WorldWideScience

Sample records for photovoltaic solar radiation

  1. Solar radiation on Mars: Stationary photovoltaic array

    Science.gov (United States)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  2. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  3. Solar Radiation on Mars: Tracking Photovoltaic Array

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  4. Efficiency of solar radiation conversion in photovoltaic panels

    Directory of Open Access Journals (Sweden)

    Kurpaska Sławomir

    2018-01-01

    Full Text Available This paper included analysis the conversion efficiency in photovoltaic panels. The tests were done between February and June at a test stand equipped with three commonly used types of photovoltaic panels: poly- and monocrystalline silicon and with semi-conductive layer made of copper (Cu, indium (In, gallium (Ga and selenium (Se (CIGS. Five days of each month were selected for a detailed analysis. They were close to the so-called recommended day for calculations in solar power engineering. Efficiency, calculated as the yield of electrical energy in relation to solar radiation energy reaching the panels was made conditional upon solar radiation intensity and ambient temperature. It was found that as solar radiation intensity and ambient temperature increase, the efficiency of solar radiation conversion into electricity is reduced. Correlation dependence was determined for the test data obtained, describing temperature change of panels depending on climatic conditions. It was found that as panel temperature increases, the conversion efficiency is reduced. Within the tested scope of experiment conditions, the efficiency was reduced in the range between 20.1 and 22.8%. The authors also determined the average efficiency values in individual test months together with average ambient conditions of the environment where the process of solar radiation conversion took place.

  5. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  6. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  7. Solar radiation inside greenhouses covered with semitransparent photovoltaic film: first experimental results

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2013-09-01

    Full Text Available The southern Italian regions are characterized by climatic conditions with high values of solar radiation and air temperature. This has allowed the spread of protected structures both as a defense against critical winter conditions both for growing off-season. The major energy source for these greenhouses is given by solar energy and artificial energy is used rarely. So the problem in the use of greenhouses in these areas, if anything, is opposite to that of the northern areas. In these places you must try to mitigate often the solar radiation inside the greenhouses with suitable measures or abandon for a few months the cultivation inside these structures. The solar radiation intercepted by passive means can be used for other purposes through the uptake and transformation by the photovoltaic panels whose use however is problematic due to complete opacity of the cells. New photosensitive materials partially transparent to solar radiation onto flexible media, allow to glimpse the possibility of using them to greenhouses cover, getting the dual effect of partially screen the greenhouse and use the surplus to generate electricity. The research was carried out to evaluate the possibility of using a flexible photovoltaic film realized by the University of Rome Tor Vergata (research group of ECOFLECS project coordinated by prof. Andrea Reale for covering greenhouses. Two greenhouses in small scale were built: one covered with photovoltaic film and one covered with EVA film for test. In both greenhouses during the first research period it was grown a variety of dwarf tomato. The research was carried out comparing the solar radiation that enters into greenhouse in the summer (August 2012 and in winter conditions (December 2012 in both greenhouses. The result show that the average ratio between the daily global solar radiation under the photovoltaic film and outside radiation is about 37%, while between the radiation under EVA film and outside radiation

  8. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  9. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  10. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Zhao Jiafei; Song Yongchen; Lam, Wei-Haur; Liu Weiguo; Liu Yu; Zhang Yi; Wang DaYong

    2011-01-01

    This paper presents the design optimization of a photovoltaic/thermal (PV/T) system using both non-concentrated and concentrated solar radiation. The system consists of a photovoltaic (PV) module using silicon solar cell and a thermal unit based on the direct absorption collector (DAC) concept. First, the working fluid of the thermal unit absorbs the solar infrared radiation. Then, the remaining visible light is transmitted and converted into electricity by the solar cell. This arrangement prevents excessive heating of the solar cell which would otherwise negatively affects its electrical efficiency. The optical properties of the working fluid were modeled based on the damped oscillator Lorentz-Drude model satisfying the Kramers-Kroenig relations. The coefficients of the model were retrieved by inverse method based on genetic algorithm, in order to (i) maximize transmission of solar radiation between 200 nm and 800 nm and (ii) maximize absorption in the infrared part of the spectrum from 800 nm to 2000 nm. The results indicate that the optimum system can effectively and separately use the visible and infrared part of solar radiation. The thermal unit absorbs 89% of the infrared radiation for photothermal conversion and transmits 84% of visible light to the solar cell for photoelectric conversion. When reducing the mass flow rate, the outflow temperature of the working fluid reaches 74 o C, the temperature of the PV module remains around 31 o C at a constant electrical efficiency about 9.6%. Furthermore, when the incident solar irradiance increases from 800 W/m 2 to 8000 W/m 2 , the system generates 196 o C working fluid with constant thermal efficiency around 40%, and the exergetic efficiency increases from 12% to 22%.

  11. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  12. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Directory of Open Access Journals (Sweden)

    M. Benghanem

    2018-03-01

    Full Text Available This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia. The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed. Keywords: Photovoltaic water pumping system, Solar radiation data, Simulation, Flow rate

  13. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  14. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  15. Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

    OpenAIRE

    K. Touafek; A. Khelifa; E. H. Khettaf; A. Embarek

    2013-01-01

    Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a h...

  16. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  17. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Science.gov (United States)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  18. Constructal Optimization of Top Contact Metallization of a Photovoltaic Solar Cell

    OpenAIRE

    Bhakta, Aditya; Bandyopadhyay, Santanu

    2010-01-01

    A top contact metallization of a photovoltaic solar cell collects the current generated by incident solar radiation. Several power-loss mechanisms are associated with the current flow through the front contact grid. The design of the top metal contact grid is one of the most important areas of efficient photovoltaic solar cell design. In this paper, an approach based on the constructal theory is proposed to design the grid pattern in a photovoltaic solar cell, minimizing total resistive losse...

  19. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity

    International Nuclear Information System (INIS)

    Cossu, Marco; Murgia, Lelia; Ledda, Luigi; Deligios, Paola A.; Sirigu, Antonella; Chessa, Francesco; Pazzona, Antonio

    2014-01-01

    Highlights: • The solar radiation distribution inside photovoltaic greenhouses has been studied. • A greenhouse with 50% of the roof area covered with solar panels was considered. • The yearly solar light reduction was 64%, with a transversal north–south gradient. • The reduction was 82% under the solar panels and 46% under the plastic cover. • We provided suggestions for a better agronomic sustainability of PV greenhouses. - Abstract: This study assessed the climate conditions inside a greenhouse in which 50% of the roof area was replaced with photovoltaic (PV) modules, describing the solar radiation distribution and the variability of temperature and humidity. The effects of shading from the PV array on crop productivity were described on tomato, also integrating the natural radiation with supplementary lighting powered by PV energy. Experiments were performed inside an east–west oriented greenhouse (total area of 960 m 2 ), where the south-oriented roofs were completely covered with multi-crystalline silicon PV modules, with a total rated power of 68 kWp. The PV system reduced the availability of solar radiation inside the greenhouse by 64%, compared to the situation without PV system (2684 MJ m −2 on yearly basis). The solar radiation distribution followed a north–south gradient, with more solar energy on the sidewalls and decreasing towards the center of the span, except in winter, where it was similar in all plant rows. The reduction under the plastic and PV covers was respectively 46% and 82% on yearly basis. Only a 18% reduction was observed on the plant rows farthest from the PV cover of the span. The supplementary lighting, powered without exceeding the energy produced by the PV array, was not enough to affect the crop production, whose revenue was lower than the cost for heating and lighting. The distribution of the solar radiation observed is useful for choosing the most suitable crops and for designing PV greenhouses with the attitude

  20. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  1. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  2. Tracking strategy for photovoltaic solar systems in high latitudes

    International Nuclear Information System (INIS)

    Quesada, Guillermo; Guillon, Laura; Rousse, Daniel R.; Mehrtash, Mostafa; Dutil, Yvan; Paradis, Pierre-Luc

    2015-01-01

    Highlights: • In cloudy conditions tracking the sun is ineffective. • A methodology to estimate a theoretical threshold for solar tracking was developed. • A tracking strategy to maximize electricity production was proposed. - Abstract: Several studies show that from about 20% to 50% more solar energy can be recovered by using photovoltaic systems that track the sun rather than systems set at a fixed angle. For overcast or cloudy days, recent studies propose the use of a set position in which each photovoltaic panel faces toward the zenith (horizontal position). Compared to a panel that follows the sun’s path, this approach claims that a horizontal panel increases the amount of solar radiation captured and subsequently the quantity of electricity produced. The present work assesses a solar tracking photovoltaic panel hourly and seasonally in high latitudes. A theoretical method based on an isotropic sky model was formulated, implemented, and used in a case study analysis of a grid-connected photovoltaic system in Montreal, Canada. The results obtained, based on the definition of a critical hourly global solar radiation, were validated numerically and experimentally. The study confirmed that a zenith-set sun tracking strategy for overcast or mostly cloudy days in summer is not advantageous

  3. About Solar Radiation Intensity Measurements and Data Processing

    Directory of Open Access Journals (Sweden)

    MICH-VANCEA Claudiu

    2012-10-01

    Full Text Available Measuring the intensity of solar radiation is one of the directions of investigation necessary for the implementation of photovoltaic systems in a particular geographical area. This can be done by using specific measuring equipment (pyranometer sensors based onthermal or photovoltaic principle. In this paper it is presented a method for measuring solar radiation (which has two main components - direct radiation and diffuse radiation with sensors based on photovoltaic principle. Such data are processed for positioning solarpanels, in order their efficiency to be maximized.

  4. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  5. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  6. Efficiency of solar radiation conversion in photovoltaic panels

    OpenAIRE

    Kurpaska Sławomir; Knaga Jarosław; Latała Hubert; Sikora Jakub; Tomczyk Wiesław

    2018-01-01

    This paper included analysis the conversion efficiency in photovoltaic panels. The tests were done between February and June at a test stand equipped with three commonly used types of photovoltaic panels: poly- and monocrystalline silicon and with semi-conductive layer made of copper (Cu), indium (In), gallium (Ga) and selenium (Se) (CIGS). Five days of each month were selected for a detailed analysis. They were close to the so-called recommended day for calculations in solar power engineerin...

  7. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  8. Efficiency of the monocrystalline photovoltaic modules in conversion solar radiation into electrical energy; Eficiencia de modulos fotovoltaicos monocristalinos na conversao de radiacao solar em energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carliane Diniz e [Universidade Estadual do Maranhao (UEMA), Sao Luis, MA (Brazil). Dept. de Engenharia Agricola], Email: carlianeds@yahoo.com.br; Seraphim, Odivaldo Jose [Universidade Estadual Paulista (FCA/UNESP), SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], Email: seraphim@fca.unesp.br

    2006-07-01

    With the scarcity of the conventional sources of energy production, other options must be considered, as the use of energy resources you renewed, that they offer to multiple advantages. One of the options to the supply of energy of the agricultural users is the photovoltaic solar systems for the local promotion of the quality of life. The objective of this study was to evaluate two marks of monocrystalline photovoltaic modules in different angles of inclination. The modules had presented low efficiency of conversion in conditions of field for incident solar radiation. (author)

  9. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  10. Solar Photovoltaic Technology Basics | NREL

    Science.gov (United States)

    Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Photo of a large silicon solar

  11. Calculating solar photovoltaic potential on residential rooftops in Kailua Kona, Hawaii

    Science.gov (United States)

    Carl, Caroline

    As carbon based fossil fuels become increasingly scarce, renewable energy sources are coming to the forefront of policy discussions around the globe. As a result, the State of Hawaii has implemented aggressive goals to achieve energy independence by 2030. Renewable electricity generation using solar photovoltaic technologies plays an important role in these efforts. This study utilizes geographic information systems (GIS) and Light Detection and Ranging (LiDAR) data with statistical analysis to identify how much solar photovoltaic potential exists for residential rooftops in the town of Kailua Kona on Hawaii Island. This study helps to quantify the magnitude of possible solar photovoltaic (PV) potential for Solar World SW260 monocrystalline panels on residential rooftops within the study area. Three main areas were addressed in the execution of this research: (1) modeling solar radiation, (2) estimating available rooftop area, and (3) calculating PV potential from incoming solar radiation. High resolution LiDAR data and Esri's solar modeling tools and were utilized to calculate incoming solar radiation on a sample set of digitized rooftops. Photovoltaic potential for the sample set was then calculated with the equations developed by Suri et al. (2005). Sample set rooftops were analyzed using a statistical model to identify the correlation between rooftop area and lot size. Least squares multiple linear regression analysis was performed to identify the influence of slope, elevation, rooftop area, and lot size on the modeled PV potential values. The equations built from these statistical analyses of the sample set were applied to the entire study region to calculate total rooftop area and PV potential. The total study area statistical analysis findings estimate photovoltaic electric energy generation potential for rooftops is approximately 190,000,000 kWh annually. This is approximately 17 percent of the total electricity the utility provided to the entire island in

  12. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  13. Design and experimental investigation of a Multi-segment plate concentrated photovoltaic solar energy system

    International Nuclear Information System (INIS)

    Wang, Gang; Chen, Zeshao; Hu, Peng

    2017-01-01

    Highlights: • A multi-segment plate concentrated photovoltaic solar energy system was proposed. • A prototype of this new concentrator was developed for experimental investigation. • Experimental investigation results showed a good concentrating uniformity. - Abstract: Solar energy is one of the most promising renewable energies and meaningful for the sustainable development of energy source. A multi-segment plate concentrated photovoltaic (CPV) solar power system was proposed in this paper, the design principle of the multi-segment plate concentrator of this solar power system was given, which could provide uniform solar radiation flux density distribution on solar cells. A prototype of this multi-segment plate CPV solar power system was developed for the experimental study, aiming at the investigations of solar radiation flux density distribution and PV performances under this concentrator design. The experimental results showed that the solar radiation flux density distribution provided by the multi-segment plate concentrator had a good uniformity, and the number and temperature of solar cells both influence the photoelectric transformation efficiency of the CPV solar power system.

