WorldWideScience

Sample records for physical detector response

  1. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  2. Detector response artefacts in spectral reconstruction

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Christensen, Erik D.; Khalil, Mohamad

    2017-01-01

    Energy resolved detectors are gaining traction as a tool to achieve better material contrast. K-edge imaging and tomography is an example of a method with high potential that has evolved on the capabilities of photon counting energy dispersive detectors. Border security is also beginning to see...... instruments taking advantage of energy resolved detectors. The progress of the field is halted by the limitations of the detectors. The limitations include nonlinear response for both x-ray intensity and x-ray spectrum. In this work we investigate how the physical interactions in the energy dispersive...

  3. Detector response theory and its applications

    International Nuclear Information System (INIS)

    Keijzer, J.

    1992-11-01

    Some methods to describe the dynamics of fission reactors are investigated. First the reactivity of a reactor is regarded. The values of an exact calculation of the reactivity are compared with values obtained by first-order perturbation theory. Then a description of the point reactor kinetic theory and the detector response theory is given. A comparison of the two methods is made, using models of some well defined perturbations. Two of the perturbations are such that a physical movement of some absorber is regarded. A new way of modelling these moving objects is proposed. The result of the point reactor kinetic theory and the detecor response theory did not differ too much for perturbations which were far from the detector position. Locally however point reactor kinetic theory was not, in contrast with detector response theory, able to produce reliable results. The results of these calculations are to be compared with experiments, which will be performed later. (orig.)

  4. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1995-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. copyright 1995 American Institute of Physics

  5. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  6. A normalization of the physical tests for external irradiation measuring detectors

    International Nuclear Information System (INIS)

    1977-05-01

    This report is the result of a normalization work, realized within the Radioprotection Services of the C.E.A., of the physical tests for detectors measuring external irradiation. Among the various tests mentionned are treated more in details, calibration and the establishment of the relative spectral response. As far as calibration is concerned, the normalization refers to: the reference detector, the reference radiation source, the installation and calibration procedure. As for the relative spectral response the normalization refers to: the reference detector, the radiation sources to be used. Finally, a chapter is consecrated to the high flux detectors and to those for pulsed electromagnetic radiations [fr

  7. Organic Scintillator Detector Response Simulations with DRiFT

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Madison Theresa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bates, Cameron Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mckigney, Edward Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pinilla, Maria Isabel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Solomon, Jr., Clell Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sood, Avneet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-19

    Accurate detector modeling is a requirement to design systems in many non-proliferation scenarios; by determining a Detector’s Response Function (DRF) to incident radiation, it is possible characterize measurements of unknown sources. DRiFT is intended to post-process MCNP® output and create realistic detector spectra. Capabilities currently under development include the simulation of semiconductor, gas, and (as is discussed in this work) scintillator detector physics. Energy spectra and pulse shape discrimination (PSD) trends for incident photon and neutron radiation have been reproduced by DRiFT.

  8. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1992-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  9. A standardization of the physical tests for external irradiation measuring detectors

    International Nuclear Information System (INIS)

    1977-05-01

    This report is the result of a standardization work, realized within the Radioprotection Services of the A.E.C., of the physical tests for dectors measuring external irradiations. Among the various tests mentionned, calibration and the establishment of the relative spectral response are treated in details. As far as calibration is concerned, the standardization refers to: the reference detector, the reference radiation source, the installation and calibration procedure. As for the relative spectral response the standardization refers to: the reference detector, the radiation sources to be used. High flux detectors and those for pulse electromagnetic radiations are also dealt with [fr

  10. Semiconductor detector physics

    International Nuclear Information System (INIS)

    Equer, B.

    1987-01-01

    Comprehension of semiconductor detectors follows comprehension of some elements of solid state physics. They are recalled here, limited to the necessary physical principles, that is to say the conductivity. P-n and MIS junctions are discussed in view of their use in detection. Material and structure (MOS, p-n, multilayer, ..) are also reviewed [fr

  11. CLIC Detector and Physics Status

    CERN Document Server

    AUTHOR|(SzGeCERN)627941

    2017-01-01

    This contribution to LCWS2016 presents recent developments within the CLICdp collaboration. An updated scenario for the staged operation of CLIC has been published; the accelerator will operate at 380 GeV, 1.5 TeV and 3 TeV. The lowest energy stage is optimised for precision Higgs and top physics, while the higher energy stages offer extended Higgs and BSM physics sensitivity. The detector models CLIC_SiD and CLIC_ILD have been replaced by a single optimised detector; CLICdet. Performance studies and R&D in technologies to meet the requirements for this detector design are ongoing.

  12. Physics and Detectors at CLIC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    CLIC represents an attractive option for the future particle physics programme at the energy frontier. CLIC is a proposed electron-positron linear collider, based on a novel two beam accelerating structure, with the capability of operating at centre-of-mass energies of up to 3 TeV. The Physics and Detector volume of the CLIC conceptual design report was recently published as a CERN yellow report. In this seminar, I will review the conclusions of this report, focussing on four main areas. Firstly, I will give an overview of the physics potential at CLIC, and will place this in the context of a possible scenario for the staged construction of the machine. Secondly, I will discuss the challenges for a detector operating in the CLIC machine environment. I will then present detailed studies of possible detector concepts, based on high granularity particle flow calorimetry, which demonstrate that the required detector performance goals at CLIC can be met. Finally, I will highlight the main issues for the future R&a...

  13. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  14. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector

  15. Calorimetric low temperature detectors for heavy ion physics

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P.; Kraft-Bermuth, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Mainz Univ. (Germany). Inst. fuer Physik

    2005-05-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ({sup 4}He.. {sup 238}U). Excellent results with respect to energy resolution, {delta}E/E ranging from 1 to 5 x 10{sup -3} even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of {sup 236}U by one order of magnitude and to determine the up to date smallest isotope ratio of {sup 236}U/{sup 238}U = 6.1 x 10{sup -12} in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also

  16. Calorimetric low temperature detectors for heavy ion physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.; Mainz Univ.

    2005-07-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ( 4 He.. 238 U). Excellent results with respect to energy resolution, ΔE/E ranging from 1 to 5 x 10 -3 even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of 236 U by one order of magnitude and to determine the up to date smallest isotope ratio of 236 U/ 238 U = 6.1 x 10 -12 in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also provides considerable advantage for X

  17. An efficient energy response model for liquid scintillator detectors

    Science.gov (United States)

    Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin

    2018-05-01

    Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.

  18. Monte Carlo Study of the abBA Experiment: Detector Response and Physics Analysis.

    Science.gov (United States)

    Frlež, E

    2005-01-01

    The abBA collaboration proposes to conduct a comprehensive program of precise measurements of neutron β-decay coefficients a (the correlation between the neutrino momentum and the decay electron momentum), b (the electron energy spectral distortion term), A (the correlation between the neutron spin and the decay electron momentum), and B (the correlation between the neutron spin and the decay neutrino momentum) at a cold neutron beam facility. We have used a GEANT4-based code to simulate the propagation of decay electrons and protons in the electromagnetic spectrometer and study the energy and timing response of a pair of Silicon detectors. We used these results to examine systematic effects and find the uncertainties with which the physics parameters a, b, A, and B can be extracted from an over-determined experimental data set.

  19. Physics detector simulation facility system software description

    International Nuclear Information System (INIS)

    Allen, J.; Chang, C.; Estep, P.; Huang, J.; Liu, J.; Marquez, M.; Mestad, S.; Pan, J.; Traversat, B.

    1991-12-01

    Large and costly detectors will be constructed during the next few years to study the interactions produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy of a proposed design will be determined by a detailed computer model of the detectors. Physics and detector simulations will be performed on the computer model using high-powered computing system at the Physics Detector Simulation Facility (PDSF). The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo calculations for the simulation of SSCL physics and detectors. The numerical calculations to be performed in each simulation are lengthy and detailed; they could require many more months per run on a VAX 11/780 computer and may produce several gigabytes of data per run. Consequently, a distributed computing environment of several networked high-speed computing engines is envisioned to meet these needs. These networked computers will form the basis of a centralized facility for SSCL physics and detector simulation work. Our computer planning groups have determined that the most efficient, cost-effective way to provide these high-performance computing resources at this time is with RISC-based UNIX workstations. The modeling and simulation application software that will run on the computing system is usually written by physicists in FORTRAN language and may need thousands of hours of supercomputing time. The system software is the ''glue'' which integrates the distributed workstations and allows them to be managed as a single entity. This report will address the computing strategy for the SSC

  20. MICAP, Ionization Chamber Detector Response by Monte-Carlo

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MICAP has been developed to determine the response of a gas-filled cavity ionization chamber or other detector type (plastic scintillator, calorimeter) in a mixed neutron and photon radiation environment. In particular, MICAP determines the neutron, photon, and total response of the detector system. The applicability of MICAP encompasses all aspects of mixed field dosimetry analysis including detector design, pre-experimental planning and post-experimental analysis. MICAP is a modular code system developed to be general with respect to problem applicability The transport modules utilize combinatorial geometry to accurately model the source/detector geometry and also use continuous energy and angle cross section and material data to represent the materials for a particular problem. 2 - Method of solution: The calculational scheme used in MICAP follows individual radiation particles incident on the detector wall material. The incident neutrons produce photons and heavy charged particles, and both primary and secondary photons produce electrons and positrons. As these charged particles enter or are produced in the detector material, they lose energy and produce ion pairs until their energy is completely dissipated or until they escape the detector. Ion recombination effects are included along the path of each charged particle rather than applied as an integral correction to the final result. The neutron response is determined from the energy deposition resulting from the transport of the charged particles and recoil heavy ions produced via the neutron interactions with the detector materials. The photon response is determined from the transport of both the primary photon radiation incident on the detector and also the secondary photons produced via the neutron interactions. MICAP not only yields the energy deposition by particle type and total energy deposited, but also the particular type of reaction, i.e. elastic scattering

  1. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  2. Pixel Detectors for Particle Physics and Imaging Applications

    CERN Document Server

    Wermes, N

    2003-01-01

    Semiconductor pixel detectors offer features for the detection of radiation which are interesting for particle physics detectors as well as for imaging e.g. in biomedical applications (radiography, autoradiography, protein crystallography) or in Xray astronomy. At the present time hybrid pixel detectors are technologically mastered to a large extent and large scale particle detectors are being built. Although the physical requirements are often quite different, imaging applications are emerging and interesting prototype results are available. Monolithic detectors, however, offer interesting features for both fields in future applications. The state of development of hybrid and monolithic pixel detectors, excluding CCDs, and their different suitability for particle detection and imaging, is reviewed.

  3. Cryogenic detectors for particle physics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-11-01

    A comprehensive introduction to cryogenic detector developments for particle physics is presented, covering conventional detectors cooled to low temperature (scintillators and semiconductors), superconductive and thermal sensitive devices, as well as the basics of cold electronics. After giving a critical overview of current work, we elaborate on possible new ways for further improvements and briefly evaluate the feasibility of the main proposed applications

  4. Physics and Detectors at CLIC CLIC Conceptual Design Report

    CERN Document Server

    Miyamoto, Akiya; Stanitzki,Marcel; Weerts, Harry

    2012-01-01

    This report describes the physics potential and experiments at a future multi- TeV e+e− collider based on the Compact Linear Collider (CLIC) technology. The physics scenarios considered include precision measurements of known quantities as well as the discovery potential of physics beyond the Standard Model. The report describes the detector performance required at CLIC, taking into account the interaction point environment and especially beaminduced backgrounds. Two detector concepts, designed around highly granular calorimeters and based on concepts studied for the International Linear Collider (ILC), are described and used to study the physics reach and potential of such a collider. Detector subsystems and the principal engineering challenges are illustrated. The overall performance of these CLIC detector concepts is demonstrated by studies of the performance of individual subdetector systems as well as complete simulation studies of six benchmark physics processes. These full detector simulation and rec...

  5. International Linear Collider Physics and detectors: 2011 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E. [Univ. of Oregon, Eugene, OR (United States); Fuster, Juan [IFIC- Valencia (Spain); Hesla, Leah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Illenseer, Monika [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Royole-Degieux, Perrine [Centre National de la Recherche Scientifique (CNRS), Caen (France). Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Grand Accelerateur National d' Ions Lourds (GANIL); Takahashi, Rika [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Warmbein, Barbara [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamada, Sakue [Univ. of Tokyo (Japan); Yamamoto, Hitoshi [Tohoku Univ., Sendai (Japan); Zhang, Min [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)

    2012-08-29

    The studies of physics and detectors for the International Linear Collider are an important parallel element to the effort for the ILC Technical Design Report. The studies comprise the physics opportunities, detector requirements, and detector development to achieve the challenging high performance demanded by the physics, as well as integration of detectors into the accelerator. The current phase of this effort began with a call for Letters of Intent (LOIs) in 2007 and will lead to the submission of Detailed Baseline Design (DBD) report together with the ILC Technical Design Report at the end of 2012. Here we summarise the current status of this process, review what it has accomplished and identify the work that still needs to be completed. This report, titled International Linear Collider Physics and Detectors: 2011 Status Report, does just this.

  6. Concerns about the dynamic responses of in-core flux detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cuttler, J.M., E-mail: jerrycuttler@rogers.com [Cuttler & Associates Inc., Mississauga, Ontario (Canada); Gill, H.; Scrannage, R.; Paquette, P., E-mail: jerrycuttler@rogers.com [Bruce Power, Tiverton, Ontario (Canada)

    2012-07-01

    CANDUs are determining the dynamic responses of flux detectors by a method open to question. It ignores relative changes in local flux conditions, which are significant during trips. Calculated prompt fractions (PFs) are widespread. The SIR detector development calculated the PF change with irradiation on a physical basis. Measurements were made over many years. The current results do not agree with the 1996 predictions. Some values are below the safety analysis limit. This has resulted in detector replacement, imposition of CPPF penalties on trip margins, additional safety analyses and other actions. This paper shows that such measurements are not required. (author)

  7. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of

  8. Physical principles of semiconductor detectors

    International Nuclear Information System (INIS)

    Micek, S.L.

    1979-01-01

    The general properties of semiconductors with respect to the possibilities of their use as the ionization radiation detectors are discussed. Some chosen types of semiconductor junctions and their characteristics are briefly presented. There are also discussed the physical phenomena connected with the formation of barriers in various types of semiconductor counters. Finally, the basic properties of three main types of semiconductor detectors are given. (author)

  9. International linear collider physics and detectors. 2011 status report

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E. [Oregon Univ., OR (United States); Fuster, Juan [Instituto de Fisica Corpuscular, Valencia (Spain); Hesla, Leah [Fermi National Accelerator Lab., Batavia, IL (United States). NASA/Fermilab Astrophysics Center; Illenseer, Monika; Warmbein, Barbara [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Royole-Degieux, Perrine [CNRS/IN2P3, Paris (France); Takahashi, Rika [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Yamada, Sakue [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Tokyo Univ. (Japan); Yamamoto, Hitoshi [Tohoku Gakuin Univ., Sendai (Japan); Min, Zhang (eds.) [IHEP, Beijing (China)

    2011-07-01

    The studies of physics and detectors for the International Linear Collider are an important parallel element to the effort for the ILC Technical Design Report. The studies comprise the physics opportunities, detector requirements, and detector development to achieve the challenging high performance demanded by the physics, as well as integration of detectors into the accelerator. The current phase of this effort began with a call for Letters of Intent (LOIs) in 2007 and will lead to the submission of Detailed Baseline Design (DBD) report together with the ILC Technical Design Report at the end of 2012. Here we summarise the current status of this process, review what it has accomplished and identify the work that still needs to be completed. This report, titled International Linear Collider Physics and Detectors: 2011 Status Report, does just this. This report begins with a discussion of the outstanding issues in physics that motivate the construction of the ILC. It describes the organisation of the LOI process, the validation of the LOIs by the International Detector Advisory Group, and the results of R and D carried out to support the detector designs. The details of the concept detectors have already been published in the LOIs, which were completed in 2009. This report will, in a complementary way, describe the status of the detector R and D for each individual detector component and the status of the physics simulation infrastructure that has been built for the detector design process. Much of this work is carried out in cooperation between the two detector concept groups. This report describes the five common task groups and two working groups that have organised these cooperative activities. Many members of the detector concept groups and the common task groups have contributed to this report. Many more people have carried out the actual work that is reviewed. The complete list of members of each detector concept group can be found from the author lists of

  10. Detector development for ATLAS and supersymmetry physics studies

    International Nuclear Information System (INIS)

    Grewal, A.S.

    1999-01-01

    The Large Hadron Collider at CERN promises to offer an exciting opportunity to study particle physics at energies of up to 14 TeV. In order to exploit the potential of the LHC, the ATLAS collaboration intends to build a complex general-purpose detector. The detector must have the ability to study known physics to a higher accuracy as well as be capable of studying as yet unknown physical phenomenon. This thesis is concerned with the development of certain key components of the ATLAS inner detector as well as the ability of the detector to study certain aspects of Supersymmetry. The ATLAS Semi-Conductor Tracker is an enormously complex sub-detector with over six million channels. A scheme using pulse height modulation to transmit clock and control information to the detector is developed. Furthermore, in order to facilitate the readout of these channels as efficiently as possible with a bunch crossing frequency of 40 MHz three different readout architectures were investigated by the ATLAS collaboration - analogue, digital and binary. Work in this thesis contributed to the decision by ATLAS to adopt the binary readout architecture after it was successfully tested in test-beam and bench-top studies. The physics studies to be performed at ATLAS impose stringent requirements on the precision with which the various trackers of the detector must measure the position of track points created by charged particles as they traverse the detector. The tracking resolutions achievable with these detectors are dependent on, among other things, the precision with which positions of detector elements are known during data taking. An optical metrology system known as frequency scanning interferometry (FSI) is shown in this thesis to be capable of providing real time detector alignment information. Finally, B-quark tagging is expected to play a major role in studying a large fraction of interesting physics signatures at the LHC. This thesis studies the degradation to b

  11. LHC Detectors and Early Physics

    CERN Document Server

    Dissertori, Guenther

    2010-01-01

    In this review I sketch the basic criteria and boundary conditions which have guided the design of the LHC detectors. The discussion will concentrate on the so-called general-purpose experiments, ATLAS and CMS. After an overview of the detector's characteristics and performance, I will elaborate on the expected measurements of hard processes, with emphasis on jet and vector boson production, i.e., tests of Quantum Chromodynamics (QCD) and Electroweak Physics.

  12. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  13. The Detector Physics and Applications Center - DePAC

    CERN Document Server

    Plothow-Besch, H; Fiorini, C; Grupen, C; Hassard, J; Longoni, A; Walenta, Albert H

    2001-01-01

    A new project, the 'Detector Physics and Applications Center (DePAC)', is presented. DePAC is a general detector and sensor database, which is not application specific, on the Internet. DePAC collects and explains the physics, the technology and the application of a wide range of radiation detectors. DePAC also collects and describes information about noise problems, front-end electronics, data transfer, processing and storage. DePAC provides short write-ups and source code of all sorts of detector related software depending on availability. DePAC collects useful constants and properties of materials in an exhaustive series of tables and graphs. DePAC also acts as a point of contact for researchers and industry in an interdisciplinary way, e.g. in biology, in medicine, in materials research and in high energy or nuclear physics. Last but not least, DePAC aims to develop also into a virtual lecturing school and serves as a tutorial for students and all interested scientists.

  14. The Detector Physics and Applications Center—DePAC

    Science.gov (United States)

    Plothow-Besch, H.; Besch, H.-J.; Fiorini, C.; Grupen, C.; Hassard, J.; Longoni, A.; Walenta, A. H.

    2001-09-01

    A new project, the "Detector Physics and Applications Center (DePAC)", is presented. DePAC is a general detector and sensor database, which is not application specific, on the Internet. DePAC collects and explains the physics, the technology and the application of a wide range of radiation detectors. DePAC also collects and describes information about noise problems, front-end electronics, data transfer, processing and storage. DePAC provides short write-ups and source code of all sorts of detector related software depending on availability. DePAC collects useful constants and properties of materials in an exhaustive series of tables and graphs. DePAC also acts as a point of contact for researchers and industry in an interdisciplinary way, e.g. in biology, in medicine, in materials research and in high energy or nuclear physics. Last but not least, DePAC aims to develop also into a virtual lecturing school and serves as a tutorial for students and all interested scientists.

  15. The Detector Physics and Applications Center - DePAC

    International Nuclear Information System (INIS)

    Plothow-Besch, H.; Besch, H.-J.; Fiorini, C.; Grupen, C.; Hassard, J.; Longoni, A.; Walenta, A.H.

    2001-01-01

    A new project, the 'Detector Physics and Applications Center (DePAC)', is presented. DePAC is a general detector and sensor database, which is not application specific, on the Internet. DePAC collects and explains the physics, the technology and the application of a wide range of radiation detectors. DePAC also collects and describes information about noise problems, front-end electronics, data transfer, processing and storage. DePAC provides short write-ups and source code of all sorts of detector related software depending on availability. DePAC collects useful constants and properties of materials in an exhaustive series of tables and graphs. DePAC also acts as a point of contact for researchers and industry in an interdisciplinary way, e.g. in biology, in medicine, in materials research and in high energy or nuclear physics. Last but not least, DePAC aims to develop also into a virtual lecturing school and serves as a tutorial for students and all interested scientists

  16. DETECTORS USED IN PARTICLE PHYSICS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Melissines, A. C.

    1963-10-15

    Detectors used in particle physics are discussed, and their specific properties are compared. With the pictorial'' devices are included nuclear emulsions, cloud and bubble chambers, and spark chambers. Included in the digital'' devices are counters, e.g., the Geiger counter, scintillation counters, solid-state detectors, Cherenkov counters, and spark counters. Sensitivity, resolving power, time resolutions, saturation level, and energy detection are discussed. (R.E.U.)

  17. Silicon Detectors-Tools for Discovery in Particle Physics

    International Nuclear Information System (INIS)

    Krammer, Manfred

    2009-01-01

    Since the first application of Silicon strip detectors in high energy physics in the early 1980ies these detectors have enabled the experiments to perform new challenging measurements. With these devices it became possible to determine the decay lengths of heavy quarks, for example in the fixed target experiment NA11 at CERN. In this experiment Silicon tracking detectors were used for the identification of particles containing a c-quark. Later on, the experiments at the Large Electron Positron collider at CERN used already larger and sophisticated assemblies of Silicon detectors to identify and study particles containing the b-quark. A very important contribution to the discovery of the last of the six quarks, the top quark, has been made by even larger Silicon vertex detectors inside the experiments CDF and D0 at Fermilab. Nowadays a mature detector technology, the use of Silicon detectors is no longer restricted to the vertex regions of collider experiments. The two multipurpose experiments ATLAS and CMS at the Large Hadron Collider at CERN contain large tracking detectors made of Silicon. The largest is the CMS Inner Tracker consisting of 200 m 2 of Silicon sensor area. These detectors will be very important for a possible discovery of the Higgs boson or of Super Symmetric particles. This paper explains the first applications of Silicon sensors in particle physics and describes the continuous development of this technology up to the construction of the state of the art Silicon detector of CMS.

  18. An improved detector response simulation for the CBM silicon tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Malygina, Hanna [Goethe University, Frankfurt (Germany); Friese, Volker [GSI, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Compressed Baryonic Matter experiment(CBM) at FAIR is designed to explore the QCD phase diagram in the region of high net-baryon densities. The central detector component the Silicon Tracking System (STS) is build from double-sided micro-strip sensors. To achieve realistic simulations the response of the silicon strip sensors should be precisely included in the digitizer which simulates a complete chain of physical processes caused by charged particles traversing the detector, from charge creation in silicon to a digital output signal. The new version of the STS digitizer comprises in addition non-uniform energy loss distributions (according to the Urban theory), thermal diffusion and charge redistribution over the read-out channels due to interstrip capacitances. The improved response simulation was tested with parameters reproducing the anticipated running conditions of the CBM experiment. Two different method for cluster finding were used. The results for hit position residuals, cluster size distribution, as well as for some other parameters of reconstruction quality are presented. The achieved advance is assessed by a comparison with the previous, simpler version of the STS detector response simulation.

  19. Physical motivations for thermal detectors

    International Nuclear Information System (INIS)

    Fiorini, E.

    1993-01-01

    Low temperature bolometers can be complementary and sometimes superior to open-quotes classicalclose quotes ionization detectors in many experiments without accelerators in nuclear, subnuclear and astroparticle physics. After a short review of the open-quotes toolsclose quotes that cryogenics offer for the detection of particles the author first considers a few practical applications of bolometers in the spectroscopy of α, γ and X rays, in the detection of neutrons, and in measurements of weak radioactive contaminations. Searches with this technique on single and double beta decay, of which some are already being carried out, are then considered and discussed. The various properties which make thermal detectors particularly suitable for searches on dark matter are reviewed, stressing the potentiality of this technique. The promising, but still far, potentiality of thermal detectors in solar neutrino experiments is finally discussed

  20. Physics potential of ATLAS detector with high luminosity

    International Nuclear Information System (INIS)

    Zhou, Bing

    2004-01-01

    The ATLAS detector is designed to exploit the full physics potential in the TeV energy region opened up by the Large Hadron Collider at a center of mass energy of 14 TeV with very high luminosities. The physics performance of the ATLAS detector on Higgs, extra-dimension and strong symmetry breaking scenario is summarized in this note. ATLAS experiment has great discovery potential for these new phenomena with high luminosity. Triple gauge couplings are very sensitive for probing new physics at TeV scale. We show that ATLAS can measure these couplings very precisely with high luminosity. (orig.)

  1. Detector implications for eletroweak physics at the Tevatron

    International Nuclear Information System (INIS)

    Madaras, R.J.

    1996-12-01

    D0 and CDF are two large, powerful, multipurpose detectors with outstanding tracking, calorimeter and muon systems that have done an excellent job in exploiting the Top Quark, b Quark, QCD, New Phenomena/Exotics and Electroweak Physics at the Fermilab Tevatron Collider. The upgrades of the D0 and CDF detectors will further enhance their capabilities for physics at the Tevatron. The addition of a magnetic field and silicon vertex chamber will open up new physical opportunities for D0, and the replacement of the plug and forward gas calorimeters with new scintillator based calorimeters will give CDF uniform calorimetry over all η

  2. CLIC CDR - physics and detectors: CLIC conceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H. (High Energy Physics); (Many)

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  3. Current responsivity of semiconductor superlattice THz-photon detectors

    DEFF Research Database (Denmark)

    Ignatov, Anatoly A.; Jauho, Antti-Pekka

    1999-01-01

    The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed for curr......The current responsivity of a semiconductor superlattice THz-photon detector is calculated using an equivalent circuit model which takes into account the finite matching efficiency between a detector antenna and the superlattice in the presence of parasitic losses. Calculations performed...... for currently available superlattice diodes show that both the magnitudes and the roll-off frequencies of the responsivity are strongly influenced by an excitation of hybrid plasma-Bloch oscillations which are found to be eigenmodes of the system in the THz-frequency band. The expected room temperature values...... of the responsivity (2–3 A/W in the 1–3 THz-frequency band) range up to several percents of the quantum efficiency e/[h-bar] omega of an ideal superconductor tunnel junction detector. Properly designed semiconductor superlattice detectors may thus demonstrate better room temperature THz-photon responsivity than...

  4. Impact of detector simulation in particle physics collider experiments

    Science.gov (United States)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  5. Oblique incidence effects in direct x-ray detectors: A first-order approximation using a physics-based analytical model

    International Nuclear Information System (INIS)

    Badano, Aldo; Freed, Melanie; Fang Yuan

    2011-01-01

    Purpose: The authors describe the modifications to a previously developed analytical model of indirect CsI:Tl-based detector response required for studying oblique x-ray incidence effects in direct semiconductor-based detectors. This first-order approximation analysis allows the authors to describe the associated degradation in resolution in direct detectors and compare the predictions to the published data for indirect detectors. Methods: The proposed model is based on a physics-based analytical description developed by Freed et al. [''A fast, angle-dependent, analytical model of CsI detector response for optimization of 3D x-ray breast imaging systems,'' Med. Phys. 37(6), 2593-2605 (2010)] that describes detector response functions for indirect detectors and oblique incident x rays. The model, modified in this work to address direct detector response, describes the dependence of the response with x-ray energy, thickness of the transducer layer, and the depth-dependent blur and collection efficiency. Results: The authors report the detector response functions for indirect and direct detector models for typical thicknesses utilized in clinical systems for full-field digital mammography (150 μm for indirect CsI:Tl and 200 μm for a-Se direct detectors). The results suggest that the oblique incidence effect in a semiconductor detector differs from that in indirect detectors in two ways: The direct detector model produces a sharper overall PRF compared to the response corresponding to the indirect detector model for normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction compared to that found in indirect detectors with respect to the response at normal incidence angles. Conclusions: Compared to the effect seen in indirect detectors, the direct detector model exhibits a sharper response at normal x-ray incidence and a larger relative increase in blur along the x-ray incidence direction with respect to the blur in the

  6. Geometry simulation and physics with the CMS forward pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, N [Purdue University Calumet, Hammond, Indiana (United States)], E-mail: Neeti@fnal.gov

    2008-06-15

    The Forward Pixel Detector of CMS is an integral part of the Tracking system, which will play a key role in addressing the full physics potential of the collected data. It has a very complex geometry that encompasses multilayer structure of its detector modules. This presentation describes the development of geometry simulation for the Forward Pixel Detector. A new geometry package has been developed, which uses the detector description database (DDD) interface for the XML (eXtensive Markup Language) to GEANT simulation. This is necessary for digitization and GEANT4 reconstruction software for tracking. The expected physics performance is also discussed.

  7. Geometry simulation and physics with the CMS forward pixel detector

    International Nuclear Information System (INIS)

    Parashar, N

    2008-01-01

    The Forward Pixel Detector of CMS is an integral part of the Tracking system, which will play a key role in addressing the full physics potential of the collected data. It has a very complex geometry that encompasses multilayer structure of its detector modules. This presentation describes the development of geometry simulation for the Forward Pixel Detector. A new geometry package has been developed, which uses the detector description database (DDD) interface for the XML (eXtensive Markup Language) to GEANT simulation. This is necessary for digitization and GEANT4 reconstruction software for tracking. The expected physics performance is also discussed

  8. Overview of the CLIC detector and its physics potential

    CERN Document Server

    AUTHOR|(SzGeCERN)786425

    2016-01-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cutting-edge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  9. Overview of the CLIC detector and its physics potential

    Science.gov (United States)

    Ström, Rickard

    2017-12-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  10. Physics motivations for SSC/LHC detectors

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1993-06-01

    In this talk, I review the some of the physics goals and simulation work done in the SSC and LHC experimental proposal. I select the processes that illustrate the strengths and weaknesses the proposed detectors

  11. A new detector for deep inelastic physics

    CERN Document Server

    Kostka, Peter; South, David M.

    2014-01-01

    The Large Hadron Electron Collider (LHeC) is a proposed upgrade to the LHC, to provide high energy, high luminosity electron-proton and electron-ion collisions to run concurrently with Phase 2 of the LHC. The key elements of the LHeC detector and the requirements from the physics programme are outlined, followed by a brief description of the baseline LHeC detector design.

  12. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  13. New Physics with the ATLAS detector: experimental prospects

    International Nuclear Information System (INIS)

    Siragusa, Giovanni

    2011-01-01

    During 2010 the ATLAS detector has collected 45 pb -1 of proton-proton collisions at √= 7 TeV. These data have been used for a wide range of searches such as high-mass final states and contact interactions. Early inclusive SUSY searches have been also performed for a wide range of final states. The most recent results of searches of physics beyond the Standard Model with the ATLAS detector are presented. Prospects for physics searches with ∼ 1 fb -1 of data will be discussed together with the most relevant performance results.

  14. Calculating the Responses of Self-Powered Radiation Detectors.

    Science.gov (United States)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  15. Tests of health physics detectors and dosimeters to 6 and 9 MeV gamma-radiation

    International Nuclear Information System (INIS)

    1982-04-01

    The CEA health physicists working group on standardization and testing of detectors for the measurements of external exposure has set up and calibrated a capture #betta# beam. 6 and 9 MeV energies were obtained by means of Ti and Ni targets. These beams made it possible to determine the response of a number of detectors and dosimeters used in health physics to these energy ranges. Most generally, these tests showed that at 6 or 9 MeV the responses of instruments calibrated with 60 Co #betta#-rays could vary as much as a factor 2 when compared to the maximun of the absorbed dose in a human body [fr

  16. Development of a simple detector response function generation program: The CEARDRFs code

    International Nuclear Information System (INIS)

    Wang Jiaxin; Wang Zhijian; Peeples, Johanna; Yu Huawei; Gardner, Robin P.

    2012-01-01

    A simple Monte Carlo program named CEARDRFs has been developed to generate very accurate detector response functions (DRFs) for scintillation detectors. It utilizes relatively rigorous gamma-ray transport with simple electron transport, and accounts for two phenomena that have rarely been treated: scintillator non-linearity and the variable flat continuum part of the DRF. It has been proven that these physics and treatments work well for 3×3″ and 6×6″ cylindrical NaI detector in CEAR's previous work. Now this approach has been expanded to cover more scintillation detectors with various common shapes and sizes. Benchmark experiments of 2×2″ cylindrical BGO detector and 2×4×16″ rectangular NaI detector have been carried out at CEAR with various radiactive sources. The simulation results of CEARDRFs have also been compared with MCNP5 calculations. The benchmark and comparison show that CEARDRFs can generate very accurate DRFs (more accurate than MCNP5) at a very fast speed (hundred times faster than MCNP5). The use of this program can significantly increase the accuracy of applications relying on detector spectroscopy like prompt gamma-ray neutron activation analysis, X-ray fluorescence analysis, oil well logging and homeland security. - Highlights: ► CEARDRF has been developed to generate detector response functions (DRFs) for scintillation detectors a. ► Generated DRFs are very accurate. ► Simulation speed is hundreds of times faster than MCNP5. ► It utilizes rigorous gamma-ray transport with simple electron transport. ► It also accounts for scintillator non-linearity and the variable flat continuum part.

  17. 175th International School of Physics "Enrico Fermi" : Radiation and Particle Detectors

    CERN Document Server

    Bottigli, U; Oliva, P

    2010-01-01

    High energy physics (HEP) has a crucial role in the context of fundamental physics. HEP experiments make use of a massive array of sophisticated detectors to analyze the particles produced in high-energy scattering events. This book contains the papers from the workshop 'Radiation and Particle Detectors', organized by the International School of Physics, and held in Varenna in July 2009. Its subject is the use of detectors for research in fundamental physics, astro-particle physics and applied physics. Subjects covered include the measurement of: the position and length of ionization trails, time of flight velocity, radius of curvature after bending the paths of charged particles with magnetic fields, coherent transition radiation, synchrotron radiation, electro-magnetic showers produced by calorimetric methods and nuclear cascades produced by hadrons in massive steel detectors using calorimetry. Detecting muons and the detection of Cherenkov radiation are also covered, as is the detection of neutrinos by ste...

  18. The impact of two-photon physics on a B factory detector

    International Nuclear Information System (INIS)

    Bauer, D.A.

    1992-01-01

    While preceding workshops have outlined the broad range of physics topics which could be addressed at a B Factory, the challenge in this workshop was to define the impacts of this physics on the detector and delineate areas which will need further study. In this report, the author briefly recap the two-photon physics prospects at a B Factory and then show studies done to assess how the detector at such a facility could accommodate such physics

  19. Transient response of self-powered neutron detectors

    International Nuclear Information System (INIS)

    Boeck, H.; Gebureck, P.; Stegemann, D.

    The behaviour of self-powered neutron detectors with Co, Er, Hf and Pt emitters was investigated during reactor square wave and pulse operation. The detector's response was compared with the current of an excore ionization chamber. Characteristical deviations from linearity were observed with all detectors at fast reactor periods. The exact cause of these deviations is not yet fully understood but several possibilities for the nonlinear behaviour of self-powered neutron detectors are outlined. (author)

  20. Physics and detector simulation facility Type O workstation specifications

    International Nuclear Information System (INIS)

    Chartrand, G.; Cormell, L.R.; Hahn, R.; Jacobson, D.; Johnstad, H.; Leibold, P.; Marquez, M.; Ramsey, B.; Roberts, L.; Scipioni, B.; Yost, G.P.

    1990-11-01

    This document specifies the requirements for the front-end network of workstations of a distributed computing facility. This facility will be needed to perform the physics and detector simulations for the design of Superconducting Super Collider (SSC) detectors, and other computations in support of physics and detector needs. A detailed description of the computer simulation facility is given in the overall system specification document. This document provides revised subsystem specifications for the network of monitor-less Type 0 workstations. The requirements specified in this document supersede the requirements given. In Section 2 a brief functional description of the facility and its use are provided. The list of detailed specifications (vendor requirements) is given in Section 3 and the qualifying requirements (benchmarks) are described in Section 4

  1. The physics and technology of Si and Ge detectors

    International Nuclear Information System (INIS)

    Stab, Lucien

    Semiconductor physics fundamentals are recalled (energy levels in crystalline solids, level population, charge carrier transport) as an introduction to studying NP junction at thermal equilibrium, or reversly biased. The fabrication of semiconductor detectors including surface barrier detectors, implanted junctions, and lithium-drifted semiconductors is discussed [fr

  2. Nuclear detectors. Physical principles of operation

    International Nuclear Information System (INIS)

    Pochet, Th.

    2005-01-01

    Nuclear detection is used in several domains of activity from the physics research, the nuclear industry, the medical and industrial sectors, the security etc. The particles of interest are the α, β, X, γ and neutrons. This article treats of the basic physical properties of radiation detection, the general characteristics of the different classes of existing detectors and the particle/matter interactions: 1 - general considerations; 2 - measurement types and definitions: pulse mode, current mode, definitions; 3 - physical principles of direct detection: introduction and general problem, materials used in detection, simple device, junction semiconductor device, charges generation and transport inside matter, signal generation; 4 - physical principles of indirect detection: introduction, scintillation mechanisms, definition and properties of scintillators. (J.S.)

  3. Physics capabilities of the second stage Baikal detector NT-200

    International Nuclear Information System (INIS)

    Spiering, C.; Heller, R.; Heukenkamp, H.; Krabi, J.; Mikolajski, T.; Thon, T.; Wischnewski, R.; Alatin, S.D.; Fialkovsky, S.V.; Kulepov, V.F.; Milenin, M.B.; Belolaptikov, I.A.; Bezrukov, L.B.; Borisovets, B.A.; Bugaev, E.V.; Djilkibaev, Zh.A.M.; Domogatsky, G.V.; Donskich, L.A.; Doroshenko, A.A.; Galperin, M.D.; Gushtan, M.N.; Klabukov, A.M.; Klimushin, S.I.; Lanin, O.J.; Lubsandorzhiev, B.K.; Ogievietzky, N.V.; Panfilov, A.I.; Sokalsky, I.A.; Trofimenko, I.I.; Budnev, N.M.; Chensky, A.G.; Dobrynin, V.I.; Gress, O.A.; Koshechkin, A.P.; Lanin, J.B.; Litunenko, G.A.; Lopin, A.L.; Naumov, V.A.; Nemchenko, M.I.; Parfenov, Yu.V.; Pavlov, A.A.; Pokalev, O.P.; Primin, V.A.; Sumanov, A.A.; Tarashansky, V.A.; Zurbanov, V.L.; Dudkin, G.N.; Egorov, V.Yu.; Lukanin, A.A.; Ovcharov, A.M.; Padalko, V.M.; Padusenko, A.H.; Golikov, A.V.; Kabikov, V.B.; Kuzmichov, L.A.; Osipova, E.A.; Zaslavskaya, E.S.; Jenek, L.; Kiss, D.; Tanko, L.; Kusner, Yu.S.; Poleschuk, V.A.; Sherstyankin, P.P.; Levin, A.A.; Nikiforov, A.I.; Rosanov, M.I.

    1991-12-01

    We describe the lake Baikal deep underwater detector 'NT-200' and discuss its physics capabilities to investigate problems in the field of neutrino astrophysics, cosmic ray physics and particle physics. (orig.)

  4. Expected performance of the ATLAS experiment detector, trigger and physics

    CERN Document Server

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.A.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atkinson, T.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.A.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Baines, J.T.; Baker, O.K.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.B.; Barberio, E.L.; Barberis, D.; Barbero, M.B.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.B.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bazalova, M.; Beare, B.; Beauchemin, P.H.; Beccherle, R.B.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednar, P.; Bednyakov, V.A.; Bee, C.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, Elin; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, Jed; Biglietti, M.; Bilokon, H.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bischofberger, M.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G.J.; Bocci, A.; Bodine, B.; Boek, J.; Boelaert, N.; Boeser, Sebastian; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, C.N.; Booth, P.S.L.; Booth, J.R.A.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, O.; Bratzler, U.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Broggi, F.; Brooijmans, G.; Brooks, W.K.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.B.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Buescher, Volker; Bugge, L.; Bujor, F.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burke, S.; Busato, E.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Cantero, J.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A.M.; Castaneda Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.C.; Chakraborty, D.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.C.; Charlton, D.G.; Chatterjii, S.C.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T.L.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muino, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, Mark S.; Cooper, B.D.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.C.; Corso-Radu, A.; Cortes-Gonzalez, A.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.C.; Crepe-Renaudin, S.; Cuciuc, C.M.; Cuenca Almenar, C.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P.V.M.; Da Via, C.V.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Davey, W.D.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; De Groot, N.; de Jong, P.; De La Cruz-Burelo, E.; De La Taille, C.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, W.; Denisov, S.P.; Dennis, C.; Derue, F.; Dervan, P.; Desch, K.K.; Deviveiros, P.O.; Dewhurst, A.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Vale, M.A.B.do; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Donega, M.; Donini, J.; Donszelmann, T.; Dopke, J.; Dorfan, D.E.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Dragic, J.D.; Drasal, Z.; Dressnandt, N.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Duehrssen, M.; Duerdoth, I.P.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dueren, M.; Ebenstein, W.L.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, E.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Feligioni, L.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flacher, H.F.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C.M.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Foehlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D.A.; Formica, A.; Forti, A.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.F.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.G.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.G.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.G.; Gayde, J-C.; Gazis, E.N.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Gnanvo, K.G.; Godfrey, J.G.; Godlewski, J.; Goepfert, T.; Goessling, C.; Goettfert, T.; Goggi, V.G.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Goncalo, R.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gorokhov, S.A.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.; Goussiou, A.G.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grafstroem, P.; Grahn, K-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Gratchev, V.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenwood, Z.D.; Gregor, I.M.; Griesmayer, E.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruse, C.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, P.; Guttman, N.G.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haertel, R.; Hajduk, Z.; Hakobyan, H.; Hakobyan, R.H.; Haller, J.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Hart, J.C.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heinemann, B.; Heinemann, F.E.W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R.C.W.; Henke, M.; Henriques Correia, A.M.; Henrot-Versille, S.; Henss, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higon-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hinkelbein, C.; Hirsch, F.; Hobbs, J.; Hod, N.H.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.H.; Holmgren, S.O.; Holy, T.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Houlden, M.A.; Hoummada, A.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P.J.; Huang, G.S.; Huang, J.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.I.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Ishikawa, A.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L.G.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johns, K.A.; Jon-And, K.; Jones, A.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Jorgensen, S.; Jovanovic, P.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz, Muge; Karr, K.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, Thomas H.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocnar, A.; Kodys, P.; Koeneke, K.; Koenig, A.C.; Koenig, S.; Koepke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V.A.; Kortner, O.; Kostyukhin, V.V.; Kotamaki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kovar, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.K.; Krejci, F.; Krepouri, A.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Krstic, J.; Kruchonak, U.; Krueger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.K.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.K.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.K.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, Ekaterina; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lambacher, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.L.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Lazarev, A.B.; Le Bihan, A-C.; Le Dortz, O.; Le Maner, C.; Le Vine, M.; Leahu, M.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Lefevre, R.P.; Legendre, M.; Leger, A.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Liebig, W.; Lifshitz, R.; Liko, D.; Lilley, J.N.; Lim, H.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Liolios, A.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, A.; Litke, A.M.; Liu, C.; Liu, D.L.; Liu, J.L.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopez Mateos, D.; Losada, M.; Losty, M.J.; Lou, X.; Loureiro, K.F.; Lovas, L.; Love, J.; Lowe, A.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maassen, M.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Maettig, P.; Magass, C.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G.M.; Majewski, S.; Makida, Y.; Makovec, N.M.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, Fairouz; Mallik, U.; Malon, D.; Maltezos, S.; Malychev, V.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March Ruiz, L.; Marchand, J.F.; Marchese, F.M.; Marcisovsky, M.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i Garcia, S.; Martin, A.; Martin, A.J.; Martin, B.; Martin, F.F.; Martin, J.P.; Martinez Perez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Maugain, J.M.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mc Kee, S.P.; McCarthy, R.L.; McCormick, C.; McCubbin, N.A.; McFarlane, K.W.; McGarvie, S.; McGlone, H.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Mechnich, J.M.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B.R.; Meng, Z.M.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Micu, L.; Middleton, R.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Miller, R.J.; Mills, B.M.; Mills, C.M.; Milosavljevic, M.; Milstead, D.A.; Mima, S.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.M.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Moeller, V.; Monig, Klaus; Moeser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Moeck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.M.; Moraes, A.; Morais, A.; Morel, J.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morin, J.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.M.; Moszczynski, A.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mueller, J.; Mueller, K.; Mueller, T.A.; Muenstermann, D.M.; Muir, A.M.; Murillo Garcia, R.; Murray, W.J.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Nesterov, S.Y.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Ng, C.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L.J.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; O'Neale, S.W.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Odaka, S.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.O.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.O.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Oye, O.K.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Palla, J.; Pallin, D.; Palma, A.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, W.; Parker, M.A.; Parker, S.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, P.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Pengo, R.; Penwell, J.; Perantoni, M.; Pereira, A.; Perez, K.; Perez Codina, E.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezoa, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pier, S.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Poblaguev, A.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.P.; Polychronakos, V.; Pomarede, D.M.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popescu, R.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Price, M.J.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, Kirill; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Perez Garcia-Estan, M.T.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rajek, S.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redlinger, G.R.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rezaie, E.; Reznicek, P.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R.R.; Risler, C.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Roberts, K.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Rodriguez, D.; Rodriguez, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottlaender, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruehr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumiantsev, V.; Rumyantsev, L.; Rusakovich, N.A.; Rust, D.R.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybin, A.M.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M.A.; Sandaker, H.; Sander, H.G.; Sandhoff, M.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Saraiva, J.G.; Sarangi, T.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schaefer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.; Schamov, A.G.; Schegelsky, V.A.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroers, M.S.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C.; Schumacher, J.; Schumacher, M.; Schumm, B.S.; Schune, Ph.; Schwanenberger, C.S.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.S.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shan, L.; Shank, J.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.S.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silbert, O.; Silva, J.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjolin, J.; Skubic, P.; Skvorodnev, N.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spogli, L.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, H.J.; Stenzel, H.; Stevenson, K.S.; Stewart, G.; Stewart, T.D.; Stockton, M.C.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Sviridov, Yu.M.; Sykora, I.; Sykora, T.; Szczygiel, R.R.; Szymocha, T.; Sanchez, J.; Ta, D.; Taffard, A.T.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Tali, B.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.T.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.T.; Todorova-Nova, S.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsipolitis, G.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tyndel, M.; Typaldos, D.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valkar, S.; Valls Ferrer, J.A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; VanBerg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vassilakopoulos, V.I.; Vassilieva, L.; Vataga, E.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, Andrea; Ventura, D.; Ventura, S.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinogradov, V.B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Toerne, E.; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, J.; Wang, J.C.; Wang, S.M.W.; Ward, C.P.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watts, G.; Watts, S.W.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werthenbach, U.; Wessels, M.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.W.; Winton, L.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S.L.; Wu, X.; Xella, S.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zendler, C.; Zenin, A.V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.A.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zinna, M.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zychacek, V.

