WorldWideScience

Sample records for photovoltaics research preprint

  1. search.bioPreprint: a discovery tool for cutting edge, preprint biomedical research articles [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Carrie L. Iwema

    2016-07-01

    Full Text Available The time it takes for a completed manuscript to be published traditionally can be extremely lengthy. Article publication delay, which occurs in part due to constraints associated with peer review, can prevent the timely dissemination of critical and actionable data associated with new information on rare diseases or developing health concerns such as Zika virus. Preprint servers are open access online repositories housing preprint research articles that enable authors (1 to make their research immediately and freely available and (2 to receive commentary and peer review prior to journal submission. There is a growing movement of preprint advocates aiming to change the current journal publication and peer review system, proposing that preprints catalyze biomedical discovery, support career advancement, and improve scientific communication. While the number of articles submitted to and hosted by preprint servers are gradually increasing, there has been no simple way to identify biomedical research published in a preprint format, as they are not typically indexed and are only discoverable by directly searching the specific preprint server websites. To address this issue, we created a search engine that quickly compiles preprints from disparate host repositories and provides a one-stop search solution. Additionally, we developed a web application that bolsters the discovery of preprints by enabling each and every word or phrase appearing on any web site to be integrated with articles from preprint servers. This tool, search.bioPreprint, is publicly available at http://www.hsls.pitt.edu/resources/preprint.

  2. Novel Materials for Photovoltaic Technologies: Preprint

    International Nuclear Information System (INIS)

    Alivisatos, P.; Carter, S.; Ginley, D.; Nozik, A.; Meyer, G.; Rosenthal, S.

    1999-01-01

    While existing photovoltaic technologies continue to advance, there are still many exciting opportunities in the area of novel materials. These opportunities arise because there is a substantial need for reducing the costs associated with the preparation and processing of photovoltaics, and because the theoretically possible photovoltaic efficiencies have yet to be achieved in practical devices. Thus it remains reasonable to continue photovoltaic research activity aimed at entirely new approaches to processing and at entirely new materials as the active media. This group identified three areas for further consideration: (a) Nano/molecular composites and hierarchical structures; (b) Organic semiconductors; and (c) Hot carrier devices

  3. Preprinting Microbiology.

    Science.gov (United States)

    Schloss, Patrick D

    2017-05-23

    The field of microbiology has experienced significant growth due to transformative advances in technology and the influx of scientists driven by a curiosity to understand how microbes sustain myriad biochemical processes that maintain Earth. With this explosion in scientific output, a significant bottleneck has been the ability to rapidly disseminate new knowledge to peers and the public. Preprints have emerged as a tool that a growing number of microbiologists are using to overcome this bottleneck. Posting preprints can help to transparently recruit a more diverse pool of reviewers prior to submitting to a journal for formal peer review. Although the use of preprints is still limited in the biological sciences, early indications are that preprints are a robust tool that can complement and enhance peer-reviewed publications. As publishing moves to embrace advances in Internet technology, there are many opportunities for preprints and peer-reviewed journals to coexist in the same ecosystem. Copyright © 2017 Schloss.

  4. Photovoltaic research and development

    CSIR Research Space (South Africa)

    Cummings, F

    2009-09-01

    Full Text Available Photovoltaic (PV) is the direct conversion of sunlight into electrical energy through a solar cell. This presentation consists of an introduction to photovoltaics, the South African PV research roadmap, a look at the CSIR PV research and development...

  5. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  6. Preprint data base system at INS: INSPREP system

    International Nuclear Information System (INIS)

    Shinohara, M.; Ukai, K.; Fujiyoshi, N.

    1988-02-01

    The library at the INS (Institute for Nuclear Study) receives several tens of preprints a week from foreign and domestic laboratories and universities. These preprints are pigeonholed by making a catalog card index carried a title, authors, an accession number, classification of fields, etc. A newly arrived preprint lists is also served every week. The cataloging and weekly lists publishing works were handled with a typewriter. And then, it was very difficult and tedious to correct/check/file the index cards and to correct/check the weekly preprint lists. To make a preprint data efficiently by a computer and to refer this data base by on-line without using a index card, the INSPREP system is constructed. The INSPREP system consists of two parts. One is named a PREPINS, and is used to make a preprint data, builds a preprint data base, and publishes a weekly preprint lists. The other, called a PREP, performs an on-line retrieval for this data base. The preprint data base consists of following items such as an author, a title, an accession number, a report number, a classification field, etc. The PREPINS can be used by limited persons for security. User can search a preprint by inputting above mentioned items. The PREP adopts a menu method. Then, user can perform an on-line retrieval very easily. (author)

  7. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  8. Detailed Performance Model for Photovoltaic Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E.; Jenkins, P.

    2012-07-01

    This paper presents a modified current-voltage relationship for the single diode model. The single-diode model has been derived from the well-known equivalent circuit for a single photovoltaic cell. The modification presented in this paper accounts for both parallel and series connections in an array.

  9. The preprint debate: What are the issues?

    Science.gov (United States)

    da Silva, Jaime A Teixeira

    2018-04-01

    The debate surrounding preprints is increasing. Preprint proponents claim that preprints are a way to shore up trust in academic publishing, that they provide an additional 'quality' screen prior to traditional peer review, that they can assist with the replication crisis plaguing science in part by making negative or contradictory results public, and that they speed up the publishing process because fundamental results can be presented early, serving as timely reports for the purposes of tenure or grant funding. Preprint skeptics and critics claim that preprints may represent a risk and a danger to quality-based academic publishing because they are documents that have not been carefully and thoroughly vetted prior to their release into the public domain. Thus, academics who cite invalid, poorly vetted, or false facts could cause harm, not unlike the unscholarly 'predatory' open access movement. Feedback on work from lesser-known groups, or on less glamorous topics, may be null or worse than from traditional peer review, annulling an initial key objective of preprints. Although there is no widespread empirical evidence or data yet regarding some of these issues, academics should be aware of the ideological, financial, and political tug-of-war taking place before deciding if they wish to publish their important findings as a preprint prior or simultaneous to submitting to a regular journal for peer review.

  10. Photovoltaic conference on research and innovation

    International Nuclear Information System (INIS)

    Moisan, Francois; Huennekes, Christoph; Malbranche, Philippe; Neuhaus, Holger; Lincot, Daniel; Dimroth, Frank; Signamarcheix, Thomas; Baudrit, Mathieu; Wasselin, Jocelyne; Franz, Oliver; Lippert, Michael; Bena, Michel

    2013-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on photovoltaic research and innovation. In the framework of this French-German exchange of experience, about 80 participants exchanged views on PV research priorities and on the possible cooperation paths capable to meet the challenges of an increasing worldwide competition. Beside the analysis of national and European support programmes, the presentations addressed also the technological advances in the domain of energy efficiency and fabrication of PV systems, but also the energy storage solutions and the problems of integration to grids. This document brings together the available presentations (slides) made during this event: 1 - Photovoltaic R and D financing in France (Francois Moisan); 2 - Research consortia: research promotion in Germany (Christoph Huennekes); 3 - EeRA Joint research Programme Photovoltaic Solar energy: cooperation support to PV research at the European level (Philippe Malbranche); 4 - The Research Project 'SONNe' - A shining example within the German Funding Scheme 'Innovation Alliance' (Holger Neuhaus); 5 - The 'Ile de France Photovoltaic Institute': a huge cooperation between academic and industrial partners for the improvement of photovoltaic energy efficiency and competitiveness (Daniel Lincot); 6 - SOLARBOND the basis for a successful French-German collaboration (Frank Dimroth); 7 - Smart Country model project: Successful integration of distributed generation in rural areas - Smart integration of PV power generation thanks to the combination with a modified biogas storage system (Oliver Franz); 8 - Sol-ion Conversion, storage and management of residential PV energy (Michael Lippert); 9 - Improving Tools to massively integrate Renewables in the European electric System (Michel Bena)

  11. Citation Patterns to Traditional and Electronic Preprints in the Published Literature.

    Science.gov (United States)

    Youngen, Gregory K.

    1998-01-01

    Identifies the growing importance of electronic preprints in the published literature of physics and astronomy and address several areas of concern regarding the future role of electronic preprints in scientific communication. Topics include a history of preprints in astronomy and physics; inaccuracies in preprint citations; and archival issues.…

  12. Directory of French photovoltaic research and industry 2011

    International Nuclear Information System (INIS)

    Poubeau, Romain; Simmonet, Raphael; Canals, Jonathan

    2011-05-01

    After an overview of what is at stake in terms of industrial employment in the photovoltaic sector, a presentation of competitiveness clusters, a description of the value chain (cell manufacturers, arrays manufacturers, power inverter manufacturers, electric equipment manufacturers, structure component manufacturers, fabrication steps, etc.) in the photovoltaic sector, this document proposes a directory (addresses, activity descriptions) of research and industrial actors of the photovoltaic sector in France: research centres, manufacturers, industrial projects

  13. Trends of Photovoltaic Research, Development and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Yoon, K. H.; Yu, K. J. [Korea Institute of Energy Research (Korea)

    2000-07-01

    The Korean National Photovoltaic Project was initiated on October 1989 to develop technologies for the generation of economically competitive electric power by photovoltaic systems. It consists of four stages through the year 2006 with technical goals and cost targets related with solar cells, balance of systems and system application. The objectives of the project are to utilize photovoltaic technology, to transfer developed technology to industries and end users by research activities and to diffuse photovoltaic systems by demonstration projects. This paper reviews long-term plan and status of technology R and D, and markets of photovoltaic. Some activities designed to promote collaboration with foreign countries are also introduced. (author). 14 refs., 3 figs., 3 tabs.

  14. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Peter F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sekulic, William R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dreifuerst, Gary [Lawrence Livermore National Laboratory - retired

    2018-04-02

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can and do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.

  15. Siting Solar Photovoltaics at Airports: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Romero, R.

    2014-06-01

    Airports present a significant opportunity for hosting solar technologies due to their open land; based on a 2010 Federal Aviation Administration study, the US Department of Agriculture, and the US Fish and Wildlife Service, there's potential for 116,704 MW of solar photovoltaics (PV) on idle lands at US airports. PV has a low profile and likely low to no impact on flight operations. This paper outlines guidance for implementing solar technologies at airports and airfields, focusing largely on the Federal Aviation Administration's policies. The paper also details best practices for siting solar at airports, provides information on the Solar Glare Hazard Analysis Tool, and highlights a case study example where solar has been installed at an airport.

  16. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  17. Energy Storage Publications | Transportation Research | NREL

    Science.gov (United States)

    , California. 23 pp.; NREL Report No. PR-5400-60290. Optimal Sizing of Energy Storage and Photovoltaic Power (11) 2017 pp. 1095-1118. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System Prediction Model for Grid-Connected Li-ion Battery Energy Storage System - Preprint Paper Source: Smith

  18. PC database for high energy preprint collections

    International Nuclear Information System (INIS)

    Haymaker, R.

    1985-06-01

    We describe a microcomputer database used by the high energy group to keep track of preprints in our collection. It is used as a supplement to the SLAC-SPIRES database to retrieve preprints on hand. This was designed as a low overhead system for a small group

  19. Basic Research Opportunities in Cu-Chalcopyrite Photovoltaics: Preprint

    International Nuclear Information System (INIS)

    Rockett, A.; Bhattacharya, R. N.; Kapur, V.; Wei, S. H.

    1999-01-01

    A brief review is presented of fundamental research topics of primary importance to the development of improved solar cells based on chalcopyrite-structure materials. The opinions presented are a consensus opinion of the authors of the paper, with input from members of the chalcopyrite solar cells research community in the United States. Major topical areas identified included, in order of importance, are (1) development of an integrated predictive understanding of CIGS(S) materials and devices, (2) development of novel deposition techniques and characterization of the mechanisms of growth in existing and novel processes, (3) novel materials, especially with wide-energy gaps (is greater than or equal to 1.7 eV) other than Cu-based chalcopyrites, (4) development of real-time material characterizations for process control, and (5) alternative front- and rear-contact materials. Although the five topics identified are quite broad, they do not include all topics of interest. Also discussed briefly are some other potential research areas not in the highest priority topics, in particular, areas identified as primarily ''engineering'' rather than ''science.''

  20. Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, E.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-11-01

    Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements of the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.

  1. A Real-Time Systems Symposium Preprint.

    Science.gov (United States)

    1983-09-01

    Real - Time Systems Symposium Preprint Interim Tech...estimate of the occurence of the error. Unclassii ledSECUqITY CLASSIF’ICA T" NO MI*IA If’ inDI /’rrd erter for~~ble. ’Corrputnqg A REAL - TIME SYSTEMS SYMPOSIUM...ABSTRACT This technical report contains a preprint of a paper accepted for presentation at the REAL - TIME SYSTEMS SYMPOSIUM, Arlington,

  2. Centralized and Modular Architectures for Photovoltaic Panels with Improved Efficiency: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, B.; Mancilla-David, F.; Muljadi, E.

    2012-07-01

    The most common type of photovoltaic installation in residential applications is the centralized architecture, but the performance of a centralized architecture is adversely affected when it is subject to partial shading effects due to clouds or surrounding obstacles, such as trees. An alternative modular approach can be implemented using several power converters with partial throughput power processing capability. This paper presents a detailed study of these two architectures for the same throughput power level and compares the overall efficiencies using a set of rapidly changing real solar irradiance data collected by the Solar Radiation Research Laboratory at the National Renewable Energy Laboratory.

  3. NREL preprints for the photovoltaic specialists conference of IEEE twenty-five

    Energy Technology Data Exchange (ETDEWEB)

    Gwinner, D. [ed.

    1996-05-01

    This volume contains 40 papers prepared for presentation at the conference. Topics include: material properties, fabrication of solar cells, thermophotovoltaics, performance efficiency of photovoltaic cells, gettering procedures, market development, and photovoltaic power supplies for remote areas. Materials for solar cells include: Si, CuInSe{sub 2}, CuInGaSe{sub 2}, GaInP, GaAs, CdTe, and CdS. Papers have been processed separately for inclusion on the data base.

  4. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  5. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  6. Harnessing the Sun with Thin Film Photovoltaics: Preprint

    International Nuclear Information System (INIS)

    Birkmire, R. W.; Kazmerski, L. L.

    1999-01-01

    Photovoltaic (PV) technologies have a substantial role in meeting electric power needs in the next century, especially with an expected competitive position compared to conventional power-generation and other renewable- energy technologies. Thin-film photovoltaic modules based on CdTe, CuInSe2 or Si can potentially be produced by economical, high-volume manufacturing techniques, dramatically reducing component cost. However, the translation of laboratory thin-film technologies to first-time, large-scale manufacturing has been much more difficult than expected. This is due to the complexity of the processes involved for making large-area PV modules at high rates and with high yields, and compounded by the lack of a fundamental scientific and engineering base required to properly engineer and operate manufacturing equipment. In this paper, we discuss the need to develop diagnostics tools and associated predictive models that quantitatively assess processing conditions and pro duct properties. Incorporation of the diagnostic sensors into both laboratory reactors and manufacturing facilities will (1) underpin the development of solar cells with improved efficiency, and (2) accelerate the scale-up process through intelligent process-control schemes. ''Next-generation'' high-performance (e.g., and gt;25% conversion efficiency) thin-film PV modules will also be assessed, along with critical issues associated with their development

  7. University Crystalline Silicon Photovoltaics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  8. Photovoltaics. [research and development of terrestrial electric power systems

    Science.gov (United States)

    Smith, J. L.

    1981-01-01

    The federal government has sponsored a program of research and development on terrestrial photovoltaic systems that is designed to reduce the costs of such systems through technological advances. There are many potential paths to lower system costs, and successful developments have led to increased private investment in photovoltaics. The prices for photovoltaic collectors and systems that appear to be achievable within this decade offer hope that the systems will soon be attractive in utility applications within the United States. Most of the advances achieved will also be directly applicable to the remote markets in which photovoltaic systems are now commercially successful

  9. The prehistory of biology preprints: A forgotten experiment from the 1960s.

    Directory of Open Access Journals (Sweden)

    Matthew Cobb

    2017-11-01

    Full Text Available In 1961, the National Institutes of Health (NIH began to circulate biological preprints in a forgotten experiment called the Information Exchange Groups (IEGs. This system eventually attracted over 3,600 participants and saw the production of over 2,500 different documents, but by 1967, it was effectively shut down following the refusal of journals to accept articles that had been circulated as preprints. This article charts the rise and fall of the IEGs and explores the parallels with the 1990s and the biomedical preprint movement of today.

  10. The prehistory of biology preprints: A forgotten experiment from the 1960s.

    Science.gov (United States)

    Cobb, Matthew

    2017-11-01

    In 1961, the National Institutes of Health (NIH) began to circulate biological preprints in a forgotten experiment called the Information Exchange Groups (IEGs). This system eventually attracted over 3,600 participants and saw the production of over 2,500 different documents, but by 1967, it was effectively shut down following the refusal of journals to accept articles that had been circulated as preprints. This article charts the rise and fall of the IEGs and explores the parallels with the 1990s and the biomedical preprint movement of today.

  11. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

    OpenAIRE

    Li Zhengzhou

    2016-01-01

    With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation m...

  12. Model Building of Photovoltaic Array with MPPT Function and Research on Single Phase Grid Connected

    Directory of Open Access Journals (Sweden)

    Li Zhengzhou

    2016-01-01

    Full Text Available With the continued development of solar photovoltaic technology, research on distributed grid connected photovoltaic system has become a research focus in the field of photovoltaic grid power plant and the computer simulation technology is an effective technology means in the study. On the basis of the photovoltaic array output characteristic equation, the photovoltaic array maximum power control simulation model based on M function is established by using MATLAB/Simulink and the simulation model of single phase grid connected photovoltaic array is proposed. It overcomes the shortcomings of the process of building the model of the PV array by using Simulink component library and provides the basic guarantee for the realization of system simulation, guiding theory research and system design.

  13. Research and photovoltaic industry at the United States

    International Nuclear Information System (INIS)

    Lerouge, Ch.; Herino, R.; Delville, R.; Allegre, R.

    2006-06-01

    For a big country as the United States, the solar energy can be a solution for the air quality improvement, the greenhouse gases fight and the reduction of the dependence to the imported petroleum and also for the economic growth by the increase of the employment in the solar industry sector. This document takes stock on the photovoltaic in the United States in the industrial and research domains. The american photovoltaic industry is the third behind the Japan and the Germany. (A.L.B.)

  14. Adhesion of Antireflective Coatings in Multijunction Photovoltaics: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Ryan; Dauskardt, Reinhold H.; Miller, David C.

    2016-06-16

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  15. One-shot service searches: Preprint repositories at a mouseclick

    Energy Technology Data Exchange (ETDEWEB)

    Canessa, E [International Centre for Theoretical Physics, Trieste (Italy); Pastore, G [Trieste Univ., Trieste (Italy). Dipt. di Fisica

    1996-09-01

    In this article we introduce the ICTP-International Centre for Theoretical Physics`s prototype for a ``One-Shot World-Wide Preprints Search`` on the Web. This is a new centralized interface for a global search throughout the most popular scientific preprint repositories. Herein, we briefly discuss our experience with the implementation of this service and propose it as a possible alternative solution to the problem of getting access to the information without being either overloaded with lots of new documents or not being informed at all. (author). 13 refs, 3 figs.

  16. One-shot service searches: Preprint repositories at a mouseclick

    International Nuclear Information System (INIS)

    Canessa, E.; Pastore, G.

    1996-09-01

    In this article we introduce the ICTP-International Centre for Theoretical Physics's prototype for a ''One-Shot World-Wide Preprints Search'' on the Web. This is a new centralized interface for a global search throughout the most popular scientific preprint repositories. Herein, we briefly discuss our experience with the implementation of this service and propose it as a possible alternative solution to the problem of getting access to the information without being either overloaded with lots of new documents or not being informed at all. (author). 13 refs, 3 figs

  17. Summary results of an assessment of research projects in the National Photovoltaics Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Office of Energy Research (OER) undertook an assessment of 115 research projects (listed in Appendix A) sponsored by the National Photovoltaics Program. The Program is located within the Office of Energy Efficiency and Renewable Energy (EE). This report summarizes the results of that review. The Office of Solar Energy Conversion is responsible for the management of the National Photovoltaics Program. This program focuses on assisting US industry in development of fundamental technology to bring advanced photovoltaic energy systems to commercial use. The purpose of the assessment was to determine the following: (1) the quality of research of individual projects; (2) the impact of these individual projects on the mission of the program; and (3) the priority of future research opportunities.

  18. Organic photovoltaics

    DEFF Research Database (Denmark)

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  19. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  20. Optimizing the design of preprinted orders for ambulatory chemotherapy: combining oncology, human factors, and graphic design.

    Science.gov (United States)

    Jeon, Jennifer; White, Rachel E; Hunt, Richard G; Cassano-Piché, Andrea L; Easty, Anthony C

    2012-03-01

    To establish a set of guidelines for developing ambulatory chemotherapy preprinted orders. Multiple methods were used to develop the preprinted order guidelines. These included (A) a comprehensive literature review and an environmental scan; (B) analyses of field study observations and incident reports; (C) critical review of evidence from the literature and the field study observation analyses; (D) review of the draft guidelines by a clinical advisory group; and (E) collaboration with graphic designers to develop sample preprinted orders, refine the design guidelines, and format the resulting content. The Guidelines for Developing Ambulatory Chemotherapy Preprinted Orders, which consist of guidance on the design process, content, and graphic design elements of ambulatory chemotherapy preprinted orders, have been established. Health care is a safety critical, dynamic, and complex sociotechnical system. Identifying safety risks in such a system and effectively addressing them often require the expertise of multiple disciplines. This study illustrates how human factors professionals, clinicians, and designers can leverage each other's expertise to uncover commonly overlooked patient safety hazards and to provide health care professionals with innovative, practical, and user-centered tools to minimize those hazards.

  1. Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saxon, Aron R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lundstrom, Blake R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cao, Ziwei [SunPower Corporation; Roc, Albert [SunPower Corp.

    2017-08-25

    Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System: Preprint Lithium-ion (Li-ion) batteries are being deployed on the electrical grid for a variety of purposes, such as to smooth fluctuations in solar renewable power generation. The lifetime of these batteries will vary depending on their thermal environment and how they are charged and discharged. To optimal utilization of a battery over its lifetime requires characterization of its performance degradation under different storage and cycling conditions. Aging tests were conducted on commercial graphite/nickel-manganese-cobalt (NMC) Li-ion cells. A general lifetime prognostic model framework is applied to model changes in capacity and resistance as the battery degrades. Across 9 aging test conditions from 0oC to 55oC, the model predicts capacity fade with 1.4 percent RMS error and resistance growth with 15 percent RMS error. The model, recast in state variable form with 8 states representing separate fade mechanisms, is used to extrapolate lifetime for example applications of the energy storage system integrated with renewable photovoltaic (PV) power generation.

  2. Photovoltaic research and development in Japan

    Science.gov (United States)

    Shimada, K.

    1983-01-01

    The status of the Japanese photovoltaic (PV) R&D activities was surveyed through literature searches, private communications, and site visits in 1982. The results show that the Japanese photovoltaic technology is maturing rapidly, consistent with the steady government funding under the Sunshine Project. Two main thrusts of the Project are: (1) completion of the solar panel production pilot plants using cast ingot and sheet silicon materials, and (2) development of large area amorphous silicon solar cells with acceptable efficiency (10 to 12%). An experimental automated solar panel production plant rated at 500 kW/yr is currently under construction for the Sunshine Project for completion in March 1983. Efficiencies demonstrated by experimental large are amorphous silicon solar cells are approaching 8%. Small area amorphous silicon solar cells are, however, currently being mass produced and marketed by several companies at an equivalent annual rate of 2 MW/yr for consumer electronic applications. There is no evidence of an immediate move by the Japanese PV industry to enter extensively into the photovoltaic power market, domestic or otherwise. However, the photovoltaic technology itself could become ready for such an entry in the very near future, especially by making use of advanced process automation technologies.

  3. Customizable pre-printed consent forms: a solution in light of the Montgomery ruling.

    Science.gov (United States)

    Owen, Deborah; Aresti, Nick; Mulligan, Alex; Kosuge, Dennis

    2018-02-02

    This article presents an audit cycle supported quality improvement project addressing best practice in the consent process for lower limb arthroplasty which takes into account the new standard in surgical consent and the importance of material risks. 50 consecutive total hip and total knee replacement consent forms over a 3-month period were reviewed for legibility and completeness. Following the introduction of a new, pre-printed but customizable consent form the review process was repeated. The introduction of a customizable, pre-printed consent form that can be adjusted to reflect the individualized material risks of each patient increased legibility, reduced inappropriate human error variation and abolished the use of abbreviations and medical jargon. When used as part of an extended consent process, the authors feel that the use of pre-printed but customizable consent forms improves legibility, completeness and consistency and also provides the ability to highlight those complications that are of particular importance for that patient to satisfy the new accepted standard in surgical consent.

  4. PV Status Report 2010. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2010-08-01

    Photovoltaics is a solar power technology to generate Electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report combines international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last decade were on average more than 40 %, thus making Photovoltaics one of the fastest growing industries at present. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  5. A new road map for the research in photovoltaic electricity production in Japan

    International Nuclear Information System (INIS)

    Destruel, P.; Chataing, H.

    2009-01-01

    Dealing with the new road map published in 2009 by the NEDO (New Energy and Industrial Technology development Organization) for the research activity in photovoltaic electricity production in Japan from now until 2030, this brief embassy report first outlines the need for such a new road map as Japan's international competitiveness is more and more challenged: it only possesses 10% of the installed power in the world (50% in 2003) and ranks now in sixth position in terms of annual installed power. Beside this trend, environmental challenges and CO 2 emission reduction objectives, as well as oil price increase, have driven the NEDO to review its road map sooner as foreseen. The author describes the contents of the three main axis which have been defined for the photovoltaic development: photovoltaic profitability improvement (grid parity objective by 2030, production cost reduction), broadening of photovoltaic uses and applications, development and competitiveness of Japanese industries

  6. Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)

    Science.gov (United States)

    1993-01-01

    The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on a variety of cells were also presented.

  7. Photovoltaic Subcontract Program

    Energy Technology Data Exchange (ETDEWEB)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  8. PV Status Report 2009. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2009-08-01

    Photovoltaics is a key technology option to realise the shift to a decarbonised energy supply. The solar resources in Europe and world wide are abundant and cannot be monopolised by one country. Regardless for what reasons and how fast the oil price and energy prices increase in the future, Photovoltaics and other renewable energies are the only ones to offer a reduction of prices rather than an increase in the future. As a response to the economic crisis, most of the G20 countries have designed economic recovery packages which include 'green stimulus' measures. However, compared to the new Chinese Energy Revitalisation Plan under discussion, the pledged investments in green energy are marginal. If no changes are made, China which now strongly supports its renewable energy industry, will emerge even stronger after the current financial crisis. In 2008, the Photovoltaic industry production almost doubled and reached a world-wide production volume of 7.3 GWp of Photovoltaic modules. Yearly growth rates over the last decade were in average more than 40%, which makes Photovoltaics one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect lower prices for consumers. The trend that thin-film Photovoltaics grew faster than the overall PV market continued in 2008. The Eighth Edition of the 'PV Status Report' tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation.

  9. PV Status Report 2008. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-09-01

    Photovoltaics is a solar power technology to generate electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report is to combine international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact-finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last five years were on average more than 40%, thus making Photovoltaics one of the fastest growing industries at present. Business analysts predict that the market volume will increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  10. Structure of technical systems: interpersonal networks and performance in nuclear waste and photovoltaic research

    International Nuclear Information System (INIS)

    Shrum, W.M. Jr.

    1982-01-01

    The organization of scientific technology in modern, industrialized societies is examined by comparing two large-scale, multi-organizational, mission-oriented research networks. Using national data from personal interviews with 297 scientists, engineers, research managers, and policy makers from 97 organizations involved in nuclear waste management and solar-photovoltaic development, this study develops and tests hypotheses on the relationships among governmental, academic, private, and public interest sectors and the kinds of social linkages which are associated with technical performance. The principal finding is that in photovoltaic research, contacts with the research community are associated with high levels of performance, while for nuclear waste researchers, they are not. Instead, linkages to the governmental sector predict performance in nuclear waste research. This difference is explained by the governmental domination of the nuclear-waste system and the lack of private-sector involvement

  11. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  12. Preprint server seeks way to halt plagiarists

    CERN Multimedia

    Giles, J

    2003-01-01

    "An unusual case of plagiarism has struck ArXiv, the popular physics preprint server at Cornell University in Ithaca, New York, resulting in the withdrawal of 22 papers...The plagiarism case traces its origins to June 2002, when Yasushi Watanabe, a high-energy physicist at the Tokyo Insitute of Technology, was contacted by Ramy Noboulsi, who said he was a mathematical physicist" (1 page)

  13. Systems Integration | Photovoltaic Research | NREL

    Science.gov (United States)

    Integration Systems Integration The National Center for Photovoltaics (NCPV) at NREL provides grid integration support, system-level testing, and systems analysis for the Department of Energy's solar distributed grid integration projects supported by the SunShot Initiative. These projects address technical

  14. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  15. A Weakest-Link Approach for Fatigue Limit of 30CrNiMo8 Steels (Preprint)

    Science.gov (United States)

    2011-03-01

    34Application of a Weakest-Link Concept to the Fatigue Limit of the Bearing Steel Sae 52100 in a Bainitic Condition," Fatigue and Fracture of...AFRL-RX-WP-TP-2011-4206 A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) S. Ekwaro-Osire and H.V. Kulkarni Texas...2011 4. TITLE AND SUBTITLE A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT

  16. DOE/OER-sponsored basic research in high-efficiency photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Deb, S.K.; Benner, J.P. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A high-efficiency photovoltaic project involving many of the national laboratories and several universities has been initiated under the umbrella of the U.S. Department of Energy (DOE) Center of Excellence for the Synthesis and Processing of Advanced Materials. The objectives of this project are to generate advances in fundamental scientific understanding that will impact the efficiency, cost and reliability of thin-film photovoltaic cells. The project is focused on two areas. (1) Silicon-Based Thin Films, in which key scientific and technological problems involving amorphous and polycrystalline silicon thin films will be addressed, and (2) Next-Generation Thin-Film Photovoltaics, which will be concerned with the possibilities of new advances and breakthroughs in the materials and physics of photovoltaics using non-silicon-based materials.

  17. Determination of effective university-industry joint research for photovoltaic technology transfer (UIJRPTT) in Thailand

    International Nuclear Information System (INIS)

    Sugandhavanija, Pornpimol; Sukchai, Sukruedee; Ketjoy, Nipon; Klongboonjit, Sakol

    2011-01-01

    Most of the literatures related to university-industry (U-I) and technology transfer assume that the collaboration particularly the U-I joint research is beneficial to both university and industry which as a result underpins the sustainable development of economics and living standards of developed and developing countries. The U-I joint research for photovoltaic technology transfer in a developing country like Thailand should have been increased considering the fact that (i) the government implemented various strategies to support the renewable energy research and market development, (ii) the university aimed to be ''research-based university and (iii) the Thai photovoltaic industry struggle for competitiveness and survival in the global market. However, evidence revealed that the university and industry conducted little number of U-I joint projects. In this paper, we investigate the factors influencing the effective U-I joint research for photovoltaic technology transfer (UIJRPTT). In an attempt to better understand the influence of the factors, the path model with factors related to characteristics and perspectives of the university and the industry as well as joint research mechanism and their linkages to higher growth and improved economic and quality performance of the U-I joint research is developed and validated. The developed model empirically explains interaction between the factors and the outcome factors and can assist the government, the university and the industry to devise target strategies to improve the growth and performance of UIJRPTT. (author)

  18. Road map for photovoltaic electricity

    International Nuclear Information System (INIS)

    2011-02-01

    This road map aims at highlighting industrial, technological and social challenges, at elaborating comprehensive visions, at highlighting technological locks, and at outlining research needs for the photovoltaic sector. It considers the following sector components: preparation of photo-sensitive materials, manufacturing of photovoltaic cells, manufacturing of photovoltaic arrays, design and manufacturing of electric equipment to control photovoltaic arrays and to connect them to the grid. It highlights the demand for photovoltaic installations, analyzes the value chain, proposes a vision of the sector by 2050 and defines target for 2020, discusses needs for demonstration and experimentation

  19. RESEARCH INTO PHOTOVOLTAIC MODULES EFFICIENCY IN THE ŻYWIEC BESKIDS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Danuta Hilse

    2014-10-01

    Full Text Available Research into photovoltaic modules in the highlands, based on the example of the Żywiec Beskids, was conducted in 2009 in the town of Stryszawa on the border between the regions of Lesser Poland and Silesia. It involved measurements of the quantity of the produced electric power in three different systems of diverse power (570 Wp, 360 Wp oraz 200 Wp and different technical solutions (rotary modules tracing the Sun rotation and stationary modules. Efficiency of the photovoltaic modules was compared to the intensity of the solar radiation in the city of Żywiec. This way the efficiency of the solar energy processing was determined. The conducted research indicates that with the intensity of the solar radiation amounting to 890 kWh/ m2·year it is possible to produce electric power in the quantity of over 150 kWh/m2·year (rotary modules or about 110 kWh/ m2·year (stationary modules. The highest efficiency of the solar energy processing into the electric energy has been observed in the winter season (ca. 26%.