  14. Concentration of solar radiation by white backed photovoltaic panels.

    Science.gov (United States)

    Smestad, G; Hamill, P

    1984-12-01

    In this paper, we present an analysis of the concentration achieved by white backed photovoltaic panels. Concentration is due to the trapping by light scattered in the refractive plate to which the solar cell is bonded. Using the reciprocity relation and assuming the ideal case of a Lambertian distribution, a detailed model is formulated that includes the effects of the thickness and walls of the concentrator. This model converges to the thermodynamic limit and is found to be consistent with experimental results for a wide range of cell sizes. Finally, the model is generalized to multiple-cell photovoltaic panels.

  15. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  16. A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15

    International Nuclear Information System (INIS)

    Celik, Ali Naci; Muneer, Tariq; Clarke, Peter

    2009-01-01

    This article analyses the energy statistics of 15 European Union countries (EU-15), giving special emphasis to the installed solar photovoltaic and thermal collector capacity. The installed capacities per capita are analysed in relation to the solar radiation income of respective countries with the view to explore the relationship between the solar income and its utilisation as of the year 2006. In terms of the installed solar thermal collector capacity, Austria leads the statistics amongst the countries studied with 223W th collector capacity per capita, followed by Greece with 207W th . Except for Greece, it is observed that the countries with high solar radiation income are lacking to realise their solar potential. Regarding the installed photovoltaic power per capita, Luxembourg leads the pack by a wide margin with 47W p capacity, followed by Germany with 30W p . Fiscal instruments to invigorate the deployment of solar energy have also been identified in this work. (author)

  17. Study on the optimum tilted angle of solar panels in Hainan tropical photovoltaic facility agricultural system

    Science.gov (United States)

    Wang, Jingxuan; Ge, Zhiwu; Yang, Xiaoyan; Ye, Chunhua; Lin, Yanxia

    2017-04-01

    Photovoltaic facility agriculture system can effectively alleviate the contradiction between limited land and Photovoltaic power generation. It’s flexible to create suitable environment for crop growth, and generate electricity over the same land at the same time. It’s necessary to set appropriate solar panel angle to get more solar energy. Through detailed analysis and comparison, we chose the Hay’s model as solar radiation model. Based on the official meteorological data got from Haikou Meteorological Bureau, and by comparing the amount of radiation obtained at different tilted angles per month, the optimal placement angle of PV panels at different seasons in Haikou was obtained through calculation, and the optimal placement angle from April to October was also obtained. Through optimized angle and arrangement of solar photovoltaic panels, we can get greater power efficiency.

  18. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  19. Statistical study of solar radiation aimed to desalinisation unit project using photovoltaic panels without batteries; Estudo estatistico de radiacao solar visando o projeto de unidades de dessalinizacao acionadas por paineis fotovoltaicos sem baterias

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo Cesar Marques de; Pontes, Ricardo Silva The; Oliveira Junior, Demercil de Souza; Riffel, Douglas Bressan; Oliveira, Ricardo Gildo Vieira de; Mesquita, Samuelson Brito [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Energia Eletrica

    2004-07-01

    Among several treatment processes suitable for the Northeastern semi-arid area of the Brazil, the reverse osmosis presents growing application. A plant of reverse osmosis that uses photovoltaic technology attends to the needs of that area, since it does not demand local electrical grid. The present paper shows a statistical study of radiation making use of data collected in the Department of Electrical Engineering of the Federal University of Ceara, in Fortaleza, and it has the aim of be used in the project of a plant of reverse osmosis supplied by photovoltaic panels. The results of the study allow the comparison of different number of panels, radiation levels used to supply the plant and times of operation. The results are exposed in form of graphs such as: solar radiation, histograms of solar radiation, accumulated time and maximum continuous periods with solar radiation above 300 and 500 W/m2. It was observed considerable annual differences in the behaviour of the radiation, as well as a gradual variation along one year, what reflects the annual difference of the radiation behaviour in wet and dry periods, and this will influences directly the strategy of operation of the plant. (author)

  20. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  1. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  2. A Solar Atlas for Building-Integrated Photovoltaic Electricity Resource Assessment

    DEFF Research Database (Denmark)

    Möller, Bernd; Nielsen, Steffen; Sperling, Karl

    While photovoltaic energy gathers momentum as power costs increase and panel costs decrease, the total technical and economic potentials for building integrated solar energy in Denmark remain largely unidentified. The current net metering feed-in scheme is restricted to 6kW plant size, limiting...... large scale application. This paper presents a solar atlas based on a high-resolution digital elevation model (DEM) of all 2.9 million buildings in the country, combined with a building register. The 1.6 m resolution DEM has been processed into global radiation input, solar energy output and production....... The continuous assessment of solar electricity generation potentials by marginal costs, ownership and plant type presented in the paper may be used for defining long term policies for the development of photovoltaic energy, as well as political instruments such as a multi-tier feed-in tariff....

  3. Estimation of Solar Radiation, Management of Energy Flow and Development of a New Approach for the Optimisation of the Sizing of Photovoltaic System; Application to Algeria

    OpenAIRE

    Bouzid, Zakaria; Ghellai, Nassera; Benmedjahed, Miloud

    2016-01-01

    The design of photovoltaic systems is an important step, its optimization, as well as the optimization of different parameters, is a crucial operation. In our work, after estimating hourly solar radiation, we developed energy flow models for photovoltaic power based on the concept of solar usability. Then, we used a genetic algorithm to develop our own computer program (with Python) to find the best configuration (total surface of the panels, PV efficiency and total capacity of batteries) amo...

  4. The Importance of Accurate Solar Data for Designing Solar Photovoltaic Systems—Case Studies in Spain

    Directory of Open Access Journals (Sweden)

    Mirian Jiménez-Torres

    2017-02-01

    Full Text Available Renewable energies have experienced a great growth in recent years, and nowadays participate in the set of energies used in developed and developing countries to produce electricity. Among these technologies, photovoltaic energy, which produces clean electricity from the Sun, is the one that has grown faster, and its implementation all over the world is a guarantee of a solid and efficient energy technology. Nevertheless, in order to design very efficient solar energy systems, it is crucial to have a good solar radiation database. There are databases where it is possible to find information on solar radiation, but only for horizontal surfaces. Afterwards, it is necessary to transform the horizontal solar radiation data to tilt solar radiation data. This transformation is not easy, and the application of complex mathematical equations, and expressions, and difficult algorithms must be done. An application called virtual laboratory “OrientSol 3.0” which allows the user to easily obtain the solar radiation for any tilt surface has been developed by us. Thus, our main objectives in this paper are to present the developed virtual laboratory and to explain its main features and core functionalities. In order to point out the difficulties and complexity of the transformation of horizontal solar radiation data to tilt solar radiation data, we will present some examples of the results this application provides and compare the solar radiation data supplied with this application with some other solar radiation data obtained from other databases.

  5. Terawatt solar photovoltaics roadblocks and opportunities

    CERN Document Server

    Tao, Meng

    2014-01-01

    Solar energy will undoubtedly become a main source of energy in our life by the end of this century, but how big of a role will photovoltaics play in this new energy infrastructure Besides cost and efficiency, there are other barriers for current solar cell technologies to become a noticeable source of energy in the future. Availability of raw materials, energy input, storage of solar electricity, and recycling of dead modules can all prevent or hinder a tangible impact by solar photovoltaics. This book is intended for readers with minimal technical background and aims to explore not only the fundamentals but also major issues in large-scale deployment of solar photovoltaics. Thought-provoking ideas to overcoming some of the barriers are discussed.

  6. A Three-Dimensional Radiation Transfer Model to Evaluate Performance of Compound Parabolic Concentrator-Based Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Jingjing Tang

    2018-04-01

    Full Text Available In the past, two-dimensional radiation transfer models (2-D models were widely used to investigate the optical performance of linear compound parabolic concentrators (CPCs, in which the radiation transfer on the cross-section of CPC troughs is considered. However, the photovoltaic efficiency of solar cells depends on the real incidence angle instead of the projection incidence angle, thus 2-D models can’t reasonably evaluate the photovoltaic performance of CPC-based photovoltaic systems (CPVs. In this work, three-dimensional radiation transfer (3-D model within CPC-θa/θe, the CPC with a maximum exit angle θe for radiation within its acceptance angle (θa, is investigated by means of vector algebra, solar geometry and imaging principle of plane mirror, and effects of geometry of CPV-θa/θe on its annual electricity generation are studied. Analysis shows that, as compared to similar photovoltaic (PV panels, the use of CPCs makes the incident angle of solar rays on solar cells increase thus lowers the photovoltaic conversion efficiency of solar cells. Calculations show that, 2-D models can reasonably predict the optical performance of CPVs, but such models always overestimate the photovoltaic performance of CPVs, and even can’t predict the variation trend of annual power output of CPV-θa/θe with θe. Results show that, for full CPV-θa/θe with a given θa, the annual power output increases with θe first and then comes to a halt as θe > 83°, whereas for truncated CPV-θa/θe with a given geometric concentration (Ct, the annual power output decreases with θe.

  7. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  8. Increase of solar radiation due to climate change and its impact on solar energy use

    International Nuclear Information System (INIS)

    Kuhnke, K.; Rahme, A.; Harling, J.; Arensmann, R.

    2008-01-01

    Full text: There is a significant change in solar radiation in Central Europe coinciding with the IPCC climate change model calculations. The increase of yearly solar radiation on the horizontal surface is about 0.38 percent/year. On the other hand, photovoltaic solar modules show an ageing effect of the same order of magnitude, i.e. a reduction of yearly energy yield between 0.3 and 0.5 percent/year. This reduction is normally taken into account in economic calculations such as payback time and internal rate of interest. As the two trends of increase in radiation and ageing of solar modules are in opposite direction to each other, they will - with their uncertainties - neutralize one another to zero. Thus, the energy production of photovoltaic systems can be calculated without any deductions due to ageing in the future. (authors)

  9. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  10. Estimating Solar Irradiation Absorbed by Photovoltaic Panels with Low Concentration Located in Craiova, Romania

    Directory of Open Access Journals (Sweden)

    Ionel L. Alboteanu

    2015-03-01

    Full Text Available Solar irradiation is one of the important parameters that should be taken into consideration for the design and utilization of a photovoltaic system. Usually, the input parameters of a photovoltaic system are solar irradiation, the ambient environment temperature and the wind speed, and as a consequence most photovoltaic systems are equipped with sensors for measuring these parameters. This paper presents several mathematical models for solar irradiation assessment. The starting point is represented by the mathematical model of extraterrestrial irradiation, and resulting finally in the model for solar irradiation, absorbed by a low concentration photovoltaic panel. These estimating models of solar irradiation have been particularized for the Craiova, Romania, and have been verified through numerical simulation. Regarding terrestrial solar irradiation, four mathematical models have been adopted, namely Adnot, Haurwitz, Kasten and Empirical (EIM. Of these, the most appropriate for the Craiova location were the models Adnot and Empirical. Consequently, for the calculation of the solar irradiation absorbed by the photovoltaic (PV panels with low concentration, these models have been taken into consideration. In this study, a comparative analysis was also carried out with respect to the solar irradiation absorbed by the PV panels without concentration and those with collectedness of the solar radiation. This analysis was based on the results of numerical simulation and experimental tests.

  11. Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth

    Directory of Open Access Journals (Sweden)

    Andrea Colantoni

    2018-03-01

    Full Text Available The diffusion of renewable energy requires the search for new technologies useful for obtaining good energy and production efficiency. Even if the latter is not always easy to obtain, the integration of photovoltaic panels on the roof of greenhouses intended for floriculture can represent an alternative. The present paper evaluates climatic conditions inside a greenhouse, in which 20% of its roof surface has been replaced with mobile photovoltaic (PV panels. The PV system implemented in this study can vary the light energy collection surface in relation to the degree of insolation. The aim is to observe the shading effects of the PV system on the growth of several varieties of flowers (iberis, mini-cyclamens and petunias to ensure the use of solar energy as an income integration deriving from floricultural production. In fact, in agronomic terms, it has ensured: (i to be able to shade the underlying environment in most lighting conditions; and (ii to let through more light when it is required for the needs of crop plants or in cloudy weather. Results have described the distribution of solar radiation, variability of temperature and humidity and lighting in a solar year and the observed outcomes on floristic production.

  12. Long-term energy output estimation for photovoltaic energy systems using synthetic solar irradiation data

    International Nuclear Information System (INIS)

    Celik, A.N.