    2009-01-01

    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.

  5. Development of a simple detector response function generation program: The CEARDRFs code

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiaxin, E-mail: jwang3@ncsu.edu [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Wang Zhijian; Peeples, Johanna [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Yu Huawei [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); College of Geo-Resources and Information, China University of Petroleum, Qingdao, Shandong 266555 (China); Gardner, Robin P. [Center for Engineering Applications of Radioisotopes (CEAR), Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2012-07-15

    A simple Monte Carlo program named CEARDRFs has been developed to generate very accurate detector response functions (DRFs) for scintillation detectors. It utilizes relatively rigorous gamma-ray transport with simple electron transport, and accounts for two phenomena that have rarely been treated: scintillator non-linearity and the variable flat continuum part of the DRF. It has been proven that these physics and treatments work well for 3 Multiplication-Sign 3 Double-Prime and 6 Multiplication-Sign 6 Double-Prime cylindrical NaI detector in CEAR's previous work. Now this approach has been expanded to cover more scintillation detectors with various common shapes and sizes. Benchmark experiments of 2 Multiplication-Sign 2 Double-Prime cylindrical BGO detector and 2 Multiplication-Sign 4 Multiplication-Sign 16 Double-Prime rectangular NaI detector have been carried out at CEAR with various radiactive sources. The simulation results of CEARDRFs have also been compared with MCNP5 calculations. The benchmark and comparison show that CEARDRFs can generate very accurate DRFs (more accurate than MCNP5) at a very fast speed (hundred times faster than MCNP5). The use of this program can significantly increase the accuracy of applications relying on detector spectroscopy like prompt gamma-ray neutron activation analysis, X-ray fluorescence analysis, oil well logging and homeland security. - Highlights: Black-Right-Pointing-Pointer CEARDRF has been developed to generate detector response functions (DRFs) for scintillation detectors a. Black-Right-Pointing-Pointer Generated DRFs are very accurate. Black-Right-Pointing-Pointer Simulation speed is hundreds of times faster than MCNP5. Black-Right-Pointing-Pointer It utilizes rigorous gamma-ray transport with simple electron transport. Black-Right-Pointing-Pointer It also accounts for scintillator non-linearity and the variable flat continuum part.

  6. Simulating response functions and pulse shape discrimination for organic scintillation detectors with Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Zachary S., E-mail: hartwig@psfc.mit.edu [Department of Nuclear Science and Engineering, MIT, Cambridge MA (United States); Gumplinger, Peter [TRIUMF, Vancouver, BC (Canada)

    2014-02-11

    We present new capabilities of the Geant4 toolkit that enable the precision simulation of organic scintillation detectors within a comprehensive Monte Carlo code for the first time. As of version 10.0-beta, the Geant4 toolkit models the data-driven photon production from any user-defined scintillator, photon transportation through arbitrarily complex detector geometries, and time-resolved photon detection at the light readout device. By fully specifying the optical properties and geometrical configuration of the detector, the user can simulate response functions, photon transit times, and pulse shape discrimination. These capabilities enable detector simulation within a larger experimental environment as well as computationally evaluating novel scintillators, detector geometry, and light readout configurations. We demonstrate agreement of Geant4 with the NRESP7 code and with experiments for the spectroscopy of neutrons and gammas in the ranges 0–20 MeV and 0.511–1.274 MeV, respectively, using EJ301-based organic scintillation detectors. We also show agreement between Geant4 and experimental modeling of the particle-dependent detector pulses that enable simulated pulse shape discrimination. -- Highlights: • New capabilities enable the modeling of organic scintillation detectors in Geant4. • Detector modeling of complex scintillators, geometries, and light readout. • Enables particle- and energy-dependent production of scintillation photons. • Provides ability to generate response functions with precise optical physics. • Provides ability to computationally evaluate pulse shape discrimination.

  7. Conference on physics from large {gamma}-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    The conference on {open_quotes}Physics from Large {gamma}-ray Detector Arrays{close_quotes} is a continuation of the series of conferences that have been organized every two years by the North American Heavy-ion Laboratories. The aim of the conference this year was to encourage discussion of the physics that can be studied with such large arrays. This volume is the collected proceedings from this conference. It discusses properties of nuclear states which can be created in heavy-ion reactions, and which can be observed via such detector systems.

  8. Conference on physics from large γ-ray detector arrays

    International Nuclear Information System (INIS)

    1995-01-01

    The conference on open-quotes Physics from Large γ-ray Detector Arraysclose quotes is a continuation of the series of conferences that have been organized every two years by the North American Heavy-ion Laboratories. The aim of the conference this year was to encourage discussion of the physics that can be studied with such large arrays. This volume is the collected proceedings from this conference. It discusses properties of nuclear states which can be created in heavy-ion reactions, and which can be observed via such detector systems

  9. Responses of diode detectors to radiation beams from teletherapy machines

    International Nuclear Information System (INIS)

    Malinda, Lora; Nasukha

    2003-01-01

    Responses of diode detectors to radiation beams from teletherapy machines. It has been carried out responses to two sets of diode detector by using the beams of teletherapy Co-60 and medical linear accelerator. Each set of consist of 8 diode detectors was irradiated by using gamma beams from teletherapy Co-60 machines and 6 MV and 10 MV foron beams from medical linear accelerator and 6.9.12.16. and 20 MeV electron beams from medical linear accelerator. The detectors were positioned on the phantom circularly and radially and electronic equilibrium condition for all type and energy beams. It was found that every detectors had own individual response and it is not to be uniformity, since the fluctuation in between 16.6 % to 30.9 %. All detectors responses are linear to gamma and foron beams, and also for energy above 6 MeV for electron beams. Nonlinearity response occurs for 6 MeV electron beam, it is probably from the assumption of electronic equilibrium

  10. Modelling physics detectors in a computer aided design system for simulation purposes

    International Nuclear Information System (INIS)

    Ahvenainen, J.; Oksakivi, T.; Vuoskoski, J.

    1995-01-01

    The possibility of transferring physics detector models from computer aided design systems into physics simulation packages like GEANT is receiving increasing attention. The problem of exporting detector models constructed in CAD systems into GEANT is well known. We discuss the problem and describe an application, called DDT, which allows one to design detector models in a CAD system and then transfer the models into GEANT for simulation purposes. (orig.)

  11. Analysis of the TMI-2 source range detector response

    International Nuclear Information System (INIS)

    Carew, J.F.; Diamond, D.J.; Eridon, J.M.

    1980-01-01

    In the first few hours following the TMI-2 accident large variations (factors of 10-100) in the source range (SR) detector response were observed. The purpose of this analysis was to quantify the various effects which could contribute to these large variations. The effects evaluated included the transmission of neutrons and photons from the core to detector and the reduction in the multiplication of the Am-Be startup sources, and subsequent reduction in SR detector response, due to core voiding. A one-dimensional ANISN slab model of the TMI-2 core, core externals, pressure vessel and containment has been constructed for calculation of the SR detector response and is presented

  12. Flat-response x-ray-diode-detector development

    International Nuclear Information System (INIS)

    Tirsell, G.

    1982-10-01

    In this report we discuss the design of an improved sub-nanosecond flat response x-ray diode detector needed for ICF diagnostics. This device consists of a high Z cathode and a complex filter tailored to flatten the response so that the total x-ray energy below 1.5 keV can be measured using a single detector. Three major problems have become evident as a result of our work with the original LLNL design including deviation from flatness due to a peak in the response below 200 eV, saturation at relatively low x-ray fluences, and long term gold cathode instability. We are investigating grazing incidence reflection to reduce the response below 200 eV, new high Z cathode materials for long term stability, and a new complex filter for improved flatness. Better saturation performance will require a modified XRD detector under development with reduced anode to cathode spacing and increased anode bias voltage

  13. Effect of SiO$_{2}$ passivating layer in segmented silicon planar detectors on the detector response

    CERN Document Server

    Verbitskaya, Elena; Eremin, Vladimir; Golubkov, S; Konkov, K; Roe, Shaun; Ruggiero, G; Sidorov, A; Weilhammer, Peter

    2004-01-01

    Silicon detectors with a fine segmentation (micropixel and microstrip) are the main type of detectors used in the inner trackers of LHC experiments. Due to the high luminosity of the LHC machines they are required to have a fast response to fit the short shaping time of 25 ns and to be radiation hard. Evaluation of silicon microstrip detectors developed for the ATLAS silicon tracker and carried out under collaboration of CERN and PTI has shown the reversal of the pulse polarity in the detector response to short- range radiation. Since the negative signal is of about 30% of the normal positive one, the effect strongly reduces the charge collection efficiency in irradiated detectors. The investigation presents the consideration on the origin of a negative response in Si microstrip detectors and the experimental proof of the model. The study of the effect has been carried out using "baby" strip detectors with a special design: each strip has a window in a metallization, which covers the p/sup +/ implant. The sca...

  14. Physics studies with ICARUS and a hybrid ionization and scintillation fiber detector

    International Nuclear Information System (INIS)

    Cline, D.B.

    1992-01-01

    We discuss the physics possibilities for the ICARUS detector currently being tested at CERN. The physics potential goes from a massive proton decay detector to the study of solar neutrinos. In addition, the detection of ν μ → ν τ and ν e → ν τ will be possible with such a detector. One major topic involves the possibility of a complete determination of the MSW solar neutrino parameters with the ICARUS. The possibility of detecting WIMPS with a scintillating fiber liquid Argon (Ar) detector or fiber Xenon (Xe) detector doped with Ar is also described. Some comments on the measurement of the 42 Ar level from an experiment at the Gran Sasso will be made

  15. Study on response function of CdTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunduk; Cho, Gyuseong [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Kang, Bo-Sun [Department of Radiological Science, Catholic University of Daegu, Kyoungsan, Kyoungbuk 712-702 (Korea, Republic of)], E-mail: bskang@cu.ac.kr

    2009-10-21

    So far the origin of the mechanism of light emission in the sonoluminescence has not elucidated whether it is due to blackbody radiation or bremsstrahlung. The final goal of our study is measuring X-ray energy spectrum using high-sensitivity cadmium telluride (CdTe) detector in order to obtain information for understanding sonoluminescence phenomena. However, the scope of this report is the measurement of X-ray spectrum using a high-resolution CdTe detector and determination of CdTe detector response function to obtain the corrected spectrum from measured soft X-ray source spectrum. In general, the measured spectrum was distorted by the characteristics of CdTe detector. Monte Carlo simulation code, MCNP, was used to obtain the reference response function of the CdTe detector. The X-ray spectra of {sup 57}Co, {sup 133}Ba, and {sup 241}Am were obtained by a 4x4x1.0(t) mm{sup 3} CdTe detector at room temperature.

  16. Accurate and independent spectral response scale based on silicon trap detectors and spectrally invariant detectors

    International Nuclear Information System (INIS)

    Gran, Jarle

    2005-01-01

    The study aims to establish an independent high accuracy spectral response scale over a broad spectral range based on standard laboratory equipment at a moderate cost. This had to be done by a primary method, where the responsivity of the detector is linked to fundamental constants. Summary, conclusion and future directions: In this thesis it has been demonstrated that an independent spectral response scale from the visual to the IR based on simple relative measurements can be established. The accuracy obtained by the hybrid self-calibration method demonstrates that state of the art accuracy is obtained with self-calibration principles. A calculable silicon trap detector with low internal losses over a wide spectral range is needed to establish the scale, in addition to a linear, spectrally independent detector with a good signal to noise ratio. By fitting the parameters in the responsivity model to a purely relative measurement we express the spectral response in terms of fundamental constants with a known uncertainty This is therefore a primary method. By applying a digital filter on the relative measurements of the InGaAs detectors in the infrared reduces the standard deviation by 30 %. In addition, by optimising the necessary scaling constant converting the relative calibration to absolute values, we have managed to establish an accurate and cost efficient spectral response scale in the IR. The full covariance analysis, which takes into account the correlation in the absolute values of the silicon detector, the correlation caused by the filter and the scaling constant, shows that the spectral response scale established in the infrared with InGaAs detectors is done with high accuracy. A similar procedure can be used in the UV, though it has not been demonstrated here. In fig. 10 the responsitivities of the detectors (a) and their associated uncertainties (b) at the 1 sigma level of confidence is compared for the three publications. We see that the responsivity

  17. Physics case for a multiparticle detector system

    International Nuclear Information System (INIS)

    Horn, Dag.

    1984-04-01

    This report is an examination of the physics which would be accessible to a large multiparticle detector system when used with heavy ion beams of 10 to 50 MeV/u from the Chalk River Tandem Accelerator Superconducting Cyclotron Complex (TASCC)

  18. FAD: A full-acceptance detector for physics at the SSC

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1993-01-01

    The FAD represents a rather new detector concept which requires bottoms-up thinking in almost all its aspects. The next year should be filled with thinking more about fundamentals of detector design and various novel physics topics, and less about money and politics

  19. Development of GaAs Detectors for Physics at the LHC

    CERN Multimedia

    Chu, Zhonghua; Krais, R; Rente, C; Syben, O; Tenbusch, F; Toporowsky, M; Xiao, Wenjiang; Cavallini, A; Fiori, F; Edwards, M; Geppert, R; Goppert, R; Haberla, C; Hornung, M F; Irsigler, R; Rogalla, M; Beaumont, S; Raine, C; Skillicorn, I; Margelevicius, J; Meshkinis, S; Smetana, S; Jones, B; Santana, J; Sloan, T; Zdansky, K; Alexiev, D; Donnelly, I J; Canali, C; Chiossi, C; Nava, F; Pavan, P; Kubasta, J; Tomiak, Z; Tchmil, V; Tchountonov, A; Tsioupa, I; Dogru, M; Gray, R; Hou, Yuqian; Manolopoulos, S; Walsh, S; Aizenshtadt, G; Budnitsky, D L; Gossen, A; Khludkov, S; Koretskaya, O B; Okaevitch, L; Potapov, A; Stepanov, V E; Tolbanov, O; Tyagev, A; Matulionis, A; Pozela, J; Kavaliauskiene, G; Kazukauskas, V; Kiliulis, R; Rinkevicius, V; Slenys, S; Storasta, J V

    2002-01-01

    % RD-8 Development of GaAs Detectors for Physics at the LHC \\\\ \\\\The aims of the collaboration are to investigate the available material options, performance and limitations of simple pad, pixel and microstrip GaAs detectors for minimum ionising particles with radiation hardness and speed which are competitive with silicon detectors. This new technology was originally developed within our university laboratories but now benefits from increasing industrial interest and collaboration in detector fabrication. Initial steps have also been taken towards the fabrication of GaAs preamplifiers to match the detectors in radiation hardness. The programme of work aims to construct a demonstration detector module for an LHC forward tracker based on GaAs.

  20. Radiation response issues for infrared detectors

    Science.gov (United States)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  1. Technical Note: Response measurement for select radiation detectors in magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M., E-mail: michaelreynolds@ualberta.net [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Rathee, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, Medical Physics Division,University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  2. Transfer of physics detector models into CAD systems using modern techniques

    International Nuclear Information System (INIS)

    Dach, M.; Vuoskoski, J.

    1996-01-01

    Designing high energy physics detectors for future experiments requires sophisticated computer aided design and simulation tools. In order to satisfy the future demands in this domain, modern techniques, methods, and standards have to be applied. We present an interface application, designed and implemented using object-oriented techniques, for the widely used GEANT physics simulation package. It converts GEANT detector models into the future industrial standard, STEP. (orig.)

  3. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    International Nuclear Information System (INIS)

    Calvo, M.; Goupy, J.; D'Addabbo, A.; Benoit, A.; Bourrion, O.; Catalano, A.; Monfardini, A.

    2016-01-01

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  4. Superconducting Kinetic Inductance Detectors for astronomy and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, M., E-mail: martino.calvo@neel.cnrs.fr [Institute Néel, CNRS, Grenoble (France); Goupy, J.; D' Addabbo, A.; Benoit, A. [Institute Néel, CNRS, Grenoble (France); Bourrion, O. [Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Catalano, A. [Institute Néel, CNRS, Grenoble (France); Laboratoire de Physique Subatomique et Cosmologie, CNRS, Grenoble (France); Monfardini, A. [Institute Néel, CNRS, Grenoble (France)

    2016-07-11

    Kinetic Inductance Detectors (KID) represent a novel detector technology based on superconducting resonators. Since their first demonstration in 2003, they have been rapidly developed and are today a strong candidate for present and future experiments in the different bands of the electromagnetic spectrum. This has been possible thanks to the unique features of such devices: in particular, they couple a very high sensitivity to their intrinsic suitability for frequency domain multiplexed readout, making the fabrication of large arrays of ultrasensitive detectors possible. There are many fields of application that can profit of such detectors. Here, we will briefly review the principle of operation of a KID, and give two sample applications, to mm-wave astronomy and to particle physics.

  5. Evaluation of the detector response function digital conventional radiology

    International Nuclear Information System (INIS)

    Arino Gil, A.; Hernandez Rodriguez, J.; Mateos Salvador, P.; Rodriguez Lopez, B.; Font Gelabert, J. C.

    2013-01-01

    The objective of this work is to obtain the response function that relates the air kerma at the entrance of the detector and pixel value, for a series of digital detectors of conventional Radiology model Optimus DigitalDiagnost Philips () and 6000 Definium General Electric. From the set of measurements is obtained a response function for each reference type of detector, and compared with those published in the literature for these teams. (Author)

  6. The PANDA detector and its physics program at FAIR

    International Nuclear Information System (INIS)

    Brinkmann, K.

    2005-01-01

    The PANDA detector will make use of the antiprotons produced in the FAIR complex and stored in the High-Energy Storage Ring HESR for the study of strong interactions in antiproton collisions with protons and heavy targets. The detector features a 4π design for charged particles with a solenoidal magnetic field and full coverage of photons by means of an advanced electromagnetic calorimeter. In addition, a dipole spectrometer will allow high-resolution detection of leading particles characteristic for fixed-target experiments. The physics program of PANDA covers a wide range of topics which address central issues of QCD at low and moderate energies. Spectroscopy of hidden charm in the ccbar level scheme is still a very interesting issue, in particular when states are involved which cannot directly be formed in e + e - reactions. Open charm in the D meson section has recently received renewed interest when states were discovered that are not easily explained in conventional qqbar models. Exotic hadrons and glueballs have been predicted by theory within the energy range covered by PANDA. The search for these and the eventual study of their properties is central to the physics program. Using heavy targets, PANDA intends to study the properties of charm quarks in the hadronic medium. The copious production of baryon-antibaryon pairs at HESR will allow studies using secondary targets for the formation of hypernuclei. Each of these physics topics will be touched while the detector properties needed in order to cover the broad physics program are described. Technical developments and the status of the various detector components will be summarized

  7. Spectral response of multi-element silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  8. Time response measurements of LASL diagnostic detectors

    International Nuclear Information System (INIS)

    Hocker, L.P.

    1970-07-01

    The measurement and data analysis techniques developed under the Los Alamos Scientific Laboratory's detector improvement program were used to characterize the time and frequency response of selected LASL Compton, fluor-photodiode (NPD), and fluor-photomultiplier (NPM) diagnostic detectors. Data acquisition procedures and analysis methods presently in use are summarized, and detector time and frequency data obtained using the EG and G/AEC electron linear accelerator fast pulse (approximately 50 psec FWHM) as the incident radiation driving function are presented. (U.S.)

  9. Position sensitive photon detectors for nuclear physics, particle physics and healthcare applications

    International Nuclear Information System (INIS)

    Seitz, B

    2012-01-01

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particles and their momentum vectors. Imaging Cherenkov counters (RICH and DIRC) are frequently employed in nuclear and particle physics experiments. These detectors require high-rate, single-photon capable light detection system with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of rate dependence, cross-talk, time-resolution and position resolution for a range of available photon detection solutions are presented. These properties make these photon detection systems ideal for radionuclide imaging applications. Cherenkov radiation can also be used for medical imaging applications. Two different applications using the Cherenkov effect for radionuclide imaging will be reviewed.

  10. Fine-scale spatial response of CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Brunett, B.A.; Van Scyoc, J.M.; Hilton, N.R.; Lund, J.C.; James, R.B.; Schlesinger, T.E.

    1998-01-01

    Several studies have suggested that the uniformity of Cadmium Zinc Telluride (CZT) detectors play an important role in their performance when operated as gamma-ray spectrometers. However the detailed gamma response of simple planar detectors as a function of position over the device area is largely unknown. To address this issue the authors have built a system capable of measuring the detector response with a resolution of ∼250 (micro)m. The system consists of a highly collimated (∼200 (micro)m) photon source (<150 kev) scanned over the detector using a computer controlled two-axis translation stage. Fifteen samples configured as planar detectors were examined with the new apparatus. The material grade of the detectors examined varied from counter to select discriminator. Two classes of spatial response variation were observed and are presented here. Infrared (IR) transmission images were also acquired for each sample and correlation between features in the pulse height spectrum and crystalline defects were observed

  11. B-meson factories: Physics, machines and detectors

    International Nuclear Information System (INIS)

    Kolanoski, H.

    1990-10-01

    This report gives a short survey of the present status of B-meson factory plans and discussions at different laboratories. The physics motivation for an e + e - machine running with the highest possible luminosity in the Γ(4S) energy region is outlined emphasizing the possibility to observe CP violation in the B-meson system. The technical concepts for such machines together with the basic luminosity limitations are discussed. Finally, the requirements on a detector which is able to cover the rich physics program are presented. (orig.)

  12. Physics Detector Simulation Facility (PDSF) architecture/utilization

    International Nuclear Information System (INIS)

    Scipioni, B.

    1993-05-01

    The current systems architecture for the SSCL's Physics Detector Simulation Facility (PDSF) is presented. Systems analysis data is presented and discussed. In particular, these data disclose the effectiveness of utilization of the facility for meeting the needs of physics computing, especially as concerns parallel architecture and processing. Detailed design plans for the highly networked, symmetric, parallel, UNIX workstation-based facility are given and discussed in light of the design philosophy. Included are network, CPU, disk, router, concentrator, tape, user and job capacities and throughput

  13. Future Perspectives for the Application of Low Temperature Detectors in Heavy Ion Physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.

    2009-01-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics is given, and the next generation heavy ion facility FAIR is described with a special emphasis on the potential advantage of Low Temperature Detectors (LTDs) for applications in heavy ion physics. For prototype LTDs for the energy sensitive detection of heavy ions excellent results with respect to energy resolution down to δE/E = 1-2x10 -3 for a wide range of incident energies, and with respect to other detector properties, such as energy linearity with no indication of pulse height defects even for the heaviest ions, have been obtained. In addition, prototype detectors for hard X-rays have shown energy resolutions down to δE = 30-40eV at 60 keV. Consequently, both detector schemes have already been successfully used for first experiments. At present, the design and setup of large solid angle detector arrays is in progress. With the already achieved performance, LTDs promise a large potential for applications in atomic and nuclear heavy ion physics. A brief overview of prominent examples, including high-resolution nuclear spectroscopy, nuclear structure studies with radioactive beams, superheavy element research, as well as high-resolution atomic spectroscopy on highly charged ions and tests of QED in strong electromagnetic fields is presented.

  14. Consistent empirical physical formula construction for recoil energy distribution in HPGe detectors by using artificial neural networks

    International Nuclear Information System (INIS)

    Akkoyun, Serkan; Yildiz, Nihat

    2012-01-01

    The gamma-ray tracking technique is a highly efficient detection method in experimental nuclear structure physics. On the basis of this method, two gamma-ray tracking arrays, AGATA in Europe and GRETA in the USA, are currently being tested. The interactions of neutrons in these detectors lead to an unwanted background in the gamma-ray spectra. Thus, the interaction points of neutrons in these detectors have to be determined in the gamma-ray tracking process in order to improve photo-peak efficiencies and peak-to-total ratios of the gamma-ray peaks. In this paper, the recoil energy distributions of germanium nuclei due to inelastic scatterings of 1–5 MeV neutrons were first obtained by simulation experiments. Secondly, as a novel approach, for these highly nonlinear detector responses of recoiling germanium nuclei, consistent empirical physical formulas (EPFs) were constructed by appropriate feedforward neural networks (LFNNs). The LFNN-EPFs are of explicit mathematical functional form. Therefore, the LFNN-EPFs can be used to derive further physical functions which could be potentially relevant for the determination of neutron interactions in gamma-ray tracking process.

  15. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  16. 2-D response mapping of multi-linear silicon drift detectors

    International Nuclear Information System (INIS)

    Castoldi, A.; Guazzoni, C.; Hartmann, R.; Mezza, D.; Strueder, L.; Tassan Garofolo, F.

    2010-01-01

    Multi-linear silicon drift detectors (MLSDDs) are good candidates to fulfill simultaneous requirements for 2-D position-sensing and spectroscopy applications. The optimization of their design and performance as 2-D imagers requires a detailed study of timing properties of the charge cloud in the MLSDD architecture. In particular it is important to experimentally determine the dependence of the measured amplitude and time-of-arrival on the photon position of interaction so as to derive the 2D detector response. In this paper we will present a detailed experimental characterization aimed at measuring the detector amplitude response and its timing response. The dependence of charge cloud drift time on precise position of interaction has been measured as a function of detector biasing conditions.

  17. Response function of a p type - HPGe detector

    International Nuclear Information System (INIS)

    Lopez-Pino, Neivy; Cabral, Fatima Padilla; D'Alessandro, Katia; Maidana, Nora Lia; Vanin, Vito Roberto

    2011-01-01

    The response function of a HPGe detector depends on Ge crystal dimensions and dead layers thicknesses; most of them are not given by the manufacturers or change with detector damage from neutrons or contact with the atmosphere and therefore must be experimentally determined. The response function is obtained by a Monte-Carlo simulation procedure based on the Ge crystal characteristics. In this work, a p-type coaxial HPGe detector with 30% efficiency, manufactured in 1989, was investigated. The crystal radius and length and the inner hole dimensions were obtained scanning the capsule both in the radial and axial directions using 4 mm collimated beams from 137 Cs, 207 Bi point sources placed on a x-y table in steps of 2,00 mm. These dimensions were estimated comparing the experimental peak areas with those obtained by simulation using several hole configurations. In a similar procedure, the frontal dead layer thickness was determined using 2 mm collimated beams of the 59 keV gamma-rays from 241 Am and 81 keV from 133 Ba sources hitting the detector at 90 deg and 45 deg with respect to the capsule surface. The Monte Carlo detector model included, besides the crystal, hole and capsules sizes, the Ge dead-layers. The obtained spectra were folded with a gaussian resolution function to account for electronic noise. The comparison of simulated and experimental response functions for 4 mm collimated beams of 60 Co, 137 Cs, and 207 Bi points sources placed at distances of 7, 11 and 17 cm from the detector end cap showed relative deviations of about 10% in general and below 10% in the peak. The frontal dead layer thickness determined by our procedure was different from that specified by the detector manufacturer. (author)

  18. B-physics performance with Initial and Complete Inner detector layouts in Data Challenge-1

    CERN Document Server

    Benekos, N C; Bouhova-Thacker, E; Epp, B; Ghete, V M; Jones, R; Kartvelishvili, V G; Lagouri, T; Laporte, J F; Nairz, A; Nikitine, N; Reznicek, P; Sivoklokov, S Yu; Smizanska, M; Testa, M; Toms, K

    2004-01-01

    The B-physics performance for the Initial and the Complete Inner Detector layouts is presented. Selected types of B-physics events were simulated, reconstructed and analyzed using the software tools of ATLAS Data Challenge-1 (DC1). The results were compared to those obtained with an older ATLAS detector design the so-called TDR layout. Within the limitations of the DC1 software tools an attempt was made to evaluate the performance loss due to missing detector parts in the Initial layout in comparison with the Complete detector.

  19. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, A.R. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)], E-mail: a.r.cowen@leeds.ac.uk; Kengyelics, S.M.; Davies, A.G. [LXi Research, Academic Unit of Medical Physics, University of Leeds, West Yorkshire (United Kingdom)

    2008-05-15

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H.

  20. SU-8 as a Material for Microfabricated Particle Physics Detectors

    CERN Document Server

    Maoddi, Pietro; Jiguet, Sebastien; Renaud, Philippe

    2014-01-01

    Several recent detector te chnologies developed for particle physics applications are based on microfabricated structures. Dete ctors built with this approach generally exhibit the overall best performance in te rms of spatial and time resolution. Many properties of the SU-8 photoepoxy make it suitable for the manufacturing of microstructured particle detectors. This arti cle aims to review some emerging detector technologies making use of SU-8 microstructu ring, namely micropatte rn gaseous detectors and microfluidic scintillation detectors. Th e general working principle and main process steps for the fabrication of each device are reported, with a focus on the advantages brought to the device functionality by the us e of SU-8. A novel process based on multiple bonding steps for the fabrication of thin multila yer microfluidic scin tillation detectors developed by the authors is presented. Finally, a brief overview of the applications for the discussed devices is given.

  1. On-power verification of the dynamic response of self-powered in-core detectors

    International Nuclear Information System (INIS)

    Serdula, K.; Beaudet, M.

    1996-01-01

    Self-powered in-core detectors are used for on-line safety and regulation purposes in CANDU reactors. Such applications require use of detectors whose response is primarily prompt to changes in flux. In-service verification of the detectors' response is required to ensure significant degradation in performance has not occurred during long-term operation. Changes in the detector characteristics occur due to nuclear interactions and failures. Present verification requires significant station resources and disrupts power production. Use of the 'noise' in the detector signal is being investigated as an alternative to assess the dynamic response of the detectors during long-term operation. Measurements of reference 'signatures' were obtained from replacement shutdown system detectors. Results show 'noise' measurements are a promising alternative to the current verification method. Identification of changes in the detector response function assist in accurate diagnosis and prognosis of changes in detector signals due to process changes. (author)

  2. Development of triple GEM detector for a heavy ion physics experiment

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Biswal, K.; Gupta, R.

    2015-01-01

    Building and testing of micro-pattern gas detector such as Gas Electron Multiplier (GEM) for several upcoming High-Energy Physics (HEP) experiment projects, is an advance area of research in the field of detector development. We have carried out the long-term stability test and the uniformity of the relative gain over a GEM detector. The method of long-term test and uniformity of the relative gain and the results are presented in this article

  3. Physics with the collider detectors at RHIC and the LHC

    International Nuclear Information System (INIS)

    Thomas, J.; Hallman, T.

    1995-01-01

    On January 8, 1995, over 180 participants gathered to hear the QM95 preconference workshop on 'Physics with the Collider Detectors at RHIC and the LHC'. The goal was to bring together the experimentalists from a wide community of hadron and heavy ion collider detector collaborations. The speakers were encouraged to present the current status of their detectors, with all the blemishes, and the audience was encouraged to share their successes and failures in approaching similar detector design issues. The presentations were excellent and the discussions were lively and stimulating. The editors hope that the reader will find these proceedings to be equally stimulating. Separate abstracts have been submitted to the energy database from articles in this report

  4. Physics with the collider detectors at RHIC and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.; Hallman, T. [eds.

    1995-07-15

    On January 8, 1995, over 180 participants gathered to hear the QM95 preconference workshop on `Physics with the Collider Detectors at RHIC and the LHC`. The goal was to bring together the experimentalists from a wide community of hadron and heavy ion collider detector collaborations. The speakers were encouraged to present the current status of their detectors, with all the blemishes, and the audience was encouraged to share their successes and failures in approaching similar detector design issues. The presentations were excellent and the discussions were lively and stimulating. The editors hope that the reader will find these proceedings to be equally stimulating. Separate abstracts have been submitted to the energy database from articles in this report.

  5. Responses and mechanisms of positive electron affinity molecules in the N2 mode of the thermionic ionization detector and the electron-capture detector

    International Nuclear Information System (INIS)

    Jones, C.S.

    1989-01-01

    Very little knowledge has been acquired in the past on the mechanistic pathway by which molecules respond in the N 2 mode of the thermionic ionization detector. An attempt is made here to elucidate the response mechanism of the detector. The basic response mechanisms are known for the electron capture detector, and an attempt is made to identify the certain mechanism by which selected molecules respond. The resonance electron capture rate constant has been believed to be temperature independent, and investigations of the temperature dependence of electron capture responses are presented. Mechanisms for the N 2 mode of the thermionic ionization detector have been proposed by examining the detector response to positive electron affinity molecules and by measurement of the ions produced by the detector. Electron capture mechanisms for selected molecules have been proposed by examining their temperature dependent responses in the electron capture detector and negative ion mass spectra of the samples. In studies of the resonance electron capture rate constant, the relative responses of selected positive electron affinity molecules and their temperature dependent responses were investigated. Positive electron affinity did not guarantee large responses in the N 2 mode thermionic ionization detector. High mass ions were measured following ionization of samples in the detector. Responses in the electron capture detector varied with temperature and electron affinity

  6. CVD diamond based soft X-ray detector with fast response

    International Nuclear Information System (INIS)

    Li Fang; Hou Lifei; Su Chunxiao; Yang Guohong; Liu Shenye

    2010-01-01

    A soft X-ray detector has been made with high quality chemical vapor deposited (CVD) diamond and the electrical structure of micro-strip. Through the measurement of response time on a laser with the pulse width of 10 ps, the full width at half maximum of the data got in the oscilloscope was 115 ps. The rise time of the CVD diamond detector was calculated to be 49 ps. In the experiment on the laser prototype facility, the signal got by the CVD diamond detector was compared with that got by a soft X-ray spectrometer. Both signals coincided well. The detector is proved to be a kind of reliable soft X-ray detector with fast response and high signal-to-noise ratio. (authors)

  7. Silicon Drift Detector response function for PIXE spectra fitting

    Science.gov (United States)

    Calzolai, G.; Tapinassi, S.; Chiari, M.; Giannoni, M.; Nava, S.; Pazzi, G.; Lucarelli, F.

    2018-02-01

    The correct determination of the X-ray peak areas in PIXE spectra by fitting with a computer program depends crucially on accurate parameterization of the detector peak response function. In the Guelph PIXE software package, GUPIXWin, one of the most used PIXE spectra analysis code, the response of a semiconductor detector to monochromatic X-ray radiation is described by a linear combination of several analytical functions: a Gaussian profile for the X-ray line itself, and additional tail contributions (exponential tails and step functions) on the low-energy side of the X-ray line to describe incomplete charge collection effects. The literature on the spectral response of silicon X-ray detectors for PIXE applications is rather scarce, in particular data for Silicon Drift Detectors (SDD) and for a large range of X-ray energies are missing. Using a set of analytical functions, the SDD response functions were satisfactorily reproduced for the X-ray energy range 1-15 keV. The behaviour of the parameters involved in the SDD tailing functions with X-ray energy is described by simple polynomial functions, which permit an easy implementation in PIXE spectra fitting codes.

  8. Characterizing the response of a scintillator-based detector to single electrons

    International Nuclear Information System (INIS)

    Sang, Xiahan; LeBeau, James M.

    2016-01-01

    Here we report the response of a high angle annular dark field scintillator-based detector to single electrons. We demonstrate that care must be taken when determining the single electron intensity as significant discrepancies can occur when quantifying STEM images with different methods. To account for the detector response, we first image the detector using very low beam currents (∼8 fA), and subsequently model the interval between consecutive single electrons events. We find that single electrons striking the detector present a wide distribution of intensities, which we show is not described by a simple function. Further, we present a method to accurately account for the electrons within the incident probe when conducting quantitative imaging. The role detector settings play on determining the single electron intensity is also explored. Finally, we extend our analysis to describe the response of the detector to multiple electron events within the dwell interval of each pixel. - Highlights: • We show that the statistical description of single electron response of scintillator based detectors can be measured using a combination of small beam currents and short dwell times. • The average intensity from the probability distribution function can be used to normalize STEM images regardless of beam current and contrast settings. • We obtain consistent QSTEM normalization results from the single electron method and the conventional detector scan method.

  9. Measurement and deconvolution of detector response time for short HPM pulses: Part 1, Microwave diodes

    International Nuclear Information System (INIS)

    Bolton, P.R.

    1987-06-01

    A technique is described for measuring and deconvolving response times of microwave diode detection systems in order to generate corrected input signals typical of an infinite detection rate. The method has been applied to cases of 2.86 GHz ultra-short HPM pulse detection where pulse rise time is comparable to that of the detector; whereas, the duration of a few nanoseconds is significantly longer. Results are specified in terms of the enhancement of equivalent deconvolved input voltages for given observed voltages. The convolution integral imposes the constraint of linear detector response to input power levels. This is physically equivalent to the conservation of integrated pulse energy in the deconvolution process. The applicable dynamic range of a microwave diode is therefore limited to a smaller signal region as determined by its calibration

  10. Response of resonant gravitational wave detectors to damped sinusoid signals

    International Nuclear Information System (INIS)

    Pai, A; Celsi, C; Pallottino, G V; D'Antonio, S; Astone, P

    2007-01-01

    Till date, the search for burst signals with resonant gravitational wave (GW) detectors has been done using the δ-function approximation for the signal, which was reasonable due to the very small bandwidth of these detectors. However, now with increased bandwidth (of the order of 10 or more Hz) and with the possibility of comparing results with interferometric GW detectors (broad-band), it is very important to exploit the resonant detectors' capability to detect also signals with specific wave shapes. As a first step, we present a study of the response of resonant GW detectors to damped sinusoids with given frequency and decay time and report on the development of a filter matched to these signals. This study is a preliminary step towards the comprehension of the detector response and of the filtering for signals such as the excitation of stellar quasi-normal modes

  11. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  12. Heavy Ion Physics Prospects with the ATLAS Detector at the LHC

    CERN Document Server

    Grau, N

    2008-01-01

    The next great energy frontier in Relativistic Heavy Ion Collisions is quickly approaching with the completion of the Large Hadron Collider and the ATLAS experiment is poised to make important contributions in understanding QCD matter at extreme conditions. While designed for high-pT measurements in high-energy p+p collisions, the detector is well suited to study many aspects of heavy ion collisions from bulk phenomena to high-pT and heavy flavor physics. With its large and finely segmented electromagnetic and hadronic calorimeters, the ATLAS detector excels in measurements of photons and jets, observables of great interest at the LHC. In this talk, we highlight the performance of the ATLAS detector for Pb+Pb collisions at the LHC with special emphasis on a key feature of the ATLAS physics program: jet and direct photon measurements.

  13. Superheated superconducting granules: a detector for particle physics and astrophysics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1987-01-01

    A general introduction to superheated superconducting granules (SSG) detectors is given and some recent results on their basic properties are presented. Granules recently made by industrial producers exhibit good metastability properties and show sensitivity, better than naively expected, to photons and ionizing particles. The behaviour of SSG detectors at very low temperatures is also discussed. We finally sketch a critical review of proposed applications to the cross-disciplinary frontier between particle physics and astrophysics

  14. Developments in Silicon Detectors and their impact on LHCb Physics Measurements

    CERN Document Server

    Gouldwell-Bates, A

    2005-01-01

    The LHCb experiment is a high energy physics detector at the Large Hadron Collider (LHC) which will probe the current understanding of the Standard Model through precise measurements of CP violation and rare decays. The LHCb detector heavily depends on the silicon vertexing (VELO) sub-detector for excellent vertex and proper decay time resolutions. The VELO detector sits at a position of only 7 mm from the LHC proton beams. However, the proximity of the silicon sensors to the proton beams results in the detectors suffering radiation damage. Radiation damage results in three changes in the macroscopic properties of the silicon detector: an increase of the leakage current, a decrease in the charge collection efficiency, and changes in the operation voltage required to fully deplete the silicon detector of the free charge carriers. Due to this radiation damage, it is expected that a replacement or upgrade of the LHCb vertex detector will be required by 2010, only 3 years after the turn-on of the LHC. This thesis...

  15. Machine implications for detectors and physics

    International Nuclear Information System (INIS)

    Tauchi, Toshiaki

    2001-01-01

    Future linear colliders are very different at many aspects because of low repetition rate (5∼200 Hz) and high accelerating gradient (22∼150 MeV/m). For high luminosity, the beam sizes must be squeezed in extremely small region at interaction point (IP). We briefly describe new phenomena at the IP, i.e. beamstrahlung process, creations of e + e - pairs and minijets. We also report machine implications related to the energy spread, beamstrahlung, bunch-train structure, beam polarizations and backgrounds for detectors and physics

  16. Calculation and applications of the frequency dependent neutron detector response functions

    International Nuclear Information System (INIS)

    Van Dam, H.; Van Hagen, T.H.J.J. der; Hoogenboom, J.E.; Keijzer, J.

    1994-01-01

    The theoretical basis is presented for the evaluation of the frequency dependent function that enables to calculate the response of a neutron detector to parametric fluctuations ('noise') or oscillations in reactor core. This function describes the 'field view' of a detector and can be calculated with a static transport code under certain conditions which are discussed. Two applications are presented: the response of an ex-core detector to void fraction fluctuations in a BWR and of both in and ex-core detectors to a rotating neutron absorber near or inside a research reactor core. (authors). 7 refs., 4 figs

  17. The desktop muon detector: A simple, physics-motivated machine- and electronics-shop project for university students

    Science.gov (United States)

    Axani, S. N.; Conrad, J. M.; Kirby, C.

    2017-12-01

    This paper describes the construction of a desktop muon detector, an undergraduate-level physics project that develops machine-shop and electronics-shop technical skills. The desktop muon detector is a self-contained apparatus that employs a plastic scintillator as the detection medium and a silicon photomultiplier for light collection. This detector can be battery powered and is used in conjunction with the provided software. The total cost per detector is approximately 100. We describe physics experiments we have performed, and then suggest several other interesting measurements that are possible, with one or more desktop muon detectors.

  18. Detectors and signal processing for high-energy physics

    International Nuclear Information System (INIS)

    Rehak, P.

    1981-01-01

    Basic principles of the particle detection and signal processing for high-energy physics experiments are presented. It is shown that the optimum performance of a properly designed detector system is not limited by incidental imperfections, but solely by more fundamental limitations imposed by the quantum nature and statistical behavior of matter. The noise sources connected with the detection and signal processing are studied. The concepts of optimal filtering and optimal detector/amplifying device matching are introduced. Signal processing for a liquid argon calorimeter is analyzed in some detail. The position detection in gas counters is studied. Resolution in drift chambers for the drift coordinate measurement as well as the second coordinate measurement is discussed

  19. Future high energy physics experiments using RICH detectors: The next generation

    International Nuclear Information System (INIS)

    Ratcliff, B.N.

    1995-08-01

    This report describes some features of the new detectors now being constructed for use in high energy physics experiments that utilize RICH counters as a central element. The scope of this discussion is limited only to experiments which have been formally approved for construction as follows: (1) BaBar at PEP-II, which contains a quartz radiator DIRC counter; (2) CLEO III at the CESR upgrade, which utilizes a LiF/TEA Fast RICH; and (3) HERA-B at HERA, which uses a gas radiator RICH with either a TMAE- or a CsI-based photon detector. These experiments have much in common; all emphasize B-physics, run at the luminosity frontier, and plan to take first data either in 1998 or 1999. This review begins with a discussion of the physics goals and experimental context, and then explore the designs which have been chosen to confront the experimental issues. Particular emphasis is placed on the design and expected performance of the RICH detectors in these systems. Due to space limitations, only a few of the recent R and D results not covered elsewhere at the conference can be presented

  20. Instrumentation for Applied Physics and Industrial Applications: Applications of Detectors in Technology, Medicine and Other Fields

    CERN Document Server

    Hillemanns, H

    2011-01-01

    Instrumentation for Applied Physics and Industrial Applications in 'Applications of Detectors in Technology, Medicine and Other Fields', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B2: Detectors for Particles and Radiation. Part 2: Systems and Applications'. This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.3 Instrumentation for Applied Physics and Industrial Applications' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content: 7.3 Instrumentation for Applied Physics and Industrial Applications 7.3.1 Applications of HEP Detectors 7.3.2 Fast Micro- and Nanoelectronics for Particle Detector Readout 7.3.2.1 Fast Counting Mode Front End Electronics 7.3.2.2 NINO,...

  1. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    How is the anticipated physics program of a future e+e- collider shaping the R&D for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  2. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  3. Response of Superheated Droplet Detector (SDD) and Bubble Detector (BD) to interrupted irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Prasanna Kumar, E-mail: prasanna_ind_82@yahoo.com; Sarkar, Rupa, E-mail: sarkar_rupa2003@yahoo.com; Chatterjee, Barun Kumar, E-mail: barun_k_chatterjee@yahoo.com

    2017-06-11

    Superheated droplet detectors (SDD) and bubble detectors (BD) are suspensions of micron-sized superheated liquid droplets in inert medium. The metastable droplets can vaporise upon interaction with ionising radiation generating visible bubbles. In this work, we investigated the response of SDD and BD to interrupted neutron irradiations. We observed that the droplet vaporisation rates for SDD and BD are different in nature. The unusual increase in droplet vaporisation rate observed when the SDD is exposed to neutrons after few minutes of radiation-off period is absent for BD. - Highlights: • Superheated droplet detectors (SDD) and bubble detectors (BD) are suspensions of superheated liquid droplets in inert medium. • The bubble nucleation in superheated droplets can be induced by ionising radiation. • The droplet vaporisation rate for SDD is non-monotonic when it is irradiated periodically to neutrons. • For BD the droplet vaporisation rate decrease monotonically when it is irradiated periodically to neutrons.

  4. Comparison of forward collider vertex detectors for B physics at hadron accelerators

    International Nuclear Information System (INIS)

    Harr, R.F.; Karchin, P.E.; Kennedy, C.J.

    1993-01-01

    Two silicon vertex detector designs have been proposed for a forward collider B physics experiment at the SSC: in one the silicon system is put outside the beampipe (like in the forward part of the proposed BCD detector); and in the other the silicon system is put inside the beampipe, close to the circulating beams, with the use of open-quote roman pots close-quote (as in the COBEX proposal). In what follows these will be referred to as the inside and outside designs. The two designs are significantly different in their construction and impact on the rest of the experiment. The authors would like to understand how the designs compare for doing B physics and what are the factors that most greatly influence the results. Two measurements relying on the vertex detector and of particular importance for B physics are the reconstructed vertex position and B mass. They have analyzed the resolution achievable in these 2 quantities for open-quote models close-quote of the two forward collider vertex detector designs. The design parameters - beampipe radius and thickness, silicon position and resolution, etc. - have been varied about their normal values to observe their effect on these resolutions. They find very little difference between the two designs; both give nearly the same decay length error, impact parameter error, and reconstructed B mass error, for a large range of geometrical parameters. The design parameter having the most significant impact on the errors of B decay vertices is found to be the point resolution of the silicon detectors

  5. The heavy-ion physics programme with the ATLAS detector

    International Nuclear Information System (INIS)

    Rosselet, L

    2008-01-01

    The CERN LHC will collide lead ions at s√ = 5.5 TeV per nucleon pair and will provide crucial information about the formation of a quark-gluon plasma at the highest temperatures and densities ever created in the laboratory. We report on an updated evaluation of the ATLAS potential to study heavy-ion physics. The ATLAS detector will perform especially well for high pT phenomena even in the presence of the high-multiplicity soft background expected from lead-lead collisions, and most of the detector subsystems retain their nearly full capability. ATLAS will study a full range of observables which characterize the hot and dense medium formed in heavy-ion collisions. In addition to global measurements such as particle multiplicities and collective flow, heavy-quarkonia suppression, jet quenching and the modification of jets passing in the dense medium will be accessible. ATLAS will also study forward physics and ultraperipheral collisions using Zero Degree Calorimeters

  6. Charge distribution and response time for a modulation-doped extrinsic infrared detector

    Science.gov (United States)

    Hadek, Victor

    1987-01-01

    The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.