  20. 78 FR 9939 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-U.S. Photovoltaic...

    Science.gov (United States)

    2013-02-12

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--U.S. Photovoltaic Manufacturing Consortium, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), U.S. Photovoltaic Manufacturing Consortium, Inc. (``USPVMC...

  1. 78 FR 58559 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-U.S. Photovoltaic...

    Science.gov (United States)

    2013-09-24

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--U.S. Photovoltaic Manufacturing Consortium, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), U.S. Photovoltaic Manufacturing Consortium, Inc. (``USPVMC...

  2. Partial Shade Evaluation of Distributed Power Electronics for Photovoltaic Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; Meydbrav, J.; Donovan, M.

    2012-06-01

    Site survey data for several residential installations are provided, showing the extent and frequency of shade throughout the year. This background information is used to design a representative shading test that is conducted on two side-by-side 8-kW photovoltaic (PV) installations. One system is equipped with a standard string inverter, while the other is equipped with microinverters on each solar panel. Partial shade is applied to both systems in a comprehensive range of shading conditions, simulating one of three shade extents. Under light shading conditions, the microinverter system produced the equivalent of 4% annual performance improvement, relative to the string inverter system. Under moderate shading conditions, the microinverter system outperformed the string inverter system by 8%, and under heavy shading the microinverter increased relative performance by 12%. In all three cases, the percentage of performance loss that is recovered by the use of distributed power electronics is 40%-50%. Additionally, it was found that certain shading conditions can lead to additional losses in string inverters due to peak-power tracking errors and voltage limitations.

  3. Nanostructured Photovoltaics for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA NSTRF proposal entitled Nanostructured Photovoltaics for Space Power is targeted towards research to improve the current state of the art photovoltaic...

  4. Photovoltaic energy generation in Germany

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    An overview is given of the current state of the art regarding photovoltaic research and demonstration programmes in the Federal Republic of Germany. Also attention is paid to the companies and research institutes involved, and the long-term economical and technical prospects of photovoltaic energy. 13 figs., 4 tabs., 10 refs

  5. Photovoltaic Subcontract Program, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  6. Research on the Electrical Characteristics of Photovoltaic Arrays and Corresponding MPPT Simulation

    Directory of Open Access Journals (Sweden)

    Shengming Li

    2013-05-01

    Full Text Available Photovoltaic cells, as the primary part of a solar photovoltaic system, are a nonlinear DC power supply related to multiple parameters. The demand of increasing the generating efficiency of photovoltaic cells requires having a good understanding of their electrical characteristics. In this study, the mathematical and physical model of the photovoltaic cells was built by the means of Matlab and Simulink based on the internal principles and equivalent circuits of the photovoltaic cells. After the simulation of such practical and versatile model, it’s found that the nonlinear P-V and I-V characteristics of the photovoltaic cells, with the change of sunlight intensity and temperature, could be accurately reflected by this high simulation precision model. Furthermore, the Maximum Power Point Tracking method was proposed using the logical formula dP/dI=0 of the maximum power point of photovoltaic cells. This method can simply and fast implement the tracking for the maximum power point.

  7. Production and Characterization of Novel Photovoltaic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Marvin [North Carolina Central Univ., Durham, NC (United States)

    2016-06-07

    This project has three major objectives: exploring the potential nanostructured materials in photovoltaic applications; providing photovoltaic research experiences to NCCU students, who are largely members of underrepresented minority groups; and enhancing the photovoltaic research infrastructure at NCCU to increase faculty and student competitiveness. Significant progress was achieved in each of these areas during the project period, as summarized in this report.

  8. Organic photovoltaics. Technology and market

    International Nuclear Information System (INIS)

    Brabec, Christoph J.

    2004-01-01

    Organic photovoltaics has come into the international research focus during the past three years. Up to now main efforts have focused on the improvement of the solar conversion efficiency, and in recent efforts 5% white light efficiencies on the device level have been realized. Despite this in comparison to inorganic technologies low efficiency, organic photovoltaics is evaluated as one of the future key technologies opening up completely new applications and markets for photovoltaics. The key property which makes organic photovoltaics so attractive is the potential of reel to reel processing on low cost substrates with standard coating and printing processes. In this contribution we discuss the economical and technical production aspects for organic photovoltaics

  9. Advances in Photovoltaics at NREL

    Energy Technology Data Exchange (ETDEWEB)

    von Roedern, B.

    1999-09-09

    This paper discusses the critical strategic research and development issues in the development of next-generation photovoltaic technologies, emphasizing thin-film technologies that are believed to ultimately lead to lower production costs. The critical research and development issues for each technology are identified. An attempt is made to identify the strengths and weaknesses of the different technologies, and to identify opportunities for fundamental research activities suited to advance the introduction of improved photovoltaic modules.

  10. Examination of a Size-Change Test for Photovoltaic Encapsulation Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.; Gu, X.; Ji, L.; Kelly, G.; Gu, X.; Nickel, N.; Norum, P.; Shioda, T.; Tamizhmani, G.

    2012-08-01

    We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/- 5C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/- 5% between laboratories.

  11. Press document. Photovoltaic energy: boosting the evolution

    International Nuclear Information System (INIS)

    2009-04-01

    The french potential in the photovoltaic energy is considerable but not very exploited. In this context the CEA, by its function of applied research institute in the domain of the low carbon energies can be a major actor of the sector development. This document presents the research programs in the photovoltaic domain, developed at the CEA, especially on the silicon performance, the photovoltaic solar cells and their integration in the buildings. (A.L.B.)

  12. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  13. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  14. Use Conditions and Efficiency Measurements of DC Power Optimizers for Photovoltaic Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; MacAlpine, S.

    2013-10-01

    No consensus standard exists for estimating annual conversion efficiency of DC-DC converters or power optimizers in photovoltaic (PV) applications. The performance benefits of PV power electronics including per-panel DC-DC converters depend in large part on the operating conditions of the PV system, along with the performance characteristics of the power optimizer itself. This work presents acase study of three system configurations that take advantage of the capabilities of DC power optimizers. Measured conversion efficiencies of DC-DC converters are applied to these scenarios to determine the annual weighted operating efficiency. A simplified general method of reporting weighted efficiency is given, based on the California Energy Commission's CEC efficiency rating and severalinput / output voltage ratios. Efficiency measurements of commercial power optimizer products are presented using the new performance metric, along with a description of the limitations of the approach.

  15. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    Science.gov (United States)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  16. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Gedvilas, L. M.; To, B.; Kennedy, C. E.; Kurtz, S. R.

    2010-08-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on their expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems use Fresnel lenses made of poly(methyl methacrylate)(PMMA) to obtain a high optical flux density. The optical and mechanical durability of such components, however, are not well established relative to the desired service life of 30 years. Specific reliability issues may include: reduced optical transmittance, discoloration, hazing, surface erosion, embrittlement, crack growth, physical aging, shape setting (warpage), and soiling. The initial results for contemporary lens- and material-specimens aged cumulatively to 6 months are presented. The study here uses an environmental chamber equipped with a xenon-arc lamp to age specimens at least 8x the nominal field rate. A broad range in the affected characteristics (including optical transmittance, yellowness index, mass loss, and contact angle) has been observed to date, depending on the formulation of PMMA used. The most affected specimens are further examined in terms of their visual appearance, surface roughness (examined via atomic force microscopy), and molecular structure (via Fourier transform infrared spectroscopy).

  17. Research and photovoltaic industry at the United States; Recherche et industrie photovoltaique (PV) aux Etats-Unis

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, Ch; Herino, R; Delville, R; Allegre, R

    2006-06-15

    For a big country as the United States, the solar energy can be a solution for the air quality improvement, the greenhouse gases fight and the reduction of the dependence to the imported petroleum and also for the economic growth by the increase of the employment in the solar industry sector. This document takes stock on the photovoltaic in the United States in the industrial and research domains. The american photovoltaic industry is the third behind the Japan and the Germany. (A.L.B.)

  18. FY 2000 report on the demonstrative research for photovoltaic power generation system in Thailand. Demonstrative study on photovoltaic power generation grid-connected system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In relation to the demonstrative study of the photovoltaic power system that is planned in Libong island, Thailand, the FY 2000 results were reported. In this R and D, construction/demonstrative operation were planned for a photovoltaic power station with a generation output of 100kW, photovoltaic power system in school facilities, and system for transmitting/distributing power to houses by connecting the power station and power system. In this fiscal year, the field survey was conducted together with the alteration from Yao Yai island, for which the demonstrative study was planned at first, to Libong island. The electric equipment was selected which met the requests from Thailand and the results of the field survey, and the basic design of the photovoltaic power generation/transmission/distribution system was completed. Based on this, the design/manufacture of photovoltaic power generation modules, power control equipment, measuring equipment, etc. were made. At the construction site of photovoltaic power station, construction work such as land formation was conducted. Further, Thai engineers who visited Japan did the following: discussions about power system, presence at test/inspection of photovoltaic power generation modules, visits to photovoltaic power stations, wind power stations, etc. (NEDO)

  19. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  20. Development of the French Photovoltaic Program

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, M.

    1980-07-01

    The French photovoltaic research program is reviewed, listing companies involved. Projections of module and system costs are discussed. French industrial experience in photovoltaics is reviewed and several French systems operating in developing countries are mentioned. (MHR)

  1. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  2. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  3. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  4. A sensitivity analysis of central flat-plate photovoltaic systems and implications for national photovoltaics program planning

    Science.gov (United States)

    Crosetti, M. R.

    1985-01-01

    The sensitivity of the National Photovoltaic Research Program goals to changes in individual photovoltaic system parameters is explored. Using the relationship between lifetime cost and system performance parameters, tests were made to see how overall photovoltaic system energy costs are affected by changes in the goals set for module cost and efficiency, system component costs and efficiencies, operation and maintenance costs, and indirect costs. The results are presented in tables and figures for easy reference.

  5. Photovoltaic Subcontract Program, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K.A. (ed.)

    1991-03-01

    This report summarizes the progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaics Program at the Solar Energy Research Institute (SERI). The SERI subcontracted PV research and development represents most of the subcontracted R D that is funded by the US Department of Energy (DOE) National Photovoltaics Program. This report covers fiscal year (FY) 1990: October 1, 1989 through September 30, 1990. During FY 1990, the SERI PV program started to implement a new DOE subcontract initiative, entitled the Photovoltaic Manufacturing Technology (PVMaT) Project.'' Excluding (PVMaT) because it was in a start-up phase, in FY 1990 there were 54 subcontracts with a total annualized funding of approximately $11.9 million. Approximately two-thirds of those subcontracts were with universities, at a total funding of over $3.3 million. Cost sharing by industry added another $4.3 million to that $11.9 million of SERI PV subcontracted R D. The six technical sections of this report cover the previously ongoing areas of the subcontracted program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, and the University Participation Program. Technical summaries of each of the subcontracted programs discuss approaches, major accomplishments in FY 1990, and future research directions. Another section introduces the PVMaT project and reports the progress since its inception in FY 1990. Highlights of technology transfer activities are also reported.

  6. 1990 DOE/SANDIA crystalline photovoltaic technology project review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, D.S. (ed.)

    1990-07-01

    This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

  7. NREL Photovoltaic Program FY 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    This report summarizes the in-house and subcontract research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaics (PV) Program from October 1, 1995 through September 30, 1996 (fiscal year [FY] 1996). The NREL PV Program is part of the U.S. Department of Energy's (DOE) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The mission of the DOE National Photovoltaics Program is to: "Work in partnership with U.S. industry to develop and deploy photovoltaic technology for generating economically competitive electric power, making photovoltaics an important contributor to the nation's and the world's energy use and environmental improvement. The two primary goals of the national program are to (1) maintain the U.S. PV industry's world leadership in research and technology development and (2) help the U.S. industry remain a major, profitable force in the world market. The NREL PV Program provides leadership and support to the national program toward achieving its mission and goals.

  8. Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine; Freestate, David; Riley, Cameron; Hobbs, William

    2016-11-01

    Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results from both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.

  9. Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings

    Science.gov (United States)

    Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)

    1985-01-01

    A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.

  10. Estimating the Effects of Module Area on Thin-Film Photovoltaic System Costs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fu, Ran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Silverman, Timothy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Woodhouse, Michael A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Xingshu [Purdue University; Alam, Muhammad A [Purdue University

    2018-03-29

    We investigate the potential effects of module area on the cost and performance of photovoltaic systems. Applying a bottom-up methodology, we analyzed the costs associated with thin-film modules and systems as a function of module area. We calculate a potential for savings of up to 0.10 dollars/W and 0.13 dollars/W in module manufacturing costs for CdTe and CIGS respectively, with large area modules. We also find that an additional 0.04 dollars/W savings in balance-of-systems costs may be achieved. Sensitivity of the dollar/W cost savings to module efficiency, manufacturing yield, and other parameters is presented. Lifetime energy yield must also be maintained to realize reductions in the levelized cost of energy; the effects of module size on energy yield for monolithic thin-film modules are not yet well understood. Finally, we discuss possible non-cost barriers to adoption of large area modules.

  11. PV status report 2004. Research, Solar cell production and market implementation of photovoltaic s

    International Nuclear Information System (INIS)

    Jager-Waldau, A.

    2004-01-01

    The increasing demand for photovoltaic devices leads to the search for new developments with respect to material use and consumption, device design and production technologies, as well as new concepts to increase the overall efficiency. At present solar cell manufacturing is based on single junction device silicon wafer technology with close to 90% market share. Consistent with the time needed for any major change in the energy infrastructure, another 20 to 30 years of sustained and aggressive growth will be required for photovoltaic to substitute a significant share of the conventional energy sources. This growth will be possible if a continuous introduction of new technologies takes place, made possible by sound fundamental research. In October 2004 the Russian Duma ratified the Kyoto Protocol and it can be expected that the Protocol will now be set into force by the beginning of 2005. This recent development will definitively have an impact on the further implementation of renewable energies and photovoltaic is a prime source to deliver it. The Third Edition of the PV Status Report will widen its view to the enlarged European Union as well as the new player China and tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation. The opinion given in this report is based on the current information available to the author, and does not reflect the opinion of the European Commission. (author)

  12. Preprint WebVRGIS Based Traffic Analysis and Visualization System

    OpenAIRE

    Li, Xiaoming; Lv, Zhihan; Wang, Weixi; Zhang, Baoyun; Hu, Jinxing; Yin, Ling; Feng, Shengzhong

    2015-01-01

    This is the preprint version of our paper on Advances in Engineering Software. With several characteristics, such as large scale, diverse predictability and timeliness, the city traffic data falls in the range of definition of Big Data. A Virtual Reality GIS based traffic analysis and visualization system is proposed as a promising and inspiring approach to manage and develop traffic big data. In addition to the basic GIS interaction functions, the proposed system also includes some intellige...

  13. Annual Report: Photovoltaic Subcontract Program FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Summers, K. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  14. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  15. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Research and development of photovoltaic system evaluation technology (Research and development of system evaluation technology - Photovoltaic system data book, separate volume); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu bessatsu (taiyoko hatsuden system data shu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the research and development of photovoltaic power generation system evaluation technology, great progress has been achieved in performance improvement and cost reduction as far as constituent devices such as power modules and inverters are concerned. In the designing of systems, however, quantitative elucidation of loss and power reduction factors remains insufficient. Under the circumstances, several types of photovoltaic power generation systems expected to be put to practical application in the future are taken up, test facilities are constructed which simulate them, and data are collected. The thus-collected data are utilized for research and development of evaluation techniques necessary for the improvement of photovoltaic system efficiency, such as design parameter quantification, databasing and utilization thereof, and simulation technologies, for the establishment of technologies for optimum designs and optimum operations. The data book accommodates data, arranged in an easy-to-use fashion, collected about verification test facility (interconnected systems, independent systems, and water pump systems) operation, weather conditions, and residential photovoltaic power generation systems. (NEDO)

  16. Photovoltaic Subcontract Program. Annual report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  17. International Photovoltaic Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    The International Photovoltaics Program Plan is in direct response to the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (PL 95-590). As stated in the Act, the primary objective of the plan is to accelerate the widespread use of photovoltaic systems in international markets. Benefits which could result from increased international sales by US companies include: stabilization and expansion of the US photovoltaic industry, preparing the industry for supplying future domestic needs; contribution to the economic and social advancement of developing countries; reduced world demand for oil; and improvements in the US balance of trade. The plan outlines programs for photovoltaic demonstrations, systems developments, supplier assistance, information dissemination/purchaser assistance, and an informaion clearinghouse. Each program element includes tactical objectives and summaries of approaches. A program management office will be established to coordinate and manage the program plan. Although the US Department of Energy (DOE) had the lead responsibility for preparing and implementing the plan, numerous federal organizations and agencies (US Departments of Commerce, Justice, State, Treasury; Agency for International Development; ACTION; Export/Import Bank; Federal Trade Commission; Small Business Administration) were involved in the plan's preparation and implementation.

  18. Implementing agreement on photovoltaic power systems - Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2000. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance and design of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, the grid interconnection of building-integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, very large scale photovoltaic power generation systems and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  19. Implementing agreement on photovoltaic power systems - Annual report 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2001. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  20. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  1. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  2. Solar spectrum conversion for photovoltaics using nanoparticles

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction

  3. Energy research programme on photovoltaics for the 2008 - 2011 period; Energieforschungsprogramm Photovoltaik fuer die Jahre 2008 - 2011

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S.

    2008-09-15

    This report for the Swiss Federal Office of Energy (SFOE) presents and discusses the Swiss Energy Research Programme on Photovoltaics for the period 2008 - 2011. The programme is to continue the tried and tested concept of previous years and will involve all the important players in the Swiss photovoltaics area. The report reviews the situation at the international level and the situation in Switzerland. Future developments are discussed. Financing aspects are looked at and the main focal points for the period are listed, including solar cells, solar modules and building integration, electrical system technology, international co-operation and pilot and demonstration projects. In a chapter on national co-operation, competence centres and industry are looked at and co-operation with other Swiss federal and cantonal institutions as well as with private institutions and the electricity industry is reviewed. Operational aspects of the programme such as project submission and assessment, project management and controlling are discussed. Information and communication work, including seminars, conferences and the Internet are discussed. The report is concluded with lists of research and development projects as will as pilot and demonstration projects, references and internet links. Appendices include a review of photovoltaic technologies, an extract from the Swiss Energy Research Concept for 2008 - 2011, a review of the various factors and competencies involved and an overview of international programmes and networks.

  4. Photovoltaic Cells and Systems: Current State and Future Trends

    OpenAIRE

    Hadj Bourdoucen; Joseph A. Jervase; Abdullah Al-Badi; Adel Gastli; Arif Malik

    2000-01-01

    Photovoltaics is the process of converting solar energy into electrical energy. Any photovoltaic system invariably consists of solar cell arrays and electric power conditioners. Photovoltaic systems are reliable, quiet, safe and both environmentally benign and self-sustaining. In addition, they are cost-effective for applications in remote areas. This paper presents a review of solar system components and integration, manufacturing, applications, and basic research related to photovoltaics. P...

  5. Singlet-Fission-Sensitized Hybrid Thin-Films For Next-Generation Photovoltaics

    Science.gov (United States)

    2016-04-12

    SECURITY CLASSIFICATION OF: This grant enabled the acquisition of equipment for the fabrication of organic and nanocrystal based photovoltaic (PV... Photovoltaics . The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department of...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 singlet fission, nanocrystal, triplet, hybrid, photovoltaic REPORT

  6. The photovoltaic pathway

    International Nuclear Information System (INIS)

    Jourde, P.; Guerin de Montgareuil, A.; Mattera, F.; Jaussaud, C.; Boulanger, P.; Veriat, G.; Firon, M.

    2004-01-01

    Photovoltaic conversion, the direct transformation of light into electricity, is, of the three pathways for solar energy, the one experiencing most rapid growth, and for which scientific and technological advances are most promising, as regards significant improvements in its economic balance. While the long-term trend, in Europe, is favorable, with annual growth set at 30%, the cost per photovoltaic kilowatt-hour remains some ten times higher than that achieved with natural gas or nuclear energy (after connection to the grid), this being a handicap, at first blush, for high power ratings. For remote locations, where its advantage is unquestionable, in spite of the added cost of storage between insolation periods (this more than compensating for savings in terms of connection costs), this pathway sets its future prospects on marked module cost reductions. Such reduction may only be achieved by way of technological breakthroughs, to which CEA, active as it has been, in this area, for some thirty years, intends making a contribution, as linchpin of French research and technology, and a key protagonist on the European scene. One of the avenues being pursued concerns fabrication of high-efficiency cells from mineral or organic thin films, with particularly strong expectations with respect to the all-polymer path, complementary of the silicon pathway. Concurrently, device reliability needs must be improved, this being another factor making for an improved overall balance. To achieve easier transfer to industry of laboratory outcomes, CEA is relying, in particular, on the new cell fabrication platform set up in Grenoble, this complementing its other R and D resources, including those installed at Cadarache, allowing testing of cells and entire photovoltaic systems in actual operating conditions. Another path for cost reductions being explored by CEA research workers consists in construction of systems integrated into the built environment: this affords new prospects

  7. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  8. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  9. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  10. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  11. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  12. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  13. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  15. Implementing agreement on photovoltaic power systems - Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2003. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. The programme's tenth anniversary is noted. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system, the deployment of photovoltaic technologies in developing countries and urban-scale PV applications. The status and prospects in the 20 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  16. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  17. Photovoltaics - why this 'religious war'?

    International Nuclear Information System (INIS)

    Nowak, S.

    2005-01-01

    This article examines the possible reasons behind controversies concerning photovoltaics in Switzerland. The author, who considers that no other energy technology awakes such varying opinions, presents ten points that should be considered in this connection. These include aspects concerning research and development, trade and industry as well as markets and applications. The 'enormous' potential of photovoltaics and questions concerning availability and environmental issues are discussed. Costs, developments and the question of economic viability are looked at. The situation in Switzerland is compared with international conditions. Finally, political issues are reviewed and the key role to be played by photovoltaics in the future is stressed

  18. Photovoltaic solar energy

    International Nuclear Information System (INIS)

    Mouratoglou, P.; Therond, P.G.

    2009-01-01

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  19. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  20. Photovoltaic for the Chinese; Du photovoltaique pour les Chinois

    Energy Technology Data Exchange (ETDEWEB)

    Bahjejian, L.

    2010-10-15

    China produces and exports about half of the photovoltaic cells made in the world. About 1000 Chinese enterprises work in the photovoltaic sector and the offer grows too fast to allow some enterprises to cope with lower and lower production costs. Research activities are a key element for the reduction of production costs but small companies can not usually sustain sufficient research. Economists foresee a strong reorganization of the sector: some enterprises will cease their photovoltaic activities, others will face financial difficulties, others will merge to make bigger companies. To make the demand bigger Chinese authorities are taking steps to develop the photovoltaic home market. The installed capacity of photovoltaic plants in China is expected to be somewhere between 11 GWc and 18 GWc in 2015, figures to be compared with only 0.9 GWc in 2010. (A.C.)

  1. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  2. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  3. The photovoltaic energy in Japan

    International Nuclear Information System (INIS)

    Georgel, O.

    2005-07-01

    Today the Japan is the leader of the photovoltaic energy. The first reason of this success is an action of the government integrating subventions for the installation of photovoltaic systems and a support of the scientific research. To explain this success, the author presents the energy situation in Japan, details the national programs, the industrial sector (market, silicon needs, recycling, manufacturers, building industry) and presents the main actors. (A.L.B.)

  4. Photovoltaics - 10 years after Cherry Hill

    Science.gov (United States)

    Ralph, E. L.

    The status of R&D programs connected with photovoltaic (PV) systems 10 years after the Cherry Hill workshop on 'Photovoltaic Conversion of Solar Energy for Terrestrial Applications' is assessed. The five categories of research recommended by the Cherry Hill Workshop are listed in a table together with their recommended research budget allocations. The workshop categories include: single-crystal Si cells; poly-Si cells; systems and diagnostics. Categories for thin film CdS/Cu2S and CuInSe2 cells are also included. The roles of government and private utility companies in providing adequate financial support for PV research programs is emphasized.

  5. Photovoltaics in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Bolcso, S L

    1983-06-01

    A literature review was carried out for the purpose of summarizing the current conditions existing and affecting photovoltaics (PV) technology in a Canadian context. Information is presented concerning: PV device materials and efficiencies; PV cell manufacturing techniques; other materials/device designs; photovoltaic costs, markets, and research and development; PV and microelectronics; and Canadian strengths and opportunities. It was concluded that PV's simplicity, amenability to mass production and environmentally benign nature will likely assure it a faster and eventually greater market penetration than any other renewable energy form (and possibly some conventional forms). It is recommended that the Ministry of State, Science and Technology coordinate a joint microelectronics-photovoltaic research effort, by: indentifying areas where joint efforts would be mutually beneficial; identifying the strategic value of PV; identifying a set of goals for Canadian programs; coordinating efforts between government, universities and industry; developing supporting strategies for the mining and smelting of indigenous semiconducting materials; determining the economic support required to develop a silicon processing plant for the production of microelectronic chips and PV cells; developing Canadian expertise in providing complete PV systems competitive in world markets; and developing a marketing strategy for a coordinated PV/microelectronics effort. 60 refs., 17 figs., 12 tabs.

  6. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  7. Research and Design of Fixed Photovoltaic Support Structure Based on SAP2000

    Directory of Open Access Journals (Sweden)

    Wang Xingxing

    2018-01-01

    Full Text Available In the solar photovoltaic power station project, PV support is one of the main structures, and fixed photovoltaic PV support is one of the most commonly used stents. For the the actual demand in a Japanese photovoltaic power, SAP2000 finite element analysis software is used in this paper, based on Japanese Industrial Standard (JIS C 8955-2011, describing the system of fixed photovoltaic support structure design and calculation method and process. The results show that: (1 according to the general requirements of 4 rows and 5 columns fixed photovoltaic support, the typical permanent load of the PV support is 4679.4 N, the wind load being 1.05 kN/m2, the snow load being 0.89 kN/m2 and the seismic load is 5877.51 N; (2 by theoretical calculation of the two ends extended beam model, the beam span under the rail is determined 2200 mm; (3 by the way of using the single factor experiment, through the calculation and analysis of SAP2000, the three best supporting points of the support of the W stent are determined; (4 by comprehensive simulation, the optimal parameters for the rail, beam, support and bolt are 60× 60× 1.0, 60× 60× 1.0, 40× 50× 2.0, and M10 respectively.

  8. Photovoltaic System in Progress

    DEFF Research Database (Denmark)

    Shoro, Ghulam Mustafa; Hussain, Dil Muhammad Akbar; Sera, Dezso

    2013-01-01

    This paper provides a comprehensive update on photovoltaic (PV) technologies and the materials. In recent years, targeted research advancement has been made in the photovoltaic cell technologies to reduce cost and increase efficiency. Presently, several types of PV solar panels are commercially...... falls in the third generation PV technologies. However, Multi-junction Cells are still considered new and have not yet achieved commercialization status. The fundamental change observed among all generations has been how the semiconductor material is employed and the development associated with crystal...

  9. Preprint Traffic Management and Forecasting System Based on 3D GIS

    OpenAIRE

    Li, Xiaoming; Lv, Zhihan; Hu, Jinxing; Zhang, Baoyun; Yin, Ling; Zhong, Chen; Wang, Weixi; Feng, Shengzhong

    2015-01-01

    This is the preprint version of our paper on 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). This paper takes Shenzhen Futian comprehensive transportation junction as the case, and makes use of continuous multiple real-time dynamic traffic information to carry out monitoring and analysis on spatial and temporal distribution of passenger flow under different means of transportation and service capacity of junction from multi-dimensional space-time pers...

  10. Status of photovoltaics in the Newly Associated States

    International Nuclear Information System (INIS)

    Pietruszko, S.M.; Mikolajuk, A.; Fara, L.; Fara, S.; Vitanov, P.; Stratieva, N.; Rehak, J.; Barinka, R.; Mellikov, E.; Palfy, M.; Shipkovs, P.; Krotkus, A.; Saly, V.; Nemac, F.; Swens, J.; Nowak, S.; Zachariou, A.; Fechner, H.; Passiniemi, P.

    2004-01-01

    The Status of Photovoltaics in the Central and Eastern Europe presents the state of the art of photovoltaics (PV) in the Newly Associated States (NAS): Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia, Slovenia. The attempt was made to cover all photovoltaics activities in NAS, from research to industry and markets as well as from technology development to dissemination and education. The document covers the following topics and issues: organization of PV research and demonstration activities, stakeholders involved in research and technology development (RTD), scientific potential of NAS PV community, PV activities carried out in NAS countries, PV policies and support mechanisms, achievements and barriers, challenges and needs to the development of PV in the NAS. (authors)

  11. Photovoltaic technology and applications: Overview for the workshop on photochemistry research opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Benner, J.P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The business surrounding photovoltaic energy conversion for terrestrial applications has changed dramatically in the last several years. It is now a business that makes money. Industry is responding. with manufacturing capacity expansions, and planned expansions, that will triple U.S. annual output within the next eighteen months. The majority of this product is exported (70%) where it is proven to be a cost competitive alternative. This industry provides experience in manufacturing and reliability in fielded systems that will serve as the basis for extrapolating growth to larger-scale installations and utility systems. The largest part of the National Photovoltaic Program budget supports assisting industry in advancing manufacturing technology and stimulating applications to reduce cost and expand the evolving industry. A growing segment of society looks to photovoltaics as an alternative that may be needed to replace conventional electric generating capacity. The grand challenge for photovoltaics is to make the technology economically competitive for large scale electric power generation before real or perceived evidence of environmental damage from conventional sources dictates its use at economically disruptive costs.

  12. Solar thermal power and photovoltaic energy are both developing

    International Nuclear Information System (INIS)

    Le Jannic, N.; Houot, G.

