a mainstay in STEM education, promoting the development of critical thinking skills, dexterity, and scientific curiosity. The goals in the laboratory for nonchemistry, prehealth majors, though, could be distinguished from those for chemistry majors. In service courses such as organic chemistry, much laboratory time is often spent…

  18. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    Science.gov (United States)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  19. Handbook on the physics and chemistry of the actinides. V. 6

    International Nuclear Information System (INIS)

    Freeman, A.J.; Keller, C.

    1991-01-01

    In the last 15 years, actinide research has presented unique challenges both for experimentalists and theorists. The uniqueness stems not only from their nuclear properties, which since the early 1940's has led to their important role in nuclear energy and nuclear technology, but also from their unusual chemical and physical properties which have added new excitement and discoveries to both these disciplines. It is the purpose of this handbook to describe in detail the present understanding of the actinides by means of comprehensive, critical, broad and up-to-date reviews covering both the physics and chemistry of these exotic elements. They are intended to serve as an introduction to the subject for the non-specialist, as a convenient reference work for the specialist, and as a guide for future research. The rapid accelerated pace of research in the last decade continues and carries with it new vigor and excitement to a field in a state of transition. The present sixth volume completes the series. Like volumes 3 and 4, the emphasis is on chemistry, though physical aspects, such as self-radiation effects and electron paramagnetic resonance are also treated. The main body of the volume is devoted to systematic and comprehensive studies of a variety of important actinide compounds. These include relatively simple salts as well as various complexes and organic compounds. The data accumulated on such materials are broadly scattered in the literature, due to the interdisciplinary nature of much of the underlying research. Experts on the various substances have now reviewed this literature and brought it together in this book. refs.; figs.; tabs

  20. Active Learning and Cooperative Learning in the Organic Chemistry Lecture Class

    Science.gov (United States)

    Paulson, Donald R.

    1999-08-01

    Faculty in the physical sciences are one of the academic groups least receptive to the use of active learning strategies and cooperative learning in their classrooms. This is particularly so in traditional lecture classes. It is the objective of this paper to show how effective these techniques can be in improving student performance in classes. The use of active learning strategies and cooperative learning groups in my organic chemistry lecture classes has increased the overall pass rate in my classes by an astounding 20-30% over the traditional lecture mode. This has been accomplished without any reduction in "standards". The actual methods employed are presented as well as a discussion of how I came to radically change the way I teach my classes.

  1. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  2. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  3. Integration of Computational Chemistry into the Undergraduate Organic Chemistry Laboratory Curriculum

    Science.gov (United States)

    Esselman, Brian J.; Hill, Nicholas J.

    2016-01-01

    Advances in software and hardware have promoted the use of computational chemistry in all branches of chemical research to probe important chemical concepts and to support experimentation. Consequently, it has become imperative that students in the modern undergraduate curriculum become adept at performing simple calculations using computational…

  4. Operating experience in correcting severe secondary chemistry upsets by controlling makeup water organics (TOC)

    International Nuclear Information System (INIS)

    Flint, W.G.; Mc Intosh, R.J.

    1986-01-01

    In this paper following observations are presented: conductivity and chloride excursions in steam condensate were directly linked to makeup water quality. Data strongly suggests that the breakdown of makeup water organics was responsible for substandard condensate water quality; although the short-term effects of gross organic contamination have been documented, the longer term consequences of continuous exposure by moderate organic levels needs to be addressed; a greater understanding of the organic removal efficiency of the various water purification technologies is essential to controlling TOC contamination; and a much better understanding of makeup plant chemistry and the interrelationship of makeup water contamination and plant chemistry has proven essential to optimizing plant performance and guaranteeing the best possible steam chemistry. The role of the chemistry group as an active participant in operations has been proven at Kewaunee Nuclear Plant

  5. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ (CMAS Presentation)

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  6. Improvements to the treatment of organic nitrogen chemistry & deposition in CMAQ

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  7. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  8. Physical chemistry of the interface between oxide and aqueous solution

    International Nuclear Information System (INIS)

    Jolivet, J.P.

    1997-01-01

    The behavior and properties of small oxide particles in aqueous suspension are dominated by the physico-chemistry of their surface. It is electrostatically charged and strongly solvated. The origin of the surface charge is discussed through the MUSIC model [Hiemstra 1996], allowing to estimate the acid-base behavior of surface oxygen atoms. The stability of aqueous dispersions of particles is analysed following the DLVO model, with a special attention on the hydration layers allowing the peptization of flocs. Different adsorption mechanisms of metal cations are presented in terms of coordination chemistry (outer- and inner-sphere complexes) emphasizing the coordinating ability of the surface towards metal complexes in solution. The anion adsorption is also studied in relation with some interesting consequences on spinel iron oxide nano-particles. (author)

  9. Modeling of iodine radiation chemistry in the presence of organic compounds

    International Nuclear Information System (INIS)

    Taghipour, Fariborz; Evans, Greg J.

    2002-01-01

    A kinetic-based model was developed that simulates the radiation chemistry of iodine in the presence of organic compounds. The model's mechanistic description of iodine chemistry and generic semi-mechanistic reactions for various classes of organics, provided a reasonable representation of experimental results. The majority of the model and experimental results of iodine volatilization rates were in agreement within an order of magnitude

  10. Beyond Clickers, Next Generation Classroom Response Systems for Organic Chemistry

    Science.gov (United States)

    Shea, Kevin M.

    2016-01-01

    Web-based classroom response systems offer a variety of benefits versus traditional clicker technology. They are simple to use for students and faculty and offer various question types suitable for a broad spectrum of chemistry classes. They facilitate active learning pedagogies like peer instruction and successfully engage students in the…

  11. The 2010 Chemistry Nobel Prize: Pd(0)-Catalyzed Organic Synthesis

    Indian Academy of Sciences (India)

    The 2010 Nobel Prize in Chemistry was awarded to three scientists, R F ... reactions are scalable to industrial production level and satisfy several 'Green ... Ph Br. H2C CH2. Pd(PPh3)4 or Pd(OAc2). HC CH2. Ph base, solvent, heat. 1. 2. 3. (1).

  12. For the love of learning science: Connecting learning orientation and career productivity in physics and chemistry

    Directory of Open Access Journals (Sweden)

    Robert H. Tai

    2010-05-01

    Full Text Available An individual’s motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this paper: performance orientation or motivation to demonstrate one’s ability or performance to others, and learning orientation or motivation through the desire to learn about a topic. The data were obtained as part of Project Crossover, a mixed-methods study which focused on studying the transition from graduate student to scientist in the physical sciences and included a survey of members of two national professional physical science organizations. Using regression analysis on data from 2353 physicists and chemists, results indicate that physicists and chemists who reported a learning orientation as their motivation for going to graduate school were more productive, in terms of total career primary and/or first-author publications and grant funding, than those reporting a performance orientation. Furthermore, given equal salary, learning-oriented individuals produced more primary and/or first-author publications than their nonlearning oriented counterparts.

  13. Profiles in chemistry: a historical perspective on the national organic symposium.

    Science.gov (United States)

    Fenlon, Edward E; Myers, Brian J

    2013-06-21

    This perspective delineates the history of the National Organic Chemistry Symposium (NOS) and, in doing so, traces the development of organic chemistry over the past 88 years. The NOS is the premier event sponsored by the ACS Division of Organic Chemistry (ORGN) and has been held in odd-numbered years since 1925, with the exceptions of 1943 and 1945. During the 42 symposia, 332 chemists have given 549 plenary lectures. The role the NOS played in the launch of The Journal of Organic Chemistry and Organic Reactions and the initiation of the Roger Adams Award are discussed. Representative examples highlighting the chemistry presented in each era are described, and the evolution of the field is examined by assigning each NOS talk to one of seven subdisciplines and analyzing how the number of talks in each subdiscipline has changed over time. Comparisons of the demographics of speakers, attendees, and ORGN members are made, and superlatives are noted. Personal interest stories of the speakers are discussed, along with the relationships among them, especially their academic lineage. Logistical aspects of the NOS and their historical trends are reviewed. Finally, the human side of science is examined, where over the past century, the NOS has been intertwined with some of the most heated debates in organic chemistry. Conflicts and controversies involving free radicals, reaction mechanisms, and nonclassical carbocations are discussed.

  14. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  15. Technical liaison with the Institute of Physical Chemistry (Russian Academy of Science)

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-12-01

    The Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) is engaged by the DOE to conduct studies of the fundamental and applied chemistry of the transuranium elements (TRU; primarily neptunium, plutonium, and americium; Np, Pu, Am) and technetium T c in alkaline media. This work is being supported by the DOE because the radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRU and T c , are alkaline, and the chemistries of TRU and T c are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry and on coprecipitation. Work continuing in FY 1996 will focus more on the applied chemistry of the TRU and T c in alkaline media and continue effort on the coprecipitation task

  16. A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry

    Science.gov (United States)

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.

    2017-01-01

    In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…

  17. Radiation Chemistry and Physical Chemistry of Chitosan and Other Polysaccharides. Fundamental Studies and Practical Applications

    International Nuclear Information System (INIS)

    Rosiak, Janusz M.; Czechowska-Biskup, Renata; Rokita, Bożena; Olejnik, Alicja K.

    2010-01-01

    This report summarizes the second year of activities performed at the Institute of Applied Radiation Chemistry (IARC) within the framework of the CRP project. It consists of two parts. Part I is a brief account of the activities related to design, tests, sample procurement and characterization and formulation of “Protocol for determination of intrinsic viscosity of chitosan” designed to be the basis of the interlaboratory study on viscometric determination of chitosan molecular weight as well as on radiation degradation of chitosan in controlled conditions. Part II contains the text of the Protocol, and is given in the Annex. (author)

  18. Liaison activities with the Institute of Physical Chemistry, Russian Academy of Sciences: FY 1997

    International Nuclear Information System (INIS)

    Delegard, C.H.; Elovich, R.J.

    1997-09-01

    The Institute of Physical Chemistry of the Russian Academy of Sciences is conducting a program of fundamental and applied research into the chemistry of the actinides and technetium in alkaline media such as are present in the Hanford Site underground waste storage tanks. This work is being coordinated and the results disseminated through a technical liaison maintained at the Pacific Northwest National Laboratory. The technical liaison is performing laboratory studies on plutonium chemistry in alkaline media. The activities at the Institute of Physical Chemistry and through the liaison are pursued to improve understanding of the chemical behavior of key long-lived radioactive elements under current operating and proposed tank waste processing conditions. Both activities are supported by the Efficient Separations and Processing Crosscutting Program under the Office of Science and Technology of the U.S. Department of Energy

  19. Effectiveness of Analogy Instructional Strategy on Undergraduate Student's Acquisition of Organic Chemistry Concepts in Mutah University, Jordan

    Science.gov (United States)

    Samara, Nawaf Ahmad Hasan

    2016-01-01

    This study aimed at investigating the effectiveness of analogy instructional strategy on undergraduate students' acquisition of organic chemistry concepts in Mutah University, Jordan. A quasi-experimental design was used in the study; Participants were 97 students who enrolled in organic chemistry course at the department of chemistry during the…

  20. High Structure Active Learning Pedagogy for the Teaching of Organic Chemistry: Assessing the Impact on Academic Outcomes

    Science.gov (United States)

    Crimmins, Michael T.; Midkiff, Brooke

    2017-01-01

    Organic Chemistry is a required course for programs in chemistry, biology, and many health science careers. It has historically been considered a highly challenging course with significant failure rates. As with many science disciplines, the teaching of Organic Chemistry has traditionally focused on unstructured exposition-centered delivery of…

  1. "Molecules-in-Medicine": Peer-Evaluated Presentations in a Fast-Paced Organic Chemistry Course for Medical Students

    Science.gov (United States)

    Kadnikova, Ekaterina N.

    2013-01-01

    To accentuate the importance of organic chemistry in development of contemporary pharmaceuticals, a three-week unit entitled "Molecules-in-Medicine" was included in the curriculum of a comprehensive one-semester four-credit organic chemistry course. After a lecture on medicinal chemistry concepts and pharmaceutical practices, students…

  2. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    Science.gov (United States)

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  3. Correlation of preadmission organic chemistry courses and academic performance in biochemistry at a midwest chiropractic doctoral program.

    Science.gov (United States)

    McRae, Marc P

    2010-01-01

    Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p organic chemistry 2 (p organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry.

  4. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  5. Mukilteo water sensor time series - Field work coupling measurements of carbon chemistry and distribution of free-living organisms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate the carbon chemistry conditions experienced by free-living organisms, we will conduct coupled biological/carbon chemistry sampling for key zooplankton...

  6. On the Applicability of the Green Chemistry Principles to Sustainability of Organic Matter on Asteroids

    Directory of Open Access Journals (Sweden)

    Vera M. Kolb

    2010-06-01

    Full Text Available The connection between astrobiology and green chemistry represents a new approach to sustainability of organic matter on asteroids or similar bodies. Green chemistry is chemistry which is environmentally friendly. One obvious way for chemistry to be green is to use water as a solvent, instead of more toxic organic solvents. Many astrobiological reactions occur in the aqueous medium, for example in the prebiotic soup or during the aqueous alteration period on asteroids. Thus any advances in the green organic reactions in water are directly applicable to astrobiology. Another green chemistry approach is to abolish use of toxic solvents. This can be accomplished by carrying out the reactions without a solvent in the solventless or solid-state reactions. The advances in these green reactions are directly applicable to the chemistry on asteroids during the periods when water was not available. Many reactions on asteroids may have been done in the solid mixtures. These reactions may be responsible for a myriad of organic compounds that have been isolated from the meteorites.