    2003-01-01

    A general methodology is presented to estimate the monthly average daily energy output from photovoltaic energy systems. Energy output is estimated from synthetically generated solar radiation data. The synthetic solar radiation data are generated based on the cumulative frequency distribution of the daily clearness index, given as a function of the monthly clearness index. Two sets of synthetic solar irradiation data are generated: 3- and 4-day months. In the 3-day month, each month is represented by 3 days and in the 4-day month, by 4 days. The 3- and 4-day solar irradiation data are synthetically generated for each month and the corresponding energy outputs are calculated. A total of 8-year long measured hourly solar irradiation data, from five different locations in the world, is used to validate the new model. The monthly energy output values calculated from the synthetic solar irradiation data are compared to those calculated from the measured hour-by-hour data. It is shown that when the measured solar radiation data do not exist for a particular location or reduced data set is advantageous, the energy output from photovoltaic converters could be correctly calculated

  13. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  14. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    Science.gov (United States)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  15. Solar photovoltaics in Sri Lanka: a short history

    International Nuclear Information System (INIS)

    Gunaratne, L.

    1994-01-01

    With a significant unelectrified rural population, Sri Lanka has followed the evolution of solar photovoltaic (PV) technology in the West very closely since the 1970s as terrestrial applications for photovoltaics were developed. It was not until 1980 that the Sri Lankan government embarked on the promotion of solar photovoltaics for rural domestic use when the Ceylon Electricity Board formed the Energy Unit. In addition, Australian and Sri Lankan government-funded pilot projects have given the local promoters further valuable insight into how and how not to promote solar photovoltaics. The establishment of community-based solar photovoltaic programmes by non-governmental organizations has developed a novel approach to bridge the gap between this state-of-the-art technology and the remotely located end-users. (author)

  16. Estimation of monthly solar radiation distribution for solar energy system analysis

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    The concept of probability density frequency, which is successfully used for analyses of wind speed and outdoor temperature distributions, is now modified and proposed for estimating solar radiation distributions for design and analysis of solar energy systems. In this study, global solar radiation distribution is comprehensively analyzed for photovoltaic (PV) panel and thermal collector systems. In this regard, a case study is conducted with actual global solar irradiation data of the last 15 years recorded by the Turkish State Meteorological Service. It is found that intensity of global solar irradiance greatly affects energy and exergy efficiencies and hence the performance of collectors. -- Research highlights: → The first study to apply global solar radiation distribution in solar system analyzes. → The first study showing global solar radiation distribution as a parameter of the solar irradiance intensity. → Time probability intensity frequency and probability power distribution do not have similar distribution patterns for each month. → There is no relation between the distribution of annual time lapse and solar energy with the intensity of solar irradiance.

  17. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Peter F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sekulic, William R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dreifuerst, Gary [Lawrence Livermore National Laboratory - retired

    2018-04-02

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can and do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.

  18. New Prototype of Photovoltaic Solar Tracker Based on Arduino

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2017-08-01

    Full Text Available The global increase in energy demand and exponential exhaustion of fossil recourses has favored the development of new systems of electricity production. Photovoltaic solar energy is undoubtedly one that has the highest application in housings, due to its simplicity and easy implementation. In this work, a new prototype of photovoltaic solar tracker with Arduino platform was developed. Feedback control system that allows carrying out solar tracking with two axes using a stepper motor and linear actuator was established through an electronic circuit based on photodiodes. Moreover, real construction of the prototype was carried out, where the effectiveness of the design and its capacity to draw a maximum benefit of an incident radiation can be observed, placing the panel perpendicularly to the received energy and improving its performance for its application in future installations in housings. Results obtained from the comparison between the developed prototype and a static panel oriented according to the latitude of the area, show about 18% energy gain.

  19. A Novel Concentrator Photovoltaic (CPV System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Tien

    2016-09-01

    Full Text Available This paper proposes a novel concentrator photovoltaic (CPV system with improved irradiation uniformity and system efficiency. CPV technology is very promising its for highly efficient solar energy conversion. A conventional CPV system usually uses only one optical component, such as a refractive Fresnel lens or a reflective parabolic dish, to collect and concentrate solar radiation on the solar cell surface. Such a system creates strongly non-uniform irradiation distribution on the solar cell, which tends to cause hot spots, current mismatch, and degrades the overall efficiency of the system. Additionally, a high-concentration CPV system is unable to collect diffuse solar radiation. In this paper, we propose a novel CPV system with improved irradiation uniformity and collection of diffuse solar radiation. The proposed system uses a Fresnel lens as a primary optical element (POE to concentrate and focus the sunlight and a plano-concave lens as a secondary optical element (SOE to uniformly distribute the sunlight over the surface of multi-junction (MJ solar cells. By using the SOE, the irradiance uniformity is significantly improved in the system. Additionally, the proposed system also captures diffuse solar radiation by using an additional low-cost solar cell surrounding MJ cells. In our system, incident direct solar radiation is captured by MJ solar cells, whereas incident diffuse solar radiation is captured by the low-cost solar cell. Simulation models were developed using a commercial optical simulation tool (LightTools™. The irradiance uniformity and efficiency of the proposed CPV system were analyzed, evaluated, and compared with those of conventional CPV systems. The analyzed and simulated results show that the CPV system significantly improves the irradiance uniformity as well as the system efficiency compared to the conventional CPV systems. Numerically, for our simulation models, the designed CPV with the SOE and low-cost cell provided

  20. Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features

    International Nuclear Information System (INIS)

    Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian

    2006-01-01

    The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed

  1. Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, J.; Jadraque, E.; Alegre, J.; Martinez, G. [Department of Civil Engineering, University of Granada (Spain)

    2010-09-15

    Fossil fuel energy resources are becoming increasingly scarce. Given the negative environmental impacts (e.g. greenhouse gas emissions) that accompany their use, it is hardly surprising that the development of renewable energies has become a major priority in the world today. Andalusia, with a mean solar radiation of 4.75 kWh/m{sup 2} per day and a surface area of 87,597 km{sup 2}, is the region in Europe with the highest solar energy potential. This research study determined the solar energy potential in Andalusia for grid-connected photovoltaic systems installed on residential rooftops. A methodology was developed for this purpose, which first involved a description of building characteristics, followed by the calculation of the useful roof surface area where photovoltaic arrays could be installed. In the next phase of the study, the mean solar irradiation characteristics were defined as well as the technical parameters of the photovoltaic systems. All of these factors allowed us to estimate the amount of electricity that could be potentially generated per year by solar panels. (author)

  2. 光伏发电项目太阳能辐射量数据对比与选用%Comparison and Selection of Solar Radiation Data for Photovoltaic Power Generation Projects

    Institute of Scientific and Technical Information of China (English)

    李英姿; 李智

    2016-01-01

    光伏发电项目中太阳能资源数据主要来源于卫星遥感观测数据、气候学推测数据和太阳能气象观测站监测的数据,辐射量数据的选取将直接影响光伏发电量。以2012年6月~2015年12月北京地区光伏并网系统的太阳能辐射量的实测数据为例,分析现有数据库辐射量数据与实际辐射量的误差,提出在进行光伏发电项目可研和设计时,对太阳能辐射量选取应作适当修正和调整,并建议将辐射量参考数据减少10%~20%。%Data of solar energy resources in photovoltaic power generation projects is mainly from satellite remote sensing observation, climatology tentative data and data measured in solar energy meteorological station. The selection of radiation data is directly related to photovoltaic power generation. The article adopts the measured data of solar radiation in photovoltaic grid-connected system in Beijing from June 2012 to December 2015 to analyze the difference between radiation data in the current database and actual radiation data. It proposes that the selection of solar radiation should be corrected and adjusted appropriately during the research and design of photovoltaic power generation projects, and suggests a cut-down of 10 % ~ 20 % in reference radiation.

  3. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  4. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Photovoltaic. Solar thermal. Solar thermal electricity

    International Nuclear Information System (INIS)

    2009-01-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  6. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

    International Nuclear Information System (INIS)

    Wu, Chihhui; Neuner III, Burton; Shvets, Gennady; John, Jeremy; Milder, Andrew; Zollars, Byron; Savoy, Steve

    2012-01-01

    We present the concept of a solar thermo-photovoltaic (STPV) collection system based on a large-area, nanoimprint-patterned film of plasmonic structures acting as an integrated solar absorber/narrow-band thermal emitter (SANTE). The SANTE film concept is based on integrating broad-band solar radiation absorption with selective narrow-band thermal IR radiation which can be efficiently coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal (e.g., tungsten) as a plasmonic material, we demonstrate that the absorption spectrum of the SANTE film can be designed to be broad-band in the visible range and narrow-band in the infrared range. A detailed balance calculation demonstrates that the total STPV system efficiency exceeds the Shockley–Queisser limit for emitter temperatures above T e = 1200 K, and achieves an efficiency as high as 41% for T e = 2300 K. Emitter temperatures in this range are shown to be achievable under modest sun concentrations (less than 1000 suns) due to the thermal insulation provided by the SANTE film. An experimental demonstration of the wide-angle, frequency-selective absorptivity is presented

  7. Redrawing the solar map of South Africa for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Munzhedzi, R.; Sebitosi, A.B. [Electrical Engineering, University of Cape Town, Private Bag, Rm 522.2 Menzies Building, Rondebosch 7701, Cape Town (South Africa)

    2009-01-15

    The South African solar map has been redrawn to make it applicable to photovoltaic installations. This has been done with the aim of reducing the cost of solar PV installations in South Africa through accurate energy resource assessment and competent system design. Climate data software as well as solar design software was used to aid this process. The new map provides an alternative to the map in current use, which only considers radiation, whereas many more factors affect the output of a panel, such as wind, cloud cover and humidity. All these are taken into account when drawing the new map. (author)

  8. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  9. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  10. Solar Radiation Model for Development and Control of Solar Energy Sources

    Directory of Open Access Journals (Sweden)

    Dominykas Vasarevičius

    2016-06-01

    Full Text Available The model of solar radiation, which takes into account direct, diffused and reflected components of solar energy, has been presented. Model is associated with geographical coordinates and local time of every day of the year. It is shown that using analytic equations for modelling the direct component, it is possible to adopt it for embedded systems with low computational power and use in solar tracking applications. Reflected and diffused components are especially useful in determining the performance of photovoltaic modules in certain location and surroundings. The statistical method for cloud layer simulation based on local meteorological data is offered. The presented method can’t be used for prediction of weather conditions but it provides patterns of solar radiation in time comparable to those measured with pyranometer. Cloud layer simulation together with total solar radiation model is a useful tool for development and analysis of maximum power point tracking controllers for PV modules.

  11. Costs comparison between solar photovoltaic system and moto-generator for supplying the isolated small community

    International Nuclear Information System (INIS)

    Fadigas, E.A.F.A.; Faga, M.T.W.

    1993-01-01

    This work describes a technical configuration from which making an economic evaluation that comparing the photovoltaic option with moto-generator, energy source very used in rural community, presenting the relations of implantation cost between two options, showing the sensibility of these cost in function of some variables like: demand, reduction tax, solar radiation, and, as the solar energy market photovoltaic presents cost upper than international cost due to the inexpressive scale economy, make the analysis with one prices range, possibility an evaluation not limited to the national market. 3 refs, 8 figs

  12. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    KAUST Repository

    Lee, Kyu Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme (

  13. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    KAUST Repository

    Lee, Kyu Tae

    2016-12-06

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme (

  14. Rural electrification with photovoltaic solar technology using solar home system; Eletrificacao rural com tecnologia solar fotovoltaica utilizando sistemas isolados autonomos

    Energy Technology Data Exchange (ETDEWEB)

    Salviano, Carlos Jose Caldas

    1999-02-01

    The utilization of solar energy, inexhaustible on the earthly scale of time, as heat and light source, today is one of the energetics alternatives more to confront the challenges of the new millennium. Remarkable is the impulse that power generation photovoltaic has received in Brazil. In Pernambuco, state of Brazil, the CELPE - Electric Power Company of Pernambuco, already implanted more than 750 photovoltaic solar home system (95 kW installed) for power supply to rural communities far from the grid connection that come across in commercial operation since 1994. Eight configurations were studied with modifications in their components (panel, battery and charge) with the objective to evaluate the performance and the adequacy of the size these configurations. The parameters utilized for this evaluation were: solar energy diary incident on the panel plat, diary efficiency generator, output voltage on the generator and state of charge the batteries bank. A system of data acquisition automated was fined to measure in real conditions the function of each components, the following parameters: solar radiation incident and temperature on the photovoltaic generator, voltage and generator current, batteries bank and charge and ambient temperature. About the configurations studied, it follows that analysis the operational of characteristics capacity and battery capacity of the SHS utilized, simulating the rural electrification conditions. It was possible to certify the adequate configurations for the load profile will be supply. (author)

  15. Photovoltaic. Solar electricity, a sustainable source of energy

    International Nuclear Information System (INIS)

    Stryi-Hipp, Gerhard; Loyen, Richard; Knaack, Jan; Chrometzka, Thomas

    2008-06-01

    This German publication outlines that solar energy is now essential to any sustainable energy mix, and describes the operation principle of solar photovoltaic energy production. It describes how it can be applied for the production of electricity in isolated areas, and for individual housing as well as commercial buildings, and presents the concept of ground-based solar plants. The next part discusses the development of the photovoltaic market (its huge potential, its world size) and indicates the different associated arrangements of financial support or subsidy. It also discusses how photovoltaic markets can be developed, and proposes an overview of the German model

  16. Photovoltaic Systems with and without Radiation Concentrators for Temperate and Tropical Regions

    Directory of Open Access Journals (Sweden)

    Vania Reis de Souza Sant’Anna

    2015-11-01

    Full Text Available The industrial development of solar photovoltaic technology has attracted investors and influenced governments to establish public policies for the sector. The present research consisted of studying, building and testing low concentration solar radiation systems for photovoltaic energy conversion. The study used optical nonimaging parameters for the V-trough type radiation concentrator constructed of anodized aluminum, to reflect and to cool. Designed to concentrate radiation by about two times and consisting of a set of photovoltaic modules connected in parallel, they were modeled in the Laboratory of Energy Area in the Department of Agricultural Engineering of the Federal University of Vicosa, Brazil, at the coordinates 20°45′14′′ S latitude, 42°52′53′′ W longitude and altitude 648.74 m. They were installed to the geographic North, with the same slope as the local latitude. For comparative analysis, it was determined the electrical characteristics for evaluation of the prototype’s performance with and without radiation concentration, the final productivity for cities in tropical and temperate regions and economic analysis for the system. It was concluded that the prototypes allowed for a gain of energy with concentration, about 31.3% more, and therefore a productivity gain for the analyzed cities in, kWh·kWp−1.