  7. Investigation of the response of improved self-powered neutron detectors

    International Nuclear Information System (INIS)

    Erk, S.

    1982-01-01

    The self-powered neutron detectors have been successfully employed for the most important parameters both for neutron flux and flux fluence determination. Their preference for such measurements due to their simplicity, convenience in use, rigidity, voluminal smallness and low price. However, self-powered neutron detectors depend on the type used, can only follow the neutron flux changes with a certain delay when they are compared to fission chambers which are thought to be the best detectors. In this thesis, a system has been proposed and considered carefully in order to speed up the response time, in another word, to correct the detector response to a level very near to fission chamber performance, a circuitry has been realized in the frame of principles so forth and applied to the experiments carried out in the TR-1 Reactor. Their positive results are presented. (author)

  8. Physics validation of detector simulation tools for LHC

    International Nuclear Information System (INIS)

    Beringer, J.

    2004-01-01

    Extensive studies aimed at validating the physics processes built into the detector simulation tools Geant4 and Fluka are in progress within all Large Hardon Collider (LHC) experiments, within the collaborations developing these tools, and within the LHC Computing Grid (LCG) Simulation Physics Validation Project, which has become the primary forum for these activities. This work includes detailed comparisons with test beam data, as well as benchmark studies of simple geometries and materials with single incident particles of various energies for which experimental data is available. We give an overview of these validation activities with emphasis on the latest results

  9. Physics Perspectives for a Future Circular Collider: FCC-hh - Accelerator & Detectors

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The lectures will briefly discuss the parameters of a Future Circular Collider, before addressing in detail the physics perspectives and the challenges for the experiments and detector systems. The main focus will be on ee and pp collisions, but opportunities for e—p physics will also be covered. The FCC physics perspectives will be presented with reference to the ongoing LHC programme, including the physics potential from future upgrades to the LHC in luminosity and possibly energy.

  10. Research on influence of energy spectrum response of ICT detector arrays

    International Nuclear Information System (INIS)

    Zhou Rifeng; Gao Fuqiang; Zhang Ping

    2008-01-01

    The energy spectrum response is important characteristic for X-ray ICT detector. But there exist many difficulties to measure these parameters by experiments. The energy spectrum response of CdWO 4 detector was simulated by using the EGSnrc code. Meanwhile the effect of detection efficiency was analyzed by the distribution of accelerator bremsstrahlung spectra and the X-ray spectrum hardening, and some theoretic parameters were offered for the consistent and no-linearity correction of detector arrays. It was applied to ICT image correction, and a satisfying result was obtained. (authors)

  11. Photoconductive Detectors with Fast Temporal Response for Laser Produced Plasma Experiments

    International Nuclear Information System (INIS)

    M. J. May; C. Halvorson; T. Perry; F. Weber; P. Young; C. Silbernagel

    2008-01-01

    Processes during laser plasma experiments typically have time scales that are less than 100 ps. The measurement of these processes requires X-ray detectors with fast temporal resolution. We have measured the temporal responses and linearity of several different X-ray sensitive Photoconductive Detectors (PCDs). The active elements of the detectors investigated include both diamond (natural and synthetic) and GaAs crystals. The typical time responses of the GaAs PCDs are approximately 60 ps, respectively. Some characterizations using X-ray light from a synchrotron light source are presented

  12. Calculation of Excore Detector Responses upon Control Rods Movement in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Pham Nhu Viet; Lee, Min Jae; Kang, Chang Moo; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The Prototype Generation-IV Sodium-cooled Fast Reactor (PGSFR) safety design concept, which aims at achieving IAEA's safety objectives and GIF's safety goals for Generation-IV reactor systems, is mainly focused on the defense in depth for accident detection, prevention, control, mitigation and termination. In practice, excore neutron detectors are widely used to determine the spatial power distribution and power level in a nuclear reactor core. Based on the excore detector signals, the reactor control and protection systems infer the corresponding core power and then provide appropriate actions for safe and reliable reactor operation. To this end, robust reactor power monitoring, control and core protection systems are indispensable to prevent accidents and reduce its detrimental effect should one occur. To design such power monitoring and control systems, numerical investigation of excore neutron detector responses upon various changes in the core power level/distribution and reactor conditions is required in advance. In this study, numerical analysis of excore neutron detector responses (DRs) upon control rods (CRs) movement in PGSFR was carried out. The objective is to examine the sensitivity of excore neutron detectors to the core power change induced by moving CRs and thereby recommend appropriate locations to locate excore neutron detectors for the designing process of the PGSFR power monitoring systems. Section 2 describes the PGSFR core model and calculation method as well as the numerical results for the excore detector spatial weighting functions, core power changes and detector responses upon various scenarios of moving CRs in PGSFR. The top detector is conservatively safe because it overestimated the core power level. However, the lower and bottom detectors still functioned well in this case because they exhibited a minor underestimation of core power of less than ∼0.5%. As a secondary CR was dropped into the core, the lower detector was

  13. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report

    International Nuclear Information System (INIS)

    Varner, R.L.; Blankenship, J.L.; Beene, J.R.; Todd, R.A.

    1998-02-01

    Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF 2 ) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF 2 detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented

  14. Performance studies of the P barANDA planar GEM-tracking detector in physics simulations

    Science.gov (United States)

    Divani Veis, Nazila; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Takehiko R.; Voss, Bernd; ̅PANDA Gem-Tracker Subgroup

    2018-03-01

    The P barANDA experiment will be installed at the future facility for antiproton and ion research (FAIR) in Darmstadt, Germany, to study events from the annihilation of protons and antiprotons. The P barANDA detectors can cover a wide physics program about baryon spectroscopy and nucleon structure as well as the study of hadrons and hypernuclear physics including the study of excited hyperon states. One very specific feature of most hyperon ground states is the long decay length of several centimeters in the forward direction. The central tracking detectors of the P barANDA setup are not sufficiently optimized for these long decay lengths. Therefore, using a set of the planar GEM-tracking detectors in the forward region of interest can improve the results in the hyperon physics-benchmark channel. The current conceptual designed P barANDA GEM-tracking stations contribute the measurement of the particles emitted in the polar angles between about 2 to 22 degrees. For this designed detector performance and acceptance, studies have been performed using one of the important hyperonic decay channel p bar p → Λ bar Λ → p bar pπ+π- in physics simulations. The simulations were carried out using the PandaRoot software packages based on the FairRoot framework.

  15. Heavy Ion Physics with the ATLAS Detector

    CERN Multimedia

    Takai, H

    2003-01-01

    I guess the first thing that comes to people's mind is why is an experiment such as ATLAS interested in heavy ion physics. What is heavy ion physics anyway? The term heavy ion physics refers to the study of collisions between large nuclei such as lead, atomic number 208. But why would someone collide something as large and extensive as lead nuclei? When two nuclei collide there is a unique opportunity to study QCD at extreme energy densities. This said why do we think ATLAS is a good detector to study this particular physics? Among many of the simultaneous collisions that takes place when two nuclei encouter, hard scattering takes place. The unique situation now is that before hadronization partons from hard scattering may feel the surrounding media serving as an ideal probe for the matter formed in these collisions. As a consequence of this, jets may be quenched and their properties, e.g. fragmentation function or cone radius, modified when compared to proton-proton collisions. This is precisely where ATL...

  16. SU-F-T-490: Separating Effects Influencing Detector Response in Small MV Photon Fields

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, S; Sauer, O [University of Wuerzburg, Wuerzburg (Germany)

    2016-06-15

    Purpose: Different detector properties influence their responses especially in field sizes below the lateral electron range. Due to the finite active volume, the detector density and electron perturbation at other structural parts, the response factor is in general field size dependent. We aimed to visualize and separate the main effects contributing to detector behavior for a variety of detector types. This was achieved in an experimental setup, shielding the field center. Thus, effects caused by scattered radiation could be examined separately. Methods: Signal ratios for field sizes down to 8 mm (SSD 90 cm, water depth 10 cm) of a 6MV beam from a Siemens Primus LINAC were recorded with several detectors: PTW microDiamond and PinPoint ionization chamber, shielded diodes (PTW P-60008, IBA PFD and SNC Edge) and unshielded diodes (PTW E-60012 and IBA SFD). Measurements were carried out in open fields and with an aluminum pole of 4 mm diameter as a central block. The geometric volume effect was calculated from profiles obtained with Gafchromic EBT3 film, evaluated using FilmQA Pro software (Ashland, USA). Results: Volume corrections were 1.7% at maximum. After correction, in small open fields, unshielded diodes showed a lower response than the diamond, i.e. diamond detector over-response seems to be higher than that for unshielded diodes. Beneath the block, this behavior was amplified by a factor of 2. For the shielded diodes, the overresponse for small open fields could be confirmed. However their lateral response behavior was strongly type dependent, e.g. the signal ratio dropped from 1.02 to 0.98 for the P-60008 diode. Conclusion: The lateral detector response was experimentally examined. Detector volume and density alone do not fully account for the field size dependence of detector response. Detector construction details play a major role, especially for shielded diodes.

  17. The effects of sunlight exposure on the neutron response of CN-85 track detector

    International Nuclear Information System (INIS)

    Ahmad, N.; Mirza, N.M.; Mirza, S.K.; Tufail, M.

    1996-01-01

    The effect of sunlight exposure on the neutron response of CN-85 track detectors has been studied. It has been observed that the response during the first 28 days of sunlight exposure is slightly enhanced (10%) and then deceases continuously with increase in the sunlight exposure. After 84 days of sunlight exposure the response of the exposed detector relative to an unexposed detector is only 22%. It is also observed that the response can not be maintained by wrapping the CN-85 etch track detectors in typewriter black carbon papers if they are exposed to sunlight. (author)

  18. The performance of the ATLAS initial detector layout for B-physics channels

    International Nuclear Information System (INIS)

    Epp, B.; Ghete, V.M.; Kuhn, D.; Zhang, Y.J.

    2004-01-01

    At the start-up of LHC one expects parts of the ATLAS detector to be missing. This layout is called initial layout, whereas the fully staged detector is called complete layout. B-physics channels were simulated, reconstructed and analyzed using the software tools of ATLAS data challenge-1 (DC1). The performance of the detector with respect to quantities relevant to the analysis of the B s → D s π channel and the validation of the full chain generation-simulation-reconstruction-analysis were evaluated for the initial and complete layout. (author)

  19. Photon response of silicon diode neutron detectors

    International Nuclear Information System (INIS)

    McCall, R.C.; Jenkins, T.M.; Oliver, G.D. Jr.

    1976-07-01

    The photon response of silicon diode neutron detectors was studied to solve the problem on detecting neutrons in the presence of high energy photons at accelerator neutron sources. For the experiment Si diodes, Si discs, and moderated activation foil detectors were used. The moderated activation foil detector consisted of a commercial moderator and indium foils 2'' in diameter and approximately 2.7 grams each. The moderator is a cylinder of low-density polyethylene 6 1 / 4 '' in diameter by 6 1 / 16 '' long covered with 0.020'' of cadmium. Neutrons are detected by the reaction 115 In (n,γ) 116 In(T/sub 1 / 2 / = 54 min). Photons cannot be detected directly but photoneutrons produced in the moderator assembly can cause a photon response. The Si discs were thin slices of single-crystal Si about 1.4 mils thick and 1'' in diameter which were used as activation detectors, subsequently being counted on a thin-window pancake G.M. counter. The Si diode fast neutron dosimeter 5422, manufactured by AB Atomenergi in Studsvik, Sweden, consists of a superdoped silicon wafer with a base width of 0.050 inches between two silver contacts coated with 2 mm of epoxy. For this experiment, the technique of measuring the percent change of voltage versus dose was used. Good precision was obtained using both unirradiated and preirradiated diodes. All diodes, calibrated against 252 CF in air,were read out 48 hours after irradiation to account for any room temperature annealing. Results are presented and discussed

  20. 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications

    CERN Document Server

    Leroy, Claude; Price, Lawrence; Rancoita, Pier-Giorgio; Ruchti, Randy; ICATPP 2013; International Conference on Advanced Technology and Particle Physics

    2014-01-01

    The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energy and performed in a large variety of environments ranging from particle accelerators, underground detectors to satellites and the space laboratory. The achievement of these research programs calls for novel techniques, new materials and instrumentation to be used in detectors, often of large scale. Therefore, fundamental physics is at the forefront of technological advance and also leads to many applications. Among these, are the progresses from space experiments whose results allow the understanding of the cosmic environment, of the origin and evolution of the universe after the Big Bang.

  1. The heavy-ion physics programme with the ATLAS detector

    International Nuclear Information System (INIS)

    Pozdnyakov, V.N.; Vertogradova, Yu.L.

    2008-01-01

    The CERN LHC collider will operate with lead ions at √s of 5.5 TeV/nucleon. The ATLAS detector, designed to study high-p T physics in pp mode of the LHC, has potential to study ultrarelativistic heavy-ion collisions in a full range of observables characterizing the extremely dense matter and the formation of a quark-gluon plasma. The ATLAS physics programme includes global event measurements (particle multiplicities, transverse momentum), suppression of heavy-quarkonia production, jet quenching and study of ultraperipheral collisions

  2. Property of the diamond radiation detector

    International Nuclear Information System (INIS)

    Sochor, V.; Cechak, T.; Sopko, B.

    2008-01-01

    The outstanding properties of diamond, such as radiation hardness, high carrier mobility, high band gap and breakdown field, distinguish it as a good candidate for radiation detectors. In the dosimetry for radiotherapy is permanently searched the detector with high sensitivity, high stability, linear dependence of the response, small size, tissue equivalent material and fast response, for the measuring of the temporal and space variations of the dose. The diamond detector properties as high sensitivity, good spatial and temporal resolution, low Leakage currents, low capacitance, possibility to fabricate robust and compact device and high temperature operation make it possible to use these detectors in many fields from high energy physics till radiation monitoring, from Medical therapy dosimetry till synchrotron radiation measurement. (authors)

  3. Initial performance studies of a general-purpose detector for multi-TeV physics at a 100 TeV pp collider

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S. V.; Beydler, M.; Kotwal, A. V.; Gray, L.; Sen, S.; Tran, N. V.; Yu, S. -S.; Zuzelski, J.

    2017-06-01

    This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed GEANT4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments is described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. The reconstruction of hadronic jets has also been studied in the transverse momentum range from 50 GeV to 26 TeV. The granularity requirements for calorimetry are investigated using the two-particle spatial resolution achieved for hadron showers.

  4. Nobel physics prize to Charpak for inventing particle detectors

    International Nuclear Information System (INIS)

    Schwarzschild, B.

    1993-01-01

    This article describes the work of Georges Charpak of France leading to his receipt of the 1992 Nobel Prize in Physics. The Nobel Prize was awarded to Charpak open-quotes for his invention and development of particle detectors, in particular the multiwire proportional chamber.close quotes Historical aspects of Charpak's life and research are given

  5. The DELPHI silicon microvertex detector: from concept to physical results

    International Nuclear Information System (INIS)

    Zalewska, A.

    1994-09-01

    The silicon microvertex detector which has been used in DELPHI experiments at CERN is described in detail. The brief description of the LEP accelerator as well as the results of the physical experiment have also been presented. (author). 65 refs, 50 figs, 6 tabs

  6. Generation of response functions of a NaI detector by using an interpolation technique

    International Nuclear Information System (INIS)

    Tominaga, Shoji

    1983-01-01

    A computer method is developed for generating response functions of a NaI detector to monoenergetic γ-rays. The method is based on an interpolation between measured response curves by a detector. The computer programs are constructed for Heath's response spectral library. The principle of the basic mathematics used for interpolation, which was reported previously by the author, et al., is that response curves can be decomposed into a linear combination of intrinsic-component patterns, and thereby the interpolation of curves is reduced to a simple interpolation of weighting coefficients needed to combine the component patterns. This technique has some advantages of data compression, reduction in computation time, and stability of the solution, in comparison with the usual functional fitting method. The processing method of segmentation of a spectrum is devised to generate useful and precise response curves. A spectral curve, obtained for each γ-ray source, is divided into some regions defined by the physical processes, such as the photopeak area, the Compton continuum area, the backscatter peak area, and so on. Each segment curve then is processed separately for interpolation. Lastly the estimated curves to the respective areas are connected on one channel scale. The generation programs are explained briefly. It is shown that the generated curve represents the overall shape of a response spectrum including not only its photopeak but also the corresponding Compton area, with a sufficient accuracy. (author)

  7. Epitaxial silicon semiconductor detectors, past developments, future prospects

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1976-01-01

    A review of the main physical characteristics of epitaxial silicon as it relates to detector development is presented. As examples of applications results are presented on (1) epitaxial silicon avalanche diodes (ESAD); signal-to-noise, non-linear aspects of the avalanche gain mechanism, gain-bandwidth product, (2) ultrathin epitaxial silicon surface barrier (ESSB) detectors, response to heavy ions, (3) an all-epitaxial silicon diode (ESD), response to heavy ions, charge transport and charge defect. Future prospects of epitaxial silicon as it relates to new detector designs are summarized

  8. Estimation of ex-core detector responses by adjoint Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2006-07-01

    Ex-core detector responses can be efficiently calculated by combining an adjoint Monte Carlo calculation with the converged source distribution of a forward Monte Carlo calculation. As the fission source distribution from a Monte Carlo calculation is given only as a collection of discrete space positions, the coupling requires a point flux estimator for each collision in the adjoint calculation. To avoid the infinite variance problems of the point flux estimator, a next-event finite-variance point flux estimator has been applied, witch is an energy dependent form for heterogeneous media of a finite-variance estimator known from the literature. To test the effects of this combined adjoint-forward calculation a simple geometry of a homogeneous core with a reflector was adopted with a small detector in the reflector. To demonstrate the potential of the method the continuous-energy adjoint Monte Carlo technique with anisotropic scattering was implemented with energy dependent absorption and fission cross sections and constant scattering cross section. A gain in efficiency over a completely forward calculation of the detector response was obtained, which is strongly dependent on the specific system and especially the size and position of the ex-core detector and the energy range considered. Further improvements are possible. The method works without problems for small detectors, even for a point detector and a small or even zero energy range. (authors)

  9. Improvement of radiation response characteristic on CdTe detectors using fast neutron irradiation

    International Nuclear Information System (INIS)

    Miyamaru, Hiroyuki; Takahashi, Akito; Iida, Toshiyuki

    1999-01-01

    The treatment of fast neutron pre-irradiation was applied to a CdTe radiation detector in order to improve radiation response characteristic. Electron transport property of the detector was changed by the irradiation effect to suppress pulse amplitude fluctuation in risetime. Spectroscopic performance of the pre-irradiated detector was compared with the original. Additionally, the pre-irradiated detector was employed with a detection system using electrical signal processing of risetime discrimination (RTD). Pulse height spectra of 241 Am, 133 Ba, and 137 Cs gamma rays were measured to examine the change of the detector performance. The experimental results indicated that response characteristic for high-energy photons was improved by the pre-irradiation. The combination of the pre-irradiated detector and the RTD processing was found to provide further enhancement of the energy resolution. Application of fast neutron irradiation effect to the CdTe detector was demonstrated. (author)

  10. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    International Nuclear Information System (INIS)

    Bross, A.D.

    1991-01-01

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs

  11. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  12. CVD Diamond Sensors In Detectors For High Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00334150; Trischuk, William

    At the end of the next decade an upgrade of the Large Hadron Collider (LHC) to High Luminosity LHC (HL-LHC) is planned which requires the development of new radiation tolerant sensor technology. Diamond is an interesting material for use as a particle detector in high radiation environments. The large band gap ($5.47\\,\\text{eV}$) and the large displacement energy suggest that diamond is a radiation tolerant detector material. In this Thesis the capability of Chemical Vapor Deposition (CVD) diamond as such a sensor technology is investigated. The radiation damage constant for $800\\,\\text{MeV}$ protons is measured using single crystalline CVD (scCVD) and polycrystalline CVD (pCVD) diamonds irradiated to particle fluences up to $12 \\times 10^{15}\\,\\text{p/cm}^2$. In addition the signal response of a pCVD diamond detector after an irradiation to $12 \\times 10^{15}\\,\\text{p/cm}^2$ is investigated to determine if such a detector can be operated efficiently in the expected HL-LHC environment. By using electrodes em...

  13. Response matrix of regular moderator volumes with 3He detector using Monte Carlo methods

    International Nuclear Information System (INIS)

    Baltazar R, A.; Vega C, H. R.; Ortiz R, J. M.; Solis S, L. O.; Castaneda M, R.; Soto B, T. G.; Medina C, D.

    2017-10-01

    In the last three decades the uses of Monte Carlo methods, for the estimation of physical phenomena associated with the interaction of radiation with matter, have increased considerably. The reason is due to the increase in computing capabilities and the reduction of computer prices. Monte Carlo methods allow modeling and simulating real systems before their construction, saving time and costs. The interaction mechanisms between neutrons and matter are diverse and range from elastic dispersion to nuclear fission; to facilitate the neutrons detection, is necessary to moderate them until reaching electronic equilibrium with the medium at standard conditions of pressure and temperature, in this state the total cross section of the 3 He is large. The objective of the present work was to estimate the response matrix of a proportional detector of 3 He using regular volumes of moderator through Monte Carlo methods. Neutron monoenergetic sources with energies of 10 -9 to 20 MeV and polyethylene moderators of different sizes were used. The calculations were made with the MCNP5 code; the number of stories for each detector-moderator combination was large enough to obtain errors less than 1.5%. We found that for small moderators the highest response is obtained for lower energy neutrons, when increasing the moderator dimension we observe that the response decreases for neutrons of lower energy and increases for higher energy neutrons. The total sum of the responses of each moderator allows obtaining a response close to a constant function. (Author)

  14. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  15. Response of fire detectors to different smokes

    International Nuclear Information System (INIS)

    Bjoerkman, J.; Keski-Rahkonen, O.

    1997-01-01

    The purpose of this work is to characterize the behavior of fire alarm systems based on smoke detectors on smoldering fires especially cable fires in nuclear power plants (NPP). Full-scale fire experiments were carried out in a laboratory designed according to the standard EN54-9. The laboratory was instrumented with additional equipment such as thermocouples and flow meters which are not used in standard fire sensitivity tests. This allows the results to be used as experimental data for validation tasks of numerical fire simulation computerized fluid dynamics (CFD)-codes. The ultimate goal of the research is to model theoretically smoldering and flaming cable fires, their smoke production, transfer of smoke to detectors, as well as the response of detectors and fire alarm systems to potential fires. This would allow the use of numerical fire simulation to predict fire hazards in different fire scenarios found important in PSA (probability safety assessment) of NPPs. This report concentrates on explaining full-scale fire experiments in the smoke sensitivity laboratory and experimental results from fire tests of detectors. Validation tasks with CFD-codes will be first carried out 'blind' without any idea about corresponding experimental results. Accordingly, the experimental results cannot be published in this report. (orig.)

  16. Response of a hybrid pixel detector (MEDIPIX3) to different radiation sources for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chumacero, E. Miguel; De Celis Alonso, B.; Martínez Hernández, M. I.; Vargas, G.; Moreno Barbosa, E., E-mail: emoreno.emb@gmail.com [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Rio Verde, Puebla (Mexico); Moreno Barbosa, F. [Hospital General del Sur Hospital de la Mujer, Puebla (Mexico)

    2014-11-07

    The development in semiconductor CMOS technology has enabled the creation of sensitive detectors for a wide range of ionizing radiation. These devices are suitable for photon counting and can be used in imaging and tomography X-ray diagnostics. The Medipix[1] radiation detection system is a hybrid silicon pixel chip developed for particle tracking applications in High Energy Physics. Its exceptional features (high spatial and energy resolution, embedded ultra fast readout, different operation modes, etc.) make the Medipix an attractive device for applications in medical imaging. In this work the energy characterization of a third-generation Medipix chip (Medipix3) coupled to a silicon sensor is presented. We used different radiation sources (strontium 90, iron 55 and americium 241) to obtain the response curve of the hybrid detector as a function of energy. We also studied the contrast of the Medipix as a measure of pixel noise. Finally we studied the response to fluorescence X rays from different target materials (In, Pd and Cd) for the two data acquisition modes of the chip; single pixel mode and charge summing mode.

  17. Stability of the spectral responsivity of cryogenically cooled InSb infrared detectors

    International Nuclear Information System (INIS)

    Theocharous, Evangelos

    2005-01-01

    The spectral responsivity of two cryogenically cooled InSb detectors was observed to drift slowly with time. The origin of these drifts was investigated and was shown to occur due to a water-ice thin film that was deposited onto the active areas of the cold detectors. The presence of the ice film (which is itself a dielectric film) modifies the transmission characteristics of the antireflection coatings deposited on the active areas of the detectors, thus giving rise to the observed drifts. The magnitude of the drifts was drastically reduced by evacuating the detector dewars while baking them at 50 deg. C for approximately 48 h. All InSb detectors have antireflection coatings to reduce the Fresnel reflections and therefore enhance their spectral responsivity. This work demonstrates that InSb infrared detectors should be evacuated and baked at least annually and in some cases (depending on the quality of the dewar and the measurement uncertainty required) more frequently. These observations are particularly relevant to InSb detectors mounted in dewars that use rubber O rings since the ingress of moisture was found to be particularly serious in this type of dewar

  18. High precision thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  19. The physics benchmark processes for the detector performance studies used in CLIC CDR Volume 3

    CERN Document Server

    Allanach, B.J.; Desch, K.; Ellis, J.; Giudice, G.; Grefe, C.; Kraml, S.; Lastovicka, T.; Linssen, L.; Marschall, J.; Martin, S.P.; Muennich, A.; Poss, S.; Roloff, P.; Simon, F.; Strube, J.; Thomson, M.; Wells, J.D.

    2012-01-01

    This note describes the detector benchmark processes used in volume 3 of the CLIC conceptual design report (CDR), which explores a staged construction and operation of the CLIC accelerator. The goal of the detector benchmark studies is to assess the performance of the CLIC ILD and CLIC SiD detector concepts for different physics processes and at a few CLIC centre-of-mass energies.

  20. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  1. Discovery of a new ECE parameter affecting the response of polymer track detectors

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1993-01-01

    The pressure applied to the electrochemical etching (ECE) chamber system and in turn to the rubber washers holding a detector tight in place was discovered to be a new parameter in ECE having a direct effect on internal heating and thus on the detector's response. The type, material, shape and size of the washers showed significant effects on the detector's response. Special pressure ECE (PECE) chambers with measurable and reproducible pressure were designed, constructed and used in this study. The effects observed seem to be due to forced vibrations of the detector in an electric field the degree of which depends on the pressure applied and stretching the detectors, like winding the strings of a musical instrument. The results of the above studies are presented and discussed. (author)

  2. Upgrade of detectors of neutron instruments at Neutron Physics Laboratory in Rez

    Czech Academy of Sciences Publication Activity Database

    Litvinenko, E. I.; Ryukhtin, Vasyl; Bogdzel, A. A.; Churakov, A. V.; Farkas, G.; Hervoches, Charles; Lukáš, Petr; Pilch, Jan; Šaroun, Jan; Strunz, Pavel; Zhuravlev, V. V.

    2017-01-01

    Roč. 841, JAN (2017), s. 5-11 ISSN 0168-9002 R&D Projects: GA MŠk LG14004; GA MŠk LM2015056; GA ČR GB14-36566G Institutional support: RVO:68378271 ; RVO:61389005 Keywords : neutron scattering * gaseous position-sensitive detector * delay line readout Subject RIV: BM - Solid Matter Physics ; Magnetism; JG - Metallurgy (FZU-D) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Materials engineering (FZU-D) Impact factor: 1.362, year: 2016

  3. Prospects of diffractive physics with the ATLAS forward detectors

    CERN Document Server

    Lopez Paz, Ivan; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector provides measurements of the momentum and emission angle of very forward protons. This enables the observation and measurement of a range of processes where one or both protons remain intact. Such processes are associated with elastic and diffractive scattering. In this talk, we give on overview of the technical details of the AFP, its current status as well as its associated physics program.

  4. Exploring new frontiers in nuclear and particle physics with the STAR detector at RHIC

    International Nuclear Information System (INIS)

    Hallman, T.J.

    1996-01-01

    The Solenoidal Tracker At RHIC (STAR) is a large acceptance collider detector scheduled to begin operation at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in the fall of 1999. In the sections which follow, details of the STAR detector and physics program, as well as the status of the RHIC construction project will be presented

  5. Detector response restoration in image reconstruction of high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Liang, Z.

    1994-01-01

    A mathematical method was studied to model the detector response of high spatial-resolution positron emission tomography systems consisting of close-packed small crystals, and to restore the resolution deteriorated due to crystal penetration and/or nonuniform sampling across the field-of-view (FOV). The simulated detector system had 600 bismuth germanate crystals of 3.14 mm width and 30 mm length packed on a single ring of 60 cm diameter. The space between crystal was filled up with lead. Each crystal was in coincidence with 200 opposite crystals so that the FOV had a radius of 30 cm. The detector response was modeled based on the attenuating properties of the crystals and the septa, as well as the geometry of the detector system. The modeled detector-response function was used to restore the projections from the sinogram of the ring-detector system. The restored projections had a uniform sampling of 1.57 mm across the FOV. The crystal penetration and/or the nonuniform sampling were compensated in the projections. A penalized maximum-likelihood algorithm was employed to accomplish the restoration. The restored projections were then filtered and backprojected to reconstruct the image. A chest phantom with a few small circular ''cold'' objects located at the center and near the periphery of FOV was computer generated and used to test the restoration. The reconstructed images from the restored projections demonstrated resolution improvement off the FOV center, while preserving the resolution near the center

  6. MINERvA neutrino detector response measured with test beam data

    International Nuclear Information System (INIS)

    Aliaga, L.; Altinok, O.; Araujo Del Castillo, C.; Bagby, L.; Bellantoni, L.; Bergan, W.F.; Bodek, A.; Bradford, R.; Bravar, A.; Budd, H.; Butkevich, A.; Martinez Caicedo, D.A.; Carneiro, M.F.; Christy, M.E.; Chvojka, J.; Motta, H. da; Devan, J.

    2015-01-01

    The MINERvA collaboration operated a scaled-down replica of thesolid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross-section measurement program

  7. MINERvA neutrino detector response measured with test beam data

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Altinok, O. [Physics Department, Tufts University, Medford, MA 02155 (United States); Araujo Del Castillo, C. [Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Apartado 1761, Lima (Peru); Bagby, L.; Bellantoni, L. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Bergan, W.F. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Bodek, A.; Bradford, R. [University of Rochester, Rochester, New York 14627 (United States); Bravar, A. [University of Geneva, 1211 Geneva 4 (Switzerland); Budd, H. [University of Rochester, Rochester, New York 14627 (United States); Butkevich, A. [Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow (Russian Federation); Martinez Caicedo, D.A. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Rio de Janeiro 22290-180 (Brazil); Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Carneiro, M.F. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Rio de Janeiro 22290-180 (Brazil); Christy, M.E. [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Chvojka, J. [University of Rochester, Rochester, New York 14627 (United States); Motta, H. da [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Rio de Janeiro 22290-180 (Brazil); Devan, J. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); and others

    2015-07-21

    The MINERvA collaboration operated a scaled-down replica of thesolid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This paper reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons is obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4% for the calorimetric response, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross-section measurement program.

  8. Proportional counter response calculations for gallium solar neutrino detectors

    International Nuclear Information System (INIS)

    Kouzes, R.T.; Reynolds, D.

    1989-01-01

    Gallium bases solar neutrino detectors are sensitive to the primary pp reaction in the sun. Two experiments using gallium, SAGE in the Soviet Union and GALLEX in Europe, are under construction and will produce data by 1989. The radioactive /sup 71/Ge produced by neutrinos interacting with the gallium detector material, is chemically extracted and counted in miniature proportional counters. A number of calculations have been carried out to simulate the response of these counters to the decay of /sup 71/Ge and to background events

  9. Low energy response calibration of the BATSE large area detectors onboard the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Laird, C.E. [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)]. E-mail: Chris.Laird@eku.edu; Harmon, B.A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Wilson, Colleen A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Hunter, David [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States); Isaacs, Jason [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)

    2006-10-15

    The low-energy attenuation of the covering material of the Burst and Transient Source Experiment (BATSE) large area detectors (LADs) on the Compton Gamma Ray Observatory as well as the small-angle response of the LADs have been studied. These effects are shown to be more significant than previously assumed. The LAD entrance window included layers of an aluminum-epoxy composite (hexel) that acted as a collimator for the lowest energy photons entering the detector just above threshold (20-50 keV). Simplifying assumptions made concerning the entrance window materials and the angular response at incident angles near normal to the detector face in the original BATSE response matrix formalism had little effect on {gamma}-ray burst measurements; however, these assumptions created serious errors in measured fluxes of galactic sources, whose emission is strongest near the LAD energy threshold. Careful measurements of the angular and low-energy dependence of the attenuation due to the hexel plates only partially improved the response. A systematic study of Crab Nebula spectra showed the need for additional corrections: an angular-dependent correction for all detectors and an angular-independent correction for each detector. These corrections have been applied as part of an overall energy and angular-dependent correction to the BATSE response matrices.

  10. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Science.gov (United States)

    Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.

    2018-03-01

    Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.

  11. Summary of the Very Large Hadron Collider Physics and Detector subgroup

    International Nuclear Information System (INIS)

    Denisov, D.; Keller, S.

    1996-01-01

    We summarize the activity of the Very Large Hadron Collider Physics and Detector subgroup during Snowmass 96. Members of the group: M. Albrow, R. Diebold, S. Feher, L. Jones, R. Harris, D. Hedin, W. Kilgore, J. Lykken, F. Olness, T. Rizzo, V. Sirotenko, and J. Womersley. 9 refs

  12. Heavy Ion Physics with the ATLAS Detector at the LHC

    International Nuclear Information System (INIS)

    Trzupek, A.

    2009-01-01

    The heavy-ion program at LHC will be pursued by three experiments including ATLAS, a multipurpose detector to study p + p collisions. A report on the potential of the ATLAS detector to uncover new physics in Pb + Pb collisions at energies thirty times larger than energy available at RHIC will be presented. Key aspects of the heavy-ion program of the ATLAS experiment, implied by measurements at RHIC, will be discussed. They include measurement capability of high-p T hadronic and electromagnetic probes, quarkonia as well as elliptic flow and other bulk phenomena. Measurements by the ATLAS experiment will provide crucial information about the formation of a quark-gluon plasma at the new energy scale accessible at the LHC. (author)

  13. A novel position sensitive detector for nuclear radiation. Final Report

    International Nuclear Information System (INIS)

    Kania Shah

    2006-01-01

    Current and next generation experiments in nuclear and elementary particle physics require detectors with high spatial resolution, fast response, and accurate energy information. Such detectors are required for spectroscopy, and imaging of optical and high-energy photons, charged particles, and neutrons, and are of interest not only in nuclear and high-energy physics, but also in other areas such as medical imaging, diffraction, astronomy, nuclear treaty verification, non-destructive evaluation, and geological exploration

  14. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua [Sun Nuclear Inc., 425-A Pineda Court, Melbourne, Florida 32940 and Department of Radiation Oncology, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385 (United States); NRE, 202 Nuclear Science Building, University of Florida, P.O. Box 118300, Gainesville, Florida 32611-8300 and Sun Nuclear Inc., 425-A Pineda Court, Melbourne, Florida 32940 (United States); Sun Nuclear Inc., 425-A Pineda Court, Melbourne, Florida 32940 (United States); ViewRay Inc., 2 Thermo Fisher Way, Oakwood Village, Ohio 44146 (United States); Department of Radiation Oncology, University of Florida, P.O. Box 100385, Gainesville, Florida 32610-0385 (United States)

    2010-02-15

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm{sup 3} and a diode of surface area 0.64 mm{sup 2}. The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm{sup 2} field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a {+-}0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping

  15. Assessment of the setup dependence of detector response functions for mega-voltage linear accelerators

    International Nuclear Information System (INIS)

    Fox, Christopher; Simon, Tom; Simon, Bill; Dempsey, James F.; Kahler, Darren; Palta, Jatinder R.; Liu Chihray; Yan Guanghua

    2010-01-01

    Purpose: Accurate modeling of beam profiles is important for precise treatment planning dosimetry. Calculated beam profiles need to precisely replicate profiles measured during machine commissioning. Finite detector size introduces perturbations into the measured profiles, which, in turn, impact the resulting modeled profiles. The authors investigate a method for extracting the unperturbed beam profiles from those measured during linear accelerator commissioning. Methods: In-plane and cross-plane data were collected for an Elekta Synergy linac at 6 MV using ionization chambers of volume 0.01, 0.04, 0.13, and 0.65 cm 3 and a diode of surface area 0.64 mm 2 . The detectors were orientated with the stem perpendicular to the beam and pointing away from the gantry. Profiles were measured for a 10x10 cm 2 field at depths ranging from 0.8 to 25.0 cm and SSDs from 90 to 110 cm. Shaping parameters of a Gaussian response function were obtained relative to the Edge detector. The Gaussian function was deconvolved from the measured ionization chamber data. The Edge detector profile was taken as an approximation to the true profile, to which deconvolved data were compared. Data were also collected with CC13 and Edge detectors for additional fields and energies on an Elekta Synergy, Varian Trilogy, and Siemens Oncor linear accelerator and response functions obtained. Response functions were compared as a function of depth, SSD, and detector scan direction. Variations in the shaping parameter were introduced and the effect on the resulting deconvolution profiles assessed. Results: Up to 10% setup dependence in the Gaussian shaping parameter occurred, for each detector for a particular plane. This translated to less than a ±0.7 mm variation in the 80%-20% penumbral width. For large volume ionization chambers such as the FC65 Farmer type, where the cavity length to diameter ratio is far from 1, the scan direction produced up to a 40% difference in the shaping parameter between in

  16. The detector response simulation for the CBM silicon tracking system as a tool for hit error estimation

    Energy Technology Data Exchange (ETDEWEB)

    Malygina, Hanna [Goethe Universitaet Frankfurt (Germany); KINR, Kyiv (Ukraine); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Friese, Volker; Zyzak, Maksym [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter experiment(CBM) at FAIR is designed to explore the QCD phase diagram in the region of high net-baryon densities. As the central detector component, the Silicon Tracking System (STS) is based on double-sided micro-strip sensors. To achieve realistic modelling, the response of the silicon strip sensors should be precisely included in the digitizer which simulates a complete chain of physical processes caused by charged particles traversing the detector, from charge creation in silicon to a digital output signal. The current implementation of the STS digitizer comprises non-uniform energy loss distributions (according to the Urban theory), thermal diffusion and charge redistribution over the read-out channels due to interstrip capacitances. Using the digitizer, one can test an influence of each physical processes on hit error separately. We have developed a new cluster position finding algorithm and a hit error estimation method for it. Estimated errors were verified by the width of pull distribution (expected to be about unity) and its shape.

  17. Response of CZT drift-strip detector to X- and gamma rays

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Gerward, Leif

    2001-01-01

    The drift-strip method for improving the energy response of a CdZnTe (CZT) detector to hard X- and gamma rays is discussed. Results for a 10 x 10 x 3 mm(3) detector crystal demonstrate a remarkable improvement of the energy resolution. The full width at half maximum (FWHM) is 2.18 keV (3.6%), 2...

  18. Validation and uncertainty quantification of detector response functions for a 1″×2″ NaI collimated detector intended for inverse radioisotope source mapping applications

    Science.gov (United States)

    Nelson, N.; Azmy, Y.; Gardner, R. P.; Mattingly, J.; Smith, R.; Worrall, L. G.; Dewji, S.

    2017-11-01

    Detector response functions (DRFs) are often used for inverse analysis. We compute the DRF of a sodium iodide (NaI) nuclear material holdup field detector using the code named g03 developed by the Center for Engineering Applications of Radioisotopes (CEAR) at NC State University. Three measurement campaigns were performed in order to validate the DRF's constructed by g03: on-axis detection of calibration sources, off-axis measurements of a highly enriched uranium (HEU) disk, and on-axis measurements of the HEU disk with steel plates inserted between the source and the detector to provide attenuation. Furthermore, this work quantifies the uncertainty of the Monte Carlo simulations used in and with g03, as well as the uncertainties associated with each semi-empirical model employed in the full DRF representation. Overall, for the calibration source measurements, the response computed by the DRF for the prediction of the full-energy peak region of responses was good, i.e. within two standard deviations of the experimental response. In contrast, the DRF tended to overestimate the Compton continuum by about 45-65% due to inadequate tuning of the electron range multiplier fit variable that empirically represents physics associated with electron transport that is not modeled explicitly in g03. For the HEU disk measurements, computed DRF responses tended to significantly underestimate (more than 20%) the secondary full-energy peaks (any peak of lower energy than the highest-energy peak computed) due to scattering in the detector collimator and aluminum can, which is not included in the g03 model. We ran a sufficiently large number of histories to ensure for all of the Monte Carlo simulations that the statistical uncertainties were lower than their experimental counterpart's Poisson uncertainties. The uncertainties associated with least-squares fits to the experimental data tended to have parameter relative standard deviations lower than the peak channel relative standard

  19. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    Science.gov (United States)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  20. ATLAS for the First Physics Run: Detector and Resources Planning

    CERN Multimedia

    Jenni, P.

    Over the past year not only have we had the pleasure of learning about exciting new physics concepts like signatures for 'extra dimensions', but we have also had to become familiar with less enjoyable matters like 'cost to completion'. Whereas ATLAS will do a great job on the first issue once we have the experiment in place, the second one definitely shows us that we are facing hard times for the coming years until we get the detector up and running. More than a year ago an internal ATLAS Working Group started an evaluation of the resources needed for maintenance and operation (M&O) work already required in the current years before the detector is fully ready for data. The same group also collected first information about cost overruns and items not included in the initial cost evaluation of the detector construction, called internally 'class-2' costs. The Resources Review Board (RRB) was presented with our preliminary estimates for the first time at its April meeting, 2001. Since then a great deal of wo...

  1. Response of cellulose nitrate track detectors to electron doses

    CERN Document Server

    Segovia, N; Moreno, A; Vazquez-Polo, G; Santamaría, T; Aranda, P; Hernández, A

    1999-01-01

    In order to study alternative dose determination methods, the bulk etching velocity and the latent track annealing of LR 115 track detectors was studied during electron irradiation runs from a Pelletron accelerator. For this purpose alpha irradiated and blank detectors were exposed to increasing electron doses from 10.5 to 317.5 kGy. After the irradiation with electrons the detectors were etched under routine conditions, except for the etching time, that was varied for each electron dose in order to reach a fixed residual thickness. The variation of the bulk etching velocity as a function of each one of the electron doses supplied, was interpolated in order to obtain dosimetric response curves. The observed annealing effect on the latent tracks is discussed as a function of the total electron doses supplied and the temperature.

  2. I - Detector Simulation for the LHC and beyond: how to match computing resources and physics requirements

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Detector simulation at the LHC is one of the most computing intensive activities. In these lectures we will show how physics requirements were met for the LHC experiments and extrapolate to future experiments (FCC-hh case). At the LHC, detectors are complex, very precise and ambitious: this implies modern modelisation tools for geometry and response. Events are busy and characterised by an unprecedented energy scale with hundreds of particles to be traced and high energy showers to be accurately simulated. Furthermore, high luminosities imply many events in a bunch crossing and many bunch crossings to be considered at the same time. In addition, backgrounds not directly correlated to bunch crossings have also to be taken into account. Solutions chosen for ATLAS (a mixture of detailed simulation and fast simulation/parameterisation) will be described and CPU and memory figures will be given. An extrapolation to the FCC-hh case will be tried by taking as example the calorimeter simulation.

  3. II - Detector simulation for the LHC and beyond : how to match computing resources and physics requirements

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Detector simulation at the LHC is one of the most computing intensive activities. In these lectures we will show how physics requirements were met for the LHC experiments and extrapolate to future experiments (FCC-hh case). At the LHC, detectors are complex, very precise and ambitious: this implies modern modelisation tools for geometry and response. Events are busy and characterised by an unprecedented energy scale with hundreds of particles to be traced and high energy showers to be accurately simulated. Furthermore, high luminosities imply many events in a bunch crossing and many bunch crossings to be considered at the same time. In addition, backgrounds not directly correlated to bunch crossings have also to be taken into account. Solutions chosen for ATLAS (a mixture of detailed simulation and fast simulation/parameterisation) will be described and CPU and memory figures will be given. An extrapolation to the FCC-hh case will be tried by taking as example the calorimeter simulation.

  4. Dose-equivalent response CR-39 track detector for personnel neutron dosimetry

    International Nuclear Information System (INIS)

    Oda, K.; Ito, M.; Yoneda, H.; Miyake, H.; Yamamoto, J.; Tsuruta, T.

    1991-01-01

    A dose-equivalent response detector based on CR-39 has been designed to be applied for personnel neutron dosimetry. The intrinsic detection efficiency of bare CR-39 was first evaluated from irradiation experiments with monoenergetic neutrons and theoretical calculations. In the second step, the radiator effect was investigated for the purpose of sensitization to fast neutrons. A two-layer radiator consisting of deuterized dotriacontane (C 32 D 66 ) and polyethylene (CH 2 ) was designed. Finally, we made the CR-39 detector sensitive to thermal neutrons by doping with orthocarbone (B 10 H 12 C 2 ), and also estimated the contribution of albedo neutrons. It was found that the new detector - boron-doped CR-39 with the two-layer radiator - would have a flat response with an error of about 70% in a wide energy region, ranging from thermal to 15 MeV. (orig.)

  5. Coupling External Radiation Transport Code Results to the GADRAS Detector Response Function

    International Nuclear Information System (INIS)

    Mitchell, Dean J.; Thoreson, Gregory G.; Horne, Steven M.

    2014-01-01

    Simulating gamma spectra is useful for analyzing special nuclear materials. Gamma spectra are influenced not only by the source and the detector, but also by the external, and potentially complex, scattering environment. The scattering environment can make accurate representations of gamma spectra difficult to obtain. By coupling the Monte Carlo Nuclear Particle (MCNP) code with the Gamma Detector Response and Analysis Software (GADRAS) detector response function, gamma spectrum simulations can be computed with a high degree of fidelity even in the presence of a complex scattering environment. Traditionally, GADRAS represents the external scattering environment with empirically derived scattering parameters. By modeling the external scattering environment in MCNP and using the results as input for the GADRAS detector response function, gamma spectra can be obtained with a high degree of fidelity. This method was verified with experimental data obtained in an environment with a significant amount of scattering material. The experiment used both gamma-emitting sources and moderated and bare neutron-emitting sources. The sources were modeled using GADRAS and MCNP in the presence of the external scattering environment, producing accurate representations of the experimental data.

  6. Computed neutron response of spherical moderator-detector systems for radiation protection monitoring

    International Nuclear Information System (INIS)

    Dhairyawan, M.P.

    1979-01-01

    Neutrons of energies below 500 keV are important from the point of view of radiation protection of personnel working around reactors. However, as no neutron sources are available at lower energies, no measured values of neutron energy response are available between thermal and 0.5 MeV (but for Sb-Be source at 24 keV). The response functions in this range are, therefore, arrived at theoretically. After giving a comprehensive review of the work done in the field of response of moderated neutron detectors, a Monte Carlo method developed for this purpose is described and used to calculate energy response functions of the two spherical moderator-detector systems, namely, one using a central BF 3 counter and the other using 6 LiI(Eu) scintillator of 0.490 dia crystal. The polythene sphere diameter ranged from 2'' to 12''. The results obtained follow the trend predicted by other calculations and experiments, but are a definite improvement over them, because the most recent data on cross sections and angular distribution are used and the opacity of the detector i.e. the presence and size of the detector within the moderator is taken into account in the present calculations. The reasons for the discrepancies in the present results and those obtained earlier by other methods are discussed. The response of the Leake counter arrived at by the present method agrees very well with experimental calibration. (M.G.B.)