  7. Perception of the Relevance of Organic Chemistry in a German Pharmacy Students’ Course

    Science.gov (United States)

    Wehle, Sarah

    2016-01-01

    Objective. To investigate German pharmacy students’ attitudes toward the relevance of organic chemistry training in Julius Maximilian University (JMU) of Würzburg with regard to subsequent courses in the curricula and in later prospective career options. Methods. Surveys were conducted in the second-year organic chemistry course (50 participants) as well as during the third-year and fourth-year lecture cycle on medicinal and pharmaceutical chemistry (66 participants) in 2014. Results. Students’ attitudes were surprisingly consistent throughout the progress of the degree course. Students considered organic chemistry very relevant to the pharmacy study program (95% junior and 97% senior students), and of importance for their future pharmacy program (88% junior and 94% senior students). With regard to prospective career options, the perceived relevance was considerably lower and attitudes were less homogenous. Conclusions. German pharmacy students at JMU Würzburg consider organic chemistry of high relevance for medicinal chemistry and other courses in JMU’s pharmacy program. PMID:27170811

  8. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  9. The Contributions of James Moir to Physical Chemistry | Loyson ...

    African Journals Online (AJOL)

    James Moir was a pioneering chemist in the early 1900s who played a leading role in various chemical societies in South Africa. Although he was mainly an organic chemist, he was a very good all-round chemist, whose analytical and organic activities have already been covered in this journal. This article examines his ...

  10. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  11. A study of how precursor key concepts for organic chemistry success are understood by general chemistry students

    Science.gov (United States)

    Meyer, Patrick Gerard

    This study examines college student understanding of key concepts that will support future organic chemistry success as determined by university instructors. During four one-hour individual interviews the sixteen subjects attempted to solve general chemistry problems. A think-aloud protocol was used along with a whiteboard where the students could draw and illustrate their ideas. The protocols for the interviews were adapted from the Covalent Structure and Bonding two-tiered multiple choice diagnostic instrument (Peterson, Treagust, & Garnett, 1989) and augmented by the Geometry and Polarity of Molecules single-tiered multiple choice instrument (Furio & Calatayud, 1996). The interviews were videotaped, transcribed, and coded for analysis to determine the subjects' understanding of the key ideas. The subjects displayed many misconceptions that were summarized into nine assertions about student conceptualization of chemistry. (1) Many students misunderstand the location and nature of intermolecular forces. (2) Some think electronegativity differences among atoms in a molecule are sufficient to make the molecule polar, regardless of spatial arrangement. (3) Most know that higher phase change temperatures imply stronger intermolecular attractions, but many do not understand the difference between covalent molecular and covalent network substances. (4) Many have difficulty deciding whether a molecule is polar or non-polar, often confusing bilateral symmetry with spatial symmetry in all three dimensions. (5) Many cannot reliably draw correct Lewis structures due to carelessness and overuse of flawed algorithms. (6) Many are confused by how electrons can both repel one other and facilitate bonding between atoms via orbitals---this seems oxymoronic to them. (7) Many cannot explain why the atoms of certain elements do not follow the octet rule and some believe the octet rule alone can determine the shape of a molecule. (8) Most do know that electronegativity and polarity

  12. Scandium: its occurrence, chemistry, physics, metallurgy, biology, and technology

    International Nuclear Information System (INIS)

    Horovitz, C.T.

    1975-01-01

    This book describes the following aspects of scandium: discovery and history, occurrence in nature, geochemistry and mineralogy, chemical, physical and technological properties, fabrication and metallurgy, its biological significance and toxicology, and its uses. (Extensive references for each chapter)

  13. Physical chemistry characterization of soils of the Storage Center of Radioactive Wastes

    International Nuclear Information System (INIS)

    Hernandez T, U. O.; Fernandez R, E.; Monroy G, F.; Anguiano A, J.

    2011-11-01

    Any type of waste should be confined so that it does not causes damage to the human health neither the environment and for the storage of the radioactive wastes these actions are the main priority. In the Storage Center of Radioactive Wastes the radioactive wastes generated in Mexico by non energy applications are storage of temporary way. The present study is focused in determining the physical chemistry properties of the lands of the Storage Center of Radioactive Wastes like they are: real density, ph, conductivity percentage of organic matter and percentage of humidity. With what is sought to make a characterization to verify the reaction capacity of the soils in case of a possible flight of radioactive material. The results show that there are different density variations, ph and conductivity in all the soil samples; the ph and conductivity vary with regard to the contact time between the soil and their saturation point in water, for the case of the density due to the characteristics of the same soil; for what is not possible to establish a general profile, but is necessary to know the properties of each soil type more amply. Contrary case is the content of organic matter and humidity since both are in minor proportions. (Author)

  14. Saclay Center of Nuclear Studies, Direction of Materials and Nuclear Fuels, Department of Physico-Chemistry, Division of Physical Chemistry. 1968 Annual report

    International Nuclear Information System (INIS)

    Schmidt, M.; Clerc, M.; Le Calve, J.; Bourene, M.; Lesigne, B.; Gillois, M.; Devillers, C.; Arvis, M.; Gilles, L.; Moreau, M.; Sutton, J.; Faraggi, M.; Desalos, J.; Tran Dinh Son; Barat, F.; Hickel, B.; Chachaty, C.; Forchioni, A.; Shiotani, M.; Larher, Y.; Maurice, P.; Le Bail, H.; Nenner, T.

    1969-03-01

    This document is the 1968 annual report of research activities at the Physico-Chemistry Department (Physical Chemistry Division), part of the Directorate of Materials and Nuclear Fuels of the CEA Saclay center of nuclear studies. The report is divided into two main parts: radiolysis and photolysis studies (gaseous phase, condensed phase), and general physico-chemical studies (sorption, molecular jets)

  15. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2013-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly), which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed Illustrations and links to reference material online help further comprehension. The

  16. A Cost-Effective Two-Part Experiment for Teaching Introductory Organic Chemistry Techniques

    Science.gov (United States)

    Sadek, Christopher M.; Brown, Brenna A.; Wan, Hayley

    2011-01-01

    This two-part laboratory experiment is designed to be a cost-effective method for teaching basic organic laboratory techniques (recrystallization, thin-layer chromatography, column chromatography, vacuum filtration, and melting point determination) to large classes of introductory organic chemistry students. Students are exposed to different…

  17. Acid-Base Learning Outcomes for Students in an Introductory Organic Chemistry Course

    Science.gov (United States)

    Stoyanovich, Carlee; Gandhi, Aneri; Flynn, Alison B.

    2015-01-01

    An outcome-based approach to teaching and learning focuses on what the student demonstrably knows and can do after instruction, rather than on what the instructor teaches. This outcome-focused approach can then guide the alignment of teaching strategies, learning activities, and assessment. In organic chemistry, mastery of organic acid-base…

  18. Spectroscopy 101: A Practical Introduction to Spectroscopy and Analysis for Undergraduate Organic Chemistry Laboratories

    Science.gov (United States)

    Morrill, Lucas A.; Kammeyer, Jacquelin K.; Garg, Neil K.

    2017-01-01

    An undergraduate organic chemistry laboratory that provides an introduction to various spectroscopic techniques is reported. Whereas organic spectroscopy is most often learned and practiced in the context of reaction analyses, this laboratory experiment allows students to become comfortable with [superscript 1]H NMR, [superscript 13]C NMR, and IR…

  19. The use of domestic microwave oven in experimental classes of organic chemistry: salicylaldehyde nitration

    OpenAIRE

    Teixeira, Eurídes Francisco; Santos, Ana Paula Bernardo dos; Bastos, Renato Saldanha; Pinto, Angelo C.; Kümmerle, Arthur Eugen; Coelho, Roberto Rodrigues

    2010-01-01

    The use of microwave in chemistry has known benefits over conventional heating methods, e.g. reduced reaction times, chemical yield improvement and the possibility if reducing or eliminating the use of organic solvents. We describe herein a procedure for the nitration of salicylaldehyde in water using a domestic microwave oven, which can be used as an experiment in the undergraduate chemistry laboratory. The experiment involves safe and rapid preparation and identification of the position iso...

  20. Extraterrestrial organic chemistry: from the interstellar medium to the origins of life. Part 2: complex organic chemistry in the environment of planets and satellites.

    Science.gov (United States)

    Raulin, F; Kobayashi, K

    2001-01-01

    During COSPAR'00 in Warsaw, Poland, in the frame of Sub-Commission F.3 events (Planetary Biology and Origins of Life), part of COSPAR Commission F (Life Sciences as Related to Space), and Commission B events (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) a large joint symposium (F.3.4/B0.8) was held on extraterrestrial organic chemistry. Part 2 of this symposium was devoted to complex organic chemistry in the environment of planets and satellites. The aim of this event was to cover and review new data which have been recently obtained and to give new insights on data which are expected in the near future to increase our knowledge of the complex organic chemistry occurring in several planets and satellites of the Solar System, outside the earth, and their implications for exobiology and life in the universe. The event was composed of two main parts. The first part was mainly devoted to the inner planets and Europa and the search for signatures of life or organics in those environments. The second part was related to the study of the outer solar system.

  1. Radiation physics and chemistry of biomolecules. Recent developments

    Science.gov (United States)

    Spotheim-Maurizot, Melanie

    2016-11-01

    A chapter of the book ;Radiation chemistry. From basics to application in materials and life sciences (EDP Science, Paris, France, 2008); was devoted to the state-of-the-art in the research on ionizing radiation (IR) effects on biomolecules. An update, eight years later, seemed pertinent enough to the editors of this journal who accepted to dedicate a Special Issue to the latest developments in this area of high interest for cancer radiotherapy, nuclear workers' radioprotection and food radiosterilisation. We sincerely thank them and the authors who accepted to present reviews of their most recent work. Obviously, only a small part of the research in the fascinating domain of molecular radiobiology can be covered here. Some articles are presenting the contribution of biophysical models and computational techniques to the understanding of IR effects on molecules such as DNA and proteins, or on larger systems such as chromatin, chromosomes and even cells (Nikjoo et al., Štěpán & Davídková, Ballarini & Carante, and Nikitaki et al.). In these papers, as well as in many others, several qualities of IR are compared in order to explain the observed differences of effects. The damages induced by the low energy electrons and new techniques involved in their study are discussed in great detail (Sanche and Fromm & Boulanouar). The chemistry behind the IR induced damages (single or clustered), studied in many laboratories around the world is presented in several papers (Cadet & Wagner, Sevilla et al., Chatgilialoglu et al., and Greenberg). One of them addresses a very useful comparison between the effects of IR and UV exposure on DNA (Ravanat & Douki). The majority of the papers in this Special Issue is dealing with DNA and this reflects the real situation: damages of DNA are more studied than those of other biomolecules. This is due to the role of DNA as main support of hereditary information. Nevertheless, more and more studies are outlining the influence of epigenetic

  2. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student

  3. Research on condensed matter and atomic physics, using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 1. 1. Atomic and molecular physics. 2. Physics and chemistry of surfaces and interfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  4. Sterilization affects soil organic matter chemistry and bioaccumulation of spiked p,p'-DDE and anthracene by earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Jason W., E-mail: kelsey@muhlenberg.ed [Program in Environmental Science and Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104 (United States); Slizovskiy, Ilya B.; Peters, Richard D.; Melnick, Adam M. [Program in Environmental Science and Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104 (United States)

    2010-06-15

    Laboratory experiments were conducted to assess the effects of soil sterilization on the bioavailability of spiked p,p'-DDE and anthracene to the earthworms Eisenia fetida and Lumbricus terrestris. Physical and chemical changes to soil organic matter (SOM) induced by sterilization were also studied. Uptake of both compounds added after soil was autoclaved or gamma irradiated increased for E. fetida. Sterilization had no effect on bioaccumulation of p,p'-DDE by L. terrestris, and anthracene uptake increased only in gamma-irradiated soils. Analyses by FT-IR and DSC indicate sterilization alters SOM chemistry and may reduce pollutant sorption. Chemical changes to SOM were tentatively linked to changes in bioaccumulation, although the effects were compound and species specific. Artifacts produced by sterilization could lead to inaccurate risk assessments of contaminated sites if assumptions derived from studies carried out in sterilized soil are used. Ultimately, knowledge of SOM chemistry could aid predictions of bioaccumulation of organic pollutants. - Soil sterilization affects soil organic matter chemistry and pollutant bioaccumulation.

  5. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

  6. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    Science.gov (United States)

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  7. Workshop on the interface between radiation chemistry and radiation physics

    International Nuclear Information System (INIS)

    1983-03-01

    Twenty-four papers are grouped under the session headings: measurements of physical and chemical properties, track structure modeling, spurs and track structure, and the 10 - 16 to 10 - 12 second region. Separate abstracts were prepared for 12 of the papers; four of the remaining papers had previously been abstracted

  8. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    Science.gov (United States)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  9. Polymer physics of nuclear organization and function

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, A. [Department of Chemical Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Holcman, D., E-mail: david.holcman@ens.fr [Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Churchill College, CB30DS, Cambridge (United Kingdom); Ecole Normale Superieure, Paris (France)

    2017-03-23

    We review here recent progress to link the nuclear organization to its function, based on elementary physical processes such as diffusion, polymer dynamics of DNA, chromatin and the search mechanism for a small target by double-stranded DNA (dsDNA) break. These physical models and their analysis make it possible to compute critical rates involved in cell reorganization timing, which depend on many parameters. In the framework of polymer models, various empirical observations are interpreted as anomalous diffusion of chromatin at various time scales. The reviewed theoretical approaches offer a framework for extracting features, biophysical parameters, predictions, and so on, based on a large variety of experimental data, such as chromosomal capture data, single particle trajectories, and more. Combining theoretical approaches with live cell microscopy data should unveil some of the still unexplained behavior of the nucleus in carrying out some of its key function involved in survival, DNA repair or gene activation.