    2010-01-01

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  13. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  14. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power generation system evaluation technology (Research and development of system evaluation technology); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development is conducted for the acquisition of a system evaluation technique for predicting the performance of standard photovoltaic power systems and evaluation technologies applicable to residential photovoltaic power systems different from each other in terms of tilt and direction, district, solar cell type, etc. In fiscal 1999, using data collected from the Hamamatsu field test facilities and residential photovoltaic power systems installed across Japan, various design parameters, such as the irregularity compensation coefficient, temperature compensation coefficient, and the incidence compensation coefficient were determined, and, using the parameters as the secondary estimation values, design parameters were updated. In the development of simulation technologies, basic studies were made about the shadow compensation coefficient, spectral response fluctuation compensation coefficient, and the composition of polyhedral arrays. Moreover, studies were made about the estimation of large area insolation, based on the horizontal surface insolation data collected at 21 sites of residential photovoltaic power systems in the Kanto district. (NEDO)

  15. Directory of the French Photovoltaic Industry 2017 - 2018

    International Nuclear Information System (INIS)

    2017-02-01

    More than 500 companies, of which 200 are industrial companies with a manufacturing unit located in France, and some fifty are research centres, this is the rich panorama prepared by the 2017-18 directory of the French photovoltaic industry, representing more than 8,200 jobs. These companies operate throughout the photovoltaic value chain: from chemistry and electronics, to electricity production, to the development, construction and maintenance of photovoltaic systems. They constitute an economic sector in full developmental swing and one that is providing new, high-added value jobs. Therefore, some of our research centres (National Institute of Solar Energy, Photovoltaic Institute of Ile de France) are among the most advanced in the world. Our network of industrial and service companies is filled with little gems that we have to make fruitful. Content of this directory: Presentation of the French renewable energies syndicate (SER); Presentation of SER-SOLER, French solar photovoltaic professionals group; 'Putting France on the map', foreword by Jean-Louis Bal, President of SER and Xavier Daval, President of SER-SOLER; Presentation of France solar industry; Presentation of photovoltaic quality Alliance Photovoltaique; Areas of activity; The members of SER-SOLER; Other members of SER-SOLER; Other Companies; Index (Alphabetical, By activity, By region); Advertisers

  16. Home Photovoltaic System Design in Pangkalpinang City

    Science.gov (United States)

    Sunanda, Wahri

    2018-02-01

    This research aims to obtain the design of home photovoltaic systems in Pangkalpinang and the opportunity of economic savings. The system consists of photovoltaic with batteries. Based on electricity consumption of several houses with installed power of 1300 VA and 2200 VA in Pangkalpinang for one year, the daily load of photovoltaic system is varied to 40%, 30% and 20% of the average value of the daily home electricity consumption. The investment costs, the cost of replacement parts and the cost of electricity consumption accrued to PLN during lifetime of systems (25 years) are also calculated. The result provided that there are no economic saving opportunities for photovoltaic systems with batteries at home with installed power of 1300 VA and 2200 VA in Pangkalpinang. The most economical is the photovoltaic system with the daily load of 20% of the average value of the daily home electricity consumption. The configuration of photovoltaic system for 1300 VA home consists of 10 modules of 200 wattpeak and 4 batteries 150 AH, 12 Volt while photovoltaic system for 2200 VA home consists of 15 modules of 200 wattpeak and 6 batteries 150 AH,12Volt.

  17. Output Performance and Payback Analysis of a Residential Photovoltaic System in Colorado: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.

    2012-06-01

    Cost of installation and ownership of a 9.66-kilowatt (kW) residential photovoltaic system is described, and the performance of this system over the past 3 years is shown. The system is located in Colorado at 40 degrees latitude and consists of arrays on two structures. Two arrays are installed on a detached garage, and these are each composed of 18 Kyocera 130-W modules strung in series facing south at an angle of 40 degrees above horizontal. Each 18-panel array feeds into a Xantrex/Schneider Electric 2.8-kW inverter. The other two arrays are installed on the house and face south at an angle of 30 degrees. One of these arrays has twelve 205-W Kyocera panels in series, and the other is made up of twelve 210-Kyocera panels. Each of these arrays feeds into Xantrex/Schneider Electric 3.3-kW inverters. Although there are various shading issues from trees and utility poles and lines, the overall output resembles that which is expected from PVWatts, a solar estimate program. The array cost, which was offset by rebates from the utility company and federal tax credits, was $1.17 per watt. Considering measured system performance, the estimated payback time of the system is 9 years.

  18. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  19. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  20. Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C. A.; del Cueto, J. A.; Albin, D. S.; Rummel, S. R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65 degrees C; exposed in the dark under forward bias at 65 degrees C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  1. Hydrogen production through photovoltaic processes: Italian ENEA and other research projects

    International Nuclear Information System (INIS)

    Barra, L.; Coiante, D.

    1992-01-01

    Brief arguments favouring greater emphasis by government R ampersand D strategies on commercialization efforts to further develop hydrogen production processes involving the use of renewable energy sources are presented. These include the worsening global greenhouse effect problems due to the intensified use of fossil fuels and recent technological advances being made in photovoltaic energy conversion. A world-wide review is then made of on-going research programs in hydrogen production through the use of hydroelectric and solar energy sources. This review provides outlines of project objectives, schedules and financing schemes. Attention is given to the commercialization programs and strategies of ENEA (Italian Commission for New Technologies, Energy and the Environment)

  2. Report on demonstrative research on photovoltaic power generation system in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of installation and demonstrative operation in Myanmar of a power generation system combining a small-scale photovoltaic power generation system, a wind power generation system, and a diesel generator, research and development is being made under a six year plan starting in 1999 and ending in 2004. Comparative discussions were given on the installation location of the power generation system for the climatic conditions in Chaungthar and Letkhokekone, whereas the final decision was given on Chaungthar. This project plans installation of a photovoltaic power generation system of 80 kW, a wind power generation system of 40 kW, and a diesel generator of 60 kW. Power generation will start at 6 o'clock in the morning and continue to 11 o'clock at night every day, with a storage battery of 1,000 Ah and a stabilized load comprising of ice maker units to be installed. Observation of wind power and solar insolation is being continued with an aim of acquiring data over a period of one year or longer, whereas the data as have been forecasted are being acquired at the present. The diesel generator was manufactured in Japan, which has been arrived at the port of Yangon in February 2001, and installed at the site in Chaungthar in March. (NEDO)

  3. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  4. Note on: Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record, by Lieberman and Melott, arXiv preprint 0704.2896

    OpenAIRE

    Omerbashich, M.

    2007-01-01

    Lieberman and Melott built their recent arXiv preprint 0704.2896 on my published paper and (a preprint of) a subsequent comment by Liebermans associate Cornette. But had this group waited for the Cornette comment to actually appear in print together with the expected Reply, they would have learned that his comment exposes Cornettes confusion that likely was due to journal misprint of my figure. Thus 0704.2896 is baseless. Despite receiving the extended Reply with Errata, these authors still f...

  5. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  6. Research and design of photovoltaic power monitoring system based on Zig Bee

    Science.gov (United States)

    Zhu, Lijuan; Yun, Zhonghua; Bianbawangdui; Bianbaciren

    2018-01-01

    In order to monitor and study the impact of environmental parameters on photovoltaic cells, a photovoltaic cell monitoring system based on ZigBee is designed. The system uses ZigBee wireless communication technology to achieve real-time acquisition of P-I-V curves and environmental parameters of terminal nodes, and transfer the data to the coordinator, the coordinator communicates with the STM32 through the serial port. In addition, STM32 uses the serial port to transfer data to the host computer written by LabVIEW, and the collected data is displayed in real time, as well as stored in the background database. The experimental results show that the system has a stable performance, accurate measurement, high sensitivity, high reliability, can better realize real-time collection of photovoltaic cell characteristics and environmental parameters.

  7. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  8. A Study of Stress Distribution in Layered and Gradient Tribological Coatings (Preprint)

    Science.gov (United States)

    2006-11-01

    FG) Ti/TiC coating design. On the top of the 440C stainless steel substrate, α-Ti is added as a bond layer with 50nm thickness to improve the... stainless steel substrate and the rigid spherical indenter was performed. Figure 5 (a) shows the normalized Hertzian point contact pressure distribution...AFRL-ML-WP-TP-2007-402 A STUDY OF STRESS DISTRIBUTION IN LAYERED AND GRADIENT TRIBOLOGICAL COATINGS (PREPRINT) Young Sup Kang, Shashi K

  9. Recent Accomplishments in Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Fikes, John C.; Henley, Mark W.; Mankins, John C.; Howell, Joe T.; Fork, Richard L.; Cole, Spencer T.; Skinner, Mark

    2003-01-01

    Wireless power transmission can be accomplished over long distances using laser power sources and photovoltaic receivers. Recent research at AMOS has improved our understanding of the use of this technology for practical applications. Research by NASA, Boeing, the University of Alabama-Huntsville, the University of Colorado, Harvey Mudd College, and the Naval Postgraduate School has tested various commercial lasers and photovoltaic receiver configurations. Lasers used in testing have included gaseous argon and krypton, solid-state diodes, and fiber optic sources, at wavelengths ranging from the visible to the near infra-red. A variety of Silicon and Gallium Arsenide photovoltaic have been tested with these sources. Safe operating procedures have been established, and initial tests have been conducted in the open air at AMOS facilities. This research is progressing toward longer distance ground demonstrations of the technology and practical near-term space demonstrations.

  10. Research on simulated devices for Solar photovoltaic grid-connected generation system

    Directory of Open Access Journals (Sweden)

    quan-zhu Zhang

    2017-01-01

    Full Text Available On the standpoint of energy conservation and emission reduction, one device simulated photovoltaic grid-connected generation system based on SPWM was designed in the paper. And DC/AC inverter could transduce efficiently direct current to alternating current. The MCU(Micro-Control-Unit, in this system could achieve the control method for maximum-power-point and tracking for frequency and phase. Moreover, the MCU could implement PWM (Plus-Width Modulating through programming. The system showed clearly the whole photovoltaic grid-connected generation system using simulated methods and ways.

  11. Organic photovoltaic energy in Japan

    International Nuclear Information System (INIS)

    2007-01-01

    Japan finances research programs on photovoltaic conversion since 1974. Research in this domain is one of the 11 priorities of NEDO, the agency of means of the ministry of economy, trade and industry of Japan. The search for an abatement of production costs and of an increase of cells efficiency is mentioned in NEDO's programs as soon as the beginning of the 1990's. A road map has been defined which foresees photovoltaic energy production costs equivalent to the ones of thermal conversion by 2030, i.e. 7 yen/kWh (4.4 cents of euro/kWh). The use of new materials in dye-sensitized solar cells (DSSC) or organic solar cells, and of new structures (multi-junctions) is explored to reach this objective. The organic photovoltaic technology is more particularly considered for small generation units in mobile or domestic technologies. Japan is particularly in advance in the improvement of DSSC cells efficiency, in particular in the domain of the research on solid electrolytes. Europe seems more in advance in the domain of the new generation of organic solar cells. Therefore, a complementarity may be found between Japan and French teams in the domain of organic solar cells improvement through collaboration programs. (J.S.)

  12. Photovoltaic module and interlocked stack of photovoltaic modules

    Science.gov (United States)

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  13. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  14. Preprints na comunicação científica da Física de Altas Energias: análise das submissões no repositório arXiv (2010-2015

    Directory of Open Access Journals (Sweden)

    Gonzalo Rubén Alvarez

    Full Text Available RESUMO A circulação de preprints na Física de Altas Energias (FAE remonta a mais de meio século, tendo como objetivos principais acelerar o processo de comunicação científica entre os pares e estimular o acesso livre à literatura especializada da área. O artigo analisa o conjunto de preprints submetidos às diferentes categorias FAE do repositório temático especializado arXiv no período 2010-2015 que foram posteriormente publicados em revistas peer review. Os indicadores bibliométricos demonstram a potencialidade dos preprints como canal precursor de difusão de resultados científicos visto que 70% das submissões foram em seguida absorvidas pelas principais revistas da FAE. Conclui que o êxito alcançado pelas iniciativas Open Access arXiv e INSPIRE-HEP favoreceu o intercâmbio de informações e conhecimentos entre os pesquisadores. O modelo proposto pela FAE pode incentivar cientistas de áreas com características similares a instalarem repositórios e bancos de dados de preprints para suas disciplinas com o intuito de fortalecer a comunicação das descobertas científicas.

  15. A photovoltaic module

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a photovoltaic module comprising a carrier substrate, said carrier substrate carrying a purely printed structure comprising printed positive and negative module terminals, a plurality of printed photovoltaic cell units each comprising one or more printed...... photovoltaic cells, wherein the plurality of printed photovoltaic cell units are electrically connected in series between the positive and the negative module terminals such that any two neighbouring photovoltaic cell units are electrically connected by a printed interconnecting electrical conductor....... The carrier substrate comprises a foil and the total thickness of the photovoltaic module is below 500 [mu]m. Moreover, the nominal voltage level between the positive and the negative terminals is at least 5 kV DC....

  16. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  17. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  18. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    Science.gov (United States)

    2016-04-19

    the free energy of the system [3,4,8]. Intensive research has been aimed at bypassing the intrinsic size limits imposed by the depolarization field...Page 1 of 21   Ultrafast photovoltaic response in ferroelectric nanolayers Dan Daranciang1,2, Matthew J. Highland3, Haidan Wen4, Steve M. Young5...ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on

  19. Photovoltaic plants in the electronic system

    International Nuclear Information System (INIS)

    Marzio, L.; Vigotti, R.

    1999-01-01

    The article provides a 1998 updated picture of Italy's and the world's photovoltaic market in terms of produced modules and total installed capacity, as well as market growth forecasts up to 2010. After a short description of the state-of-the-art of cell and module manufacturing, ana analysis of the cost of producing a photovoltaic kW is reported for different plant types: stand-alone plants with energy storage batteries, plants connected to low low voltage networks or intended for supporting medium voltage networks, hybrid plants with diesel sets. The article is concluded by illustrating ENEL's (Electric Power Production Company) engagement in the field of photovoltaic solar energy as regards theoretical studies, research and testing of new technologies, and installing plants; over nearly twenty years of activity, ENEL has designed and built a few hundreds of photovoltaic plants for a total capacity of about 4.000 kW, and is currently in the process of setting up a further 370 kW [it

  20. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The global solar photovoltaic market enjoyed a strong revival in 2013. Preliminary estimates put it in excess of 37 GWp, compared to 30 GWp in 2012 and 2011. The solar photovoltaic sector led the annual installed capacity ratings for renewable energies, taking worldwide capacity up to 137 GWp by the end of the year which means a 35% year-on-year increase. At global level the high growth markets - China, Japan and America - contrast sharply with the contracting European Union market. The strong recovery of the global photovoltaic market is due to the drop in module prices which in some zones has dropped below the conventional electricity price. In the E.U, in 2013 the photovoltaic electricity reached 80.2 TWh while the capacity connected during this year was 9922.2 MWp. Concerning the capacity connected in 2013 the 2 main contributors in Europe are Germany (3310.0 MWc) and Italy (1462.0 MWc). These 2 countries represent also 68% of the cumulated and connected capacity in Europe. All along the article various charts and tables give the figures of the photovoltaic capacity per inhabitant for each E.U country in 2013, the electricity production from photovoltaic power for each E.U country, and the main photovoltaic module manufacturers in 2013 worldwide reporting production and turnover

  1. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  2. Fiscal 1999 research report. Data collection for development of new energy technology (Photovoltaic power generation); 1999 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa (taiyoko hatsuden) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As a part of systematic data preparations on new energy technology, this research aims at collection and analysis of data on domestic and overseas applications, diffusion targets, concrete examples, policies, laws, subsidy systems, and the latest technology development trends of photovoltaic power generation, and at preparation of its basic data through integration and systematization of the collected data. The research items are as follows: domestic and overseas applications, diffusion targets, concrete examples, policies, laws, subsidy systems, productions of solar cells, typical photovoltaic power generation costs, trial calculations of CO{sub 2} reduction in photovoltaic power generation, technology development trends, technology development issues, issues for faster diffusion, configurations and conceptual charts of photovoltaic power systems, and major domestic and overseas trends. As a supplement, domestic and overseas manufacturers of solar cells, and manufacturers of photovoltaic power systems are listed with their addresses. The solar cell production capacities of major countries are also arranged. (NEDO)

  3. Research on a New Control Scheme of Photovoltaic Grid Power Generation System

    Directory of Open Access Journals (Sweden)

    Dong-Hui Li

    2014-01-01

    Full Text Available A new type of photovoltaic grid power generation system control scheme to solve the problems of the conventional photovoltaic grid power generation systems is presented. To aim at the oscillation and misjudgment of traditional perturbation observation method, an improved perturbation observation method comparing to the next moment power is proposed, combining with BOOST step-up circuit to realize the maximum power tracking. To counter the harmonic pollution problem in photovoltaic grid power generation system, the deadbeat control scheme in fundamental wave synchronous frequency rotating coordinate system of power grid is presented. A parameter optimization scheme based on positive feedback of active frequency shift island detection to solve the problems like the nondetection zone due to the import of disturbance in traditional island detection method is proposed. Finally, the results in simulation environment by MATLAB/Simulink simulation and experiment environment verify the validity and superiority of the proposed scheme.

  4. The 1991 DOE/Sandia Crystalline Photovoltaic Technology Project Review Meeting

    Science.gov (United States)

    Whipple, M. L.

    1991-07-01

    This document serves as the proceedings for the manual project review meeting held by Sandia's Photovoltaic Technology Research Division. It contains information supplied by each organization making a presentation at the meeting, which was held July 30 through 31, 1991 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, and concentrating collector development.

  5. Assessment of the DOE/NREL Historically Black College and University Photovoltaic Research Associates Program

    Energy Technology Data Exchange (ETDEWEB)

    Posey-Eddy, F.; McConnell, R. D.

    2002-08-01

    This report details the DOE/NREL Historically Black College and University (HBCU) Photovoltaic Research Associates Program, a small but remarkable program that directly affected dozens of minority undergraduate students in ways that changed many of their lives. The progress and accomplishments of undergraduates within the nine participating universities were monitored and assessed through their presentations at an annual NREL-sponsored HBCU conference. Although the funding was small, typically $400,000 per year, the money made a significant impact. The best students sometimes went on to the nation's top graduate schools (e.g., MIT) or important management positions in large companies. Other students had opportunities to learn how renewable energy could positively affect their lives and their neighbors' lives. A few were lucky enough to install photovoltaic lighting and water-pumping systems in Africa, and to see and feel firsthand the technical and emotional benefits of this technology for families and villages. Two of the schools, Texas Southern University and Central State University, were particularly successful in leveraging their DOE/NREL funding to obtain additional funding for expanded programs.

  6. Research on DC Micro-grid system of photovoltaic power generation

    Science.gov (United States)

    Zheng, Yiming; Wang, Xiaohui

    2018-01-01

    The use of energy has become a topic of concern, the demand of people for power grows in number or quantity with the development of economy. It is necessary to consider using new forms of power supply-microgrid system for distributed power supply. The power supply mode can not only effectively solve the problem of excessive line loss in the large power grid, but also can increase the reliability of the power supply, and is economical and environmental friendly. With the increasing of DC loads, in order to improve the utilization efficiency, the DC microgrid power supply problems are begin to be researched and integrated with the renewable energy sources. This paper researched the development of microgrid, compared AC microgrid with DC microgrid, summarized the distribution of DC bus voltage level, the DC microgrid network form, the control mode and the main power electronics elements of DC microgrid of photovoltaic power generation system. Today, the DC microgrid system is still in the development stage without uniform voltage level standard, however, it will come into service in the future.

  7. Development in fiscal 1999 of technology to put photovoltaic power generation system into practical use. Management of research and development (System development committee working group); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Kenkyu kaihatsu kanri (system kaihatsu bukai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    This paper reports activities carried out in fiscal 1999 by the system development committee working group, a subordinate organization of the committee for development of the photovoltaic power generation technology. The items of implementation laid with emphasis in the current fiscal year included deliberations on the research achievements of the projects completed in fiscal 1999, on the research achievements of the new projects during fiscal 1999, and on pre-final evaluation of the development of a technology to put photovoltaic power generation system into practical use. The themes on the progresses in fiscal 1999 reported in March 2000 consisted of the followings: research and development of a system evaluation technology, investigation and research on supply capability evaluation on the photovoltaic power generation system, researches on peripheral devices for AC modules, investigation and research on electric safety of the photovoltaic power generation system, investigation and research on long-term reliability of inverters, investigation and research on meteorological data for optimal design, investigation and research on evaluation of the photovoltaic power generation, research on a photovoltaic power generating multi-hybrid system, research on a high-density linkage technology, and demonstrative research on a solar beam micro-hydraulic hybrid system. (NEDO)

  8. Preprint of the results of `the publicly applied proposal type and hi-tech (emphasized) field research and development in fiscal 1995`; `1995 nendo teian kobogata saisentan (juten) bun`ya kenkyu kaihatsu` seika hokokukai yokoshu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The preprint was prepared of a report meeting for the results of `the publicly applied proposal type and hi-tech (emphasized) field research and development in fiscal 1995` to be held in Tokyo during February 12 to 14, 1997. In the meeting, a lecture titled `The system of fundamental researches and its execution` is to be given as a special lecture and the following are as general lectures: `Energy/environmental technology and next generation catalysts,` ` The present and outlook of surgery in the 21st century - computer surgery,` The present situation of education and research related to the design of digital integrated systems,` and `The present and future of research and development of a new carbon material, fullerene.` Research reports were prepared by field as follows: 73 papers in the new material technology field, 46 in the bio-technology field, 36 in the electronics/information technology field, 8 in the mechanical system technology field, 8 in the human life engineering technology field, 23 in the medical/welfare equipment technology field, 5 in the resource technology field, 17 in the energy/environment technology field.

  9. The virtual library in action: Collaborative international control of high-energy physics pre-print

    International Nuclear Information System (INIS)

    Kreitz, P.A.; Addis, L.; Galic, H.; Johnson, T.

    1996-02-01

    This paper will discuss how control of the grey literature in high-energy physics pre-prints developed through a collaborative effort of librarians and physicists. It will highlight the critical steps in the development process and describe one model of a rapidly evolving virtual library for high-energy physics information. In conclusion, this paper will extend this physics model to other areas of grey literature management

  10. Photovoltaic power supplies: Energy option feasibility. Solare fotovoltaico come opzione energetica

    Energy Technology Data Exchange (ETDEWEB)

    Coiante, D.; Barra, L. (ENEA, Casaccia (Italy). Area Energetica)

    1993-01-01

    Commercialization prospects for grid connected, stand-alone and hydrogen- production photovoltaic power plants are assessed. The paper traces the evolution of the development of photovoltaic modules and correlates trends in R D expenditure and progress made with subsequent drops in the cost of photovoltaic power equipment. Assessments are made of limits in the marketability of grid connected photovoltaic power supplies and comments are made as to the wisdom of the current directions being taken by research groups operating in this field.

  11. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  12. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2013-01-01

    After the euphoria of 2011, the European Union's photovoltaic market slowed right down in 2012. EurObserv'ER puts newly connected capacity in 2012 at 16.5 GWp compared to 22 GWp in 2011, which is a 25% drop. At global level the market generally held up, with just over 30 GWp installed, bolstered by the build-up of the American and Asian markets. The photovoltaic electricity generated in the EU reached 68.1 TWh in 2012. The article begins with the description of the worldwide situation of photovoltaic electricity, then details the situation for each EU member with the help of tables and charts and ends with the state of photovoltaic industry at the world scale

  13. Solar spectrum conversion for photovoltaics using nanoparticles

    OpenAIRE

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction semiconductor solar cells only effectively convert photons of energy close to the semiconductor band gap (Eg) as a result of the mismatch between the incident solar spectrum and the spectral absorption properties...

  14. Photovoltaics information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  15. Research Progress of utilization in Solar Photovoltaic and Photothermal%太阳能光伏光热利用的研究进展

    Institute of Scientific and Technical Information of China (English)

    张鹏; 陈林

    2015-01-01

    Solar is the new renewable energy that we have been trying to develop, the mature solar photovoltaic technology that related to solar energy are mainly photovoltaic power generation and solar water heaters, etc. This paper explained research progress of the utilization of solar photovoltaic solar thermal through the analysis of utilization of solar photovoltaic solar thermal.%太阳能是我们一直在尽力开发的、全新的可再生能源,目前发展比较成熟的、与太阳能有关的主要有太阳能光伏发电技术、太阳能热水器等,通过分析太阳能光伏光热的利用情况,说明太阳能光伏光热利用的研究进展。

  16. Photovoltaic performance and reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mrig, L. [ed.

    1993-12-01

    This workshop was the sixth in a series of workshops sponsored by NREL/DOE under the general subject of photovoltaic testing and reliability during the period 1986--1993. PV performance and PV reliability are at least as important as PV cost, if not more. In the US, PV manufacturers, DOE laboratories, electric utilities, and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in the field were brought together to exchange the technical knowledge and field experience as related to current information in this evolving field of PV reliability. The papers presented here reflect this effort since the last workshop held in September, 1992. The topics covered include: cell and module characterization, module and system testing, durability and reliability, system field experience, and standards and codes.

  17. Photovoltaic mounting/demounting unit

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a photovoltaic arrangement comprising a photovoltaic assembly comprising a support structure defining a mounting surface onto which a photovoltaic module is detachably mounted; and a mounting/demounting unit comprising at least one mounting/demounting apparatus...... which when the mounting/demounting unit is moved along the mounting surface, causes the photovoltaic module to be mounted or demounted to the support structure; wherein the photovoltaic module comprises a carrier foil and wherein a total thickness of the photo voltaic module is below 500 muiotaeta....... The present invention further relates to an associated method for mounting/demounting photovoltaic modules....

  18. Applications of photovoltaics

    International Nuclear Information System (INIS)

    Pearsall, N.

    1999-01-01

    The author points out that although photovoltaics can be used for generating electricity for the same applications as many other means of generation, they really come into their own where disadvantages associated with an intermittent unpredictable supply are not severe. The paper discusses the advantages and disadvantages to be taken into account when considering a photovoltaic power system. Five main applications, based on the system features, are listed and explained. They are: consumer, professional, rural electrification, building-integrated, centralised grid connected and space power. A brief history of the applications of photovoltaics is presented with statistical data on the growth of installed capacity since 1992. The developing market for photovoltaics is discussed together with how environmental issues have become a driver for development of building-integrated photovoltaics

  19. A report on the performance of a grid connected photovoltaic power generation system

    International Nuclear Information System (INIS)

    Mohd Azhar Abdul Rahman; Mohd Surif Abdul Wahab; Azmi Omar

    2000-01-01

    Malaysia is located almost on the equator and is blessed with an abundance of sunlight almost all year round. So obviously, with the right planning and strategies that are coupled to the right technology and development in the market, the potential for photovoltaic system as an alternative source of power in this country looks promising and is constantly gaining ground and popularity. Sunlight is free and the photovoltaic system is also emission and pollution free which is a guest boost to the current worldwide effort to reduce the global environmental problems. Utility giant Tenaga Nasional Berhad is in line with the Government aspiration to promote the development of solar photovoltaic in the country, who believe in the success and acceptance potential of the photovoltaic system as an alternative source of power generation for long term energy option. In March 1998, a contract was awarded by Tenaga Nasional Berhad to its research subsidiary, Tenaga Nasional Research and Development Sdn. Bhd. to undertake a pilot research project on the development of a grid connected photovoltaic system. This research project is co-funded by the Electric Supply Industry Trust fund. One of the main objective of this research project is to seek the best approach to popularize the Grid Connected Photovoltaic System for domestic as well as suitable commercial premises in this country. This paper will report the initial findings of the project in terms of technical capability and commercial liability. (Author)

  20. Customized color patterning of photovoltaic cells

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  1. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  2. Road map for photovoltaic electricity; Feuille de route sur l'electricite photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    This road map aims at highlighting industrial, technological and social challenges, at elaborating comprehensive visions, at highlighting technological locks, and at outlining research needs for the photovoltaic sector. It considers the following sector components: preparation of photo-sensitive materials, manufacturing of photovoltaic cells, manufacturing of photovoltaic arrays, design and manufacturing of electric equipment to control photovoltaic arrays and to connect them to the grid. It highlights the demand for photovoltaic installations, analyzes the value chain, proposes a vision of the sector by 2050 and defines target for 2020, discusses needs for demonstration and experimentation

  3. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  4. Research issues in the automated testing of Ajax applications

    NARCIS (Netherlands)

    Van Deursen, A.; Mesbah, A.

    2009-01-01

    Note: This paper is a pre-print of: Arie van Deursen and Ali Mesbah. Research Issues in the Automated Testing of Ajax Applications. In Proceedings 36th International Conference on Current Trend in Theory and Practice of Computer Science (SOFSEM), pp. 16-28. Lecture Notes in Computer Science 5901,

  5. Maintenance Research in SOA Towards a Standard Case Study

    NARCIS (Netherlands)

    Espinha, T.; Chen, C.; Zaidman, A.E.; Gross, H.G.

    2012-01-01

    Preprint of paper published in: 16th European Conference on Software Maintenance and Reengineering (CSMR), 27-30 March 2012; doi:10.1109/CSMR.2012.49 Maintenance research in the context of Service Oriented Architecture (SOA) is currently lacking a suitable standard case study that can be used by

  6. 76 FR 79218 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-U.S. Photovoltaic...

    Science.gov (United States)

    2011-12-21

    ... Production Act of 1993--U.S. Photovoltaic Manufacturing Consortium, Inc. Notice is hereby given that, on..., 15 U.S.C. 4301 et seq. (``the Act''), U.S. Photovoltaic Manufacturing Consortium, Inc. (``USPVMC... manufacturing collaboration to accelerate the commercialization of next generation photovoltaic systems...

  7. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    The european photovoltaic market once again reached the heights in 2006, thanks to the dynamism of the German market. White paper objectives have thus been fulfilled four years ahead of schedule. The european photovoltaic sector remains however very heterogeneous with both an ultra-dominant German market (estimated at 1150 MWp in 2006) and other countries of the European Union that vary from a few kWP to a few dozen MWp. This analysis provides statistical data on the market, the capacity installed during 2005 and 2006, the photovoltaic parks and the evolution of the photovoltaic cell production. (A.L.B.)

  8. Thermionic photovoltaic energy converter

    Science.gov (United States)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  9. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  10. Vacuum-Ultraviolet Photovoltaic Detector.

    Science.gov (United States)

    Zheng, Wei; Lin, Richeng; Ran, Junxue; Zhang, Zhaojun; Ji, Xu; Huang, Feng

    2018-01-23

    Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10 4 -10 6 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.

  11. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    , detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing...... the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view...

  12. Flexo-photovoltaic effect.

    Science.gov (United States)

    Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin

    2018-04-19

    It is highly desirable to discover photovoltaic mechanisms that enable a higher efficiency of solar cells. Here, we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We introduce strain gradients using either an atomic force microscope or a micron-scale indentation system, creating giant photovoltaic currents from centrosymmetric single crystals of SrTiO 3 , TiO 2 , and Si. This strain-gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p - n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018, American Association for the Advancement of Science.

  13. Conference on photovoltaic energy network parity

    International Nuclear Information System (INIS)

    Abadie, Pierre-Marie; Masson, Gaetan; Henzelmann, Orsten; Joly, Jean-Pierre; Guillemoles, Jean-Francois; Auffret, Jean-Marc; Berger, Arnaud; Binder, Jann; Martin, David; Beck, Bernhard; Mahuet, Audrey; Mueller, Thorsten; Contamin, Raphael

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the present day and future challenges of the development, support and market integration of photovoltaic energy. In the framework of this French-German exchange of experience, about 120 participants exchanged views on support models to renewable energy sources, research results on self-consumption and business models for the renewable energies sector. This document brings together the available presentations (slides) made during this event: 1 - Overview of France's PV support policies (Pierre-Marie Abadie); 2 - Grid parity: first step towards PV competitiveness (Gaetan Masson); 3 - How competitive is solar power? Requirements and impact on the European industry (Orsten Henzelmann); 4 - Key elements of the National Institute of Solar energy - INeS (Jean-Pierre Joly); 5 - Research priorities according to the Paris Institute of Photovoltaics (Jean-Francois Guillemoles); 6 - Bosch Solar energy (Jean-Marc Auffret); 7 - Financing and insuring photovoltaics - History and future prospects (Arnaud Berger); 8 - Decentralized Photovoltaics: Autonomy, Self-Consumption and Reduction of Grid Loading through electrical and Thermal Storage (Jann Binder); 9 - Off Grid systems, mini grid and grid parity, field feedback and perspectives. From the producer-consumer to the smart grid: experience feedback of PV management models (David Martin); 10 - Benefits for solar power plants in respect of grid stabilization (Bernhard Beck); 11 - Renewable energies integration to electricity market: impacts and challenges (Audrey Mahuet); 12 - Promotion of PV in Germany: Feed-in tariffs, self-consumption and direct selling - Review and forecast (Thorsten Mueller); 13 - How to support renewable electricity in France? (Raphael Contamin)

  14. The French photovoltaic between light and shade. Self-consumption, a future way for the photovoltaic sector?

    International Nuclear Information System (INIS)

    Mary, Olivier; Petitot, Pauline

    2016-01-01

    This article outlines that France, after having been a leader in the photovoltaic sector, has lost ground during the 2000's. Companies and particularly hardware manufacturers are suffering in front of a harsh competitive environment. However, France still possesses some assets, notably in research and development, and professionals are waiting for some public support to re-boost a sector which is strongly growing everywhere in the world. To illustrate this situation, figures indicate the rate between added value and production for the various concerned activities, the level of added value for these different activities, the distribution of jobs among them, and the distribution of direct, indirect and induced jobs. A second article quotes interventions of a colloquium which addressed the issue of self-consumption of photovoltaic solar energy. It outlines that the development of self-consumption could be an opportunity for the photovoltaic sector if a favourable evolution of the regulatory and tariff framework is introduced

  15. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  16. Department of Energy: Photovoltaics program - FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  17. Photovoltaic device

    DEFF Research Database (Denmark)

    2011-01-01

    A photovoltaic cell module including a plurality of serially connected photovoltaic cells on a common substrate, each including a first electrode, a printed light-harvesting layer and a printed second electrode, wherein at least one of the electrodes is transparent, and wherein the second electrode...... of a first cell is printed such that it forms an electrical contact with the first electrode of an adjacent second cell without forming an electrical contact with the first electrode of the first cell or the light-harvesting layer of the second cell, and a method of making such photovoltaic cell modules....