  7. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor ...

  8. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  9. The Nuclotron-based Ion Collider Facility Project. The Physics Programme for the Multi-Purpose Detector

    Science.gov (United States)

    Geraksiev, N. S.; MPD Collaboration

    2018-05-01

    The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.

  10. Time delays between core power production and external detector response from Monte Carlo calculations

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.

    1996-01-01

    One primary concern for design of safety systems for reactors is the time response of external detectors to changes in the core. This paper describes a way to estimate the time delay between the core power production and the external detector response using Monte Carlo calculations and suggests a technique to measure the time delay. The Monte Carlo code KENO-NR was used to determine the time delay between the core power production and the external detector response for a conceptual design of the Advanced Neutron Source (ANS) reactor. The Monte Carlo estimated time delay was determined to be about 10 ms for this conceptual design of the ANS reactor

  11. In-core neutron flux measurements at PARR using self powered neutron detector

    International Nuclear Information System (INIS)

    Hussain, A.; Ansari, S.A.

    1989-10-01

    This report describes experimental reactor physics measure ments at PARR using the in-core neutron detectors. Rhodium self powered neutron detectors (SPND) were used in the PARR core and several measurements were made aimed at detector calibration, response time determination and neutron flux measurements. The detectors were calibrated at low power using gold foils and full power by the thermal channel. Based on this calibration it was observed that the detector response remains almost linear throughout the power range. The self powered detectors were used for on-line determination of absolute neutron flux in the core as well as the spatial distribution of neutron flux or reactor power. The experimental, axial and horizontal flux mapping results at certain locations in the core are presented. The total response time of rhodium detector was experimentally determined to be about 5 minutes, which agree well with the theoretical results. Because of longer response time of SPND of the detectors it is not possible to use them in the reactor protection system. (author). 10 figs

  12. Proceedings of B Factories, the state of the art in accelerators, detectors and physics

    International Nuclear Information System (INIS)

    Hitlin, D.

    1992-11-01

    The conference B Factories, The State of the Art in Accelerators, Detectors and Physics was held at Stanford Linear Accelerator Center on April 6-10, 1992. The guiding principle of the conference was to bring together accelerator physicists and high energy experimentalists and theorists at the same time, with the goal of encouraging communication in defining and solving problems in a way which cut across narrow areas of specialization. Thus the conference was, in large measure, two distinct conferences, one involving accelerator specialists, the other theorists and experimentalists. There were initial and closing plenary sessions, and three separate tracks of parallel sessions, called Accelerator, Detector/Physics and Joint Interest sessions. This report contains the papers of this conference, the general topics of these cover: vacuum system, lattice design, beam-beam interactions, rf systems, feedback systems, measuring instrumentation, the interaction region, radiation background, particle detectors, particle tracking and identification, data acquisition, and computing system, and particle theory

  13. Proceedings of B Factories, the state of the art in accelerators, detectors and physics

    Energy Technology Data Exchange (ETDEWEB)

    Hitlin, D. (ed.) (California Inst. of Tech., Pasadena, CA (United States))

    1992-11-01

    The conference B Factories, The State of the Art in Accelerators, Detectors and Physics was held at Stanford Linear Accelerator Center on April 6-10, 1992. The guiding principle of the conference was to bring together accelerator physicists and high energy experimentalists and theorists at the same time, with the goal of encouraging communication in defining and solving problems in a way which cut across narrow areas of specialization. Thus the conference was, in large measure, two distinct conferences, one involving accelerator specialists, the other theorists and experimentalists. There were initial and closing plenary sessions, and three separate tracks of parallel sessions, called Accelerator, Detector/Physics and Joint Interest sessions. This report contains the papers of this conference, the general topics of these cover: vacuum system, lattice design, beam-beam interactions, rf systems, feedback systems, measuring instrumentation, the interaction region, radiation background, particle detectors, particle tracking and identification, data acquisition, and computing system, and particle theory.

  14. Current problems in semiconductor detectors for high energy physics after particle irradiations

    International Nuclear Information System (INIS)

    Lazanu, Ionel

    2002-01-01

    The use of semiconductor materials as detectors in high radiation environments, as expected in future high energy accelerators or in space missions, poses severe problems in long-time operations, due to changes in the properties of the material, and consequently in the performances of detectors. This talk presents the major theoretical areas of current problems, reviews the works in this field and the stage of their understanding, including author's contributions The mechanisms of interaction of the projectile with the semiconductor, the production of primary defects, the physical quantities and the equations able to characterise and describe the radiation effects, and the equations of kinetics of defects are considered. Correlation between microscopic damage and detector performances and the possible ways to optimise the radiation hardness of materials are discussed. (author)

  15. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  16. Comparison of Response Characteristics of High-Purity Germanium Detectors using Analog Versus Digital Processing

    International Nuclear Information System (INIS)

    Luke, S J; Raschke, K

    2004-01-01

    In this article we will discuss some of the results of the response characteristics of High Purity germanium detectors using analog versus digital processing of the signals that are outputted from the detector. The discussion will focus on whether or not there is a significant difference in the response of the detector with digital electronics that it limits the ability of the detection system to get reasonable gamma ray spectrometric results. Particularly, whether or not the performance of the analysis code Pu600 is compromised

  17. Inner detector alignment and top-quark mass measurement with the ATLAS detector

    CERN Document Server

    Moles-Valls, Regina

    This thesis is divided in two parts: one related with the alignment of the ATLAS Inner Detector tracking system and other with the measurement of the top-quark mass. Both topics are connected by the Globalχ2 fitting method. In order to measure the properties of the particles with high accuracy, the ID detector is composed by devices with high intrinsic resolution. If by any chance the position of the modules in the detector is known with worse precision than their intrinsic resolution this may introduce a distortion in the reconstructed trajectory of the particles or at least degrade the tracking resolution. The alignment is the responsible of determining the location of each module with high precision and avoiding therefore any bias in the physics results. During the commissioning of the detector, different alignment exercises were performed for preparing the Globalχ2 algorithm (the CSC , the FDR, weak modes studies,…). At the same time, the ATLAS detector was collecting million of cosmic rays which were...

  18. FAD: A full-acceptance detector for physics at the SSC

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1992-09-01

    For high energy pp collisions, the concepts ''4π'' and ''full acceptance'' are distinct. At the SSC, the appropriate variables for describing phase space are the lego variables: pseudorapidity η and azimuthal angle φ. While most of 4π is covered by pseudorapidities less than 3 or 4 in magnitude, at the SSC there is very interesting physics out to η's of 9 to 12. For over a year I have been attempting to encourage an initiative at the SSC to provide a detector which could cover the missing acceptance of the two big detectors, which in particular have no appreciable charged particle tracking with good momentum resolution beyond rapidities of 2.5 or so. The nonnegotiable criteria for an FAD are for me the following: 1. All charged particles are seen and their momenta measured well, provided pt is not too large. 2. All photons are seen and their momenta are measured well. 3. The physics of rapidity-gaps is not compromised. This means angular coverage from 90 degrees down to tens of microradians. The above criteria cannot be met on day one of SSC commissioning with the amount of funds available. But I believe a staged approach is feasible, with a lot of interesting physics available along the way. The basic philosophy underlying the FAD idea is that it should first and most be a survey instrument, sensitive to almost everything, but optimized for almost nothing. Its strength is in the perception of complex patterns individual events, used as a signature of new and/or interesting physics. Examples of such patterns will be given later

  19. Study of a prototype detector for the Daya Bay neutrino experiment

    International Nuclear Information System (INIS)

    Wang Zhimin; Yang Changgen; Guan Mengyun; Zhong Weili; Liu Jinchang; Zhang Zhiyong; Ding Yayun; Wang Ruiguang; Cao Jun; Wang Yifang; Lu Haoqi

    2009-01-01

    The Daya Bay reactor neutrino experiment is designed to precisely measure the neutrino mixing angle θ 13 . In order to study the details of the detector response and finalize the detector design, a prototype neutrino detector with a scale of 1/3 in diameter is constructed at the Institute of High Energy Physics (IHEP), Beijing. The detector is viewed by 45 8'' photomultipliers, which are calibrated by LED light pulse. The energy response of the detector, including the resolution, linearity, spatial uniformity, etc., is studied by radioactive sources 133 Ba, 137 Cs, 60 Co, and 22 Na at various locations of the detector. The measurement shows that the detector, particularly the specially designed optical reflectors, works as expected. A Monte Carlo simulation based on the Geant4 package shows a good agreement with the experimental data.

  20. Study of response of 3He detectors to monoenergetic neutrons

    International Nuclear Information System (INIS)

    Abanades, A.; Andriamonje, S.; Arnould, H.; Barreau, G.; Bercion, M.; Casagrande, F.; Cennini, P.; Del Moral, R.; Gonzales, E.; Lacoste, V.; Pdemay, G.; Pravikoff, M.S.

    1997-01-01

    In the search of a hybrid system (the coupling of the particle accelerator to an under-critical reactor) for radioactive waste transmutation the TARC (Transmutation by Adiabatic Resonance Crossing) program has been developed. Due to experimental limitations, the time-energy relation at higher neutron energies, particularly, around 2 MeV, which is an important domain for TARC, cannot be applied. Consequently the responses of the 3 He ionization neutron detector developed for TARC experiment have been studied using a fast monoenergetic neutron source. The neutrons were produced by the interaction of the proton delivered by Van de Graaff accelerator of CENBG. The originality of the detector consists in its structure of three series of electric conductors which are mounted around the anode: a grid ensuring the detector proportionality, a cylindrical suit of alternating positive voltage and grounded wires aiming at eliminating the radial end effects, serving as veto and two cylinders serving as end plugs to eliminate the perpendicular end effects. Examples of anode spectra conditioned (in anticoincidence) by the mentioned vetoes are given. One can see the contribution of the elastic scattering from H and 3 He. By collimating the neutron beam through a borated polyethylene system it was possible to obtain a mapping of the detector allowing the study of its response as a function of the irradiated zones (anode and grid)

  1. Track etch and thermo luminescent detectors response to high energy charged particles

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Jadrníčková, Iva

    2008-01-01

    Roč. 43, Supp. 1 (2008), S169-S173 ISSN 1350-4487. [International Conference on Solids /23./. Beijing, 11.09.2006-15.09.2006] R&D Projects: GA ČR GA202/04/0795 Grant - others:Evropské společenství(XE) ILSRA - 2004 - 248 Institutional research plan: CEZ:AV0Z10480505 Keywords : track etch detector * thermoluminescent detectors * LET spectrometry Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.267, year: 2008

  2. Radiation hardness of silicon detectors - a challenge from high-energy physics

    CERN Document Server

    Lindström, G; Fretwurst, E

    1999-01-01

    An overview of the radiation-damage-induced problems connected with the application of silicon particle detectors in future high-energy physics experiments is given. Problems arising from the expected hadron fluences are summarized and the use of the nonionizing energy loss for normalization of bulk damage is explained. The present knowledge on the deterioration effects caused by irradiation is described leading to an appropriate modeling. Examples are given for a correlation between the change in the macroscopic performance parameters and effects to be seen on the microscopic level by defect analysis. Finally possible ways are out-lined for improving the radiation tolerance of silicon detectors either by operational conditions, process technology or defect engineering.

  3. Magnetic field influences on the lateral dose response functions of photon-beam detectors: MC study of wall-less water-filled detectors with various densities.

    Science.gov (United States)

    Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2017-06-21

    The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.

  4. Evaluation of slow shutdown system flux detectors in Point Lepreau Generating Station - I: dynamic response characterization

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, V.N.P. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Comeau, D. [New Brunswick Power Nuclear, Point Lepreau, New Brunswick (Canada); McKay, J.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Taylor, D. [New Brunswick Power Nuclear, Point Lepreau, New Brunswick (Canada)

    2009-07-01

    CANDU reactors are protected against reactor overpower by two independent shutdown systems: Shut Down System 1 and 2 (SDS1 and SDS2). At the Point Lepreau Generating Station (PLGS), the shutdown systems can be actuated by measurements of the neutron flux by Platinum-clad Inconel In-Core Flux Detectors (ICFDs). These detectors have a complex dynamic behaviour, characterized by 'prompt' and 'delayed' components with respect to immediate changes in the in-core neutron flux. The dynamic response components need to be determined accurately in order to evaluate the effectiveness of the detectors for actuating the shutdown systems. The amplitudes of the prompt and the delayed components of individual detectors were estimated over a period of several years by comparison of archived detector response data with the computed local neutron flux evolution for SDS1 and SDS2 reactor trips. This was achieved by custom-designed algorithms. The results of this analysis show that the dynamic response of the detectors changes with irradiation, with the SDS2 detectors having 'prompt' signal components that decreased significantly with irradiation. Some general conclusions about detector aging effects are also drawn. (author)

  5. Physics prospects and technical status of ATLAS Forward proton detectors

    CERN Document Server

    Giacobbe, Benedetto; The ATLAS collaboration

    2017-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The first arm of the system was installed last year and AFP took data in several commissioning and physics runs. The installation of the second arm is ongoing and will be completed in time for the 2017 data taking period. This will allow measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. The presentation will cover the physics programme, the early the experience from the first year of running, the status of the second-arm installation and the data taking plans.

  6. Current technology of particle physics detectors

    International Nuclear Information System (INIS)

    Ludlam, T.W.

    1986-01-01

    A brief discussion is given of the characteristics required of new accelerator facilities, leading into a discussion of the required detectors, including position sensitive detectors, particle identification, and calorimeters

  7. Energy and angular responses of the criticality accident detector using a plastic scintillator

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi

    2006-01-01

    The Japan Atomic Energy Agency (JAEA), Nuclear Fuel Cycle Engineering Laboratories, operates a spent fuel reprocessing plant and MOX (Plutonium-Uranium Mixed Oxide) fuel fabrication plants. Criticality accident detectors have been installed in these facilities. The detector, the Toshiba RD120, is composed of a plastic scintillator coupled to a photomultiplier tube, and an operational amplifier. The alarm triggering point is set to 1.0-3.6 mGy·h -1 in photon dose rate to detect the minimum accident of concern. However, a plastic scintillator is principally sensitive not only to primary photons but also to neutrons by secondary photons and heavy charged particles produced in the detector itself. The authors calculated energy and angular responses of the RD120 criticality accident detector to photons and neutrons using Monte Carlo computer codes. The response to primary photons was evaluated with the MCNP-4B and EGS4 calculations, and photon and X-ray irradiation experiments. The response to neutrons that produce secondary photons and heavy charged particles from neutron interactions was computed using the MCNP-4B and SCINFUL, respectively. As a result, reliable response functions were obtained. These results will be a great help in reassessing the coverage area and in determining the appropriate triggering dose rate level in criticality accidents. (author)

  8. Forward detectors around the CMS interaction point at LHC and their physics potential

    CERN Document Server

    Grothe, Monika

    2008-01-01

    Forward physics with CMS at the LHC covers a wide range of physics subjects, including very low-x QCD, underlying event and multiple interactions characteristics, gamma-mediated processes, shower development at the energy scale of primary cosmic ray interactions with the atmosphere, diffraction in the presence of a hard scale and even MSSM Higgs discovery in central exclusive production. We describe the forward detector instrumentation around the CMS interaction point and present selected feasibility studies to illustrate their physics potential.

  9. Energy response and compensation filters for pips detector

    International Nuclear Information System (INIS)

    Wang Lin; Ye Zhiyao; Dong Binjiang

    2007-01-01

    This paper introduces the analysis of energy response and the choice of proper compensation filters for PIPS detector. With PRESTA-CG program, filters conformed to the national standard of PRC were picked out by calculation. Then the chosen filters were tested through experiments. Good agreement was obtained between measured results and calculated values by Monte Carlo method. (authors)

  10. Proceedings of the workshop on radiation detector and its application

    International Nuclear Information System (INIS)

    1996-01-01

    This workshop was held from January 23 to 25, 1996 at National Laboratory for High Energy Physics. At the workshop, lectures were given on the development of the single ion detector using MCP in heavy ion microbeam device, the response of MCP to single heavy ion, the response of a superheated liquid drop type detector to low LET radiation, the response characteristics of a CR-39 flight track detector to hydrogen isotopes, the analysis of small nuclear flight tracks on CR-39 with an interatomic force microscope, charge-sensible amplifiers, the signal-processing circuit for position detection, time and depth-resolved measurement of ion tracks in condensed matter, the response of a thin Si detector to electrons, the method of expressing gas-amplifying rate curves in proportional count gas for low temperature, the characteristics of self annihilating streamer by ultraviolet laser, the development of slow positron beam using radioisotopes, the development of a tunnel junction type x-ray detector, the development of the pattern-analyzing system for PIXE spectra, the characteristics of NE213-CaF 2 bond type neutron detector and many others. In this report, the gists of these papers are collected. (K.I.)

  11. Physics Detector Simulation Facility Phase II system software description

    International Nuclear Information System (INIS)

    Scipioni, B.; Allen, J.; Chang, C.; Huang, J.; Liu, J.; Mestad, S.; Pan, J.; Marquez, M.; Estep, P.

    1993-05-01

    This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment

  12. Heavy Ion Physics at the LHC with the ATLAS Detector

    CERN Document Server

    Steinberg, P.

    2007-01-01

    The ATLAS detector at CERN will provide a high-resolution longitudinally-segmented calorimeter and precision tracking for the upcoming study of heavy ion collisions at the LHC (sqrt{s_{NN}=5520 GeV). The calorimeter covers |eta|<5 with both electromagnetic and hadronic sections, while the inner detector spectrometer covers |eta|<2.5. ATLAS will study a full range of observables necessary to characterize the hot and dense matter formed at the LHC. Global measurements (particle multiplicities, collective flow) will provide access into its thermodynamic and hydrodynamic properties. Measuring complete jets out to 100's of GeV will allow detailed studies of energy loss and its effect on jets. Quarkonia will provide a handle on deconfinement mechanisms. ATLAS will also study the structure of the nucleon and nucleus using forward physics probes and ultraperipheral collisions, both enabled by segmented Zero Degree Calorimeters.

  13. Heavy ion physics at the LHC with the ATLAS detector

    International Nuclear Information System (INIS)

    Steinberg, P

    2007-01-01

    The ATLAS detector at CERN will provide a high-resolution longitudinally segmented calorimeter and precision tracking for the upcoming study of heavy ion collisions at the LHC (√s NN = 5520 GeV). The calorimeter covers |η| < 5 with both electromagnetic and hadronic sections, while the inner detector spectrometer covers |η| < 2.5. ATLAS will study a full range of observables necessary to characterize the hot and dense matter formed at the LHC. Global measurements (particle multiplicities, collective flow) will provide access into its thermodynamic and hydrodynamic properties. Measuring complete jets out to 100's of GeV will allow detailed studies of energy loss and its effect on jets. Quarkonia will provide a handle on deconfinement mechanisms. ATLAS will also study the structure of the nucleon and nucleus using forward physics probes and ultraperipheral collisions, both enabled by segmented zero degree calorimeters

  14. Experimental research of plastic scintillation detector loaded 6Li neutron energy response

    International Nuclear Information System (INIS)

    Wang Lizong; Zhang Chuanfei; Peng Taiping; Guo Cun; Yang Hongqiong; Zhang Jianhua

    2005-01-01

    A new plastic scintillator, plastic scintillator loaded 6 Li, is brought forward and developed in this paper in order to increase low energy neutron sensitivity. Neutron sensitivity of several plastic scintillation detectors loaded 6 Li new developed in neutron energy range 0.2 MeV-5.0 MeV are calibrated by direct current at serial accelerator. Energy response curves of the detectors are obtained in this experiment. It is shown that this new plastic scintillation detector can increase low energy neutron sensitivity in experimental results. (authors)

  15. [Research in high energy physics

    International Nuclear Information System (INIS)

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  16. Implementation of a Large Scale Control System for a High-Energy Physics Detector: The CMS Silicon Strip Tracker

    CERN Document Server

    Masetti, Lorenzo; Fischer, Peter

    2011-01-01

    Control systems for modern High-Energy Physics (HEP) detectors are large distributed software systems managing a significant data volume and implementing complex operational procedures. The control software for the LHC experiments at CERN is built on top of a commercial software used in industrial automation. However, HEP specific requirements call for extended functionalities. This thesis focuses on the design and implementation of the control system for the CMS Silicon Strip Tracker but presents some general strategies that have been applied in other contexts. Specific design solutions are developed to ensure acceptable response times and to provide the operator with an effective summary of the status of the devices. Detector safety is guaranteed by proper configuration of independent hardware systems. A software protection mechanism is used to avoid the widespread intervention of the hardware safety and to inhibit dangerous commands. A wizard approach allows non expert operators to recover error situations...

  17. Summary of the very large hadron collider physics and detector workshop

    International Nuclear Information System (INIS)

    Anderson, G.; Berger, M.; Brandt, A.; Eno, S.

    1997-01-01

    One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV

  18. Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    CERN Document Server

    Locci, E.; Dehos, C.; De Lurgio, P.; Djurcic, Z.; Drake, G.; Gimenez, J. L. Gonzalez; Gustafsson, L.; Kim, D.W.; Roehrich, D.; Schoening, A.; Siligaris, A.; Soltveit, H.K.; Ullaland, K.; Vincent, P.; Wiednert, D.; Yang, S.; Brenner, R.

    2015-01-01

    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that m...

  19. Determination of the response function for the Portsmouth Gaseous Diffusion Plant criticality accident alarm system neutron detectors

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; Brown, A.S.; Dobelbower, M.C.; Woollard, J.E.

    1997-03-01

    Neutron-sensitive radiation detectors are used in the Portsmouth Gaseous Diffusion Plant's (PORTS) criticality accident alarm system (CAAS). The CAAS is composed of numerous detectors, electronics, and logic units. It uses a telemetry system to sound building evacuation horns and to provide remote alarm status in a central control facility. The ANSI Standard for a CAAS uses a free-in-air dose rate to define the detection criteria for a minimum accident-of-concern. Previously, the free-in-air absorbed dose rate from neutrons was used for determining the areal coverge of criticality detection within PORTS buildings handling fissile materials. However, the free-in-air dose rate does not accurately reflect the response of the neutron detectors in use at PORTS. Because the cost of placing additional CAAS detectors in areas of questionable coverage (based on a free-in-air absorbed dose rate) is high, the actual response function for the CAAS neutron detectors was determined. This report, which is organized into three major sections, discusses how the actual response function for the PORTS CAAS neutron detectors was determined. The CAAS neutron detectors are described in Section 2. The model of the detector system developed to facilitate calculation of the response function is discussed in Section 3. The results of the calculations, including confirmatory measurements with neutron sources, are given in Section 4

  20. Fast microchannel plate detector for particles

    International Nuclear Information System (INIS)

    Wurz, P.; Gubler, L.

    1996-01-01

    In this article we report on the timing capabilities of a new microchannel plate detector we designed and built. The detector assembly has an impedance-matched transition line (50 Ω line resistance) from anode to cable connector which is considerably smaller than other, commercially available solutions and at the same time has about four times the active area. The detector was tested with an alpha particle source and excellent time response was achieved. Using 10 μm pore size channel plates, a rise time of 300 ps and a pulse width of 520 ps are obtained. The details of the signal analysis are also given in the article. copyright 1996 American Institute of Physics

  1. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  2. Sound response of superheated drop bubble detectors to neutrons

    International Nuclear Information System (INIS)

    Gao Size; Chen Zhe; Liu Chao; Ni Bangfa; Zhang Guiying; Zhao Changfa; Xiao Caijin; Liu Cunxiong; Nie Peng; Guan Yongjing

    2012-01-01

    The sound response of the bubble detectors to neutrons by using 252 Cf neutron source was described. Sound signals were filtered by sound card and PC. The short-time signal energy. FFT spectrum, power spectrum, and decay time constant were got to determine the authenticity of sound signal for bubbles. (authors)

  3. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  4. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    KAUST Repository

    Kuntz, Katanya B.; Wheatley, Trevor A.; Song, Hongbin; Webb, James G.; Mabrok, Mohamed; Huntington, Elanor H.; Yonezawa, Hidehiro

    2017-01-01

    Precise knowledge of an optical device's frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity's optical response as a function of modulation frequency, which is also used to determine the modulator's frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity's characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

  5. Evaluation of the x-ray response of a position-sensitive microstrip detector with an integrated readout chip

    International Nuclear Information System (INIS)

    Rossington, C.; Jaklevic, J.; Haber, C.; Spieler, H.; Reid, J.

    1990-08-01

    The performance of an SVX silicon microstrip detector and its compatible integrated readout chip have been evaluated in response to Rh Kα x-rays (average energy 20.5 keV). The energy and spatial discrimination capabilities, efficient data management and fast readout rates make it an attractive alternative to the CCD and PDA detectors now being offered for x-ray position sensitive diffraction and EXAFS work. The SVX system was designed for high energy physics applications and thus further development of the existing system is required to optimize it for use in practical x-ray experiments. For optimum energy resolution the system noise must be decreased to its previously demonstrated low levels of 2 keV FWHM at 60 keV or less, and the data handling rate of the computer must be increased. New readout chips are now available that offer the potential of better performance. 15 refs., 7 figs

  6. Evaluation of the detector response function digital conventional radiology; Evaluacion de la funcion de respuesta del detector degital en radiologia convencional. Obtencion de la funcion de referencia

    Energy Technology Data Exchange (ETDEWEB)

    Arino Gil, A.; Hernandez Rodriguez, J.; Mateos Salvador, P.; Rodriguez Lopez, B.; Font Gelabert, J. C.

    2013-07-01

    The objective of this work is to obtain the response function that relates the air kerma at the entrance of the detector and pixel value, for a series of digital detectors of conventional Radiology model Optimus DigitalDiagnost Philips () and 6000 Definium General Electric. From the set of measurements is obtained a response function for each reference type of detector, and compared with those published in the literature for these teams. (Author)

  7. The use of production management techniques in the construction of large scale physics detectors

    CERN Document Server

    Bazan, A; Estrella, F; Kovács, Z; Le Flour, T; Le Goff, J M; Lieunard, S; McClatchey, R; Murray, S; Varga, L Z; Vialle, J P; Zsenei, M

    1999-01-01

    The construction process of detectors for the Large Hadron Collider (LHC) experiments is large scale, heavily constrained by resource availability and evolves with time. As a consequence, changes in detector component design need to be tracked and quickly reflected in the construction process. With similar problems in industry engineers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so- called Workflow Management software (WfMS) to coordinate production work processes. However, PDM and WfMS software are not generally integrated in industry. The scale of LHC experiments, like CMS, demands that industrial production techniques be applied in detector construction. This paper outlines the major functions and applications of the CRISTAL system (Cooperating Repositories and an information System for Tracking Assembly Lifecycles) in use in CMS which successfully integrates PDM and WfMS techniques in managing large scale physics detector ...

  8. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  9. Response of a BGO detector to photon and neutron sources simulations and measurements

    CERN Document Server

    Vincke, H H; Fabjan, Christian Wolfgang; Otto, T

    2002-01-01

    In this paper Monte Carlo simulations (FLUKA) and measurements of the response of a BGO detector are reported. %For the measurements different radioactive sources were used to irradiate the BGO crystal. For the measurements three low-energy photon emitters $\\left({}^{60}\\rm{Co},\\right.$ ${}^{54}\\rm{Mn},$ $\\left. {}^{137}\\rm{Cs}\\right)$ were used to irradiate the BGO from various distances and angles. The neutron response was measured with an Am--Be neutron source. Simulations of the experimental irradiations were carried out. Our study can also be considered as a benchmark for FLUKA in terms of its reliability to predict the detector response of a BGO scintillator.

  10. Ex-core detector response caused by control rod misalignment observed during operation of the reactor on the nuclear ship Mutsu

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Miyoshi, Yoshinori; Gakuhari, Kazuhiko; Okada, Noboru; Sakai, Tomohiro

    1993-01-01

    Unexpected deviations of ex-core neutron detector signals were observed during a voyage of the Japanese nuclear ship, Mutsu. From detailed three-dimensional analyses, this phenomenon was determined to be caused by an asymmetrical neutron source distribution in the core due to a small misalignment between the two control rods of a control rod group. A systematic ex-core detector response experiment was performed during the Mutsu's third experimental voyage to gain some understanding of the relationship between the control rod pattern and the detector response characteristics. Results obtained from analyses of the experiment indicate that the Crump-Lee technique, using calculated three-dimensional source distributions for various control rod patterns, provides good agreement between the calculated and measured detector responses. Xenon transient analyses were carried out to generate accurate three-dimensional source distributions for predicting the time-dependent detector response characteristics. Two types of ex-core detector responses are caused by changes in the control rod pattern in the Mutsu reactor: the detector response ratio tends to decrease with the withdrawal of a group of control rods as a pair, and a difference in the positions of the control rods in a group causes signal deviations among the four ex-core detectors. Control rod misalignment does not greatly affect the mean value of the four detector signals, and the deviation can be minimized if the two rods within a group are set at the same elevation at the time of detector calibration

  11. Handling and Transport of Oversized Accelerator Components and Physics Detectors

    CERN Document Server

    Prodon, S; Guinchard, M; Minginette, P

    2006-01-01

    For cost, planning and organisational reasons, it is often decided to install large pre-built accelerators components and physics detectors. As a result surface exceptional transports are required from the construction to the installation sites. Such heavy transports have been numerous during the LHC installation phase. This paper will describe the different types of transport techniques used to fit the particularities of accelerators and detectors components (weight, height, acceleration, planarity) as well as the measurement techniques for monitoring and the logistical aspects (organisation with the police, obstacles on the roads, etc). As far as oversized equipment is concerned, the lowering into the pit is challenging, as well as the transport in tunnel galleries in a very scare space and without handling means attached to the structure like overhead travelling cranes. From the PS accelerator to the LHC, handling systems have been developed at CERN to fit with these particular working conditions. This pap...

  12. Monte Carlo simulation of the response functions of Cd Te detectors to be applied in X-rays spectroscopy

    International Nuclear Information System (INIS)

    Tomal, A.; Lopez G, A. H.; Santos, J. C.; Costa, P. R.

    2014-08-01

    In this work, the energy response functions of a Cd Te detector were obtained by Monte Carlo simulation in the energy range from 5 to 150 keV, using the Penelope code. The response functions simulated included the finite detector resolution and the carrier transport. The simulated energy response matrix was validated through comparison with experimental results obtained for radioactive sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a Cd Te detector (model Xr-100-T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the Cd Te exhibit good energy response at low energies (below 40 keV), showing only small distortions on the measured spectra. For energies below about 70 keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by different models from the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieve more accurate spectra from which several qualities parameters (i.e. half-value layer, effective energy and mean energy) can be determined. (Author)

  13. Monte Carlo simulation of the response functions of Cd Te detectors to be applied in X-rays spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tomal, A. [Universidade Federale de Goias, Instituto de Fisica, Campus Samambaia, 74001-970, Goiania, (Brazil); Lopez G, A. H.; Santos, J. C.; Costa, P. R., E-mail: alessandra_tomal@yahoo.com.br [Universidade de Sao Paulo, Instituto de Fisica, Rua du Matao Travessa R. 187, Cidade Universitaria, 05508-090 Sao Paulo (Brazil)

    2014-08-15

    In this work, the energy response functions of a Cd Te detector were obtained by Monte Carlo simulation in the energy range from 5 to 150 keV, using the Penelope code. The response functions simulated included the finite detector resolution and the carrier transport. The simulated energy response matrix was validated through comparison with experimental results obtained for radioactive sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a Cd Te detector (model Xr-100-T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the Cd Te exhibit good energy response at low energies (below 40 keV), showing only small distortions on the measured spectra. For energies below about 70 keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by different models from the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieve more accurate spectra from which several qualities parameters (i.e. half-value layer, effective energy and mean energy) can be determined. (Author)

  14. The social structure of ''experimental'' strings at Fermilab; a physics and detector driven model

    International Nuclear Information System (INIS)

    Bodnarczuk, M.

    1990-01-01

    Physicists in HEP have been forced to organize large scientific projects without a well defined organizational or sociological model to guide them. In the absence of such models, what structures do experimentalists use to develop social structures in HEP? In this paper, I claim that physicists organize around what they know best, the physics problems they study and the detectors and devices they study them with. After describing the advent of ''management'' in HEP, I use a case study of 4 Fermilab experiments as the base upon which to propose a physics and detector driven model of social structure for experiments. In addition, I show how this model can be extended to describe ''strings'' of experiments, where continuities of physics interests, spectrometer design, and a core group of physicists become a definable sociological unit that can exist for over 15 years. A dominate theme that emerges from my analysis is the conscious attempt on the part of experimenters to remove the uncertainties that are part of the practice of HEP

  15. Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector.

    Science.gov (United States)

    Lim, Geunsik; Manzur, Tariq; Kar, Aravinda

    2011-06-10

    An uncooled mid-wave infrared (MWIR) detector is developed by doping an n-type 4H-SiC with Ga using a laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide and a wide bandgap semiconductor. The dopant creates an energy level of 0.30  eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21  μm. The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refractive index, and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the detector, can be measured remotely with a laser beam, such as a He-Ne laser. This capability of measuring the detector response remotely makes it a wireless detector. The variation of refractive index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refractive index of the doped sample, indicating that the detector is suitable for applications at the 4.21  μm wavelength.

  16. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    KAUST Repository

    Kuntz, Katanya B.

    2017-01-09

    Precise knowledge of an optical device\\'s frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity\\'s optical response as a function of modulation frequency, which is also used to determine the modulator\\'s frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity\\'s characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

  17. Response function study of a scintillator detector of NaI(Tl)

    International Nuclear Information System (INIS)

    Villa, Marcelo Barros; Costa, Alessandro Martins da

    2014-01-01

    In measurements of gamma rays with Nai (Tl) scintillator, the detectors output data are pulse height spectra, that corresponding to distorted information about the radiation source due to various errors associated with the crystal scintillation process and electronics associated, instead of power spectra photons. Pulse height spectra are related to the real power spectra by means of scintillator detector response function NaI (Tl). In this work, the response function for a cylindrical crystal of Nal (Tl) of 7,62 x 7,62 cm (diameter x length) was studied, by Monte Carlo method, using the EGSnrc tool to model the transport of radiation, combined with experimental measurements. An inverse response matrix, even with the energy of the square root, which transforms the pulse height spectrum of photon energy spectrum was obtained. The results of this transformation of pulse height spectrum for photon energy spectrum is presented, showing that the methodology employed in this study is suitable

  18. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  19. Mean-variance analysis of block-iterative reconstruction algorithms modeling 3D detector response in SPECT

    Science.gov (United States)

    Lalush, D. S.; Tsui, B. M. W.

    1998-06-01

    We study the statistical convergence properties of two fast iterative reconstruction algorithms, the rescaled block-iterative (RBI) and ordered subset (OS) EM algorithms, in the context of cardiac SPECT with 3D detector response modeling. The Monte Carlo method was used to generate nearly noise-free projection data modeling the effects of attenuation, detector response, and scatter from the MCAT phantom. One thousand noise realizations were generated with an average count level approximating a typical T1-201 cardiac study. Each noise realization was reconstructed using the RBI and OS algorithms for cases with and without detector response modeling. For each iteration up to twenty, we generated mean and variance images, as well as covariance images for six specific locations. Both OS and RBI converged in the mean to results that were close to the noise-free ML-EM result using the same projection model. When detector response was not modeled in the reconstruction, RBI exhibited considerably lower noise variance than OS for the same resolution. When 3D detector response was modeled, the RBI-EM provided a small improvement in the tradeoff between noise level and resolution recovery, primarily in the axial direction, while OS required about half the number of iterations of RBI to reach the same resolution. We conclude that OS is faster than RBI, but may be sensitive to errors in the projection model. Both OS-EM and RBI-EM are effective alternatives to the EVIL-EM algorithm, but noise level and speed of convergence depend on the projection model used.

  20. Response of Moxon-Rae type gamma detectors for neutron capture cross section measurements

    International Nuclear Information System (INIS)

    Iyengar, K.V.K.; Lal, B.; Jhingan, M.L.

    1974-01-01

    A detector devised by Moxon and Rae for the absolute measurement of (n,γ) cross sections is briefly described. This detector is supposed to have an efficiency per MeV of γ-ray energy independent of the energy of the γ-rays. Such a detector consists of an electron converter placed before a thin plastic scintillator which detects the electron emitted by interaction of the γ-ray in the converter. The performance of this type of detector depends on the thickness and composition of the converter. Detailed Monte-Carlo calculations of the response for γ-ray energies from 0.2 to 12 MeV has been carried out for elements ranging from C to Bi and for a mixture of elements as well as for a mixture of an element plus compound, to find out the suitable material and thickness of the converter. Among the elements studied for the converter, Ni, Mo and Sn have a uniform response over the photon energy range 1-12 MeV. Out of these elements Mo has a low neutron capture cross section in the energy range 1-1000 keV and is thus to be preferred. A mixture of C + Bi 2 O 3 in the weight ratio 11.6 : 88.4 gives a uniform response over the photon energy range 1-12 MeV. (K.B.)

  1. The use of production management techniques in the construction of large scale physics detectors

    International Nuclear Information System (INIS)

    Bazan, A.; Chevenier, G.; Estrella, F.

    1999-01-01

    The construction process of detectors for the Large Hadron Collider (LHC) experiments is large scale, heavily constrained by resource availability and evolves with time. As a consequence, changes in detector component design need to be tracked and quickly reflected in the construction process. With similar problems in industry engineers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so-called Product Data Management (PDM) systems to control access to documented versions of designs and managers employ so-called Workflow Management Software (WfMS) to coordinate production work processes. However, PDM and WfMS software are not generally integrated in industry. The scale of LHC experiments, like CMS, demands that industrial production techniques be applied in detector construction. This paper outlines the major functions and applications of the CRISTAL system (Cooperating Repositories and an Information System for Tracking Assembly Lifecycles) in use in CMS which successfully integrates PDM and WfMS techniques in managing large scale physics detector construction. This is the first time industrial production techniques have been deployed to this extent in detector construction

  2. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    International Nuclear Information System (INIS)

    Heath, Robert M.; Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-01-01

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime

  3. Commissioning of the CMS muon detector and development of generic search strategies for new physics

    International Nuclear Information System (INIS)

    Biallass, Philipp Alexander

    2009-01-01

    The detection and reconstruction of cosmic muon rays is important for the commissioning phase and alignment of the Compact Muon Solenoid experiment (CMS), in particular during the early phases of operation with physics collisions. In this context the Magnet Test/Cosmic Challenge (MTCC) with its comprehensive cosmic data taking periods including the presence of the magnetic field has been like a dress rehearsal of detector hardware and software for the upcoming start-up of the CMS detector. In addition to data taking also the comparison with simulated events is a crucial part of physics analyses. The first part of this thesis introduces a new cosmic muon generator, CMSCGEN, and it presents its validation by comparing its predictions with data from MTCC. As an example, results from a reconstruction study using the barrel muon system are shown, comparing data and Monte Carlo prediction at the level of single chambers up to reconstructed tracks including momentum measurements. Since leptons (electrons, muons) constitute very clean signatures for signals of new physics these commissioning and alignment procedures are also vital to most physics analyses. In the second part of this thesis a model independent search approach for new physics within CMS is presented, utilizing events with leptons and relying only on the knowledge of the Standard Model simulation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Due to the absence of a theoretical bias this approach is sensitive to a variety of models, including those not yet thought of. Within this feasibility study events are classified according to their particle content (muons, electrons, photons, jets, missing energy) into so called event classes. A broad scan of various distributions is performed, identifying significant deviations from the SM Monte Carlo simulation. The importance of systematic uncertainties is outlined, which are taken into account rigorously

  4. Commissioning of the CMS muon detector and development of generic search strategies for new physics

    Energy Technology Data Exchange (ETDEWEB)

    Biallass, Philipp Alexander

    2009-03-27

    The detection and reconstruction of cosmic muon rays is important for the commissioning phase and alignment of the Compact Muon Solenoid experiment (CMS), in particular during the early phases of operation with physics collisions. In this context the Magnet Test/Cosmic Challenge (MTCC) with its comprehensive cosmic data taking periods including the presence of the magnetic field has been like a dress rehearsal of detector hardware and software for the upcoming start-up of the CMS detector. In addition to data taking also the comparison with simulated events is a crucial part of physics analyses. The first part of this thesis introduces a new cosmic muon generator, CMSCGEN, and it presents its validation by comparing its predictions with data from MTCC. As an example, results from a reconstruction study using the barrel muon system are shown, comparing data and Monte Carlo prediction at the level of single chambers up to reconstructed tracks including momentum measurements. Since leptons (electrons, muons) constitute very clean signatures for signals of new physics these commissioning and alignment procedures are also vital to most physics analyses. In the second part of this thesis a model independent search approach for new physics within CMS is presented, utilizing events with leptons and relying only on the knowledge of the Standard Model simulation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Due to the absence of a theoretical bias this approach is sensitive to a variety of models, including those not yet thought of. Within this feasibility study events are classified according to their particle content (muons, electrons, photons, jets, missing energy) into so called event classes. A broad scan of various distributions is performed, identifying significant deviations from the SM Monte Carlo simulation. The importance of systematic uncertainties is outlined, which are taken into account rigorously

  5. Precise measurement of internal sense-wire locations in high-energy physics detectors

    International Nuclear Information System (INIS)

    Dunn, W.L.; O'Foghludha, F.; Yacount, A.M.

    1992-01-01

    Cylindrical straw tubes that contain central sense wires (as anodes) are commonly employed in high-energy and nuclear physics experiments to track charged particles through regions of large detectors. The outer tracking region of the proposed Solenoidal Detector Collaboration (SDC) detector for future experiments at the Superconducting Super Collider (SSC), for instance, is expected to contain more than a hundred thousand 4-mm-diam straw tube drift cells arranged in five cylindrically concentric superlayers. The superlayers will be made up of modules having roughly trapezoidal cross sections. The modules will be up to 4 m long and will contain ∼200 straws each, arranged in either six or eight layers. The module shells are expected to be made of thin but nontransparent carbon/epoxy composite material and the straws of mylar or kapton, which has been coated on the inside with a thin (∼0.15-μm) layer of copper. A precise knowledge of the locations of the sense wires in these modules is crucial to the intended particle tracking

  6. Measurement of the Energy-Dependent Angular Response of the ARES Detector System and Application to Aerial Imaging

    Science.gov (United States)

    Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen

    2017-07-01

    The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.

  7. Measurement of detector neutron energy response using time-of-flight techniques

    International Nuclear Information System (INIS)

    Janee, H.S.

    1973-09-01

    The feasibility of using time-of-flight techniques at the EG and G/AEC linear accelerator for measuring the neutron response of relatively sensitive detectors over the energy range 0.5 to 14 MeV has been demonstrated. The measurement technique is described in detail as are the results of neutron spectrum measurements from beryllium and uranium photoneutron targets. The sensitivity of a fluor photomultiplier LASL detector with a 2- by 1-inch NE-111 scintillator was determined with the two targets, and agreement in the region of overlap was very good. (U.S.)

  8. Time response characteristics of X-ray detector system on Silex-Ⅰ laser facility

    International Nuclear Information System (INIS)

    Yi Rongqing; He Xiao'an; Li Hang; Du Huabing; Zhang Haiying; Cao Zhurong

    2013-01-01

    On the Silex-Ⅰ laser facility, the time response characteristics of XRD detector were studied. A laser with a pulse of 32 fs and a wavelength of 800 nm was used to irradiate a plane Au target. X-ray calibrated method of time of exposure X-ray framing camera and time resolution of X-ray streak camera was explored. The time response characteristics of XRD detector and time process of X-ray emission were obtained from experiment. We obtained X-ray calibration method of time of exposure X-ray framing camera and time resolution of X-ray streak camera. (authors)

  9. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.

    Science.gov (United States)

    Ebenau, Melanie; Radeck, Désirée; Bambynek, Markus; Sommer, Holger; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2016-08-01

    Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm(3)) made from the commonly used plastic scintillator BC400. Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a (60)Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks' formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks' formula was determined to be kB = (12.3 ± 0.9) mg MeV(-1) cm(-2). The energy response was quantified relative to the response to (60)Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the

  10. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy

    Energy Technology Data Exchange (ETDEWEB)

    Ebenau, Melanie, E-mail: melanie.ebenau@tu-dortmunde.de; Sommer, Holger; Spaan, Bernhard; Eichmann, Marion [Fakultät Physik, Technische Universität Dortmund, Otto-Hahn Str. 4a, 44221 Dortmund (Germany); Radeck, Désirée; Bambynek, Markus [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Flühs, Dirk [Universitätsklinikum Essen, Hufelandstr. 55, 45147 Essen (Germany)

    2016-08-15

    Purpose: Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm{sup 3}) made from the commonly used plastic scintillator BC400. Methods: Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a {sup 60}Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks’ formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. Results: The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks’ formula was determined to be kB = (12.3 ± 0.9) mg MeV{sup −1} cm{sup −2}. Conclusions: The energy response was quantified relative to the response to {sup 60}Co which is the common radiation quality for the calibration of therapy dosemeters. The

  11. Advanced interferometric gravitational-wave detectors

    CERN Document Server

    Saulson, Peter R

    2019-01-01

    Gravitational waves are one of the most exciting and promising emerging areas of physics and astrophysics today. The detection of gravitational waves will rank among the most significant physics discoveries of the 21st century.Advanced Interferometric Gravitational-Wave Detectors brings together many of the world's top experts to deliver an authoritative and in-depth treatment on current and future detectors. Volume I is devoted to the essentials of gravitational-wave detectors, presenting the physical principles behind large-scale precision interferometry, the physics of the underlying noise sources that limit interferometer sensitivity, and an explanation of the key enabling technologies that are used in the detectors. Volume II provides an in-depth look at the Advanced LIGO and Advanced Virgo interferometers that have just finished construction, as well as examining future interferometric detector concepts. This two-volume set will provide students and researchers the comprehensive background needed to und...

  12. Large underground, liquid based detectors for astro-particle physics in Europe scientific case and prospects

    CERN Document Server

    Autiero, D; Badertscher, A; Bezrukov, L; Bouchez, J; Bueno, A; Busto, J; Campagne, J -E; Cavata, C; De Bellefon, A; Dumarchez, J; Ebert, J; Enqvist, T; Ereditato, A; Von Feilitzsch, F; Perez, P Fileviez; Goger-Neff, M; Gninenko, S; Gruber, W; Hagner, C; Hess, M; Hochmuth, K A; Kisiel, J; Knecht, L; Kreslo, I; Kudryavtsev, V A; Kuusiniemi, P; Lachenmaier, T; Laffranchi, M; Lefièvre, B; Lightfoot, P K; Lindner, M; Maalampi, J; Maltoni, M; Marchionni, A; Undagoitia, T Marrodan; Meregaglia, A; Messina, M; Mezzetto, M; Mirizzi, A; Mosca, L; Moser, U; Müller, A; Natterer, G; Oberauer, L; Otiougova, P; Patzak, T; Peltoniemi, J; Potzel, W; Pistillo, C; Raffelt, G G; Rondio, E; Roos, M; Rossi, B; Rubbia, André; Savvinov, N; Schwetz, T; Sobczyk, J; Spooner, N J C; Stefan, D; Tonazzo, A; Trzaska, W; Ulbricht, J; Volpe, C; Winter, J; Wurm, M; Zalewska-Bak, A; Zimmermann, R

    2007-01-01

    This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large-scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatus employ three different and, to some extent, complementary detection techniques: GLACIER (liquid Argon TPC), LENA (liquid scintillator) and MEMPHYS (\\WC), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to open and outstanding physics issues such as the search for matter instability, the detection of astrophysical- and geo-neutrinos and to the possible use of these detectors in future high-intensity neutrino beams.