  10. A Simple Physical-Organic Chemistry Experiment A s

    Indian Academy of Sciences (India)

    et al [3] in the presence of various nucleophiles, which allowed the ... the one determined directly by Steenken et al [3] for a typical diffusion .... equation (2) we get solv. 3 solv. OH .... [3] Robert A McClelland, V M Kanagasabapathy, Narinder S Banait and ... [6] a) John P Richard and William P Jencks, Journal of the American.

  11. Solid-State NMR Spectroscopy for the Physical Chemistry Laboratory

    Science.gov (United States)

    Kinnun, Jacob J.; Leftin, Avigdor; Brown, Michael F.

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy finds growing application to inorganic and organic materials, biological samples, polymers, proteins, and cellular membranes. However, this technique is often neither included in laboratory curricula nor typically covered in undergraduate courses. On the other hand, spectroscopy and…

  12. Expanding frontiers in materials chemistry and physics with multiple anions.

    Science.gov (United States)

    Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R

    2018-02-22

    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

  13. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    Science.gov (United States)

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  14. Studies in organic and physical photochemistry - an interdisciplinary approach.

    Science.gov (United States)

    Oelgemöller, Michael; Hoffmann, Norbert

    2016-08-21

    Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.

  15. Life as physics and chemistry: A system view of biology.

    Science.gov (United States)

    Baverstock, Keith

    2013-04-01

    Cellular life can be viewed as one of many physical natural systems that extract free energy from their environments in the most efficient way, according to fundamental physical laws, and grow until limited by inherent physical constraints. Thus, it can be inferred that it is the efficiency of this process that natural selection acts upon. The consequent emphasis on metabolism, rather than replication, points to a metabolism-first origin of life with the adoption of DNA template replication as a second stage development. This order of events implies a cellular regulatory system that pre-dates the involvement of DNA and might, therefore, be based on the information acquired as peptides fold into proteins, rather than on genetic regulatory networks. Such an epigenetic cell regulatory model, the independent attractor model, has already been proposed to explain the phenomenon of radiation induced genomic instability. Here it is extended to provide an epigenetic basis for the morphological and functional diversity that evolution has yielded, based on natural selection of the most efficient free energy transduction. Empirical evidence which challenges the current genetic basis of cell and molecular biology and which supports the above proposal is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1976-01-01

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF 4 --H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF 2 --ThF 4 for Fe and analysis of LiF--BeF--ThF 4 for Te

  17. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  18. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  19. For the Love of Learning Science: Connecting Learning Orientation and Career Productivity in Physics and Chemistry

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Tai, Robert H.; Almarode, John

    2010-01-01

    An individual's motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this…

  20. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    Science.gov (United States)

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  1. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  2. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  3. Retention of Differential and Integral Calculus: A Case Study of a University Student in Physical Chemistry

    Science.gov (United States)

    Jukic Matic, Ljerka; Dahl, Bettina

    2014-01-01

    This paper reports a study on retention of differential and integral calculus concepts of a second-year student of physical chemistry at a Danish university. The focus was on what knowledge the student retained 14 months after the course and on what effect beliefs about mathematics had on the retention. We argue that if a student can quickly…

  4. Subject Knowledge Enhancement Courses for Creating New Chemistry and Physics Teachers: The Students' Perceptions

    Science.gov (United States)

    Tynan, Richard; Jones, Robert Bryn; Mallaburn, Andrea; Clays, Ken

    2016-01-01

    Subject knowledge enhancement (SKE) courses are one option open in England to graduates with a science background whose first degree content is judged to be insufficient to train to become chemistry or physics teachers. Previous articles in "School Science Review" have discussed the structure of one type of extended SKE course offered at…

  5. Coherence of Physics and Chemistry Curricula in Terms of the Electron Concept

    International Nuclear Information System (INIS)

    Elena, Ivanova

    2016-01-01

    One of the major contradictions in subject teaching is the contradiction between the unity of the world and the discrete separated generalized content of natural sciences that study natural phenomena. These are physics, chemistry, biology and more. One can eliminate the conflict if opens the content's interdisciplinary links set by the events that are studied by different disciplines. The corresponding contexts of the phenomenon content arise depending on the discipline, and they are not enough coordinated. Obviously, we need a mechanism that allows establishing interdisciplinary links in the content quickly and without losing the logic of the material and assess their coherence in academic disciplines. This article uses a quantitative method of coherence assessment elaborated by T.N. Gnitetskaya. The definition of the concept of the semantic state introduced by the authors is given in this article. The method is applied to coherence assessment of physics and chemistry textbooks. The coherence of two pairs of chemistry and physics textbooks by different authors in different combinations was calculated. The most cohered pairs of textbooks (chemistry-physics) were identified. One can recommend using the pair of textbooks for eighth grade that we offered that favors the development of holistic understandings of the world around us. (paper)

  6. Coherence of Physics and Chemistry Curricula in Terms of the Electron Concept

    Science.gov (United States)

    Elena, Ivanova

    2016-08-01

    One of the major contradictions in subject teaching is the contradiction between the unity of the world and the discrete separated generalized content of natural sciences that study natural phenomena. These are physics, chemistry, biology and more. One can eliminate the conflict if opens the content's interdisciplinary links set by the events that are studied by different disciplines. The corresponding contexts of the phenomenon content arise depending on the discipline, and they are not enough coordinated. Obviously, we need a mechanism that allows establishing interdisciplinary links in the content quickly and without losing the logic of the material and assess their coherence in academic disciplines. This article uses a quantitative method of coherence assessment elaborated by T.N. Gnitetskaya. The definition of the concept of the semantic state introduced by the authors is given in this article. The method is applied to coherence assessment of physics and chemistry textbooks. The coherence of two pairs of chemistry and physics textbooks by different authors in different combinations was calculated. The most cohered pairs of textbooks (chemistry-physics) were identified. One can recommend using the pair of textbooks for eighth grade that we offered that favors the development of holistic understandings of the world around us.

  7. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    Science.gov (United States)

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  8. Selected chapters from general chemistry in physics teaching with the help of e - learning

    Science.gov (United States)

    Feszterová, Melánia

    2017-01-01

    Education in the field of natural disciplines - Mathematics, Physics, Chemistry, Ecology and Biology takes part in general education at all schools on the territory of Slovakia. Its aim is to reach the state of balanced development of all personal characteristics of pupils, to teach them correctly identify and analyse problems, propose solutions and above all how to solve the problem itself. High quality education can be reached only through the pedagogues who have a good expertise knowledge, practical experience and high level of pedagogical abilities. The teacher as a disseminator of natural-scientific knowledge should be not only well-informed about modern tendencies in the field, but he/she also should actively participate in project tasks This is the reason why students of 1st year of study (bachelor degree) at the Department of Physics of Constantine the Philosopher University in Nitra attend lectures in the frame of subject General Chemistry. In this paper we present and describe an e - learning course called General Chemistry that is freely accessible to students. One of the aims of this course is to attract attention towards the importance of cross-curricular approach which seems to be fundamental in contemporary natural-scientific education (e.g. between Physics and Chemistry). This is why it is so important to implement a set of new topics and tasks that support development of abilities to realise cross-curricular goals into the process of preparation of future teachers of Physics.

  9. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    Science.gov (United States)

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  10. Integrating a Single Tablet PC in Chemistry, Engineering, and Physics Courses

    Science.gov (United States)

    Rogers, James W.; Cox, James R.

    2008-01-01

    A tablet PC is a versatile computer that combines the computing power of a notebook with the pen functionality of a PDA (Cox and Rogers 2005b). The authors adopted tablet PC technology in order to improve the process and product of the lecture format in their chemistry, engineering, and physics courses. In this high-tech model, a single tablet PC…

  11. Preservice Teachers' Epistemological Beliefs in Physics, Chemistry, and Biology: A Mixed Study

    Science.gov (United States)

    Topcu, Mustafa Sami

    2013-01-01

    The purposes of the study were to assess preservice teachers' domain-specific epistemological beliefs and to investigate whether preservice teachers distinguish disciplinary differences (physics, chemistry, and biology) in domain-specific epistemological beliefs. Mixed-method research design guided the present research. The researcher explored…

  12. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  13. A Game-Based Approach to an Entire Physical Chemistry Course

    Science.gov (United States)

    Daubenfeld, Thorsten; Zenker, Dietmar

    2015-01-01

    We designed, implemented, and evaluated a game-based learning approach to increase student motivation and achievement for an undergraduate physical chemistry course. By focusing only on the most important game aspects, the implementation was realized with a production ratio of 1:8 (study load in hours divided by production effort in hours).…

  14. A Procedure to Create a Pedagogic Conversational Agent in Secondary Physics and Chemistry Education

    Science.gov (United States)

    Pérez-Marín, Diana; Boza, Antonio

    2013-01-01

    Pedagogic Conversational Agents are computer applications that can interact with students in natural language. They have been used with satisfactory results on the instruction of several domains. The authors believe that they could also be useful for the instruction of Secondary Physics and Chemistry Education. Therefore, in this paper, the…

  15. Fluorescence Correlation Spectroscopy of Spermine-DNA Interactions - Nanostructure and Physical Supramolecular Chemistry of DNA Condensation

    Czech Academy of Sciences Publication Activity Database

    Kral, Teresa; Langner, M.; Hof, Martin; Adjimatera, N.; Blagbrough, I. S.

    2004-01-01

    Roč. 98, Supplement (2004), s22-s23 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z4040901 Keywords : fluorescence * nanostructure * DNA condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.348, year: 2004

  16. The chemistry and physics of nonlinear optical materials

    International Nuclear Information System (INIS)

    Velsko, S.P.; Eimerl, D.

    1989-01-01

    Recent efforts to engineer new nonlinear optical materials with specific desired characteristics has engendered a need for a theoretical description of optical properties which is readily accessible to chemists, yet correctly treats the essential physics of dielectric response. This paper describes a simple empirical molecular orbital model which gives useful insights into the relationship between chemical composition, crystalline structure, and optical susceptibilities. The authors compare the probabilities of finding new harmonic generators in various chemical classes. Rigorous bounds on the magnitudes of linear and nonlinear optical coefficients and their anisotropies are also discussed

  17. Benefits of Using a Problem-Solving Scaffold for Teaching and Learning Synthesis in Undergraduate Organic Chemistry I

    Science.gov (United States)

    Sloop, Joseph C.; Tsoi, Mai Yin; Coppock, Patrick

    2016-01-01

    A problem-solving scaffold approach to synthesis was developed and implemented in two intervention sections of Chemistry 2211K (Organic Chemistry I) at Georgia Gwinnett College (GGC). A third section of Chemistry 2211K at GGC served as the control group for the experiment. Synthesis problems for chapter quizzes and the final examination were…

  18. High-Throughput Synthetic Chemistry Enabled by Organic Solvent Disintegrating Tablet.

    Science.gov (United States)

    Li, Tingting; Xu, Lei; Xing, Yanjun; Xu, Bo

    2017-01-17

    Synthetic chemistry remains a time- and labor-intensive process of inherent hazardous nature. Our organic solvent disintegrating tablet (O-Tab) technology has shown potential to make industrial/synthetic chemistry more efficient. As is the case with pharmaceutical tablets, our reagent-containing O-Tabs are mechanically strong, but disintegrate rapidly when in contact with reaction media (organic solvents). For O-Tabs containing sensitive chemicals, they can be further coated to insulate them from air and moisture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Emergence of complex chemistry on an organic monolayer.

    Science.gov (United States)

    Prins, Leonard J

    2015-07-21

    In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system

  20. Academic Achievement in Physics-Chemistry: The Predictive Effect of Attitudes and Reasoning Abilities

    Directory of Open Access Journals (Sweden)

    Paulo N. Vilia

    2017-06-01

    Full Text Available Science education plays a critical role as political priority due to its fundamental importance in engaging students to pursue technological careers considered essential in modern societies, in order to face scientific development challenges. High-level achievement on science education and positive attitudes toward science constitutes a crucial challenge for formal education. Several studies indicate close relationships between students’ attitudes, cognitive abilities, and academic achievement. The main purpose of this study is to analyze the impact of student’s attitudes toward the school discipline of Physics and Chemistry and their reasoning abilities on academic achievement on that school subject, among Portuguese 9th grade students using the data collected during the Project Academic Performance and Development: a longitudinal study on the effects of school transitions in Portuguese students (PTDC/CPE-CED/104884/2008. The participants were 470 students (267 girls – 56.8% and 203 boys – 43.2%, aged 14–16 years old (μ = 14.3 ± 0.58. The attitude data were collected using the Attitude toward Physics-Chemistry Questionnaire (ATPCQ and, the Reasoning Test Battery (RTB was used to assess the students reasoning abilities. Achievement was measured using the students’ quarterly (9-week grades in the physics and chemistry subject. The relationships between the attitude dimensions toward Physics-chemistry and the reasoning dimensions and achievement in each of the three school terms were assessed by multiple regression stepwise analyses and standardized regression coefficients (β, calculated with IBM SPSS Statistics 21 software. Both variables studied proved to be significant predictor variables of school achievement. The models obtained from the use of both variables were always stronger accounting for higher proportions of student’s grade variations. The results show that ATPCQ and RTB had a significantly positive relationship with

  1. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  2. From helical to planar chirality by on-surface chemistry

    Czech Academy of Sciences Publication Activity Database

    Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Vacek Chocholoušová, Jana; Jančařík, Andrej; Rybáček, Jiří; Kośmider, K.; Stará, Irena G.; Jelínek, Pavel; Starý, Ivo

    2017-01-01

    Roč. 9, č. 3 (2017), s. 213-218 ISSN 1755-4330 R&D Projects: GA ČR(CZ) GC14-16963J; GA ČR(CZ) GA14-29667S Institutional support: RVO:68378271 ; RVO:61388963 Keywords : chirality * AFM * STM * helicene * on surface chemistry * DFT Subject RIV: CF - Physical ; Theoretical Chemistry; CC - Organic Chemistry (UOCHB-X) OBOR OECD: Physical chemistry; Organic chemistry (UOCHB-X) Impact factor: 25.870, year: 2016

  3. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  4. Culturing Reality: How Organic Chemistry Graduate Students Develop into Practitioners

    Science.gov (United States)

    Bhattacharyya, Gautam; Bodner, George M.