  17. Effects of solar photovoltaic technology on the environment in China.

    Science.gov (United States)

    Qi, Liqiang; Zhang, Yajuan

    2017-10-01

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  18. Assessment of the solar radiation potential of the Thika and Nairobi ...

    African Journals Online (AJOL)

    This assessment seeks to provide information on the solar energy resource potential of the Thika – Nairobi area essential in the dissemination of Renewable Energy Technologies which are essentially solar photovoltaic and thermal systems. To achieve this, solar radiation data for three stations (Dagoretti Corner, Thika and ...

  19. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  20. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  1. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Shan Su

    2013-01-01

    Full Text Available The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors. In this study, I analyzed the trends and developments of the solar photovoltaic industry in Taiwan and in the globe. And I also investigated the positioning and competitive advantage of Taiwanese firms in the value chain of the global solar photovoltaic industry. I found that Taiwanese firms continue to have an important and indispensable role in the global solar photovoltaic industry by either differentiation or cost advantage.

  2. Monocrystalline silicon solar cells applied in photovoltaic system

    OpenAIRE

    L.A. Dobrzański; A. Drygała; M. Giedroć; M. Macek

    2012-01-01

    Purpose: The aim of the paper is to fabricate the monocrystalline silicon solar cells using the conventional technology by means of screen printing process and to make of them photovoltaic system.Design/methodology/approach: The investigation of current – voltage characteristic to determinate basic electrical properties of monocrystalline silicon solar cells were investigated under Standard Test Condition. Photovoltaic module was produced from solar cells with the largest short-circuit curren...

  3. Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Mustamin [Department of Architecture, Khairun University, Ternate (Indonesia); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Yoshino, Jun; Yasuda, Takashi [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan)

    2012-07-01

    This study was undertaken to analyze solar radiation abundance to ascertain the potential of solar energy as an electrical energy resource. Local weather forecasting for predicting solar radiation is performed using a meteorological model MM5. The prediction results are compared with observed results obtained from the Japan Meteorological Agency for verification of the data accuracy. Results show that local weather forecasting has high accuracy. Prediction of solar radiation is similar with observation results. Monthly average values of solar radiation are sufficiently good during March–September. Electrical energy generated by photovoltaic cells is almost proportional to the solar radiation amount. Effects of clouds on solar radiation can be removed by monthly averaging. The balance between supply and demand of electricity can be estimated using a standard curve obtained from the temporal average. When the amount of solar radiation every hour with average of more than 100 km radius area does not yield the standard curve, we can estimate the system of storage and auxiliary power necessary based on the evaluated results of imbalance between supply and demand.

  4. Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-06-01

    Full Text Available Solar Photovoltaic (SPV water pumping system is one of the best technologies that utilize the solar energy to pump water from deep well underground water sources and to provide clean drinking water worldwide. The availability of abundant solar radiation and enough underground water sources in Ethiopia can be combined together to make clean drinking water available to rural communities. The software PVsyst 5.56 was used to study the feasibility of solar photovoltaic water pumping system in the selected sites. The designed system is capable of providing a daily average of 10.5, 7 and 6.5 m3/day for 700, 467 and 433 people in Siadberand Wayu, Wolmera and Enderta sites respectively, with average daily water consumption of 15 liters per day per person and the costs of water without any subsidy, are approximately 0.1, 0.14 and 0.16 $/m3for each site respectively. If diesel generator is used instead of solar photovoltaic water pumping system, to provide the same average daily water for the selected community, the costs of water without any subsidy are approximately 0.2, 0.23 and 0.27 $/m3 for each site respectively. A life cycle cost analysis method was also carried out for economic comparison between solar PV and the diesel pumping system. The results of this study are encouraging the use of the PV system for drinking water supply in the remote areas of the country.

  5. Assessment of high penetration of solar photovoltaics in Wisconsin

    International Nuclear Information System (INIS)

    Myers, Kevin S.; Klein, Sanford A.; Reindl, Douglas T.

    2010-01-01

    This paper provides an assessment of the large-scale implementation of distributed solar photovoltaics in Wisconsin with regard to its interaction with the utility grid, economics of varying levels of high penetration, and displaced emissions. These assessment factors are quantified using simulations with measured hourly solar radiation and weather data from the National Solar Radiation Database as primary inputs. Hourly utility load data for each electric utility in Wisconsin for a complete year were used in combination with the simulated PV output to quantify the impacts of high penetration of distributed PV on the aggregate Wisconsin electric utility load. As the penetration rate of distributed PV systems increases, both economic and environmental benefits experience diminishing returns. At penetration rates exceeding 15-20% of the aggregate utility load peak, less of the PV-energy is utilized and the contribution of the aggregate electricity generated from PV approaches a practical limit. The limit is not affected by costs, but rather by the time-distribution of available solar radiation and mismatch with the coincidence of aggregate utility electrical loads. The unsubsidized levelized cost of electricity from PV is more than four times greater than the current market price for electricity, based on time-of-use rates, in Wisconsin. At the present time, the investment in solar PV as a cost-effective means to reduce emissions from traditional electricity generation sources is not justified. (author)

  6. Solar spectrum conversion for photovoltaics using nanoparticles

    OpenAIRE

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction semiconductor solar cells only effectively convert photons of energy close to the semiconductor band gap (Eg) as a result of the mismatch between the incident solar spectrum and the spectral absorption properties...

  7. Solar photovoltaic: 25 per cent of world low carbon electricity by 2050. Situation and analyses

    International Nuclear Information System (INIS)

    Ott, Nicolas; Cohen, Marion; Grandjean, Alain; Guerin, Andre-Jean; Ballif, Ch.; Barbaro, X.; Brewster, M.; Burtin, A.; Chaperon, A.; Cuomo, A.; Danielo, O.; Broglie, G. de; Deblois, L.; Deprest, I.; Dupre La Tour, S.; Gauly, N.; Lascaud, S.; Lemaignan, B.; Lincot, D.; Malbranche, P.; Marchal, D.; Mine, A.; Paquier, O.; Philibert, C.; Prieto, Pedro A.; Roesch, A.; Roudil, JP.; Scotto, E.; Sharma, R.; Sidat, P.; Tarascon, J.M.; Vermot Desroches, G.

    2015-11-01

    The objective of this study has been to assess to which extent solar photovoltaic energy will represent a significant part of world electric power consumption by 2050, while notably taking the economic dimension, resource availability and problems related to intermittency management into account. After a recall of the relative correlation between solar radiation and human settlement, of the involved fundamental physical concepts, and of the different technologies and applications of photovoltaic energy production, the authors propose an overview of the present situation and perspectives for the development of photovoltaic energy production (evolution and emergence of a competitive industry in several countries, recent and future evolutions of photovoltaic cell costs, needs of investments in massive electric power production). Then, they address the intermittency issue: integration into networks, consumption steering, perspective of a revolution in storage. They examine whether industrials are ready to face potential future revolutions

  8. Predicting the behavior of a grid-connected photovoltaic system from measurements of solar radiation and ambient temperature

    International Nuclear Information System (INIS)

    Hernandez, J.; Gordillo, G.; Vallejo, W.

    2013-01-01

    Highlights: ► A model to predict in a reliable way the behavior of a GCPV system is presented. ► Radiation and temperature behavior were shaped with probability density functions. ► This probability density functions were made from real measurements. ► This model was verified for comparing their behavior with real measurements. ► It can be used in any electrical systems language which have programming routines. - Abstract: This paper presents a methodology to predict in a statistically reliable way the behavior of a grid-connected photovoltaic system. The methodology developed can be implemented either in common programming software or through an off-the-shelf simulation of electrical systems. Initially, the atmospheric parameters that influence the behavior of PV generators (radiation and temperature) are characterized in a probabilistic manner. In parallel, a model compound by various PV generator components is defined: the modules (and their electrical and physical characteristics), their connection to form the generator, and the inverter type. This model was verified for comparing their behavior with output measured on a real installed system of 3.6 kWp. The solar resource characterized and the photovoltaic system model are integrated in a non-deterministic approach using the stochastic Monte Carlo method, developed in the programming language DPL of the electrical-systems simulation software DIGSILENT®. It is done to estimate the steady-state electrical parameters describing the influence of the grid-connected photovoltaic system. Specifically, we estimated the nominal peak power of the PV generator to minimize network losses, subject to constraints on nodes voltages and conductor currents

  9. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    Science.gov (United States)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  10. Calculate the high solar radiation for photovoltaic panels in Chile; Aproximacio al calculo de la oferta de energia por paneles fotovoltaicos en Chile

    Energy Technology Data Exchange (ETDEWEB)

    Cancino, Beatriz; Roth, Pedro; Stolz, German [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Bonneschky, Alexis [Cottbus University, Cottbus (Germany)

    2000-07-01

    The aim of this work was to develop a method which permits to calculate and predict the theoretically possible electrical energy which can be obtained in different places in Chile with photovoltaic panels used in solar home systems. Chile is a country with a high solar radiation, specially in its northern part, between parallels 18 degrees with a daily mean energy of 4600 Wh/m{sup 2} over the year and 37 degrees, with 3700 Wh/m{sup 2}. Therefore, the use of photovoltaic power is an interesting alternative to be studied and used. Nevertheless, the photovoltaic possibilities have not been studied and no evaluation of real possibilities exist. In a previous paper, the absence of an installation guide for solar home systems have been mentioned. And also the lack of information regarding the real electrical energy needs of people. This work pretends to be the first approximation to a detailed chart and list of possible electric supplies using photovoltaic panels in different locations of Chile. It is made with a computer program which permits to calculate the solar radiation on a tilted surface, on a hourly bases. It uses geographical data and the daily average of monthly radiation. Therefore, the hourly energy, harnessed by the panel can be established and the total energy for some place calculated. [Spanish] El objetivo de este trabajo, es el de mostrar a traves de un listado y un mapa nacional, la cantidad teorica de energia electrica que puede ser obtenida a traves del uso de paneles fotovoltaicos principalmente destinados a Solar Home System (SHS) en Chile. Chile es un pais con una alta oferta de energia solar ubicada principalmente en la zona norte y centro del pais, aproximadamente entre los paralelos 18 grados (sobre 4600 Wh/m{sup 2} dia promedio anual) y 37 grados Sur (sobre 3700 Wh/m{sup 2} dia promedio anual). Por lo que el uso de paneles fotovoltaicos representa una alternativa interesante de ser estudiada y aprovechada. Sin embargo, no existe una evaluacion

  11. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    Fu, H.D.; Pei, G.; Ji, J.; Long, H.; Zhang, T.; Chow, T.T.

    2012-01-01

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  12. The heat recovery with heat transfer methods from solar photovoltaic systems

    International Nuclear Information System (INIS)

    Özakın, A. N.; Karsli, S.; Kaya, F.; Güllüce, H.

    2016-01-01

    Although there are many fluctuations in energy prices, they seems like rising day by day. Thus energy recovery systems have increasingly trend. Photovoltaic systems converts solar radiation directly into electrical energy thanks to semiconductors. But due to the nature of semiconductors, whole of solar energy cannot turn into electrical energy and the remaining energy turns into waste heat. The aim of this research is evaluate this waste heat energy by air cooling system. So, the energy efficiency of the system will be increased using appropriate heat transfer technologies such as fin, turbulator etc. (paper)

  13. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    Science.gov (United States)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  14. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  15. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  16. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  17. Ground water lifting in the remote and arid areas of Egypt using solar photovoltaic pumps

    International Nuclear Information System (INIS)

    Younes, M.A.

    2006-01-01

    An experimental study has been carried out at Mechanical and Electrical Research Institute, Qenater (300 N, 310 E), Egypt on a 2000 WP solar photovoltaic (PV) water pump. The main objective is to investigate the feasibility of utilizing solar energy in ground water lifting. A solar PV pumping system has been constructed as a prototype for a large-scale photovoltaic project in south of Egypt. Solar potential at the remote and arid areas of Egypt is discussed. Installation and operation factors as a function of environmental conditions are presented. Performance of the water pump has been evaluated. The water discharge and system efficiency has been estimated and presented. The changes in water discharge and system efficiency with change in solar radiation has been measured and presented. Preliminary results show that there is a huge potential and real-ability for solar PV submersible water pumping in the remote and arid areas of Egypt

  18. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  19. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  20. All-Weather Solar Cells: A Rising Photovoltaic Revolution.