  13. Operation of heavily irradiated silicon detectors in non-depletion mode

    International Nuclear Information System (INIS)

    Verbitskaya, E.; Eremin, V.; Ilyashenko, I.; Li, Z.; Haerkoenen, J.; Tuovinen, E.; Luukka, P.

    2006-01-01

    The non-depletion detector operation mode has generally been disregarded as an option in high-energy physics experiments. In this paper, the non-depletion operation is examined by detailed analysis of the electric field distribution and the current pulse response of heavily irradiated silicon (Si) detectors. The previously reported model of double junction in heavily irradiated Si detector is further developed and a simulation of the current pulse response has been performed. It is shown that detectors can operate in a non-depletion mode due to the fact that the value of the electric field in a non-depleted region is high enough for efficient carrier drift. This electric field originates from the current flow through the detector and a consequent drop of the potential across high-resistivity bulk of a non-depleted region. It is anticipated that the electric field in a non-depleted region, which is still electrically neutral, increases with fluence that improves the non-depleted detector operation. Consideration of the electric field in a non-depleted region allows the explanation of the recorded double-peak current pulse shape of heavily irradiated Si detectors and definition of the requirements for the detector operational conditions. Detailed reconstruction of the electric field distribution gives new information on radiation effects in Si detectors

  14. Simulations of the Response of the Cluster Detector/Scintillator Wall for the 4π facility at SIS/ESR using the GEANT Detector program

    International Nuclear Information System (INIS)

    Herrmann, N.; Maguire, C.F.; Cerruti, C.; Coffin, J.P.; Fintz, P.; Guillaume, G.; Jundt, F.; Rami, F.; Tezkratt, R.; Wagner, P.

    1990-01-01

    The expected response of the cluster detector/scintillator wall of the SIS/ESR 4π facility has been investigated with the use of the GEANT detector program and the FREESCO event generator code. Results are presented and discussed. It is shown in particular that the efficiency of the track reconstruction method should be acceptable

  15. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  16. Neutronic analysis of the Three Mile Island Unit 2 ex-core detector response

    International Nuclear Information System (INIS)

    Malloy, D.J.; Chang, Y.I.

    1981-10-01

    A neutronic analysis has been made with respect to the ex-core neutron detector response during the TMI-2 incident. A series of transport theory calculations quantified the impact upon the detector count rate of various core and downcomer conditions. In particular, various combinations of coolant void content and spatial distributions were investigated to yield the resulting transmission of the photoneutron source to the detector. The impact of a hypothetical distributed source within the downcomer region was also examined in order to simulate the potential effect of the release of neutron producing fission products into the coolant. These results are then offered as potential explanations for the anomalous behavior of the detector during the period of approx. 20 minutes through approx. 3 hours following the reactor scram

  17. Investigating the response of Micromegas detector to low-energy neutrons using Monte Carlo simulation

    Science.gov (United States)

    Khezripour, S.; Negarestani, A.; Rezaie, M. R.

    2017-08-01

    Micromegas detector has recently been used for high-energy neutron (HEN) detection, but the aim of this research is to investigate the response of the Micromegas detector to low-energy neutron (LEN). For this purpose, a Micromegas detector (with air, P10, BF3, 3He and Ar/BF3 mixture) was optimized for the detection of 60 keV neutrons using the MCNP (Monte Carlo N Particle) code. The simulation results show that the optimum thickness of the cathode is 1 mm and the optimum of microgrid location is 100 μm above the anode. The output current of this detector for Ar (3%) + BF3 (97%) mixture is greater than the other ones. This mixture is considered as the appropriate gas for the Micromegas neutron detector providing the output current for 60 keV neutrons at the level of 97.8 nA per neutron. Consecuently, this detector can be introduced as LEN detector.

  18. Response of CVD diamond detectors to alpha radiation

    Energy Technology Data Exchange (ETDEWEB)

    Souw, E.-K. [Brookhaven National Lab., Upton, NY (United States); Meilunas, R.J. [Northrop-Grumman Corporation, Bethpage, NY 11714-3582 (United States)

    1997-11-21

    This article describes some results from an experiment with CVD diamond films used as {alpha} particle detectors. It demonstrates that bulk polarization can be effectively stopped within a reasonable time interval. This will enable detector calibration and quantitative measurement. A possible mechanism for the observed polarization quenching is discussed. It involves two types of carrier traps and a tentative band-gap model derived from the results of photoconductive current measurements. The experiment was set up mainly to investigate {alpha} detection properties of polycrystalline diamond films grown by the technique of microwave plasma enhanced chemical vapor deposition. For comparison, two commercially purchased diamond wafers were also investigated, i.e., one grown by the DC arc jet method, and the other, a type-IIa natural diamond wafer (not preselected). The best response to {alpha} particles was obtained using diamond thin-films grown by the microwave PECVD method, followed by the type-IIa natural diamond, and finally, the CVD diamond grown by the DC arc jet technique. (orig.). 43 refs.

  19. Report of the specialized detector group

    International Nuclear Information System (INIS)

    Witherell, M.S.

    1984-01-01

    The Specialized Detector Group was assigned the task of studying the types of detectors, other than general purpose detectors, that might be suitable for the SSC. At the start of the Snowmass workshop, a number of physics topics were identified which could call for a specialized detector. The modest size of the specialized detector group dictated that we concentrate on a few of these detectors, and not try to consider all candidates. Subgroups were formed for each type of detector, and they worked completely independently on their very different problems. The members of a subgroup were also members of the corresponding group within the Physics area. Because of the wide variety of problems faced by the various subgroups, the detectors will be described in separate papers within these proceedings (some of them within the Physics group reports). Thus, this report gives a summary of these designs and discusses some general considerations

  20. New neutrino detection technology: application of massive water detectors to accelerator neutrino physics

    International Nuclear Information System (INIS)

    Sulak, L.

    1982-01-01

    In surveying the field of new detector technology, it appears that the advent of massive, inexpensive water Cerenkov detectors may have a significant impact on future neutrino physics. These detectors offer the volumes necessary to perform experiments at very low fluxes, for example with long neutrino flight paths or with rare neutrino species (e.g. upsilon/sub e/. As an illustration of the potential on the new techniques, we consider in detail an experiment dedicated to the study of the time evolution of a neutrino beam enriched with #betta# /sub e/'s. The highest fluexes f #betta# /sub e/ appear to be achieved with current beam lines at the Brookhaven AGS or the CERN PS. An array of massive, inexpensive detectors allows a configuration optimized for good sensitivity to neutrino eigenmass differences from 0.6 eV to 20 eV and mixing angles down to 15 0 (comparable to the Cabibbo angle). The #betta# /sub e/ beam is formed using k 0 /sub e/ 3 decays. A simultaneously produced #betta#sigma phi beam from K 0 /sub e/ 3 decay serves as the normalizer. Pion generated #betta#sigma phi's are suppressed to limit background. The detector consists of a series of seven water Cerenkov modules (each with 175T fiducial mass), judiciously spaced along the #betta# line to provide flight paths from 40m to 1000m. Simulation and reconstruction neutrino events in a detector similar to the one considered show sufficient resolution in angle, energy, position and event timing relative to the beam

  1. Modifications in track registration response of PADC detector by energetic protons

    CERN Document Server

    Dwivedi, K K; Fink, D; Mishra, R; Tripathy, S P; Kulshreshtha, A; Khathing, D T

    1999-01-01

    It has been well established that different ionising radiations modify the track registration properties of dielectric solids. In an effort to study the response of Polyallyl diglycol carbonate (PADC Homalite) detector towards fission fragment, PADC detectors were exposed to 10 sup 4 Gy dose of 62 MeV protons and then one set of samples were exposed to fission fragments from a sup 2 sup 5 sup 2 Cf source. Two of these detectors were containing a thin layer of Buckminsterfullerene (C sub 6 sub 0). The study of the etched tracks by Leitz Optical Microscope reveals that the track diameters are enhanced by more than 70% in the proton irradiated zone as compared to that in the unirradiated zone. Scanning Electron Microscopy was performed after etching the sample in 6 N NaOH at 55 deg. C for different etching times, to study the details of the surface modifications due to proton irradiation of PADC detectors with and without C sub 6 sub 0 layer. Our observations revealed that the diameters and density of proton tra...

  2. LCDD: A complete detector description package

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Norman, E-mail: Norman.Graf@slac.stanford.edu; McCormick, Jeremy, E-mail: Jeremy.McCormick@slac.stanford.edu

    2015-07-21

    LCDD has been developed to provide a complete detector description package for physics detector simulations using Geant4. All aspects of the experimental setup, such as the physical geometry, magnetic fields, and sensitive detector readouts, as well as control of the physics simulations, such as physics processes, interaction models and kinematic limits, are defined at runtime. Users are therefore able to concentrate on the design of the detector system without having to master the intricacies of C++ programming or being proficient in setting up their own Geant4 application. We describe both the XML-based file format and the processors which communicate this information to the underlying Geant4 simulation toolkit.

  3. 239pu alpha spectrum analysis based on PIPS detector response function and variations with vacuum and distance

    Institute of Scientific and Technical Information of China (English)

    Rui Shi; Xian-Guo Tuo; Huai-Liang Li; Jian-Bo Yang; Yi Cheng; Hong-Long Zheng

    2017-01-01

    Effect factors of the absorption of the source,air,entrance window,and dead layer of a detector must be considered in the measurement of monoenergetic alpha particles,along with statsfical noise and other factors that collectively cause the alpha spectrum to exhibit a well-known low-energy tail.Therefore,the establishment of an alpha spectrum detector response function from the perspective of a signaling system must consider the various factors mentioned above.The detector response function is the convolution of an alphaparticle pulse function,two exponential functions,and a Gaussian function,followed by calculation of the parameters of the detector response function using the weighted leastsquares fitting method as proposed in this paper.In our experiment,239pu alpha spectra were measured by a highresolution,passivated implanted planar silicon (PIPS)detector at 10 levels of vacuum and 10 source-detector distances.The spectrum-fitting results were excellent as evaluated by reduced Chi-square (x2) and correlation coefficients.Finally,the variation of parameters with vacuum level and source-detector distance was studied.Results demonstrate that ο,τ1,and τ2 exhibit no obvious trend of variation with vacuum in the range 2000-20,000 mTorr,and at a confidence level of 95%,the values of τ1 and τ2 decline in a similar fashion with source-detector distance by the power exponential function,while the value of ο declines linearly.

  4. Photopeak efficiency response function of an underwater gamma-ray NaI(Tl) detector using MCNP-X

    International Nuclear Information System (INIS)

    Salgado, William L.; Silva, Ademir X.; Salgado, Cesar M.

    2015-01-01

    This work presents a study to calculate the response function of a 1.5″ x 1″ NaI(Tl) scintillation detector when it is used in the marine environment in the energy range from 20 keV to 662 keV. The method takes into account both the scattering of photons in the water and the detection mechanism of the detector. In addition, the calculation of the response function of the whole system is essential for suppressing the background of the measurement and for estimating the concentration of the involved radionuclides, especially given the greater probability of primary gamma photons undergoing multiple scattering events before they interact with the detector. The experimental photopeak efficiency measurements for point sources were compared with the simulated results under the same conditions of the experimental setup to validate the simulation of the detector. Monte Carlo simulations were performed using the MCNP-X code for the investigation of gamma-ray absorption in water in different brines. The energy resolution curve was used to improve the response of the mathematical simulation of the detector. The detector’s simulation was based on information obtained from the gammagraphy technique. Both dimensions and materials were used for the calculation with the MCNP-X code. The photopeak efficiency of a NaI(Tl) detector for different radionuclides in the aquatic environment with different salinities was calculated. (author)

  5. Performance of a prototype water Cherenkov detector for LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Cao, Zhe; Chang, J.F.; Chen, G.; Chen, L.H.; Chen, M.J.; Chen, T.L.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Danzengluobu; Feng, C.F.; Gao, B.; Gu, M.H.; Hao, X.J.; He, H.H.; Hu, H.B.

    2011-01-01

    A large high-altitude air shower observatory is to be built at Yang-Ba-Jing, Tibet, China. One of its main purposes is to survey the northern sky for very-high-energy (above 100 GeV) gamma ray sources via its ground-based water Cherenkov detector array. To gain full knowledge of water Cherenkov technique in detecting air showers, a prototype water Cherenkov detector is built at the Institute of High Energy Physics, Beijing. The performance of the prototype water Cherenkov detector is studied by measuring its response to cosmic muons. The results are compared with those from a full Monte Carlo simulation to provide a series of information regarding the prototype detector in guiding electronics design and detector optimization.

  6. Measurement of Photomultipier Plateau Curves and Single MIP response in the AD detector at ALICE

    CERN Document Server

    Sanchez Falero, Sebastian De Jesus

    2015-01-01

    The Alice Diffractive (AD) detector is a forward detector in the ALICE experiment at CERN. It is aimed to the triggering on diffractive events and extends the pseudorapidity coverage to about 4.9 < /n/ < 6.3. In this work, a PMT's efficiency plateau and single MIP response are measured using a replica of the detector's scintillator modules, electronic and data acquisition system and cosmic rays as particle source.

  7. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  8. Triton, deuteron and proton responses of the CR-39 track detector

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Tomoya; Matsumoto, Hiroyoshi; Oda, Keiji [Kobe Univ. of Mercantile Marine (Japan)

    1996-07-01

    In the present study, we assessed the response of the CR-39 detector to proton, deuteron and triton from their etch-pit growth curves obtained by multi-step etching technique and the difference among their track registration properties was discussed. In order to avoid incorrect evaluation due to the missing track effect, particle irradiation was performed at various incident energies. The response function, S(R), etch rate ratio, S, as a function of the residual range, R, was experimentally evaluated for all hydrogen isotopes by this method. In the next, we obtained another form of response functions of S(E), S({beta}) and S(LET{sub 200}), which were presented as functions of the particle energy, E, the particle velocity, {beta}(=v/c), and the linear energy transfer in the case where the cut-off energy is 200 eV, LET{sub 200}, respectively. These information will be useful also in understanding the fundamentals of the latent track formation mechanism in the plastic track detectors. (J.P.N.)

  9. Detector Response to Neutrons Slowed Down in Media Containing Cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1943-07-01

    This report was written by E. Broda, H. Hereward and L. Kowarski at the Cavendish Laboratory (Cambridge) in September 1943 and is about the detector response to neutrons slowed down in media containing cadmium. The following measurement description and the corresponding results can be found in this report: B, Mn, In, I, Dy and Ir detectors were activated, with and without a Cd shield, near the source in a vessel containing 7 litres of water or solutions of CdSO{sub 4} ranging between 0.1 and 2.8 mols per litre. Numerical data on observed activities are discussed in two different ways and the following conclusions can be drawn: The capture cross-section of dysprosium decreases quicker than 1/v and this discrepancy becomes noticeable well within the limits of the C-group. This imposes obvious limitations on the use of Dy as a detector of thermal neutrons. Cadmium differences of manganese seem to be a reliable 1/v detector for the whole C-group. Indium and iridium show definite signs of an increase of vσ in the upper regions of the C-group. Deviations shown by iodine are due to the imperfections of the technique rather than to a definite departure from the 1/v law. (nowak)

  10. The position response of a large-volume segmented germanium detector

    International Nuclear Information System (INIS)

    Descovich, M.; Nolan, P.J.; Boston, A.J.; Dobson, J.; Gros, S.; Cresswell, J.R.; Simpson, J.; Lazarus, I.; Regan, P.H.; Valiente-Dobon, J.J.; Sellin, P.; Pearson, C.J.

    2005-01-01

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the γ-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions

  11. The position response of a large-volume segmented germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Descovich, M. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom)]. E-mail: mdescovich@lbl.gov; Nolan, P.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Boston, A.J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Dobson, J. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Gros, S. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Cresswell, J.R. [Oliver Lodge Laboratory, Physics Department, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Lazarus, I. [CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Regan, P.H. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Valiente-Dobon, J.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Sellin, P. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Pearson, C.J. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2005-11-21

    The position response of a large-volume segmented coaxial germanium detector is reported. The detector has 24-fold segmentation on its outer contact. The output from each contact was sampled with fast digital signal processing electronics in order to determine the position of the {gamma}-ray interaction from the signal pulse shape. The interaction position was reconstructed in a polar coordinate system by combining the radial information, contained in the rise-time of the pulse leading edge, with the azimuthal information, obtained from the magnitude of the transient charge signals induced on the neighbouring segments. With this method, a position resolution of 3-7mm is achieved in both the radial and the azimuthal directions.

  12. Response function of semiconductor detectors, Ge and Si(Li)

    International Nuclear Information System (INIS)

    Zevallos Chavez, Juan Yury

    2003-01-01

    The Response Function (RF) for Ge and Si(Li) semiconductor detectors was obtained. The RF was calculated for five detectors, four Hp Ge with active volumes of 89 cm 3 , 50 cm 3 , 8 cm 3 and 5 cm 3 , and one Si(Li) with 0.143 cm 3 of active volume. The interval of energy studied ranged from 6 keV up to 1.5 MeV. Two kinds of studies were done in this work. The first one was the RF dependence with the detection geometry. Here the calculation of the RF for a geometry named as simple and an extrapolation of that RF, were both done. The extrapolation process analyzed both, spectra obtained with a shielding geometry and spectra where the source-detector distance was modified. The second one was the RF dependence with the detection electronics. This study was done varying the shaping time of the pulse in the detection electronics. The purpose was to verify the effect of the ballistic deficit in the resolution of the detector. This effect was not observed. The RF components that describe the region of the total absorption of the energy of the incident photons, and the partial absorption of this energy, were both treated. In particular, empirical functions were proposed for the treatment of both, the multiple scattering originated in the detector (crystal), and the photon scattering originated in materials of the neighborhood of the crystal. Another study involving Monte Carlo simulations was also done in order to comprehend the photon scattering structures produced in an iron shield. A deconvolution method is suggested, for spectra related to scattered radiation in order to assess the dose delivered to the scatterer. (author)

  13. Factors affecting the response of the bubble detector BD-100 and a comparison of its response to CR-39

    International Nuclear Information System (INIS)

    Ipe, N.E.; Busick, D.D.; Pollock, R.W.

    1987-08-01

    The BD-100 is a bubble detector available commercially from Chalk River Nuclear Laboratories, Canada for neutron dosimetry. According to the manufacturer, the BD-100 detects neutrons over an energy range of 100 keV to 14 MeV and the dose equivalent response is independent of energy. The sensitivity of the detector is dependent upon its temperature at the time of irradiation. The sensitized detector self-nucleates upon sharp impact and when heated to temperatures of 48 0 C or greater. The BD-100 is insensitive to low energy gamma rays but responds to 6 MeV photons. The sensitivity (bubbles/μSv) of the BD-100 was found to be energy dependent when exposed to standard neutron sources with average energies ranging from 0.5 to 4.5 MeV. The bubbles formed upon irradiation continued to grow in size with time. The response of electrochemically etched CR-39 to the same neutron sources is also reported for comparison

  14. Analysis the Response Function of the HTR Ex-core Neutron Detectors in Different Core Status

    International Nuclear Information System (INIS)

    Fan Kai; Li Fu; Zhou Xuhua

    2014-01-01

    Modular high temperature gas cooled reactor HTR-PM demonstration plant, designed by INET, Tsinghua University, is being built in Shidao Bay, Shandong province, China. HTR-PM adopts pebble bed concept. The harmonic synthesis method has been developed to reconstruct the power distributions on HTR-PM. The method based on the assumption that the neutron detector readings are mainly determined by the status of the core through the power distribution, and the response functions changed little when the status of the core changed. To verify the assumption, the influence factors to the ex-core neutron detectors are calculated in this paper, including the control rod position and the temperature of the core. The results shows that when the status of the core changed, the power distribution changed more remarkable than the response function, but the detector readings could change about 5% because of the response function changing. (author)

  15. FastSim: A Fast Simulation for the SuperB Detector

    International Nuclear Information System (INIS)

    Andreassen, R; Sokoloff, M; Arnaud, N; Burmistrov, L; Brown, D N; Carlson, J; Gaponenko, I; Suzuki, A; Cheng, C-h; Simone, A Di; Manoni, E; Perez, A; Walsh, J; Rama, M; Roberts, D; Rotondo, M; Simi, G

    2011-01-01

    We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.

  16. FastSim: A Fast Simulation for the SuperB Detector

    Science.gov (United States)

    Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.

    2011-12-01

    We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.

  17. Calculation of ex-core detector responses

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, R. de; Haedens, M. [Tractebel Engineering, Brussels (Belgium); Baenst, H. de [Electrabel, Brussels (Belgium)

    2005-07-01

    The purpose of this work carried out by Tractebel Engineering, is to develop and validate a method for predicting the ex-core detector responses in the NPPs operated by Electrabel. Practical applications are: prediction of ex-core calibration coefficients for startup power ascension, replacement of xenon transients by theoretical predictions, and analysis of a Rod Drop Accident. The neutron diffusion program PANTHER calculates node-integrated fission sources which are combined with nodal importance representing the contribution of a neutron born in that node to the ex-core response. These importance are computed with the Monte Carlo program MCBEND in adjoint mode, with a model of the whole core at full power. Other core conditions are treated using sensitivities of the ex-core responses to water densities, computed with forward Monte Carlo. The Scaling Factors (SF), or ratios of the measured currents to the calculated response, have been established on a total of 550 in-core flux maps taken in four NPPs. The method has been applied to 15 startup transients, using the average SF obtained from previous cycles, and to 28 xenon transients, using the SF obtained from the in-core map immediately preceding the transient. The values of power (P) and axial offset (AOi) reconstructed with the theoretical calibration agree well with the measured values. The ex-core responses calculated during a rod drop transient have been successfully compared with available measurements, and with theoretical data obtained by alternative methods. In conclusion, the method is adequate for the practical applications previously listed. (authors)

  18. The study of response of wide band gap semiconductor detectors using the Geant4

    Directory of Open Access Journals (Sweden)

    Hussain Riaz

    2014-01-01

    Full Text Available The energy dependence on the intrinsic efficiency, absolute efficiency, full energy peak absolute efficiency and peak-to-total ratio have been studied for various wide band gap semiconductor detectors using the Geant4 based Monte Carlo simulations. The detector thickness of 1-4 mm and the area in 16-100 mm2 range were considered in this work. In excellent agreement with earlier work (Rybka et al., [20], the Geant4 simulated values of detector efficiencies have been found to decrease with incident g-ray energy. Both for the detector thickness and the detector area, the increasing trends have been observed for total efficiency as well as for full-energy peak efficiency in 0.1 MeV-50 MeV range. For Cd1-xZnxTe, the detector response remained insensitive to changes in relative proportions of Zn. For various wide band gap detectors studied in this work, the detection efficiency of TlBr was found highest over the entire range of energy, followed by the HgI2, CdTe, and then by CZT.

  19. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  20. Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon.

    Science.gov (United States)

    Theocharous, E; Theocharous, S P; Lehman, J H

    2013-11-20

    A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO₃ has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory's (NPL's) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8-24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings.

  1. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Jacobs, S.

    1976-01-01

    A discussion is given of the initial detector design, focusing on the cost estimates and on the inner detector modules. With regard to inner modules, the rate problem was examined for the closest elements, and the question whether one should use argon or lead-liquid scintillator calorimeters was discussed. New designs which involved major modifications to the lepton detector are considered. The major motivations for alternative designs were twofold. One was that the original detector looked quite expensive, and a study of the tradeoff of money versus physics had not really been done yet. The second point was that, since the physics region to be explored was totally new ground, one would like to leave as many options open as possible and build a detector that was as flexible as possible. A scaled-down version of the original design, which was strongly favored by this study, appears to save an appreciable amount of money with a small decrease in the initial physics scope. The more modular designs seem quite attractive, but not enough time was spent to demonstrate feasibility

  2. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    Science.gov (United States)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  3. Cherenkov Water Detectors in Particle Physics and Cosmic Rays

    Science.gov (United States)

    Petrukhin, A. A.; Yashin, I. I.

    2017-12-01

    Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations - ground-based, underground and underwater-is presented in the paper. The prospects of their further development are also discussed.

  4. The Physics of Superconducting Microwave Resonators

    Science.gov (United States)

    Gao, Jiansong

    Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise

  5. Fast photoconductor CdTe detectors for synchrotron x-ray studies

    International Nuclear Information System (INIS)

    Yoo, Sung Shik; Faurie, J.P.; Huang Qiang; Rodricks, B.

    1993-09-01

    The Advanced Photon Source will be that brightest source of synchrotron x-rays when it becomes operational in 1996. During normal operation, the ring will be filled with 20 bunches of positrons with an interbunch spacing of 177 ns and a bunch width of 119 ps. To perform experiments with x-rays generated by positrons on these time scales one needs extremely high speed detectors. To achieve the necessary high speed, we are developing MBE-grown CdTe-base photoconductive position sensitive array detectors. The arrays fabricated have 64 pixels with a gap of 100 μm between pixels. The high speed response of the devices was tested using a short pulse laser. X-ray static measurements were performed using an x-ray tube and synchrotron radiation to study the device's response to flux and wavelength changes. This paper presents the response of the devices to some of these tests and discusses different physics aspects to be considered when designing high speed detectors

  6. NEULAND at R{sup 3}B: Multi-neutron response and resolution of the novel neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Kresan, Dmytro; Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Boretzky, Konstanze; Bertini, Denis; Heil, Michael; Rossi, Dominic; Simon, Haik [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2012-07-01

    NEULAND (New Large Area Neutron Detector) will serve for the detection of fast neutrons (200 - 1000 MeV) in the R3B experiment at the future FAIR. A high detection efficiency (> 90%), a high resolution (down to 20 keV) and a large multi-neutron-hit resolving power ({>=}5 neutrons) are demanded. The detector concept foresees a fully active and highly granular design of plastic scintillators. We present the detector capabilities, based on simulations performed within the FairRoot framework. The relevance of calorimetric properties for the multi-hit recognition is discussed, and exemplarily the performance for specific physics cases is presented.

  7. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  8. Enhancing the Responsivity of Uncooled Infrared Detectors Using Plasmonics for High-Performance Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Amr Shebl Ahmed

    2017-04-01

    Full Text Available A lead zirconate titanate (PZT;Pb(Zr0.52Ti0.48O3 layer embedded infrared (IR detector decorated with wavelength-selective plasmonic crystals has been investigated for high-performance non-dispersive infrared (NDIR spectroscopy. A plasmonic IR detector with an enhanced IR absorption band has been designed based on numerical simulations, fabricated by conventional microfabrication techniques, and characterized with a broadly tunable quantum cascade laser. The enhanced responsivity of the plasmonic IR detector at specific wavelength band has improved the performance of NDIR spectroscopy and pushed the limit of detection (LOD by an order of magnitude. In this paper, a 13-fold enhancement in the LOD of a methane gas sensing using NDIR spectroscopy is demonstrated with the plasmonic IR detector.

  9. SU-F-T-557: Evaluation of Detector Response in Rectangular Small Field Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, A [University of Toledo, Toledo, Ohio (United States); Tanny, S [SUNY Upstate Medical University, Syracuse NY (United States); Parsai, E; Sperling, N [University of Toledo Medical Center, Toledo, OH (United States)

    2016-06-15

    Purpose: As stereotactic treatment modalities grow towards becoming the standard of care, the need for accurate dose computation in small fields is becoming increasingly essential. The purpose of this study is to evaluate the response of different detectors, intended for small field dosimetry, in jaw defined small rectangular fields by analyzing output factors from a stereotactic clinical accelerator. Methods: Two Dosimeters, the Exradin A26 Microionization Chamber (Standard Imaging) and Edge Diode Detector (Sun Nuclear) were used to measure output factors taken on the Varian Edge Stereotactic Linear accelerator. Measurements were taken at 6MV and 6FFF at 10cm depth, 100cm SSD in a 48×48×40cm3 Welhoffer BluePhantom2 (IBA) with X and Y jaws set from 0.6 to 2.0cm. Output factors were normalized to a 5×5cm2 machine-specific reference field. Measurements were made in the vertical orientation for the A26 and horizontal orientation for both the A26 and Edge. Output factors were measured as: OF{sub FS} = M{sub FS}/M{sub ref} where M{sub FS} and M{sub ref} are the measured signals for the clinical field and the reference field, respectively. Measured output factors were then analyzed to establish relative responses of the detectors in small fields. Results: At 6MV the Edge detector exhibited a variation in output factors dependent on jaw positioning (X-by-Y vs Y-by-X) of 5.7% of the 5×5cm reference output and a variation of 3.33% at 6FFF. The A26 exhibited variation of output factor dependent on jaw positioning of upto 7.7% of the 5×5cm reference field at 6MV and upto 5.33% at 6FFF. Conclusion: Both the Edge detector and A26 responded as expected at small fields however a dependence on the jaw positioning was noted. At 6MV and 6FFF the detector response showed an increased dependence on the positioning of the X jaws as compared to the positioning of the Y jaws.

  10. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  11. COOLC, Ne-213 Liquid Scintillation Detector Neutron Spectra Unfolding

    International Nuclear Information System (INIS)

    1971-01-01

    1 - Nature of physical problem solved: COOLC is designed to calculate a neutron energy spectrum from a pulse-height spectrum produced by a detector system using the liquid scintillator NE-213. 2 - Method of solution: The program estimates the counts which would be observed in an ideal detector system having a response which is specified by the user. The solution implicitly takes into account the non-negativity of the desired neutron spectrum. The solution is obtained by finding a nearly optimal combination of slices through the spectrometer response functions such that their sum approximates the response of a channel of the ideal analyzer, and then uses the coefficients so determined to obtain an estimate of the desired neutron spectrum. 3 - Restrictions on the complexity of the problem: There are none noted

  12. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  13. Two-photon physics and online beam monitoring using the DELPHI detector at LEP

    International Nuclear Information System (INIS)

    Bjarne, J.

    1994-01-01

    This thesis is based on work done during 1989-1993 using the DELPHI detector at LEP, which is summarized in five articles. It consists of three main parts. The first part describes the Very Small Angle Tagger (VSAT), which is a sub-detector of the DELPHI detector at LEP. It consists of four silicon-tungsten electromagnetic calorimeter modules having a silicon strip planes for position determination. The modules are placed adjacent to the beam pipe, at ±7.7 m from the interaction point and after superconducting quadrupole magnets, allowing the detection of electrons in a polar angle range of 4 to 13 mrad. The second part is devoted to two-photon physics at DELPHI, with strong emphasis on a VSAT single-tagged event analysis. Here is shown, for the first time, evidence of hard scattering processes in single-tagged two-photon collisions. A QCD Resolved Photon Contribution (QCD-RPC) model is introduced. Data is then seen to be well described by a full VDM+(QCD-RPC) model. Different parton density functions are compared with data. The third part first describes the system for online monitoring of LEP beam background and luminosity at the DELPHI interaction point. Details are given of contributing sub-detector signals and program structure. Then follows a description of the VSAT online monitoring program (VSAT-MONITOR). A good agreement is found between the VSAT-MONITOR estimates of luminosity and beam spot and those of other detectors. Finally, results are presented of VSAT measurements of a LEP beam separation scan. 75 refs, figs

  14. Detector and System Developments for LHC Detector Upgrades

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Rohne, Ole; Stapnes, Steinar

    2015-05-12

    The future Large Hadron Collider (LHC) Physics program and the consequent improvement of the LHC accelerator performance set important challenges to all detector systems. This PhD thesis delineates the studies and strategies adopted to improve two different types of detectors: the replacement of precision trackers with ever increasingly performing silicon detectors, and the improvement of large gaseous detector systems by optimizing their gas mixtures and operation modes. Within the LHC tracker upgrade programs, the ATLAS Insertable B-layer (IBL) is the first major upgrade of a silicon-pixel detector. Indeed the overall ATLAS Pixel Detector performance is expected to degrade with the increase of luminosity and the IBL will recover the performance by adding a fourth innermost layer. The IBL Detector makes use of new pixel and front-end electronics technologies as well as a novel thermal management approach and light support and service structures. These innovations required complex developments and Quality Ass...

  15. SPECTRUM WEIGHTED RESPONSES OF SEVERAL DETECTORS IN MIXED FIELDS OF FAST AND THERMAL NEUTRONS

    Directory of Open Access Journals (Sweden)

    SANG IN KIM

    2014-04-01

    Full Text Available The spectrum weighted responses of various detectors were calculated to provide guidance on the proper selection and use of survey instruments on the basis of their energy response characteristics on the neutron fields. To yield the spectrum weighted response, the detector response functions of 17 neutron-measuring devices were numerically folded with each of the produced calibration neutron spectra through the in-house developed software ‘K-SWR’. The detectors’ response functions were taken from the IAEA Technical Reports Series No. 403 (TRS-403. The reference neutron fields of 21 kinds with 2 spectra groups with different proportions of thermal and fast neutrons have been produced using neutrons from the 241Am-Be sources held in a graphite pile, a bare 241Am-Be source, and a DT neutron generator. Fluence-average energy (Eave varied from 3.8 MeV to 16.9 MeV, and the ambient-dose-equivalent rate [H*(10/h] varied from 0.99 to 16.5 mSv/h.

  16. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  17. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  18. Particle Detectors in the Theory of Quantum Fields on Curved Spacetimes

    Science.gov (United States)

    Cant, John Fraser

    This work discusses aspects of a fundamental problem in the theory of quantum fields on curved spacetimes--that of giving physical meaning to the particle representations of the theory. In particular, the response of model particle detectors is analysed in detail. Unruh (1976) first introduced the idea of a model particle detector in order to give an operational definition to particles. He found that even in flat spacetime, the excitation of a particle detector does not necessarily correspond to the presence of an energy carrier--an accelerating detector will excite in response to the zero-energy state of the Minkowski vacuum. The central question I consider in this work is --where does the energy for the excitation of the accelerating detector come from? The accepted response has been that the accelerating force provides the energy. Evaluating the energy carried by the (conformally-invariant massless scalar) field after the interaction with the detector, however, I find that the detector excitation is compensated by an equal but opposite emission of negative energy. This result suggests that there may be states of lesser energy than that of the Minkowski vacuum. To resolve this paradox, I argue that the emission of a detector following a more realistic trajectory than that of constant acceleration--one that starts and finishes in inertial motion--will in total be positive, although during periods of constant acceleration the detector will still emit negative energy. The Minkowski vacuum retains its status as the field state of lowest energy. The second question I consider is the response of Unruh's detector in curved spacetime--is it possible to use such a detector to measure the energy carried by the field? In the particular case of a detector following a Killing trajectory, I find that there is a response to the energy of the field, but that there is also an inherent 'noise'. In a two dimensional model spacetime, I show that this 'noise' depends on the detector

  19. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  20. Correlation between the physical performances measured from detectors and the diagnostic image quality in digital mammography

    International Nuclear Information System (INIS)

    Perez-Ponce, H.

    2009-05-01

    In digital mammography two approaches exist to estimate image quality. In the first approach, human observer assesses the lesion detection in mammograms. Unfortunately, such quality assessment is subject to interobserver variability, and requires a large amount of time and human resources. In the second approach, objective and human-independent parameters relating to image spatial resolution and noise (MTF and NPS) are used to evaluate digital detector performance; even if these parameters are objective, they are not directly related to lesion detection. A method leading to image quality assessment which is both human independent, and directly related to lesion detection is very important for the optimal use of mammographic units. This Ph.D thesis presents the steps towards such a method: the computation of realistic virtual images using an 'X ray source/digital detector' model taking into account the physical parameters of the detector (spatial resolution and noise measurements) measured under clinical conditions. From results obtained in this work, we have contributed to establish the link between the physical characteristics of detectors and the clinical quality of the image for usual exposition conditions. Furthermore, we suggest the use of our model for the creation of virtual images, in order to rapidly determine the optimal conditions in mammography, which usually is a long and tedious experimental process. This is an essential aspect to be taken into account for radioprotection of patients, especially in the context of organized mass screening of breast cancer. (author)

  1. DEVELOPMENT OF WIRELESS TECHNIQUES IN DATA AND POWER TRANSMISSION APPLICATION FOR PARTICLE-PHYSICS DETECTORS

    CERN Document Server

    Brenner, R; Dehos, C; De Lurgio, P; Djurcic, Z; Drake, G; Gonzales Gimenez, JL; Gustafsson, L; Kim, DW; Locci, E; Pfeiffer, U; Röhrich, D; Rydberg, D; Schöning, A; Siligaris, A; Soltveit, HK; Ullaland, K; Vincent, P; Vasquez, PR; Wiedner, D; Yang, S

    2017-01-01

    In the WADAPT project described in this Letter of Intent, we propose to develop wireless techniques for data and power transmission in particle-physics detectors. Wireless techniques have developed extremely fast over the last decade and are now mature for being considered as a promising alternative to cables and optical links that would revolutionize the detector design. The WADAPT consortium has been formed to identify the specific needs of different projects that might benefit from wireless techniques with the objective of providing a common platform for research and development in order to optimize effectiveness and cost. The proposed R&D will aim at designing and testing wireless demonstrators for large instrumentation systems.

  2. Upgrade of detectors of neutron instruments at Neutron Physics Laboratory in Řež

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, E.I., E-mail: litvin@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 14980 Dubna (Russian Federation); Ryukhtin, V. [Nuclear Physics Institute of the CAS v.v.i., Řež 130, 250 68 Řež (Czech Republic); Bogdzel, A.A.; Churakov, A.V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 14980 Dubna (Russian Federation); Farkas, G. [Charles University in Prague, Department of Physics of Material, Ke Karlovu 5, CZ-12116 Prague (Czech Republic); Hervoches, Ch.; Lukas, P. [Nuclear Physics Institute of the CAS v.v.i., Řež 130, 250 68 Řež (Czech Republic); Pilch, J. [Nuclear Physics Institute of the CAS v.v.i., Řež 130, 250 68 Řež (Czech Republic); Institute of Physics, Czech Academy of Sciences, Na Slovance 1992/2, 1822 Prague (Czech Republic); Saroun, J.; Strunz, P. [Nuclear Physics Institute of the CAS v.v.i., Řež 130, 250 68 Řež (Czech Republic); Zhuravlev, V.V. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 14980 Dubna (Russian Federation)

    2017-01-01

    Three neutron instruments at the Neutron Physics Laboratory (NPL) in Řež near Prague — small-angle scattering (SANS) MAUD, strain scanner SPN-100 and strain diffractometer TKSN-400 — have been modernized recently with new 2D position-sensitive detectors (PSDs) from JINR, Dubna. Here we report on the progress made in relation to the possibilities of the diffractometers due to the improved performance of the detectors. The first part of the paper is dedicated to a detailed description of the hardware and software of the PSDs, as well as its integration with the in-house experimental control software. Then practical examples of neutron scattering experiments for each of the upgraded facilities are presented.

  3. Potential and challenges of the physics measurements with very forward detectors at linear colliders

    Science.gov (United States)

    Božović Jelisavčić, Ivanka; Kačarević, G.; Lukić, S.; Poss, S.; Sailer, A.; Smiljanić, I.; FCAL Collaboration

    2016-04-01

    The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R&D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the σHWW ṡBR (H →μ+μ-) measurement at 1.4 TeV CLIC.

  4. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    International Nuclear Information System (INIS)

    Jeong, Tae Won; Ter-Avetisyan, S.; Singh, P. K.; Kakolee, K. F.; Scullion, C.; Ahmed, H.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.

    2016-01-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles’ impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5–58 MeV carbon ions and for protons in the energy range 2–17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  5. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Tae Won; Ter-Avetisyan, S. [Center for Relativistic Laser Science, Institute of Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Singh, P. K.; Kakolee, K. F. [Center for Relativistic Laser Science, Institute of Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Scullion, C.; Ahmed, H.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M. [School of Mathematics and Physics, The Queen’s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2016-08-15

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles’ impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5–58 MeV carbon ions and for protons in the energy range 2–17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  6. Study on the energy response to neutrons for a new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Wang Qun; Xie Zhong Shen

    2003-01-01

    The energy response of a new scintillating-fiber-array neutron detector to neutrons in the energy range 0.01 MeV<=E sub n<=14 MeV was modeled by combining a simplified Monte Carlo model and the MCNP 4b code. In order to test the model and get the absolute sensitivity of the detector to neutrons, one experiment was carried out for 2.5 and 14 MeV neutrons from T(p,n) sup 3 He and T(d,n) sup 4 He reactions at the Neutron Generator Laboratory at the Institute of Modern Physics, the Chinese Academy of Science. The absolute neutron fluence was obtained with a relative standard uncertainty 4.5% or 2.0% by monitoring the associated protons or sup 4 He particles, respectively. Another experiment was carried out for 0.5, 1.0, 1.5, 2.0, 2.5 MeV neutrons from T(p,n) sup 3 He reaction, and for 3.28, 3.50, 4.83, 5.74 MeV neutrons from D(d,n) sup 3 He reaction on the Model 5SDH-2 accelerator at China Institute of Atomic Energy. The absolute neutron fluence was obtained with a relative standard uncertainty 5.0% by usin...

  7. Physical characteristics of GE Senographe Essential and DS digital mammography detectors

    International Nuclear Information System (INIS)

    Ghetti, Caterina; Borrini, Adriano; Ortenzia, Ornella; Rossi, Raffaella; Ordonez, Pedro L.

    2008-01-01

    The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) a-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 μm) but a different field of view: a conventional size 23x19.2 cm 2 and a large field 24x30.7 cm 2 , specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, a-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 μGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems

  8. Heavy ion collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Nevski, Pavel

    2004-01-01

    The ATLAS detector is designed to study high-p T physics in proton-proton collisions at the LHC design luminosity. The detector capabilities for heavy-ion physics are now being evaluated. This paper reports on a preliminary assessment of the baseline ATLAS detector potential for heavy-ion physics. The ATLAS sensitivity to some of the expected signatures from the quark-gluon plasma (e.g. jet quenching, Υ suppression) is discussed. (orig.)

  9. Response matrix of regular moderator volumes with {sup 3}He detector using Monte Carlo methods; Matriz respuesta de volumenes regulares de moderador con detector de {sup 3}He mediante metodos Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Baltazar R, A.; Vega C, H. R.; Ortiz R, J. M.; Solis S, L. O.; Castaneda M, R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, Av. Lopez Velarde s/n, 98000 Zacatecas, Zac. (Mexico); Soto B, T. G.; Medina C, D., E-mail: raigosa.antonio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas (Ciencias Nucleares), Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico)

    2017-10-15

    In the last three decades the uses of Monte Carlo methods, for the estimation of physical phenomena associated with the interaction of radiation with matter, have increased considerably. The reason is due to the increase in computing capabilities and the reduction of computer prices. Monte Carlo methods allow modeling and simulating real systems before their construction, saving time and costs. The interaction mechanisms between neutrons and matter are diverse and range from elastic dispersion to nuclear fission; to facilitate the neutrons detection, is necessary to moderate them until reaching electronic equilibrium with the medium at standard conditions of pressure and temperature, in this state the total cross section of the {sup 3}He is large. The objective of the present work was to estimate the response matrix of a proportional detector of {sup 3}He using regular volumes of moderator through Monte Carlo methods. Neutron monoenergetic sources with energies of 10{sup -9} to 20 MeV and polyethylene moderators of different sizes were used. The calculations were made with the MCNP5 code; the number of stories for each detector-moderator combination was large enough to obtain errors less than 1.5%. We found that for small moderators the highest response is obtained for lower energy neutrons, when increasing the moderator dimension we observe that the response decreases for neutrons of lower energy and increases for higher energy neutrons. The total sum of the responses of each moderator allows obtaining a response close to a constant function. (Author)

  10. 4D tracking with ultra-fast silicon detectors

    Science.gov (United States)

    F-W Sadrozinski, Hartmut; Seiden, Abraham; Cartiglia, Nicolò

    2018-02-01

    The evolution of particle detectors has always pushed the technological limit in order to provide enabling technologies to researchers in all fields of science. One archetypal example is the evolution of silicon detectors, from a system with a few channels 30 years ago, to the tens of millions of independent pixels currently used to track charged particles in all major particle physics experiments. Nowadays, silicon detectors are ubiquitous not only in research laboratories but in almost every high-tech apparatus, from portable phones to hospitals. In this contribution, we present a new direction in the evolution of silicon detectors for charge particle tracking, namely the inclusion of very accurate timing information. This enhancement of the present silicon detector paradigm is enabled by the inclusion of controlled low gain in the detector response, therefore increasing the detector output signal sufficiently to make timing measurement possible. After providing a short overview of the advantage of this new technology, we present the necessary conditions that need to be met for both sensor and readout electronics in order to achieve 4D tracking. In the last section, we present the experimental results, demonstrating the validity of our research path.

  11. Heavy Ion Physics with the ATLAS Detector

    CERN Document Server

    Nevski, P

    2006-01-01

    The ATLAS experiment at the LHC plans to study the bulk matter formed in heavy ion collisions, already being studied at RHIC, as well as crucial reference data from p+p and p+A collisions. ATLAS is designed to perform optimally at the nominal machine luminosity of 10^34 cm-2s-1. It has a finely segmented electromagnetic and hadronic calorimeters covering 10 units of rapidity, allowing the study of jets and fragmentation functions in detail in tandem with the inner tracking system. Preliminary studies also indicate that it will be possible to tag b-jets in the heavy ion environment. Upsilon and J/Psi can be reconstructed through the di-muon decay channel. There is also an important "day 1" program planned, that will use the data provided by both p+p and A+A collisions to study bulk features of the collision dynamics. We discuss the current status of simulation studies and plans of the heavy ion physics program with the ATLAS detector during the A+A and p+A runs.

  12. DEPFET-detectors: New developments

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)]. E-mail: gerhard.lutz@cern.ch; Andricek, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Eckardt, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Haelker, O. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Hermann, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Lechner, P. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Richter, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schopper, F. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Soltau, H. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Strueder, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Treis, J. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Woelfl, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Zhang, C. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)

    2007-03-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available.

  13. DEPFET-detectors: New developments

    International Nuclear Information System (INIS)

    Lutz, G.; Andricek, L.; Eckardt, R.; Haelker, O.; Hermann, S.; Lechner, P.; Richter, R.; Schaller, G.; Schopper, F.; Soltau, H.; Strueder, L.; Treis, J.; Woelfl, S.; Zhang, C.

    2007-01-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available

  14. Formulation of detector response function to calculate the power density profiles using in-core neutron detectors

    International Nuclear Information System (INIS)

    Ahmed, S. A.; Peter, J. K.; Semmler, W.; Shultis, J. K.

    2007-01-01

    By measuring neutron fluxes at different locations throughout a core, it's possible to derive the power-density profile P k (W cm - 3), at an axial depth z of fuel rod k. Micro-pocket fission detectors (MPFD) have been fabricated to perform such in-core neutron flux measurements. The purpose of this study is to develop a mathematical model to obtain axial power density distributions in the fuel rods from the in-core responses of the MPFDs

  15. Monte Carlo simulation of the response of a pixellated 3D photo-detector in silicon

    CERN Document Server

    Dubaric, E; Froejdh, C; Norlin, B

    2002-01-01

    The charge transport and X-ray photon absorption in three-dimensional (3D) X-ray pixel detectors have been studied using numerical simulations. The charge transport has been modelled using the drift-diffusion simulator MEDICI, while photon absorption has been studied using MCNP. The response of the entire pixel detector system in terms of charge sharing, line spread function and modulation transfer function, has been simulated using a system level Monte Carlo simulation approach. A major part of the study is devoted to the effect of charge sharing on the energy resolution in 3D-pixel detectors. The 3D configuration was found to suppress charge sharing much better than conventional planar detectors.