  18. Preprints in biomedicine: alternative or complement to the traditional model of publication?

    Science.gov (United States)

    Aquino-Jarquin, Guillermo; Valencia-Reyes, Josefina de Monserrat; Silva-Carmona, Abraham; Granados-Riverón, Javier Tadeo

    2018-01-01

    The peer-review system has allowed the quality control of the manuscripts submitted for publication to scientific journals for over three centuries. However, due to its relative slowness and other drawbacks, some researchers, mainly in the areas of Physics and Mathematics, started some decades ago to propagate, by electronic means, manuscripts not yet submitted to a journal for formal publication. The dissemination of this practice led to the establishment of permanent repositories like ArXiv, to which preprints can be sent to be published whitou charge, allowing also the search and download of the works they contain with no payment required from the reader. In biomedical sciences, the adoption of the system has been slower than in the exact sciences and previous attempts like e-biomed, Netprints, and Nature Precedings did not prosper. A new generation of repositories like bioRXiv, inspired by ArXiv, seems to enjoy an increasing acceptance among biomedical researchers. Here, we discuss the potential role of this emerging system to establish discovery priority in biomedicine and to improve manuscripts before they are submitted to scientific journals besides other applications which could be implemented in the extent that the model becomes more popular. Copyright: © 2018 SecretarÍa de Salud.

  19. Photovoltaic Subcontract Program, FY 1991. Annual report, [October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  20. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  1. Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT System

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2017-04-01

    Full Text Available In recent years, with the development of photovoltaic system and photo-thermal system technology, hybrid photovoltaic-thermal (PVT technology has been a breakthrough in many aspects. This paper describes the movable hybrid PVT system from the aspects of appearance structure, energy flow, and control circuit. The system is equipped with rolling wheels and the simulated light sources also can be removed so that the system can be used in the outdoor conditions. The movable system is also suitable for the PVT system and its related applications without any external power supply. This system combines two technologies: photovoltaic power generation and photo-thermal utilization. The first part of the power supply is for the systems own output power supply, and the second part is for generating thermal energy. The two separate parts can be controlled and monitored respectively through the control circuits and the touch screens. The experimental results show that the system can generate 691 kWh electric energy and 3047.8 kWh thermal energy each year under normal working conditions. The efficiency of the proposed movable hybrid PVT system is calculated to be approximately 42.82% using the revised equations that are proposed in this paper. Therefore, the movable hybrid PVT system can meet the daily demands of hot water and electricity power in remote areas or islands and other non-grid areas. It also can be used to conduct experiment tests for the PVT system.

  2. Press document. Photovoltaic energy: boosting the evolution; Dossier de presse. Photovoltaique: accelerer l'innovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    The french potential in the photovoltaic energy is considerable but not very exploited. In this context the CEA, by its function of applied research institute in the domain of the low carbon energies can be a major actor of the sector development. This document presents the research programs in the photovoltaic domain, developed at the CEA, especially on the silicon performance, the photovoltaic solar cells and their integration in the buildings. (A.L.B.)

  3. Photovoltaics: The present presages the future

    International Nuclear Information System (INIS)

    Thornton, J.; Brown, L.

    1992-01-01

    This article is a technical assessment on photovoltaics and what effect new technology has on the ability of photovoltaics to compete in the utility market. The topics of the article include the solar resource, photovoltaic cells and systems, thick and thin film cells, the spherical cell, photovoltaic modules and systems, photovoltaic economics and utility applications, and technology transfer programs in the area of photovoltaic manufacturing

  4. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  5. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The european Union photovoltaic market reached the limits of the sector supply capacity for the first time. Meanwhile the prospects of growth in the photovoltaic market are still just as good as before. Silicon producers have finally responded to the expectations of the photovoltaic industry by announcing new production capacities. These extensions led to massively investing in new production capacities, in phase with ever greater demand. This increase in demand remains, however dependent upon the energy policy. (A.L.B.)

  6. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  7. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  8. Photovoltaic Product Directory and Buyers Guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  9. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Photovoltaic power generation systems); 1977 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at investigation on irradiation conditions of natural solar radiation to establish the performance evaluation methods; establishment of standard evaluation methods under natural solar radiation; and investigation on practical problems involved in the photovoltaic power generation systems. The research items are (1) photovoltaic power generation systems, and (2) standard evaluation methods for photovoltaic power generation systems installed on the ground. The item (1) includes the effect analysis in which existing Japanese residential buildings are selected to estimate possibility of installation of photovoltaic power generation systems and possible quantity of power generated; conceptual designs in which several systems conceivable at present are proposed and outlined, and a 30kW photovoltaic power generation system is taken up to investigate, e.g., solar cell arrays for the system, orthogonal conversion devices, associated facilities, conceptual designs of storage batteries, problems involved therein, and future research themes; and operation of the cell, which takes up operational examples of solar cell power sources, and operational problems viewed from the power transmission side. The item (2) proposes the standard evaluation methods (primary drafts) for the solar cell arrays and panels as those for photovoltaic power generation systems installed on the ground. (NEDO)

  10. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  11. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  12. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules.

    Science.gov (United States)

    Yang, Hong-Yun; Zhou, Xiao-Dong; Yang, Li-Zhong; Zhang, Tao-Lin

    2015-07-09

    Many of the photovoltaic (PV) systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time ( t ig ), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO₂) concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m². This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  13. Modeling Photovoltaic Power

    OpenAIRE

    Mavromatakis, F.; Franghiadakis, Y.; Vignola, F.

    2016-01-01

    A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV) facilit...

  14. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  15. Automatic outdoor monitoring system for photovoltaic panels.

    Science.gov (United States)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  16. Automatic outdoor monitoring system for photovoltaic panels

    Energy Technology Data Exchange (ETDEWEB)

    Stefancich, Marco [Consiglio Nazionale delle Ricerce, Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR-IMEM), Parco Area delle Scienze 37/A, 43124 Parma, Italy; Simpson, Lin [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA; Chiesa, Matteo [Masdar Institute of Science and Technology, P.O. Box 54224, Masdar City, Abu Dhabi, United Arab Emirates

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  17. Photovoltaic technology diffusion. Contact and interact

    International Nuclear Information System (INIS)

    Kruijsen, J.

    1999-09-01

    How can the diffusion of photovoltaic technologies be advanced? Photovoltaics convert light into electrical energy. They are environmentally friendly, reliable and have minimal maintenance requirements. Up to now, their introduction into the electricity market has been dominated by a technology push perspective. However, this has not yet resulted in a large-scale implementation. This thesis describes a network approach to advance photovoltaic diffusion and presents four guiding principles intended for the parties concerned: those who supply the photovoltaic technologies (e.g., developers of photovoltaic cells); those who integrate photovoltaic technologies into (new) product systems (e.g., engineering firms); the users of photovoltaic systems (e.g., housing corporations); and those who stimulate the use of photovoltaics (e.g., policymakers, subsidisers, branch organisations, financial institutes, and NGOs). refs

  18. The photovoltaic energy in Japan; Energie photovoltaique au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Georgel, O

    2005-07-15

    Today the Japan is the leader of the photovoltaic energy. The first reason of this success is an action of the government integrating subventions for the installation of photovoltaic systems and a support of the scientific research. To explain this success, the author presents the energy situation in Japan, details the national programs, the industrial sector (market, silicon needs, recycling, manufacturers, building industry) and presents the main actors. (A.L.B.)

  19. Technology developments toward 30-year-life of photovoltaic modules

    Science.gov (United States)

    Ross, R. G., Jr.

    1984-01-01

    As part of the United States National Photovoltaics Program, the Jet Propulsion Laboratory's Flat-Plate Solar Array Project (FSA) has maintained a comprehensive reliability and engineering sciences activity addressed toward understanding the reliability attributes of terrestrial flat-plate photovoltaic arrays and to deriving analysis and design tools necessary to achieve module designs with a 30-year useful life. The considerable progress to date stemming from the ongoing reliability research is discussed, and the major areas requiring continued research are highlighted. The result is an overview of the total array reliability problem and of available means of achieving high reliability at minimum cost.

  20. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  1. Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting.

    Science.gov (United States)

    Chen, Chia-Yuan; Jian, Zih-Hong; Huang, Shih-Han; Lee, Kun-Mu; Kao, Ming-Hsuan; Shen, Chang-Hong; Shieh, Jia-Min; Wang, Chin-Li; Chang, Chiung-Wen; Lin, Bo-Zhi; Lin, Ching-Yao; Chang, Ting-Kuang; Chi, Yun; Chi, Cheng-Yu; Wang, Wei-Ting; Tai, Yian; Lu, Ming-De; Tung, Yung-Liang; Chou, Po-Ting; Wu, Wen-Ti; Chow, Tahsin J; Chen, Peter; Luo, Xiang-Hao; Lee, Yuh-Lang; Wu, Chih-Chung; Chen, Chih-Ming; Yeh, Chen-Yu; Fan, Miao-Syuan; Peng, Jia-De; Ho, Kuo-Chuan; Liu, Yu-Nan; Lee, Hsiao-Yi; Chen, Chien-Yu; Lin, Hao-Wu; Yen, Chia-Te; Huang, Yu-Ching; Tsao, Cheng-Si; Ting, Yu-Chien; Wei, Tzu-Chien; Wu, Chun-Guey

    2017-04-20

    Indoor utilization of emerging photovoltaics is promising; however, efficiency characterization under room lighting is challenging. We report the first round-robin interlaboratory study of performance measurement for dye-sensitized photovoltaics (cells and mini-modules) and one silicon solar cell under a fluorescent dim light. Among 15 research groups, the relative deviation in power conversion efficiency (PCE) of the samples reaches an unprecedented 152%. On the basis of the comprehensive results, the gap between photometry and radiometry measurements and the response of devices to the dim illumination are identified as critical obstacles to the correct PCE. Therefore, we use an illuminometer as a prime standard with a spectroradiometer to quantify the intensity of indoor lighting and adopt the reverse-biased current-voltage (I-V) characteristics as an indicator to qualify the I-V sampling time for dye-sensitized photovoltaics. The recommendations can brighten the prospects of emerging photovoltaics for indoor applications.

  2. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  3. Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells

    Science.gov (United States)

    Kasick, Michael P.

    2004-01-01

    Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between

  4. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  5. A novel application for concentrator photovoltaic in the field of agriculture photovoltaics

    Science.gov (United States)

    Liu, Luqing; Guan, Chenggang; Zhang, Fangxin; Li, Ming; Lv, Hui; Liu, Yang; Yao, Peijun; Ingenhoff, Jan; Liu, Wen

    2017-09-01

    Agriculture photovoltaics is a trend setting area which has already led to a new industrial revolution. Shortage of land in some countries and desertification of land where regular solar panels are deployed are some of the major problems in the photovoltaic industry. Concentrator photovoltaics experienced a decline in applicability after the cost erosion of regular solar panels at the end of the last decade. We demonstrate a novel and unique application for concentrator photovoltaics tackling at a same time the issue of conventional photovoltaics preventing the land being used for agricultural purpose where ever solar panels are installed. We leverage the principle of diffractive and interference technology to split the sun light into transmitted wavelengths necessary for plant growth and reflected wavelengths useful for solar energy generation. The technology has been successfully implemented in field trials and sophisticated scientific studies have been undertaken to evaluate the suitability of this technology for competitive solar power generation and simultaneous high-quality plant growth. The average efficiency of the agriculture photovoltaic system has reached more than 8% and the average efficiency of the CPV system is 6.80%.

  6. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  7. Photovoltaic roof construction

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, W.W.

    1980-02-26

    In a batten-seam roof construction employing at least one photovoltaic cell module, the electrical conduits employed with the at least one photovoltaic cell module are disposed primarily under the battens of the roof.

  8. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  9. The solar generation childhood and adolescence of terrestrial photovoltaics

    CERN Document Server

    Wolfe, Philip R

    2018-01-01

    The first book to address the early development of the photovoltaic industry, and the pioneering researchers and companies in the sector. Well before the end of this century, solar power will be the world's dominant power source. This book looks at the origins of this smart sustainable energy technology, tracing the pioneering years from its inception following the 1973 oil crisis to the end of the last millennium—just as the sector was poised for explosive growth. It focuses on the progress of the early terrestrial photovoltaic sector, often in the face of skepticism or apathy. It also covers the research and achievements of people and organizations within the PV business. Written by a leader in the field with more than 40 years of experience and an international reputation in the sustainable energy industry, The Solar Generation: Childhood and Adolescence of Terrestrial Photovoltaics offers enlightening coverage on the terrestrial PV industry. The first part of this 3-volume set provides a historical bac...

  10. Experimental Studies on the Flammability and Fire Hazards of Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Hong-Yun Yang

    2015-07-01

    Full Text Available Many of the photovoltaic (PV systems on buildings are of sufficiently high voltages, with potential to cause or promote fires. However, research about photovoltaic fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic modules. Bench-scale experiments based on polycrystalline silicon PV modules have been conducted using a cone calorimeter. Several parameters including ignition time (tig, mass loss, heat release rate (HRR, carbon monoxide (CO and carbon dioxide (CO2 concentration, were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV modules are assessed based on experimental results. The results show that PV modules under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to better understanding on photovoltaic fires and how to help authorities determine the appropriate fire safety provisions for controlling photovoltaic fires.

  11. The European Photovoltaic Technology Platform

    International Nuclear Information System (INIS)

    Nowak, S.; Aulich, H.; Bal, J.L.; Dimmler, B.; Garnier, A.; Jongerden, G.; Luther, J.; Luque, A.; Milner, A.; Nelson, D.; Pataki, I.; Pearsall, N.; Perezagua, E.; Pietruszko, S.; Rehak, J.; Schellekens, E.; Shanker, A.; Silvestrini, G.; Sinke, W.; Willemsen, H.

    2006-05-01

    The European Photovoltaic Technology Platform is one of the European Technology Platforms, a new instrument proposed by the European Commission. European Technology Platforms (ETPs) are a mechanism to bring together all interested stakeholders to develop a long-term vision to address a specific challenge, create a coherent, dynamic strategy to achieve that vision and steer the implementation of an action plan to deliver agreed programmes of activities and optimise the benefits for all parties. The European Photovoltaic Technology Platform has recently been established to define, support and accompany the implementation of a coherent and comprehensive strategic plan for photovoltaics. The platform will mobilise all stakeholders sharing a long-term European vision for PV, helping to ensure that Europe maintains and improves its industrial position. The platform will realise a European Strategic Research Agenda for PV for the next decade(s). Guided by a Steering Committee of 20 high level decision-makers representing all relevant European PV Stakeholders, the European PV Technology Platform comprises 4 Working Groups dealing with the subjects policy and instruments; market deployment; science, technology and applications as well as developing countries and is supported by a secretariat

  12. Photovoltaic product directory and buyers guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  13. Progress of photovoltaic technology in China

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuwen; Wang Sicheng; Zhao Ying

    2009-01-01

    Chinese government has been devoting itself to the development of renewable energy sources. This paper de-scribes the history, achievement and future trends of photovoltaic technology, and suggestions are proposed for strength-ening the research and development (R&D) ability of China.

  14. Photovoltaic power without batteries for continuous cathodic protection

    Science.gov (United States)

    Muehl, W. W., Sr.

    1994-02-01

    The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.

  15. Photovoltaic cell module and method of forming

    Science.gov (United States)

    Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay

    2017-12-12

    A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.

  16. Photovoltaic power generation system free of bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  17. Interim performance criteria for photovoltaic energy systems. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  18. A Simulation Method to Find the Optimal Design of Photovoltaic Home System in Malaysia, Case Study: A Building Integrated Photovoltaic in Putra Jaya

    OpenAIRE

    Riza Muhida; Maisarah Ali; Puteri Shireen Jahn Kassim; Muhammad Abu Eusuf; Agus G.E. Sutjipto; Afzeri

    2009-01-01

    Over recent years, the number of building integrated photovoltaic (BIPV) installations for home systems have been increasing in Malaysia. The paper concerns an analysis - as part of current Research and Development (R&D) efforts - to integrate photovoltaics as an architectural feature of a detached house in the new satellite township of Putrajaya, Malaysia. The analysis was undertaken using calculation and simulation tools to optimize performance of BIPV home system. In this study, a the simu...

  19. The research of SSR which can be restrained by photovoltaic grid connected

    Science.gov (United States)

    Li, Kuan; Liu, Meng; Zheng, Wei; Li, Yudun; Wang, Xin

    2018-02-01

    Utilization of photovoltaic power generation has attracted considerable attention, and it is growing rapidly due to its environmental benefits. The series capacitive compensation is needed to be introduced into the lines which could improve the transmission capacity. However, the series capacitive compensation may lead to sub-synchronous resonance(SSR). This paper proposes a method to restrain the SSR based on photovoltaic grid connected which is caused by series capacitive compensation. Sub-synchronous oscillation damping controller (SSDC) is designed based on complex torque coefficient approach, and the SSDC is added to the PV power station’s main controller to damp SSR. IEEE Second benchmark model is used as simulation model based on PSCAD/EMTDC. The results show that the designed SSDC could restrain SSR and improve stability in PV grid connected effectively.

  20. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  1. Photovoltaics in the Department of Defense

    International Nuclear Information System (INIS)

    Chapman, R.N.

    1997-01-01

    This paper documents the history of photovoltaic use within the Department of Defense leading up to the installation of 2.1 MW of photovoltaics underway today. This history describes the evolution of the Department of Defense's Tri-Service Photovoltaic Review Committee and the committee's strategic plan to realize photovoltaic's full potential through outreach, conditioning of the federal procurement system, and specific project development. The Photovoltaic Review Committee estimates photovoltaic's potential at nearly 4,000 MW, of which about 700 MW are considered to be cost-effective at today's prices. The paper describes photovoltaic's potential within the Department of Defense, the status and features of the 2.1-MW worth of photovoltaic systems under installation, and how these systems are selected and implemented. The paper also documents support provided to the Department of Defense by the Department of Energy dating back to the late 70s. copyright 1997 American Institute of Physics

  2. Photovoltaics in buildings. Final report; Photovoltaik in Gebaeuden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Erge, T.; Hullmann, H.; Kaiser, R.; Kovach-Hebling, A.; Laukamp, H.; Reise, C.; Sauer, D.U.; Schmid, J.; Schmidt, H.; Sick, F.

    1996-08-31

    The feasibility in principle of photovoltaic plants integrated in buildings was proved in the 1980`s in the context of several pilot and demonstration projects both in Germany and internationally. However, the realisation and operation of these plants showed the necessity for further research and development work both in the system technique and particularly in the architectural area. The research project `Photovoltaics in buildings` reached the target of establishing a bridge between the technically orientated work of the researchers, developers and manufacturers of photovoltaic components on the one hand, and the architects and town planners on the other hand. (orig./AKF) [Deutsch] Die prinzipielle Machbarkeit gebaeudeintegrierter Photovoltaikanlagen wurde in den 80er Jahren im Rahmen mehrerer Pilot- und Demonstrationsprojekte sowohl in der Bundesrepublik Deutschland als auch international nachgewiesen. Die Realisierung und der Betrieb dieser Anlagen zeigte jedoch die Notwendigkeit weiterer Forschungs- und Entwicklungsarbeiten sowohl im systemtechnischen als insbesondere auch im architektonischen Bereich auf. Mit dem Forschungsprojekt `Photovoltaik in Gebaeuden` wurde das Ziel erreicht, eine Bruecke zu schlagen zwischen den eher technisch orientierten Arbeiten der Forscher, Entwickler und Hersteller von Photovoltaikkomponenten auf der einen Seite und den Architekten und Stadtplanern auf der anderen. (orig./AKF)

  3. US photovoltaic patents: 1991--1993

    Energy Technology Data Exchange (ETDEWEB)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  4. Research on Experiment of Islanding Protection Device of Grid-connected Photovoltaic System Based on RTDS

    Science.gov (United States)

    Zhou, Ning; Yang, Jia; Cheng, Zheng; Chen, Bo; Su, Yong Chun; Shu, Zhan; Zou, Jin

    2017-06-01

    Solar photovoltaic power generation is the power generation using solar cell module converting sunlight into DC electric energy. In the paper an equivalent model of solar photovoltaic power generation system is built in RTDS. The main circuit structure of the two-stage PV grid-connected system consists of the DC-DC, DC-AC circuit. The MPPT (Maximum Power Point Tracking) control of the PV array is controlled by adjusting the duty ratio of the DC-DC circuit. The proposed control strategy of constant voltage/constant reactive power (V/Q) control is successfully implemented grid-connected control of the inverter when grid-connected operation. The closed-loop experiment of islanding protection device of photovoltaic power plant on RTDS, verifies the correctness of the simulation model, and the experimental verification can be applied to this type of device.

  5. Photovoltaics - why this 'religious war'?; Weshalb dieser Glaubenskrieg?

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, S

    2005-07-01

    This article examines the possible reasons behind controversies concerning photovoltaics in Switzerland. The author, who considers that no other energy technology awakes such varying opinions, presents ten points that should be considered in this connection. These include aspects concerning research and development, trade and industry as well as markets and applications. The 'enormous' potential of photovoltaics and questions concerning availability and environmental issues are discussed. Costs, developments and the question of economic viability are looked at. The situation in Switzerland is compared with international conditions. Finally, political issues are reviewed and the key role to be played by photovoltaics in the future is stressed.

  6. Photovoltaics in Switzerland - Present situation and prospects for further development

    International Nuclear Information System (INIS)

    Nowak, S.; Gutschner, M.

    2009-01-01

    This article takes a look at the contributions made by Switzerland in the areas of research, innovation and production technologies for photovoltaics. The intensive developments that can be noted in the Swiss photovoltaics area are commented on. Growth rates in the photovoltaics industry are quoted and commented on. The state-of-the-art and present trends are discussed, including organic and inorganic solar cells and concentrating systems. The author comments on the many technologies currently being worked on, with newer technologies catching up with the more traditional crystalline silicon systems. Balance-of-system products, such as inverters, cabling systems and controllers are briefly discussed. Also, increased interest and developments in monitoring systems for the power produced by the solar installations is noted. Swiss research and production facilities are commented on. Price-parity for solar power and its future effect on the European and Swiss solar markets is discussed

  7. PRODUCTION TECHNICS AT GRAPHIC DESIGN EDUCATION AND THE NECCESSITY OF PREPARATION KNOWLEDGE OF PRE-PRINTING

    OpenAIRE

    CEYLAN, İbrahim Gökhan

    2015-01-01

    It is neccessary to teach the knowledge of production technics and pre-printing preparations besides the knowledge of developing creativity and aesthetic concerns in order to educate the designers to fullfill the needs of the sector totally at graphic design education. The printed materials prepared by the graphic designer should be evaluated in proper criterias ıf the materials are to be printed. Graphic designers should have the knowledge of the required knowledge of the area in order to me...

  8. Photovoltaic applications

    International Nuclear Information System (INIS)

    Sidrach, M.

    1992-01-01

    The most common terrestrial applications of photovoltaic plants are reviewed. Classification of applications can be done considering end-use sectors and load profiles (consumption demand). For those systems with direct coupling the working point is determined by the intersection of the load line with the I-V curve Design guidelines are provided for photovoltaic systems. This lecture focusses on the distribution system and safeguards

  9. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  10. Photovoltaic engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, F; Ang, T G [Asian Institute of Technolgoy, Bangkok (TH)

    1990-01-01

    The Photovoltaic Engineering Handbook is a comprehensive 'nuts and bolts' guide to photovoltaic technology and systems engineering aimed at engineers and designers in the field. It is the first book to look closely at the practical problems involved in evaluating and setting up a PV power system. The authors' comprehensive insight into the different procedures and decisions that a designer needs to make. The book is unique in its coverage and the technical information is presented in a concise and simple way to enable engineers from a wide range of backgrounds to initiate, assess, analyse and design a PV system. Energy planners making decisions on the most appropriate system for specific needs will also benefit from reading this book. Topics covered include technological processes, including solar cell technology, the photovoltaic generator, photovoltaic systems engineering; characterization and testing methods, sizing procedure; economic analysis and instrumentation. (author).

  11. Organic photovoltaics

    Science.gov (United States)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  12. PRI 2.1: Basic researches on the photovoltaic: new materials (july 2002 - july 2004). Final report of the integrated research project; PRI 2.1: Recherches de base en photovoltaique: nouveaux materiaux (Juillet 2002 - Juin 2004). Rapport final du projet de recherche integre

    Energy Technology Data Exchange (ETDEWEB)

    Marfaing, Y.

    2004-07-01

    The main material of the photovoltaic cells is the massive crystalline silicon. For a large scale development of the photovoltaic industry, it is necessary to use thin layers. Many materials are possible to reach this objective: different types of silicon (amorphous, mono-crystal, poly-crystal), poly-crystal of CIS type (CuInSe{sub 2}) and organic molecules and polymers. The last two types are innovative and need some researches. These research axis are presented in this PRI. (A.L.B.)

  13. Power electronics and control techniques for maximum energy harvesting in photovoltaic systems

    CERN Document Server

    Femia, Nicola

    2012-01-01

    Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) so

  14. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  15. Can photovoltaic replace nuclear?

    International Nuclear Information System (INIS)

    2017-01-01

    As the French law on energy transition for a green growth predicts that one third of nuclear energy production is to be replaced by renewable energies (wind and solar) by 2025, and while the ADEME proposes a 100 per cent renewable scenario for 2050, this paper proposes a brief analysis of the replacement of nuclear energy by solar photovoltaic energy. It presents and discusses some characteristics of photovoltaic production: production level during a typical day for each month (a noticeable lower production in December), evolution of monthly production during a year, evolution of the rate between nuclear and photovoltaic production. A cost assessment is then proposed for energy storage and for energy production, and a minimum cost of replacement of nuclear by photovoltaic is assessed. The seasonal effect is outlined, as well as the latitude effect. Finally, the authors outline the huge cost of such a replacement, and consider that public support to new photovoltaic installations without an at least daily storage mean should be cancelled

  16. Photovoltaic

    International Nuclear Information System (INIS)

    Fechner, H.; Heidenreich, M.

    2001-01-01

    In 1993 a wide test for photovoltaic (PV) was carried out in Austria, 110 stations were built and precise measurements were done. At that time the demand of integrating direct current from solar cells into the 50 Hz alternating current network was a weak point. At present four european research projects dealing with security, reliability, network compatibility and its integration in buildings are being developed. The cost development of PVs in Germany from 1983 to 1998 is given. Because of the PV environmental quality, one million of new intallations are demanded (until 2010) by the European commission. In Austria exists ∼5,000 kWp installed capacity and the growth rate average in the last years was 30 %. (nevyjel)

  17. The characteristic analysis of the solar energy photovoltaic power generation system

    Science.gov (United States)

    Liu, B.; Li, K.; Niu, D. D.; Jin, Y. A.; Liu, Y.

    2017-01-01

    Solar energy is an inexhaustible, clean, renewable energy source. Photovoltaic cells are a key component in solar power generation, so thorough research on output characteristics is of far-reaching importance. In this paper, an illumination model and a photovoltaic power station output power model were established, and simulation analysis was conducted using Matlab and other software. The analysis evaluated the condition of solar energy resources in the Baicheng region in the western part of Jilin province, China. The characteristic curve of the power output from a photovoltaic power station was obtained by simulation calculation. It was shown that the monthly average output power of the photovoltaic power station is affected by seasonal changes; the output power is higher in summer and autumn, and lower in spring and winter.

  18. Roof Photovoltaic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — In order to accurately predict the annual energy production of photovoltaic systems for any given geographical location, building orientation, and photovoltaic cell...

  19. Solar Research | NREL

    Science.gov (United States)

    Research Photo of a city landscape with a sun in the background. Solar energy research at NREL includes photovoltaics, concentrating solar power, solar grid and systems integration, and market research and analysis. Photovoltaic Research Photo of a roof-mounted PV array on the NREL campus. NREL's

  20. High Penetration Photovoltaic Power Electronics and Energy Management Technology Research, Development and Demonstration: Cooperative Research and Development Final Report, CRADA Number CRD-13-517

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-25

    Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.

  1. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  2. Photovoltaic programme, edition 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This comprehensive publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration areas in Switzerland for the year 2003. Progress in future solar cell technologies as well as in the area of modules, building integration and system technologies is summarised. Also, national and international co-operation and multi-national pilot and demonstration projects are commented on. Associated projects such as eco-balances for PV systems, forecasting and modelling tools as well as system monitoring tools are discussed. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and on facades as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and other PV-related topics are summarised. This volume presents a list of 92 projects in the PV area including the appropriate Internet links and is completed with a collection of project abstracts.

  3. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  4. Photovoltaic and photoelectrochemical conversion of solar energy.

    Science.gov (United States)

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  5. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  6. Organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the International Conference and Exhibition at 16th September,2010 at the Maritim Hotel (Wuerzburg, Federal Republic of Germany) the following lectures were held: (1) History of Organic Photovoltaics (Niyazi Serdar Sariciftci); (2) PV Activities at the ZAE Bayern (Vladimir Dyakonov); (3) Progress in Solid State DSC (Peter Erk); (4) Polymer Semiconductors for OPV (Mats Andersson); (5) Fullerene Derivative N-Types in Organic Solar Cells (David Kronholm); (6) Modelling Charge-Transport in Organic Photovoltaic Materials (Jenny Nelson); (7) Multi Junction Modules R and D Status and Outlook (Paul Blom); (8) Imaging Technologies for Organic Solar Cells (Jonas Bachmann); (9) Production of Multi-junction Organic Photovoltaic Cells and Modules (Martin Pfeiffer); (10) Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-roll Processing (Frederik Christian Krebs); (11) Industrial Aspects and Large Scale OPV Production (Jens Hauch).

  7. Status and Recent Progress in Photovoltaic Manufacturing in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Witt, C.E.

    2001-01-12

    This paper describes the present status of photovoltaic technology and recent manufacturing progress obtained through the US Department of Energy's Photovoltaic Manufacturing Technology Project (PVMaT). Although barriers to the widespread use of photovoltaics--a clean and renewable energy--continue to exist, many of these barriers are cost-related and can be addressed through further research on existing approaches. Important areas for development are new materials, improved manufacturing processes, more efficient conversion of sunlight to electricity, and ensured long-term reliability. Improvements in these areas can be expected to lead to lowering of system costs and, ultimately, of energy cost. Specific improvements in manufacturing processes by individual PVMaT participants are described.

  8. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects.

    Science.gov (United States)

    Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu

    2013-01-01

    Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm²) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials.

  9. Photovoltaic technologies

    OpenAIRE

    Bagnall, Darren M; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power in...

  10. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    spain and Germany set the pace for the world photovoltaic market in 2008, which grew to more than twice its 2007 size. The European Union continued to drive photocell installation with an additional 4 592.3 MWp in 2008, or 151.6% growth over 2007. However, European growth prospects for the photovoltaic market in 2009 are being dampened by the global financial crisis and the scheduled slow-down of the Spanish market. (author)

  11. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  12. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  13. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  14. Photovoltaic Bias Generator

    Science.gov (United States)

    2018-02-01

    Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an... Interior view of the photovoltaic bias generator showing wrapped-wire side of circuit board...3 Fig. 4 Interior view of the photovoltaic bias generator showing component side of circuit board

  15. Photovoltaic energy systems: Program summary fiscal year 1983

    Science.gov (United States)

    1984-01-01

    An overview of government funded activities in photovoltaic energy conversion research is given. Introductory information, a list of directing organizations, a list of acronyms and abbreviations, and an index of current contractors are given.