    Science.gov (United States)

    Tang, Qunwei

    2017-06-16

    Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhanced Photovoltaic Properties of Gradient Doping Solar Cells

    International Nuclear Information System (INIS)

    Zhang Chun-Lei; Du Hui-Jing; Zhu Jian-Zhuo; Xu Tian-Fu; Fang Xiao-Yong

    2012-01-01

    An optimum design of a-Si:H(n)/a-Si:H(i)/c-Si(p) heterojunction solar cell is realized with 24.27% conversion efficiency by gradient doping of the a-Si:H(n) layer. The photovoltaic properties are simulated by the AFORSHET software. Besides the additional electric field caused by the gradient doping, the enhanced and widen spectral response also improves the solar cell performance compared with the uniform-doping mode. The simulation shows that the gradient doping is efficient to improve the photovoltaic performance of the solar cells. The study is valuable for the solar cell design with excellent performances

  2. Value of solar thermal and photovoltaic power plants to Arizona Public Service Company

    International Nuclear Information System (INIS)

    Smith, P.A.

    1994-01-01

    Arizona Public Service Company has performed a study using historical solar radiation and system load data to (1) estimate the effects of six types of solar generation on system reliability, (2) estimate the central station value of each to its system, (3) and to assess the potential of each of those technologies to provide bulk power to its system in the 2000 time frame. Technologies included three solar thermal (central receiver, dish Stirling, and parabolic trough) and three flat plate photovoltaic plants (fixed position, one axis, and two axis tracking)

  3. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  4. You're a What? Solar Photovoltaic Installer

    Science.gov (United States)

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  5. The experimental study of a two-stage photovoltaic thermal system based on solar trough concentration

    International Nuclear Information System (INIS)

    Tan, Lijun; Ji, Xu; Li, Ming; Leng, Congbin; Luo, Xi; Li, Haili

    2014-01-01

    Highlights: • A two-stage photovoltaic thermal system based on solar trough concentration. • Maximum cell efficiency of 5.21% with the mirror opening width of 57 cm. • With single cycle, maximum temperatures rise in the heating stage is 12.06 °C. • With 30 min multiple cycles, working medium temperature 62.8 °C, increased 28.7 °C. - Abstract: A two-stage photovoltaic thermal system based on solar trough concentration is proposed, in which the metal cavity heating stage is added on the basis of the PV/T stage, and thermal energy with higher temperature is output while electric energy is output. With the 1.8 m 2 mirror PV/T system, the characteristic parameters of the space solar cell under non-concentrating solar radiation and concentrating solar radiation are respectively tested experimentally, and the solar cell output characteristics at different opening widths of concentrating mirror of the PV/T stage under condensation are also tested experimentally. When the mirror opening width was 57 cm, the solar cell efficiency reached maximum value of 5.21%. The experimental platform of the two-stage photovoltaic thermal system was established, with a 1.8 m 2 mirror PV/T stage and a 15 m 2 mirror heating stage, or a 1.8 m 2 mirror PV/T stage and a 30 m 2 mirror heating stage. The results showed that with single cycle, the long metal cavity heating stage would bring lower thermal efficiency, but temperature rise of the working medium is higher, up to 12.06 °C with only single cycle. With 30 min closed multiple cycles, the temperature of the working medium in the water tank was 62.8 °C, with an increase of 28.7 °C, and thermal energy with higher temperature could be output

  6. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 21st symposium 'Photovoltaic Solar Energy' of the Ostbayerisches Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) at Banz Monastery (Bad Staffelstein, Federal Republic of Germany) between 8th and 10th March, 2006, the following lessons were held: (1) Basic conditions for a market support programme in the European context (EEG) (Winfried Hoffmann); (2) Actual developments in the German market of photovoltaics (Gerhard Stryi-Hipp); (3) Become a part of the global economic survey of Task 2 ''PV cost over time'' (Thomas Nordmann); (4) The market of photovoltaic will be a European market in the future (Murray Cameron); (5) Development and state of the art of the photovoltaic industry in the Peoples Republic of China (Frank Haugwitz); (6) Silicon for the photovoltaic industry (Karl Hesse); (7) Cell technology: Impulses for a cost effective photovoltaic with valuable silicon (Rolf Brendel); (8) Thin-film solar modules for the photovoltaic - state of the art and industrial perspectives (Michael Powalla); (9) Modules - bottleneck and flood of orders: How to act an installer? (Helmut Godard); (10) Photovoltaic open-field systems - Actual experiences and conflict lines (Ole Langniss); (11) Comparison of actual and future trends of Balance-of-System costs for large scale ground based PV systems with crystalline and thin-film modules (Manfred Baechler); (12) Financing PX projects from a Bank perspective (Joachim Treder); (13) Criteria of quality for solar fonds - Criteria of evaluation for capital investors and self-commitment for emission houses (Ulla Meixner); (14) Analysis of the distribution pathways for photovoltaic plants from the manufacturer to the final customer considering the decreasing demand and increasing prices (Michael Forst); (15) Solar power 2005 - Evaluation of real operational data of 1,000 plants in Germany (Gerd Heilscher); (16) Improvement of PV-inverter efficiency - targets, pathways

  7. Solar photovoltaic: a better tomorrow

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2016-01-01

    This article comments statements and works performed by a professional body (Enerplan) and a think tank (FTS, France Territoire Solaire) which describe a glorious future for solar photovoltaic energy even though the present situation is rather dull. They foresee ground-based solar plants of more than 1 MW, and assess the potential production for very large, medium and small sized roofs, for domestic installations

  8. Photovoltaic: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Auer, Herbert J.

    This instructional manual contains 11 learning activity packets for use in a workshop on photovoltaic converters. The lessons cover the following topics: introduction; solar radiation--input for photovoltaic converters; photovoltaic cells; solar electric generator systems; characteristics of silicon cells; photovoltaic module source resistance;…

  9. INTERGRATION OF LiDAR DATA WITH AERIAL IMAGERY FOR ESTIMATING ROOFTOP SOLAR PHOTOVOLTAIC POTENTIALS IN CITY OF CAPE TOWN

    Directory of Open Access Journals (Sweden)

    A. K. Adeleke

    2016-06-01

    Full Text Available Apart from the drive to reduce carbon dioxide emissions by carbon-intensive economies like South Africa, the recent spate of electricity load shedding across most part of the country, including Cape Town has left electricity consumers scampering for alternatives, so as to rely less on the national grid. Solar energy, which is adequately available in most part of Africa and regarded as a clean and renewable source of energy, makes it possible to generate electricity by using photovoltaics technology. However, before time and financial resources are invested into rooftop solar photovoltaic systems in urban areas, it is important to evaluate the potential of the building rooftop, intended to be used in harvesting the solar energy. This paper presents methodologies making use of LiDAR data and other ancillary data, such as high-resolution aerial imagery, to automatically extract building rooftops in City of Cape Town and evaluate their potentials for solar photovoltaics systems. Two main processes were involved: (1 automatic extraction of building roofs using the integration of LiDAR data and aerial imagery in order to derive its’ outline and areal coverage; and (2 estimating the global solar radiation incidence on each roof surface using an elevation model derived from the LiDAR data, in order to evaluate its solar photovoltaic potential. This resulted in a geodatabase, which can be queried to retrieve salient information about the viability of a particular building roof for solar photovoltaic installation.

  10. Comparative analysis of diffused solar radiation models for optimum tilt angle determination for Indian locations

    International Nuclear Information System (INIS)

    Yadav, P.; Chandel, S.S.

    2014-01-01

    Tilt angle and orientation greatly are influenced on the performance of the solar photo voltaic panels. The tilt angle of solar photovoltaic panels is one of the important parameters for the optimum sizing of solar photovoltaic systems. This paper analyses six different isotropic and anisotropic diffused solar radiation models for optimum tilt angle determination. The predicted optimum tilt angles are compared with the experimentally measured values for summer season under outdoor conditions. The Liu and Jordan model is found to exhibit t lowest error as compared to other models for the location. (author)

  11. Correlation of photovoltaic geographical information system data ...

    African Journals Online (AJOL)

    In this study, a 12-month record of global solar radiation (GSR) data in Niger Delta ... the viewpoint of making a case for renewable energy investment in the region. Keywords: Solar energy, global solar radiation, Photovoltaic GIS, Niger Delta

  12. Behavior of hybrid concentrated photovoltaic-thermoelectric generator under variable solar radiation

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2018-01-01

    diversely versus changing the solar radiation and module temperature. Moreover, the thermal response of the TEG stabilizes temperature fluctuation of the hybrid module when the solar radiation rapidly changes. In this work, impact of the thermal contact resistance on the temperature profile and system...... and solved by finite volume algorithm. In spite of temperatures profile in the hybrid CPV-TEG module, as results of variation of solar irradiation, power generation and efficiency of the CPV and TEG under the transient condition are presented. The results show that efficiency of the TEG and CPV varies...

  13. Photovoltaic solar energy: State of the art

    International Nuclear Information System (INIS)

    Van Sark, W.G.J.H.M.; Sinke, W.C.

    1993-03-01

    Attention is paid to developments in the Netherlands of all aspects of photovoltaic (PV) energy: solar cells, components, PV-systems and all kinds of applications. Efficiencies of the present solar cell types still increase, varying from more than 10% for organic/TiO 2 solar cells to 33% for GaAs/GaSb concentrator tandem solar cells. 3 figs., 2 ills., 1 tab

  14. Solar thermal power and photovoltaic energy are both developing

    International Nuclear Information System (INIS)

    Le Jannic, N.; Houot, G.

    2010-01-01

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  15. Predicting the performance of amorphous and crystalline silicon based photovoltaic solar thermal collectors

    International Nuclear Information System (INIS)

    Daghigh, Ronak; Ibrahim, Adnan; Jin, Goh Li; Ruslan, Mohd Hafidz; Sopian, Kamaruzzaman

    2011-01-01

    BIPVT is an application where solar PV/T modules are integrated into the building structure. System design parameters such as thermal conductivity and fin efficiency, type of cells, type of coolant and operating conditions are factors which influence the performance of BIPVT. Attempts have been made to improve the efficiency of building-integrated photovoltaic thermal (BIPVT). A new design concept of water-based PVT collector for building-integrated applications has been designed and evaluated. The results of simulation study of amorphous silicon (a-Si) PV/T and crystalline silicon (c-Si) module types are based on the metrological condition of Malaysia for a typical day in March. At a flow rate of 0.02 kg/s, solar radiation level between 700 and 900 W/m 2 and ambient temperature between 22 and 32 o C, the electrical, thermal and combined photovoltaic thermal efficiencies for the PV/T (a-Si) were 4.9%, 72% and 77%, respectively. Moreover, the electrical, thermal and combined photovoltaic thermal efficiencies of the PV/T (c-Si) were 11.6%, 51% and 63%.

  16. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  17. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  18. Analysis of Selected Photovoltaic Panels Operating Parameters as a Function of Partial Shading and Intensity of Reflected Radiation

    Directory of Open Access Journals (Sweden)

    Bilčík Matúš

    2018-03-01

    Full Text Available Due to expansion of utilisation of photovoltaics in ordinary households, the question arises how this phenomenon affects the electric power of photovoltaic modules. The article deals with the electric power analysis of photovoltaic modules as a function of two very important factors. The first examined factor was partial shading, and the second factor was the intensity of reflected radiation. In order to determine the dependence of module power on the aforementioned parameters, a measurement system under laboratory conditions has been prepared. For identification of the reflected radiation effect on the power of the photovoltaic module, a series of measurements was performed on 7 different surfaces with the same radiation source. It is evident from obtained experimental result that the ratio of reflected irradiation on the solar module power is 1.29%. By simulation of partial shading of photovoltaic module, the decrease of 86.15% in its output power was identified.

  19. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation

    International Nuclear Information System (INIS)

    Ferroni, Ferruccio; Hopkirk, Robert J.

    2016-01-01

    Many people believe renewable energy sources to be capable of substituting fossil or nuclear energy. However there exist very few scientifically sound studies, which apply due diligence to substantiating this impression. In the present paper, the case of photovoltaic power sources in regions of moderate insolation is analysed critically by using the concept of Energy Return on Energy Invested (ERoEI, also called EROI). But the methodology for calculating the ERoEI differs greatly from author-to-author. The main differences between solar PV Systems are between the current ERoEI and what is called the extended ERoEI (ERoEI EXT ). The current methodology recommended by the International Energy Agency is not strictly applicable for comparing photovoltaic (PV) power generation with other systems. The main reasons are due to the fact that on one hand, solar electricity is very material-intensive, labour-intensive and capital-intensive and on the other hand the solar radiation exhibits a rather low power density. - Highlights: •Data are available from several years of photovoltaic energy experience in northern Europe. •These are used to show the way to calculate a full, extended ERoEI. •The viability and sustainability in these latitudes of photovoltaic energy is questioned. •Use of photovoltaic technology is shown to result in creation of an energy sink.