  16. The Mu3e Tile Detector

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Hans Patrick

    2015-05-06

    The Mu3e experiment is designed to search for the lepton flavour violating decay μ→e{sup +}e{sup +}e{sup -} with a sensitivity of one in 10{sup 16} decays. An observation of such a decay would be a clear sign of physics beyond the Standard Model. Achieving the targeted sensitivity requires a high precision detector with excellent momentum, vertex and time resolution. The Mu3e Tile Detector is a highly granular sub-detector system based on scintillator tiles with Silicon Photomultiplier (SiPM) readout, and aims at measuring the timing of the muon decay products with a resolution of better than 100 ps. This thesis describes the development of the Tile Detector concept and demonstrates the feasibility of the elaborated design. In this context, a comprehensive simulation framework has been developed, in order to study and optimise the detector performance. The central component of this framework is a detailed simulation of the SiPM response. The simulation model has been validated in several measurements and shows good agreement with the data. Furthermore, a 16-channel prototype of a Tile Detector module has been constructed and operated in an electron beam. In the beam tests, a time resolution up to 56 ps has been achieved, which surpasses the design goal. The simulation and measurement results demonstrate the feasibility of the developed Tile Detector design and show that the required detector performance can be achieved.

  17. Development and performance of a hand-held CZT detector for in-situ measurements at the emergency response

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Young Yong; Chung, Kun Ho; Kim, Chang Jong; Lee, Wan No; Choi, Geun Sik; Kang, Mun Ja [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yoon, Jin [SI Detection Co. Ltd, Daejeon (Korea, Republic of)

    2016-06-15

    A hand-held detector for an emergency response was developed for nuclide identification and to estimate the information of the ambient dose rate in the scene of an accident as well as the radioactivity of the contaminants. To achieve this, the most suitable sensor was first selected as a cadmium zinc telluride (CZT) semiconductor and the signal processing unit from a sensor and the signal discrimination and storage unit were successfully manufactured on a printed circuit board. The performance of the developed signal processing unit was then evaluated to have an energy resolution of about 14 keV at 662 keV. The system control unit was also designed to operate the CZT detector, monitor the detector, battery, and interface status, and check and transmit the measured results of the ambient dose rate and radioactivity. In addition, a collimator, which can control the inner radius, and the airborne dust sampler, which consists of an air filter and charcoal filter, were developed and mounted to the developed CZT detector for the quick and efficient response of a nuclear accident. The hand-held CZT detector was developed to make the in-situ gamma-ray spectrometry and its performance was checked to have a good energy resolution. In addition, the collimator and the airborne dust sampler were developed and mounted to the developed CZT detector for a quick and efficient response to a nuclear accident.

  18. Strip detector for the ATLAS detector upgrade for the high-luminosity LHC

    CERN Document Server

    Madaffari, Daniele; The ATLAS collaboration

    2017-01-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential of the LHC through a sizeable increase in the luminosity, reaching 1x10$^{35}$ cm$^{-2}$s$^{-1}$ after 10 years of operation. A consequence of this increased luminosity is the expected radiation damage at an integrated luminosity of 3000 fb$^{-1}$, requiring the tracking detectors to withstand hadron fluencies to over 1x10$^{16}$ 1 MeV neutron equivalent per cm$^2$. With the addition of increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk), which will consist of both strip and pixelated silicon detectors. The physics motivations, required performance characteristics and basic design of the proposed upgrade of the strip detector will be a subject of this talk. Present ideas and solutions for the strip detector and current research and development program will be discussed.

  19. The D0 detector upgrade

    International Nuclear Information System (INIS)

    Bross, A.D.

    1995-02-01

    The Fermilab collider program is undergoing a major upgrade of both the accelerator complex and the two detectors. Operation of the Tevatron at luminosities upwards of ten time that currently provided will occur in early 1999 after the commissioning of the new Fermilab Main Injector. The D0 upgrade program has been established to deliver a detector that will meet the challenges of this environment. A new magnetic tracker consisting of a superconducting solenoid, a silicon vertex detector, a scintillating fiber central tracker, and a central preshower detector will replace the current central tracking and transition radiation chambers. We present the design and performance capabilities of these new systems and describe results from physics simulations that demonstrate the physics reach of the upgraded detector

  20. The response of the BTI bubble detectors in mixed gamma-neutron workplace fields

    International Nuclear Information System (INIS)

    Vanhavere, F.; Coeck, M.; Lievens, B.; Reginatto, M.

    2005-01-01

    Full text: Bubble detectors have become a mature technology and are used as neutron dosemeters in a wide range of applications. At the SCK-CEN and Belgonucleaire they are used as official personal neutron dosemeter for the personnel. Two types are commercially available from Bubble Technology Industries: the BD-PND, which has a neutron energy threshold of around 100 keV, and the BDT, which is mainly sensitive to thermal neutrons. At Belgonucleaire only the BD-PND is worn, and the results are corrected with a site specific factor. At the SCK-CEN both the BD-PND and BDT are worn and a combination of both results is applied for the dose records. In the EC project EVIDOS (Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields), a whole range of neutron dosemeters were irradiated in workplace fields in nuclear installations in Europe, including both types of bubble detectors. The bubble detectors were exposed on a phantom with different angles towards the reference directions in the workplace fields. We will report the bubble detectors' results in the simulated workplace fields at Cadarache (CANEL and Sigma), in the workplaces at Kruemmel (boiling water reactor, transport cask), at Mol (Venus research reactor SCK-CEN, MOX-fuel facility Belgonucleaire) and Ringhals (pressurized water reactor, transport cask). The responses of the bubble detectors and the combination of both will be compared to the reference values determined with Bonner Spheres and a novel directional spectrometer. The dosemeter readings were checked for consistency by folding the dosemeter response functions with the corresponding workplace fluence spectra in the same workplace. (author)

  1. ILC Reference Design Report Volume 4 - Detectors

    CERN Document Server

    Behnke, Ties; Jaros, John; Miyamoto, Akiya; Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; Amann, John; Amirikas, Ramila; An, Qi; Anami, Shozo; Ananthanarayan, B.; Anderson, Terry; Andricek, Ladislav; Anduze, Marc; Anerella, Michael; Anfimov, Nikolai; Angal-Kalinin, Deepa; Antipov, Sergei; Antoine, Claire; Aoki, Mayumi; Aoza, Atsushi; Aplin, Steve; Appleby, Rob; Arai, Yasuo; Araki, Sakae; Arkan, Tug; Arnold, Ned; Arnold, Ray; Arnowitt, Richard; Artru, Xavier; Arya, Kunal; Aryshev, Alexander; Asakawa, Eri; Asiri, Fred; Asner, David; Atac, Muzaffer; Atoian, Grigor; Attié, David; Augustin, Jean-Eudes; Augustine, David B.; Ayres, Bradley; Aziz, Tariq; Baars, Derek; Badaud, Frederique; Baddams, Nigel; Bagger, Jonathan; Bai, Sha; Bailey, David; Bailey, Ian R.; Baker, David; Balalykin, Nikolai I.; Balbuena, Juan Pablo; Baldy, Jean-Luc; Ball, Markus; Ball, Maurice; Ballestrero, Alessandro; Ballin, Jamie; Baltay, Charles; Bambade, Philip; Ban, Syuichi; Band, Henry; Bane, Karl; Banerjee, Bakul; Barbanotti, Serena; Barbareschi, Daniele; Barbaro-Galtieri, Angela; Barber, Desmond P.; Barbi, Mauricio; Bardin, Dmitri Y.; Barish, Barry; Barklow, Timothy L.; Barlow, Roger; Barnes, Virgil E.; Barone, Maura; Bartels, Christoph; Bartsch, Valeria; Basu, Rahul; Battaglia, Marco; Batygin, Yuri; Baudot, Jerome; Baur, Ulrich; Elwyn Baynham, D.; Beard, Carl; Bebek, Chris; Bechtle, Philip; Becker, Ulrich J.; Bedeschi, Franco; Bedjidian, Marc; Behera, Prafulla; Bellantoni, Leo; Bellerive, Alain; Bellomo, Paul; Bentson, Lynn D.; Benyamna, Mustapha; Bergauer, Thomas; Berger, Edmond; Bergholz, Matthias; Beri, Suman; Berndt, Martin; Bernreuther, Werner; Bertolini, Alessandro; Besancon, Marc; Besson, Auguste; Beteille, Andre; Bettoni, Simona; Beyer, Michael; Bhandari, R.K.; Bharadwaj, Vinod; Bhatnagar, Vipin; Bhattacharya, Satyaki; Bhattacharyya, Gautam; Bhattacherjee, Biplob; Bhuyan, Ruchika; Bi, Xiao-Jun; Biagini, Marica; Bialowons, Wilhelm; Biebel, Otmar; Bieler, Thomas; Bierwagen, John; Birch, Alison; Bisset, Mike; Biswal, S.S.; Blackmore, Victoria; Blair, Grahame; Blanchard, Guillaume; Blazey, Gerald; Blue, Andrew; Blümlein, Johannes; Boffo, Christian; Bohn, Courtlandt; Boiko, V.I.; Boisvert, Veronique; Bondarchuk, Eduard N.; Boni, Roberto; Bonvicini, Giovanni; Boogert, Stewart; Boonekamp, Maarten; Boorman, Gary; Borras, Kerstin; Bortoletto, Daniela; Bosco, Alessio; Bosio, Carlo; Bosland, Pierre; Bosotti, Angelo; Boudry, Vincent; Boumediene, Djamel-Eddine; Bouquet, Bernard; Bourov, Serguei; Bowden, Gordon; Bower, Gary; Boyarski, Adam; Bozovic-Jelisavcic, Ivanka; Bozzi, Concezio; Brachmann, Axel; Bradshaw, Tom W.; Brandt, Andrew; Brasser, Hans Peter; Brau, Benjamin; Brau, James E.; Breidenbach, Martin; Bricker, Steve; Brient, Jean-Claude; Brock, Ian; Brodsky, Stanley; Brooksby, Craig; Broome, Timothy A.; Brown, David; Brown, David; Brownell, James H.; Bruchon, Mélanie; Brueck, Heiner; Brummitt, Amanda J.; Brun, Nicole; Buchholz, Peter; Budagov, Yulian A.; Bulgheroni, Antonio; Bulyak, Eugene; Bungau, Adriana; Bürger, Jochen; Burke, Dan; Burkhart, Craig; Burrows, Philip; Burt, Graeme; Burton, David; Büsser, Karsten; Butler, John; Butterworth, Jonathan; Buzulutskov, Alexei; Cabruja, Enric; Caccia, Massimo; Cai, Yunhai; Calcaterra, Alessandro; Caliier, Stephane; Camporesi, Tiziano; Cao, Jun-Jie; Cao, J.S.; Capatina, Ofelia; Cappellini, Chiara; Carcagno, Ruben; Carena, Marcela; Carloganu, Cristina; Carosi, Roberto; Stephen Carr, F.; Carrion, Francisco; Carter, Harry F.; Carter, John; Carwardine, John; Cassel, Richard; Cassell, Ronald; Cavallari, Giorgio; Cavallo, Emanuela; Cembranos, Jose A.R.; Chakraborty, Dhiman; Chandez, Frederic; Charles, Matthew; Chase, Brian; Chattopadhyay, Subhasis; Chauveau, Jacques; Chefdeville, Maximilien; Chehab, Robert; Chel, Stéphane; Chelkov, Georgy; Chen, Chiping; Chen, He Sheng; Chen, Huai Bi; Chen, Jia Er; Chen, Sen Yu; Chen, Shaomin; Chen, Shenjian; Chen, Xun; Chen, Yuan Bo; Cheng, Jian; Chevallier, M.; Chi, Yun Long; Chickering, William; Cho, Gi-Chol; Cho, Moo-Hyun; Choi, Jin-Hyuk; Choi, Jong Bum; Choi, Seong Youl; Choi, Young-Il; Choudhary, Brajesh; Choudhury, Debajyoti; Rai Choudhury, S.; Christian, David; Christian, Glenn; Christophe, Grojean; Chung, Jin-Hyuk; Church, Mike; Ciborowski, Jacek; Cihangir, Selcuk; Ciovati, Gianluigi; Clarke, Christine; Clarke, Don G.; Clarke, James A.; Clements, Elizabeth; Coca, Cornelia; Coe, Paul; Cogan, John; Colas, Paul; Collard, Caroline; Colledani, Claude; Combaret, Christophe; Comerma, Albert; Compton, Chris; Constance, Ben; Conway, John; Cook, Ed; Cooke, Peter; Cooper, William; Corcoran, Sean; Cornat, Rémi; Corner, Laura; Cortina Gil, Eduardo; Clay Corvin, W.; Cotta Ramusino, Angelo; Cowan, Ray; Crawford, Curtis; Cremaldi, Lucien M; Crittenden, James A.; Cussans, David; Cvach, Jaroslav; da Silva, Wilfrid; Dabiri Khah, Hamid; Dabrowski, Anne; Dabrowski, Wladyslaw; Dadoun, Olivier; Dai, Jian Ping; Dainton, John; Daly, Colin; Danilov, Mikhail; Daniluk, Witold; Daram, Sarojini; Datta, Anindya; Dauncey, Paul; David, Jacques; Davier, Michel; Davies, Ken P.; Dawson, Sally; De Boer, Wim; De Curtis, Stefania; De Groot, Nicolo; de la Taille, Christophe; de Lira, Antonio; De Roeck, Albert; de Sangro, Riccardo; De Santis,Stefano; Deacon, Laurence; Deandrea, Aldo; Dehmelt, Klaus; Delagnes, Eric; Delahaye, Jean-Pierre; Delebecque, Pierre; Delerue, Nicholas; Delferriere, Olivier; Demarteau, Marcel; Deng, Zhi; Denisov, Yu.N.; Densham, Christopher J.; Desch, Klaus; Deshpande, Nilendra; Devanz, Guillaume; Devetak, Erik; Dexter, Amos; Di benedetto, Vito; Diéguez, Angel; Diener, Ralf; Dinh, Nguyen Dinh; Dixit, Madhu; Dixit, Sudhir; Djouadi, Abdelhak; Dolezal, Zdenek; Dollan, Ralph; Dong, Dong; Dong, Hai Yi; Dorfan, Jonathan; Dorokhov, Andrei; Doucas, George; Downing, Robert; Doyle, Eric; Doziere, Guy; Drago, Alessandro; Dragt, Alex; Drake, Gary; Drásal, Zbynek; Dreiner, Herbert; Drell, Persis; Driouichi, Chafik; Drozhdin, Alexandr; Drugakov, Vladimir; Du, Shuxian; Dugan, Gerald; Duginov, Viktor; Dulinski, Wojciech; Dulucq, Frederic; Dutta, Sukanta; Dwivedi, Jishnu; Dychkant, Alexandre; Dzahini, Daniel; Eckerlin, Guenter; Edwards, Helen; Ehrenfeld, Wolfgang; Ehrlichman, Michael; Ehrlichmann, Heiko; Eigen, Gerald; Elagin, Andrey; Elementi, Luciano; Eliasson, Peder; Ellis, John; Ellwood, George; Elsen, Eckhard; Emery, Louis; Enami, Kazuhiro; Endo, Kuninori; Enomoto, Atsushi; Eozénou, Fabien; Erbacher, Robin; Erickson, Roger; Oleg Eyser, K.; Fadeyev, Vitaliy; Fang, Shou Xian; Fant, Karen; Fasso, Alberto; Faucci Giannelli, Michele; Fehlberg, John; Feld, Lutz; Feng, Jonathan L.; Ferguson, John; Fernandez-Garcia, Marcos; Luis Fernandez-Hernando, J.; Fiala, Pavel; Fieguth, Ted; Finch, Alexander; Finocchiaro, Giuseppe; Fischer, Peter; Fisher, Peter; Eugene Fisk, H.; Fitton, Mike D.; Fleck, Ivor; Fleischer, Manfred; Fleury, Julien; Flood, Kevin; Foley, Mike; Ford, Richard; Fortin, Dominique; Foster, Brian; Fourches, Nicolas; Francis, Kurt; Frey, Ariane; Frey, Raymond; Friedsam, Horst; Frisch, Josef; Frishman, Anatoli; Fuerst, Joel; Fujii, Keisuke; Fujimoto, Junpei; Fukuda, Masafumi; Fukuda, Shigeki; Funahashi, Yoshisato; Funk, Warren; Furletova, Julia; Furukawa, Kazuro; Furuta, Fumio; Fusayasu, Takahiro; Fuster, Juan; Gadow, Karsten; Gaede, Frank; Gaglione, Renaud; Gai, Wei; Gajewski, Jan; Galik, Richard; Galkin, Alexei; Galkin, Valery; Gallin-Martel, Laurent; Gannaway, Fred; Gao, Jian She; Gao, Jie; Gao, Yuanning; Garbincius, Peter; Garcia-Tabares, Luis; Garren, Lynn; Garrido, Luís; Garutti, Erika; Garvey, Terry; Garwin, Edward; Gascón, David; Gastal, Martin; Gatto, Corrado; Gatto, Raoul; Gay, Pascal; Ge, Lixin; Ge, Ming Qi; Ge, Rui; Geiser, Achim; Gellrich, Andreas; Genat, Jean-Francois; Geng, Zhe Qiao; Gentile, Simonetta; Gerbick, Scot; Gerig, Rod; Ghosh, Dilip Kumar; Ghosh, Kirtiman; Gibbons, Lawrence; Giganon, Arnaud; Gillespie, Allan; Gillman, Tony; Ginzburg, Ilya; Giomataris, Ioannis; Giunta, Michele; Gladkikh, Peter; Gluza, Janusz; Godbole, Rohini; Godfrey, Stephen; Goldhaber, Gerson; Goldstein, Joel; Gollin, George D.; Gonzalez-Sanchez, Francisco Javier; Goodrick, Maurice; Gornushkin, Yuri; Gostkin, Mikhail; Gottschalk, Erik; Goudket, Philippe; Gough Eschrich, Ivo; Gournaris, Filimon; Graciani, Ricardo; Graf, Norman; Grah, Christian; Grancagnolo, Francesco; Grandjean, Damien; Grannis, Paul; Grassellino, Anna; Graugés, Eugeni; Gray, Stephen; Green, Michael; Greenhalgh, Justin; Greenshaw, Timothy; Grefe, Christian; Gregor, Ingrid-Maria; Grenier, Gerald; Grimes, Mark; Grimm, Terry; Gris, Philippe; Grivaz, Jean-Francois; Groll, Marius; Gronberg, Jeffrey; Grondin, Denis; Groom, Donald; Gross, Eilam; Grunewald, Martin; Grupen, Claus; Grzelak, Grzegorz; Gu, Jun; Gu, Yun-Ting; Guchait, Monoranjan; Guiducci, Susanna; Guler, Ali Murat; Guler, Hayg; Gulmez, Erhan; Gunion, John; Guo, Zhi Yu; Gurtu, Atul; Ha, Huy Bang; Haas, Tobias; Haase, Andy; Haba, Naoyuki; Haber, Howard; Haensel, Stephan; Hagge, Lars; Hagura, Hiroyuki; Hajdu, Csaba; Haller, Gunther; Haller, Johannes; Hallermann, Lea; Halyo, Valerie; Hamaguchi, Koichi; Hammond, Larry; Han, Liang; Han, Tao; Hand, Louis; Handu, Virender K.; Hano, Hitoshi; Hansen, Christian; Hansen, Jørn Dines; Hansen, Jorgen Beck; Hara, Kazufumi; Harder, Kristian; Hartin, Anthony; Hartung, Walter; Hast, Carsten; Hauptman, John; Hauschild, Michael; Hauviller, Claude; Havranek, Miroslav; Hawkes, Chris; Hawkings, Richard; Hayano, Hitoshi; Hazumi, Masashi; He, An; He, Hong Jian; Hearty, Christopher; Heath, Helen; Hebbeker, Thomas; Hedberg, Vincent; Hedin, David; Heifets, Samuel; Heinemeyer, Sven; Heini, Sebastien; Helebrant, Christian; Helms, Richard; Heltsley, Brian; Henrot-Versille, Sophie; Henschel, Hans; Hensel, Carsten; Hermel, Richard; Herms, Atilà; Herten, Gregor; Hesselbach, Stefan; Heuer, Rolf-Dieter; Heusch, Clemens A.; Hewett, Joanne; Higashi, Norio; Higashi, Takatoshi; Higashi, Yasuo; Higo, Toshiyasu; Hildreth, Michael D.; Hiller, Karlheinz; Hillert, Sonja; Hillier, Stephen James; Himel, Thomas; Himmi, Abdelkader; Hinchliffe, Ian; Hioki, Zenro; Hirano, Koichiro; Hirose, Tachishige; Hisamatsu, Hiromi; Hisano, Junji; Hlaing, Chit Thu; Hock, Kai Meng; Hoeferkamp, Martin; Hohlfeld, Mark; Honda, Yousuke; Hong, Juho; Hong, Tae Min; Honma, Hiroyuki; Horii, Yasuyuki; Horvath, Dezso; Hosoyama, Kenji; Hostachy, Jean-Yves; Hou, Mi; Hou, Wei-Shu; Howell, David; Hronek, Maxine; Hsiung, Yee B.; Hu, Bo; Hu, Tao; Huang, Jung-Yun; Huang, Tong Ming; Huang, Wen Hui; Huedem, Emil; Huggard, Peter; Hugonie, Cyril; Hu-Guo, Christine; Huitu, Katri; Hwang, Youngseok; Idzik, Marek; Ignatenko, Alexandr; Ignatov, Fedor; Ikeda, Hirokazu; Ikematsu, Katsumasa; Ilicheva, Tatiana; Imbault, Didier; Imhof, Andreas; Incagli, Marco; Ingbir, Ronen; Inoue, Hitoshi; Inoue, Youichi; Introzzi, Gianluca; Ioakeimidi, Katerina; Ishihara, Satoshi; Ishikawa, Akimasa; Ishikawa, Tadashi; Issakov, Vladimir; Ito, Kazutoshi; Ivanov, V.V.; Ivanov, Valentin; Ivanyushenkov, Yury; Iwasaki, Masako; Iwashita, Yoshihisa; Jackson, David; Jackson, Frank; Jacobsen, Bob; Jaganathan, Ramaswamy; Jamison, Steven; Janssen, Matthias Enno; Jaramillo-Echeverria, Richard; Jauffret, Clement; Jawale, Suresh B.; Jeans, Daniel; Jedziniak, Ron; Jeffery, Ben; Jehanno, Didier; Jenner, Leo J.; Jensen, Chris; Jensen, David R.; Jiang, Hairong; Jiang, Xiao Ming; Jimbo, Masato; Jin, Shan; Keith Jobe, R.; Johnson, Anthony; Johnson, Erik; Johnson, Matt; Johnston, Michael; Joireman, Paul; Jokic, Stevan; Jones, James; Jones, Roger M.; Jongewaard, Erik; Jönsson, Leif; Joshi, Gopal; Joshi, Satish C.; Jung, Jin-Young; Junk, Thomas; Juste, Aurelio; Kado, Marumi; Kadyk, John; Käfer, Daniela; Kako, Eiji; Kalavase, Puneeth; Kalinin, Alexander; Kalinowski, Jan; Kamitani, Takuya; Kamiya, Yoshio; Kamiya, Yukihide; Kamoshita, Jun-ichi; Kananov, Sergey; Kanaya, Kazuyuki; Kanazawa, Ken-ichi; Kanemura, Shinya; Kang, Heung-Sik; Kang, Wen; Kanjial, D.; Kapusta, Frédéric; Karataev, Pavel; Karchin, Paul E.; Karlen, Dean; Karyotakis, Yannis; Kashikhin, Vladimir; Kashiwagi, Shigeru; Kasley, Paul; Katagiri, Hiroaki; Kato, Takashi; Kato, Yukihiro; Katzy, Judith; Kaukher, Alexander; Kaur, Manjit; Kawagoe, Kiyotomo; Kawamura, Hiroyuki; Kazakov, Sergei; Kekelidze, V.D.; Keller, Lewis; Kelley, Michael; Kelly, Marc; Kelly, Michael; Kennedy, Kurt; Kephart, Robert; Keung, Justin; Khainovski, Oleg; Khan, Sameen Ahmed; Khare, Prashant; Khovansky, Nikolai; Kiesling, Christian; Kikuchi, Mitsuo; Kilian, Wolfgang; Killenberg, Martin; Kim, Donghee; Kim, Eun San; Kim, Eun-Joo; Kim, Guinyun; Kim, Hongjoo; Kim, Hyoungsuk; Kim, Hyun-Chui; Kim, Jonghoon; Kim, Kwang-Je; Kim, Kyung Sook; Kim, Peter; Kim, Seunghwan; Kim, Shin-Hong; Kim, Sun Kee; Kim, Tae Jeong; Kim, Youngim; Kim, Young-Kee; Kimmitt, Maurice; Kirby, Robert; Kircher, François; Kisielewska, Danuta; Kittel, Olaf; Klanner, Robert; Klebaner, Arkadiy L.; Kleinwort, Claus; Klimkovich, Tatsiana; Klinkby, Esben; Kluth, Stefan; Knecht, Marc; Kneisel, Peter; Ko, In Soo; Ko, Kwok; Kobayashi, Makoto; Kobayashi, Nobuko; Kobel, Michael; Koch, Manuel; Kodys, Peter; Koetz, Uli; Kohrs, Robert; Kojima, Yuuji; Kolanoski, Hermann; Kolodziej, Karol; Kolomensky, Yury G.; Komamiya, Sachio; Kong, Xiang Cheng; Konigsberg, Jacobo; Korbel, Volker; Koscielniak, Shane; Kostromin, Sergey; Kowalewski, Robert; Kraml, Sabine; Krammer, Manfred; Krasnykh, Anatoly; Krautscheid, Thorsten; Krawczyk, Maria; James Krebs, H.; Krempetz, Kurt; Kribs, Graham; Krishnagopal, Srinivas; Kriske, Richard; Kronfeld, Andreas; Kroseberg, Jürgen; Kruchonak, Uladzimir; Kruecker, Dirk; Krüger, Hans; Krumpa, Nicholas A.; Krumshtein, Zinovii; Kuang, Yu Ping; Kubo, Kiyoshi; Kuchler, Vic; Kudoh, Noboru; Kulis, Szymon; Kumada, Masayuki; Kumar, Abhay; Kume, Tatsuya; Kundu, Anirban; Kurevlev, German; Kurihara, Yoshimasa; Kuriki, Masao; Kuroda, Shigeru; Kuroiwa, Hirotoshi; Kurokawa, Shin-ichi; Kusano, Tomonori; Kush, Pradeep K.; Kutschke, Robert; Kuznetsova, Ekaterina; Kvasnicka, Peter; Kwon, Youngjoon; Labarga, Luis; Lacasta, Carlos; Lackey, Sharon; Lackowski, Thomas W.; Lafaye, Remi; Lafferty, George; Lagorio, Eric; Laktineh, Imad; Lal, Shankar; Laloum, Maurice; Lam, Briant; Lancaster, Mark; Lander, Richard; Lange, Wolfgang; Langenfeld, Ulrich; Langeveld, Willem; Larbalestier, David; Larsen, Ray; Lastovicka, Tomas; Lastovicka-Medin, Gordana; Latina, Andrea; Latour, Emmanuel; Laurent, Lisa; Le, Ba Nam; Le, Duc Ninh; Le Diberder, Francois; Dû, Patrick Le; Lebbolo, Hervé; Lebrun, Paul; Lecoq, Jacques; Lee, Sung-Won; Lehner, Frank; Leibfritz, Jerry; Lenkszus, Frank; Lesiak, Tadeusz; Levy, Aharon; Lewandowski, Jim; Leyh, Greg; Li, Cheng; Li, Chong Sheng; Li, Chun Hua; Li, Da Zhang; Li, Gang; Li, Jin; Li, Shao Peng; Li, Wei Ming; Li, Weiguo; Li, Xiao Ping; Li, Xue-Qian; Li, Yuanjing; Li, Yulan; Li, Zenghai; Li, Zhong Quan; Liang, Jian Tao; Liao, Yi; Lilje, Lutz; Guilherme Lima, J.; Lintern, Andrew J.; Lipton, Ronald; List, Benno; List, Jenny; Liu, Chun; Liu, Jian Fei; Liu, Ke Xin; Liu, Li Qiang; Liu, Shao Zhen; Liu, Sheng Guang; Liu, Shubin; Liu, Wanming; Liu, Wei Bin; Liu, Ya Ping; Liu, Yu Dong; Lockyer, Nigel; Logan, Heather E.; Logatchev, Pavel V.; Lohmann, Wolfgang; Lohse, Thomas; Lola, Smaragda; Lopez-Virto, Amparo; Loveridge, Peter; Lozano, Manuel; Lu, Cai-Dian; Lu, Changguo; Lu, Gong-Lu; Lu, Wen Hui; Lubatti, Henry; Lucotte, Arnaud; Lundberg, Björn; Lundin, Tracy; Luo, Mingxing; Luong, Michel; Luth, Vera; Lutz, Benjamin; Lutz, Pierre; Lux, Thorsten; Luzniak, Pawel; Lyapin, Alexey; Lykken, Joseph; Lynch, Clare; Ma, Li; Ma, Lili; Ma, Qiang; Ma, Wen-Gan; Macfarlane, David; Maciel, Arthur; MacLeod, Allan; MacNair, David; Mader, Wolfgang; Magill, Stephen; Magnan, Anne-Marie; Maiheu, Bino; Maity, Manas; Majchrzak, Millicent; Majumder, Gobinda; Makarov, Roman; Makowski, Dariusz; Malaescu, Bogdan; Mallik, C.; Mallik, Usha; Malton, Stephen; Malyshev, Oleg B.; Malysheva, Larisa I.; Mammosser, John; Mamta; Mamuzic, Judita; Manen, Samuel; Manghisoni, Massimo; Manly, Steven; Marcellini, Fabio; Marcisovsky, Michal; Markiewicz, Thomas W.; Marks, Steve; Marone, Andrew; Marti, Felix; Martin, Jean-Pierre; Martin, Victoria; Martin-Chassard, Gisèle; Martinez, Manel; Martinez-Rivero, Celso; Martsch, Dennis; Martyn, Hans-Ulrich; Maruyama, Takashi; Masuzawa, Mika; Mathez, Hervé; Matsuda, Takeshi; Matsumoto, Hiroshi; Matsumoto, Shuji; Matsumoto, Toshihiro; Matsunaga, Hiroyuki; Mättig, Peter; Mattison, Thomas; Mavromanolakis, Georgios; Mawatari, Kentarou; Mazzacane, Anna; McBride, Patricia; McCormick, Douglas; McCormick, Jeremy; McDonald, Kirk T.; McGee, Mike; McIntosh, Peter; McKee, Bobby; McPherson, Robert A.; Meidlinger, Mandi; Meier, Karlheinz; Mele, Barbara; Meller, Bob; Melzer-Pellmann, Isabell-Alissandra; Mendez, Hector; Mercer, Adam; Merkin, Mikhail; Meshkov, I.N.; Messner, Robert; Metcalfe, Jessica; Meyer, Chris; Meyer, Hendrik; Meyer, Joachim; Meyer, Niels; Meyners, Norbert; Michelato, Paolo; Michizono, Shinichiro; Mihalcea, Daniel; Mihara, Satoshi; Mihara, Takanori; Mikami, Yoshinari; Mikhailichenko, Alexander A.; Milardi, Catia; Miller, David J.; Miller, Owen; Miller, Roger J.; Milstene, Caroline; Mimashi, Toshihiro; Minashvili, Irakli; Miquel, Ramon; Mishra, Shekhar; Mitaroff, Winfried; Mitchell, Chad; Miura, Takako; Miyata, Hitoshi; Mjörnmark, Ulf; Mnich, Joachim; Moenig, Klaus; Moffeit, Kenneth; Mokhov, Nikolai; Molloy, Stephen; Monaco, Laura; Monasterio, Paul R.; Montanari, Alessandro; Moon, Sung Ik; Moortgat-Pick, Gudrid A.; Mora de Freitas, Paulo; Morel, Federic; Moretti, Stefano; Morgunov, Vasily; Mori, Toshinori; Morin, Laurent; Morisseau, François; Morita, Yoshiyuki; Morita, Youhei; Morita, Yuichi; Morozov, Nikolai; Morozumi, Yuichi; Morse, William; Moser, Hans-Guenther; Moultaka, Gilbert; Mtingwa, Sekazi; Mudrinic, Mihajlo; Mueller, Alex; Mueller, Wolfgang; Muennich, Astrid; Muhlleitner, Milada Margarete; Mukherjee, Bhaskar; Mukhopadhyaya, Biswarup; Müller, Thomas; Munro, Morrison; Murayama, Hitoshi; Muto, Toshiya; Myneni, Ganapati Rao; Nabhiraj, P.Y.; Nagaitsev, Sergei; Nagamine, Tadashi; Nagano, Ai; Naito, Takashi; Nakai, Hirotaka; Nakajima, Hiromitsu; Nakamura, Isamu; Nakamura, Tomoya; Nakanishi, Tsutomu; Nakao, Katsumi; Nakao, Noriaki; Nakayoshi, Kazuo; Nam, Sang; Namito, Yoshihito; Namkung, Won; Nantista, Chris; Napoly, Olivier; Narain, Meenakshi; Naroska, Beate; Nauenberg, Uriel; Nayyar, Ruchika; Neal, Homer; Nelson, Charles; Nelson, Janice; Nelson, Timothy; Nemecek, Stanislav; Neubauer, Michael; Neuffer, David; Newman, Myriam Q.; Nezhevenko, Oleg; Ng, Cho-Kuen; Nguyen, Anh Ky; Nguyen, Minh; Van Nguyen Thi,Hong; Niebuhr, Carsten; Niehoff, Jim; Niezurawski, Piotr; Nishitani, Tomohiro; Nitoh, Osamu; Noguchi, Shuichi; Nomerotski, Andrei; Noonan, John; Norbeck, Edward; Nosochkov, Yuri; Notz, Dieter; Nowak, Grazyna; Nowak, Hannelies; Noy, Matthew; Nozaki, Mitsuaki; Nyffeler, Andreas; Nygren, David; Oddone, Piermaria; O'Dell, Joseph; Oh, Jong-Seok; Oh, Sun Kun; Ohkuma, Kazumasa; Ohlerich, Martin; Ohmi, Kazuhito; Ohnishi, Yukiyoshi; Ohsawa, Satoshi; Ohuchi, Norihito; Oide, Katsunobu; Okada, Nobuchika; Okada, Yasuhiro; Okamura, Takahiro; Okugi, Toshiyuki; Okumi, Shoji; Okumura, Ken-ichi; Olchevski, Alexander; Oliver, William; Olivier, Bob; Olsen, James; Olsen, Jeff; Olsen, Stephen; Olshevsky, A.G.; Olsson, Jan; Omori, Tsunehiko; Onel, Yasar; Onengut, Gulsen; Ono, Hiroaki; Onoprienko, Dmitry; Oreglia, Mark; Oren, Will; Orimoto, Toyoko J.; Oriunno, Marco; Orlandea, Marius Ciprian; Oroku, Masahiro; Orr, Lynne H.; Orr, Robert S.; Oshea, Val; Oskarsson, Anders; Osland, Per; Ossetski, Dmitri; Österman, Lennart; Ostiguy, Francois; Otono, Hidetoshi; Ottewell, Brian; Ouyang, Qun; Padamsee, Hasan; Padilla, Cristobal; Pagani, Carlo; Palmer, Mark A.; Pam, Wei Min; Pande, Manjiri; Pande, Rajni; Pandit, V.S.; Pandita, P.N.; Pandurovic, Mila; Pankov, Alexander; Panzeri, Nicola; Papandreou, Zisis; Paparella, Rocco; Para, Adam; Park, Hwanbae; Parker, Brett; Parkes, Chris; Parma, Vittorio; Parsa, Zohreh; Parsons, Justin; Partridge, Richard; Pasquinelli, Ralph; Pásztor, Gabriella; Paterson, Ewan; Patrick, Jim; Patteri, Piero; Ritchie Patterson, J.; Pauletta, Giovanni; Paver, Nello; Pavlicek, Vince; Pawlik, Bogdan; Payet, Jacques; Pchalek, Norbert; Pedersen, John; Pei, Guo Xi; Pei, Shi Lun; Pelka, Jerzy; Pellegrini, Giulio; Pellett, David; Peng, G.X.; Penn, Gregory; Penzo, Aldo; Perry, Colin; Peskin, Michael; Peters, Franz; Petersen, Troels Christian; Peterson, Daniel; Peterson, Thomas; Petterson, Maureen; Pfeffer, Howard; Pfund, Phil; Phelps, Alan; Van Phi, Quang; Phillips, Jonathan; Phinney, Nan; Piccolo, Marcello; Piemontese, Livio; Pierini, Paolo; Thomas Piggott, W.; Pike, Gary; Pillet, Nicolas; Jayawardena, Talini Pinto; Piot, Phillippe; Pitts, Kevin; Pivi, Mauro; Plate, Dave; Pleier, Marc-Andre; Poblaguev, Andrei; Poehler, Michael; Poelker, Matthew; Poffenberger, Paul; Pogorelsky, Igor; Poirier, Freddy; Poling, Ronald; Poole, Mike; Popescu, Sorina; Popielarski, John; Pöschl, Roman; Postranecky, Martin; Potukochi, Prakash N.; Prast, Julie; Prat, Serge; Preger, Miro; Prepost, Richard; Price, Michael; Proch, Dieter; Puntambekar, Avinash; Qin, Qing; Qu, Hua Min; Quadt, Arnulf; Quesnel, Jean-Pierre; Radeka, Veljko; Rahmat, Rahmat; Rai, Santosh Kumar; Raimondi, Pantaleo; Ramberg, Erik; Ranjan, Kirti; Rao, Sista V.L.S.; Raspereza, Alexei; Ratti, Alessandro; Ratti, Lodovico; Raubenheimer, Tor; Raux, Ludovic; Ravindran, V.; Raychaudhuri, Sreerup; Re, Valerio; Rease, Bill; Reece, Charles E.; Regler, Meinhard; Rehlich, Kay; Reichel, Ina; Reichold, Armin; Reid, John; Reid, Ron; Reidy, James; Reinhard, Marcel; Renz, Uwe; Repond, Jose; Resta-Lopez, Javier; Reuen, Lars; Ribnik, Jacob; Rice, Tyler; Richard, François; Riemann, Sabine; Riemann, Tord; Riles, Keith; Riley, Daniel; Rimbault, Cécile; Rindani, Saurabh; Rinolfi, Louis; Risigo, Fabio; Riu, Imma; Rizhikov, Dmitri; Rizzo, Thomas; Rochford, James H.; Rodriguez, Ponciano; Roeben, Martin; Rolandi, Gigi; Roodman, Aaron; Rosenberg, Eli; Roser, Robert; Ross, Marc; Rossel, François; Rossmanith, Robert; Roth, Stefan; Rougé, André; Rowe, Allan; Roy, Amit; Roy, Sendhunil B.; Roy, Sourov; Royer, Laurent; Royole-Degieux, Perrine; Royon, Christophe; Ruan, Manqi; Rubin, David; Ruehl, Ingo; Jimeno, Alberto Ruiz; Ruland, Robert; Rusnak, Brian; Ryu, Sun-Young; Sabbi, Gian Luca; Sadeh, Iftach; Sadygov, Ziraddin Y; Saeki, Takayuki; Sagan, David; Sahni, Vinod C.; Saini, Arun; Saito, Kenji; Saito, Kiwamu; Sajot, Gerard; Sakanaka, Shogo; Sakaue, Kazuyuki; Salata, Zen; Salih, Sabah; Salvatore, Fabrizio; Samson, Joergen; Sanami, Toshiya; Levi Sanchez, Allister; Sands, William; Santic, John; Sanuki, Tomoyuki; Sapronov, Andrey; Sarkar, Utpal; Sasao, Noboru; Satoh, Kotaro; Sauli, Fabio; Saunders, Claude; Saveliev, Valeri; Savoy-Navarro, Aurore; Sawyer, Lee; Saxton, Laura; Schäfer, Oliver; Schälicke, Andreas; Schade, Peter; Schaetzel, Sebastien; Scheitrum, Glenn; Schibler, Emilie; Schindler, Rafe; Schlösser, Markus; Schlueter, Ross D.; Schmid, Peter; Schmidt, Ringo Sebastian; Schneekloth, Uwe; Schreiber, Heinz Juergen; Schreiber, Siegfried; Schroeder, Henning; Peter Schüler, K.; Schulte, Daniel; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumann, Steffen; Schumm, Bruce A.; Schwienhorst, Reinhard; Schwierz, Rainer; Scott, Duncan J.; Scuri, Fabrizio; Sefkow, Felix; Sefri, Rachid; Seguin-Moreau, Nathalie; Seidel, Sally; Seidman, David; Sekmen, Sezen; Seletskiy, Sergei; Senaha, Eibun; Senanayake, Rohan; Sendai, Hiroshi; Sertore, Daniele; Seryi, Andrei; Settles, Ronald; Sever, Ramazan; Shales, Nicholas; Shao, Ming; Shelkov, G.A.; Shepard, Ken; Shepherd-Themistocleous, Claire; Sheppard, John C.; Shi, Cai Tu; Shidara, Tetsuo; Shim, Yeo-Jeong; Shimizu, Hirotaka; Shimizu, Yasuhiro; Shimizu, Yuuki; Shimogawa, Tetsushi; Shin, Seunghwan; Shioden, Masaomi; Shipsey, Ian; Shirkov, Grigori; Shishido, Toshio; Shivpuri, Ram K.; Shrivastava, Purushottam; Shulga, Sergey; Shumeiko, Nikolai; Shuvalov, Sergey; Si, Zongguo; Siddiqui, Azher Majid; Siegrist, James; Simon, Claire; Simrock, Stefan; Sinev, Nikolai; Singh, Bhartendu K.; Singh, Jasbir; Singh, Pitamber; Singh, R.K.; Singh, S.K.; Singini, Monito; Sinha, Anil K.; Sinha, Nita; Sinha, Rahul; Sinram, Klaus; Sissakian, A.N.; Skachkov, N.B.; Skrinsky, Alexander; Slater, Mark; Slominski, Wojciech; Smiljanic, Ivan; Smith, A J Stewart; Smith, Alex; Smith, Brian J.; Smith, Jeff; Smith, Jonathan; Smith, Steve; Smith, Susan; Smith, Tonee; Neville Snodgrass, W.; Sobloher, Blanka; Sohn, Young-Uk; Solidum, Ruelson; Solyak, Nikolai; Son, Dongchul; Sonmez, Nasuf; Sopczak, Andre; Soskov, V.; Spencer, Cherrill M.; Spentzouris, Panagiotis; Speziali, Valeria; Spira, Michael; Sprehn, Daryl; Sridhar, K.; Srivastava, Asutosh; St. Lorant, Steve; Stahl, Achim; Stanek, Richard P.; Stanitzki, Marcel; Stanley, Jacob; Stefanov, Konstantin; Stein, Werner; Steiner, Herbert; Stenlund, Evert; Stern, Amir; Sternberg, Matt; Stockinger, Dominik; Stockton, Mark; Stoeck, Holger; Strachan, John; Strakhovenko, V.; Strauss, Michael; Striganov, Sergei I.; Strologas, John; Strom, David; Strube, Jan; Stupakov, Gennady; Su, Dong; Sudo, Yuji; Suehara, Taikan; Suehiro, Toru; Suetsugu, Yusuke; Sugahara, Ryuhei; Sugimoto, Yasuhiro; Sugiyama, Akira; Suh, Jun Suhk; Sukovic, Goran; Sun, Hong; Sun, Stephen; Sun, Werner; Sun, Yi; Sun, Yipeng; Suszycki, Leszek; Sutcliffe, Peter; Suthar, Rameshwar L.; Suwada, Tsuyoshi; Suzuki, Atsuto; Suzuki, Chihiro; Suzuki, Shiro; Suzuki, Takashi; Swent, Richard; Swientek, Krzysztof; Swinson, Christina; Syresin, Evgeny; Szleper, Michal; Tadday, Alexander; Takahashi, Rika; Takahashi, Tohru; Takano, Mikio; Takasaki, Fumihiko; Takeda, Seishi; Takenaka, Tateru; Takeshita, Tohru; Takubo, Yosuke; Tanaka, Masami; Tang, Chuan Xiang; Taniguchi, Takashi; Tantawi, Sami; Tapprogge, Stefan; Tartaglia, Michael A.; Tassielli, Giovanni Francesco; Tauchi, Toshiaki; Tavian, Laurent; Tawara, Hiroko; Taylor, Geoffrey; Telnov, Alexandre V.; Telnov, Valery; Tenenbaum, Peter; Teodorescu, Eliza; Terashima, Akio; Terracciano, Giuseppina; Terunuma, Nobuhiro; Teubner, Thomas; Teuscher, Richard; Theilacker, Jay; Thomson, Mark; Tice, Jeff; Tigner, Maury; Timmermans, Jan; Titov, Maxim; Toge, Nobukazu; Tokareva, N.A.; Tollefson, Kirsten; Tomasek, Lukas; Tomovic, Savo; Tompkins, John; Tonutti, Manfred; Topkar, Anita; Toprek, Dragan; Toral, Fernando; Torrence, Eric; Traversi, Gianluca; Trimpl, Marcel; Mani Tripathi, S.; Trischuk, William; Trodden, Mark; Trubnikov, G.V.; Tschirhart, Robert; Tskhadadze, Edisher; Tsuchiya, Kiyosumi; Tsukamoto, Toshifumi; Tsunemi, Akira; Tucker, Robin; Turchetta, Renato; Tyndel, Mike; Uekusa, Nobuhiro; Ueno, Kenji; Umemori, Kensei; Ummenhofer, Martin; Underwood, David; Uozumi, Satoru; Urakawa, Junji; Urban, Jeremy; Uriot, Didier; Urner, David; Ushakov, Andrei; Usher, Tracy; Uzunyan, Sergey; Vachon, Brigitte; Valerio, Linda; Valin, Isabelle; Valishev, Alex; Vamra, Raghava; Van der Graaf, Harry; Van Kooten, Rick; Van Zandbergen, Gary; Vanel, Jean-Charles; Variola, Alessandro; Varner, Gary; Velasco, Mayda; Velte, Ulrich; Velthuis, Jaap; Vempati, Sundir K.; Venturini, Marco; Vescovi, Christophe; Videau, Henri; Vila, Ivan; Vincent, Pascal; Virey, Jean-Marc; Visentin, Bernard; Viti, Michele; Vo, Thanh Cuong; Vogel, Adrian; Vogt, Harald; von Toerne, Eckhard; Vorozhtsov, S.B.; Vos, Marcel; Votava, Margaret; Vrba, Vaclav; Wackeroth, Doreen; Wagner, Albrecht; Wagner, Carlos E.M.; Wagner, Stephen; Wake, Masayoshi; Walczak, Roman; Walker, Nicholas J.; Walkowiak, Wolfgang; Wallon, Samuel; Walsh, Roberval; Walston, Sean; Waltenberger, Wolfgang; Walz, Dieter; Wang, Chao En; Wang, Chun Hong; Wang, Dou; Wang, Faya; Wang, Guang Wei; Wang, Haitao; Wang, Jiang; Wang, Jiu Qing; Wang, Juwen; Wang, Lanfa; Wang, Lei; Wang, Min-Zu; Wang, Qing; Wang, Shu Hong; Wang, Xiaolian; Wang, Xue-Lei; Wang, Yi Fang; Wang, Zheng; Wanzenberg, Rainer; Ward, Bennie; Ward, David; Warmbein, Barbara; Warner, David W.; Warren, Matthew; Washio, Masakazu; Watanabe, Isamu; Watanabe, Ken; Watanabe, Takashi; Watanabe, Yuichi; Watson, Nigel; Wattimena, Nanda; Wayne, Mitchell; Weber, Marc; Weerts, Harry; Weiglein, Georg; Weiland, Thomas; Weinzierl, Stefan; Weise, Hans; Weisend, John; Wendt, Manfred; Wendt, Oliver; Wenzel, Hans; Wenzel, William A.; Wermes, Norbert; Werthenbach, Ulrich; Wesseln, Steve; Wester, William; White, Andy; White, Glen R.; Wichmann, Katarzyna; Wienemann, Peter; Wierba, Wojciech; Wilksen, Tim; Willis, William; Wilson, Graham W.; Wilson, John A.; Wilson, Robert; Wing, Matthew; Winter, Marc; Wirth, Brian D.; Wolbers, Stephen A.; Wolff, Dan; Wolski, Andrzej; Woodley, Mark D.; Woods, Michael; Woodward, Michael L.; Woolliscroft, Timothy; Worm, Steven; Wormser, Guy; Wright, Dennis; Wright, Douglas; Wu, Andy; Wu, Tao; Wu, Yue Liang; Xella, Stefania; Xia, Guoxing; Xia, Lei; Xiao, Aimin; Xiao, Liling; Xie, Jia Lin; Xing, Zhi-Zhong; Xiong, Lian You; Xu, Gang; Xu, Qing Jing; Yajnik, Urjit A.; Yakimenko, Vitaly; Yamada, Ryuji; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Hitoshi; Yamamoto, Masahiro; Yamamoto, Naoto; Yamamoto, Richard; Yamamoto, Yasuchika; Yamanaka, Takashi; Yamaoka, Hiroshi; Yamashita, Satoru; Yamazaki, Hideki; Yan, Wenbiao; Yang, Hai-Jun; Yang, Jin Min; Yang, Jongmann; Yang, Zhenwei; Yano, Yoshiharu; Yazgan, Efe; Yeh, G.P.; Yilmaz, Hakan; Yock, Philip; Yoda, Hakutaro; Yoh, John; Yokoya, Kaoru; Yokoyama, Hirokazu; York, Richard C.; Yoshida, Mitsuhiro; Yoshida, Takuo; Yoshioka, Tamaki; Young, Andrew; Yu, Cheng Hui; Yu, Jaehoon; Yu, Xian Ming; Yuan, Changzheng; Yue, Chong-Xing; Yue, Jun Hui; Zacek, Josef; Zagorodnov, Igor; Zalesak, Jaroslav; Zalikhanov, Boris; Zarnecki, Aleksander Filip; Zawiejski, Leszek; Zeitnitz, Christian; Zeller, Michael; Zerwas, Dirk; Zerwas, Peter; Zeyrek, Mehmet; Zhai, Ji Yuan; Zhang, Bao Cheng; Zhang, Bin; Zhang, Chuang; Zhang, He; Zhang, Jiawen; Zhang, Jing; Zhang, Jing Ru; Zhang, Jinlong; Zhang, Liang; Zhang, X.; Zhang, Yuan; Zhang, Zhige; Zhang, Zhiqing; Zhang, Ziping; Zhao, Haiwen; Zhao, Ji Jiu; Zhao, Jing Xia; Zhao, Ming Hua; Zhao, Sheng Chu; Zhao, Tianchi; Zhao, Tong Xian; Zhao, Zhen Tang; Zhao, Zhengguo; Zhou, De Min; Zhou, Feng; Zhou, Shun; Zhu, Shou Hua; Zhu, Xiong Wei; Zhukov, Valery; Zimmermann, Frank; Ziolkowski, Michael; Zisman, Michael S.; Zomer, Fabian; Zong, Zhang Guo; Zorba, Osman; Zutshi, Vishnu

    2007-01-01

    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.