    2014-01-01

    Although one of the presumed aims of graduate training programs is to help students develop into practitioners of their chosen fields, very little is known about how this transition occurs. In the course of studying how graduate students learn to solve organic synthesis problems, we were able to identify some of the key factors in the epistemic…

  5. Geochemistry and Organic Chemistry on the Surface of Titan

    Science.gov (United States)

    Lunine, J. I.; Beauchamp, P.; Beauchamp, J.; Dougherty, D.; Welch, C.; Raulin, F.; Shapiro, R.; Smith, M.

    2001-01-01

    Titan's atmosphere produces a wealth of organic products from methane and nitrogen. These products, deposited on the surface in liquid and solid form, may interact with surface ices and energy sources to produce compounds of exobiological interest. Additional information is contained in the original extended abstract.

  6. Handbook on the physics and chemistry of the actinides. V. 3

    International Nuclear Information System (INIS)

    Freeman, A.J.; Keller, C.

    1985-01-01

    It is the purpose of the Handbook to describe in detail the present understanding of the actinides by means of comprehensive, critical, broad and up to date reviews covering both physics and chemistry of these exotic elements. Volume 3 is the first of two volumes to cover the more chemical, physico-chemical, structural and environmental aspects of the actinide elements. Leading scientists from Europe, USA and P.R. China present critical reviews on important aspects of the behaviour of this radioactive group of elements. In contrast to most other elements radioactivity has, to a degree, a profound influence on the chemical behaviour of the actinides. The unusual behaviour of the 5f-elements - delocalization of the electrons for the light actinides versus localization for the heavier ones - makes them an outstanding tool for the scientist, which can be seen by the variety of oxidation states ranging from +1 to +7. Special laboratory techniques must be developed to deal with the problem of the transcurium elements only being available in small amounts (nanograms to micrograms) or only in the tracer scale. Special emphasis is also placed on the fate of actinides released in the environment, e.g. their reaction to carbonate and organic complexing agents in aquatic systems. In contrast to volumes 1 and 2 which deal mainly with the less radioactive actinides, this volume and the forthcoming volume 4 cover all actinides, in particular those which can be prepared in weighable quantities (up to fermium, element 100). refs.; figs.; tabs

  7. The physical basis of thermodynamics with applications to chemistry

    CERN Document Server

    Richet, Pascal

    2001-01-01

    Given that thermodynamics books are not a rarity on the market, why would an additional one be useful? The answer is simple: at any level, thermodynamics is usually taught as a somewhat abstruse discipline where many students get lost in a maze of difficult concepts. However, thermodynamics is not as intricate a subject as most people feel. This book fills a niche between elementary textbooks and mathematically oriented treatises, and provides readers with a distinct approach to the subject. As indicated by the title, this book explains thermodynamic phenomena and concepts in physical terms before proceeding to focus on the requisite mathematical aspects. It focuses on the effects of pressure, temperature and chemical composition on thermodynamic properties and places emphasis on rapidly evolving fields such as amorphous materials, metastable phases, numerical simulations of microsystems and high-pressure thermodynamics. Topics like redox reactions are dealt with in less depth, due to the fact that there is a...

  8. Organic chemistry of graphene: the Diels-Alder reaction.

    Science.gov (United States)

    Denis, Pablo A

    2013-11-11

    Herein, by using dispersion-corrected density functional theory, we investigated the Diels-Alder chemistry of pristine and defective graphene. Three dienes were considered, namely 2,3-dimethoxy-1,3-butadiene (DMBD), 9-methylanthracene (9MA), and 9,10-dimethylanthracene (910DMA). The dienophiles that were assayed were tetracyanoethylene (TCNE) and maleic anhydride (MA). When pristine graphene acted as the dienophile, we found that the cycloaddition products were 47-63 kcal mol(-1) less stable than the reactants, thus making the reaction very difficult. The presence of Stone-Wales translocations, 585 double vacancies, or 555-777 reconstructed double vacancies did not significantly improve the reactivity because the cycloaddition products were still located at higher energy than the reactants. However, for the addition of 910DMA to single vacancies, the product showed comparable stability to the separated reactants, whereas for unsaturated armchair edges the reaction was extremely favorable. With regards the reactions with dienophiles, for TCNE, the cycloaddition product was metastable. In the case of MA, we observed a reaction product that was less stable than the reactants by 50 kcal mol(-1) . For the reactions between graphene as a diene and the dienophiles, we found that the most-promising defects were single vacancies and unsaturated armchair edges, because the other three defects were much-less reactive. Thus, we conclude that the reactions with these above-mentioned dienes may proceed on pristine or defective sheets with heating, despite being endergonic. The same statement also applies to the dienophile maleic anhydride. However, for TCNE, the reaction is only likely to occur onto single vacancies or unsaturated armchair edges. We conclude that the dienophile character of graphene is slightly stronger than its behavior as a diene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Surface organization of aqueous MgCl2 and application to atmospheric marine aerosol chemistry

    Czech Academy of Sciences Publication Activity Database

    Casillas-Ituarte, N. N.; Callahan, K. M.; Tang, CH. Y.; Chen, X.; Roeselová, Martina; Tobias, D. J.; Allen, H. C.

    2010-01-01

    Roč. 107, č. 15 (2010), s. 6616-6621 ISSN 0027-8424 R&D Projects: GA MŠk LC512; GA MŠk ME09064 Institutional research plan: CEZ:AV0Z40550506 Keywords : magnesium chloride * fatty acid * air/aqueous interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.771, year: 2010

  10. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  11. Organic Chemistry: From the Interstellar Medium to the Solar System

    Science.gov (United States)

    Sandford, Scott; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    This talk will review the various types of organic materials observed in different environments in the interstellar medium, discuss the processes by which these materials may have formed and been modified, and present the evidence supporting the contention that at least a fraction of this material survived incorporation, substantially unaltered, into our Solar System during its formation. The nature of this organic material is of direct interest to issues associated with the origin of life, both because this material represents a large fraction of the Solar System inventory of the biogenically-important elements, and because many of the compounds in this inventory have biogenic implications. Several specific examples of such molecules will be briefly discussed.

  12. Basic actinide chemistry and physics research in close cooperation with hot laboratories: ACTILAB

    International Nuclear Information System (INIS)

    Minato, K; Konashi, K; Fujii, T; Uehara, A; Nagasaki, S; Ohtori, N; Tokunaga, Y; Kambe, S

    2010-01-01

    Basic research in actinide chemistry and physics is indispensable to maintain sustainable development of innovative nuclear technology. Actinides, especially minor actinides of americium and curium, need to be handled in special facilities with containment and radiation shields. To promote and facilitate actinide research, close cooperation with the facilities and sharing of technical and scientific information must be very important and effective. A three-year-program B asic actinide chemistry and physics research in close cooperation with hot laboratories , ACTILAB, was started to form the basis of sustainable development of innovative nuclear technology. In this program, research on actinide solid-state physics, solution chemistry and solid-liquid interface chemistry is made using four main facilities in Japan in close cooperation with each other, where basic experiments with transuranium elements can be made. The 17 O-NMR measurements were performed on (Pu 0.91 Am 0.09 )O 2 to study the electronic state and the chemical behaviour of Am and Cm ions in electrolyte solutions was studied by distribution experiments.

  13. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    Lechelle, Jacques

    2013-01-01

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O 2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO 2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr 2 O 3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author) [fr

  14. Before big science the pursuit of modern chemistry and physics, 1800-1940

    CERN Document Server

    Nye, Mary Jo

    1999-01-01

    Today's vast multinational scientific monoliths bear little resemblance to the modest laboratories of the early nineteenth century. Yet early in the nineteenth century--when heat and electricity were still counted among the elements--changes were already under way that would revolutionize chemistry and physics into the "big science" of the late twentieth century, expanding tiny, makeshift laboratories into bustling research institutes and replacing the scientific amateurs and generalist savants of the early Victorian era with the professional specialists of contemporary physical science. Mary Jo Nye traces the social and intellectual history of the physical sciences from the early 1800s to the beginning of the Second World War, examining the sweeping transformation of scientific institutions and professions during the period and the groundbreaking experiments that fueled that change, from the earliest investigations of molecular chemistry and field dynamics to the revolutionary breakthroughs of quantum mecha...

  15. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    International Nuclear Information System (INIS)

    Lebech, B.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  16. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  17. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    International Nuclear Information System (INIS)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  18. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    International Nuclear Information System (INIS)

    Lebech, B.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  19. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  20. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  1. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    International Nuclear Information System (INIS)

    Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  2. Emergence of life: Physical chemistry changes the paradigm.

    Science.gov (United States)

    Spitzer, Jan; Pielak, Gary J; Poolman, Bert

    2015-06-10

    Origin of life research has been slow to advance not only because of its complex evolutionary nature (Franklin Harold: In Search of Cell History, 2014) but also because of the lack of agreement on fundamental concepts, including the question of 'what is life?'. To re-energize the research and define a new experimental paradigm, we advance four premises to better understand the physicochemical complexities of life's emergence: (1) Chemical and Darwinian (biological) evolutions are distinct, but become continuous with the appearance of heredity. (2) Earth's chemical evolution is driven by energies of cycling (diurnal) disequilibria and by energies of hydrothermal vents. (3) Earth's overall chemical complexity must be high at the origin of life for a subset of (complex) chemicals to phase separate and evolve into living states. (4) Macromolecular crowding in aqueous electrolytes under confined conditions enables evolution of molecular recognition and cellular self-organization. We discuss these premises in relation to current 'constructive' (non-evolutionary) paradigm of origins research - the process of complexification of chemical matter 'from the simple to the complex'. This paradigm artificially avoids planetary chemical complexity and the natural tendency of molecular compositions toward maximum disorder embodied in the second law of thermodynamics. Our four premises suggest an empirical program of experiments involving complex chemical compositions under cycling gradients of temperature, water activity and electromagnetic radiation.

  3. Self-organizing physical fields and gravity

    International Nuclear Information System (INIS)

    Pestov, I.B.

    2009-01-01

    It is shown that the Theory of Self-Organizing Physical Fields provides the adequate and consistent consideration of the gravitational phenomena. The general conclusion lies in the fact that the essence of gravidynamics is the new field concept of time and the general covariant law of energy conservation which in particular means that dark energy is simply the energy of the gravitational field. From the natural geometrical laws of gravidynamics the dynamical equations of the gravitational field are derived. Two exact solutions of these equations are obtained. One of them represents a shock gravitational wave and the other represents the Universe filled up with the gravitational energy only. These solutions are compared with the Schwarzschild and Friedmann solutions in the Einstein general theory of relativity

  4. Nuclear magnetic resonance spectroscopy in organic chemistry. 2. ed.

    International Nuclear Information System (INIS)

    Zschunke, A.

    1977-01-01

    The fundamentals of nuclear magnetic resonance spectroscopy are discussed only briefly. The emphasis is laid on developing reader's ability to evaluate resonance spectra. The following topics are covered: principles of nuclear magnetic resonance spectroscopy; chemical shift and indirect nuclear spin coupling constants and their relation to the molecular structure; analysis of spectra; and uses for structural analysis and solution of kinetic problems, mainly with regard to organic compounds. Of interest to chemists and graduate students who want to make themselves acquainted with nuclear magnetic resonance spectroscopy

  5. Meaningful Understanding and Systems Thinking in Organic Chemistry: Validating Measurement and Exploring Relationships

    Science.gov (United States)

    Vachliotis, Theodoros; Salta, Katerina; Tzougraki, Chryssa

    2014-01-01

    The purpose of this study was dual: First, to develop and validate assessment schemes for assessing 11th grade students' meaningful understanding of organic chemistry concepts, as well as their systems thinking skills in the domain. Second, to explore the relationship between the two constructs of interest based on students' performance…

  6. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    OpenAIRE

    A. K. Y. Lee; J. P. D. Abbatt; W. R. Leaitch; S.-M. Li; S. J. Sjostedt; S. J. Sjostedt; J. J. B. Wentzell; J. Liggio; A. M. Macdonald

    2016-01-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identifie...