  20. Laminated photovoltaic modules using back-contact solar cells

    Science.gov (United States)

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  1. Snow melting system with electric heating using photovoltaic power generation; Solar yusetsuko

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, M; Fujita, S; Kaga, T; Koyama, N [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    This paper clarifies the solar characteristics in Hachinohe district, to investigate a possibility of the snow melting system with electric heating using solar energy. Power demand for snow melting, power generated by the photovoltaic (PV) array, area of PV array, and working conditions of the system, as to temperature, precipitation and snowfall, were investigated. The percentage of sunshine is 44% in Hachinohe district, which has more fortunate natural condition for utilizing solar radiation compared with that of 20% in Aomori prefecture. The intensity of solar radiation in winter from December to March is around 500 W/m{sup 2} in average, which is equivalent to the quantity of solar radiation, around 2 kWh/m{sup 2} a day. When assuming that snow on the road surface is frozen at the snowfall under the air temperature below -3{degree}C, the occurrence frequency is 50% during January and February in Hachinohe district, which means one frozen day for two days and is equivalent to the occurrence frequency of frozen days, 34% in average during winter. The electric application ratio is 0.34 at the maximum in winter. That is, days of 34% for one month are required for snow melting. 3 figs., 3 tabs.

  2. Enhanced EOS photovoltaic power system capability with InP solar cells

    Science.gov (United States)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  3. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Science.gov (United States)

    2010-10-05

    ... Determination Concerning Solar Photovoltaic Panel Systems AGENCY: U.S. Customs and Border Protection, Department... Procurement; Title III, Trade Agreements Act of 1979; Country of Origin of solar photovoltaic panel system... solar photovoltaic (``PV'') panel systems contain both U.S. and foreign-origin raw materials and...

  4. Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production

    Science.gov (United States)

    Czirjak, Daniel

    2017-04-01

    Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.

  5. Interactive Visual Analysis for Organic Photovoltaic Solar Cells

    KAUST Repository

    Abouelhassan, Amal A.

    2017-01-01

    Organic Photovoltaic (OPV) solar cells provide a promising alternative for harnessing solar energy. However, the efficient design of OPV materials that achieve better performance requires support by better-tailored visualization tools than

  6. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  7. Optimizing Re-planning Operation for Smart House Applying Solar Radiation Forecasting

    Directory of Open Access Journals (Sweden)

    Atsushi Yona

    2014-08-01

    Full Text Available This paper proposes the re-planning operation method using Tabu Search for direct current (DC smart house with photovoltaic (PV, solar collector (SC, battery and heat pump system. The proposed method is based on solar radiation forecasting using reported weather data, Fuzzy theory and Recurrent Neural Network. Additionally, the re-planning operation method is proposed with consideration of solar radiation forecast error, battery and inverter losses. In this paper, it is assumed that the installation location for DC smart house is Okinawa, which is located in Southwest Japan. The validity of proposed method is confirmed by comparing the simulation results.

  8. Fabrication and performance analysis of concentrated hybrid photovoltaic system

    Directory of Open Access Journals (Sweden)

    Murthy Krishna

    2018-01-01

    Full Text Available Sun is the most important source of renewable source of energy. During the past few decades there has been an ever-increasing interest in Photovoltaic (PV cells as it directly converts solar radiation into electricity. This paper involves the performance study of photovoltaic system under concentrated solar radiation. The main problem with the concentration solar energy is the drastic increase in temperature of the photovoltaic module resulting in a decrease in performance efficiency of the system. This problem of overheating of the system can be overcome by providing cooling which would ensure operation of the module in the optimal temperature range. Hence, the setup would function as a hybrid model serving the dual purpose of power generation while also utilizing the waste heat for water heating applications. The experimental set up consist of a novel arrangement of concentrator and reflector and the cooling system. The Hybrid Photovoltaic System was repeatedly tested under real time conditions on several days. A comparison was drawn between the results obtained from direct exposure of a standard photovoltaic module to that obtained from the hybrid system in order to better understand the improvement in performance parameters. The study shown a significant improvement of output of standard photovoltaic module under the concentrated solar radiation.

  9. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  10. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  11. Voltage variation due to solar photovoltaic in distribution network

    International Nuclear Information System (INIS)

    Azad, H I; Ramachandaramurthy, V K; Maleki, Hesamaldin

    2013-01-01

    Grid integration of solar photovoltaic (PV) plant offers reduction in greenhouse emissions and independence from fossil fuels for power generation. The integration of such forms of power generation also brings with it a variety of policy and technical issues. One of the technical issues is the variation in grid voltages in the presence of solar photovoltaic (PV) plant, resulting in degradation of power quality. In this paper, the application of a dq current controller to limit the voltage variation at the point of common coupling (PCC) due to a 2 MW solar photovoltaic (PV) plant will be discussed. The controller's goal is to ensure that the voltage variation meets the momentary voltage change limits specified in TNB's Technical Guidebook for the connection of distributed generation. The proposed dq current controller is shown to be able to limit the voltage variation.

  12. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  13. Standard Terminology Relating to Photovoltaic Solar Energy Conversion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

  14. A methodology for calculating photovoltaic field output and effect of solar tracking strategy

    International Nuclear Information System (INIS)

    Hu, Yeguang; Yao, Yingxue

    2016-01-01

    Highlights: • A new methodology for calculating PV field output is proposed. • The reduction of diffuse radiation and albedo due to shading is considered. • The shadow behavior is accurately analyzed at a cell level. • Several simplified measures are taken to reduce the calculation work. • The field outputs with different solar tracking strategies are compared. - Abstract: This paper proposes an effective methodology for calculating the photovoltaic field output. A combination of two methods is first presented for optical performance calculation: point projection method for direction radiation, and Monte Carlo ray-tracing method for both diffuse radiation and albedo radiation. Based on the optical calculation, an accurate output of the photovoltaic field can be obtained through a cell-level simulation of PV system. Several simplified measures are taken to reduce the large amount of calculation work. The proposed methodology has been validated for accurate and fast calculation of field output. With the help of the developed code, this paper deals with the performance comparison between four typical tracking strategies. Through the comparative analysis, the field output is proved to be related to the tracking strategy. For a regular photovoltaic field, the equatorial and elevation-rolling tracking show the superior performance in annual field output to the azimuth-elevation and rolling-elevation tracking. A reasonable explanation for this difference has been presented in this paper.

  15. Multi-criteria analysis on how to select solar radiation hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Badea, G.; Naghiu, G. S., E-mail: naghiu.george@gmail.com; Felseghi, R.-A.; Giurca, I., E-mail: giurca-ioan@yahoo.com [Technical University of Cluj-Napoca, Faculty of Building Services Engineering, Boulevard December 21, no. 128-130, Cluj-Napoca, 400604 (Romania); Răboacă, S. [National R& D Institute for Cryogenic and Isotopic Technologies, str. Uzinei, no. 4, Rm. Vălcea, 240050 (Romania); Aşchilean, I. [SC ACI Cluj SA, Avenue Dorobanţilor, no. 70, Cluj-Napoca, 400609 (Romania)

    2015-12-23

    The purpose of this article is to present a method of selecting hydrogen-production systems using the electric power obtained in photovoltaic systems, and as a selecting method, we suggest the use of the Advanced Multi-Criteria Analysis based on the FRISCO formula. According to the case study on how to select the solar radiation hydrogen production system, the most convenient alternative is the alternative A4, namely the technical solution involving a hydrogen production system based on the electrolysis of water vapor obtained with concentrated solar thermal systems and electrical power obtained using concentrating photovoltaic systems.

  16. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    OpenAIRE

    Yu-Shan Su

    2013-01-01

    The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors...

  17. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    sources, namely photovoltaic (PV) panels, to roughly determine the energy producing potential of an installation’s solar array. The implicit...power resources assembled as a single system (generator, storage, distribution and load), with the ability to run independently as an “island” and/or...atmospheric layers that will act on the solar radiation as it traverses strata. These terms are a function of cloud type, size , and density. To create a

  18. PV Status Report 2010. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2010-08-01

    Photovoltaics is a solar power technology to generate Electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report combines international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last decade were on average more than 40 %, thus making Photovoltaics one of the fastest growing industries at present. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  19. The characteristic analysis of the solar energy photovoltaic power generation system

    Science.gov (United States)

    Liu, B.; Li, K.; Niu, D. D.; Jin, Y. A.; Liu, Y.

    2017-01-01

    Solar energy is an inexhaustible, clean, renewable energy source. Photovoltaic cells are a key component in solar power generation, so thorough research on output characteristics is of far-reaching importance. In this paper, an illumination model and a photovoltaic power station output power model were established, and simulation analysis was conducted using Matlab and other software. The analysis evaluated the condition of solar energy resources in the Baicheng region in the western part of Jilin province, China. The characteristic curve of the power output from a photovoltaic power station was obtained by simulation calculation. It was shown that the monthly average output power of the photovoltaic power station is affected by seasonal changes; the output power is higher in summer and autumn, and lower in spring and winter.

  20. Energy efficiency of photovoltaic modules mono and polycrystalline in function of global solar radiation; Eficiencia energetica de modulos fotovoltaicos mono e poli-cristalinos em funcao da radiacao solar global

    Energy Technology Data Exchange (ETDEWEB)

    Seraphim, Odivaldo Jose [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural], e-mail: seraphim@fca.unesp.br; Siqueira, Jair Antonio Cruz [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas], e-mail: jairsiqueira@fca.unesp.br; Silva, Carliane Diniz e [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil); Fiorentino, Jair de Jesus [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Dept. de Engenharia Eletrica], e-mail: jairfiorentino@terra.com.br; Araujo, Joao Alberto Borges de [Faculdade de Tecnologia de Botucatu (FATEC), SP (Brazil). Dept. de Engenharia de Producao

    2004-07-01

    This research proposes a methodology to evaluate the acting of the solar energy conversion in electric energy, generated by photovoltaic modules installed under field conditions, constituted monocrystalline and polycrystalline silicon cells. The modules were appraised with relationship to energy efficiency for different marks and potency levels, in function of the readiness of solar radiation, being used loads sized for the nominal potency level of each module. The energy efficiency values calculated with the data obtained in field, didn't agree with the technical information presented by the makers of the modules monocrystalline, as being more efficient than the polycrystalline. Was ended, therefore, that the modules of the appraised marks presented inferior medium efficiency at 50% of the values supplied by the makers (author)

  1. FY 1977 Annual report on Sunshine Project results. Survey and research on systems utilizing solar energy (Photovoltaic power generation systems); 1977 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at investigation on irradiation conditions of natural solar radiation to establish the performance evaluation methods; establishment of standard evaluation methods under natural solar radiation; and investigation on practical problems involved in the photovoltaic power generation systems. The research items are (1) photovoltaic power generation systems, and (2) standard evaluation methods for photovoltaic power generation systems installed on the ground. The item (1) includes the effect analysis in which existing Japanese residential buildings are selected to estimate possibility of installation of photovoltaic power generation systems and possible quantity of power generated; conceptual designs in which several systems conceivable at present are proposed and outlined, and a 30kW photovoltaic power generation system is taken up to investigate, e.g., solar cell arrays for the system, orthogonal conversion devices, associated facilities, conceptual designs of storage batteries, problems involved therein, and future research themes; and operation of the cell, which takes up operational examples of solar cell power sources, and operational problems viewed from the power transmission side. The item (2) proposes the standard evaluation methods (primary drafts) for the solar cell arrays and panels as those for photovoltaic power generation systems installed on the ground. (NEDO)

  2. Advances in thin-film solar cells for lightweight space photovoltaic power

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  3. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  4. Photovoltaic solar energy: which realities for 2020? Summarized synthesis

    International Nuclear Information System (INIS)

    2011-01-01

    This report first describes the situation of the photovoltaic as situated at a crossroad with strong development possibilities for the French photovoltaic sector. It presents the photovoltaic energy as a competitive, regulatory and ecologic one, and therefore inescapable. It outlines stakes and obstacles of the French situation regarding the development of this sector. It highlights the economic and social benefit investing in this sector. Some propositions are stated for the promotion of the photovoltaic solar sector. Challenges are identified

  5. Formation of photovoltaic modules based on polycrystalline solar cells

    OpenAIRE

    L. A. Dobrzański; A. Drygała; A. Januszka

    2009-01-01

    Purpose: The main aim of the paper is formation of photovoltaic modules and analysis of their main electric parameters.Design/methodology/approach: Photovoltaic modules were produced from four polycrystalline silicon solar cells, that were cut and next joined in series. Soft soldering technique and copper-tin strip were used for joining cells.Findings: In order to provide useful power for any application, the individual solar cells must be connected together to give the appropriate current an...

  6. Contribution to the study of the wind and solar radiation over Guadeloupe

    International Nuclear Information System (INIS)

    Bertin, A.; Frangi, J.P.