  16. Photovoltaic solar energy;L'energie solaire photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Mouratoglou, P. [EDF Energies Nouvelles, 75 - Paris (France); Therond, P.G. [EDF Dir. Nouvelles Technologies, 75 - Paris (France)

    2009-11-15

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  17. Transparent contacts for stacked compound photovoltaic cells

    Science.gov (United States)

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  18. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  19. Photovoltaics Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-02-01

    This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.

  20. Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2015-12-01

    Full Text Available Building integrated photovoltaics (BIPV offer an aesthetical, economical and technical solution to integrate solar cells harvesting solar radiation to produce electricity within the climate envelopes of buildings. Photovoltaic (PV cells may be mounted above or onto the existing or traditional roofing or wall systems. However, BIPV systems replace the outer building envelope skin, i.e., the climate screen, hence serving simultanously as both a climate screen and a power source generating electricity. Thus, BIPV may provide savings in materials and labor, in addition to reducing the electricity costs. Hence, for the BIPV products, in addition to specific requirements put on the solar cell technology, it is of major importance to have satisfactory or strict requirements of rain tightness and durability, where building physical issues like e.g., heat and moisture transport in the building envelope also have to be considered and accounted for. This work, from both a technological and scientific point of view, summarizes briefly the current state-of-the-art of BIPV, including both BIPV foil, tiles, modules and solar cell glazing products, and addresses possible research pathways for BIPV in the years to come.

  1. Public attitudes towards photovoltaic developments: Case study from Greece

    International Nuclear Information System (INIS)

    Tsantopoulos, Georgios; Arabatzis, Garyfallos; Tampakis, Stilianos

    2014-01-01

    The present decade is considered to be vitally important both as regards addressing energy requirements and for environmental protection purposes. The decisions taken, both on an individual and a collective level, will have a decisive impact on the environment, and primarily on climate change, due to the increased energy demands and the need to reduce carbon use in energy generation. The present study was designed and carried out while an extensive debate was ongoing in Greece regarding changes to the legislative framework that would specifically disallow new applications for the installation of photovoltaic systems; its aim is to depict the attitude of Greek citizens, through the completion of 1068 questionnaires. The research results show that over half the respondents are informed about the use of photovoltaic systems for electricity generation. Furthermore, almost half are willing to invest in such systems, either at home or on a plot of land. The factors contributing to the installation of photovoltaic systems are mainly “environmental”, “financial” and “social”. Finally, the citizens who are most willing to invest in residential photovoltaic systems are mainly university or technical school graduates; they would rather take such a decision after being motivated by institutional bodies and would do so for reasons of recognition. - Highlights: • The circumstances for RES are favorable both in the EU and in Greece. • The growth of renewable energy sources, particularly photovoltaic systems, is provenly following an upward trend. • The photovoltaic electricity production is an environmentally-friendly, sustainable and socially acceptable answer to the future energy requirements of society. • The Greek citizens state that they are adequately informed and sufficiently willing to invest in photovoltaic systems either residentially or in a plot of land

  2. Photovoltaics in Poland

    International Nuclear Information System (INIS)

    Pietruszko, Stanislaw M.

    2003-01-01

    The legislative framework and financing possibilities for photovoltaics (PV) in Poland are presented. Barriers that exist or can be encountered in implementing PV technology in Poland are identified. This paper also discusses future prospects and possibilities for developing photovoltaics in Poland. Finally, the paper suggests ways to promote, disseminate, and deploy PV technology in Poland. (Author)

  3. Clean electricity from photovoltaics

    CERN Document Server

    Green, Martin A

    2015-01-01

    The second edition of Clean Electricity from Photovoltaics , first published in 2001, provides an updated account of the underlying science, technology and market prospects for photovoltaics. All areas have advanced considerably in the decade since the first edition was published, which include: multi-crystalline silicon cell efficiencies having made impressive advances, thin-film CdTe cells having established a decisive market presence, and organic photovoltaics holding out the prospect of economical large-scale power production. Contents: The Past and Present (M D Archer); Limits to Photovol

  4. Quantification of Shading Tolerability for Photovoltaic Modules

    NARCIS (Netherlands)

    Ziar, H.; Asaei, Behzad; Farhangi, Shahrokh; Isabella, O.; Korevaar, M.A.N.; Zeman, M.

    2017-01-01

    Despite several decades of research in the field of photovoltaic (PV) systems, shading tolerance has still not been properly addressed. PV modules are influenced by shading concerning many factors, such as number and configuration of cells in the module, electrical and thermal characteristics of

  5. Mono-crystalline Silicon Photovoltaic Cells: Innovative Technologies toward low Series Resistance

    OpenAIRE

    Chibbaro, Claudio

    2011-01-01

    This thesis gives, at first, a collocation of photovoltaic technology inside the picture of world energy production. The need of a transition to a renewables-intensive energy market is reported as a scientific evidence deriving from economical and environmental data analysis. The present state-of-art of photovoltaic technology in terms of research development, manufacturing cost, market status and forecast is illustrated. In spite of emerging new technologies promising higher efficiencies ...

  6. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use (International cooperation project - collection of information on IEA photovoltaic power generation program); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development, verification, analysis and information exchange have been performed based on the 'Treaty to Execute the Research and Cooperation Program on Photovoltaic Power Generation System'. The IEA/REWP/PVPS activities in fiscal 1999 include the participation to the two executive committee meetings (Valencia and Sydney), and the subcommittee activities. The subcommittee activities are as follows: Task I: information exchange on and proliferation of the photovoltaic power generation systems, Task II: operation performance and design of the photovoltaic power generation systems, Task III: design and operation of the independent type and the island use power plants, Task VII: Building integrated photovoltaic power generation systems, Task VI, Sub-task 5: investigations and researches on possibility for photovoltaic power generation systems utilizing unutilized lands including deserts, and Task IX: technical cooperation to expand photovoltaic power generation system markets. (NEDO)

  7. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use (International cooperation project - collection of information on IEA photovoltaic power generation program); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development, verification, analysis and information exchange have been performed based on the 'Treaty to Execute the Research and Cooperation Program on Photovoltaic Power Generation System'. The IEA/REWP/PVPS activities in fiscal 1999 include the participation to the two executive committee meetings (Valencia and Sydney), and the subcommittee activities. The subcommittee activities are as follows: Task I: information exchange on and proliferation of the photovoltaic power generation systems, Task II: operation performance and design of the photovoltaic power generation systems, Task III: design and operation of the independent type and the island use power plants, Task VII: Building integrated photovoltaic power generation systems, Task VI, Sub-task 5: investigations and researches on possibility for photovoltaic power generation systems utilizing unutilized lands including deserts, and Task IX: technical cooperation to expand photovoltaic power generation system markets. (NEDO)

  8. Materials for Photovoltaic Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana

    Energy priorities are changing nowadays. As mankind will probably have to face energy crisis, factors such as energy independence, energy security, stability of energy supply and the variety of energy sources become much more vital these days. Photovoltaics is exceptional compared to other renewable sources of energy due to its wide opportunity to gain energetic and environmental benefits. An overview of the present state of knowledge of the materials aspects of photovoltaic cells will be given, and new semiconductor materials, including nanomaterials, with potential for application in photovoltaic devices will be identified.

  9. A vision for photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sinke, W.C. [ECN Solar Energy, Petten (Netherlands); Perezagua, E. [Isofoton, Madrid (Spain); Demarcq, F.; Bal, J.L. [ADEME, Paris (France); Alferov, Z.I.; Andreev, V. [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); De Segundo, K. [Shell International Renewables, London (United Kingdom); Dimmler, B. [Wuerth Solar GMBH und Co.KG, Marbach am Neckar (Germany); Goetzberger, A. [Fraunhofer Institute for Solar Energy Systems, Freiburg (Germany); Itoiz Beunza, C. [Energia Hidroelectrica de Navarra, Pamplona (Spain); Lojkowski, W. [High Pressure Research Center, Polish Academy of Sciences, Warszawa (Poland); Nowak, S. [NET Nowak nergy and Technology Ltd, St. Ursen (Switzerland); Vleuten, P. van der [Free Energy International, Eindhoven (Netherlands); Van Zolingen, R.J.C. [Shell Solar, Amsterdam (Netherlands)

    2005-02-01

    The report identifies the major technical and non-technical barriers to the uptake of the technology and outlines a strategic research agenda designed to ensure a breakthrough of PV (photovoltaics) and an increase in deployment in the Union and worldwide. The Council proposes the use of a European Technology Platform as a mechanism to implement the strategy and achieve the wider goals defined in the vision.

  10. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, D.

    1980-06-01

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  11. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  12. Photovoltaic systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    Each of the Department of Energy's Photovoltaic Systems Program projects funded and/or in existence during fiscal year 1978 (October 1, 1977 through September 30, 1978) are described. The project sheets list the contractor, principal investigator, and contract number and funding and summarize the programs and status. The program is divided into various elements: program assessment and integration, research and advanced development, technology development, system definition and development, system application experiments, and standards and performance criteria. (WHK)

  13. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  14. Present status and prospects of photovoltaic market in China

    International Nuclear Information System (INIS)

    Zhao Ruirui; Shi Guang; Chen Hongyu; Ren Anfu; Finlow, David

    2011-01-01

    In 2009, the photovoltaic (PV) industry expanded greatly in China. Developing PV technology is both necessary and urgent, as China is a large country, which consumes huge amounts of energy. In addition, because China has a natural advantage of excellent solar resources, its government has provided significant support in this field. In order to motivate the PV industry, the Ministries of Finance and Construction established coordinated policies to offer financial inducements. The government will implement the Jintaiyang project in the near future: 15 billion US dollars will be invested and 294 demonstration projects will be built. The developing Chinese PV market holds great promise. The aim of this paper is to analyze the present status of the Chinese PV market, discuss the opportunities available, and the potential challenges anticipated in the developing process including some engineering roadblocks encountered in the PV system, and to outline possible future scenarios in this field. - Research highlights: → In 2009, the photovoltaic (PV) industry expanded greatly in China. → The price of electricity generated by PV will be gradually reduced. → A photovoltaic industrial chain in China has already formed. → Research on PV systems will also promote the development of improved technologies.

  15. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  16. Case Study - Monitoring the Photovoltaic Panels

    OpenAIRE

    PACURAR Ana Talida; TOADER Dumitru; PACURAR Cristian

    2014-01-01

    The photovoltaic cell represents one of the most dynamic and attractive way to converts renewable energy sources in electricity production. That means to convert solar energy into electricity. In this paper is presented a analogy between two types of photovoltaic panels installed, with educational role for students. Also the objective of this paper is to estimate the performance of photovoltaic panels and to provide the best solution for industry. These two types of photovoltaic panels wer...

  17. Models used to assess the performance of photovoltaic systems.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  18. The occurrence of a low-cost photovoltaic industry in the USA

    International Nuclear Information System (INIS)

    Colrat, M.

    2006-01-01

    Solar energy shows a revival of interest in the USA, even if the budget of the Department of Energy (DoE) in favor of photovoltaic solar conversion remains insignificant with respect to the enormous sums invested in fossil and nuclear energies. However, the proposal by the US President of a 139 million dollar allocation for R and D works in the photovoltaic industry represents a progressive awareness of the US about the energy and environment questions. Even behind Japan and Germany, the US photovoltaic industry remains a major actor on the international scene. Its capacity to innovate comes from its first world rank research activity in tight connection with the industry. (J.S.)

  19. U.S. Department of Energy photovoltaic energy program contract summary, fiscal year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Surek, T.; Hansen, A.

    2000-02-17

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) and US Department of Energy (DOE) National Photovoltaics Program from October 1, 1998, through September 30, 1999 (FY 1999). The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy as an industry and an energy resource. The two primary goals of the national program are to (1) maintain the US industry's world leadership in research and technology development and (2) help the US industry remain a major, profitable force in the world market. The NCPV is part of the National PV Program and provides leadership and support to the national program toward achieving its mission and goals.

  20. U.S. Department of Energy photovoltaic energy program contract summary, fiscal year 1999

    International Nuclear Information System (INIS)

    Surek, T.; Hansen, A.

    2000-01-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the National Center for Photovoltaics (NCPV) and US Department of Energy (DOE) National Photovoltaics Program from October 1, 1998, through September 30, 1999 (FY 1999). The mission of the DOE National Photovoltaics Program is to make PV a significant part of the domestic economy as an industry and an energy resource. The two primary goals of the national program are to (1) maintain the US industry's world leadership in research and technology development and (2) help the US industry remain a major, profitable force in the world market. The NCPV is part of the National PV Program and provides leadership and support to the national program toward achieving its mission and goals

  1. Experimental research on photovoltaic module for asymmetrical compound parabolic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jinshe; Wang, Mingyue [Chongqing Normal University, Chongqing (China). Department of Physics; Yang, Changmin [Xian University of Technology, Xian (China). Department of Applied Physics

    2008-07-01

    The photovoltaic module for the use of fixed asymmetrical CPC concentrator was designed and fabricated based on the performance of polycrystalline-silicon solar cells with back surface field (BSF) structure. The performance of the combination of the module and asymmetrical CPC concentrator was investigated. The results show its effective concentration ratio to be 2.46 and the output power of the PV-a-CPC system to be increased by 2.13 times compared with that of the module approximately. (orig.)

  2. Solar Photovoltaic Electricity Applications in France. National Survey Report 2007

    International Nuclear Information System (INIS)

    Claverie, Andre; Jacquin, Philippe

    2008-01-01

    research programs (Agence nationale de la recherche, www.agence-nationale-recherche.fr), OSEO national Agency (Organisme de financement des entreprises pour les projets de creation, innovation et developpement, www.oseo.fr) and regional authorities have integrated into their R and D policies support for the PV field. In October 2007, the French government launched a series of initiatives under the 'Grenelle de l'environnement'. One of the working groups dealing with renewables sources of energy proposed to the government a development program for photovoltaics. Some of the objectives are the reinforcement of R and D and a cumulative PV installed capacity of 5,4 GW in France by 2020

  3. Photovoltaic energy: global market perspectives; Energia fotovoltaica: perspectivas de mercado mundial

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Jose G.S.; Fabrizy, Marie P. [Sao Paulo Univ., SP (Brazil). Inst. de Eletrotecnica e Energia

    1996-12-31

    The global market of the solar photovoltaic energy has been mainly concentrated in the residential sector. However, there is a strong tendency to apply solar photovoltaic panels linked to the utilities power systems. Besides, that is the only case in which an increase in the cells production scale would be justified because it would reduce the production and new technologies research costs 3 figs., 1 tab.; e-mail: gui at iee.usp.br

  4. Grounds of two positions photovoltaic panels

    OpenAIRE

    Castán Fortuño, Fernando

    2008-01-01

    The objective of this Master Thesis is to find the optimum positioning for a two positions photovoltaic panel. Hence, it will be implemented a model in order to optimize the energy of the sun that the photovoltaic panel is receiving by its positioning. Likewise this project will include the comparison with other photovoltaic panel systems as the single position photovoltaics panels. Ultimately, it is also going to be designed a system array for the optimized model of two positions photovoltai...

  5. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power generation system evaluation technology (Research and development of system evaluation technology - Separate volume: Collection of data of photovoltaic power generation systems); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu - Bessatsu: taiyoko hatsuden system data shu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the establishment of technologies for optimum designs and optimum operation for various types of photovoltaic power systems, data are compiled in this volume, collected from the field test facilities and residential photovoltaic power systems. Operating data and meteorological data from the field test facilities (interconnection system, independent system, and water pump system) are arranged as easy-to-use supplementary data to help studies in relation to the 'energy flow in the test field facility systems' which is in the fiscal 1999 achievement report. As for data collected from residential photovoltaic power systems, they are arranged as easy-to-use supplementary data to help studies in relation to the 'Data and evaluation of residential photovoltaic power systems' which again belongs in the fiscal 1999 achievement report. (NEDO)

  6. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  7. Applied photovoltaics

    CERN Document Server

    Wenham, Stuart R; Watt, Muriel E; Corkish, Richard; Sproul, Alistair

    2013-01-01

    The new edition of this thoroughly considered textbook provides a reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. Written by a group of award-winning authors it is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, it features a set of detailed technical appendices that provide essential equations, data sources and standards. The new edition has been fully updated with the latest information on photovoltaic cells,

  8. Special issue photovoltaic

    International Nuclear Information System (INIS)

    2004-01-01

    In this letter of the INES (french National Institute of the Solar Energy), a special interest is given to photovoltaic realizations in Europe. Many information are provided on different topics: the China future fifth world producer of cells in 2005, batteries and hydrogen to storage the solar energy and a technical sheet on a photovoltaic autonomous site installation for electric power production. (A.L.B.)

  9. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  10. Update photovoltaics in view of Ecoinvent data V2.0

    Energy Technology Data Exchange (ETDEWEB)

    Jungbluth, N.; Tuchschmid, M.

    2007-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on the updating of the Ecoinvent database on behalf of the European Photovoltaics Industry Association and the Swiss Federal Office of Energy. In this project, data has been collected directly from manufacturers and research projects. Life-Cycle Analyses (LCA) made by various authors have been considered for the assessment. The information was used to elaborate life cycle inventories for electricity production using photovoltaics in grid-connected, 3 kWp plants in the year 2005. The inventories cover monocrystalline and polycrystalline cells, amorphous and ribbon-silicon, CdTe and CIS thin-film cells. The environmental impact caused by infrastructure at all stages of production and the effluents from wafer production are also considered. The Ecoinvent V2.0 data is used as a background data-base. The report investigates the LCA inventories for photovoltaics, comparing different types of cells used in Switzerland and also analyses the electricity production in different countries. The report also discusses how the environmental impact of photovoltaics has been reduced over the last 15 years.

  11. Round robin performance testing of organic photovoltaic devices

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Zubillaga, Oihana; de Seoane, José María Vega

    2014-01-01

    This study addresses the issue of poor intercomparability of measurements of organic photovoltaic (OPV) devices among different laboratories. We present a round robin performance testing of novel OPV devices among 16 laboratories, organized within the framework of European Research Infrastructure...

  12. Organic photovoltaic energy in Japan; Le photovoltaique organique au Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Japan finances research programs on photovoltaic conversion since 1974. Research in this domain is one of the 11 priorities of NEDO, the agency of means of the ministry of economy, trade and industry of Japan. The search for an abatement of production costs and of an increase of cells efficiency is mentioned in NEDO's programs as soon as the beginning of the 1990's. A road map has been defined which foresees photovoltaic energy production costs equivalent to the ones of thermal conversion by 2030, i.e. 7 yen/kWh (4.4 cents of euro/kWh). The use of new materials in dye-sensitized solar cells (DSSC) or organic solar cells, and of new structures (multi-junctions) is explored to reach this objective. The organic photovoltaic technology is more particularly considered for small generation units in mobile or domestic technologies. Japan is particularly in advance in the improvement of DSSC cells efficiency, in particular in the domain of the research on solid electrolytes. Europe seems more in advance in the domain of the new generation of organic solar cells. Therefore, a complementarity may be found between Japan and French teams in the domain of organic solar cells improvement through collaboration programs. (J.S.)

  13. Pyroelectric photovoltaic spatial solitons in unbiased photorefractive crystals

    International Nuclear Information System (INIS)

    Jiang, Qichang; Su, Yanli; Ji, Xuanmang

    2012-01-01

    A new type of spatial solitons i.e. pyroelectric photovoltaic spatial solitons based on the combination of pyroelectric and photovoltaic effect is predicted theoretically. It shows that bright, dark and grey spatial solitons can exist in unbiased photovoltaic photorefractive crystals with appreciable pyroelectric effect. Especially, the bright soliton can form in self-defocusing photovoltaic crystals if it gives larger self-focusing pyroelectric effect. -- Highlights: ► A new type of spatial soliton i.e. pyroelectric photovoltaic spatial soliton is predicted. ► The bright, dark and grey pyroelectric photovoltaic spatial soliton can form. ► The bright soliton can also exist in self-defocusing photovoltaic crystals.

  14. International photovoltaic program. Volume 2: Appendices

    Science.gov (United States)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-01-01

    The results of analyses conducted in preparation of an international photovoltaic marketing plan are summarized. Included are compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about the how US government actions could affect this market;international financing issues; and information on issues affecting foreign policy and developing countries.

  15. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  16. Thin film silicon photovoltaics: Architectural perspectives and technological issues

    Energy Technology Data Exchange (ETDEWEB)

    Mercaldo, Lucia Vittoria; Addonizio, Maria Luisa; Noce, Marco Della; Veneri, Paola Delli; Scognamiglio, Alessandra; Privato, Carlo [ENEA, Portici Research Center, Piazzale E. Fermi, 80055 Portici (Napoli) (Italy)

    2009-10-15

    Thin film photovoltaics is a particularly attractive technology for building integration. In this paper, we present our analysis on architectural issues and technological developments of thin film silicon photovoltaics. In particular, we focus on our activities related to transparent and conductive oxide (TCO) and thin film amorphous and microcrystalline silicon solar cells. The research on TCO films is mainly dedicated to large-area deposition of zinc oxide (ZnO) by low pressure-metallorganic chemical vapor deposition. ZnO material, with a low sheet resistance (<8 {omega}/sq) and with an excellent transmittance (>82%) in the whole wavelength range of photovoltaic interest, has been obtained. ''Micromorph'' tandem devices, consisting of an amorphous silicon top cell and a microcrystalline silicon bottom cell, are fabricated by using the very high frequency plasma enhanced chemical vapor deposition technique. An initial efficiency of 11.1% (>10% stabilized) has been obtained. (author)

  17. Light Harvesting for Organic Photovoltaics

    Science.gov (United States)

    2016-01-01

    The field of organic photovoltaics has developed rapidly over the last 2 decades, and small solar cells with power conversion efficiencies of 13% have been demonstrated. Light absorbed in the organic layers forms tightly bound excitons that are split into free electrons and holes using heterojunctions of electron donor and acceptor materials, which are then extracted at electrodes to give useful electrical power. This review gives a concise description of the fundamental processes in photovoltaic devices, with the main emphasis on the characterization of energy transfer and its role in dictating device architecture, including multilayer planar heterojunctions, and on the factors that impact free carrier generation from dissociated excitons. We briefly discuss harvesting of triplet excitons, which now attracts substantial interest when used in conjunction with singlet fission. Finally, we introduce the techniques used by researchers for characterization and engineering of bulk heterojunctions to realize large photocurrents, and examine the formed morphology in three prototypical blends. PMID:27951633

  18. Characterization of Photovoltaic Generators

    Science.gov (United States)

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  19. The players of the photovoltaic sector in France

    International Nuclear Information System (INIS)

    Houot, G.

    2012-01-01

    This document reviews 338 players in the French photovoltaic industry. Each player can be the owner of a photovoltaic power plant, or its operator, or the manufacturer of photovoltaic systems, or the manufacturer of components involved in photovoltaic systems, or the equipment wholesaler, or the designer of photovoltaic projects, or the photovoltaic system installer. For each player some pieces of information are gathered: a brief history of the enterprise, the enterprise activity, its staff, its turnover, its main achievements and its prospects. (A.C.)

  20. Print-Assisted Photovoltaic Assembly (PAPA)

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an innovative method for the fabrication of thin-film photovoltaic panels. Print-Assisted Photovoltaic Assembly, or PAPA,...

  1. Plastic photovoltaic devices

    OpenAIRE

    Niyazi Serdar Sariciftci

    2004-01-01

    The development of organic, polymer-based photovoltaic elements has introduced the possibility of obtaining cheap and easy-to-produce energy from light. Photoinduced electron transfer from donor-type semiconducting polymers onto acceptor-type polymers or molecules, such as C60, is the basic phenomenon utilized in these photovoltaic devices. This process mimics the early photo-effects in natural photosynthesis. The polymeric semiconductors combine the photoelectrical properties of inorganic se...

  2. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  3. Photovoltaic venture analysis. Final report. Volume III. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Posner, D.; Schiffel, D.; Doane, J.; Bishop, C.

    1978-07-01

    This appendix contains a brief summary of a detailed description of alternative future energy scenarios which provide an overall backdrop for the photovoltaic venture analysis. Also included is a summary of a photovoltaic market/demand workshop, a summary of a photovoltaic supply workshop which used cross-impact analysis, and a report on photovoltaic array and system prices in 1982 and 1986. The results of a sectorial demand analysis for photovoltaic power systems used in the residential sector (single family homes), the service, commercial, and institutional sector (schools), and in the central power sector are presented. An analysis of photovoltaics in the electric utility market is given, and a report on the industrialization of photovoltaic systems is included. A DOE information memorandum regarding ''A Strategy for a Multi-Year Procurement Initiative on Photovoltaics (ACTS No. ET-002)'' is also included. (WHK)

  4. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles

  5. Photovoltaic technologies

    International Nuclear Information System (INIS)

    Bagnall, Darren M.; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5-6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10-15 years. (author)

  6. Standard Test Method for Determination of the Spectral Mismatch Parameter Between a Photovoltaic Device and a Photovoltaic Reference Cell

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a procedure for the determination of a spectral mismatch parameter used in performance testing of photovoltaic devices. 1.2 The spectral mismatch parameter is a measure of the error, introduced in the testing of a photovoltaic device, caused by mismatch between the spectral responses of the photovoltaic device and the photovoltaic reference cell, as well as mismatch between the test light source and the reference spectral irradiance distribution to which the photovoltaic reference cell was calibrated. Examples of reference spectral irradiance distributions are Tables E490 or G173. 1.3 The spectral mismatch parameter can be used to correct photovoltaic performance data for spectral mismatch error. 1.4 This test method is intended for use with linear photovoltaic devices. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, a...

  7. A kick to the photovoltaic industry

    International Nuclear Information System (INIS)

    Deye, M.; Remoue, A.

    2010-01-01

    In order to stop the speculation fever and to stabilize the photovoltaic trade, the French government has decided to lower some of the warranted electricity repurchase tariffs related to photovoltaic power generation. This announcement should have important impacts on the photovoltaic industry which will redirect its means and products towards the residential sector. (J.S.)

  8. Process Development for Nanostructured Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  9. Subsidized project for development of technology in putting photovoltaic power generation system into practice. Report of international joint demonstrative R and D on photovoltaic power generation system; Taiyoko hatsuden system kokusai kyodo jissho kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The following joint researches are in progress utilizing natural conditions and social systems in Nepal, Mongolia, Thailand, Malaysia and Vietnam for the purpose of enhancing environmental adaptability, reliability, etc., of technologies. (1) Nepal; accelerated demonstrative research utilizing highland conditions, (2) Mongolia; demonstrative research of movable type photovoltaic power generation system, (3) Thailand; demonstrative research of photovoltaic generation system for battery-charging stations, (4) Malaysia; accelerated demonstrative research utilizing tropical conditions, and (5) Vietnam; demonstrative research of hybrid system on photovoltaic power generation and micro hydro power generation. The research assets of (1) and (3) whose researches have been finished were provided gratis for the co-researcher countries. In (5), on the basis of the geographical conditions such as annual average quantity of solar radiation, conduit for water-turbine, energy complementing relation, load demand, and degree of installation difficulty, Trang Village in Vietnam was selected, with a system decided on PV:100 kW/MH:25 kW/control system. The MH is an induction generator. The primary pieces of equipment are a generator, a storage battery, an inverter and a system control panel. (NEDO)

  10. Survey of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    In developing this survey of photovoltaic systems, the University of Alabama in Huntsville assembled a task team to perform an extensive telephone survey of all known photovoltaic manufacturers. Three US companies accounted for 77% of the total domestic sales in 1978. They are Solarex Corporation, Solar Power Croporation, and ARCO Solar, Inc. This survey of solar photovoltaic (P/V) manufacturers and suppliers consists of three parts: a catalog of suppliers arranged alphabetically, data sheets on specific products, and typical operating, installation, or maintenance instructions and procedures. This report does not recommend or endorse any company product or information presented within as the results of this survey.

  11. Photovoltaic barometer; Barometre photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-04-15

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  12. Radioisotope-powered photovoltaic generator

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Uselman, J.

    1979-01-01

    Disposing of radioactive wastes from nuclear power plants has become one of the most important issues facing the nuclear industry. In a new concept, called a radioisotope photovoltaic generator, a portion of this waste would be used in conjunction with a scintillation material to produce light, with subsequent conversion into electricity via photovoltaic cells. Three types of scintillators and two types of silicon cells were tested in six combinations using 32 P as the radioisotope. The highest system efficiency, determined to be 0.5% when the light intensity was normalized to 100 mW/cm 2 , was obtained using a CsI crystal scintillator and a Helios photovoltaic cell

  13. Federal policies to promote the widespread utilization of photovoltaic systems. Supplement: review and critique

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.L.

    1980-04-15

    This document is intended as a supplement to the two-volume report entitled Federal Policies to Promote the Widespread Utilization of Photovoltaic Systems that was submitted to Congress by the Department of Energy in February and April of 1980. This supplement contains review comments prepared by knowledgeable experts who reviewed early drafts of the Congressional report. Responses to the review comments by the Jet Propulsion Laboratory, preparer of the Congressional report, are also included in this supplement. The Congressional report, mandated in the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (P.L. 95-590), discusses various issues related to promoting the deployment of photovoltaic systems through the Federal Photovoltaic Program. Various program strategies and funding levels are examined.

  14. National symposium on commissioning and operating experiences in heavy water plants and associated chemical industries [Preprint volume

    International Nuclear Information System (INIS)

    1992-02-01

    A symposium on commissioning and operating experiences in heavy water plants and associated chemical industries (SCOPEX-92) was organised to share the experience and exchange the ideas among plant operators, designers, consultants and vendors in the areas of operation, commissioning and equipment performance. This pre-print volume has been brought out as an integrated source of information on commissioning and operation of heavy water plants. The following aspects of heavy water plants are covered: commissioning and operation, instrumentation and control, and safety and environment. (V.R.)

  15. Review of photovoltaic energy development in Kenya for rural electrification

    International Nuclear Information System (INIS)

    Rabah, K.V.O.; Ndjeli, L.; Raturi, A.K.

    1995-10-01

    Energy demand is rapidly growing throughout much of the developing world, where an estimated two billion people, mostly from sparsely populated areas, currently live without electricity. As electrical energy systems are selected to help meet these people's electricity need, the environmental ramifications of the generating systems become increasingly important. Photovoltaic systems generate electricity without emitting greenhouse gases, and result in global, regional and local air quality advantages. In this work we intend to carry out research and development of photovoltaic solar cells for rural electrification - especially solar powered water pumping. (author). 56 refs, 11 figs

  16. A MARKETING STRATEGY ON PHOTOVOLTAIC MARKET

    Directory of Open Access Journals (Sweden)

    Coita Dorin Cristian

    2008-05-01

    Full Text Available Photovoltaic is an increasingly important energy technology. Deriving energy from the sun offers numerous environmental benefits. It is an extremely clean energy source, and few other power-generating technologies have as little environmental impact as photovoltaic. In this article we explored some dimensions of photovoltaic market and suggested a marketing strategy for solar panels manufacturers

  17. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  18. Encapsulation of polymer photovoltaic prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [The Danish Polymer Centre, RISOE National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2006-12-15

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows for transporting oxygen and water sensitive devices outside a glove box environment after sealing and enables sharing of devices between research groups such that efficiency and stability can be evaluated in different laboratories. (author)

  19. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  20. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  1. Novel Photovoltaic Devices Using Ferroelectric Material and Colloidal Quantum Dots

    Science.gov (United States)

    Paik, Young Hun

    As the global concern for the financial and environmental costs of traditional energy resources increases, research on renewable energy, most notably solar energy, has taken center stage. Many alternative photovoltaic (PV) technologies for 'the next generation solar cell' have been extensively studied to overcome the Shockley-Queisser 31% efficiency limit as well as tackle the efficiency vs. cost issues. This dissertation focuses on the novel photovoltaic mechanism for the next generation solar cells using two inorganic nanomaterials, nanocrystal quantum dots and ferroelectric nanoparticles. Lead zirconate titanate (PZT) materials are widely studied and easy to synthesize using solution based chemistry. One of the fascinating properties of the PZT material is a Bulk Photovoltaic effect (BPVE). This property has been spotlighted because it can produce very high open circuit voltage regardless of the electrical bandgap of the materials. However, the poor optical absorption of the PZT materials and the required high temperature to form the ferroelectric crystalline structure have been obstacles to fabricate efficient photovoltaic devices. Colloidal quantum dots also have fascinating optical and electrical properties such as tailored absorption spectrum, capability of the bandgap engineering due to the wide range of material selection and quantum confinement, and very efficient carrier dynamics called multiple exciton generations. In order to utilize these properties, many researchers have put numerous efforts in colloidal quantum dot photovoltaic research and there has been remarkable progress in the past decade. However, several drawbacks are still remaining to achieve highly efficient photovoltaic device. Traps created on the large surface area, low carrier mobility, and lower open circuit voltage while increasing the absorption of the solar spectrum is main issues of the nanocrystal based photovoltaic effect. To address these issues and to take the advantages of

  2. An Improved Mathematical Model for Computing Power Output of Solar Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Abdul Qayoom Jakhrani

    2014-01-01

    Full Text Available It is difficult to determine the input parameters values for equivalent circuit models of photovoltaic modules through analytical methods. Thus, the previous researchers preferred to use numerical methods. Since, the numerical methods are time consuming and need long term time series data which is not available in most developing countries, an improved mathematical model was formulated by combination of analytical and numerical methods to overcome the limitations of existing methods. The values of required model input parameters were computed analytically. The expression for output current of photovoltaic module was determined explicitly by Lambert W function and voltage was determined numerically by Newton-Raphson method. Moreover, the algebraic equations were derived for the shape factor which involves the ideality factor and the series resistance of a single diode photovoltaic module power output model. The formulated model results were validated with rated power output of a photovoltaic module provided by manufacturers using local meteorological data, which gave ±2% error. It was found that the proposed model is more practical in terms of precise estimations of photovoltaic module power output for any required location and number of variables used.