  7. Student Perceptions of Online Homework Use for Formative Assessment of Learning in Organic Chemistry.

    Science.gov (United States)

    Richards-Babb, Michelle; Curtis, Reagan; Georgieva, Zomitsa; Penn, John H

    2015-11-10

    Use of online homework as a formative assessment tool for organic chemistry coursework was examined. Student perceptions of online homework in terms of (i) its ranking relative to other course aspects, (ii) their learning of organic chemistry, and (iii) whether it improved their study habits and how students used it as a learning tool were investigated. Our students perceived the online homework as one of the more useful course aspects for learning organic chemistry content. We found a moderate and statistically significant correlation between online homework performance and final grade. Gender as a variable was ruled out since significant gender differences in overall attitude toward online homework use and course success rates were not found. Our students expressed relatively positive attitudes toward use of online homework with a majority indicating improved study habits (e.g., study in a more consistent manner). Our students used a variety of resources to remediate incorrect responses (e.g., class materials, general online materials, and help from others). However, 39% of our students admitted to guessing at times, instead of working to remediate incorrect responses. In large enrollment organic chemistry courses, online homework may act to bridge the student-instructor gap by providing students with a supportive mechanism for regulated learning of content.

  8. Providing Students with Interdisciplinary Support to Improve Their Organic Chemistry Posters

    Science.gov (United States)

    Widanski, Bozena; Thompson, Jo Ann; Foran-Mulcahy, Katie; Abafo, Amy

    2016-01-01

    A two-semester-long interdisciplinary support effort to improve student posters in organic chemistry lab is described. In the first semester, students' literature search report is supported by a workshop conducted by an Instruction Librarian. During the subsequent semester, a second workshop is presented by the Instruction Librarian, an English…

  9. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core-shellcorona...

  10. Minimal Impact of Organic Chemistry Prerequisite on Student Performance in Introductory Biochemistry

    Science.gov (United States)

    Wright, Robin; Cotner, Sehoya; Winkel, Amy

    2009-01-01

    Curriculum design assumes that successful completion of prerequisite courses will have a positive impact on student performance in courses that require the prerequisite. We recently had the opportunity to test this assumption concerning the relationship between completion of the organic chemistry prerequisite and performance in introductory…

  11. Visualizing Molecular Chirality in the Organic Chemistry Laboratory Using Cholesteric Liquid Crystals

    Science.gov (United States)

    Popova, Maia; Bretz, Stacey Lowery; Hartley, C. Scott

    2016-01-01

    Although stereochemistry is an important topic in second-year undergraduate organic chemistry, there are limited options for laboratory activities that allow direct visualization of macroscopic chiral phenomena. A novel, guided-inquiry experiment was developed that allows students to explore chirality in the context of cholesteric liquid crystals.…

  12. Adapting to Student Learning Styles: Engaging Students with Cell Phone Technology in Organic Chemistry Instruction

    Science.gov (United States)

    Pursell, David P.

    2009-01-01

    Students of organic chemistry traditionally make 3 x 5 in. flash cards to assist learning nomenclature, structures, and reactions. Advances in educational technology have enabled flash cards to be viewed on computers, offering an endless array of drilling and feedback for students. The current generation of students is less inclined to use…

  13. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics

    Science.gov (United States)

    The magic of microwave (MW) heating technique, termed as the Bunsen burner of the 21th Century, has emerged as valuable alternative in synthesis of organics, polymers, inorganics, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare cat...

  14. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  15. Analysis of a Natural Yellow Dye: An Experiment for Analytical Organic Chemistry

    NARCIS (Netherlands)

    Villela, A.; Derksen, G.C.H.; Beek, van T.A.

    2014-01-01

    This experiment exposes second-year undergraduate students taking a course in analytical organic chemistry to high-performance liquid chromatography (HPLC) and quantitative analysis using the internal standard method. This is accomplished using the real-world application of natural dyes for

  16. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    Science.gov (United States)

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  17. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  18. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum

    Science.gov (United States)

    Lee, Nancy E.; Gurney, Rich; Soltzberg, Leonard

    2014-01-01

    Despite the accepted pedagogical value of integrating research into the laboratory curriculum, this approach has not been widely adopted. The activation barrier to this change is high, especially in organic chemistry, where a large number of students are required to take this course, special glassware or setups may be needed, and dangerous…

  19. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    Science.gov (United States)

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  20. Gender Fair Efficacy of Concept Mapping Tests in Identifying Students' Difficulties in High School Organic Chemistry

    Science.gov (United States)

    Gafoor, Kunnathodi Abdul; Shilna, V.

    2014-01-01

    In view of the perceived difficulty of organic chemistry unit for high schools students, this study examined the usefulness of concept mapping as a testing device to assess students' difficulty in the select areas. Since many tests used for identifying students misconceptions and difficulties in school subjects are observed to favour one or the…

  1. The Flipped Classroom for Teaching Organic Chemistry in Small Classes: Is It Effective?

    Science.gov (United States)

    Fautch, Jessica M.

    2015-01-01

    The flipped classroom is a pedagogical approach that moves course content from the classroom to homework, and uses class time for engaging activities and instructor-guided problem solving. The course content in a sophomore level Organic Chemistry I course was assigned as homework using video lectures, followed by a short online quiz. In class,…

  2. Effectiveness of E-Content Package on Teaching IUPAC Nomenclature of Organic Chemistry at Undergraduate Level

    Science.gov (United States)

    Devendiran, G.; Vakkil, M.

    2017-01-01

    This study attempts to discover the effectiveness of an e-content package when teaching IUPAC nomenclature of organic chemistry at the undergraduate level. The study consisted of a Pre-test-Post-test Non Equivalent Groups Design, and the sample of 71 (n = 71) students were drawn from two colleges. The overall study was divided into two groups, an…

  3. Transforming the Organic Chemistry Lab Experience: Design, Implementation, and Evaluation of Reformed Experimental Activities--REActivities

    Science.gov (United States)

    Collison, Christina G.; Kim, Thomas; Cody, Jeremy; Anderson, Jason; Edelbach, Brian; Marmor, William; Kipsang, Rodgers; Ayotte, Charles; Saviola, Daniel; Niziol, Justin

    2018-01-01

    Reformed experimental activities (REActivities) are an innovative approach to the delivery of the traditional material in an undergraduate organic chemistry laboratory. A description of the design and implementation of REActivities at both a four- and two-year institution is discussed. The results obtained using a reformed teaching observational…

  4. Using Web-Based Video as an Assessment Tool for Student Performance in Organic Chemistry

    Science.gov (United States)

    Tierney, John; Bodek, Matthew; Fredricks, Susan; Dudkin, Elizabeth; Kistler, Kurt

    2014-01-01

    This article shows the potential for using video responses to specific questions as part of the assessment process in an organic chemistry class. These exercises have been used with a postbaccalaureate cohort of 40 students, learning in an online environment, over a period of four years. A second cohort of 25 second-year students taking the…

  5. Development and Use of Online Prelaboratory Activities in Organic Chemistry to Improve Students' Laboratory Experience

    Science.gov (United States)

    Chaytor, Jennifer L.; Al Mughalaq, Mohammad; Butler, Hailee

    2017-01-01

    Online prelaboratory videos and quizzes were prepared for all experiments in CHEM 231, Organic Chemistry I Laboratory. It was anticipated that watching the videos would help students be better prepared for the laboratory, decrease their anxiety surrounding the laboratory, and increase their understanding of the theories and concepts presented.…

  6. Students' Perceptions of a Project-Based Organic Chemistry Laboratory Environment: A Phenomenographic Approach

    Science.gov (United States)

    Burrows, Nikita L.; Nowak, Montana K.; Mooring, Suazette R.

    2017-01-01

    Students can perceive the laboratory environment in a variety of ways that can affect what they take away from the laboratory course. This qualitative study characterizes undergraduate students' perspectives of a project-based Organic Chemistry laboratory using the theoretical framework of phenomenography. Eighteen participants were interviewed in…

  7. A Historical Analysis of the Curriculum of Organic Chemistry Using ACS Exams as Artifacts

    Science.gov (United States)

    Raker, Jeffrey R.; Holme, Thomas A.

    2013-01-01

    Standardized examinations, such as those developed and disseminated by the ACS Examinations Institute, are artifacts of the teaching of a course and over time may provide a historical perspective on how curricula have changed and evolved. This study investigated changes in organic chemistry curricula across a 60-year period by evaluating 18 ACS…

  8. Independent Synthesis Projects in the Organic Chemistry Teaching Laboratories: Bridging the Gap between Student and Researcher

    Science.gov (United States)

    Keller, Valerie A.; Kendall, Beatrice Lin

    2017-01-01

    Science educators strive to teach students how to be well-rounded scientists with the ability to problem solve, anticipate errors, and adapt to unexpected roadblocks. Traditional organic chemistry experiments seldom teach these skills, no matter how novel or contemporary the subject material. This paper reports on the success of a quarter-long…

  9. A New Higher Education Curriculum in Organic Chemistry: What Questions Should Be Asked?

    Science.gov (United States)

    Lafarge, David L.; Morge, Ludovic M.; Méheut, Martine M.

    2014-01-01

    Organic chemistry is often considered to be a difficult subject to teach and to learn, particularly as students prefer to resort to memorization alone rather than reasoning using models from chemical reactivity. Existing studies have led us to suggest principles for redefining the curriculum, ranging from its overall structure to the tasks given…

  10. Students' Interpretations of Mechanistic Language in Organic Chemistry before Learning Reactions

    Science.gov (United States)

    Galloway, Kelli R.; Stoyanovich, Carlee; Flynn, Alison B.

    2017-01-01

    Research on mechanistic thinking in organic chemistry has shown that students attribute little meaning to the electron-pushing (i.e., curved arrow) formalism. At the University of Ottawa, a new curriculum has been developed in which students are taught the electron-pushing formalism prior to instruction on specific reactions--this formalism is…

  11. Engaging Organic Chemistry Students Using ChemDraw for iPad

    Science.gov (United States)

    Morsch, Layne A.; Lewis, Michael

    2015-01-01

    Drawing structures, mechanisms, and syntheses is a vital part of success in organic chemistry courses. ChemDraw for iPad has been used to increase classroom experiences in the preparation of high quality chemical drawings. The embedded Flick-to-Share allows for simple, real-time exchange of ChemDraw documents. ChemDraw for iPad also allows…

  12. Formalizing the First Day in an Organic Chemistry Laboratory Using a Studio-Based Approach

    Science.gov (United States)

    Collison, Christina G.; Cody, Jeremy; Smith, Darren; Swartzenberg, Jennifer

    2015-01-01

    A novel studio-based lab module that incorporates student-centered activities was designed and implemented to introduce second-year undergraduate students to the first-semester organic chemistry laboratory. The "First Day" studio module incorporates learning objectives for the course, lab safety, and keeping a professional lab notebook.

  13. A Performance Enhanced Interactive Learning Workshop Model as a Supplement for Organic Chemistry Instruction

    Science.gov (United States)

    Phillips, Karen E. S.; Grose-Fifer, Jilliam

    2011-01-01

    In this study, the authors describe a Performance Enhanced Interactive Learning (PEIL) workshop model as a supplement for organic chemistry instruction. This workshop model differs from many others in that it includes public presentations by students and other whole-class-discussion components that have not been thoroughly investigated in the…

  14. Fascinating chemistry or frustrating unpredictability : Observations in crystal engineering of metal–organic frameworks

    NARCIS (Netherlands)

    Goesten, M.G.; Kapteijn, F.; Gascon, J.

    2013-01-01

    Reticular design is a highly attractive concept, but coordination chemistry around the tectonic units of metal– organic frameworks (MOFs) and additional interplay with anionic and solvent species provide for dazzling complexity that effectively rules out structure prediction. We can however study

  15. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  16. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  17. Apoc Social: A Mobile Interactive and Social Learning Platform for Collaborative Solving of Advanced Problems in Organic Chemistry.

    Science.gov (United States)

    Sievertsen, Niels; Carreira, Erick M

    2018-02-01

    Mobile devices such as smartphones are carried in the pockets of university students around the globe and are increasingly cheap to come by. These portable devices have evolved into powerful and interconnected handheld computers, which, among other applications, can be used as advanced learning tools and providers of targeted, curated content. Herein, we describe Apoc Social (Advanced Problems in Organic Chemistry Social), a mobile application that assists both learning and teaching college-level organic chemistry both in the classroom and on the go. With more than 750 chemistry exercises available, Apoc Social facilitates collaborative learning through discussion boards and fosters enthusiasm for complex organic chemistry.

  18. Microwave Assisted Organic Synthesis of Heterocycles in Aqueous Media: Recent Advances in Medicinal Chemistry.

    Science.gov (United States)

    Frecentese, Francesco; Saccone, Irene; Caliendo, Giuseppe; Corvino, Angela; Fiorino, Ferdinando; Magli, Elisa; Perissutti, Elisa; Severino, Beatrice; Santagada, Vincenzo

    2016-01-01

    Green chemistry is a discipline of great interest in medicinal chemistry. It involves all fields of chemistry and it is based on the principle to conduct chemical reactions protecting the environment at the same time, through the use of chemical procedures able to avoid pollution. In this context, water as solvent is a good choice because it is abundant, nontoxic, non-caustic, and non-combustible. Even if microwave assisted organic reactions in conventional solvents have quickly progressed, in the recent years medicinal chemists have focused their attention to processes deemed not dangerous for the environment, using nanotechnology and greener solvents as water. Several reports of reaction optimizations and selectivities, demonstrating the capability of microwave to allow the obtaining of increased yields have been recently published using water as solvent. In this review, we selected the available knowledge related to microwave assisted organic synthesis in aqueous medium, furnishing examples of the newest strategies to obtain useful scaffolds and novel derivatives for medicinal chemistry purposes. The intention of this review is to demonstrate the exclusive ability of MAOS in water as solvent or as co-solvent. For this purpose we report here the most representative applications of MAOS using water as solvent, focusing on medicinal chemistry processes leading to interesting nitrogen containing heterocycles with potential pharmaceutical applications.