    2013-01-01

    Highlights: • We study wind and solar resource in Guadeloupe (FWI). • Weibull distributions reveal a nocturnal radiative layer blocking wind at airport. • We provide monthly and annual irradiations, horizontal and tilted, for four sites. • Five Linke turbidity coefficient calculation methods are reviewed and compared. - Abstract: Guadeloupean archipelago must reach energy autonomy in 2030 and include at least 50% of renewables in 2020, where wind and photovoltaics can play a significant role. Still, Guadeloupe gathers a lot of landscapes having great impact on wind and solar resource. Study of three 10-years database and one 5-year database locates a nocturnal radiative layer above the airport meteorological station, drastically limiting the wind potential there, and gives all the irradiation components (monthly sums) and therefore key parameters for photovoltaic energy yield. This paper also points out the underestimation of Linke turbidity coefficient in the airport station with Solar Radiation Database (SoDa), compared to ground-based determination, and calculates the value of this coefficient for three stations across Guadeloupe. All those parameters are discussed, as being of importance to make fair predictions of statistical relationships involving preliminary assessment and modeling of wind and solar energy systems. These results can then be used in neighboring countries, Guadeloupe having various meteorological conditions retrieved in Caribbean

  7. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    Science.gov (United States)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  8. Solar photovoltaic markets, economics, technology, and potential

    Energy Technology Data Exchange (ETDEWEB)

    Blais, J.M.J.; Molinski, T.S. [Manitoba Hydro, Winnipeg, MB (Canada)]|[Emerging Energy Systems, Islamabad (Pakistan)

    2008-07-01

    Solar Photovoltaics (PV) are solid state semiconductor electronic devices that transform infrared, visible, or ultraviolet light energy from the sun directly into electrical energy. Selenium was used to create the first solar cell in 1883. In 1954, Bell Laboratories developed the modern day silicon solar cell, whereby impurities were added to silicon through a process called doping. Silicon doped with boron results in a positive electrical charge, while silicon doped with phosphorous results in a negative electrical charge. The atom collision from photons in sunlight provides the necessary energy to free a trapped electron in the doped silicon, which then may flow through a wire creating an electric current. Many different materials besides silicon are used to create solar cells, such as plastics, organic compounds, and theoretically even special paints, while other doping agents besides boron and phosphorous are also used, such as arsenic and gallium. This paper provided an introduction to solar PV and world solar PV growth and markets. A review of solar PV economics was also included. In 2008, the total installed costs of solar photovoltaic cells were in the range of 7 to 10 Canadian dollars. In addition, the advantages and disadvantages of solar PV were presented. Solar technologies under research and development were also discussed and assessed. It was concluded that although solar PV was one of the most expensive forms of renewable generation, there is great potential for solar PV to gain broader based application as costs continue to drop. 11 refs., 1 tab., 1 fig.

  9. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  10. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  11. Didactic trainer. Solar photovoltaic panels analysis; Analisis de paneles solares fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.; Ruiz, J.; Gorjon, J.; Quiles, J. A.; Cavaller, N.; Bodega, J.; Alonso-Abella, M.; Chenlo, F.

    2009-07-01

    The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) and the Instituto de Ensenanza Secundaria Virgen de la Paloma (IES VP), through their respective Metrology and Electricity-Electronics departments, have established a first agreement of co-operation with the aim of introducing and enhancing the solar photovoltaic energy within the professional teachings field. This agreements is a result of the compromise of designing entirely in the Electricity-electronics department of IES VP a didactic trainer prototype which enables to analyze cells and photovoltaic panels, all under the supervision and logistic-technical support of CIEMAT Photovoltaic Laboratory. (Author)

  12. Placement and efficiency effects on radiative forcing of solar installations

    International Nuclear Information System (INIS)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-01-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes

  13. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  14. Siting Solar Photovoltaics at Airports: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Romero, R.

    2014-06-01

    Airports present a significant opportunity for hosting solar technologies due to their open land; based on a 2010 Federal Aviation Administration study, the US Department of Agriculture, and the US Fish and Wildlife Service, there's potential for 116,704 MW of solar photovoltaics (PV) on idle lands at US airports. PV has a low profile and likely low to no impact on flight operations. This paper outlines guidance for implementing solar technologies at airports and airfields, focusing largely on the Federal Aviation Administration's policies. The paper also details best practices for siting solar at airports, provides information on the Solar Glare Hazard Analysis Tool, and highlights a case study example where solar has been installed at an airport.

  15. Studying the effect of spectral variations intensity of the incident solar radiation on the Si solar cells performance

    Directory of Open Access Journals (Sweden)

    Ahmed Elsayed Ghitas

    2012-12-01

    Full Text Available Solar spectral variation is important in characterization of photovoltaic devices. We present results of an experimental investigation of the effects of the daily spectral variation on the device performance of multicrystalline silicon photovoltaic module. The investigation concentrate on the analysis of outdoor solar spectral measurements carried out at 1 min intervals on clear sky days. Short circuit current and open circuit voltage have been measured to describe the module electrical performance. We have shown that the shift in the solar spectrum towards infrared has a negative impact on the device performance of the module. The spectral bands in the visible region contribute more to the short circuit current than the bands in the infrared region while the ultraviolet region contributes least. The quantitative effect of the spectral variation on the performance of the photovoltaic module is reflected on their respective device performance parameters. The decrease in the visible and the increase in infrared of the radiation spectra account for the decreased current collection and hence power of the module.

  16. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  17. Solar Photovoltaic Plant for the 'Eftimie Murgu' University of Resita

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2010-01-01

    Full Text Available The paper presents an application of a solar photovoltaic plant for the 'Eftimie Murgu' University, with an estimation of the yearly medium energy production. The substantiation of the plant designed is based on the many years measurements obtained in the laboratory for monitoring the solar photovoltaic energy of the university and the favorable conditions of promoting the energy production from renewable sources, assured in the new legislation.

  18. A comparison of performance of flat and bent photovoltaic luminescent solar concentrators

    NARCIS (Netherlands)

    Vishwanathan, B.; Reinders, A. H.M.E.; de Boer, D.K.G.; Desmet, L.; Ras, A. J.M.; Zahn, F. H.; Debije, M.G.

    2015-01-01

    To employ new solar photovoltaic technologies in products and buildings, many systems need to be adapted. Inspired by the cylindrical shape, in this work we have evaluated the performance of luminescent solar concentrator photovoltaic (LSC-PV) elements with narrow PV cell strips that could be

  19. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  20. Potential of Solar Energy in Kota Kinabalu, Sabah: An Estimate Using a Photovoltaic System Model

    Science.gov (United States)

    Markos, F. M.; Sentian, J.

    2016-04-01

    Solar energy is becoming popular as an alternative renewable energy to conventional energy source, particularly in the tropics, where duration and intensity of solar radiation are longer. This study is to assess the potential of solar energy generated from solar for Kota Kinabalu, a rapidly developing city in the State of Sabah, Malaysia. A year data of solar radiation was obtained using pyranometer, which was located at Universiti Malaysia Sabah (6.0367° N, 116.1186° E). It was concluded that the annual average solar radiation received in Kota Kinabalu was 182 W/m2. In estimating the potential energy generated from solar for Kota Kinabalu city area, a photovoltaic (PV) system model was used. The results showed that, Kota Kinabalu is estimated to produce 29,794 kWh/m2 of electricity from the solar radiation received in a year. This is equivalent to 0.014 MW of electricity produced just by using one solar panel. Considering the power demand in Sabah by 2020 is 1,331 MW, this model showed that the solar energy can contribute around 4% of energy for power demand, with 1 MW capacity of the PV system. 1 MW of PV system installation will require about 0.0328% from total area of the city. This assessment could suggest that, exploration for solar power energy as an alternative source of renewable energy in the city can be optimised and designed to attain significant higher percentage of contribution to the energy demand in the state.

  1. Potential of Solar Energy in Kota Kinabalu, Sabah: An Estimate Using a Photovoltaic System Model

    International Nuclear Information System (INIS)

    Markos, F M; Sentian, J

    2016-01-01

    Solar energy is becoming popular as an alternative renewable energy to conventional energy source, particularly in the tropics, where duration and intensity of solar radiation are longer. This study is to assess the potential of solar energy generated from solar for Kota Kinabalu, a rapidly developing city in the State of Sabah, Malaysia. A year data of solar radiation was obtained using pyranometer, which was located at Universiti Malaysia Sabah (6.0367° N, 116.1186° E). It was concluded that the annual average solar radiation received in Kota Kinabalu was 182 W/m 2 . In estimating the potential energy generated from solar for Kota Kinabalu city area, a photovoltaic (PV) system model was used. The results showed that, Kota Kinabalu is estimated to produce 29,794 kWh/m 2 of electricity from the solar radiation received in a year. This is equivalent to 0.014 MW of electricity produced just by using one solar panel. Considering the power demand in Sabah by 2020 is 1,331 MW, this model showed that the solar energy can contribute around 4% of energy for power demand, with 1 MW capacity of the PV system. 1 MW of PV system installation will require about 0.0328% from total area of the city. This assessment could suggest that, exploration for solar power energy as an alternative source of renewable energy in the city can be optimised and designed to attain significant higher percentage of contribution to the energy demand in the state. (paper)

  2. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  3. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.

    Science.gov (United States)

    Aeberhard, Urs; Rau, Uwe

    2017-06-16

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  4. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  5. PV Status Report 2008. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-09-01

    Photovoltaics is a solar power technology to generate electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report is to combine international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact-finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last five years were on average more than 40%, thus making Photovoltaics one of the fastest growing industries at present. Business analysts predict that the market volume will increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  6. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  7. Mathematical models for photovoltaic solar panel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose Airton A. dos; Gnoatto, Estor; Fischborn, Marcos; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: airton@utfpr.edu.br, gnoatto@utfpr.edu.br, fisch@utfpr.edu.br, kavanagh@utfpr.edu.br

    2008-07-01

    A photovoltaic generator is subject to several variations of solar intensity, ambient temperature or load, that change your point of operation. This way, your behavior should be analyzed by such alterations, to optimize your operation. The present work sought to simulate a photovoltaic generator, of polycrystalline silicon, by characteristics supplied by the manufacturer, and to compare the results of two mathematical models with obtained values of field, in the city of Cascavel, for a period of one year. (author)

  8. Restoration and construction (buildings). Solar electric power. How to complete a photovoltaic project

    International Nuclear Information System (INIS)

    Bareau, Helene; Juniere, Olivier

    2017-10-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic but comprehensive outlook on the way to complete a solar photovoltaic project in the cases of the restoration or the construction of a building. After a presentation of solar energy, its transformation into electric power, and the installation of solar photovoltaic panels and equipment, the brochure exposes the various steps of a photovoltaic project: economic analysis (cost estimation, budgets, financing incentives, power prices, the choice between selling or using electric power, the contracts, etc.), the planning of the project, the administrative procedure, the selection of a professional installer, how to run the photovoltaic system, how to run the business, etc

  9. Voltage Quality Improvement Using Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Denisa Galzina

    2015-06-01

    This paper briefly shows the methods of power quality improvement, and then the results of on-site power quality measurements in the grid before and after the connection of the solar photovoltaic system.

  10. Photovoltaic and photoelectrochemical conversion of solar energy.

    Science.gov (United States)

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  11. APSA - A new generation of photovoltaic solar arrays

    Science.gov (United States)

    Stella, P. M.; Kurland, R. M.

    1989-01-01

    This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.

  12. Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications

    Science.gov (United States)

    Xie, Y.; Sengupta, M.

    2017-12-01

    Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.

  13. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    Science.gov (United States)

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  14. Global solar radiation: Multiple on-site assessments in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    El Chaar, Lana; Lamont, Lisa A. [Petroleum Institute, Electrical Engineering Department, P.O. Box 2533, Abu Dhabi (United Arab Emirates)

    2010-07-15

    Renewable energy technology and in particular solar energy is being considered worldwide due to the fluctuations in oil prices, global warming and the growing demand for energy supply. This paper investigates the climate conditions available in the United Arab Emirates (UAE) in particular Abu Dhabi to implement Photovoltaic (PV) technology. Measured solar radiation was analyzed for five different geographical locations to ensure the suitability of this region. Hourly, daily and monthly global horizontal irradiation (GHI) were collected and processed. Statistical methods were used to evaluate the computed GHI and showed high values especially during the summer period. Moreover, clearness index was calculated to investigate the frequency of cloudy sky days and results have shown a high percentage of clear days during the year. This paper highlights a promising future for Abu Dhabi in the solar energy sector and in particular Photovoltaic (PV) technology. (author)

  15. Workforce challenges and opportunities in the solar photovoltaic industry in Toronto

    International Nuclear Information System (INIS)

    Saneinejad, Sheyda

    2011-01-01

    In December 2009, the city of Toronto adopted principles and targets for the city's sustainable energy future. The city plans to install 2 MW of solar photovoltaic panels in its facilities. The aim of this study is to assess the impact of such a project, as well as further expansion of solar photovoltaic energy generation, from the economic development perspective. A literature review, online surveys and interviews with solar industries were carried out and a job estimation model was developed. Results showed that the 2 MW installation would create 53 person years of employment locally while expansion of the technology throughout the city could generate 100,000 local jobs. However this research also pointed out a lack of suitably qualified and experienced personnel Canada-wide. This study demonstrated that the solar photovoltaic industry has the potential to provide significant economic benefits in Toronto but that certification programs must be put in place to address the lack of qualified personnel.

  16. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  17. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  18. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  19. Residential solar photovoltaic market stimulation: Japanese and Australian lessons for Canada

    International Nuclear Information System (INIS)

    Parker, Paul

    2008-01-01

    Canada is a leading electricity consumer, yet lags behind other industrial countries (14th out of 20 reporting IEA countries) in the installation of solar photovoltaic systems. The factors (environmental benefits, health benefits, network benefits, need for new production capacity, etc.) promoting solar or other renewable sources of electricity in other countries are also present in Canada, but effective policy mechanisms to stimulate Canada's photovoltaic industry are only starting to appear. Discussions of policy options focused initially on renewable portfolio standards and then on feed-in tariffs. This paper reviews the Japanese and Australian experience with capital incentives to stimulate the residential market for photovoltaics. It demonstrates the ability of a market-sensitive program to stimulate industrial growth, achieve unit cost reductions and shift the market to include a large grid-tied share. Residential respondents to surveys report high costs as their primary barrier to installing photovoltaic systems and state a strong preference for capital incentives to reduce their investment costs. The Canadian government needs a market stimulation policy if it is to join those countries where a decentralized photovoltaic generation system strengthens the electricity supply system. A balanced solar energy market stimulation program is proposed that combines a feed-in tariff with a declining capital incentive. (author)

  20. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  1. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  2. Simulation of the optimal size of photovoltaic system using ...