  2. Dependence on incident angle of solid state detector response to gamma-rays

    International Nuclear Information System (INIS)

    Yamanishi, Hirokuni; Yamaguchi, Satarou; Yamaguchi, Takayuki; Ueki, Kohtaro

    2002-01-01

    The shape and size of a NaI(Tl) scintillator that should maximize response variation with γ-ray incident angle was estimated by analytical model calculation. It proved that, even for gamma rays of energy exceeding 1 MeV, a slab detector measuring 50 cm x 50 cm x 5 cm thick should present a ratio of at least 4 between maximum and minimum responses against incidence at different angles. For a sample case of 60 keV gamma rays, estimation of the incident angle dependence by means of Monte Carlo simulation agreed well with experiment using a CZT detector. The counts from photo-electric peak varied with incident angle roughly along a sine curve. The foregoing finding served as basis for proposing a practical direction finder for γ-ray source operating on the principle of determining the source direction from variations in count with incident angle. (author)

  3. Evaluation of a flat-panel detector system

    International Nuclear Information System (INIS)

    Sato, Masami; Eguchi, Yoichi; Yamada, Kinichi; Kaga, Yuji; Endo, Yutaka; Yamazaki, Tatsuya

    2001-01-01

    We evaluated the imaging performance of a flat-panel detector digital radiography system (CXDI-11 X-ray Digital Camera, Canon Inc.) and a computed radiography system (FCR9000C-HQ, Fuji Film). The characteristics of the two detectors and of the overall systems were compared. This included evaluation and comparison of the fundamental physical characteristics, including x-ray response curve, modulation transfer function (MTF), Wiener spectra, noise-equivalent quanta, and x-ray tube voltage-dependent detector response. Overall system performance was evaluated using receiver operating characteristic (ROC) analysis. The results of the study showed that the dynamic range of the CXDI-11 measured relative to the input x-ray flux was 10 3 , similar to that of the FCR9000C-HQ. Both systems showed similar final MTFs, although the pre-sampling MTF of the CXDI-11 was better than that of the FCR9000C-HQ. Noise analysis, based on noise-equivalent quanta and Wiener spectra, showed that for normal exposure conditions the CXDI-11 had superior performance. With both systems, x-ray response (system output/incident x-ray exposure) increased with increasing x-ray tube voltage. ROC analysis indicated that the CXDI-11 was superior in overall performance. (author)

  4. Evaluation of Neutron Response of Criticality Accident Alarm System Detector to Quasi-Monoenergetic 24 keV Neutrons

    Science.gov (United States)

    Tsujimura, Norio; Yoshida, Tadayoshi; Yashima, Hiroshi

    The criticality accident alarm system (CAAS), which was recently developed and installed at the Japan Atomic Energy Agency's Tokai Reprocessing Plant, consists of a plastic scintillator combined with a cadmium-lined polyethylene moderator and thereby responds to both neutrons and gamma rays. To evaluate the neutron absorbed dose rate response of the CAAS detector, a 24 keV quasi-monoenergetic neutron irradiation experiment was performed at the B-1 facility of the Kyoto University Research Reactor. The detector's evaluated neutron response was confirmed to agree reasonably well with prior computer-predicted responses.

  5. Evaluation of neutron response of criticality accident alarm system detector to quasi-monoenergetic 24 keV neutrons

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Yashima, Hiroshi

    2016-01-01

    The criticality accident alarm system (CAAS), which was recently developed and installed at the Japan Atomic Energy Agency's Tokai Reprocessing Plant, consists of a plastic scintillator combined with a cadmium-lined polyethylene moderator and thereby responds to both neutrons and gamma rays. To evaluate the neutron absorbed dose rate response of the CAAS detector, a 24 keV quasi-monoenergetic neutron irradiation experiment was performed at the B-1 facility of the Kyoto University Research Reactor. The detector's evaluated neutron response was confirmed to agree reasonably well with prior computer-predicted responses. (author)

  6. Physics of multiple muons in underground detectors

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Stanev, T.

    1982-01-01

    We summarize results of Monte Carlo simulations of underground muons with a set of parametrizations for number and lateral distribution of muons at various detector depths. We also describe the size distributions of accompanying showers at the surface. We give some illustrations of the use of these results to study the surface-underground correlation and to interpret preliminary results of the Soudan-I detector presented at this conference

  7. Detectors for particle radiation. 2. rev. ed.

    International Nuclear Information System (INIS)

    Kleinknecht, K.

    1987-01-01

    This book is a description of the set-up and mode of action of detectors for charged particles and gamma radiation for students of physics, as well as for experimental physicists and engineers in research and industry: Ionization chamber, proportional counter, semiconductor counter; proportional chamber, drift chamber, bubble chamber, spark chamber, photomultiplier, laser ionization, silicion strip detector; Cherenkov counter, transition radiation detector; electron-photon-cascade counter, hadron calorimeter; magnetic spectrometer; applications in nuclear medicine, geophysics, space travel, atom physics, nuclear physics, and high-energy physics. With 149 figs., 20 tabs [de

  8. Radiation and detectors introduction to the physics of radiation and detection devices

    CERN Document Server

    Cerrito, Lucio

    2017-01-01

    This textbook provides an introduction to radiation, the principles of interaction between radiation and matter, and the exploitation of those principles in the design of modern radiation detectors. Both radiation and detectors are given equal attention and their interplay is carefully laid out with few assumptions made about the prior knowledge of the student. Part I is dedicated to radiation, broadly interpreted in terms of energy and type, starting with an overview of particles and forces, an extended review of common natural and man-made sources of radiation, and an introduction to particle accelerators. Particular attention is paid to real life examples, which place the types of radiation and their energy in context. Dosimetry is presented from a modern, user-led point of view, and relativistic kinematics is introduced to give the basic knowledge needed to handle the more formal aspects of radiation dynamics and interaction. The explanation of the physics principles of interaction between radiation an...

  9. Superconducting microresonator detectors for neutrino physics in Milano

    International Nuclear Information System (INIS)

    Ferri, E; Faverzani, M; Giachero, A; Nizzolo, R; Nucciotti, A; Day, P; LeDuc, H G; Falferi, P; Giordano, C; Marghesin, B; Mattedi, F; Mezzena, R

    2014-01-01

    Superconducting microwave microresonators are low temperature detectors compatible with large-scale multiplexed frequency domain readout. Our aim is to adapt and further advance the technology of microresonator detectors to develop new devices applied to the problem of measuring the neutrino mass. More specifically, we aim to develop detector arrays which can be applied to the calorimetric measurement of the energy spectra of 163 Ho EC decay (Q ∼ 2-3 keV) for a direct measurement of the neutrino mass. In order to achieve this goal, a study aimed to the selection of the best design and material for the detectors is required. A recent advance in microwave microresonator technology was the discovery that some metal nitrides, such as TiN, possess properties consistent with very high detector sensitivity. In this contribution, our progress on the design and test of Ti/TiN multilayer films is presented. We report measurements made on stoichiometric TiN, sub-stoichiometric TiN and multilayer Ti/TiN films including the critical temperature, the gap parameter and the quasi-particle recombination time extrapolated from ∼keV X-ray pulses.

  10. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 $pp$-collision data with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2017-01-13

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb$^{-1}$ of proton--proton collision data at $\\sqrt{s}=7$ TeV from 2010 and 0.1 nb$^{-1}$ of data at $\\sqrt{s}=8$ TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5\\% discrepancy in the modelling, using Geant4 physics lists, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta are derived based on these studies. The uncer...

  11. Gaseous Electron Multiplier (GEM) Detectors

    Science.gov (United States)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  12. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    International Nuclear Information System (INIS)

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-01-01

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1–50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  13. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  14. Analysis of ex-core detector response measured during nuclear ship Mutsu land-loaded core critical experiment

    International Nuclear Information System (INIS)

    Itagaki, M.; Abe, J.I.; Kuribayashi, K.

    1987-01-01

    There are some cases where the ex-core neutron detector response is dependent not only on the fission source distribution in a core but also on neutron absorption in the borated water reflector. For example, an unexpectedly large response variation was measured during the nuclear ship Mutsu land-loaded core critical experiment. This large response variation is caused largely by the boron concentration change associated with the change in control rod positioning during the experiment. The conventional Crump-Lee response calculation method has been modified to take into account this boron effect. The correction factor in regard to this effect has been estimated using the one-dimensional transport code ANISN. The detector response variations obtained by means of this new calculation procedure agree well with the measured values recorded during the experiment

  15. The Saskatchewan-Alberta large acceptance detector for photonuclear physics

    Science.gov (United States)

    Cairns, E. B.; Cameron, J.; Choi, W. C.; Fielding, H. W.; Green, P. W.; Greeniaus, L. G.; Hackett, E. D.; Holm, L.; Kolb, N. R.; Korkmaz, E.; Langill, P. P.; McDonald, W. J.; Mack, D.; Olsen, W. C.; Peterson, B. A.; Rodning, N. L.; Soukup, J.; Zhu, J.; Hutcheon, D.; Caplan, H. S.; Pywell, R. E.; Skopik, D. M.; Vogt, J. M.; van Heerden, I. J.

    1992-09-01

    The Saskatchewan-Alberta Large Acceptance Detector (SALAD) is a 4 π detector designed and built for studies of photonuclear reactions with a tagged photon beam. The design and performance of the detector are described. Its characteristics have been studied by examining p-p elastic scattering with a proton beam at TRIUMF.

  16. Physics Signatures at CLIC

    CERN Document Server

    Battaglia, Marco

    2001-01-01

    A set of signatures for physics processes of potential interests for the CLIC programme at = 1 - 5 TeV are discussed. These signatures, that may correspond to the manifestation of different scenarios of new physics as well as to Standard Model precision tests, are proposed as benchmarks for the optimisation of the CLIC accelerator parameters and for a first definition of the required detector response.

  17. The Cerenkov ring-imaging detector recent progress and future development

    CERN Document Server

    Ekelöf, T J C; Tocqueville, J; Ypsilantis, Thomas

    1981-01-01

    Results are reported on measurements of Cerenkov ring images using a multistage MWPC with an argon-TEA gas mixture. A specific detector response of N/sub 0/=56 cm/sup -1/ was obtained. It is shown that with some minor modifications to the detector, this value can be raised to N/sub 0/=90 cm/sup -1/. Using an argon-methane-TEA mixture in the MWPC, it is shown that efficient single-photoelectron detection can be achieved with proportional wire amplification without preamplification. A design of a new type of drift chamber (TPC) detector for two-dimensional measurement of the ring image is described. The use of the Cerenkov ring-imaging technique in high- energy physics experimentation is discussed, and in particular a full solid-angle detector for LEP is suggested. (10 refs).

  18. AMS_02 Particle Physics Detector Technologies Orbiting the Earth (2/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    AMS-02 has taken the high performance technologies used in particle physics and implemented them for use in low Earth orbit. Safety aspects for the Space Shuttle flight, that carried AMS_02 to the International Space Station, Space environment and inaccessibility during the life of AMS_02 are some of the aspects which have driven the design of the experiment. The technical challenges to build such a detector have been surmounted through the close collaboration amongst the AMS scientists and industries around the world. Their efforts have resulted in the development of new technologies and higher standards of precision.

  19. AMS_02 Particle Physics Detector Technologies Orbiting the Earth (1/2)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    AMS-02 has taken the high performance technologies used in particle physics and implemented them for use in low Earth orbit. Safety aspects for the Space Shuttle flight, that carried AMS_02 to the International Space Station, Space environment and inaccessibility during the life of AMS_02 are some of the aspects which have driven the design of the experiment. The technical challenges to build such a detector have been surmounted through the close collaboration amongst the AMS scientists and industries around the world. Their efforts have resulted in the development of new technologies and higher standards of precision.

  20. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  1. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  2. The physics of nanowire superconducting single-photon detectors

    NARCIS (Netherlands)

    Renema, Jelmer Jan

    2015-01-01

    We investigate the detection mechanism in superconducting single photon detectors via quantum detector tomography. We find that the detection event is caused by diffusion of quasiparticles from the absorption spot, combined with entrance of a vortex. Moreover, we investigate the behaviour of

  3. The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Ruddy, Frank H.; Seidel, John G.

    2007-01-01

    Silicon Carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X-ray and Gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306 deg. C and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a Schottky diode design has been carefully monitored as a function of 137 Cs gamma-ray exposure. The changes in response have been found to be negligible for gamma exposures up to and including 5.4 MGy, and irradiations to higher doses are in progress

  4. Searches for New Physics with the ATLAS Detector using Jets

    CERN Document Server

    Krizka, Karol; The ATLAS collaboration

    2016-01-01

    The Dark Matter (DM) nature remains one of the great puzzles of particle physics; while we know that about 27% of the universe is in the form of DM, little is known about its properties. If produced at the LHC, it should couple to the standard model though some mediator. The mediator can decay into dark matter particles that escape the detector, leaving a large missing transverse momentum (MET) as their signature. Also the mediator can decay into two quarks, which would appear as a bump in the invariant dijet mass spectrum. Recent results from ATLAS based on the presence of significant MET along with a variety of objects, and a dijet mass-spectrum analysis will be discussed.

  5. CCD-based vertex detectors

    CERN Document Server

    Damerell, C J S

    2005-01-01

    Over the past 20 years, CCD-based vertex detectors have been used to construct some of the most precise 'tracking microscopes' in particle physics. They were initially used by the ACCMOR collaboration for fixed target experiments in CERN, where they enabled the lifetimes of some of the shortest-lived charm particles to be measured precisely. The migration to collider experiments was accomplished in the SLD experiment, where the original 120 Mpixel detector was later upgraded to one with 307 Mpixels. This detector was used in a range of physics studies which exceeded the capability of the LEP detectors, including the most precise limit to date on the Bs mixing parameter. This success, and the high background hit densities that will inevitably be encountered at the future TeV-scale linear collider, have established the need for a silicon pixel-based vertex detector at this machine. The technical options have now been broadened to include a wide range of possible silicon imaging technologies as well as CCDs (mon...

  6. A method for synthesizing response functions of NaI detectors to gamma rays

    International Nuclear Information System (INIS)

    Sie, S.H.

    1978-08-01

    A simple method of parametrizing the response function of NaI detectors to gamma rays is described, based on decomposition of the pulse-height spectrum into components associated with the actual detection processes. Smooth dependence of the derived parameters on the gamma-ray energy made it possible to generate a lineshape for any gamma-ray energy by suitable interpolation techniques. The method is applied in analysis of spectra measured with a 7.6 x 7.6 cm NaI detector in continuum gamma-ray study following (HI,xn) reaction

  7. The Use of Radiation Detectors in Medicine: Radiation Detectors for Morphological Imaging (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  8. The Use of Radiation Detectors in Medicine: Radiation Detectors for Functional Imaging (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  9. A novel enhanced calibration method for DSSSD detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Levent; Vogt, Andreas; Reiter, Peter; Birkenbach, Benedikt; Hirsch, Rouven; Seidlitz, Michael; Warr, Nigel [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)

    2016-07-01

    Double-sided silicon strip detectors (DSSSD) are employed for the detection of charged particles in low-energy nuclear physics providing position and energy information for the impinging particle. Intersecting areas of both p- and n-side strips form individual pixel segments allowing for a high detector granularity. However, due to limitation in fabrication and the response of readout electronics, the performance of different channels may vary. In order to achieve best energy information, a calibration of each p- and n-side strip with a very high precision is mandatory. DSSSD responses are analyzed employing energy correlation matrices between adjacent strips in order to determine charge-sharing and energy-loss effects. A novel calibration method is based on the fact that each event is registered simultaneously on the p- and n-side strips. A two-dimensional calibration procedure allows for a significant enhancement of the energy resolution. In this way, the performance of DSSSDs with position-dependent radiation damage is improved clearly by excluding locally damaged detector areas without losing the information of complete p- or n-side strips.

  10. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  11. Monte Carlo Simulation for Particle Detectors

    CERN Document Server

    Pia, Maria Grazia

    2012-01-01

    Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

  12. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  13. Investigation of the physics potential and detector development for the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Ohlerich, Martin

    2010-02-15

    In this thesis, we investigate two rather separate topics - the precision measurement of the Higgs boson mass and of its coupling to the neutral gauge boson Z and the research and development of sensors for BEAMCAL, which is a sub-detector system of the ILC detector. We employ the Higgs-strahlung process for this purpose. A virtual Z boson is created in the e{sup +}e{sup -} collisions, which emits a Higgs-boson while becoming on-shell. Using the so-called recoil technique, we determine the Higgs boson mass by reconstructing the Z boson momentum and using the center-of-mass energy of the colliding leptons. Monte-Carlo studies including a full detector simulation and a full event reconstruction were performed to simulate the impact of a realistic detector model on the precision of the Higgs boson mass and production cross-section measurement. Also, an analytical estimate of the influence of a given detector performance on the Higgs boson mass measurement uncertainty is given. We included a complete sample of background events predicted by the Standard Model, which may have a detector response similar to the signal events. A probabilistic method is used for the signal-background separation. Several other probabilistic methods were used to investigate and improve the measurement of the Higgs-strahlung cross-section and the Higgs boson mass from the recoil mass spectrum obtained after the signal-background separation. For a Higgs boson mass of 120 GeV, a center-of-mass energy of {radical}(s)=250 GeV and an integrated luminosity of L=50 fb{sup -1}, a relative uncertainty of 10 % is obtained for the cross-section measurement, and a precision of 118 MeV for the Higgs boson mass. For a Higgs boson mass of 180 GeV and {radical}(s)=350 GeV, a statistics corresponding to L=50 fb{sup -1} is not sufficient to achieve the necessary significance of the recoil mass peak above the background. The BEAMCAL is a calorimeter in the very forward region, about 3 m away from the nominal

  14. Investigation of the physics potential and detector development for the ILC

    International Nuclear Information System (INIS)

    Ohlerich, Martin

    2010-02-01

    In this thesis, we investigate two rather separate topics - the precision measurement of the Higgs boson mass and of its coupling to the neutral gauge boson Z and the research and development of sensors for BEAMCAL, which is a sub-detector system of the ILC detector. We employ the Higgs-strahlung process for this purpose. A virtual Z boson is created in the e + e - collisions, which emits a Higgs-boson while becoming on-shell. Using the so-called recoil technique, we determine the Higgs boson mass by reconstructing the Z boson momentum and using the center-of-mass energy of the colliding leptons. Monte-Carlo studies including a full detector simulation and a full event reconstruction were performed to simulate the impact of a realistic detector model on the precision of the Higgs boson mass and production cross-section measurement. Also, an analytical estimate of the influence of a given detector performance on the Higgs boson mass measurement uncertainty is given. We included a complete sample of background events predicted by the Standard Model, which may have a detector response similar to the signal events. A probabilistic method is used for the signal-background separation. Several other probabilistic methods were used to investigate and improve the measurement of the Higgs-strahlung cross-section and the Higgs boson mass from the recoil mass spectrum obtained after the signal-background separation. For a Higgs boson mass of 120 GeV, a center-of-mass energy of √(s)=250 GeV and an integrated luminosity of L=50 fb -1 , a relative uncertainty of 10 % is obtained for the cross-section measurement, and a precision of 118 MeV for the Higgs boson mass. For a Higgs boson mass of 180 GeV and √(s)=350 GeV, a statistics corresponding to L=50 fb -1 is not sufficient to achieve the necessary significance of the recoil mass peak above the background. The BEAMCAL is a calorimeter in the very forward region, about 3 m away from the nominal interaction point and

  15. Response function of semiconductor detectors, Ge and Si(Li); Funcao resposta de detectores semicondutores, Ge e Si(Li)

    Energy Technology Data Exchange (ETDEWEB)

    Zevallos Chavez, Juan Yury

    2003-07-01

    The Response Function (RF) for Ge and Si(Li) semiconductor detectors was obtained. The RF was calculated for five detectors, four Hp Ge with active volumes of 89 cm{sup 3} , 50 cm{sup 3} , 8 cm{sup 3} and 5 cm{sup 3}, and one Si(Li) with 0.143 cm{sup 3} of active volume. The interval of energy studied ranged from 6 keV up to 1.5 MeV. Two kinds of studies were done in this work. The first one was the RF dependence with the detection geometry. Here the calculation of the RF for a geometry named as simple and an extrapolation of that RF, were both done. The extrapolation process analyzed both, spectra obtained with a shielding geometry and spectra where the source-detector distance was modified. The second one was the RF dependence with the detection electronics. This study was done varying the shaping time of the pulse in the detection electronics. The purpose was to verify the effect of the ballistic deficit in the resolution of the detector. This effect was not observed. The RF components that describe the region of the total absorption of the energy of the incident photons, and the partial absorption of this energy, were both treated. In particular, empirical functions were proposed for the treatment of both, the multiple scattering originated in the detector (crystal), and the photon scattering originated in materials of the neighborhood of the crystal. Another study involving Monte Carlo simulations was also done in order to comprehend the photon scattering structures produced in an iron shield. A deconvolution method is suggested, for spectra related to scattered radiation in order to assess the dose delivered to the scatterer. (author)

  16. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  17. Review of resistance temperature detector time response characteristics. Safety evaluation report

    International Nuclear Information System (INIS)

    1981-08-01

    A Resistance Temperature Detector (RTD) is used extensively for monitoring water temperatures in nuclear reactor plants. The RTD element does not respond instantaneously to changes in water temperature, but rather there is a time delay before the element senses the temperature change, and in nuclear reactors this delay must be factored into the computation of safety setpoints. For this reason it is necessary to have an accurate description of the RTD time response. This report is a review of the current state of the art of describing and measuring this time response

  18. Recent results on top quark physics with the CMS detector

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The dawn of the LHC Run II brings the prospect of pushing precision in top quark physics to a new level probing further the standard model and beyond. The inclusive production of top quark pairs and single top quarks has been rapidly established with as much as 42/pb of integrated luminosity and has been further probed with increased precision using up to 2.7/fb of proton-proton collision data acquired by the CMS detector during 2015. Inclusive and differential production cross sections of top-quark pairs and single-top quarks have been measured using new selection and top kinematics reconstruction techniques. The results have been compared to several predictions which include the state of the art next-to-leading order matched to parton shower generators as well as several fixed-order theory calculations. In addition the associated production of top quark pairs with a Z boson has also been re-established at 13 TeV. These results re-open the door to an exciting top quark physics programme ahead of us during th...

  19. Response function of the trigger scintillation detector for the COSY 11 installation

    International Nuclear Information System (INIS)

    Moskal, P.

    1993-10-01

    The aim of this work is to test the response of a scintillation detector to ionizing particles. This counter, consisting of sixteen detection modules, will serve as a trigger of the whole detection system. Thus the time resolution as well as a signal amplitude variation with respect to a hit position is of a special interest. The former because this detector will be used as a start counter for the time of flight measurement, the latter as it will provide energy loss measurements of the particles. The present work is divided into two parts. In the first one the main stages of a signal production by scintillation counters are considered. In the second one the first chapter presents measurements of the characteristics of the photomultiplier, whereas the second one contains a description of the experimental set-ups as well as the method of data evaluation. The final chapter in turn presents the main characteristics of the considered detector. (orig.)

  20. Response function study of a scintillator detector of NaI(Tl); Estudo da funcao resposta de um detector cintilador de NaI(Tl)

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Marcelo Barros; Costa, Alessandro Martins da, E-mail: amcosta@usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica

    2014-07-01

    In measurements of gamma rays with Nai (Tl) scintillator, the detectors output data are pulse height spectra, that corresponding to distorted information about the radiation source due to various errors associated with the crystal scintillation process and electronics associated, instead of power spectra photons. Pulse height spectra are related to the real power spectra by means of scintillator detector response function NaI (Tl). In this work, the response function for a cylindrical crystal of Nal (Tl) of 7,62 x 7,62 cm (diameter x length) was studied, by Monte Carlo method, using the EGSnrc tool to model the transport of radiation, combined with experimental measurements. An inverse response matrix, even with the energy of the square root, which transforms the pulse height spectrum of photon energy spectrum was obtained. The results of this transformation of pulse height spectrum for photon energy spectrum is presented, showing that the methodology employed in this study is suitable.

  1. Acoustic response of superheated droplet detectors to neutrons

    International Nuclear Information System (INIS)

    Gao Size; Zhang Guiying; Ni Bangfa; Zhao Changjun; Zhang Huanqiao; Guan Yongjing; Chen Zhe; Xiao Caijin; Liu Chao; Liu Cunxiong

    2012-01-01

    The search for dark matter (DM) is a hot field nowadays, a number of innovative techniques have emerged. The superheated droplet technique is relatively mature; however, it is recently revitalized in a number of frontier fields including the search for DM. In this work, the acoustic response of Superheated Droplet Detectors (SDDs) to neutrons was studied by using a 252 Cf neutron source, SDDs developed by the China Institute of Atomic Energy, a sound sensor, a sound card and a PC. Sound signals were filtered. The characteristics of FFT spectra, power spectra and time constants were used to determine the authenticity of the bubbles analyzed.

  2. Neutron detectors for the ESS diffractometers

    Czech Academy of Sciences Publication Activity Database

    Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Muller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, Jan; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.

    2017-01-01

    Roč. 12, JAN (2017), č. článku P01019. ISSN 1748-0221 R&D Projects: GA MŠk LM2015048 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * neutron diffraction detectors * neutron detectors (cold, thermal, fast neutrons) Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.220, year: 2016

  3. Searches for new physics in events with multiple leptons at the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Wiik-Fuchs Liv

    2015-01-01

    Full Text Available Events containing three or more leptons are an invaluable probe for physics beyond the Standard Model (SM at the LHC. This paper summarizes a generic search for final states with three or more leptons as well as direct searches for heavy seesaw neutrinos, excited leptons and WZ resonances. All searches were conducted using the data recorded in 2012 in proton-proton collisions at √s = 8 TeV with the ATLAS detector at the LHC.

  4. Search for Exotic Physics Beyond the Standard Model with the ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00287508; The ATLAS collaboration

    2017-01-01

    A summary is given of non-SUSY searches for New Physics with the ATLAS detector at the LHC. Shown results use a data sample collected with a center-of-mass energy of ${\\sqrt{s}=8}$ TeV and an integrated luminosity of around $20$ fb$^{-1}$ in proton-proton collisions. Four recent searches using leptons, photons, missing transverse energy, and jets are presented. No significant deviations from Standard Model expectations are observed, hence new limits on a wide set of predictions for several Standard Model extensions are set.

  5. The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector

    Science.gov (United States)

    Axani, S. N.; Frankiewicz, K.; Conrad, J. M.

    2018-03-01

    The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under 100 and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements.

  6. The development and performance of the EXAM detector to search for extragalactic antimatter

    International Nuclear Information System (INIS)

    Coan, T.E.

    1989-01-01

    The design and development of a practical balloon borne instrument capable of detecting heavy (Z approximately equal to -26) antimatter in the cosmic rays are described. Emphasis is placed on describing the essential physics of the EXAM (extragalactic antimatter) instrument's individual detectors that make such a detection possible. In particular, it is shown that the responses from a plastic scintillator, a Cerenkov radiation detector, dielectric track detectors, and proportional drift tube arrays can be used to uniquely determine the speed, charge magnitude, and charge sign of a cosmic ray nucleus. This novel nonmagnetic detection scheme permits the construction of a relatively light weight (approximately 2,000 kg) detector with a large collecting power (approximately 10 sq m sr). The profound cosmological and elementary particle physics implications of the detection of just a single heavy antimatter nucleus are discussed in chapter one, along with arguments that imply that such a detected antinucleus must necessarily be extragalactic in origin. Chapters two through six describe the response of EXAM's individual detectors to the passage of heavily ionizing charged particles. Chapter seven is an overview of the mechanical construction of the entire instrument. Details of the measurement of the light collection efficiency of EXAM's Cerenkov detector and primary scintillator using sea-level muons and how this will be used to assist in the flight data analysis are contained in chapter eight. This chapter also includes a description of the instrument's electronic configuration and its data acquisition system. Finally, there are two appendices summarizing some important mechanical stress calculations that were required to actually build the instrument

  7. Silicon Drift Detectors - A Novel Technology for Vertex Detectors

    Science.gov (United States)

    Lynn, D.

    1996-10-01

    Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.

  8. Simulation framework and XML detector description for the CMS experiment

    CERN Document Server

    Arce, P; Boccali, T; Case, M; de Roeck, A; Lara, V; Liendl, M; Nikitenko, A N; Schröder, M; Strässner, A; Wellisch, H P; Wenzel, H

    2003-01-01

    Currently CMS event simulation is based on GEANT3 while the detector description is built from different sources for simulation and reconstruction. A new simulation framework based on GEANT4 is under development. A full description of the detector is available, and the tuning of the GEANT4 performance and the checking of the ability of the physics processes to describe the detector response is ongoing. Its integration on the CMS mass production system and GRID is also currently under development. The Detector Description Database project aims at providing a common source of information for Simulation, Reconstruction, Analysis, and Visualisation, while allowing for different representations as well as specific information for each application. A functional prototype, based on XML, is already released. Also examples of the integration of DDD in the GEANT4 simulation and in the reconstruction applications are provided.

  9. Development of Micro-Pattern Gas Detectors Technologies

    CERN Multimedia

    Richer, J; Barsuk, S; Shah, M K; Catanesi, M G; Colaleo, A; Maggi, M; Loddo, F; Berardi, V; Bagliesi, M; Menon, G; Richter, R; Lahonde-hamdoun, C; Dris, M; Chechik, R; Ochi, A; Hartjes, F; Lopes, I M; Deshpande, A; Franz, A; Fiutowski, T A; Ferreira, A; Bastos de oliveira, C A; Miller, B W; Monrabal-capilla, F; Liubarsky, I; Plazas de pinzon, M C; Tsarfati, T; Voss, B J R; Carmona martinez, J M; Stocchi, A; Dinu, N; Semeniouk, I; Giebels, B; Marton, K; De leo, R; De lucia, E; Alviggi, M; Bellerive, A; Herten, L G; Zimmermann, S U; Giomataris, I; Peyaud, A; Schune, P; Delagnes, E; Delbart, A; Charles, G; Wang, W; Markou, A; Arazi, L; Cibinetto, G; Edo, Y; Neves, F F; Solovov, V; Stoll, S; Sampsonidis, D; Dabrowski, W; Mindur, B; Sauli, F; Calapez de albuquerque veloso, J F; Kahlaoui, N; Sharma, A; Zenker, K; Cebrian guajardo, S V; Luzon marco, G M; Guillaudin, O J H; Cornebise, P; Lounis, A; Bruel, P J; Laszlo, A; Mukerjee, K; Nappi, E; Nuzzo, S V; Bencivenni, G; Tessarotto, F; Levorato, S; Dixit, M S; Riallot, M; Jeanneau, F; Nizery, F G; Maltezos, S; Kyriakis, A; Lyashenko, A; Van der graaf, H; Ferreira marques, R; Alexa, C; Liyanage, N; Dehmelt, K; Hemmick, T K; Polychronakos, V; Cisbani, E; Garibaldi, F; Koperny, S Z; Das neves dias carramate, L F; Munoz-vidal, J; Gutierrez, R; Van stenis, M; Resnati, F; Lupberger, M; Desch, K K; Chefdeville, M; Vouters, G; Ranieri, A; Lami, S; Shekhtman, L; Dolgov, A; Bamberger, A; Landgraf, U; Kortner, O; Ferrero, A; Aune, S; Attie, D M; Bakas, G; Balossino, I; Tsigaridas, S; Surrow, B; Gnanvo, K A K; Feege, N M; Woody, C L; Bhattacharya, S; Capogni, M; Veenhof, R J; Tapan, I; Dangendorf, V; Monteiro bernades, C M; Castro serrato, H F; De oliveira, R; Ropelewski, L; Behnke, T; Boudry, V; Radicioni, E; Lai, A; Shemyakina, E; Giganon, A E; Titov, M; Papakrivopoulos, I; Komai, H; Van bakel, N A; Tchepel, V; Repond, J O; Li, Y; Kourkoumelis, C; Tzamarias, S; Majumdar, N; Kowalski, T; Da rocha azevedo, C D; Serra diaz cano, L; Alvarez puerta, V; Trabelsi, A; Riegler, W; Ketzer, B F; Rosemann, C G; Herrera munoz, D C; Drancourt, C; Mayet, F; Geerebaert, Y; De robertis, G; Felici, G; Scribano memoria, A; Cecchi, R; Dalla torre, S; Gregori, M; Buzulutskov, A; Schwegler, P; Sanchez nieto, F J; Colas, P M A; Gros, M; Neyret, D; Zito, M; Ferrer ribas, E; Breskin, A; Martoiu, V S; Purschke, M L; Loomba, D; Gasik, P J; Petridou, C; Kordas, K; Mukhopadhyay, S; Bucciantonio, M; Biagi, S F; Ji, X; Kanaki, K; Zavazieva, D; Capeans garrido, M D M; Schindler, H; Kaminski, J; Krautscheid, T; Lippmann, C; Arora, R; Dafni, T; Garcia irastorza, I; Puill, V; Wicek, F B; Burmistrov, L; Singh, K P; Kroha, H; Kunne, F; Alexopoulos, T; Daskalakis, G; Geralis, T; Bettoni, D; Heijhoff, K; Xiao, Z; Tzanakos, G; Leisos, A; Frullani, S; Sahin, O; Kalkan, Y; Giboni, K; Krieger, C; Breton, D R; Bhattacharyya, S; Abbrescia, M; Erriquez, O; Paticchio, V; Cardini, A; Aloisio, A; Turini, N; Bressan, A; Tikhonov, Y; Schumacher, M; Simon, F R; Nowak, S; Herlant, S; Chaus, A; Fanourakis, G; Bressler, S; Homma, Y; Timmermans, J; Fonte, P; Underwood, D G; Azmoun, B; Fassouliotis, D; Wiacek, P; Dos santos covita, D; Monteiro da silva, A L; Yahlali haddou, N; Marques ferreira dos santos, J; Domingues amaro, F

    The proposed R&D collaboration, RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. Advances in particle physics have always been enabled by parallel advances in radiation-detector technology. Radiation detection and imaging with gas-avalanche detectors, capable of economically covering large detection volumes with a low material budget, have been playing an important role in many fields. Besides their widespread use in particle-physics and nuclear-physics experiments, gaseous detectors are employed in many other fields: astro-particle research and applications such as medical imaging, material science, and security inspection. While extensively employed at the LHC, RHIC, and other advanced HEP experiments, present gaseous detectors (wire-chambers, drift-tubes, resistive-plate chambers and others) have limitations which may prevent their use in future experiments. Present tec...

  10. Detection system with a large angular acceptance and an energy high dynamics, for heavy ion physics at intermediate energies: M.E.ω. detector

    International Nuclear Information System (INIS)

    Monnet, F.

    1985-01-01

    Built for intermediate energy heavy ions nuclear physics, the M.E.ω. detector uses various and complementary detection methods: ionization chamber, parallel plate avalanche counter, plastic scintillators. With these techniques, velocity, energy, mass and charge of nuclei were measured over wide range. From the detailed theoretical study of each method, limitations and perturbation causes are deduced. The solutions used for optimizing the detector, and the main results are exposed. The internal sectorisation of the detector, which permits a modulation in counting rate and electronical adjustments, has been revealed to be very suitable for heavy ions intermediate energy physics. Results of the first experiment realised with M.E.ω. (Ar + Ag at 35 MeV/u) are commented [fr

  11. First experience of vectorizing electromagnetic physics models for detector simulation

    International Nuclear Information System (INIS)

    Amadio, G; Bianchini, C; Apostolakis, J; Bitzes, G; Brun, R; Carminati, F; Gheata, A; Novak, M; Shadura, O; Wenzel, S; Bandieramonte, M; Canal, P; Elvira, D; Jun, S Y; Lima, G; Licht, J de Fine; Duhem, L; Presbyterian, M; Seghal, R

    2015-01-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project. (paper)

  12. First experience of vectorizing electromagnetic physics models for detector simulation

    Science.gov (United States)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  13. First experience of vectorizing electromagnetic physics models for detector simulation

    Energy Technology Data Exchange (ETDEWEB)

    Amadio, G. [Sao Paulo State U.; Apostolakis, J. [CERN; Bandieramonte, M. [Catania Astrophys. Observ.; Bianchini, C. [Mackenzie Presbiteriana U.; Bitzes, G. [CERN; Brun, R. [CERN; Canal, P. [Fermilab; Carminati, F. [CERN; Licht, J.de Fine [U. Copenhagen (main); Duhem, L. [Intel, Santa Clara; Elvira, D. [Fermilab; Gheata, A. [CERN; Jun, S. Y. [Fermilab; Lima, G. [Fermilab; Novak, M. [CERN; Presbyterian, M. [Bhabha Atomic Res. Ctr.; Shadura, O. [CERN; Seghal, R. [Bhabha Atomic Res. Ctr.; Wenzel, S. [CERN

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  14. Determination of the response of a NaI(Tl) detector

    International Nuclear Information System (INIS)

    Vega C, H.R.; Manzanares A, E.; Hernandez D, V.M.; Chacon R, A.

    2006-01-01

    By means of Monte Carlo calculations it was determined the response of a scintillator of NaI (Tl) of 7.62 Φ x 7.62 cm to monoenergetic gamma rays of 0.2 to 3.5 MeV. The response allows to determine the spectra of height of pulses of the monoenergetic photons. This type of calculations was also carried out for photons emitted by sources of Cs-137, Co-60, Na-22, Na-24 and 239 PuBe, with the purpose of reproducing the gamma spectra obtained with this type of detecting. In the calculations the detector was modelled as a NaI cylinder with Al cover and the base of lucite; due to the absence of reliable information on the quantity of thallium in the calculations this information was omitted: for photons whose energy is greater to 1.022 MeV the presence of the gamma peak of the simple escape and twice is observed. The source was modelled as punctual and was located to 5 cm along the axial axis of the detector. To verify the calculations its were carried out measurements with a spectrometer with a scintillator of 7.62 Φ x 7.62 cm. In the measured spectra the sum peak is observed, while in those calculated it doesn't appear; because the simultaneous detection of photons of different energy doesn't happen each photon since, in single form, it is followed until its complete absorption in the scintillator or when it escapes from the volume of the detector. To reproduce the sum peak and to obtain height spectra of pulses similar to those measured, the sum photons were introduced in the calculations. With the purpose of that Monte Carlo calculation it reproduces the scattering around the photopeak it was used a gaussian function in each photopeak whose characteristics were obtained starting from the experimental data. The calculation of the response of a scintillator allows to establish the capacity of the measurement of the gamma radiation as well as to distinguish the real events of those that appear by the limitations of the detection process. (Author)

  15. Alpha particle response study of polycrstalline diamond radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Topkar, Anita [Electronics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2016-05-23

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  16. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  17. The ̅PANDA Detector at FAIR

    International Nuclear Information System (INIS)

    Ikegami Andersson, W

    2016-01-01

    The future ̅PANDA detector at FAIR is a state-of-the-art internal target detector designed for strong interaction studies. By utilizing an antiproton beam, a rich and unique physics programme is planned. The ̅PANDA experiment, as well as feasibility studies for hyperon and charmonium physics, are discussed. (paper)

  18. The ̅PANDA Detector at FAIR

    Science.gov (United States)

    Ikegami Andersson, W.; ̅PANDA Collaboration

    2016-11-01

    The future ̅PANDA detector at FAIR is a state-of-the-art internal target detector designed for strong interaction studies. By utilizing an antiproton beam, a rich and unique physics programme is planned. The ̅PANDA experiment, as well as feasibility studies for hyperon and charmonium physics, are discussed.

  19. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  20. Detectors for LEP: methods and techniques

    International Nuclear Information System (INIS)

    Fabjan, C.

    1979-01-01

    This note surveys detection methods and techniques of relevance for the LEP physics programme. The basic principles of the detector physics are sketched, as recent improvement in understanding points towards improvements and also limitations in performance. Development and present status of large detector systems is presented and permits some conservative extrapolations. State-of-the-art techniques and technologies are presented and their potential use in the LEP physics programme assessed. (Auth.)

  1. A full-acceptance detector for SSC physics at low and intermediate mass scales

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1992-01-01

    The author of this paper is interested in seeing the proposed detector and physics measurements done at the SSC. It should be clear that the author views this subject as important enough to warrant the effort going into producing this tome. It should also be clear that nothing will happen unless members of the experimental community come forward and do real work to see whether the ideas contained herein are sound and that the physics is indeed worth a dedicated effort at the SSC. Therefore this paper is directed more toward the experimental community than the SSC Laboratory. However, since initial encouragement (or discouragement) by the laboratory is evidently very important, this paper also contains specific requests addressed to the SSC Laboratory

  2. SSC muon detector group report

    International Nuclear Information System (INIS)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4π detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC

  3. SSC muon detector group report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsmith, D.; Groom, D.; Hedin, D.; Kirk, T.; Ohsugi, T.; Reeder, D.; Rosner, J.; Wojcicki, S.

    1986-01-01

    We report here on results from the Muon Detector Group which met to discuss aspects of muon detection for the reference 4..pi.. detector models put forward for evaluation at the Snowmass 1986 Summer Study. We report on: suitable overall detector geometry; muon energy loss mechanisms; muon orbit determination; muon momentum and angle measurement resolution; raw muon rates and trigger concepts; plus we identify SSC physics for which muon detection will play a significant role. We conclude that muon detection at SSC energies and luminosities is feasible and will play an important role in the evolution of physics at the SSC.

  4. ENERGY RESPONSE OF FLUORESCENT NUCLEAR TRACK DETECTORS OF VARIOUS COLORATIONS TO MONOENERGETIC NEUTRONS.

    Science.gov (United States)

    Fomenko, V; Moreno, B; Million, M; Harrison, J; Akselrod, M

    2017-10-25

    The neutron-energy dependence of the track-counting sensitivity of fluorescent nuclear track detectors (FNTDs) at two ranges of Mg doping, resulting in different crystal colorations, was investigated. The performance of FNTDs was studied with the following converters: Li-glass for thermal to intermediate-energy neutrons, polyethylene for fast neutrons, and polytetrafluoroethylene (Teflon™) for photon- and radon-background subtraction. The irradiations with monoenergetic neutrons were performed at the National Physics Laboratory (NPL), UK. The energy range was varied from 144 keV to 16.5 MeV in the personal dose equivalent range from 1 to 3 mSv. Monte Carlo simulations were performed to model the response of FNTDs to monoenergetic neutrons. A good agreement with the experimental data was observed suggesting the development of a basic model for future MC studies. Further work will focus on increasing FNTD sensitivity to low-energy neutrons and developing a faster imaging technique for scanning larger areas to improve counting statistics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Physical and subjective evaluation of a three-detector (TRIAD 88) SPECT system

    International Nuclear Information System (INIS)

    D'Souza, M.F.; Mumma, C.G.; Allen, E.W.; Phal, J.J.; Prince, J.R.