  3. Photovoltaic energy barometer

    International Nuclear Information System (INIS)

    Anon

    2006-01-01

    The european market showed all of its strength and soundness in 2005. The 2005 installed cells growth could have been even greater if the market had not been continually curbed by a lack of raw materials. Germany remained the leading photovoltaic market in the world in 2005, positioned far ahead of Japan and the USA. This unabashed success inspired both Spain and Italy, which set up conditions in order to rapidly develop their photovoltaic sectors. (A.L.B.)

  4. NREL photovoltaic program FY 1997 annual report

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.D.; Hansen, A.; Smoller, S.

    1998-06-01

    This report summarizes the in-house and subcontracted research and development (R and D) activities under the NREL PV Program from October 1, 1996, through September 30, 1997 (FY 1997). The NREL PV Program is part of the US Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE National Photovoltaics Program Plan for 1996--2000. The FY 1997 budget authority for carrying out the NREL PV Program was $39.3 million in operating funds and $0.4 million in capital equipment funds. Subcontract activities represent a major part of the NREL PV Program, with $21.8 million (55% of PV funds) going to some 84 subcontractors. Cost sharing by industry added almost $8.8 million to the subcontract R and D activities with industry.

  5. Photovoltaic policy is questioned

    International Nuclear Information System (INIS)

    Piro, P.; Cessac, M.

    2011-01-01

    The French government has decided a freeze and a reassessment of the measures taken to support the photovoltaic sector. Only the installations with a power output over 3 kWc are concerned so the market of solar roofs for homes is spared. The main reasons for this reversal is the quick and chaotic development of photovoltaic projects, a lot of projects are only motivated by the lure of high purchase prices of the electricity produced imposed by the law on EDF. Another reason is that 90% of the solar panels installed in France come from China, the photovoltaic sector retorts that 75% of the price of a complete installation pays for services produced in France. (A.C.)

  6. The Effects of Cells Temperature Increment and Variations of Irradiation for Monocrystalline Photovoltaic

    Science.gov (United States)

    Fuad Rahman Soeharto, Faishal; Hermawan

    2017-04-01

    Photovoltaic cell technology has been developed to meet the target of 17% Renewable Energy in 2025 accordance with Indonesia Government Regulation No. 5 2006. Photovoltaic cells are made of semiconductor materials, namely silicon or germanium (p-n junction). These cells need the light that comes from solar irradiation which brings energy photons to convert light energy into electrical energy. It is different from the solar heater that requires heat energy or thermal of sunlight that is normally used for drying or heating water. Photovoltaic cells requires energy photons to perform the energy conversion process, the photon energy can be derived from sunlight. Energy photon is taken from the sun light along with the advent of heat due to black-body radiation, which can lead to temperature increments of photovoltaic cells. Increment of 1°C can decreased photovoltaic cell voltage of up to 2.3 mV per cell. In this research, it will be discuss the analysis of the effect of rising temperatures and variations of irradiation on the type monocrystalline photovoltaic. Those variation are analyzed, simulated and experiment by using a module of experiment. The test results show that increment temperature from 25° C to 80° C at cell of photovoltaic decrease the output voltage of the photovoltaic cell at 4.21 V, and it also affect the power output of the cell which decreases up to 0.7523 Watt. In addition, the bigger the value of irradiation received by cell at amount of 1000 W / m2, produce more output power cells at the same temperature.

  7. Distribution Grid Integration of Photovoltaic Systems in Germany – Implications on Grid Planning and Grid Operation

    International Nuclear Information System (INIS)

    Stetz, Thomas

    2017-01-01

    Photovoltaic is the most dispersed renewable energy source in Germany, typically interconnected to low and medium voltage systems. In recent years, cost-intensive grid reinforcements had to be undertaken all across Germany’s distribution grids in order to increase their hosting capacity for these photovoltaic installations. This paper presents an overview on research results which show that photovoltaic itself can provide ancillary services to reduce its cost of interconnection. Especially the provision of reactive power turned out to be a technically effective and economically efficient method to increase a grid’s hosting capacity for photovoltaic capacity. Different reactive power control methods were investigated, revealing significant differences with regards to their grid operation implications. Business cases for residential-scale photovoltaic applications have shifted from feed-in-tariff based active power feed-in to self-consumption. However, increasing the photovoltaic self-consumption by additional battery-storage systems is still not economically reliable in Germany. (author)

  8. Optimal sizing of utility-scale photovoltaic power generation complementarily operating with hydropower: A case study of the world’s largest hydro-photovoltaic plant

    International Nuclear Information System (INIS)

    Fang, Wei; Huang, Qiang; Huang, Shengzhi; Yang, Jie; Meng, Erhao; Li, Yunyun

    2017-01-01

    Highlights: • Feasibility of complementary hydro-photovoltaic operation across the world is revealed. • Three scenarios of the novel operation mode are proposed to satisfy different load demand. • A method for optimally sizing a utility-scale photovoltaic plant is developed by maximizing the net revenue during lifetime. • The influence of complementary hydro-photovoltaic operation upon water resources allocation is investigated. - Abstract: The high variability of solar energy makes utility-scale photovoltaic power generation confront huge challenges to penetrate into power system. In this paper, the complementary hydro-photovoltaic operation is explored, aiming at improving the power quality of photovoltaic and promoting the integration of photovoltaic into the system. First, solar-rich and hydro-rich regions across the world are revealed, which are suitable for implementing the complementary hydro-photovoltaic operation. Then, three practical scenarios of the novel operation mode are proposed for better satisfying different types of load demand. Moreover, a method for optimal sizing of a photovoltaic plant integrated into a hydropower plant is developed by maximizing the net revenue during lifetime. Longyangxia complementary hydro-photovoltaic project, the current world’s largest hydro-photovoltaic power plant, is selected as a case study and its optimal photovoltaic capacities of different scenarios are calculated. Results indicate that hydropower installed capacity and annual solar curtailment rate play crucial roles in the size optimization of a photovoltaic plant and complementary hydro-photovoltaic operation exerts little adverse effect upon the water resources allocation of Longyangxia reservoir. The novel operation mode not only improves the penetration of utility-scale photovoltaic power generation but also can provide a valuable reference for the large-scale utilization of other kinds of renewable energy worldwide.

  9. Photovoltaic Technology and Applications | Othieno | Discovery and ...

    African Journals Online (AJOL)

    Photovoltaic home systems appear to be the most viable alternative source of electricity. The photovoltaic technology is therefore reviewed and recommendations made on their application for rural electrification in the developing nations. Keywords: solar energy, photovoltaic materials, electrification, rural power, cost, ...

  10. Photorefraction in crystals with nonstationary photovoltaic current

    International Nuclear Information System (INIS)

    Volk, T.R.; Astaf'ev, S.B.; Razumovskij, N.V.

    1995-01-01

    Effect of photovoltaic current nonstationary components, conditioned by nonstationary character of photovoltaic centers, on photorefractive properties of LiNbO 3 crystals is considered. Analytic expressions describing nonstationary photovoltaic current effect on kinetics of recording and optical erasure of photorefraction are obtained. A possibility of nonstationary photovoltaic current occurrence in crystals with multilevel charge transfer circuit is considered. Recording light pulse duration effect on photorefraction in LiNbO 3 is discussed. 25 refs., 8 figs

  11. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  12. Energizing architecture. Design and photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lueling, Claudia (ed.)

    2009-07-01

    Power generation by photovoltaic systems and buildings is much more than just an alternative to traditional electric power generation. As the planning and design of photovoltaics is increasingly shifting to the forefront, it is rapidly becoming a new challenge for architecture. This book describes the whole spectrum of possible applications - from inspiration to detail - of photovoltaics as an integral part of building envelopes and introduces groundbreaking examples and visions for the future, in which photovoltaic elements work as a successful part of exterior facades - combined with highly luminous and economical illuminated wallpaper and curtains inside buildings. Its range extends from early designs by artists such as Daniel Hausig to aspects of material selection to detail drawings of implemented solutions. The enormous variety of possible applications of this new (building) material demonstrates the huge potential it possesses. (orig.)

  13. Analysis of batteries for use in photovoltaic systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Podder, A; Kapner, M

    1981-02-01

    An evaluation of 11 types of secondary batteries for energy storage in photovoltaic electric power systems is given. The evaluation was based on six specific application scenarios which were selected to represent the diverse requirements of various photovoltaic systems. Electrical load characteristics and solar insulation data were first obtained for each application scenario. A computer-based simulation program, SOLSIM, was then developed to determine optimal sizes for battery, solar array, and power conditioning systems. Projected service lives and battery costs were used to estimate life-cycle costs for each candidate battery type. The evaluation considered battery life-cycle cost, safety and health effects associated with battery operation, and reliability/maintainability. The 11 battery types were: lead-acid, nickel-zinc, nickel-iron, nickel-hydrogen, lithium-iron sulfide, calcium-iron sulfide, sodium-sulfur, zinc-chlorine, zinc-bromine, Redox, and zinc-ferricyanide. The six application scenarios were: (1) a single-family house in Denver, Colorado (photovoltaic system connected to the utility line); (2) a remote village in equatorial Africa (stand-alone power system); (3) a dairy farm in Howard County, Maryland (onsite generator for backup power); (4) a 50,000 square foot office building in Washington, DC (onsite generator backup); (5) a community in central Arizona with a population of 10,000 (battery to be used for dedicated energy storage for a utility grid-connected photovoltaic power plant); and (6) a military field telephone office with a constant 300 W load (trailer-mounted auxiliary generator backup). Recommendations for a research and development program on battery energy storage for photovoltaic applications are given, and a discussion of electrical interfacing problems for utility line-connected photovoltaic power systems is included. (WHK)

  14. Overview of new-generation photovoltaic technologies

    International Nuclear Information System (INIS)

    Della Sala, D.; Moro, A.; Fidanza, A.; Di Francia, G.; Giorgi, R.

    2008-01-01

    The number of photovoltaic installation is rising in Italy, but they are all based on imported technologies. This article describes some new types of photovoltaic cells that benefit from powerful synergies with other sectors. ENEA can help speed their development by exploiting its long experience with photovoltaic and the growing body of know-how on the new frontiers of electronics and new materials [it

  15. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  16. Silicon processing for photovoltaics II

    CERN Document Server

    Khattak, CP

    2012-01-01

    The processing of semiconductor silicon for manufacturing low cost photovoltaic products has been a field of increasing activity over the past decade and a number of papers have been published in the technical literature. This volume presents comprehensive, in-depth reviews on some of the key technologies developed for processing silicon for photovoltaic applications. It is complementary to Volume 5 in this series and together they provide the only collection of reviews in silicon photovoltaics available.The volume contains papers on: the effect of introducing grain boundaries in silicon; the

  17. International photovoltaic products and manufacturers directory, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  18. Solar Photovoltaic Electricity Applications in France. National Survey Report 2008

    International Nuclear Information System (INIS)

    Durand, Yvonnick; Jacquin, Philippe

    2009-01-01

    growth in the so called 'eligible' products on the market. The availability of an increasing number of technical solutions on the market enables builders, architects and promoters to offer their clients new options for incorporating photovoltaics into their structures. The development of the market has attracted new stakeholders at all stages of the photovoltaic supply line, and many companies have been created to study, engineer, install, provide and operate such systems. Investors are taking part in large-scale projects, such as the construction of major multi-megawatt ground power plants. New activities and actors are appearing, such as in the field of funding specifically for photovoltaic projects, leasing rooftops for installing systems and surveying ground for building power plants on. The industrial sector has been strengthened with the ambition to be able to vertically integrate the photovoltaic supply chain, from the production of silicon to the operation of electrical power production systems. This development creates jobs. According to the SER's member companies (which represent 80% of the market), photovoltaic activity has generated about 1,500 direct jobs in 2008, and the total estimated jobs for supply chain is about 4,000, or three times what it was in 2004, representing 70% growth over 2007. A new consortium that has brought together private companies and public bodies, known as the 'PV Alliance Lab Fab' was established, and a major R and D project known as 'Solar Nano Crystal' began in late 2008. Research programs concentrate efforts to improve the conversion efficiency of cells and modules, as well as their life span. A major effort has been undertaken to reduce production costs, engineer new photovoltaic materials, prevent environmental impacts, and manage systems. ADEME (the French Environment and Energy Management Agency) as well as ANR (the National Research Agency www.agence-nationale-recherche.fr), OSEO

  19. Photovoltaic energy in Germany: experience feedback

    International Nuclear Information System (INIS)

    Persem, Melanie

    2011-01-01

    This document presents some key information and figures about the development of photovoltaic energy in Germany: resource potential, 2000-2010 development, share in the energy mix, market, legal framework and incentives, market evolution and electricity feed-in tariffs, 2006-2011 evolution of photovoltaic power plant costs, households' contribution, R and D investments, industry development and employment, the German national energy plan after Fukushima, the expectations of the German photovoltaic industry

  20. Photovoltaics manufacturer's overview of interactions with customers of photovoltaic products

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1982-11-01

    Communications between the customer and manufacturer of photovoltaic products often require time-consuming interaction before each has the necessary information. Customers appear not to know what information is needed by the supplier to size photovoltaic systems properly nor are they adequately able to estimate their own system needs. Customers can make unrealistic measurement demands and do not provide feedback to the supplier on system performance in the field.

  1. Research Staff | Photovoltaic Research | NREL

    Science.gov (United States)

    Research Staff Research Staff desc Greg Wilson Center Director Dr. Greg Wilson is the Director of @nrel.gov 303-384-6649 Bosco, Nicholas Staff Scientist Nick.Bosco@nrel.gov 303-384-6337 Braunecker, Wade IV-Physics Michael.Deceglie@nrel.gov 303-384-6104 Deline, Chris Staff Engineer Chris.Deline@nrel.gov

  2. Recycling of photovoltaic end-of-life panels. International overview. Extended abstract

    International Nuclear Information System (INIS)

    Billard, Yannael; Bazin, F.; Lacroix, O.; Antonini, Gerard; Couffignal, Benedicte; Arnaud, Swellen; Binesti, Didier; Cimolino, Lauro; Fangeat, Erwann; Rance, Melanie; Soleille, Sebastien; Veronneau, Cyrille

    2012-10-01

    Since the early 2000's, the general awareness surrounding the importance of recycling by the users and producers of photovoltaic modules has contributed to the emergence of the end-of-life photovoltaic modules recycling activity. This awareness can be attributed to the growing concern on natural resource conservation; the natural shortage in some strategic metals used in photovoltaic; the reinforcement of regulatory framework on waste management in some countries; and the answer given to raising questions regarding the renewability of photovoltaic. In fact, the last ten years have been marked by significant research efforts, which have finally lifted the main technological barriers associated with the recycling of photovoltaic modules. Economically, the activity of recycling photovoltaic modules is not yet viable today, and is instead based on sources of compensation from the client, producer or organizations in charge of the modules collection, on top of the sale of recycled materials. Technology developers are now cautious of investment because the waste stream is still too weak and poorly controlled, the photovoltaic market is unstable, and high competitiveness is indicative of a recycling overcapacity, which could be increasingly significant by 2020. Following the definition of the study bases, the regulatory framework active in specific regions of the world is described, and an objective overview of the developing recycling sector is provided by analyzing all recycling processes, its organizational segmentation and the internal structure of relevant actors. The synthesis of this data provides a realistic guideline on the maturity of the industry and key strategies for the development of activities within this sector. Indeed, the success of this activity will rest partly on the ability of recycling actors to adapt their business model and administrative system to local regulatory framework, and adapt the size of their installation to the transitory volume

  3. Penetration of Photovoltaics in Greece

    Directory of Open Access Journals (Sweden)

    Eugenia Giannini

    2015-06-01

    Full Text Available Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach transformed photovoltaic technology from a prohibitively expensive to a competitive one. This work aims to summarize the relevant legislation and illustrate its effect on the resulting penetration. A sigmoid-shape penetration was observed which was explained by a pulse-type driving force. The return on investment indicator was proposed as an appropriate driving force, which incorporates feed-in-tariffs and turnkey-cost. Furthermore, the resulting surcharge on the electricity price due to photovoltaic penetration was also analyzed.

  4. Microinverters for employment in connection with photovoltaic modules

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Okandan, Murat; Johnson, Brian Benjamin; Krein, Philip T.

    2015-09-22

    Microinverters useable in association with photovoltaic modules are described. A three phase-microinverter receives direct current output generated by a microsystems-enabled photovoltaic cell and converts such direct current output into three-phase alternating current out. The three-phase microinverter is interleaved with other three-phase-microinverters, wherein such microinverters are integrated in a photovoltaic module with the microsystems-enabled photovoltaic cell.

  5. Electrolytic Hydrogen obtaining by a photovoltaic source

    International Nuclear Information System (INIS)

    Pasculete, E.; Condrea, F.; Stanoiu, L.

    2005-01-01

    At present, the developed countries allocate large funds for the financing of some global programs for fundamental and applicative research for development of hydrogen non-conventional production technologies. One of these technologies is the photo-assisted electrolysis. This technology is adopted in the research, which results are presented in this paper. The experimental model includes as basic equipment 100 W photovoltaic source, electrolysis battery press filter type, control unit of the electric energy discharged, accumulator, hydrogen storage unit. Five types of material have been tested for the electrolysis cell diaphragm: asbestos; Netrom- unwoven material from fibers of polypropylene; ion changing composite membrane - polysulfone support with an active layer of sulfonated poly-sulfone (PSS/PSJ) and poly-sulfone support with an active layer of sulfonated poly-eter cetone (SPEEK/PSf); ion-exchange membrane made from sulfonated poly-eter cetone (SPEEK). The graphics and results from the test system are presented. The analysis of the experimental results lead to the establishment of the optimal configuration of battery and of the operational conditions of the assembly. The experimental results give the opportunity to obtain electrolytic hydrogen with a photovoltaic source, in an efficient system, and promote the Romanian research at a level of a demonstrative installation

  6. Solar Photovoltaic Technology Basics | NREL

    Science.gov (United States)

    Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Photo of a large silicon solar

  7. ArXives of Earth science

    Science.gov (United States)

    2018-03-01

    Preprint servers afford a platform for sharing research before peer review. We are pleased that two dedicated preprint servers have opened for the Earth sciences and welcome submissions that have been posted there first.

  8. Photovoltaic module with adhesion promoter

    Science.gov (United States)

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  9. Photovoltaics

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the photovoltaics. It presents the principles and the applications, the issues and the current technology, the challenges and the Group Total commitment in the domain. (A.L.B.)

  10. Solar thermal power and photovoltaic energy are both developing; Solaire a concentration et solaire photovoltaique: la main dans la main

    Energy Technology Data Exchange (ETDEWEB)

    Le Jannic, N.; Houot, G.

    2010-11-15

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  11. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  12. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  13. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    Science.gov (United States)

    Shastry, Tejas Attreya

    to result in record breaking performance in a carbon nanotube solar cell, and subsequent chapters study the mechanisms behind charge transfer in the polychiral carbon nanotube / fullerene solar cell. Further processing advances, chiral distribution tailoring, and solvent additives are shown to enable more uniform and larger area carbon nanotube solar cells while maintaining record-breaking performance. In order to increase overall photovoltaic performance of a carbon nanotube active layer solar cell, this dissertation also demonstrates a ternary polymer-carbon nanotube-small molecule photovoltaic with high efficiency and stability enabled by the nanomaterial. Finally, the use of the two-dimensional metal dichalcogenide molybdenum disulfide as a photovoltaic material is explored in an ultrathin solar cell with higher efficiency per thickness than leading organic and inorganic thin-film photovoltaics. Overall, this work demonstrates breakthroughs in utilizing low-dimensional nanomaterials as active layer components in photovoltaics and will inform ongoing research in making ultrathin, stable, efficient solar cells.

  14. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  15. Analysis of energy production with different photovoltaic technologies in the Colombian geography

    Science.gov (United States)

    Muñoz, Y.; Zafra, D.; Acevedo, V.; Ospino, A.

    2014-06-01

    This research has analyzed the photovoltaic technologies, Polycrystalline silicon, Monocrystalline Silicon, GIS, Cadmium Tellurium and Amorphous Silicon; in eight cities of the Colombian territory, in order to obtain a clear idea of what is the most appropriate for each city or region studied. PVsyst simulation software has been used to study in detail each photovoltaic technology, for an installed capacity of 100kW knowing the specific data of losses by temperature, mismatch, efficiency, wiring, angle inclination of the arrangement, among others

  16. Analysis of energy production with different photovoltaic technologies in the Colombian geography

    International Nuclear Information System (INIS)

    Muñoz, Y; Zafra, D; Acevedo, V; Ospino, A

    2014-01-01

    This research has analyzed the photovoltaic technologies, Polycrystalline silicon, Monocrystalline Silicon, GIS, Cadmium Tellurium and Amorphous Silicon; in eight cities of the Colombian territory, in order to obtain a clear idea of what is the most appropriate for each city or region studied. PVsyst simulation software has been used to study in detail each photovoltaic technology, for an installed capacity of 100kW knowing the specific data of losses by temperature, mismatch, efficiency, wiring, angle inclination of the arrangement, among others

  17. Photovoltaic building sheathing element with anti-slide features

    Science.gov (United States)

    Keenihan, James R.; Langmaid, Joseph A.; Lopez, Leonardo C.

    2015-09-08

    The present invention is premised` upon an assembly that includes at least a photovoltaic building sheathing element capable of being affixed on a building structure, the photovoltaic building sheathing element. The element including a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; and at feast a first and a second connector assembly capable of directly or indirectly electrically connecting the photovoltaic cell assembly to one or more adjoining devices; wherein the body portion includes one or more geometric features adapted to engage a vertically adjoining device before installation.

  18. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Paola Sansoni

    2015-01-01

    Full Text Available Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can be performed in laboratory under controllable and reproducible conditions. A methodology to execute solar exposure tests is proposed and practically applied on photovoltaic cells for a solar cogeneration system. The cells are measured with concentrated solar light obtained utilizing a large Fresnel lens mounted on a sun tracker. Outdoor measurements monitor the effects of the exposure of two multijunction photovoltaic cells to focused sunlight. The main result is the continuous acquisition of the V-I (voltage-current curve for the cells in different conditions of solar concentration and temperature of exercise to assess their behavior. The research investigates electrical power extracted, efficiency, temperatures reached, and possible damages of the photovoltaic cell.

  19. All-Weather Solar Cells: A Rising Photovoltaic Revolution.

    Science.gov (United States)

    Tang, Qunwei

    2017-06-16

    Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    Science.gov (United States)

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  1. Optimizing Grid Patterns on Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  2. Photovoltaic Self-Consumption; Autoconsumo fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Abella, M.; Chenlo Romero, F.

    2013-02-01

    This paper analyzes the photovoltaic (PV) self consumption, or the option of using photovoltaic systems connected to the electric grid for the purpose of consuming the PV generated energy in the own installation (homes, small industries, office buildings, etc.) in order to reduce the external demand and the electric bill. At this time there is a legal vacuum regarding the installation of these generation systems for self-consumption, and the PV business sector and society are calling for the establishment of a legal and economic framework. Assuming that what can be saved with a photovoltaic system for domestic self-consumption is the cost of the kWh consumed currently 15c/kWh that there are no additional charges and that the cost of the turnkey photovoltaic system currently ranges from 1.8/Wp to 2.5/Wp, the resulting amortization period would be between 8 and 11 years for the condition of annual net metering. (Author) 31 refs.

  3. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  4. Overview of the Situation on Photovoltaic Market in Selected Eastern European States

    Directory of Open Access Journals (Sweden)

    Michal Pavlíček

    2013-11-01

    Full Text Available Purpose of this article: Purpose is to research situation on photovoltaic markets in Slovenia, Croatia and Hungary. It is focused on market development, market segmentation and product features. Raising trend on photovoltaic markets is expected due to favourable conditions given by states. However, state legislative harms competitive environment. Between customers preferences in product features are big differences. Scientific aim: The aim is to collect and analyze data for fuzzy mathematical model which building up will be output of the dissertation. Methodology/methods: To attain the stated objectives, research based on the collection of primary and secondary data was carried out. Secondary data was obtained from both domestic and foreign literature. Additional information was used from documents from ministries, state institutions and local distributors of electric energy. Primary research was carried out with the employment of qualitative and quantitative methods. From qualitative methods, a structured interview was chosen. Findings: The Balkan states are very different in conditions for installation of photovoltaic systems. The market in Slovenia has consistently growth exponentially. In Croatia it is more in form of step increase. Hungary seems to be the slowest-growing markets due to focus on other sources of energy. Conclusion: Slovenia is the best market for investments into photovoltaic systems from the described states. Slovenia has almost no entry barriers. Croatia stagnates due to the restrictive conditions in the legislation that allows only 1 MWp as an ongrid power. Unfavourable conditions of this market should be changed thanks to new legislation in 2011. Hungarian system, that supports investors with subsidy for technology, will start up this market. These investments will grow mainly thanks to qualified organizations. Thanks to conducted analysis of the data obtained, it is possible to compile fuzzy

  5. Photovoltaic electricity applications: history and perspectives

    International Nuclear Information System (INIS)

    Juquois, F.

    2010-01-01

    The photoelectric effect has been characterized in 1839 by Henry Becquerel. More than one hundred years later, in 1958, the first photovoltaic cell is developed for the space exploration. After the first oil shock in 1973, the occidental governments have started considering photovoltaic as one of the potential alternative to fossil in the future. 36 years later, photovoltaic is blossoming on the roof tops of dwellings and commercial buildings, as well as on the poor agricultural value lands. (author)

  6. The photovoltaic ambitious of EDF

    International Nuclear Information System (INIS)

    Houot, G.

    2008-01-01

    Added to the wind energy, EDF develops the photovoltaic by its subsidiaries EDF Energies Nouvelles, for the big power plants and EDF Energies Nouvelles Reparties centralized on the market of small installations for roofs. The author analyzes the society management and project concerning the photovoltaic development. (A.L.B.)

  7. Mounting support for a photovoltaic module

    Science.gov (United States)

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  8. Fiscal 1976 Sunshine Project result report. Research on solar energy utilization systems (photovoltaic power generation); 1976 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on the technical and economical perspectives of various solar cells, high-efficiency solar cell and its evaluation technique, and a photovoltaic power generation system and its applications. On Si single-crystal slice solar cell, it was pointed out that cost reduction by automatic production process using no vacuum process is essential. On Si thin film solar cell, some problems to be solved for development of particle accelerating growth technique were pointed out. Study was also made on 2-6 group compound semiconductor solar cell, 3-5 group bulk crystal solar cell, 3-5 group thin film solar cell, solar collection solar cell, and raw polycrystal Si materials. On photovoltaic power generation systems, it was reconfirmed through reconsideration of power generation systems for every application that the photovoltaic power generation system for residences is promising. On medium- scale power generation systems, study was made on power load and system configuration in consideration of applications to electric railway, highway, and power source of isolated islands. (NEDO)

  9. A thermoeconomic model of a photovoltaic heat pump

    International Nuclear Information System (INIS)

    Mastrullo, R.; Renno, C.

    2010-01-01

    In this paper the model of a heat pump whose evaporator operates as a photovoltaic collector, is studied. The energy balance equations have been used for some heat pump components, and for each layer of the photovoltaic evaporator: covering glaze, photovoltaic modules, thermal absorber plate, refrigerant tube and insulator. The model has been solved by means of a program using proper simplifications. The system input is represented by the solar radiation intensity and the environment temperature, that influence the output electric power of the photovoltaic modules and the evaporation power. The model results have been obtained referring to the photovoltaic evaporator and the plant operating as heat pump, in terms of the photovoltaic evaporator layers temperatures, the refrigerant fluid properties values in the cycle fundamental points, the thermal and mechanical powers, the efficiencies that characterize the plant performances from the energy, exergy and economic point of view. This study allows to realize a thermoeconomic comparison between a photovoltaic heat pump and a traditional heat pump under the same working conditions.

  10. Report on demonstrative research on photovoltaic power generation system in Myanmar. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of installation and demonstrative operation in Myanmar of a power generation system combining a small-scale photovoltaic power generation system, a wind power generation system, and a diesel generator, research and development is being made under a six year plan starting in 1999 and ending in 2004. This paper compiles the appendices related thereto. Collected for the climatic observation are the insolation data and wind velocity data in Chaungthar, and the insolation graph in both of Chaungthar and Lethokekone. Furthermore, materials for selection and decision on the installation location, and design materials for a hybrid power generation system were collected. Collected for procurement, construction, and installation of devices and facilities include test data for the diesel generator, drawings for the power generation control panel, test operation report, bill of lading for the diesel generator, a completion certificate of the diesel generator building, photographs of the building, a certificate of completion of installation of the diesel generator, photographs taken during the installation work, a certificate of completion of power transmission cable installation, photographs of the installation works, and the operation manual for the diesel engine. (NEDO)

  11. International Photovoltaic Program Plan. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Koontz, R.; Posner, D.; Heiferling, P.; Carpenter, P.; Forman, S.; Perelman, L.

    1979-12-01

    This second volume of a two-part report on the International Photovoltaic Program Plan contains appendices summarizing the results of analyses conducted in preparation of the plan. These analyses include compilations of relevant statutes and existing Federal programs; strategies designed to expand the use of photovoltaics abroad; information on the domestic photovoltaic plan and its impact on the proposed international plan; perspectives on foreign competition; industry views on the international photovoltaic market and ideas about how US government actions could affect this market; international financing issues; and information on issues affecting foreign policy and developing countries.

  12. Conjugated polymer photovoltaic devices and materials

    International Nuclear Information System (INIS)

    Mozer, A.J.; Niyazi, Serdar Sariciftci

    2006-01-01

    The science and technology of conjugated polymer-based photovoltaic devices (bulk heterojunction solar cells) is highlighted focusing on three major issues, i.e. (i) nano-morphology optimization, (ii) improving charge carrier mobility, (iii) improving spectral sensitivity. Successful strategies towards improved photovoltaic performance are presented using various novel materials, including double-cable polymers, regioregular polymers and low bandgap polymers. The examples presented herein demonstrate that the bulk heterojunction concept is a viable approach towards developing photovoltaic systems by inexpensive solution-based fabrication technologies. (authors)

  13. Highway renewable energy : photovoltaic noise barriers

    Science.gov (United States)

    2017-07-01

    Highway photovoltaic noise barriers (PVNBs) represent the combination of noise barrier systems and photovoltaic systems in order to mitigate traffic noise while simultaneously producing renewable energy. First deployed in Switzerland in 1989, PVNBs a...