  19. Tholins - Organic chemistry of interstellar grains and gas

    Science.gov (United States)

    Sagan, C.; Khare, B. N.

    1979-01-01

    The paper discusses tholins, defined as complex organic solids formed by the interaction of energy - for example, UV light or spark discharge - with various mixtures of cosmically abundant gases - CH4, C2H6, NH3, H2O, HCHO, and H2S. It is suggested that tholins occur in the interstellar medium and are responsible for some of the properties of the interstellar grains and gas. Additional occurrences of tholins are considered. Tholins have been produced experimentally; 50 or so pyrolytic fragments of the brown, sometimes sticky substances have been identified by gas chromatography-mass spectrometry, and the incidence of these fragments in tholins produced by different procedures is reported.

  20. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  1. Correlation of Preadmission Organic Chemistry Courses and Academic Performance in Biochemistry at a Midwest Chiropractic Doctoral Program*

    Science.gov (United States)

    McRae, Marc P.

    2010-01-01

    Purpose: Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Methods: Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. Results: For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p organic chemistry 2 (p organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry PMID:20480012

  2. Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth.

    Science.gov (United States)

    Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F

    2017-01-01

    The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.

  3. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    International Nuclear Information System (INIS)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed

  4. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed.

  5. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te 2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF 4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na 3 CrF 6 and Na 5 Cr 3 F 14 , were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li 2 BeF 4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe 2+ and Cr 3+ and the determination of the U 3+ /U 4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF 4 --NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF 4 --NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  6. Using Commercially Available Techniques to Make Organic Chemistry Representations Tactile and More Accessible to Students with Blindness or Low Vision

    Science.gov (United States)

    Supalo, Cary A.; Kennedy, Sean H.

    2014-01-01

    Organic chemistry courses can present major obstacles to access for students with blindness or low vision (BLV). In recent years, efforts have been made to represent organic chemistry concepts in tactile forms for blind students. These methodologies are described in this manuscript. Further work being done at Illinois State University is also…

  7. Azeotropic Preparation of a "C"-Phenyl "N"-Aryl Imine: An Introductory Undergraduate Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Silverberg, Lee J.; Coyle, David J.; Cannon, Kevin C.; Mathers, Robert T.; Richards, Jeffrey A.; Tierney, John

    2016-01-01

    Imines are important in biological chemistry and as intermediates in organic synthesis. An experiment for introductory undergraduate organic chemistry is presented in which benzaldehyde was condensed with "p"-methoxyaniline in toluene to give 4-methoxy-"N"-(phenylmethylene)benzenamine. Water was removed by azeotropic…

  8. Perry's Scheme of Intellectual and Epistemological Development as a Framework for Describing Student Difficulties in Learning Organic Chemistry

    Science.gov (United States)

    Grove, Nathaniel P.; Bretz, Stacey Lowery

    2010-01-01

    We have investigated student difficulties with the learning of organic chemistry. Using Perry's Model of Intellectual Development as a framework revealed that organic chemistry students who function as dualistic thinkers struggle with the complexity of the subject matter. Understanding substitution/elimination reactions and multi-step syntheses is…

  9. Implementation of picoSpin Benchtop NMR Instruments into Organic Chemistry Teaching Laboratories through Spectral Analysis of Fischer Esterification Products

    Science.gov (United States)

    Yearty, Kasey L.; Sharp, Joseph T.; Meehan, Emma K.; Wallace, Doyle R.; Jackson, Douglas M.; Morrison, Richard W.

    2017-01-01

    [Superscript 1]H NMR analysis is an important analytical technique presented in introductory organic chemistry courses. NMR instrument access is limited for undergraduate organic chemistry students due to the size of the instrument, price of NMR solvents, and the maintenance level required for instrument upkeep. The University of Georgia Chemistry…

  10. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    Science.gov (United States)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  11. BIO-ORGANIC CHEMISTRY QUARTERLY REPORT - MARCH THROUGH MAY1961

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1961-06-29

    The study of meteorite Murray has been reported in previous Quarterly Reports. This report gives further results with Murray, and information on another meteorite, Orgueil. A sample of Orgueil was sent from the Museum National d Histoire Naturelle, Paris. It fell in several pieces over an area of 2 square miles near Orgueil, France, in 1864. The elemental analysis of this meteorite is shown in Table 1. They extracted a 10.07-g sample of this meteorite with water, using the same procedure as that for Murray. The water extracted 1.32 g, which is at least twice as much material as was water-extracted from Murray. The elemental analysis of the water extract is given in Table II and its uv spectrum is shown in Figure 1. From an x-ray diffraction pattern it was determined that the water extract contained mostly MgSO{sub 4} {center_dot} 6H{sub 2}O with some calcium sulfate. Their spectrum (Figure 2) shows a strong SO{sub 4} band at 1100 cm{sup -1}, = strong H{sub 2}O bands at 1650 cm{sup -1} and 3200-3600 cm{sup -1}, and some unidentified peaks at 2300, 1400, and 980 cm{sup -1}. The approximately 8 g of Orgueil left after the water extraction was then extracted with purified chloroform. Approximately 50 mg of yellow material was extracted. Its uv spectrum is shown in Figure 3 and is identical to the spectrum of elemental sulfur. Whatever else may be extracted from the meteorites by organic solvents, the uv spectra show only sulfur.

  12. MADNESS applied to density functional theory in chemistry and nuclear physics

    International Nuclear Information System (INIS)

    Fann, G I; Harrison, R J; Beylkin, G; Jia, J; Hartman-Baker, R; Shelton, W A; Sugiki, S

    2007-01-01

    We describe some recent mathematical results in constructing computational methods that lead to the development of fast and accurate multiresolution numerical methods for solving quantum chemistry and nuclear physics problems based on Density Functional Theory (DFT). Using low separation rank representations of functions and operators in conjunction with representations in multiwavelet bases, we developed a multiscale solution method for integral and differential equations and integral transforms. The Poisson equation, the Schrodinger equation, and the projector on the divergence free functions provide important examples with a wide range of applications in computational chemistry, nuclear physics, computational electromagnetic and fluid dynamics. We have implemented this approach along with adaptive representations of operators and functions in the multiwavelet basis and low separation rank (LSR) approximation of operators and functions. These methods have been realized and implemented in a software package called Multiresolution Adaptive Numerical Evaluation for Scientific Simulation (MADNESS)

  13. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2008-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student''s ability to think in mathematical terms and to apply quantitative methods to scientific problems. By the author''s design, no problems are included in the text, to allow the students to focus on their science course assignments.- Highly accessible presentation of fundamental mathematical techniques needed in science and engineering courses- Use of proven pedagogical techniques develolped during the author's 40 years of teaching experience- illustrations and links to reference material on World-Wide-Web- Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, speci...

  14. Use of ionising radiation in the teaching of physics and chemistry

    International Nuclear Information System (INIS)

    2000-01-01

    The guide lays down the safety requirements for the use of radiation in school education, as well as the principles regulating the use of radiation sources without the safety licence referred to in section 16 of the Finnish Radiation Act (592/1991). The guide covers the use of radiation sources emitting ionising radiation in elementary schools and high schools, as well as the use of radiation in the teaching of physics and chemistry in vocational training institutions and corresponding educational institutions

  15. Use of ionizing radiation in the teaching of physics and chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The guide specifies the safety requirements for the use of radiation in school education as well as the principles regulating the use of radiation sources without the safety license referred to the Section 16 of the Finnish Radiation Act (592/91). The guide covers the use of radiation sources emitting ionizing radiation in elementary schools and high schools, as well as the use of radiation in the teaching of physics and chemistry in vocational training institutions and corresponding educational institutions. (3 refs.)

  16. Development of Teaching Materials for a Physical Chemistry Experiment Using the QR Code

    OpenAIRE

    吉村, 忠与志

    2008-01-01

    The development of teaching materials with the QR code was attempted in an educational environment using a mobile telephone. The QR code is not sufficiently utilized in education, and the current study is one of the first in the field. The QR code is encrypted. However, the QR code can be deciphered by mobile telephones, thus enabling the expression of text in a small space.Contents of "Physical Chemistry Experiment" which are available on the Internet are briefly summarized and simplified. T...

  17. Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene.

    Science.gov (United States)

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2008-06-01

    Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.

  18. Japan - UK Conference: Trends in Physics and Chemistry Education in Secondary Schools

    Science.gov (United States)

    1998-11-01

    This conference, held in Tokyo between 3-5 April 1998, was the most recent product of a now longstanding involvement between British and Japanese physics teachers which has grown out of a personal friendship between Brenda Jennison (Cambridge University and Vice Chair of the Education Group) and Tae Ryu (Sophia University). For a number of years British teachers have hosted Japanese counterparts at the annual ASE meetings and in visits to schools following the conference. For this conference a team of four physicists, Brenda Jennison, lan Lawrence (King's School Worcester), Philip Britton (Leeds Grammar School) and Phil Scott (University of Leeds) travelled to Japan to contribute to a conference and visit schools and University Departments. Feelings on reading a conference report can too often resemble the experience of being shown a friend's holiday snaps. They are clearly very interesting but equally clearly your friend is enjoying it more than you are, because the snaps are rekindling memories and thoughts. This set of reflections is an attempt to report on just four of those memories and thoughts rather than describe the pictures. Why organize an international conference? The conference was an event that almost took more months of tireless organization than it lasted in hours. It was conceived and brought to fruition amongst a welter of e-mail communications between Brenda Jennison, Tae Ryu and Maurice Jenkins of the British Council, who sponsored the event. Given this immense organizational task, just why did we bother? What can be gained by holding such an international event? The significant benefit of discussing issues between two cultures is clarifying which are the issues that are intrinsically due to the nature of physics teaching rather than the extrinsic effects of educational systems and customs. Unsurprisingly pupil motivation, pupil numbers, relevance, `up-to-date-ness' and the role of mathematics emerged as concerns in both cultures. Also there are

  19. "No one does this for fun": Contextualization and process writing in an organic chemistry laboratory course

    Science.gov (United States)

    Gay, Andrea

    This study investigated the introduction of curriculum innovations into an introductory organic chemistry laboratory course. Pre-existing experiments in a traditional course were re-written in a broader societal context. Additionally, a new laboratory notebook methodology was introduced, using the Decision/Explanation/Observation/Inference (DEOI) format that required students to explicitly describe the purpose of procedural steps and the meanings of observations. Experts in organic chemistry, science writing, and chemistry education examined the revised curriculum and deemed it appropriate. The revised curriculum was introduced into two sections of organic chemistry laboratory at Columbia University. Field notes were taken during the course, students and teaching assistants were interviewed, and completed student laboratory reports were examined to ascertain the impact of the innovations. The contextualizations were appreciated for making the course more interesting; for lending a sense of purpose to the study of chemistry; and for aiding in students' learning. Both experts and students described a preference for more extensive connections between the experiment content and the introduced context. Generally, students preferred the DEOI method to journal-style laboratory reports believing it to be more efficient and more focused on thinking than stylistic formalities. The students claimed that the DEOI method aided their understanding of the experiments and helped scaffold their thinking, though some students thought that the method was over-structured and disliked the required pre-laboratory work. The method was used in two distinct manners; recursively writing and revising as intended and concept contemplation only after experiment completion. The recursive use may have been influenced by TA attitudes towards the revisions and seemed to engender a sense of preparedness. Students' engagement with the contextualizations and the DEOI method highlight the need for

  20. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    Science.gov (United States)

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  1. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  2. Chemistry of Small Organic Molecules on Snow Grains: The Applicability of Artificial Snow for Environmental Studies

    Czech Academy of Sciences Publication Activity Database

    Kurková, R.; Ray, D.; Nachtigallová, Dana; Klán, P.

    2011-01-01

    Roč. 45, č. 8 (2011), s. 3430-3436 ISSN 0013-936X R&D Projects: GA MŠk LC512 Grant - others:GA ČR(CZ) GAP503/10/0947 Institutional research plan: CEZ:AV0Z40550506 Keywords : water-ice * photochemical decomposition * dibenzyl- ketones Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.228, year: 2011

  3. Framing a program designed to train new chemistry/physics teachers for California outlying regions

    Science.gov (United States)

    Bodily, Gerald P., Jr.

    The purpose of this study was to develop guidelines for a new high school chemistry and physics teacher training program. Eleven participants were interviewed who attended daylong workshops, every other Saturday, for 10 months. The instructors used Modeling Instruction pedagogy and curriculum. All the instructors had high school teaching experience, but only one possessed a doctorate degree. The interview questions focused on four themes: motivation, epistemology, meta-cognition, and self-regulation; and the resulting transcripts were analyzed using a methodology called Interpretive Phenomenological Analysis. The cases expressed a strong preference for the program's instruction program over learning subject matter knowledge in university classrooms. The data indicated that the cases, as a group, were disciplined scholars seeking a deep understanding of the subject matter knowledge needed to teach high school chemistry and physics. Based on these results a new approach to training teachers was proposed, an approach that offers novel answers to the questions of how and who to train as science teachers. The how part of the training involves using a program called Modeling Instruction. Modeling instruction is currently used to upgrade experienced science teachers and, in the new approach, replaces the training traditionally administered by professional scientists in university science departments. The who aspect proposes that the participants be college graduates, selected not for university science training, but for their high school math and science background. It is further proposed that only 10 months of daily, face-to-face instruction is required to move the learner to a deep understanding of subject matter knowledge required to teach high school chemistry and physics. Two outcomes are sought by employing this new training paradigm, outcomes that have been unachievable by current educational practices. First, it is hoped that new chemistry and physics teachers can

  4. Handbook of heterocyclic chemistry

    National Research Council Canada - National Science Library

    Katritzky, Alan R

    2010-01-01

    ... Heterocyclic Chemistry I (1984) Comprehensive Heterocyclic Chemistry II (1996) Comprehensive Heterocyclic Chemistry III (2008) Comprehensive Organic Functional Group Transformations I (1995) Compreh...