    1995-01-01

    The three-detector TRIAD 88 is a variable cylindrical FOV whole-body SPECT system designed for both brain as well as body organ imaging. The system performance was assessed in terms of physical indices and clinical quality. Measures of low contrast resolution using contrast-detail curves, high contrast resolution using LSFs and associated frequency descriptors, display characteristics, system sensitivity, energy resolution and uniformity analysis were utilized. In addition, images of Carlson phantom, Hoffman brain phantom and clinical brain images were used to compare two collimators subjectively. Measurements and calculations were obtained for two sets of parallel hole collimators, i.e., LEUR P AR and LEHR P AR. Of special interest is the consistency among the three detectors. The planar and volume sensitivities for the LEUR P AR collimator were about 58% of those of the LEHR P AR collimator. The planar spatial resolution of the two collimators differed by about 14%. The display was characterized by a logistic model H and D curve. The planar contrast-detail curves demonstrated no statistical difference in lesion detectability between the two collimator types, however SPECT phantom and clinical images demonstrated improved performance with the LEUR P AR collimator. Images of Hoffman single slice brain and Carlson phantoms and Tc-99m (HMPAO) brain images demonstrated excellent image quality. There was similarity in performance parameters of the three detector heads. 49 refs., 6 tabs., 8 figs

  6. Response of CR-39 Detector Against Fast Neutron Using D-Polyethylene and H-Polyethylene Radiator

    International Nuclear Information System (INIS)

    Sofyan, Hasnel

    1996-01-01

    The research on the response of detector CR-39 by using D-Polyethylene and H-Polyethylene radiator has been carried out. The optimum number of nuclear tracks was found with the use of 30 % NaOH at 80 + 0,5oC for 80 minutes of etching time. The comparison of CR-39 detector response caused by D-Polyethylene radiator against H-Polyethylene radiator of irradiation in air, were found to be 1.18 and 0.84 for 241Am-Be neutron source and neutron source from reactor respectively. For phantom irradiation, the results were found to be 1.75 for 241Am-Be neutron source, and 0.77 for neutron source from reactor

  7. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    International Nuclear Information System (INIS)

    Reginatto, Marcel; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas; Gagnon-Moisan, Francis

    2015-01-01

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ E n ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics

  8. ICARUS: An Innovative Large LAR Detector for Neutrino Physics

    Science.gov (United States)

    Vignoli, C.; Barni, D.; Disdier, J. M.; Rampoldi, D.; Icarus Collaboration

    2006-04-01

    ICARUS is an international project that foresees the installation of very large LAr detectors inside the Gran Sasso underground laboratory in order to be sensitive to rare phenomena of particle physics. The detection technique is based on the collection of electrons produced by particle interactions in LAr by a matrix of thousands of thin wires. At the moment the project foresees the installation of a 600,000-kg vessel (T600). The total amount of LAr can be expanded in a modular way to masses of the order of 106 kg. The T600 houses two identical 300,000-kg Ar sub-cryostats that are aluminum boxes about 20-m long, 4-m high and 4-m wide. Safety requirements for the underground installation have led to a unique design for the vessels to prevent LAr spillages even in the case of inner cryostat failure. Electrons must drift over meters requiring the development of special gas and liquid Ar purification units to provide an extremely high LAr purity (better then 0.1 ppb). The cooling system has been designed to assure a high thermal uniformity in the detector volume (less than 1-K differential). The cryogenic system associated with the final ICARUS configuration is based on three N2 refrigerators, three 30-m3 tanks and pump driven two-phase N2 forced-flow cooling of the various sub-systems. The T600 was successfully tested in Pavia in 2001 and it is now under installation in Gran Sasso for final operation. The future mass expansion strategy is under investigation.

  9. Changes in the long-term delayed response of platinum self-powered detector with irradiation

    International Nuclear Information System (INIS)

    Parent, G.; Serdula, K.J.; Eng, P.

    1989-01-01

    Two long-term delayed response characteristics have been observed for platinum, Pt, detectors in the Gentilly-2 600 MW(e) CANDU PHWR reactor. The first effect is a dip in the signal two to three hours after a shutdown, due to the (n,beta) interactions of Mn-55 and Ni-64 which exist as impurities in the detector assembly. The second effect is an increase of the delayed fraction of the signal. The low neutron absorption cross-section of Pt-196 combined with the conversion of the Pt-194 and Pt-195 results in build-up of the Pt-196. The long half-lives associated with the beta-emission in the transmutation of Pt-196 to Hg-198 or Hg-199 give rise to the observed long-term delayed response

  10. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1990-01-01

    The state of the art in semiconductor detectors for elementary particle physics and X-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; i) classical semiconductor diode detectors and ii) semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. (orig.)

  11. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1989-01-01

    The state of the art in semiconductor detectors for elementary particle physics and x-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; classical semiconductor diode detectors; and semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. 13 refs., 8 figs

  12. TSV last for hybrid pixel detectors: Application to particle physics and imaging experiments

    CERN Document Server

    Henry, D; Berthelot, A; Cuchet, R; Chantre, C; Campbell, M

    Hybrid pixel detectors are now widely used in particle physics experiments and at synchrotron light sources. They have also stimulated growing interest in other fields and, in particular, in medical imaging. Through the continuous pursuit of miniaturization in CMOS it has been possible to increase the functionality per pixel while maintaining or even shrinking pixel dimensions. The main constraint on the more extensive use of the technology in all fields is the cost of module building and the difficulty of covering large areas seamlessly [1]. On another hand, in the field of electronic component integration, a new approach has been developed in the last years, called 3D Integration. This concept, based on using the vertical axis for component integration, allows improving the global performance of complex systems. Thanks to this technology, the cost and the form factor of components could be decreased and the performance of the global system could be enhanced. In the field of radiation imaging detectors the a...

  13. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  14. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  15. Comparison of natural and synthetic diamond X-ray detectors

    International Nuclear Information System (INIS)

    Lansley, S. P.; Betzel, G.T.; Meyer, J.; Metcalf, P.; Reinisch, L.

    2010-01-01

    Full text: Diamond detectors are particularly well suited for dosimetry applications in radiotherapy for reasons including near-tissue equivalence and high-spatial resolu tion resulting from small sensitive volumes. However, these detectors have not become commonplace due to high cost and poor availability arising from the need for high quality diamond. We have fabricated relatively cheap detectors from commercially-available synthetic diamond fabricated using chemical vapour deposition. Here, we present a comparison of one of these detectors with the only commercially-available diamond-based detector (which uses a natural diamond crystal). Parameters such as the energy dependence and linearity of charge with dose were investigated at orthovoltage energies (50-250 kY), and dose-rate dependence of charge at linear accelerator energy (6 MY). The energy dependence of a synthetic diamond detector was similar to that of the natural diamond detector, albeit with slightly less variation across the energy range. Both detectors displayed a linear response S. P. Lansley () . G. T. Betzel . J. Meyer Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand e-mail: stuart.lansley canterbury.ac.nz S. P. Lansley The Macdiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, New Zealand P. Metcalfe Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia L. Reinisch Department of Physical and Earth Sciences, Jacksonville State University, Jacksonville, AL, USA with dose (at 100 kY) over the limited dose range used. The sensitivity of the synthetic diamond detector was 302 nC/Gy, compared to 294 nC/Gy measured for the natural diamond detector; however, this was obtained with a bias of 246.50 Y compared to a bias of 61.75 Y used for the natural diamond detector. The natural diamond detector exhibited a greater dependency on dose-rate than the syn thetic diamond detector. Overall

  16. Self-powered detectors for power reactors: an overview

    International Nuclear Information System (INIS)

    Ma, J.

    2006-01-01

    In this paper, Self-Powered Detectors (SPDs) for applications in nuclear power reactors have been reviewed. Based on their responses to radiation, these detectors can be divided into delayed response Self-Powered Neutron Detector (SPND), prompt response SPND and Self-Powered Gamma Detector (SPGD). The operational principles of these detectors are presented and their distinctive characteristics are examined accordingly. The analytical models and Monte Carlo method to calculate the responses of these detectors to neutron flux and external gamma rays are reviewed. The paper has also considered some related signal processing techniques, such as detector calibrations and detector signal compensations. Furthermore, a couple of failure modes have also been analyzed. Finally, applications of SPD in nuclear power reactors are summarized. (author)

  17. Self-powered detectors for power reactors: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J. [Univ. of Western Ontario, Dept. of Mechanical and Materials Engineering, London, Ontario (Canada)]. E-mail: jma64@uwo.ca

    2006-07-01

    In this paper, Self-Powered Detectors (SPDs) for applications in nuclear power reactors have been reviewed. Based on their responses to radiation, these detectors can be divided into delayed response Self-Powered Neutron Detector (SPND), prompt response SPND and Self-Powered Gamma Detector (SPGD). The operational principles of these detectors are presented and their distinctive characteristics are examined accordingly. The analytical models and Monte Carlo method to calculate the responses of these detectors to neutron flux and external gamma rays are reviewed. The paper has also considered some related signal processing techniques, such as detector calibrations and detector signal compensations. Furthermore, a couple of failure modes have also been analyzed. Finally, applications of SPD in nuclear power reactors are summarized. (author)

  18. A New Virtual Point Detector Concept for a HPGe detector

    International Nuclear Information System (INIS)

    Byun, Jong In; Yun, Ju Yong

    2009-01-01

    For last several decades, the radiation measurement and radioactivity analysis techniques using gamma detectors have been well established. Especially , the study about the detection efficiency has been done as an important part of gamma spectrometry. The detection efficiency depends strongly on source-to-detector distance. The detection efficiency with source-to-detector distance can be expressed by a complex function of geometry and physical characteristics of gamma detectors. In order to simplify the relation, a virtual point detector concept was introduced by Notea. Recently, further studies concerning the virtual point detector have been performed. In previous other works the virtual point detector has been considered as a fictitious point existing behind the detector end cap. However the virtual point detector position for the front and side of voluminous detectors might be different due to different effective central axis of them. In order to more accurately define the relation, therefore, we should consider the virtual point detector for the front as well as side and off-center of the detector. The aim of this study is to accurately define the relation between the detection efficiency and source-to-detector distance with the virtual point detector. This paper demonstrates the method to situate the virtual point detectors for a HPGe detector. The new virtual point detector concept was introduced for three area of the detector and its characteristics also were demonstrated by using Monte Carlo Simulation method. We found that the detector has three virtual point detectors except for its rear area. This shows that we should consider the virtual point detectors for each area when applying the concept to radiation measurement. This concept can be applied to the accurate geometric simplification for the detector and radioactive sources.

  19. The PANDA detector at FAIR

    International Nuclear Information System (INIS)

    Bersani, Andrea

    2012-01-01

    The PANDA detector will be installed at FAIR to enterprise a long-term, wide-spectrum physics program in the strong interaction framework. The detector will be installed at the HESR accumulation ring, which will provide an anti-proton beam of unprecedented luminosity and momentum definition. The beam will interact with an internal target. The detector has been designed to allow a 4π coverage around the interaction region. Due to the relatively high energy of the beam, up to 15 GeV, PANDA will feature two magnetic spectrometers: the target spectrometer (TS), with a superconducting solenoid and covering the interaction region, and a forward spectrometer (FS), with a normal-conducting dipole and covering the small angles region. Since the physics program is wide and the requirements on the various subsystems are different, the detector has been designed to be as flexible as possible. The complete detector will be described in detail, both from the viewpoint of the proposed techniques and from the viewpoint of the expected performances. An overview of the status of various components of the detector will be presented, too.

  20. The PANDA detector at FAIR

    Science.gov (United States)

    Bersani, Andrea

    2012-10-01

    The PANDA detector will be installed at FAIR to enterprise a long-term, wide-spectrum physics program in the strong interaction framework. The detector will be installed at the HESR accumulation ring, which will provide an anti-proton beam of unprecedented luminosity and momentum definition. The beam will interact with an internal target. The detector has been designed to allow a 4π coverage around the interaction region. Due to the relatively high energy of the beam, up to 15 GeV, PANDA will feature two magnetic spectrometers: the target spectrometer (TS), with a superconducting solenoid and covering the interaction region, and a forward spectrometer (FS), with a normal-conducting dipole and covering the small angles region. Since the physics program is wide and the requirements on the various subsystems are different, the detector has been designed to be as flexible as possible. The complete detector will be described in detail, both from the viewpoint of the proposed techniques and from the viewpoint of the expected performances. An overview of the status of various components of the detector will be presented, too.

  1. Detector development and experiments at COSY

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1988-05-01

    These proceedings contain the manuscripts of the lectures presented at the named workshop. These concern a review about the COSY project, ideal detectors for hadron physics at COSY, possible experiments at COSY, magnetic spectrometers, a modification of BIG KARL, consideration on COSY experiments in the early stage, a detector for exclusive 2-meson production experiments, the excitation of baryons and physics with complex projectiles, a status report about the Indiana cooler ring, special scintillators, multiwire chambers, position-sensitive semiconductor detectors, detectors for neutral particles, a small large-acceptance photon detector, a status report of the two-arm photon spectrometer TAPS, studies on the parity violation in the pp scattering, the measurement of excitation functions for the study of dibaryon states, and results from the neutron workshop held in February 1988 at the KFA Juelich. (HSI)

  2. Physics validation studies for muon collider detector background simulations

    International Nuclear Information System (INIS)

    Morris, Aaron Owen

    2011-01-01

    Within the broad discipline of physics, the study of the fundamental forces of nature and the most basic constituents of the universe belongs to the field of particle physics. While frequently referred to as 'high-energy physics,' or by the acronym 'HEP,' particle physics is not driven just by the quest for ever-greater energies in particle accelerators. Rather, particle physics is seen as having three distinct areas of focus: the cosmic, intensity, and energy frontiers. These three frontiers all provide different, but complementary, views of the basic building blocks of the universe. Currently, the energy frontier is the realm of hadron colliders like the Tevatron at Fermi National Accelerator Laboratory (Fermilab) or the Large Hadron Collider (LHC) at CERN. While the LHC is expected to be adequate for explorations up to 14 TeV for the next decade, the long development lead time for modern colliders necessitates research and development efforts in the present for the next generation of colliders. This paper focuses on one such next-generation machine: a muon collider. Specifically, this paper focuses on Monte Carlo simulations of beam-induced backgrounds vis-a-vis detector region contamination. Initial validation studies of a few muon collider physics background processes using G4beamline have been undertaken and results presented. While these investigations have revealed a number of hurdles to getting G4beamline up to the level of more established simulation suites, such as MARS, the close communication between us, as users, and the G4beamline developer, Tom Roberts, has allowed for rapid implementation of user-desired features. The main example of user-desired feature implementation, as it applies to this project, is Bethe-Heitler muon production. Regarding the neutron interaction issues, we continue to study the specifics of how GEANT4 implements nuclear interactions. The GEANT4 collaboration has been contacted regarding the minor discrepancies in the neutron

  3. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  4. A Response of coaxial Ge (Li) detector to the extended source of gamma radiation

    International Nuclear Information System (INIS)

    Coffou, E.; Knapp, V.; Petkovic, T.

    1980-01-01

    In measurements of the absolute source strength of extended source of γ radiation, two main limitations on the accuracy are dues to the difficulties in accounting for the self-absorption in the source and for geometrical dependence of detector efficiency. Two problems were separated by introduction of the average only energy dependent efficiency, which lends itself to calculational and experimental determination (to be reported), and the response of coaxial Ge(Li) detector to cylindrical extended source with self-absorption has been developed here to a reduced analytical form convenient gu numerical calculations. (author)

  5. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d'Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K.

    2005-01-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  6. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N V; Sun, G C; Kostamo, P; Silenas, A; Saynatjoki, A; Grant, J; Owens, A; Kozorezov, A G; Noschis, E; Van Eijk, C; Nagarkar, V; Sekiya, H; Pribat, D; Campbell, M; Lundgren, J; Arques, M; Gabrielli, A; Padmore, H; Maiorino, M; Volpert, M; Lebrun, F; Van der Putten, S; Pickford, A; Barnsley, R; Anton, M E.G.; Mitschke, M; Gros d' Aillon, E; Frojdh, C; Norlin, B; Marchal, J; Quattrocchi, M; Stohr, U; Bethke, K; Bronnimann, C H; Pouvesle, J M; Hoheisel, M; Clemens, J C; Gallin-Martel, M L; Bergamaschi, A; Redondo-Fernandez, I; Gal, O; Kwiatowski, K; Montesi, M C; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  7. Fabrication of high responsivity deep UV photo-detector based on Na doped ZnO nanocolumns

    Science.gov (United States)

    Agrawal, Jitesh; Dixit, Tejendra; Palani, I. A.; Ramachandra Rao, M. S.; Singh, Vipul

    2018-05-01

    We report a variety of the hydrothermally synthesized ZnO nanostructures with a significant suppression in defect-related emission and huge enhancement in the photo-current to the dark current ratio (approximately six orders of magnitude) upon UV light illumination. Interestingly, the photo-detector shows lower dark current of 1.6 nA with high responsivity of 507 A W‑1 at 254 nm. Here, a systematic analysis of the growth process as well as the physical, chemical and electrical properties of as-grown ZnO nanostructures has been performed. We have utilized the duo effect of both the inorganic (KMnO4) and organic (Na3C6H5O7) additives, which has facilitated the precise tuning of the morphology and intrinsic defects in nanostructures that have made an impact on the photo-responsivity, photoluminescence (PL) and adhesivity of the film on to the underlying substrate. PL analysis of as-grown ZnO nanostructures has suggested 11 times improvement in the near band emission (NBE) to defect level emission (DLE) ratio. Interestingly, thermal annealing of the samples has shown a dramatic change in the morphology with significant improvement in the crystallinity. Notably, the band gap was observed to be modulated from 3.3 eV to 3.1 eV after annealing. In addition to UV photo-detector based applications, the work presented here has provided a subtle solution towards the rectification of various problems pertaining to hydrothermal processes like poor adhesivity, feeble UV emission and problem in precise tuning of the morphology along with the bandgap in one go. Therefore, these investigations assume critical significance towards the development of next-generation optoelectronic devices.

  8. High resolution silicon detectors for colliding beam physics

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Bedeschi, F.; Bertolucci, E.; Bettoni, D.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Dell'Orso, M.; Fidecaro, F.; Foa, L.; Focardi, E.; Giannetti, P.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Raso, G.; Ristori, L.; Scribano, A.; Stefanini, A.; Tenchini, R.; Tonelli, G.; Triggiani, G.

    1984-01-01

    Resolution and linearity of the position measurement of Pisa multi-electrode silicon detectors are presented. The detectors are operated in slightly underdepleted mode and take advantage of their intrinsic resistivity for resistive charge partition between adjacent strips. 22 μm resolution is achieved with readout lines spaced 300 μm. Possible applications in colliding beam experiments for the detection of secondary vertices are discussed. (orig.)

  9. The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

    CERN Multimedia

    Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P

    2002-01-01

    % DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...

  10. The physics of solid-state neutron detector materials and geometries.

    Science.gov (United States)

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  11. Elementary particle physics at the University of Florida. Annual report

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Sikivie, P.

    1995-01-01

    This is the annual progress report of the University of Florida's elementary particle physics group. The theoretical high energy physics group's research covers a broad range of topics, including both theory and phenomenology. Present work of the experimental high energy physics group is directed toward the CLEO detector, with some effort going to B physics at Fermilab. The Axion Search project is participating in the operation of a large-scale axion detector at Lawrence Livermore National Laboratory, with the University of Florida taking responsibility for this experiment's high-resolution spectrometer's assembly, programming, and installation, and planning to take shifts during operation of the detector in FY96. The report also includes a continuation of the University's three-year proposal to the United States Department of Energy to upgrade the University's high-energy physics computing equipment and to continue student support, system manager/programmer support, and maintenance. Report includes lists of presentations and publications by members of the group

  12. Acquisition System and Detector Interface for Power Pulsed Detectors

    CERN Document Server

    Cornat, R

    2012-01-01

    A common DAQ system is being developed within the CALICE collaboration. It provides a flexible and scalable architecture based on giga-ethernet and 8b/10b serial links in order to transmit either slow control data, fast signals or read out data. A detector interface (DIF) is used to connect detectors to the DAQ system based on a single firmware shared among the collaboration but targeted on various physical implementations. The DIF allows to build, store and queue packets of data as well as to control the detectors providing USB and serial link connectivity. The overall architecture is foreseen to manage several hundreds of thousands channels.

  13. The one-armed ATLAS Forward Proton detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372192; Lange, Joern

    The ATLAS experiment at the European Laboratory for Particle Physics (CERN), Geneva, has been taking data successfully since the Large Hadron Collider (LHC) accelerator started operations in 2010. Since then, it has been generating proton-proton collisions to study the frontiers of particle physics, at a centre of mass energy of 7-8 TeV first and, more recently, 13 TeV. However, the experiment is in constant evolution: detectors ageing due to radiation damage, increasing collision rates and pile-up, and new scientific objectives often require upgrades of the ATLAS detectors. These ever-growing challenges motivate the continued research and development of new detector technologies. To enhance the physics search of the experiment the ATLAS collaboration recently added a forward detector to identify intact protons that emerge from LHC collisions at very shallow angles. The ATLAS Forward Proton (AFP) detector enables the identification of diffractive processes and, ultimately, of central exclusive events, thus al...

  14. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  15. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  16. The CDF SVX II detector upgrade

    International Nuclear Information System (INIS)

    Skarha, J.E.

    1993-10-01

    The proposed CDF SVX II detector upgrade for secondary vertex detection during the Fermilab Tevatron Run II collider run is described. The general design and important features of this silicon vertex detector are presented. The CDF physics goals which are addressed by this detector are also given

  17. Large solid angle detectors (low energy)

    International Nuclear Information System (INIS)

    L'Hote, D.

    1988-01-01

    This lecture deals with large solid angle detectors used in low energy experiments (mainly in Nuclear Physics). The reasons for using such detectors are discussed, and several basic principles of their design are presented. Finally, two examples of data analysis from such detectors are given [fr

  18. Detector response of the PHENIX Muon Piston Colorimeter for √{Snn} = 200 GeV Au+Au collisons

    Science.gov (United States)

    Kimelman, Benjamin; Phenix Collaboration

    2013-10-01

    Transverse energy is often used to characterize the energy density in ultra-relativistic heavy ion collisions. Most measurements are obtained in the the central rapidity region; however, the PHENIX Muon Piston Calorimeter (MPC), a homogeneous electromagnetic calorimeter, is a useful tool for measuring this quantity in the forward/backward pseudo-rapidity regions. A full Geant3 detector simulation is used for assessing detector response and the effects of particle decays on the measurement of transverse energy in the pseudo-rapidity range 3 . 1 < | η | < 3 . 9 . In 2010, √{SNN} = 200 GeV Au+Au collisons were obtained and are being analyzed. Various event generators are used as input to the detector simulation to help determine the effects of inflow, outflow, and hadronic response of the MPC. We gratefully acknowledge support from NSF grant number 1209240.

  19. Characteristics of the ATLAS and CMS detectors

    CERN Document Server

    Seiden, Abraham

    2012-01-01

    The goal for the detection of new physics processes in particle collisions at Large Hadron Collider energies, combined with the broad spectrum of possibilities for how the physics might be manifest, leads to detectors of unprecedented scope and size for particle physics experiments at colliders. The resulting two detectors, ATLAS (A Toroidal LHC ApparatuS) and CMS (compact muon spectrometer), must search for the new physics processes within very complex events arising from the very high-energy collisions. The two experiments share many basic design features—in particular, the need for very selective triggering to weed out the bulk of the uninteresting events; the order in which detector types are arrayed in order to provide maximum information about each event; and the very large angular coverage required to constrain the energy carried by any non-interacting particles. However, within these basic constraints, the detectors are quite different given the different emphases placed on issues such as resolution...

  20. Cadmium-Zinc-Telluride photon detector for epithermal neutron spectroscopy--pulse height response characterisation

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Bracco, A.; D'Angelo, A.; Gorini, G.; Imberti, S.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    The Resonance Detector Spectrometer was recently revised for neutron spectroscopic studies in the eV energy region. In this technique one makes use of a photon detector to record the gamma emission from analyser foils used as neutron-gamma converters. The pulse-height response of a Cadmium-Zinc-Telluride photon detector to neutron capture emission from 238 U and 197 Au analyser foils was characterised in the neutron energy range 1-200 eV. The experiment was performed on the VESUVIO spectrometer at the ISIS neutron-pulsed source. A biparametric data acquisition, specifically developed for these measurements, allowed the simultaneous measurements of both the neutron time of flight and γ pulse-height spectra. Through the analysis of the γ pulse-height spectra the main components of the signal associated with resonant and non-resonant neutron absorption were identified. It was also shown that, in principle, energy discrimination can be used to improve the signal to background ratio of the neutron time-of-flight measurement

  1. Semiconductor detectors with proximity signal readout

    International Nuclear Information System (INIS)

    Asztalos, Stephen J.

    2012-01-01

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need

  2. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1998-01-01

    (full text) Work carried out in 1997 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification using Ion and Plasma Beams. Semiconductor detectors: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The Department all objectives are: - search for new types of detectors, - adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, - producing unique detectors tailored for physics experiments, - manufacturing standard detectors for radiation measuring instruments, - scientific development of the staff. These 1997 objectives were accomplished particularly by: - research on unique detectors for nuclear physics (e.g. transmission type Si(Li) detectors with extremely thin entrance and exit window), - development of technology of high-resistivity (HRSi) silicon detectors and thermoelectric cooling systems (KBN grant), - study of the applicability of industrial planar technology in producing detectors, - manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishing of the above, the Department cooperated with interested groups of physicists from our Institute (P-I and P-II Departments), Warsaw University, Warsaw Heavy Ion Laboratory and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Rat tube generators: The Department conducts research on design and technology of producing X-ray generators based on X-ray tubes of special construction. In 1997, work on a special

  3. Nanoscale theranostics for physical stimulus-responsive cancer therapies.

    Science.gov (United States)

    Chen, Qian; Ke, Hengte; Dai, Zhifei; Liu, Zhuang

    2015-12-01

    Physical stimulus-responsive therapies often employing multifunctional theranostic agents responsive to external physical stimuli such as light, magnetic field, ultra-sound, radiofrequency, X-ray, etc., have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Unlike conventional cancer chemotherapy which often accompanies with severe toxic side effects, physical stimulus-responsive agents usually are non-toxic by themselves and would destruct cancer cells only under specific external stimuli, and thus could offer greatly reduced toxicity and enhanced treatment specificity. In addition, physical stimulus-responsive therapies can also be combined with other traditional therapeutics to achieve synergistic anti-tumor effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of physical stimulus-responsive therapies, and discuss the important roles of nanoscale theranostic agents involved in those non-conventional therapeutic strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Research in elementary particle physics

    International Nuclear Information System (INIS)

    Bland, R.W.; Greensite, J.

    1992-01-01

    Task A of this contract supports research in elementary particle physics using cryogenic particle detectors. We have developed superconducting aluminum tunnel-junction detectors sensitive to a variety of particle signals, and with potential application to a number of particle-physics problems. We have extended our range of technologies through a collaboration with Simon Labov, on niobium tri-layer junctions, and Jean-Paul Maneval, on high-T c superconducting bolometers. We have new data on response to low-energy X-rays and to alpha-particle signals from large-volume detectors. The theoretical work under this contract (Task B) is a continued investigation of nonperturbative aspects of quantum gravity. A Monte Carlo calculation is proposed for Euclidian quantum gravity, based on the ''fifth-time action'' stabilization procedure. Results from the last year include a set of seven papers, summarized below, addressing various aspects of nonperturbative quantum gravity and QCD. Among the issues- addressed is the so-called ''problem of time'' in canonical quantum gravity

  5. Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Damoy, S.; Perez Loureiro, D. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Chambert, V.; Dorangeville, F. [IPNO, CNRS/IN2P3, Orsay (France); Druillole, F. [CEA, DSM/Irfu/SEDI, Gif-Sur-Yvette (France); Grinyer, G.F. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Lermitage, A.; Maroni, A.; Noël, G. [IPNO, CNRS/IN2P3, Orsay (France); Porte, C.; Roger, T. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Rosier, P. [IPNO, CNRS/IN2P3, Orsay (France); Suen, L. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France)

    2014-01-21

    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm{sup 2} pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics.

  6. Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics

    International Nuclear Information System (INIS)

    Pancin, J.; Damoy, S.; Perez Loureiro, D.; Chambert, V.; Dorangeville, F.; Druillole, F.; Grinyer, G.F.; Lermitage, A.; Maroni, A.; Noël, G.; Porte, C.; Roger, T.; Rosier, P.; Suen, L.

    2014-01-01

    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm 2 pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics

  7. Detector applications in medecine and biology

    CERN Document Server

    Del Guerra, Alberto

    1995-01-01

    In recent years new diagnostic and therapeutic methods have been attracting more and more dedicated attention by the scientific community.The goal is a better understanding of the anatomy, physiology and pathology of the human being in an effort to find more appropriate medical prevention, diagnosis and therapy.Many of the achievements obtained so far derive from the use and the optimisation of detectors and techniques,which originated in the other fields of physics. The spin-off of High Energy Physics to Medical Physics has been particularly relevant in the field of detectors for medical imaging and especially for medical imaging with ionizing radiation. In this series of lectures,starting from the requests of each technique and or application I will attempt to present a survey of the detectors for medecine and biology. Various fields of medical imaging will be touched : radiology,digital radiography,mammography and radiotherapy. The capabilities of the major types of detectors (1-D and 2-D position sensitiv...

  8. LHC luminosity upgrade detector challenges

    CERN Multimedia

    CERN. Geneva; de Roeck, Albert; Bortoletto, Daniela; Wigmans, Richard; Riegler, Werner; Smith, Wesley H

    2006-01-01

    LHC luminosity upgrade: detector challenges The upgrade of the LHC machine towards higher luminosity (1035 cm -2s-1) has been studied over the last few years. These studies have investigated scenarios to achieve the increase in peak luminosity by an order of magnitude, as well as the physics potential of such an upgrade and the impact of a machine upgrade on the LHC DETECTORS. This series of lectures will cover the following topics: • Physics motivation and machine scenarios for an order of magnitude increase in the LHC peak luminosity (lecture 1) • Detector challenges including overview of ideas for R&D programs by the LHC experiments: tracking and calorimetry, other new detector developments (lectures 2-4) • Electronics, trigger and data acquisition challenges (lecture 5) Note: the much more ambitious LHC energy upgrade will not be covered

  9. Characterization and calibration of radiation-damaged double-sided silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, L. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Vogt, A., E-mail: andreas.vogt@ikp.uni-koeln.de [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Reiter, P.; Birkenbach, B.; Hirsch, R.; Arnswald, K.; Hess, H.; Seidlitz, M.; Steinbach, T.; Warr, N.; Wolf, K. [Institut für Kernphysik, Universität zu Köln, D-50937 Köln (Germany); Stahl, C.; Pietralla, N. [Institut für Kernphysik, Technische Universität Darmstadt, D-64291 Darmstadt (Germany); Limböck, T.; Meerholz, K. [Physikalische Chemie, Universität zu Köln, D-50939 Köln (Germany); Lutter, R. [Maier-Leibnitz-Laboratorium, Ludwig-Maximilians-Universität München, D-85748 Garching (Germany)

    2017-05-21

    Double-sided silicon strip detectors (DSSSD) are commonly used for event-by-event identification of charged particles as well as the reconstruction of particle trajectories in nuclear physics experiments with stable and radioactive beams. Intersecting areas of both p- and n-doped front- and back-side segments form individual virtual pixel segments allowing for a high detector granularity. DSSSDs are employed in demanding experimental environments and have to withstand high count rates of impinging nuclei. The illumination of the detector is often not homogeneous. Consequently, radiation damage of the detector is distributed non-uniformly. Position-dependent incomplete charge collection due to radiation damage limits the performance and lifetime of the detectors, the response of different channels may vary drastically. Position-resolved charge-collection losses between front- and back-side segments are investigated in an in-beam experiment and by performing radioactive source measurements. A novel position-resolved calibration method based on mutual consistency of p-side and n-side charges yields a significant enhancement of the energy resolution and the performance of radiation-damaged parts of the detector.

  10. Measurements and simulations of the responses of the cluster Ge detectors to gamma rays

    International Nuclear Information System (INIS)

    Hara, Kaoru Y.; Goko, Shinji; Harada, Hideo; Hirose, Kentaro; Kimura, Atsushi; Kin, Tadahiro; Kitatani, Fumito; Koizumi, Mitsuo; Nakamura, Shoji; Toh, Yosuke

    2013-01-01

    Responses of cluster Ge detectors have been measured with standard γ-ray sources and the 35 Cl(n,γ) 36 Cl reaction in ANNRI at J-PARC/MLF. Experimental results and simulations using the EGS5 code are compared. (author)

  11. Response characteristics of self-powered flux detectors in CANDU reactors

    International Nuclear Information System (INIS)

    Allan, C.J.

    1978-05-01

    As part of the development of a new flux-detector assembly for future CANDU reactors, the sensitivities of a variety of vanadium, cobalt and platinum self-powered detectors have been determined in a simulated CANDU core installed in the ZED-2 test reactor at CRNL. While the vanadium and cobalt detectors had solid emitters, the platinum detectors were of two types, having either solid platinum emitters, or emitters consisting of a platinum sheath over an Inconel core. Almost all of the signal from the cobalt and vanadium detectors is due to neutron events in the emitters. For these detectors we have measured the total sensitivities per unit length. For the platinum detectors, reactor γ-rays and neutrons both contribute appreciably to the output signal, and in addition to the total sensitivity, we have determined the individual neutron and γ-ray sensitivities for these detectors. It was found that the detector sensitivities depend primarily on emitter diameter and that the observed variations can be fitted by means of power laws. (author)

  12. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  13. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  14. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  15. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Piekoszewski, J.

    1997-01-01

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  16. Department of Radiation Detectors - Overview

    Energy Technology Data Exchange (ETDEWEB)

    Piekoszewski, J. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author).

  17. Development of a geometry-compensated neutron time-of-flight detector for ICF applications with approximately 200 ps time response

    International Nuclear Information System (INIS)

    Murphy, T.J.; Lerche, R.A.

    1992-01-01

    Current-mode neutron time-of-flight detectors are used on Nova for neutron yield, ion temperature, and neutron emission time measurements. Currently used detectors are limited by the time response of the microchannel plate photomultiplier tubes used with the scintillators, scintillator decay time, scintillator thickness, and oscilloscope response time. A change in the geometry of the scintillator allows one to take advantage of the increased time resolution made possible by more advanced transient recorders and microchannel plate photomultiplier tubes. A prototype detector has been designed to incorporate these changes, and could potentially yield time resolution of less than 150 ps. Experimental results are presented demonstrating an ion temperature measurement of a direct-drive DT implosion on Nova

  18. Measuring student responsibility in Physical Education ...

    African Journals Online (AJOL)

    The Contextual Self-Responsibility Questionnaire (CSRQ) and Personal and Social Responsibility Questionnaire (PSRQ) were developed to meausre student responsibility within the field of physical education. In the present study, the factor structure of the CSRQ and PSRQ was examined. Unlike previous structure ...

  19. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  20. Data acquisition system for segmented reactor antineutrino detector

    Czech Academy of Sciences Publication Activity Database

    Hons, Zdeněk; Vlášek, J.

    2017-01-01

    Roč. 12, č. 1 (2017), č. článku P01022. ISSN 1748-0221 R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : Data acquisition concepts * Detector control systems (detector and experiment monitoring and slow-control system, architecture , hardware, algorithms, databases) * Neutrino detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.220, year: 2016

  1. Future Linear Colliders: Detector R&D, Jet Reconstruction and Top Physics Potential

    CERN Document Server

    AUTHOR|(CDS)2098729; Ros Martinez, Eduardo

    During the 20th century, discoveries and measurements at colliders, combined with progress in theoretical physics, allowed us to formulate the Standard Model of the in- teractions between the constituents of matter. Today, there are two advanced projects for a new installation that will collide electrons and positrons covering an energy range from several hundreds of GeV to the multi-TeV scale, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). These Future Linear Colliders give the opportunity to study the top quark with unprecedented precision. Measurements of top quark properties are of special interest, as the top quark is the heaviest ele- mentary particle of the SM. Precision measurements of top quark properties at e+e colliders promise therefore to be highly sensitive to physics beyond the SM. This thesis has three complementary parts. The first is dedicated to the R&D of the ILD detector concept for future e+e- colliders, more precisely, the innermost region of the de...

  2. Design of readout drivers for ATLAS pixel detectors using field programmable gate arrays

    CERN Document Server

    Sivasubramaniyan, Sriram

    Microstrip detectors are an integral patt of high energy physics research . Special protocols are used to transmit the data from these detectors . To readout the data from such detectors specialized instrumentation have to be designed . To achieve this task, creative and innovative high speed algorithms were designed simulated and implemented in Field Programmable gate arrays, using CAD/CAE tools. The simulation results indicated that these algorithms would be able to perform all the required tasks quickly and efficiently. This thesis describes the design of data acquisition system called the Readout Drivers (ROD) . It focuses on the ROD data path for ATLAS Pixel detectors. The data path will be an integrated part of Readout Drivers setup to decode the data from the silicon micro strip detectors and pixel detectors. This research also includes the design of Readout Driver controller. This Module is used to control the operation of the ROD. This module is responsible for the operation of the Pixel decoders bas...

  3. Timing and position response of a block detector for fast neutron time-of-flight imaging

    Energy Technology Data Exchange (ETDEWEB)

    Laubach, M.A., E-mail: mlaubach@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Hayward, J.P., E-mail: jhayward@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Zhang, X., E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Cates, J.W., E-mail: jcates7@vols.utk.edu [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2014-11-01

    Our research effort seeks to improve the spatial and timing performance of a block detector made of a pixilated plastic scintillator (EJ-200), first demonstrated as part of Oak Ridge National Laboratory's Advanced Portable Neutron Imaging System. Improvement of the position and time response is necessary to achieve better resolution and contrast in the images of shielded special nuclear material. Time-of-flight is used to differentiate between gamma and different sources of neutrons (e.g., transmission and fission neutrons). Factors limiting the timing and position performance of the neutron detector have been revealed through simulations and measurements. Simulations have suggested that the degradation in the ability to resolve pixels in the neutron detector is due to those interactions occurring near the light guide. The energy deposition within the neutron detector is shown to affect position performance and imaging efficiency. This examination details how energy cuts improve the position performance and degrade the imaging efficiency. Measurements have shown the neutron detector to have a timing resolution of σ=238 ps. The majority of this timing uncertainty is from the depth-of-interaction (DOI) of the neutron which is confirmed by simulations and analytical calculations.

  4. Ion beam induced charge and cathodoluminescence imaging of response uniformity of CVD diamond radiation detectors

    CERN Document Server

    Sellin, P J; Galbiati, A; Maghrabi, M; Townsend, P D

    2002-01-01

    The uniformity of response of CVD diamond radiation detectors produced from high quality diamond film, with crystallite dimensions of >100 mu m, has been studied using ion beam induced charge imaging. A micron-resolution scanning alpha particle beam was used to produce maps of pulse height response across the device. The detectors were fabricated with a single-sided coplanar electrode geometry to maximise their sensitivity to the surface region of the diamond film where the diamond crystallites are highly ordered. High resolution ion beam induced charge images of single crystallites were acquired that demonstrate variations in intra-crystallite charge transport and the termination of charge transport at the crystallite boundaries. Cathodoluminescence imaging of the same crystallites shows an inverse correlation between the density of radiative centres and regions of good charge transport.

  5. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  6. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Directory of Open Access Journals (Sweden)

    Garzia I.

    2018-01-01

    Full Text Available Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD, allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs. Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  7. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Science.gov (United States)

    Garzia, I.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Cassariti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo, M. D.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.

    2018-01-01

    Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD), allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs). Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  8. Neural network consistent empirical physical formula construction for neutron–gamma discrimination in gamma ray tracking

    International Nuclear Information System (INIS)

    Yildiz, Nihat; Akkoyun, Serkan

    2013-01-01

    Highlights: ► Detector responses in neutron–gamma discrimination were estimated by neural networks. ► Novel consistent neural network empirical physical formulas (EPFs) were constructed for detector responses. ► The EPFs are of explicit mathematical functional form. ► The EPFs can be used to derive various physical functions relevant to neutron–gamma discrimination in gamma ray tracking. -- Abstract: Gamma ray tracking is an efficient detection technique in studying exotic nuclei which lies far from beta stability line. To achieve very powerful and extraordinary resolution ability, new detectors based on gamma ray tracking are currently being developed. To reach this achievement, the neutron–gamma discrimination in these detectors is also an important task. In this paper, by suitable layered feedforward neural networks (LFNNs), we have constructed novel and consistent empirical physical formulas (EPFs) for some highly nonlinear detector counts measured in neutron–gamma discrimination. The detector counts data used in the discrimination was actually borrowed from our previous paper. The counts used here had been originally measured versus the following parameters: energy deposited in the first interaction points, difference in the incoming direction of initial gamma rays, and finally figure of merit values of the clusters determined by tracking. The LFNN–EPFs are of explicit mathematical functional form. Therefore, by various suitable operations of mathematical analysis, these LFNN–EPFs can be used to derivate further physical functions which might be potentially relevant to neutron–gamma discrimination performance of gamma ray tracking.

  9. Studies on a 300 k pixel detector telescope

    Science.gov (United States)

    Middelkamp, Peter; Antinori, F.; Barberis, D.; Becks, K. H.; Beker, H.; Beusch, W.; Burger, P.; Campbell, M.; Cantatore, E.; Catanesi, M. G.; Chesi, E.; Darbo, G.; D'Auria, S.; Davia, C.; di Bari, D.; di Liberto, S.; Elia, D.; Gys, T.; Heijne, E. H. M.; Helstrup, H.; Jacholkowski, A.; Jæger, J. J.; Jakubek, J.; Jarron, P.; Klempt, W.; Krummenacher, F.; Knudson, K.; Kralik, I.; Kubasta, J.; Lasalle, J. C.; Leitner, R.; Lemeilleur, F.; Lenti, V.; Letheren, M.; Lopez, L.; Loukas, D.; Luptak, M.; Martinengo, P.; Meddeler, G.; Meddi, F.; Morando, M.; Munns, A.; Pellegrini, F.; Pengg, F.; Pospisil, S.; Quercigh, E.; Ridky, J.; Rossi, L.; Safarik, K.; Scharfetter, L.; Segato, G.; Simone, S.; Smith, K.; Snoeys, W.; Vrba, V.

    1996-02-01

    Four silicon pixel detector planes are combined to form a tracking telescope in the lead ion experiment WA97 at CERN with 290 304 sensitive elements each of 75 μm by 500 μm area. An electronic pulse processing circuit is associated with each individual sensing element and the response for ionizing particles is binary with an adjustable threshold. The noise rate for a threshold of 6000 e- has been measured to be less than 10-10. The inefficient area due to malfunctioning pixels is 2.8% of the 120 cm2. Detector overlaps within one plane have been used to determine the alignment of the components of the plane itself, without need for track reconstruction using external detectors. It is the first time that such a big surface covered with active pixels has been used in a physics experiment. Some aspects concerning inclined particle tracks and time walk have been measured separately in a beam test at the CERN SPS H6 beam.

  10. Studies on a 300 k pixel detector telescope

    International Nuclear Information System (INIS)

    Middelkamp, P.; Antinori, F.; Barberis, D.

    1996-01-01

    Four silicon pixel detector planes are combined to form a tracking telescope in the lead ion experiment WA97 at CERN with 290 304 sensitive elements each of 75 μm by 500 μm area. An electronic pulse processing circuit is associated with each individual sensing element and the response for ionizing particles is binary with an adjustable threshold. The noise rate for a threshold of 6000 e - has been measured to be less than 10 -10 . The inefficient area due to malfunctioning pixels is 2.8% of the 120 cm 2 . Detector overlaps within one plane have been used to determine the alignment of the components of the plane itself, without need for track reconstruction using external detectors. It is the first time that such a big surface covered with active pixels has been used in a physics experiment. Some aspects concerning inclined particle tracks and time walk have been measured separately in a beam test at the CERN SPS H6 beam. (orig.)

  11. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Aaboud, M. [Univ. Mohamed Premier et LPTPM, Oujda (Morocco). Faculte des Sciences; Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: ATLAS Collaboration; and others

    2017-01-15

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb{sup -1} of proton-proton collision data at √(s) = 7 TeV from 2010 and 0.1 nb{sup -1} of data at √(s) = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS. (orig.)

  12. Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

    International Nuclear Information System (INIS)

    Testa, M.

    2017-01-01

    The High Luminosity Large Hadron Collider (HL-LHC) is expected to start providing proton-proton collisions by 2026. In the following 10 years it will deliver about 3000 fb −1 of integrated luminosity, more than a factor 10 of the data that will be collected by the end of Run3 at LHC in 2023. For such amount of data, an instantaneous luminosity of ∼ 7.5 × 10 34 cm −2 s −1 is needed. At this luminosity an unprecedented average number of pile-up collision per bunch crossing of 200 is expected. The ATLAS and CMS detectors will be upgraded to fully exploit the HL-LHC potential in this harsh environment. In this document the performances of the ATLAS and CMS upgraded detectors will be described. Their impact on crucial measurements of the Higgs boson sector, of the vector boson fusion process and on new physics searches, will be reported as well.

  13. Report of the HEPAP subpanel on major detectors in non-accelerator particle physics

    International Nuclear Information System (INIS)

    1989-05-01

    The subpanel on Major Detectors in Non-Accelerator Particle Physics was formed in February 1989 as the result of a letter from Robert Hunter, Director, Office of Energy Research, to Francis Low, Chairman of HEPAP. A copy of the letter is included in the Appendix to this report. The letter referred to the previous report of HEPAP Subpanel on High Energy Gamma Ray and Neutrino Astronomy which had found that several groups of scientists were working on promising new ideas and proposals in non-accelerator high energy physics and astrophysics; this report recommended that panel be formed to evaluate large projects in these areas of science when specific proposals were received by the funding agencies. In concurring with the recommendation, the request to establish this new Subpanel included the following specific charge: Within the context of changing world wide high energy physics activities and opportunities, review as necessary and evaluate the following major research proposals which have been submitted to the Department of Energy and/or to the National Science foundation: DUMAND II, GRANDE, and the Fly's Eye Upgrade

  14. An antinucleus detector with unprecedented collecting power and resolution

    International Nuclear Information System (INIS)

    Ahlen, S.P.; Price, P.B.; Salamon, M.H.; Tarle, G.; California Univ., Berkeley

    1982-01-01

    We describe the details of a novel technique to detect the presence of antimatter in cosmic rays by taking advantage of the presence of higher order quantum electrodynamic effects involving the interactions of relativistic, heavily ionizing particles with plastic scintillators, track etch detectors and Cherenkov counters. We review the relevant physics, summarize the experimental status involving the response mechanisms of the different types of particle detectors, and give a detailed description of the construction and anticipated performance characteristics of the instrument. By extending the sensitivity of previous antimatter searches by two orders of magnitude, this experiment should be the first to be sensitive to extragalactic antimatter, should the universe contain substantial quantities of antimatter. (orig.)

  15. The human oculomotor response to simultaneous visual and physical movements at two different frequencies

    Science.gov (United States)

    Wall, C.; Assad, A.; Aharon, G.; Dimitri, P. S.; Harris, L. R.

    2001-01-01

    In order to investigate interactions in the visual and vestibular systems' oculomotor response to linear movement, we developed a two-frequency stimulation technique. Thirteen subjects lay on their backs and were oscillated sinusoidally along their z-axes at between 0.31 and 0.81 Hz. During the oscillation subjects viewed a large, high-contrast, visual pattern oscillating in the same direction as the physical motion but at a different, non-harmonically related frequency. The evoked eye movements were measured by video-oculography and spectrally analysed. We found significant signal level at the sum and difference frequencies as well as at other frequencies not present in either stimulus. The emergence of new frequencies indicates non-linear processing consistent with an agreement-detector system that have previously proposed.

  16. Results obtained with the passive radiation detectors in the ICCHIBAN-4 experiment

    International Nuclear Information System (INIS)

    Bilski, P.; Horwacik, T.

    2005-05-01

    In frame of the InterComparison of Cosmic rays with Heavy Ions Beams at NIRS (ICCHIBAN) organized at the HIMAC accelerator in Chiba several types of the thermoluminescent detectors (TLD), as well as CR-39 track detectors, were exposed. Four different types of TLDs were used: MTS-7 ( 7 LiF:Mg,Ti), MTS-6 ( 6 LiF:Mg,Ti), MCP-7 ( 7 LiF:Mg,Cu,P) and MTT-7 ( 7 LiF:Mg,Ti with changed activator composition. All TLDs were manufactured at the Institute of Nuclear Physics (INP) in Cracow. The detectors were irradia