  14. Solidification and properties of photovoltaic silicon

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Strenuous efforts are being made to develop an economical process for purifying liquid metallurgical-grade silicon, in response to the growing shortages in high-purity silicon for use in manufacturing photovoltaic cells. A research project is studying this issue at C.E. Saclay, Gif-sur-Yvette, France, co-funded by ADEME (the French Environment and Energy Management Agency) and CEA-INSTN (French Atomic Energy Commission National Institute for Nuclear Science and Technology). (authors)

  15. Progress in high-efficient solution process organic photovoltaic devices fundamentals, materials, devices and fabrication

    CERN Document Server

    Li, Gang

    2015-01-01

    This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process fo...

  16. The 2009 photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global photovoltaic market expanded again in 2009. Germany set a new system installation record while the capacity build-up of the major solar photovoltaic markets contained the fallout generated by the Iberian market derailment. The European Union has the highest photovoltaic plant capacity, with almost 5.5 GWp installed in 2009. Italy is the third European Union country to pass the symbolic 1000 MWp installed mark, following Germany and Spain. France ranks 6 with 185 MWp installed in 2009. The decrease in the price of silicon reached 80% in 2009. The industry is facing a coming-of-age crisis with prices falling and over-production. Most of the major cell manufacturers are located in Asia. The European industry is still well represented with Q-Cells, the German leading cell manufacturer in addition with hefty industry players. (A.C.)

  17. Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment

    Directory of Open Access Journals (Sweden)

    Mahmoud Shakouri

    2016-03-01

    Full Text Available The amount of electricity generated by Photovoltaic (PV systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in Supplementary materials. The application of these files can be generalized to variety of communities interested in investing on PV systems. Keywords: Community solar, Photovoltaic system, Portfolio theory, Energy optimization, Electricity volatility

  18. SHADOW EFFECT ON PHOTOVOLTAIC POTENTIALITY ANALYSIS USING 3D CITY MODELS

    Directory of Open Access Journals (Sweden)

    N. Alam

    2012-07-01

    Full Text Available Due to global warming, green-house effect and various other drawbacks of existing energy sources, renewable energy like Photovoltaic system is being popular for energy production. The result of photovoltaic potentiality analysis depends on data quality and parameters. Shadow rapidly decreases performance of the Photovoltaic system and it always changes due to the movement of the sun. Solar radiation incident on earth's atmosphere is relatively constant but the radiation at earth's surface varies due to absorption, scattering, reflection, change in spectral content, diffuse component, water vapor, clouds and pollution etc. In this research, it is being investigated that how efficiently real-time shadow can be detected for both direct and diffuse radiation considering reflection and other factors in contrast with the existing shadow detection methods using latest technologies and what is the minimum quality of data required for this purpose. Of course, geometric details of the building geometry and surroundings directly affect the calculation of shadows. In principle, 3D city models or point clouds, which contain roof structure, vegetation, thematically differentiated surface and texture, are suitable to simulate exact real-time shadow. This research would develop an automated procedure to measure exact shadow effect from the 3D city models and a long-term simulation model to determine the produced energy from the photovoltaic system. In this paper, a developed method for detecting shadow for direct radiation has been discussed with its result using a 3D city model to perform a solar energy potentiality analysis.

  19. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  20. Price-Efficiency Relationship for Photovoltaic Systems on a Global Basis

    Directory of Open Access Journals (Sweden)

    Mehmet Sait Cengiz

    2015-01-01

    Full Text Available Solar energy is the most abundant, useful, efficient, and environmentally friendly source of renewable energy. In addition, in recent years, the capacity of photovoltaic electricity generation systems has increased exponentially throughout the world given an increase in the economic viability and reliability of photovoltaic systems. Moreover, many studies state that photovoltaic power systems will play a key role in electricity generation in the future. When first produced, photovoltaic systems had short lifetimes. Currently, through development, the technology lifecycle of photovoltaic systems has increased to 20–25 years. Studies showed that photovoltaic systems would be broadly used in the future, a conclusion reached by considering the rapidly decreasing cost of photovoltaic systems. Because price analysis is very important for energy marketing, in this study, a review of the cost potential factors on photovoltaic panels is realized and the expected cost potential of photovoltaic systems is examined considering numerous studies.

  1. Non-destructive evaluation of water ingress in photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  2. Socioeconomic impact of photovoltaic power at Schuchuli, Arizona

    Science.gov (United States)

    Bahr, D.; Garrett, B. G.; Chrisman, C.

    1980-01-01

    The social and economic impact of photovoltaic power on a small, remote native American village is studied. Village history, group life, energy use in general, and the use of photovoltaic-powered appliances are discussed. No significant impacts due to the photovoltaic power system were observed.

  3. Nanoscale Morphology of Doctor Bladed versus Spin-Coated Organic Photovoltaic Films

    KAUST Repository

    Pokuri, Balaji Sesha Sarath; Sit, Joseph; Wodo, Olga; Baran, Derya; Ameri, Tayebeh; Brabec, Christoph J.; Moule, Adam J.; Ganapathysubramanian, Baskar

    2017-01-01

    Recent advances in efficiency of organic photovoltaics are driven by judicious selection of processing conditions that result in a “desired” morphology. An important theme of morphology research is quantifying the effect of processing conditions

  4. Variability of photovoltaic panels efficiency depending on the value of the angle of their inclination relative to the horizon

    OpenAIRE

    Majdak Marek

    2017-01-01

    The objective of this paper was to determine the relationship between the efficiency of photovoltaic panels and the value of the angle of their inclination relative to the horizon. For the purpose of experimental research have been done tests on the photovoltaic modules made of monocrystalline, polycrystalline and amorphous silicon. The experiment consisted of measurement of the voltage and current generated by photovoltaic panels at a known value of solar radiation and a specified resistance...

  5. A molecular spin-photovoltaic device.

    Science.gov (United States)

    Sun, Xiangnan; Vélez, Saül; Atxabal, Ainhoa; Bedoya-Pinto, Amilcar; Parui, Subir; Zhu, Xiangwei; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E

    2017-08-18

    We fabricated a C 60 fullerene-based molecular spin-photovoltaic device that integrates a photovoltaic response with the spin transport across the molecular layer. The photovoltaic response can be modified under the application of a small magnetic field, with a magnetophotovoltage of up to 5% at room temperature. Device functionalities include a magnetic current inverter and the presence of diverging magnetocurrent at certain illumination levels that could be useful for sensing. Completely spin-polarized currents can be created by balancing the external partially spin-polarized injection with the photogenerated carriers. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Production. Which price for photovoltaic?

    International Nuclear Information System (INIS)

    Dupin, L.

    2011-01-01

    As the French government decided to reduce its financial support to photovoltaic energy, a first article identifies and comments the issues to be addressed to have a competitive French photovoltaic industry: to bet on second generation arrays (thin layer arrays), to have higher yearly objectives in terms of installed power (800 MW or 1 GW instead of 500 MW, in order to create a reference market), to redefine the financing and the electricity purchase scheme, to promote self consumption, to support exportation. The second article presents the first French photovoltaic test and certification centre, located near Chambery, where solar arrays are inspected and where their ageing is simulated through thermal fatigue and impact testing

  7. Research of the photovoltaic properties of anodized films of Sn

    Science.gov (United States)

    Afanasyev, D. A.; Ibrayev, N. Kh; Omarova, G. S.; Smagulov, Zh K.

    2015-04-01

    The results of studies of photovoltaic properties of solar cells based on porous tin oxide films, sensitized with an organic dye are presented. Porous films were prepared by electrochemical anodization of tin in alkaline electrolytes based on aqueous solution of NaOH and aqueous ammonia NH4OH. It was found that the time of anodizing of the Sn films affects on conversion efficiency of light energy into electrical energy. Increasing of the sorption time leads to an increase of the number of molecules on the surface of the porous film. For the solar cell based on tin oxide there is a strong dark current, which significantly reduces the efficiency of conversion of light energy into electrical energy.

  8. Solar energy photovoltaic technology: proficiency and performance; L'energie solaire maitrise et performance photovoltaiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  9. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    Science.gov (United States)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  10. Photovoltaic conversion of laser energy

    Science.gov (United States)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  11. Photovoltaics Innovation Roadmap Request for Information Summary

    Energy Technology Data Exchange (ETDEWEB)

    Solar Energy Technologies Office

    2018-03-28

    On June 28, 2017, the U.S. Department of Energy’s Solar Energy Technologies Office (SETO) released the Photovoltaics (PV) Innovation Roadmap Request for Information (RFI) for public response and comment. The RFI sought feedback from PV stakeholders, including research and commercial communities, about the most important research and development (R&D) pathways to improve PV cell and module technology to reach the SETO’s SunShot 2030 cost targets of $0.03/W for utility PV installations, $0.04/W for commercial scale installations, and $0.05/W for residential PV installations.

  12. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  13. Economics of production and use of photovoltaics

    International Nuclear Information System (INIS)

    Hill, R.

    1991-01-01

    There are many ways of analysing the comparative costs of photovoltaic systems. All the methods make assumptions, often unrecognised, about the photovoltaic technologies and their costs, and about the systems with which they are being compared. Probably the most difficult and elusive parameter to determine is the cost of energy from non-photovoltaic sources with which the electricity from photovoltaics is being compared. Photovoltaics (and other renewable energy sources) demand an initial capital investment and then need maintenance for the duration of their working life. Nuclear power plants require a major capital investment, highly skilled maintenance, and fuel during their working lifetime, plus storage of waste for some hundreds of years. The fuel costs of fossil fuel plants greatly exceed the initial capital costs of the plants. A fair comparison would thus then have to include the complete life-cycle costs of the plant with identical assumptions made for each technology for the rates of inflation, return on capital, etc. 6 figs, 5 tabs

  14. Developing a mobile stand alone photovoltaic generator

    International Nuclear Information System (INIS)

    Soler-Bientz, R.; Ricalde-Cab, L.O.; Solis-Rodriguez, L.E.

    2006-01-01

    This paper describes a recent work developed to create a mobile stand alone photovoltaic generator that can be easily relocated in remote areas to evaluate the feasibility of photovoltaic energy applications. A set of sensors were installed to monitor the electric current and voltage of the energy generated, the energy stored and the energy used by the loads that may be connected to the system. Other parameters like solar radiations (both on the horizontal and on the photovoltaic generation planes) and temperatures (of both the environment and the photovoltaic module) were monitored. This was done while considering the important role of temperature in the photovoltaic module performance. Finally, a measurement and communication hardware was installed to interface the system developed with a conventional computer. In this way, the performance of the overall system in real rural conditions could be evaluated efficiently. Visual software that reads, visualizes and saves the data generated by the system was also developed by means of the LabVIEW programming environment

  15. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  16. Solar photovoltaics in Sri Lanka: a short history

    International Nuclear Information System (INIS)

    Gunaratne, L.

    1994-01-01

    With a significant unelectrified rural population, Sri Lanka has followed the evolution of solar photovoltaic (PV) technology in the West very closely since the 1970s as terrestrial applications for photovoltaics were developed. It was not until 1980 that the Sri Lankan government embarked on the promotion of solar photovoltaics for rural domestic use when the Ceylon Electricity Board formed the Energy Unit. In addition, Australian and Sri Lankan government-funded pilot projects have given the local promoters further valuable insight into how and how not to promote solar photovoltaics. The establishment of community-based solar photovoltaic programmes by non-governmental organizations has developed a novel approach to bridge the gap between this state-of-the-art technology and the remotely located end-users. (author)

  17. Workforce challenges and opportunities in the solar photovoltaic industry in Toronto

    International Nuclear Information System (INIS)

    Saneinejad, Sheyda

    2011-01-01

    In December 2009, the city of Toronto adopted principles and targets for the city's sustainable energy future. The city plans to install 2 MW of solar photovoltaic panels in its facilities. The aim of this study is to assess the impact of such a project, as well as further expansion of solar photovoltaic energy generation, from the economic development perspective. A literature review, online surveys and interviews with solar industries were carried out and a job estimation model was developed. Results showed that the 2 MW installation would create 53 person years of employment locally while expansion of the technology throughout the city could generate 100,000 local jobs. However this research also pointed out a lack of suitably qualified and experienced personnel Canada-wide. This study demonstrated that the solar photovoltaic industry has the potential to provide significant economic benefits in Toronto but that certification programs must be put in place to address the lack of qualified personnel.

  18. A new road map for the research in photovoltaic electricity production in Japan; Nouvelle feuille de route pour la recherche dans le domaine de la production d'electricite d'origine photovoltaique au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Destruel, P.; Chataing, H

    2009-07-01

    Dealing with the new road map published in 2009 by the NEDO (New Energy and Industrial Technology development Organization) for the research activity in photovoltaic electricity production in Japan from now until 2030, this brief embassy report first outlines the need for such a new road map as Japan's international competitiveness is more and more challenged: it only possesses 10% of the installed power in the world (50% in 2003) and ranks now in sixth position in terms of annual installed power. Beside this trend, environmental challenges and CO{sub 2} emission reduction objectives, as well as oil price increase, have driven the NEDO to review its road map sooner as foreseen. The author describes the contents of the three main axis which have been defined for the photovoltaic development: photovoltaic profitability improvement (grid parity objective by 2030, production cost reduction), broadening of photovoltaic uses and applications, development and competitiveness of Japanese industries.

  19. Photovoltaic effect in Bi2TeO5 photorefractive crystal

    International Nuclear Information System (INIS)

    Oliveira, Ivan de; Capovilla, Danilo Augusto; Carvalho, Jesiel F.; Montenegro, Renata; Fabris, Zanine V.; Frejlich, Jaime

    2015-01-01

    We report on the presence of a strong photovoltaic effect on nominally undoped photorefractive Bi 2 TeO 5 crystals and estimated their Glass photovoltaic constant and photovoltaic field for λ = 532 nm illumination. We directly measured the photovoltaic-based photocurrent in this material under λ = 532 nm wavelength laser light illumination and compared its behavior with that of a well known photovoltaic Fe-doped Lithium Niobate crystal. We also show the photovoltaic current to strongly depend on the polarization direction of light. Holographic diffraction efficiency oscillation during recording and the behavior of fringe-locked running holograms in self-stabilized experiments are also demonstrated here as additional indirect proofs of the photovoltaic nature of this material

  20. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  1. Photovoltaic technologies for commercial power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    Photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  2. Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Angel García-Cabañes

    2018-01-01

    Full Text Available This review presents an up-dated summary of the fundamentals and applications of optoelectronic photovoltaic tweezers for trapping and manipulation of nano-objects on the surface of lithium niobate crystals. It extends the contents of previous reviews to cover new topics and developments which have emerged in recent years and are marking the trends for future research. Regarding the theoretical description of photovoltaic tweezers, detailed simulations of the electrophoretic and dielectrophoretic forces acting on different crystal configurations are discussed in relation to the structure of the obtained trapping patterns. As for the experimental work, we will pay attention to the manipulation and patterning of micro-and nanoparticles that has experimented an outstanding progress and relevant applications have been reported. An additional focus is now laid on recent work about micro-droplets, which is a central topic in microfluidics and optofluidics. New developments in biology and biomedicine also constitute a relevant part of the review. Finally, some topics partially related with photovoltaic tweezers and a discussion on future prospects and challenges are included.

  3. Designing a concentrating photovoltaic (CPV) system in adjunct with a silicon photovoltaic panel for a solar competition car

    Science.gov (United States)

    Arias-Rosales, Andrés.; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2014-06-01

    Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle "Primavera", competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.

  4. Photovoltaic is always more profitable

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2016-01-01

    While indicating 31 recommendations made by the ADEME for the development of photovoltaic production, this article outlines a result published in the same report: the cost of solar photovoltaic production keeps on decreasing, and therefore, profitabilities without subsidy might appear before the 2020's in France. The cost of ground-based photovoltaic plant has indeed been decreasing from 6 to 1.5 euro per Watt in less than 10 years, with some regional variations. The connection cost could also be reduced by nearly 30 per cent for individual installations. New business models could then be implemented for a development without subsidy. The new thermal regulation could also have an influence on the development of solar production. These trends can be noticed in the world as well

  5. Photovoltaic Barometer - EurObserv'ER - April 2010

    International Nuclear Information System (INIS)

    2010-04-01

    The global photovoltaic market expanded again in 2009. Germany set a new system installation record while the capacity build-up of the major solar photovoltaic markets contained the fallout generated by the Iberian market derailment. The European Union has the highest photovoltaic plant capacity, with almost 5.5 GWp installed in 2009

  6. Information report from the Economic Affairs commission on photovoltaic energy

    International Nuclear Information System (INIS)

    2009-01-01

    Today and for several years to come, photovoltaic energy represents only a minimal part of the world's electric power production. Photovoltaic energy is only at its beginnings, however several countries have already taken opportunities in the business. This report gives a comprehensive information about photovoltaic energy (basic principles, conversion systems, photovoltaic power plants, incentive programs in other developed countries, regulations ...) and arguments for the development of a structured photovoltaic energy policy in France

  7. Photovoltaic barometer a 29% remarkable growth

    International Nuclear Information System (INIS)

    Maitrot, J.

    2000-01-01

    Day after day, photovoltaic energy is progressing a bit more both technologically and in terms of its different applications. In 1999, world photovoltaic cells production practically reached the 200 MWp mark and the five first cells producers generated a turnover of 430 million euro. (authors)

  8. Recent developments in photovoltaics

    International Nuclear Information System (INIS)

    Green, M.A.

    2004-01-01

    The photovoltaic market is booming with over 30% per annum compounded growth over the last five years. The government-subsidised urban-residential use of photovoltaics, particularly in Germany and Japan, is driving this sustained growth. Most of the solar cells being supplied to this market are 'first generation' devices based on crystalline or multi-crystalline silicon wafers. 'Second generation' thin-film solar cells based on amorphous silicon/hydrogen alloys or polycrystalline compound semiconductors are starting to appear on the market in increasing volume. Australian contributions in this area are the thin-film polycrystalline silicon-on-glass technology developed by Pacific Solar and the dye sensitised nanocrystalline titanium cells developed by Sustainable Technologies International. In these thin-film approaches, the major material cost component is usually the glass sheet onto which the film is deposited. After reviewing the present state of development of both cell and application technologies, the likely future development of photovoltaics is outlined. (author)

  9. Advanced silicon materials for photovoltaic applications

    CERN Document Server

    Pizzini, Sergio

    2012-01-01

    Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Ev

  10. Direct mounted photovoltaic device with improved front clip

    Science.gov (United States)

    Keenihan, James R; Boven, Michelle; Brown, Jr., Claude; Gaston, Ryan S; Hus, Michael; Langmaid, Joe A; Lesniak, Mike

    2013-11-05

    The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent (overlapping) photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

  11. Direct mounted photovoltaic device with improved side clip

    Science.gov (United States)

    Keenihan, James R; Boven, Michelle L; Brown, Jr., Claude; Eurich, Gerald K; Gaston, Ryan S; Hus, Michael

    2013-11-19

    The present invention is premised upon a photovoltaic assembly system for securing and/or aligning at least a plurality of vertically adjacent photovoltaic device assemblies to one another. The securing function being accomplished by a clip member that may be a separate component or integral to one or more of the photovoltaic device assemblies.

  12. Solar radiation inside greenhouses covered with semitransparent photovoltaic film: first experimental results

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2013-09-01

    Full Text Available The southern Italian regions are characterized by climatic conditions with high values of solar radiation and air temperature. This has allowed the spread of protected structures both as a defense against critical winter conditions both for growing off-season. The major energy source for these greenhouses is given by solar energy and artificial energy is used rarely. So the problem in the use of greenhouses in these areas, if anything, is opposite to that of the northern areas. In these places you must try to mitigate often the solar radiation inside the greenhouses with suitable measures or abandon for a few months the cultivation inside these structures. The solar radiation intercepted by passive means can be used for other purposes through the uptake and transformation by the photovoltaic panels whose use however is problematic due to complete opacity of the cells. New photosensitive materials partially transparent to solar radiation onto flexible media, allow to glimpse the possibility of using them to greenhouses cover, getting the dual effect of partially screen the greenhouse and use the surplus to generate electricity. The research was carried out to evaluate the possibility of using a flexible photovoltaic film realized by the University of Rome Tor Vergata (research group of ECOFLECS project coordinated by prof. Andrea Reale for covering greenhouses. Two greenhouses in small scale were built: one covered with photovoltaic film and one covered with EVA film for test. In both greenhouses during the first research period it was grown a variety of dwarf tomato. The research was carried out comparing the solar radiation that enters into greenhouse in the summer (August 2012 and in winter conditions (December 2012 in both greenhouses. The result show that the average ratio between the daily global solar radiation under the photovoltaic film and outside radiation is about 37%, while between the radiation under EVA film and outside radiation

  13. Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors

    International Nuclear Information System (INIS)

    Holdermann, Claudius; Kissel, Johannes; Beigel, Jürgen

    2014-01-01

    This paper examines the economic viability of small-scale, grid-connected photovoltaics in the Brazilian residential and commercial sectors after the introduction of the net metering regulation in April 2012. This study uses the discounted cash flow method to calculate the specific investment costs that are necessary for photovoltaic systems to be economically viable for each of the 63 distribution networks in Brazil. We compare these values to the system costs that are estimated in the comprehensive study on photovoltaics that was developed by the Brazilian Association of Electric and Electronic Industries (ABINEE). In our calculation, we utilize the current electricity tariffs, including fees and taxes, which we obtained through telephone interviews and publicly available information. We obtained a second important parameter by simulating PV-systems with the program PV ⁎ Sol at the distribution company headquarters' locations. In our base case scenario that reflects the current situation, in none of the distribution networks photovoltaics is economically viable in either the commercial or residential sectors. We improved the environment for grid-connected photovoltaics in our scenarios by assuming both lower PV-system costs and a lower discount rate to determine the effect on photovoltaics viability. - Highlights: • We calculate the economic viability of photovoltaics in the residential and commercial sectors in Brazil. • The PV ⁎ Sol simulations are carried out at the headquarter locations for the 63 distribution companies. • Currently in none of the distribution networks, photovoltaics is economically viable in either the commercial or residential sectors. • We analyze how the variation of the specific investment costs and of the discount rate affects the economic viability

  14. Towards High Performance Organic Photovoltaic Cells: A Review of Recent Development in Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Junsheng Yu

    2014-09-01

    Full Text Available Organic photovoltaic cells (OPVs have been a hot topic for research during the last decade due to their promising application in relieving energy pressure and environmental problems caused by the increasing combustion of fossil fuels. Much effort has been made toward understanding the photovoltaic mechanism, including evolving chemical structural motifs and designing device structures, leading to a remarkable enhancement of the power conversion efficiency of OPVs from 3% to over 15%. In this brief review, the advanced progress and the state-of-the-art performance of OPVs in very recent years are summarized. Based on several of the latest developed approaches to accurately detect the separation of electron-hole pairs in the femtosecond regime, the theoretical interpretation to exploit the comprehensive mechanistic picture of energy harvesting and charge carrier generation are discussed, especially for OPVs with bulk and multiple heterojunctions. Subsequently, the novel structural designs of the device architecture of OPVs embracing external geometry modification and intrinsic structure decoration are presented. Additionally, some approaches to further increase the efficiency of OPVs are described, including thermotics and dynamics modification methods. Finally, this review highlights the challenges and prospects with the aim of providing a better understanding towards highly efficient OPVs.

  15. Photovoltaic conversion in Austria: Inventory 1994

    International Nuclear Information System (INIS)

    Faninger, G.

    1995-05-01

    On January 1, 1995 photovoltaic systems with a maxiumum capacity of about 1063 kW (peak) were installed in Austria. 48% of the photovoltaic systems are connected with the grid, 24% are stand-alone systems and about 28% are small systems (<200 W) for different applications. (author)

  16. FPGA-based implementation of a fuzzy controller (MPPT) for photovoltaic module

    International Nuclear Information System (INIS)

    Messai, A.; Mellit, A.; Massi Pavan, A.; Guessoum, A.; Mekki, H.

    2011-01-01

    Research highlights: → FL-MPPT controller is implemented on FPGA. → Results obtained with ModelSim show a satisfactory performance. → Results will be useful for future development in PV. -- Abstract: This paper describes the hardware implementation of a two-inputs one-output digital Fuzzy Logic Controller (FLC) on a Xilinx reconfigurable Field-Programmable Gate Array (FPGA) using VHDL Hardware Description Language. The FLC is designed for seeking the maximum power point deliverable by a photovoltaic module using the measures of the photovoltaic current and voltage. The simulation results obtained with ModelSim Xilinx Edition-III show a satisfactory performance with a good agreement between the expected and the obtained values.

  17. FPGA-based implementation of a fuzzy controller (MPPT) for photovoltaic module

    Energy Technology Data Exchange (ETDEWEB)

    Messai, A. [CRNB Ain Oussera, P.O. Box 180, 17200, Djelfa (Algeria); Department of Electronics, Faculty of Sciences Engineering, Blida University, Blida 90000 (Algeria); Mellit, A., E-mail: a.mellit@yahoo.co.u [Department of Electronics, Faculty of Sciences and Technology, Jijel University, Ouled-aissa, P.O. Box 98, Jijel 18000 (Algeria); Department of Electronics, Faculty of Sciences Engineering, Blida University, Blida 90000 (Algeria); Massi Pavan, A. [Department of Materials and Natural Resources, University of Trieste, Via A. Valerio, 2 - 34127 Trieste (Italy); Guessoum, A. [Department of Electronics, Faculty of Sciences Engineering, Blida University, Blida 90000 (Algeria); Mekki, H. [CRNB Ain Oussera, P.O. Box 180, 17200, Djelfa (Algeria); Department of Electronics, Faculty of Sciences Engineering, Blida University, Blida 90000 (Algeria)

    2011-07-15

    Research highlights: {yields} FL-MPPT controller is implemented on FPGA. {yields} Results obtained with ModelSim show a satisfactory performance. {yields} Results will be useful for future development in PV. -- Abstract: This paper describes the hardware implementation of a two-inputs one-output digital Fuzzy Logic Controller (FLC) on a Xilinx reconfigurable Field-Programmable Gate Array (FPGA) using VHDL Hardware Description Language. The FLC is designed for seeking the maximum power point deliverable by a photovoltaic module using the measures of the photovoltaic current and voltage. The simulation results obtained with ModelSim Xilinx Edition-III show a satisfactory performance with a good agreement between the expected and the obtained values.

  18. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION

    International Nuclear Information System (INIS)

    BOWERMAN, B.; FTHENAKIS, V.

    2001-01-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified

  19. Photovoltaic technologies for commerical power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    The author reports photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  20. Recent results for concentrator photovoltaics in Japan

    Science.gov (United States)

    Yamaguchi, Masafumi; Takamoto, Tatsuya; Araki, Kenji; Kojima, Nobuaki

    2016-04-01

    We summarize the Europe-Japan Collaborative Research Project on Concentrator Photovoltaics (CPV); NGCPV Project (a New Generation of Concentrator PhotoVoltaic cells, modules and systems). The aim of this project was to accelerate the move to very high efficiency and lower cost CPV technologies and to enhance the widespread deployment of CPV systems. Seven European partners and nine Japanese partners have contributed to this international collaboration. The following objectives have been reached: 1) a CPV cell with InGaP/GaAs/InGaAs three-junction world-record efficiency of 44.4% has been developed by Sharp, 2) 50 kW and 15 kW CPV plant operations with an average DC efficiency of 27.8% have been demonstrated in Spain (since mid-2012), 3) a new “Intrepid” CPV module with 31.3% efficiency has been developed by Daido Steel, 4) standard measurement of CPV cells has been established by FhG-ISE and AIST, and 46.0% efficiency has been confirmed for the direct-bonded GaInP/GaAs/GaInAsP/GaInAs four-junction solar cell under this project, 5) the fundamental research on novel materials and structures for CPV has also been conducted.

  1. International solar energy research co-operation

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.; Peippo, K.; Konttinen, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Finland has participated in several IEA activities during 1996-97. HUT coordinates the activities, but practical participation in collaborative actions take place both in industrial companies and research organisations. Neste Ltd has directly participated in several tasks and information of results has been disseminated more widely to Finnish industries and organisations. Co-operation projects covered here are: (1) IEA Photovoltaic Power Systems Task 1 `Information dissemination`, (2) IEA Photovoltaic Power Systems Task 3 `Use of Photovoltaic systems in Stand Alone and Island Applications`, (3) IEA Photovoltaic Power Systems Task 7 `Photovoltaics in built environment`, (4) IEA Solar Heating and Cooling Program Task 16 `Photovoltaics in buildings` and (5) IEA Working Group `Materials in Solar Thermal Collectors`

  2. Photovoltaic Cells and Modules towards Terawatt Era

    Institute of Scientific and Technical Information of China (English)

    Vitezslav Benda

    2017-01-01

    Progresses in photovoltaic technologies over the past years are evident from the lower costs,the rising efficiency,to the great improvements in system reliability and yield.Cumulative installed power yearly growths were on an average more than 40% in the period from 2007 to 2016 and in 2016,the global cumulative photovoltaic power installed has reached 320 GWp.The level 0.5 TWp could be reached before 2020.The production processes in the solar industry still have great potential for optimization both wafer based and thin film technologies.Trends following from the present technology levels are discussed,also taking into account other parts of photovoltaic systems that influence the cost of electrical energy produced.Present developments in the three generations of photovoltaic modules are discussed along with the criteria for the selection of appropriate photovoltaic module manufacturing technologies.The wafer based crystalline silicon (c-silicon) technologies have the role of workhorse of present photovoltaic power generation,representing more than 90% of total module production.Further technology improvements have to be implemented without significantly increasing costs per unit,despite the necessarily more complex manufacturing processes involved.The tandem of c-silicon and thin film cells is very promising.Durability may be a limiting factor of this technology due to the dependence of the produced electricity cost on the module service time.

  3. Recent facts about photovoltaics in Germany

    International Nuclear Information System (INIS)

    Wirth, Harry

    2015-01-01

    Germany is leaving the age of fossil fuel behind. In building a sustainable energy future, photovoltaics is going to have an important role. The following summary consists of the most recent facts, figures and findings and shall assist in forming an overall assessment of the photovoltaic expansion in Germany.

  4. Photovoltaic Energy Program Contract Summary; Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Surek, T.

    1999-02-16

    This document provides individual summaries of some 200 photovoltaics research projects performed in house and by subcontractors to Department of Energy national laboratories and field offices, including the National Renewable Energy Laboratory, Sandia National Laboratories, Golden Field Office, Brookhaven National Laboratory, Albuquerque Field Office, and Boston Support Office. The document is divided into the following sections: research and development, technology development, and systems engineering and applications. Three indexes are included: performing organizations by name, performing organizations by state, and performing organizations by technology area.

  5. Hole-thru-laminate mounting supports for photovoltaic modules

    Science.gov (United States)

    Wexler, Jason; Botkin, Jonathan; Culligan, Matthew; Detrick, Adam

    2015-02-17

    A mounting support for a photovoltaic module is described. The mounting support includes a pedestal having a surface adaptable to receive a flat side of a photovoltaic module laminate. A hole is disposed in the pedestal, the hole adaptable to receive a bolt or a pin used to couple the pedestal to the flat side of the photovoltaic module laminate.