  5. PREFACE: 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015)

    Science.gov (United States)

    Gaol, F. L.

    2015-06-01

    The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19

  6. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  7. Organic Chemistry in Portugal from 1900 to 1970: A Contribution to the History of Science

    Directory of Open Access Journals (Sweden)

    Paulo Nuno Martins

    2017-12-01

    Full Text Available The main purpose of this article is to describe the contributions made by various professors in Portuguese institutions, (located at Lisbon, Coimbra and Oporto, for the development of organic chemistry, between 1900 and 1970, so that we can get a better idea of the Portuguese work done in this area (i.e., teaching, pedagogical, etc.. For this purpose, we will take particular attention to technical books used in class (lecture and laboratory. Another point of this article is to refer the organic chemistry laboratories, existent in various Portuguese universities, in order to understand the importance of practice for the complete university student training. DOI: http://dx.doi.org/10.17807/orbital.v9i5.1086

  8. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    Science.gov (United States)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; hide

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  9. Cooperative studyware development of organic chemistry module by experts, teachers, and students

    Science.gov (United States)

    Dori, Yehudit J.

    1995-06-01

    Experts, teachers, and students took active part in a process of organic chemistry studyware development. A unique characteristic of this process was the active involvement of three different groups of people in the authoring process: science educators, chemistry teachers, and chemistry students studying towards an education certificate. The science educators—the experts—advised the team on new methods of presenting the subject matter in an appealing way, using 3D computerized molecular modeling. The in-service chemistry teachers contributed from their rich field experience to constructing the studyware. This mutual development helped maintain the balance between expert requirements and expectations from students on one hand, and the actual student capabilities, as perceived by teachers through constant contact with the students, on the other. Finally, the preservice teachers—the undergraduate chemistry students—were often zealous, enthusiastic, and willing to put in the extra time and effort needed to produce quality studyware, while following the guidelines of the experts and teachers. Feedback on the qualities and shortcomings of the studyware was obtained in two cycles. The first one was done while the studyware was still under development by peers, and the second by individual target students, serving as a beta-site. This double feedback helped improve the studyware, mainly by elaborating on portions that require more detail and explanation. The paper describes the process as well as representative parts of the studyware. The combination of experts, teachers, and students in the development team seems to have the potential to yield studyware that is appropriate for effective science education in general and chemistry teaching in particular.

  10. Column chromatography with almecega resin: a project for experimental organic chemistry

    International Nuclear Information System (INIS)

    Vieira Junior, Gerardo Magela; Carvalho, Adonias Almeida; Gonzaga, Wellington de Abreu; Chaves, Mariana H.

    2007-01-01

    The use of natural products to demonstrate the silica gel column chromatography technique is proposed in the present article. It describes the separation of the triterpenes α- and β-amirin from the diol breine and maniladiol, obtained from almecega resin (Protium heptaphyllum March.). The experiment uses an accessible material, was accomplished in 4 h, and can be applied with success an the experimental course of organic chemistry for undergraduate students. (author)

  11. INNOVATION IN ORGANIC CHEMISTRY PRACTICAL WORKS, USING PROBLEM-BASED LEARNING AS TEACHING STRATEGY

    OpenAIRE

    Miriam G. Acuña; Nora M. Sosa; Eusebia C. Valdez

    2011-01-01

    This paper presents the teaching strategy known as problem-based learning as an innovation implemented in the practical experiences of the Organic Chemistry course (Bachelor of Genetics), Faculty of Exact, Chemical and Natural Sciences (Universidad Nacional de Misiones, Argentina). It reviews the results of the experience implemented with students, in groups of 7 selected according to their preferences. A problem that required skills in planning, decision making process, thinking, using of ap...

  12. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2016-06-01

    Full Text Available Substantial biogenic secondary organic aerosol (BSOA formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS measurement identified two types of BSOA (BSOA-1 and BSOA-2, which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas–particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91 compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.

  13. An analysis of interest in students learning of physical chemistry experiment using Scientific approach

    Directory of Open Access Journals (Sweden)

    Widinda Normalia Arlianty

    2017-08-01

    Full Text Available This study was aimed to analyze interest in student learning of physical chemistry experiment on Chemistry Education students, Islamic University of Indonesia. The research was quantitative. The samples of this research were 2nd-semester student academic year 2015. The data learning interest of students were collected by questionnaire and documentation of seven title experimental. Learning interest consisted of three indicators, concluded feeling good, attention and activity in the learning process. The results of this research showed that score mean of feeling good  indicator was  25,9;  score  mean  of attention indicator 17,8, and score mean of  activity indicator 8,41.  Score Mean  students for the questionnaire interest in student learning  was 51,83 and this data was categorized as “good”.

  14. Synthesis of liquid crystals derived from nitroazobenzene: a proposed multistep synthesis applied to organic chemistry laboratory classes

    International Nuclear Information System (INIS)

    Cristiano, Rodrigo; Cabral, Marilia Gabriela B.; Aquino, Rafael B. de; Cristiano, Claudia M.Z.

    2014-01-01

    We describe a synthetic route consisting of five steps from aniline to obtain liquid crystal compounds derived from nitroazobenzene. Syntheses were performed during the second half of the semester in organic chemistry laboratory classes. Students characterized the liquid crystal phase by the standard melting point techniques, differential scanning calorimetry and polarized optical microscopy. These experiments allow undergraduate students to explore fundamentally important reactions in Organic Chemistry, as well as modern concepts in Chemistry such as self-assembly and self-organization, nanostructured materials and molecular electronics. (author)

  15. comparative assessment of university chemistry undergraduate

    African Journals Online (AJOL)

    Temechegn

    The areas of chemistry covered are Introductory, Inorganic, Physical, Organic, and Quantum and ... various specialisations like Pure and Applied Chemistry, Analytical ... even engineering disciplines, a degree in chemistry can be the starting point. .... It is also to show the relevance of the instructional methods relative to the.

  16. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Primary Kinetic Isotope Effect in the Hypochlorite Oxidation of 1-Phenylethanol in the Physical Chemistry Laboratory

    Science.gov (United States)

    Noll, Robert J.; Fitch, Richard W.; Kjonaas, Richard A.; Wyatt, Richard A.

    2017-01-01

    A kinetic isotope effect (KIE) experiment is described for the physical chemistry laboratory. Students conduct a hypochlorite (household bleach) oxidation of an equimolar mixture of 1-phenylethanol and 1-deuterio-1-phenylethanol to acetophenone. The reaction occurs in a biphasic reaction mixture and follows first-order kinetics with respect to…

  17. 3D-printed devices for continuous-flow organic chemistry.

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy

    2013-01-01

    We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  18. 3D-printed devices for continuous-flow organic chemistry

    Directory of Open Access Journals (Sweden)

    Vincenza Dragone

    2013-05-01

    Full Text Available We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  19. Physics and Chemistry of the Interstellar Medium. General Colloquium, 19-21 November 2012, Paris

    International Nuclear Information System (INIS)

    Aguillon, Francois; Alata, Ivan; Alcaraz, Christian; Alves, Marta; Andre, Philippe; Bachiller, Rafael; Bacmann, Aurore; Baklouti, Donia; Bernard, Jean-Philippe; Berne, Olivier; Beroff, Karine; Bertin, Mathieu; Biennier, Ludovic; Bocchio, Marco; Bonal, Lydie; Bontemps, Sylvain; Bouchez Giret, Aurelia; Boulanger, Francois; Bracco, Andrea; Bron, Emeric; Brunetto, Rosario; Cabrit, Sylvie; Canosa, Andre; Capron, Michael; Ceccarelli, Cecilia; Cernicharo, Jose; Chaabouni, Henda; Chabot, Marin; Chen, Hui-Chen; Chiavassa, Thierry; Cobut, Vincent; Commercon, Benoit; Congiu, Emanuele; Coutens, Audrey; Danger, Gregoire; Daniel, Fabien; Dartois, Emmanuel; Demyk, Karine; Denis, Alpizar; Despois, Didier; D'hendecourt, Louis; Dontot, Leo; Doronin, Mikhail; Dubernet, Marie-Lise; Dulieu, Francois; Dumouchel, Fabien; Duvernay, Fabrice; Ellinger, Yves; Falgarone, Edith; Falvo, Cyril; Faure, Alexandre; Fayolle, Edith; Feautrier, Nicole; Feraud, Geraldine; Fillion, Jean-Hugues; Gamboa, Antonio; Gardez, Aline; Gavilan, Lisseth; Gerin, Maryvonne; Ghesquiere, Pierre; Godard, Benjamin; Godard, Marie; Gounelle, Matthieu; Gratier, Pierre; Grenier, Isabelle; Gruet, Sebastien; Gry, Cecile; Guillemin, Jean-Claude; Guilloteau, Stephane; Gusdorf, Antoine; Guzman, Viviana; Habart, Emilie; Hennebelle, Patrick; Herrera, Cinthya; Hily-Blant, Pierre; Hincelin, Ugo; Hochlaf, Majdi; Huet, Therese; Iftner, Christophe; Jallat, Aurelie; Joblin, Christine; Kahane, Claudine; Kalugina, Yulia; Kleiner, Isabelle; Koehler, Melanie; Kokkin, Damian; Koutroumpa, Dimitra; Krim, Lahouari; Lallement, Rosine; Lanza, Mathieu; Lattelais, Marie; Le Bertre, Thibaut; Le Gal, Romane; Le Petit, Franck; Le Picard, Sebastien; Lefloch, Bertrand; Lemaire, Jean Louis; Lesaffre, Pierre; Lique, Francois; Loison, Jean-Christophe; Lopez Sepulcre, Ana; Maillard, Jean-Pierre; Margules, Laurent; Martin, Celine; Mascetti, Joelle; Michaut, Xavier; Minissale, Marco; Miville-Deschenes, Marc-Antoine; Mokrane, Hakima; Momferratos, Georgios; Montillaud, Julien; Montmerle, Thierry; Moret-Bailly, Jacques; Motiyenko, Roman; Moudens, Audrey; Noble, Jennifer; Padovani, Marco; Pagani, Laurent; Pardanaud, Cedric; Parisel, Olivier; Pauzat, Francoise; Pernet, Amelie; Pety, Jerome; Philippe, Laurent; Piergiorgio, Casavecchia; Pilme, Julien; Pinto, Cecilia; Pirali, Olivier; Pirim, Claire; Puspitarini, Lucky; Rist, Claire; Ristorcelli, Isabelle; Romanzin, Claire; Roueff, Evelyne; Rousseau, Patrick; Sabbah, Hassan; Saury, Eleonore; Schneider, Ioan; Schwell, Martin; Sims, Ian; Spielfiedel, Annie; Stoecklin, Thierry; Talbi, Dahbia; Taquet, Vianney; Teillet-Billy, Dominique; Theule, Patrice; Thi, Wing-Fai; Trolez, Yann; Valdivia, Valeska; Van Dishoeck, Ewine; Verstraete, Laurent; Vinogradoff, Vassilissa; Wiesenfeld, Laurent; Ysard, Nathalie; Yvart, Walter; Zicler Eleonore

    2012-11-01

    This document publishes the oral contributions and the 66 posters presented during a colloquium on physics and chemistry of interstellar medium. The following themes have been addressed: New views on the interstellar medium with Herschel, Planck and Alma, Cycle of interstellar dusts, Physics and Dynamics of the interstellar medium, Molecular complexifying and the link towards pre-biotic chemistry. More precisely, the oral contributions addressed the following topics: Interstellar medium with Herschel and Planck; The anomalous microwave emission: a new window on the physics of small grains; Sub-millimetre spectroscopy of complex molecules and of radicals for ALMA and Herschel missions; Analysing observations of molecules in the ISM: theoretical and experimental studies of energy transfer; Unravelling the labyrinth of star formation with Herschel; Star formation regions with Herschel and Alma: astro-chemistry in the Netherlands; Physical structure of gas and dust in photo-dissociation regions observed with Herschel; Photo-desorption of analogues of interstellar ices; Formation of structures in the interstellar medium: theoretical and numerical aspects; Towards a 3D mapping of the galactic ISM by inversion of absorption individual measurements; Low velocity shocks as signatures of turbulent dissipation in diffuse irradiated gas; Early phases of solar system formation: 3D physical and chemical modelling of the collapse of pre-stellar dense core; Cosmic-ray propagation in molecular clouds; Protostellar shocks in the time of Herschel; A new PDR model of the physics and chemistry of the interstellar gas; Molecular spectroscopy in the ALMA era and laboratory Astrophysics in Spain; Which molecules to be searched for in the interstellar medium; Physics and chemistry of UV illuminated neutral gas: the Horsehead case; Nitrogen fractionation in dark clouds; Molecular spectral surveys from millimetre range to far infrared; Mechanisms and synthesis at the surface of cold grains

  20. [Commentary on the Nobel Prize that has been granted in Medicine-Physiology, Chemistry and Physics to noteable investigators].