  6. Organic bulk heterojunction photovoltaic structures: design, morphology and properties

    International Nuclear Information System (INIS)

    Bulavko, G V; Ishchenko, A A

    2014-01-01

    Main approaches to the design of organic bulk heterojunction photovoltaic structures are generalized and systematized. Novel photovoltaic materials based on fullerenes, organic dyes and related compounds, graphene, conjugated polymers and dendrimers are considered. The emphasis is placed on correlations between the chemical structure and properties of materials. The effect of morphology of the photoactive layer on the photovoltaic properties of devices is analyzed. Main methods of optimization of the photovoltaic properties are outlined. The bibliography includes 338 references

  7. Photovoltaic solar energy: which realities for 2020? Summarized synthesis

    International Nuclear Information System (INIS)

    2011-01-01

    This report first describes the situation of the photovoltaic as situated at a crossroad with strong development possibilities for the French photovoltaic sector. It presents the photovoltaic energy as a competitive, regulatory and ecologic one, and therefore inescapable. It outlines stakes and obstacles of the French situation regarding the development of this sector. It highlights the economic and social benefit investing in this sector. Some propositions are stated for the promotion of the photovoltaic solar sector. Challenges are identified

  8. The photovoltaic sector in France Year 2009

    International Nuclear Information System (INIS)

    Durand, Yvonnick; Jacquin, Philippe

    2010-01-01

    level are being coordinated by public funding from regional councils', general councils, joint municipal authorities and communes depending on specifications. The ADEME (the French Agency for Environment and Energy Management - www.ademe.fr), together with the ANR (France's national research agency - www.agence-nationale-recherche.fr), the OSEO (company financing body for projects to create, innovate and develop - www.oseo.fr) and France's regional councils are continuing to support research activities in the field of photovoltaics

  9. Asphaltene based photovoltaic devices

    Science.gov (United States)

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  10. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  11. Distributed photovoltaic grid transformers

    CERN Document Server

    Shertukde, Hemchandra Madhusudan

    2014-01-01

    The demand for alternative energy sources fuels the need for electric power and controls engineers to possess a practical understanding of transformers suitable for solar energy. Meeting that need, Distributed Photovoltaic Grid Transformers begins by explaining the basic theory behind transformers in the solar power arena, and then progresses to describe the development, manufacture, and sale of distributed photovoltaic (PV) grid transformers, which help boost the electric DC voltage (generally at 30 volts) harnessed by a PV panel to a higher level (generally at 115 volts or higher) once it is

  12. The Italian programme in photovoltaic solar energy

    Science.gov (United States)

    Farinelli, U.

    Italian programs and goals for developing a photovoltaic (PV) industry and market are outlined. It is suggested that only a few megawatts of PVs will be produced for domestic consumption in the next few years, while the largest market is for developing nations where costly diesel-fueled generators are used. The installation of PV systems in developing areas will permit testing and scaling up of production capacities from several MW to several hundred MW and then to GW annual production. Approximately 55,000,000 was devoted to government research in PV in 1982 and a PV research laboratory is being built near Naples.

  13. High-efficiency photovoltaic technology including thermoelectric generation

    Science.gov (United States)

    Fisac, Miguel; Villasevil, Francesc X.; López, Antonio M.

    2014-04-01

    Nowadays, photovoltaic solar energy is a clean and reliable source for producing electric power. Most photovoltaic systems have been designed and built up for use in applications with low power requirements. The efficiency of solar cells is quite low, obtaining best results in monocrystalline silicon structures, with an efficiency of about 18%. When temperature rises, photovoltaic cell efficiency decreases, given that the short-circuit current is slightly increased, and the open-circuit voltage, fill factor and power output are reduced. To ensure that this does not affect performance, this paper describes how to interconnect photovoltaic and thermoelectric technology into a single structure. The temperature gradient in the solar panel is used to supply thermoelectric cells, which generate electricity, achieving a positive contribution to the total balance of the complete system.

  14. Experimental research on charging characteristics of a solar photovoltaic system by the pressure-control method

    Institute of Scientific and Technical Information of China (English)

    Hua ZHU; Zhang-lu XU; Zi-juan CAO

    2011-01-01

    The charging characteristics of the valve-regulated lead acid (VRLA) battery driven by solar energy were experimentally studied through the pressure-control method in this paper. The aims of the research were to increase charging efficiency to make the most of solar energy and to improve charging quality to prolong life of battery. The charging process of a 12 V 12 A.h VRLA battery has been tested under the mode of a stand-alone photovoltaic (PV) system. Results show that the pressure-control method can effectively control PV charging of the VRLA battery and make the best of PV cells through the maximum power point tracking (MPPT). The damage of VRLA battery by excess oxygen accumulation can be avoided through the inner pressure control of VRLA battery. Parameters such as solar radiation intensity, charging power, inner pressure of the battery, and charging current and voltage during the charging process were measured and analyzed.

  15. The photovoltaic sector in Germany, where does it go?

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Opinion polls show that photovoltaic power is very popular in Germany. This sector employs about 130.000 people and although a lot of solar modules are imported from China, other components like current inverters are fabricated in Germany and as a whole the trade balance is positive and the export rate nears 50%. In 2011 Germany invested 25 billion euros in the photovoltaic sector and now about 5% of the consumed electricity is photovoltaic power. Photovoltaic power reached grid parity in february 2012 for some consumers and the German government decided to reduce the purchase tariff drastically which may jeopardize the aim of having a photovoltaic park of 51 GWc by 2020. (A.C.)

  16. Flate-plate photovoltaic power systems handbook for Federal agencies

    Science.gov (United States)

    Cochrane, E. H.; Lawson, A. C.; Savage, C. H.

    1984-01-01

    The primary purpose is to provide a tool for personnel in Federal agencies to evaluate the viability of potential photovoltaic applications. A second objective is to provide descriptions of various photovoltaic systems installed by different Federal agencies under the Federal Photovoltaic Utilization Program so that other agencies may consider similar applications. A third objective is to share lessons learned to enable more effective procurement, design, installation, and operation of future photovoltaic systems. The intent is not to provide a complete handbook, but rather to provide a guide for Federal agency personnel with additional information incorporated by references. The steps to be followed in selecting, procuring, and installing a photovoltaic application are given.

  17. Penetration of Photovoltaics in Greece

    OpenAIRE

    Eugenia Giannini; Antonia Moropoulou; Zacharias Maroulis; Glykeria Siouti

    2015-01-01

    Recently, an interesting experiment was completed in Greece concerning photovoltaic penetration into the electricity production sector. Based on the relevant laws and in accordance to the related European directives, an explosive penetration process was completed in less than three years, resulting in a 7% share of photovoltaics in electricity production instead of the previous negligible share. The legislation was based on licensing simplification and generous feed-in-tariffs. This approach ...

  18. Modeling Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    F. Mavromatakis

    2016-10-01

    Full Text Available A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV facilities the beam and the diffuse solar irradiances are not recorded. The airmass, the angle of incidence and the efficiency drop due to low values of solar irradiance are taken into account. Currently, the model is validated through the use of high quality data available from the National Renewable Energy Laboratory (USA. The data were acquired with IV tracers while the meteorological conditions were also recorded. Several modules of different technologies were deployed but here we present results from a single crystalline module. The performance of the model is acceptable at a level of 5% despite the assumptions made. The dependence of the residuals upon solar irradiance temperature, airmass and angle of incidence is also explored and future work is described.

  19. Fiscal 2000 report on data of international joint demonstrative development of photovoltaic power generation system. Demonstrative research on photovoltaic power generation system interconnection system (Myanmar); 2000 nendo taiyoko hatsuden system kokusai kyodo jissho kaihatsu hokokusho. Taiyoko hatsuden keito renkei system jissho kenkyu (Myanmar) - shiryohen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the fiscal 2000 report on research data of joint demonstrative development with Myanmar concerning photovoltaic power generation system interconnection system. The purpose is an operation research in the case where a small-scale electric power generation system in an remote island or the like in Japan is linked with a severely output-fluctuating power generation system using energy of nature such as photovoltaic and wind power generation. In particular, among the system control (demand side management) methods by adjustment from a loading side, ballast load control was employed that adjustably operates load of an ice machine for example. As the contents of the data, the quantity of solar radiation and wind velocity at the Chaungthar site were shown as meteorological observation data. In addition, a graph was made on the meteorological observation data at the Chaungthar and Letkhokekone sites. The paper also explains the final explanatory data for selecting the sites in implementing the demonstrative research. As to the operation method of the hybrid power generation system, assumption was made for the daytime load in four cases from 50% (30kW) to 0% (0kW) of the nighttime. Storage batteries and diesel generators were installed and used in combination. Simulation results were also presented. (NEDO)

  20. Testing flat plate photovoltaic modules for terrestrial environment

    Science.gov (United States)

    Hoffman, A. R.; Arnett, J. C.; Ross, R. G., Jr.

    1979-01-01

    New qualification tests have been developed for flat plate photovoltaic modules. Temperature cycling, cyclic pressure load, and humidity exposure are especially useful for detecting design and fabrication deficiencies. There is positive correlation between many of the observed field effects, such as power loss, and qualification test induced degradation. The status of research efforts for the development of test methodology for field-related problems is reviewed.

  1. Japan's Sunshine Project. 1988 annual summary of solar energy research and development program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Mentioned in relation to the research and development of photovoltaic power generation systems are fundamental research on solar cells, research on advanced photovoltaic system technologies, research and development of amorphous solar cells, etc. Mentioned in relation to the technical development for the practical use of photovoltaic power generation systems are low-cost SOG(spin on glass)-silicon experimental production and verification, solar cell panel experimental manufacture and verification, technical development of high efficiency cell fabrication, research and development of amorphous silicon solar cells, research and development of evaluation systems for photovoltaic cells and modules, development of support technology for photovoltaic power generation (power generation support technology, interconnection and control of photovoltaic systems), etc. Also discussed are a stand-alone dispersed system, meteorological analysis, centralized solar power system, development of photovoltaic thermal hybrid solar power generation system, etc. In relation to solar thermal energy, a solar thermal power generation system, and an evaluation system are taken up, and the development is discussed of a fixed heat process type system, an advanced heat process type system, and a long-term heat storage system, these for application to industrial processes. Reference is also made to international cooperation. (NEDO)

  2. A program plan for photovoltaic buildings in Florida

    International Nuclear Information System (INIS)

    Ventre, Gerard G.

    1999-01-01

    The Florida Photovoltaic (PV) Buildings Program will conduct a variety of application experiments over the next decade to gather information that will help define the costs, value and benefits of using photovoltaics with buildings. Four main sources of revenue will support the program: a photovoltaic system buy down (from the present through December 2001), green pricing (present to 2010 and beyond), buy up by end users, and contracts, grants and other subsidies. To give the program sufficient breadth, three different application experiments are planned for each of nine target groups. The data and information from these experiments will help reduce or eliminate key barriers to the commercialisation of photovoltaic buildings. (Author)

  3. Thermoelectric cooling in combination with photovoltaics and thermal energy storage

    Directory of Open Access Journals (Sweden)

    Skovajsa Jan

    2017-01-01

    Full Text Available The article deals with the use of modern technologies that can improve the thermal comfort in buildings. The article describes the usage of thermal energy storage device based on the phase change material (PCM. The technology improves the thermal capacity of the building and it is possible to use it for active heating and cooling. It is designed as a “green technology” so it is able to use renewable energy sources, e.g., photovoltaic panels, solar thermal collectors, and heat pump. Moreover, an interesting possibility is the ability to use thermal energy storage in combination with a photovoltaic system and thermoelectric coolers. In the research, there were made measurements of the different operating modes and the results are presented in the text.

  4. Grid-connected photovoltaic power systems: survey of inverter and related protection equipments

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, T

    2002-12-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme reports on a survey made on inverter and related protection equipment. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the data obtained from survey of recent inverter technology and inverter protection equipment for grid interconnected PV systems. The results are based on the surveys using a questionnaire to identify the current status of grid-interconnection inverters. This report is to serve as a reference for those interested in installing grid-connected PV systems, electric utility company personnel, manufacturers and researchers. The results of the survey are presented and discussed. Technical and financial data is reviewed and two appendices provide details on the results obtained and those institutions involved in the survey.

  5. Large scale integration of photovoltaics in cities

    International Nuclear Information System (INIS)

    Strzalka, Aneta; Alam, Nazmul; Duminil, Eric; Coors, Volker; Eicker, Ursula

    2012-01-01

    Highlights: ► We implement the photovoltaics on a large scale. ► We use three-dimensional modelling for accurate photovoltaic simulations. ► We consider the shadowing effect in the photovoltaic simulation. ► We validate the simulated results using detailed hourly measured data. - Abstract: For a large scale implementation of photovoltaics (PV) in the urban environment, building integration is a major issue. This includes installations on roof or facade surfaces with orientations that are not ideal for maximum energy production. To evaluate the performance of PV systems in urban settings and compare it with the building user’s electricity consumption, three-dimensional geometry modelling was combined with photovoltaic system simulations. As an example, the modern residential district of Scharnhauser Park (SHP) near Stuttgart/Germany was used to calculate the potential of photovoltaic energy and to evaluate the local own consumption of the energy produced. For most buildings of the district only annual electrical consumption data was available and only selected buildings have electronic metering equipment. The available roof area for one of these multi-family case study buildings was used for a detailed hourly simulation of the PV power production, which was then compared to the hourly measured electricity consumption. The results were extrapolated to all buildings of the analyzed area by normalizing them to the annual consumption data. The PV systems can produce 35% of the quarter’s total electricity consumption and half of this generated electricity is directly used within the buildings.

  6. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.

    Science.gov (United States)

    Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E

    2017-11-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  7. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Joël Teuscher

    2017-11-01

    Full Text Available Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation, which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research “Molecular Ultrafast Science and Technology,” a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  8. Central station market development strategies for photovoltaics

    Science.gov (United States)

    1980-01-01

    Federal market development strategies designed to accelerate the market penetration of central station applications of photovoltaic energy system are analyzed. Since no specific goals were set for the commercialization of central station applications, strategic principles are explored which, when coupled with specific objectives for central stations, can produce a market development implementation plan. The study includes (1) background information on the National Photovoltaic Program, photovoltaic technology, and central stations; (2) a brief market assessment; (3) a discussion of the viewpoints of the electric utility industry with respect to solar energy; (4) a discussion of commercialization issues; and (5) strategy principles. It is recommended that a set of specific goals and objectives be defined for the photovoltaic central station program, and that these goals and objectives evolve into an implementation plan that identifies the appropriate federal role.

  9. Photovoltaic: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Auer, Herbert J.

    This instructional manual contains 11 learning activity packets for use in a workshop on photovoltaic converters. The lessons cover the following topics: introduction; solar radiation--input for photovoltaic converters; photovoltaic cells; solar electric generator systems; characteristics of silicon cells; photovoltaic module source resistance;…

  10. The future of the photovoltaic market (demand side/supply side)

    International Nuclear Information System (INIS)

    Zahedi, A.

    1998-01-01

    At present the main PV application market sectors are communications, leisure, boating, solar home systems, and water pumping. It is predicted that in the future, the largest photovoltaic market segments will be solar home photovoltaic systems, grid-connected small-scale photovoltaic systems, grid-connected medium-to-large scale photovoltaic systems, the communications sector and in the electrification of remote and isolated areas. The main factors favoring photovoltaic technology in remote and isolated areas result from: the high costs of conventional energy sources in remote locations; the loss of a scale-economy effect, which means specific costs of small photovoltaic systems are not much higher than those of larger photovoltaic systems; price of fuel, fuel transportation and spare part supplies. The major factors inhibiting the photovoltaic technology include high initial costs, lack of skilled man power, lack of good quality data and social acceptance. A roof top mounted photovoltaic system is one type of PV system which has attracted lots of interest among the people of north America and Europe. The generation of electricity by this system is attractive because: generation is on-site. This results in reduction of transmission costs and transmission losses; the cost of roofing tiles can be eliminated by using mounted PV systems instead; there is no need for additional land for power generation; visual impacts are limited. The objective of this paper is to review the development of the photovoltaic market in the recent 10 year period and discuss the future markets for this technology with respect to supply and demand

  11. Systems and methods for photovoltaic string protection

    Science.gov (United States)

    Krein, Philip T.; Kim, Katherine A.; Pilawa-Podgurski, Robert C. N.

    2017-10-25

    A system and method includes a circuit for protecting a photovoltaic string. A bypass switch connects in parallel to the photovoltaic string and a hot spot protection switch connects in series with the photovoltaic string. A first control signal controls opening and closing of the bypass switch and a second control signal controls opening and closing of the hot spot protection switch. Upon detection of a hot spot condition the first control signal closes the bypass switch and after the bypass switch is closed the second control signal opens the hot spot protection switch.

  12. Photovoltaic procurement strategies: an assessment of supply issues

    Energy Technology Data Exchange (ETDEWEB)

    Posner, D.; Costello, D.

    1980-02-01

    This review report presents the results of an analysis of alternative approaches to the design of a federal photovoltaics procurement program. Advantages and disadvantages of large purchases at fixed prices and smaller purchases for testing and demonstrating the technology are presented. The objectives and possible impacts of these purchase programs on the photovoltaic industry are described. The reactions of the industry to alternative purchase programs were assessed using personal interviews with selected companies currently active in photovoltaics. The report begins with a review of the impacts of federal procurements on other innovations, including the electronics industry, and suggests the relation of these procurements to photovoltaics. The methodology for conducting the interviews is presented next. The results of the interviews are summarized into possible scenarios of future developments in the industry and into discussions of key issues in the design of a procurement program. An appendix on the current structure of the photovoltaic industry is provided.

  13. Photovoltaic sheathing element with one or more tabs

    Energy Technology Data Exchange (ETDEWEB)

    Keenihan, James R; Langmaid, Joseph A; Lopez, Leonardo C.

    2017-02-07

    The present invention is premised upon an assembly that includes at least a photovoltaic sheathing element capable of being affixed on a building structure. The shingle including at least a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly. Wherein the body portion includes one or more top peripheral tabs each capable of fitting under one or more vertically adjoining devices.

  14. Thermal Change for Photovoltaic Panels and Energy Effects

    OpenAIRE

    İmal, Nazım; Hasar, Şahabettin; Çınar, Harun; Şener, Eralp

    2015-01-01

    Photovoltaic panels (solar cells), they receive photon energy from sunlight, convert them to electrical energy by the semiconductor structural features. Photovoltaic panels produce a voltage, depending on the change of functional sunlight exposure. Produced voltage and determining of provided electrical power, must be dealt with the physical parameters that uses the concepts of light and temperature. In this study, usage of monocrystalline and polycrystalline structured photovoltaic panels el...

  15. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    Science.gov (United States)

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  16. The importance of silicon photovoltaic manufacturing in Saudi Arabia

    International Nuclear Information System (INIS)

    Elani, U.A.; Bagazi, S.A.

    1998-01-01

    In this paper, the potential of silicon development for photovoltaics will be discussed in conjunction with the availability of raw material and photovoltaic demand in Saudi Arabia. Recent studies suggest that silicon raw material for photovoltaic production should be considered for further investigation towards solar cells manufacturing in Saudi Arabia. (author)

  17. Research cooperation project in fiscal 2001. Research cooperation on putting into practical use of district complying type photovoltaic power generation system; 2001 nendo kenkyu kyoryoku jigyo. Chiiki tekigo gata taiyoko hatsuden system tou no jitsuyoka ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    Research cooperation has been performed with an intention of establishing technologies to develop a design program for photovoltaic power generation systems suitable for the diverse natural and social conditions in China, the performance inspections and quality enhancement thereon. This paper summarizes the achievements in fiscal 2001. For installing the photovoltaic power generation system, procurement, transportation and installation were carried out in Gansu Province for a 8.4 kW integrated system and in Qinghai Province for 10 kW and 12 kW integrated systems. Visits were made to the sites to confirm the operating conditions, and maintenance and management conditions of the systems having been installed to date. With regard to performance evaluation devices of the cells and modules, some pieces of the equipment were repaired and re-adjusted, and training for using them was executed. Eight persons have visited Japan from China and participated in the training in Japan for utilization and operation of the photovoltaic power generation systems for the persons involved in the system operation. In addition, in order to determine the future information exchange directions, workshops were held with PV experts and manufacturers participating from Japan to exchange items of information. (NEDO)

  18. Understanding the physical properties of hybrid perovskites for photovoltaic applications

    Science.gov (United States)

    Huang, Jinsong; Yuan, Yongbo; Shao, Yuchuan; Yan, Yanfa

    2017-07-01

    New photovoltaic materials have been searched for in the past decades for clean and renewable solar energy conversion with an objective of reducing the levelized cost of electricity (that is, the unit price of electricity over the course of the device lifetime). An emerging family of semiconductor materials — organic-inorganic halide perovskites (OIHPs) — are the focus of the photovoltaic research community owing to their use of low cost, nature-abundant raw materials, low-temperature and scalable solution fabrication processes, and, in particular, the very high power conversion efficiencies that have been achieved within the short time of their development. In this Review, we summarize and critically assess the most recent advances in understanding the physical properties of both 3D and low-dimensional OIHPs that favour a small open-circuit voltage deficit and high power conversion efficiency. Several prominent topics in this field on the unique properties of OIHPs are surveyed, including defect physics, ferroelectricity, exciton dissociation processes, carrier recombination lifetime and photon recycling. The impact of ion migration on solar cell efficiency and stability are also critically analysed. Finally, we discuss the remaining challenges in the commercialization of OIHP photovoltaics.

  19. Photovoltaic array with minimally penetrating rooftop support system

    Science.gov (United States)

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  20. Photovoltaic (PV) contribution to the primary frequency control

    International Nuclear Information System (INIS)

    Rafa, Adel Hamad

    2012-01-01

    Photovoltaic (PV) technology is among the most efficient and cost effective renewable energy kinds currently available on the market. The connection of a large number of PVs to the grid may influence the frequency and voltage stability of the power system. This paper proposes load-frequency control technique for system with high penetration of photovoltaic (PV). The proposed controller has been successfully implemented and tested using PSCAD/EMTDC. In this study, the impact of photovoltaic (PV) on frequency stability of the system is studies in detail. This study shows that large penetration of photovoltaic (PV) with load and frequency control has a significant impact on the stability and security level of electrical network.(author)

  1. Development of photovoltaic array and module safety requirements

    Science.gov (United States)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  2. A Wearable All-Solid Photovoltaic Textile.

    Science.gov (United States)

    Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan

    2016-01-13

    A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Application of Bond Graph Modeling for Photovoltaic Module Simulation

    Directory of Open Access Journals (Sweden)

    Madi S.

    2016-01-01

    Full Text Available In this paper, photovoltaic generator is represented using the bond-graph methodology. Starting from the equivalent circuit the bond graph and the block diagram of the photovoltaic generator have been derived. Upon applying bond graph elements and rules a mathematical model of the photovoltaic generator is obtained. Simulation results of this obtained model using real recorded data (irradiation and temperature at the Renewable Energies Development Centre in Bouzaréah – Algeria are obtained using MATLAB/SMULINK software. The results have compared with datasheet of the photovoltaic generator for validation purposes.

  4. Photovoltaics and the environment

    International Nuclear Information System (INIS)

    Baumann, A.E.

    1994-01-01

    This paper considers the impact of photovoltaics on the environment and its application and role in the energy supply sector. It discusses the environmental and health impacts associated with photovoltaics by using Life Cycle Analysis as an instrument to determine its environmental effects. Recent Life Cycle studies have shown that PV can be considered an environmentally low risk technology, with its major environmental impacts occurring at the module manufacturing and waste disposal stages. The employment of environmental control mechanisms and statutory health and safety regulations at PV production facilities have helped to further reduce occupational and public health hazards. (author)

  5. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  6. Conference: photovoltaic energy - local authorities - Citizen

    International Nuclear Information System (INIS)

    Belon, Daniel; Witte, Sonja; Simonet, Luc; Waldmann, Lars; Fouquet, Doerte; Dupassieux, Henri; Longo, Fabio; Brunel, Arnaud; Kruppert, Andreas; Vachette, Philippe

    2012-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the role of photovoltaic energy, local authorities and Citizens as pillars of the energy transition. In the framework of this French-German exchange of experience, about 100 participants exchanged views on the role of local authorities and Citizens in the implementation of the energy transition. This document brings together the available presentations (slides) made during this event: 1 - Solar photovoltaics, local communities and citizens - Cornerstones of the energy revolution. Franco-German viewpoints (Daniel Belon); 2 - Structure and management of the distribution system operators in Germany. efficient, innovative and reliable: Local public enterprises in Germany (Sonja Witte); 3 - Photovoltaic energy: technical challenges for power grids - A distribution network operator's (DNO) point-of-view (Luc Simonet); 4 - The sun and the grid - challenges of the energy transition (Lars Waldmann); 5 - The role of local public authorities in the networks management: legal situation in France, Germany and in the EU (Doerte Fouquet); 6 - Towards energy transition: challenges for renewable energies - Urban solar planning tools (Henri Dupassieux); 7 - The local energy supply as a municipal task - solar land-use planning in practice in Germany (Fabio Longo); 8 - Supporting and facilitating the financing of photovoltaic projects at a community level (Arnaud Brunel); 9 - Photovoltaics in the municipality VG Arzfeld (Andreas Kruppert); 10 - For the energy revolution to be a success: Invest into renewable energy. Local, controllable and renewable 'shared energy' that is grassroots (Philippe Vachette)

  7. 'Made in Europe' photovoltaic industry Conference - perspectives in the face of the crisis?'

    International Nuclear Information System (INIS)

    Masson, Gaetan; Goeke, Berthold; Barber, Nicolas; Frey, Peter; Laborde, Eric; Michael Lippert; Matthias Reichmuth; Daniel Lincot

    2011-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the future of the photovoltaic industry. In the framework of this French-German exchange of experience, about 120 participants exchanged views on some innovative projects, as well as some solutions to grid integration and electricity storage. The question of anticipated grid parity through self-consumption was addressed too. This document brings together the available presentations (slides) made during this event: 1 - PV, a competitive source of energy in Europe: tomorrows' grid parity and markets in Europe (Gaetan Masson); 2 - Photovoltaics support in Germany - developments and challenges (Berthold Goeke); 3 - New support mechanism to the photovoltaic industry: optimizing the model, the French market asset (Nicolas Barber); 4 - PV production in Germany - threats and opportunities (Peter Frey); 5 - PV Alliance - From Labs to Fabs: ensuring the photovoltaic industry future through innovation and R and D collaborations in France and Germany (Eric Laborde); 6 - Smart energy storage improving grid integration of decentralized PV energy (Michael Lippert); 7 - Onsite Consumption - the anticipated Grid Parity (Matthias Reichmuth); 8 - The photovoltaic energy research and development institute - IRDeP (Daniel Lincot)

  8. Materials interface engineering for solution-processed photovoltaics

    NARCIS (Netherlands)

    Grätzel, M.; Janssen, R.A.J.; Mitzi, D.B.; Sargent, E.H.

    2012-01-01

    Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their

  9. Sandia photovoltaic systems definition and application experiment projects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.

    1983-04-01

    A compilation is given of the abstracts and visual material used in presentation at the Fourth Photovoltaic Systems Definition and Applications Projects Integration Meeting held at the Marriott Hotel, April 12-14, 1983, in Albuquerque, New Mexico. The meeting provided a forum for detailed analyses on recently completed and current activities. These activities include systems research, balance-of-system technology development, residential experimentation, and evaluation of intermediate-sized applications.

  10. Research and development of evaluation system for photovoltaic power generation system. Research and development on evaluation technology of photovoltaic power generating systems; Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu. System hyoka gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of evaluation technology for photovoltaic power generating systems in fiscal 1994. (1) On preparation of test facility and measuring instrument, the pyrheliometer with a photovoltaic device as sensor was developed. (2) On collection and analysis of data, operation data of interconnection system, stand alone system, and water pump system were collected, and energy flow was analyzed. The following were also analyzed: time variation of a-Si solar cell modules, fluctuation correction factor of spectrum response, that of nonlinear response of crystalline solar cells, effect of solar radiation intensity and wind velocity on temperature rise of modules, and correction factor of DC circuit losses. (3) On on-site measurement technology, the array output measuring instrument was developed on the basis of capacitor charge system. (4) On simulation technology, simulation analyses of energy flow, optimum capacity of interconnection systems, correction factor of solar radiation, and capacity of array storage batteries were conducted. 3 figs., 6 tabs.

  11. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Research and development of photovoltaic system evaluation technology (Research and development of system evaluation technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In relation with several types of standard photovoltaic power generation systems expected to be put to practical use, design parameters are quantified, databases are utilized, and simulation technologies are developed, while collecting data from test facilities constructed to simulate them, for the development of evaluation techniques indispensable for the efficient improvement of photovoltaic power generation systems. In fiscal 1998, data were collected from verification test facilities and residential photovoltaic systems sited across Japan. The collected data were subjected to analysis and simulation, by which correction factors were calculated for smudge, spectral response, incident radiation, and temperature. Furthermore, load matching factors and storage battery contribution rates were calculated by simulation for the stand-alone photovoltaic systems sited in five Japanese cities, each comprising an array, storage battery, charge/discharge controller, DC-DC converter, and a load. Reference is also made to a survey of trends of technology development. (NEDO)

  12. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Huang, Wei; Guo, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Wang, Hua, E-mail: wanghua001@tyut.edu.cn [Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology (TYUT), Taiyuan 030024 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2017-04-15

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C{sub 60}) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C{sub 60}/CuPc, CuPc/C{sub 60} and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C{sub 60}/CuPc showed the highest efficiency. It is revealed that the photovoltaic C{sub 60}/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  13. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    International Nuclear Information System (INIS)

    Zhao, Dan; Huang, Wei; Guo, Hao; Wang, Hua; Yu, Junsheng

    2017-01-01

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C_6_0) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C_6_0/CuPc, CuPc/C_6_0 and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C_6_0/CuPc showed the highest efficiency. It is revealed that the photovoltaic C_6_0/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  14. Final Technical Report for Photovoltaic Power Electronics Research Initiative (PERI)

    Energy Technology Data Exchange (ETDEWEB)

    Amirahmadi, Ahmadreza [Univ. of Central Florida, Orlando, FL (United States); Jordan, Charlie [Univ. of Central Florida, Orlando, FL (United States); batarseh, Issa [Univ. of Central Florida, Orlando, FL (United States)

    2015-08-31

    The Power Electronics team at the University of Central Florida (UCF) has developed a novel three-phase micro-inverter for photovoltaic (PV) distributed applications. Based on a new advanced topology and control methodology, the developed inverter is small in size, and achieved DoE targeted power density, cost and efficiency specifications. Today’s inverters are widely used in PV based energy harvesting systems, but are based on single-phase design with limited application to large installations. These micro-inverters have been shown to have advantageous over their string inverter counterparts in both grid-tied PV energy harvesting and standalone micro-grid systems with energy storage. Some of these are simplified installation, no high voltage DC wiring, no single point of failure and improved energy harvesting. Several patents have been issued and this new solar conversion technology has been licensed to the private sector.

  15. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  16. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  17. Building integrated photovoltaic; Photovaltaique integre aux batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Durable, modular and flexible in use, as demonstrated by the different case studies in this publication, photovoltaic can replace diverse building elements, from glass facades to weather proof roofs. This leaflet towards architects describes aesthetic, technical, economic and environmental interest of building integrated photovoltaic. (author)

  18. Effects of concentrated sunlight on organic photovoltaics

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Katz, Eugene A.; Hirsch, Baruch

    2010-01-01

    We report the effects of concentrated sunlight on key photovoltaic parameters and stability of organic photovoltaics (OPV). Sunlight collected and concentrated outdoors was focused into an optical fiber and delivered onto a 1 cm2 bulk-heterojunction cell. Sunlight concentration C was varied gradu...

  19. Terawatt solar photovoltaics roadblocks and opportunities

    CERN Document Server

    Tao, Meng

    2014-01-01

    Solar energy will undoubtedly become a main source of energy in our life by the end of this century, but how big of a role will photovoltaics play in this new energy infrastructure Besides cost and efficiency, there are other barriers for current solar cell technologies to become a noticeable source of energy in the future. Availability of raw materials, energy input, storage of solar electricity, and recycling of dead modules can all prevent or hinder a tangible impact by solar photovoltaics. This book is intended for readers with minimal technical background and aims to explore not only the fundamentals but also major issues in large-scale deployment of solar photovoltaics. Thought-provoking ideas to overcoming some of the barriers are discussed.

  20. Practical Handbook of Photovoltaics. Fundamentals and Applications

    International Nuclear Information System (INIS)

    Markvart, T.; Castaner, L.

    2003-01-01

    As part of the growing sustainable and renewable energy movement, the design, manufacture and use of photovoltaic devices is increasing in pace and frequency. This Handbook will be a 'benchmark' publication for those involved in the design, manufacture and use of these devices. It covers the principles of solar cell function, the raw materials, photovoltaic systems, standards, calibration, testing, economics and case studies. The editors have assembled a cast of internationally-respected contributors from industry and academia. The report is essential reading for: Physicists, electronic engineers, designers of systems, installers, architects, policy-makers relating to photovoltaics