    Science.gov (United States)

    Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes

    2015-01-01

    The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities.

  1. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38{sup th} JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment.

  2. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    2008-01-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38 th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  3. Effectiveness of Student-Generated Video as a Teaching Tool for an Instrumental Technique in the Organic Chemistry Laboratory

    Science.gov (United States)

    Jordan, Jeremy T.; Box, Melinda C.; Eguren, Kristen E.; Parker, Thomas A.; Saraldi-Gallardo, Victoria M.; Wolfe, Michael I.; Gallardo-Williams, Maria T.

    2016-01-01

    Multimedia instruction has been shown to serve as an effective learning aid for chemistry students. In this study, the viability of student-generated video instruction for organic chemistry laboratory techniques and procedure was examined and its effectiveness compared to instruction provided by a teaching assistant (TA) was evaluated. After…

  4. Changes in Visual/Spatial and Analytic Strategy Use in Organic Chemistry with the Development of Expertise

    Science.gov (United States)

    Vlacholia, Maria; Vosniadou, Stella; Roussos, Petros; Salta, Katerina; Kazi, Smaragda; Sigalas, Michael; Tzougraki, Chryssa

    2017-01-01

    We present two studies that investigated the adoption of visual/spatial and analytic strategies by individuals at different levels of expertise in the area of organic chemistry, using the Visual Analytic Chemistry Task (VACT). The VACT allows the direct detection of analytic strategy use without drawing inferences about underlying mental…

  5. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  6. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  7. Social Organization, Physical Environment, and Infant-Caretaker Interaction.

    Science.gov (United States)

    Woodson, R. H.; da Costa-Woodson, E. M.

    1984-01-01

    Relationships of infant/caretaker interaction with the social organization and the physical environment of the home were examined in rural Malay and Chinese families living in Malaysia. Findings are discussed in terms of the integration of behavioral characteristics, patterns of social organization, and arrangements of the physical environment…

  8. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

    Science.gov (United States)

    Kaski, K.; Salomaa, M.

    1990-01-01

    ), physics (fluid-dynamical and quantum-mechanical calculations; extensive numerical simulations of various condensed-matter systems; the development of stellar constellations, even the early Universe), chemistry (quantum-chemical calculations on the structures of new chemical compounds; chemical reactions and reaction dynamics), and biology (various models, for example, in population dynamics). We succeeded in our effort to assemble several internationally recognized researchers of Computational Science to deliver invited talks on a couple of exceptionally beautiful late-summer days in the modern premises of the Adult Education Center at Lahti. Among the plenary speakers, Per Bak described his highly original work on self-organized criticality. David Ceperley discussed pioneering numerical simulations of superfluid helium in which, for the first time, Feynman's path-integral formulation of quantum mechanics has been implemented on a computer. Jim Gunton presented his comprehensive studies of the Cahn-Hilliard equation for the dynamics of ordering in a condensed-matter system far from equilibrium, while Alex Hansen explained those on nonlinear breakdown in disordered materials. Representing the important field of computational chemistry, Bo Jönsson dealt with attractive forces between polyelectrolytes. Kurt Kremer gave an interesting account on computer-simulation studies of complex polymer systems, while Ole Mouritsen reviewed studies of interfacial fluctuations in lipid membranes. Pekka Pyykkö introduced his pioneering work which has led to predictions of completely novel chemical species. Annette Zippelius gave an expert introduction to the highly active field of neural networks. It is evident from each of these intriguing plenary contributions that, indeed, the computational approach is a frontier field of science, possibly providing the most versatile research method available today. We also arranged a competition for the best Posters presented at the Symposium; the

  9. Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses.

    Science.gov (United States)

    Cadeddu, Andrea; Wylie, Elizabeth K; Jurczak, Janusz; Wampler-Doty, Matthew; Grzybowski, Bartosz A

    2014-07-28

    Methods of computational linguistics are used to demonstrate that a natural language such as English and organic chemistry have the same structure in terms of the frequency of, respectively, text fragments and molecular fragments. This quantitative correspondence suggests that it is possible to extend the methods of computational corpus linguistics to the analysis of organic molecules. It is shown that within organic molecules bonds that have highest information content are the ones that 1) define repeat/symmetry subunits and 2) in asymmetric molecules, define the loci of potential retrosynthetic disconnections. Linguistics-based analysis appears well-suited to the analysis of complex structural and reactivity patterns within organic molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Flipped Classroom in Organic Chemistry Has Significant Effect on Students’ Grades

    Directory of Open Access Journals (Sweden)

    Caroline Cormier

    2018-01-01

    Full Text Available The flipped classroom as a form of active pedagogy in postsecondary chemistry has been developed during the last 10 years and has been gaining popularity with instructors and students ever since. In the current paradigm in science, technology, engineering, and mathematics education, it is widely recognized that active learning has significant positive effects on students’ grades. Postsecondary organic chemistry is a difficult course for students, and the traditional way of teaching does not foster students’ active involvement. Implementation of active pedagogy could increase students’ achievement in this course. However, few quantitative data are available on the impact of active pedagogy in general, or flipped classrooms in particular, on learning in organic chemistry at a postsecondary level. Thus, in this study, we evaluated the gain on final grade scores in organic chemistry after implementing a flipped classroom approach to promote active learning in this course. We encouraged students to be active by having them watch educational videos before each class and then having them work during class time on problems that focused on applying the concepts presented in the videos. Exams were the same as those completed by students in the traditional classrooms of our college. In an a posteriori analysis of our students’ grades, we compared final grades in traditional classrooms (control group, N = 66 and in flipped classrooms (experimental group, N = 151. The sample was stratified in three categories depending on students’ academic ability in college, from low-achieving to high-achieving students. Our results show that students in the experimental group have significantly higher final grades in organic chemistry than those in the control group, that is, 77% for students in the active classroom vs. 73% in the traditional classroom (p < 0.05. The effect was the greatest for low-achieving students, with final scores of 70% in

  11. Evaluation of an Integrated Curriculum in Physics, Mathematics, Engineering, and Chemistry

    Science.gov (United States)

    Beichner, Robert

    1997-04-01

    An experimental, student centered, introductory curriculum called IMPEC (for Integrated Mathematics, Physics, Engineering, and Chemistry curriculum) is in its third year of pilot-testing at NCSU. The curriculum is taught by a multidisciplinary team of professors using a combination of traditional lecturing and alternative instructional methods including cooperative learning, activity-based class sessions, and extensive use of computer modeling, simulations, and the world wide web. This talk will discuss the research basis for our design and implementation of the curriculum, the qualitative and quantitative methods we have been using to assess its effectiveness, and the educational outcomes we have noted so far.

  12. Bunsen conference 1999. Atmospheric physical chemistry; Bunsentagung 1999. Physikalische Chemie der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, P.J.; Zellner, R. [comps.

    2000-07-01

    The main subject of the 1999 Bunsen conference was atmospheric physical chemistry. There were lectures and posters on measurement and distribution of atmospheric trace gases, photochemical reactions in the different parts of the atmosphere, natural and anthropogenic emissions resulting from biomass combustion, thermodynamics and microphysics of aerosol, and air pollution abatement. [German] Die Bunsentagung 1999 beschaeftigte sich mit dem Thema Physikalische Chemie der Atmosphaere. Themen der Vortraege und Poster waren u.a. die Messung und Verteilung von Spurengasen in der Atmosphaere, photochemische Reaktionen in den verschiedenen Schichten der Atmosphaere, natuerliche und anthropogene Emissionen durch Verbrennung von Biomasse, Thermodynamik und Microphysik von Aerosolen und Klimaschutz.

  13. Symmetry-adapted basis sets automatic generation for problems in chemistry and physics

    CERN Document Server

    Avery, John Scales; Avery, James Emil

    2012-01-01

    In theoretical physics, theoretical chemistry and engineering, one often wishes to solve partial differential equations subject to a set of boundary conditions. This gives rise to eigenvalue problems of which some solutions may be very difficult to find. For example, the problem of finding eigenfunctions and eigenvalues for the Hamiltonian of a many-particle system is usually so difficult that it requires approximate methods, the most common of which is expansion of the eigenfunctions in terms of basis functions that obey the boundary conditions of the problem. The computational effort needed

  14. A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ha L.; Gándara, Felipe; Furukawa, Hiroyasu; Doan, Tan L. H.; Cordova, Kyle E.; Yaghi, Omar M.

    2016-04-06

    A crystalline material with a two-dimensional structure, termed metal–organic framework-901 (MOF-901), was prepared using a strategy that combines the chemistry of MOFs and covalent–organic frameworks (COFs). This strategy involves in situ generation of an amine-functionalized titanium oxo cluster, Ti6O6(OCH3)6(AB)6 (AB = 4-aminobenzoate), which was linked with benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The crystal structure of MOF-901 is composed of hexagonal porous layers that are likely stacked in staggered conformation (hxl topology). This MOF represents the first example of combining metal cluster chemistry with dynamic organic covalent bond formation to give a new crystalline, extended framework of titanium metal, which is rarely used in MOFs. The incorporation of Ti(IV) units made MOF-901 useful in the photocatalyzed polymerization of methyl methacrylate (MMA). The resulting polyMMA product was obtained with a high-number-average molar mass (26 850 g mol–1) and low polydispersity index (1.6), which in many respects are better than those achieved by the commercially available photocatalyst (P-25 TiO2). Additionally, the catalyst can be isolated, reused, and recycled with no loss in performance.

  15. Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

    KAUST Repository

    Alezi, Dalal

    2017-01-01

    Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials

  16. Beta,beta-Disilylated Sulfones as Versatile Building Blocks in Organic Chemistry – A New Sulfonyl Carbanion Transmetalation

    Czech Academy of Sciences Publication Activity Database

    Puget, Bertrand; Jahn, Ullrich

    -, č. 17 (2010), s. 2579-2582 ISSN 0936-5214 Institutional research plan: CEZ:AV0Z40550506 Keywords : carbanions * transmetalation * silanes * sulfones * Julia olefination Subject RIV: CC - Organic Chemistry Impact factor: 2.447, year: 2010

  17. Ion chemistry of some organic molecules studied by field ionization and field desorption mass spectrometry

    International Nuclear Information System (INIS)

    Greef, J. van der.

    1980-01-01

    The chemistry of isolated ions in the gas phase is strongly dependent on the internal energy which they have required upon formation. Since also the average lifetime of an ion depends on its internal energy, ion lifetime studies have been employed for many years to obtain a better insight in the relation between the chemistry and internal energy of gas phase ions. A very powerful tool for such studies is the field ionization kinetic (FIK) method, because it can provide a time-resolved picture of decompositions of ions with lifetimes varying from 10 -11 to 10 -5 s. The FIK method has been used in combination with 2 H, 13 C and 15 N labelling for mechanistic studies on the fragmentation of some selected ionised organic molecules. (Auth.)

  18. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    Directory of Open Access Journals (Sweden)

    M. Mena

    2005-06-01

    Full Text Available Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period. No anthropogenic pollution from Volatile Organic Compounds (VOCs was observed. An overview of the soil radon behaviour as a function of the volcanic activity in the period 1994-2002 is also discussed.

  19. Teaching innovation in organic chemistry: An inquiry into what happens when the lecturer stops lecturing

    Science.gov (United States)

    Bauer, Richard Charles

    1998-12-01

    In this dissertation the author presents findings from a study of an organic chemistry class in which the instructor changed his mode of content delivery. Instead of using a traditional lecture, the professor engaged students in discussions about chemical behavior, required students to complete cooperative learning activities in and out of class, and altered his examination format. The purpose of the research was to investigate the implementation of the changes made in content delivery, describe subsequent classroom interactions, and discuss participant responses to the innovations. Because of the research focus the author used a qualitative methodology to investigate this unique organic chemistry course. The study showed that the instructor's belief system and skills played an important role in overcoming barriers to implementation. Analysis of class transcripts revealed that the class was highly interactive with students freely offering responses to the instructor's questions and sometimes submitting insightful comments. The discussion format of the class also revealed some student misunderstanding that other teaching structures may not have identified. In general the instructor was able to pursue some concepts in more depth than allowed by a typical lecture mode of content delivery. Analysis of class transcripts also showed characteristics of organic chemistry teaching by Prof. Loudon that might be described as exemplary. He focused student attention on molecular structure and the chemical behavioral patterns that emerge from organic compounds that are structurally similar. Student response to Prof. Loudon's teaching style was quite favorable. A common remark from students was that his personal knowledge of them contributed to their class preparation and desire to learn. In general, students appreciated the opportunity to discuss exam questions in their groups before individual exam administration. On the final course evaluation, however, a couple students

  20. AN INVARIANT OF KNOWLEDGE FOR THE DISCIPLINE CHEMISTRY-PHYSIC IN THE FORMATION OF TEACHERS OF CHEMISTRY / UN INVARIANTE DE CONOCIMIENTOS PARA LA DISCIPLINA QUÍMICA-FÍSICA EN LA FORMACIÓN DE PROFESORES DE QUÍMICA

    OpenAIRE

    Luís Arturo Ramírez Urizarri; Carlos Ortigoza Garcell; Enrique Nelson Pacheco Fonseca

    2010-01-01

    This work is part of a mastership thesis on the Didactic of Chemistry. Here it is offered the first approximation which will constitute the invariant of knowledge of the discipline Chemistry-Physic for the measurement as bachelor in education in the specialty of Chemistry; with this invariant, that knowledge is meaningful for the importance of the teachers to be professional work.