    African Journals Online (AJOL)

    . ... is composed of photovoltaic array, power tracker, battery storage, inverter and load. The data used were the sunshine duration and solar radiation intensity for ... covered by the photovoltaic system without battery storage, monthly-average ...

  3. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    Science.gov (United States)

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  4. Photovoltaics - solar power stations. Prospects of a cutting edge technology

    International Nuclear Information System (INIS)

    Heidenreich, M.

    2002-01-01

    Photovoltaics is the sector of the future in this millennium. The process of human urbanization has led to a high demand for electricity; at the same time high-density urban settlement offers an enormous surface area that could be used for photovoltaic equipment. Such surfaces include rooftops, building facades, parking lots for automobiles, train stations and solar soundproofing walls. According to conservative estimates, Austria has sufficient surface area for a peak solar output of 4,000 MW. This would be sufficient to supply some 1.6 million households with electricity from unlimited solar energy. However, a tremendous marketing effort will be required in order to achieve generation on such a scale. (author)

  5. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics

    KAUST Repository

    Beiley, Zach M.

    2013-10-07

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Standard Specification for Solar Simulation for Terrestrial Photovoltaic Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification provides means for classifying solar simulators intended for indoor testing of photovoltaic devices (solar cells or modules), according to their spectral match to a reference spectral irradiance, non-uniformity of spatial irradiance, and temporal instability of irradiance. 1.2 Testing of photovoltaic devices may require the use of solar simulators. Test Methods that require specific classification of simulators as defined in this specification include Test Methods E948, E1036, and E1362. 1.3 This standard is applicable to both pulsed and steady state simulators and includes recommended test requirements used for classifying such simulators. 1.4 A solar simulator usually consists of three major components: (1) light source(s) and associated power supply; (2) any optics and filters required to modify the output beam to meet the classification requirements in Section 4; and (3) the necessary controls to operate the simulator, adjust irradiance, etc. 1.5 A light source that does not mee...

  7. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  8. A method for evaluating photovoltaic potential in China based on GIS platform

    Science.gov (United States)

    Wang, L. Z.; Tan, H. W.; Ji, L.; Wang, D.

    2017-11-01

    Solar photovoltaic systems are commonly utilized in China. However, the associated research is still lack of its resource potential analysis in all regions in China. Based on the existed data about solar radiation and system conversion efficiency data, a new method for distributed photovoltaic potential assessment has been presented. The experiment of three kinds of solar photovoltaic system has been set up for the purpose of analyzing the relationship between conversion efficiency and environmental parameters. This paper fits the relationship between conversion efficiency and solar radiation intensity. This method takes into account the amount of solar radiation that is effectively generated and drives away the weak values. With the spatial analysis function of geographic information system (GIS) platform, frequency distribution of solar radiation intensity and PV potential in China can be derived. Furthermore, analytical results show that monocrystalline-silicon PV generation in the north-western and northern areas have reached a level of more than 200 kWh/(m2.a), making those areas be suitable for the development of PV system. However, the potential for southwest areas reaches a level of only 130 kWh/(m2.a). This paper can provide the baseline reference for solar energy development planning.

  9. A Hybrid Multiple-Criteria Decision-Making Approach for Photovoltaic Solar Plant Location Selection

    Directory of Open Access Journals (Sweden)

    Amy H. I. Lee

    2017-01-01

    Full Text Available Due to decaying fossil resource and increasing environmental consciousness, the demand of renewable energy resources is escalating these days. Photovoltaic solar energy is one of the most popular renewable energy resources in places where sunlight is abundant. The selection of a desirable location for constructing a photovoltaic solar plant is the first and one of the most important stages in the plant construction to provide a long-term energy production. In this paper, a comprehensive multiple-criteria decision-making model, which incorporates the interpretive structural modeling (ISM, fuzzy analytic network process (FANP and VIKOR (VlseKriterijumska OptimizacijaI Kompromisno Resenje in Serbian,meaning multi-criteria optimization and compromise solution, is proposed to select the most suitable photovoltaic solar plant location. The ISM is applied first to determine the interrelationships among the criteria and among the sub-criteria,andtheresults are used to construct a decision-making network. The FANP is applied next to solve the network and to calculate the importance weights of the sub-criteria. Finally, the VIKOR is adopted to determine the ranking of the photovoltaic solar plant locations. The proposed model is applied in a case study in evaluating photovoltaic solar plant locations in Taiwan. By applying the proposed model, decision makers can have a better thinking process and make more appropriate decisions justifiably.

  10. Modular assembly of a photovoltaic solar energy receiver

    Science.gov (United States)

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  11. Numerical and Experimental Study on Energy Performance of Photovoltaic-Heat Pipe Solar Collector in Northern China

    Directory of Open Access Journals (Sweden)

    Hongbing Chen

    2015-01-01

    Full Text Available Several studies have found that the decrease of photovoltaic (PV cell temperature would increase the solar-to-electricity conversion efficiency. Water type PV/thermal (PV/T system was a good choice but it could become freezing in cold areas of Northern China. This paper proposed a simple combination of common-used PV panel and heat pipe, called PV-heat pipe (PV-HP solar collector, for both electrical and thermal energy generation. A simplified one-dimensional steady state model was developed to study the electrical and thermal performance of the PV-HP solar collector under different solar radiations, water flow rates, and water temperatures at the inlet of manifold. A testing rig was conducted to verify the model and the testing data matched very well with the simulation values. The results indicated that the thermal efficiency could be minus in the afternoon. The thermal and electrical efficiencies decreased linearly as the inlet water temperature and water flow rate increased. The thermal efficiency increased while the electrical efficiency decreased linearly as the solar radiation increased.

  12. Calculating the diffuse solar radiation in regions without solar radiation measurements

    International Nuclear Information System (INIS)

    Li, Huashan; Bu, Xianbiao; Long, Zhen; Zhao, Liang; Ma, Weibin

    2012-01-01

    Correlations for calculating diffuse solar radiation can be classified into models with global solar radiation (H-based method) and without it (Non-H method). The objective of the present study is to compare the performance of H-based and Non-H methods for calculating the diffuse solar radiation in regions without solar radiation measurements. The comparison is carried out at eight meteorological stations in China focusing on the monthly average daily diffuse solar radiation. Based on statistical error tests, the results show that the Non-H method that includes other readily available meteorological elements gives better estimates. Therefore, it can be concluded that the Non-H method is more appropriate than the H-based one for calculating the diffuse solar radiation in regions without solar radiation measurements. -- Highlights: ► Methods for calculating diffuse solar radiation in regions without solar radiation measurements are investigated. ► Diffuse solar radiation models can be classified into two groups according to global solar radiation. ► Two approaches are compared at the eight meteorological stations in China. ► The method without global solar radiation is recommended.

  13. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    International Nuclear Information System (INIS)

    Vasar, C; Prostean, O; Prostean, G

    2016-01-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models. (paper)

  14. Designing a concentrating photovoltaic (CPV) system in adjunct with a silicon photovoltaic panel for a solar competition car

    Science.gov (United States)

    Arias-Rosales, Andrés.; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2014-06-01

    Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle "Primavera", competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.

  15. SOLAR PHOTOVOLTAIC OUTPUT POWER FORECASTING USING BACK PROPAGATION NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    B. Jency Paulin

    2016-01-01

    Full Text Available Solar Energy is an important renewable and unlimited source of energy. Solar photovoltaic power forecasting, is an estimation of the expected power production, that help the grid operators to better manage the electric balance between power demand and supply. Neural network is a computational model that can predict new outcomes from past trends. The artificial neural network is used for photovoltaic plant energy forecasting. The output power for solar photovoltaic cell is predicted on hourly basis. In historical dataset collection process, two dataset was collected and used for analysis. The dataset was provided with three independent attributes and one dependent attributes. The implementation of Artificial Neural Network structure is done by Multilayer Perceptron (MLP and training procedure for neural network is done by error Back Propagation (BP. In order to train and test the neural network, the datasets are divided in the ratio 70:30. The accuracy of prediction can be done by using various error measurement criteria and the performance of neural network is to be noted.

  16. Enhancement in photovoltaic performance of phthalocyanine-sensitized solar cells by attapulgite nanoparticles

    International Nuclear Information System (INIS)

    Jin Ling; Chen Dajun

    2012-01-01

    Highlights: ► Dye-sensitized solar cells sensitized by zinc octacarboxylic phthalocyanine. ► Attapulgite nanoparticles have been used to suppress phthalocyanine aggregation. ► Adding attapulgite improves the photovoltaic performance of the dye-sensitized solar cells. - Abstract: Attapulgite nanoparticles were used to improve photovoltaic performance of phthalocyanine-sensitized solar cells. The effects of attapulgite on the devices were investigated in details. Adding of attapulgite into TiO 2 electrodes not only reduced the adsorption of zinc octacarboxylic phthalocyanine but also prevented phthalocyanine aggregation effect, which greatly improved photovoltaic performance of the dye-sensitized solar cell. The solar cell with 10 mg attapulgite nanoparticles dispersed in the dye solution exhibited nearly three times larger photoelectric conversion efficiency under simulated AM 1.5 G irradiation (100 mW cm −2 ) when compared to the pure dye, which was further characterized by the electrochemical impedance spectroscopy (EIS). The EIS studies showed that attapulgite decreased the charge-transfer resistances at the TiO 2 /dye/electrolyte interface, which can promote electron transport.

  17. The solar generation childhood and adolescence of terrestrial photovoltaics

    CERN Document Server

    Wolfe, Philip R

    2018-01-01

    The first book to address the early development of the photovoltaic industry, and the pioneering researchers and companies in the sector. Well before the end of this century, solar power will be the world's dominant power source. This book looks at the origins of this smart sustainable energy technology, tracing the pioneering years from its inception following the 1973 oil crisis to the end of the last millennium—just as the sector was poised for explosive growth. It focuses on the progress of the early terrestrial photovoltaic sector, often in the face of skepticism or apathy. It also covers the research and achievements of people and organizations within the PV business. Written by a leader in the field with more than 40 years of experience and an international reputation in the sustainable energy industry, The Solar Generation: Childhood and Adolescence of Terrestrial Photovoltaics offers enlightening coverage on the terrestrial PV industry. The first part of this 3-volume set provides a historical bac...

  18. Modeling of a solar photovoltaic water pumping system under the influence of panel cooling

    Directory of Open Access Journals (Sweden)

    Chinathambi Gopal

    2017-01-01

    Full Text Available In this paper, the performance of a solar photovoltaic water pumping system was improved by maintaining the cell temperature in the range between 30°C and 40°C. Experiments have been conducted on a laboratory experimental set-up installed with 6.4 m2 solar panel (by providing air cooling either on the top surface or over the beneath surface of the panel to operate a centrifugal pump with a rated capacity of 0.5 HP. The performance characteristics of the photovoltaic panel (such as, cell temperature, photovoltaic panel output, and photovoltaic efficiency, pump performance characteristics (such as pump efficiency and discharge, and system performance characteristics are observed with reference to solar irradiation, ambient temperature and wind velocity. A thermal model has been developed to predict the variations of photovoltaic cell temperature based on the measured glass and tedlar temperatures. The influences of cell temperature and solar irradiation on the performance of the system are described. The results concluded that cooling of photovoltaic panel on beneath surface has maintained the cell temperature in the range between 30°C and 40°C and improved the overall efficiency by about 1.8% when compared to the system without panel cooling.

  19. Investigation of a demonstrating photo-voltaic system

    International Nuclear Information System (INIS)

    Platikanov, S.; Markova, D.; Tsankov, P.; Grachki, I.

    2002-01-01

    A photovoltaic system for converting solar energy into electric energy has been built in the Technical University of Gabrovo. The measurements results of the solar radiation daily variation, temperature, illuminations and other technical characteristics of PV system are shown graphically. (authors)

  20. Simulation of an active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Abdelhakim, Lotfi

    2016-01-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  1. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  2. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION

    International Nuclear Information System (INIS)

    BOWERMAN, B.; FTHENAKIS, V.

    2001-01-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified

  3. Intrinsic radiation tolerance of ultra-thin GaAs solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, L. C.; Yakes, M. K.; Warner, J. H.; Schmieder, K. J.; Walters, R. J.; Jenkins, P. P. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW., Washington, D.C. 20375 (United States); Bennett, M. F. [Sotera Defense Solutions, Inc., Annapolis Junction, Maryland 20701-1067 (United States)

    2016-07-18

    Radiation tolerance is a critical performance criterion of photovoltaic devices for space power applications. In this paper we demonstrate the intrinsic radiation tolerance of an ultra-thin solar cell geometry. Device characteristics of GaAs solar cells with absorber layer thicknesses 80 nm and 800 nm were compared before and after 3 MeV proton irradiation. Both cells showed a similar degradation in V{sub oc} with increasing fluence; however, the 80 nm cell showed no degradation in I{sub sc} for fluences up to 10{sup 14 }p{sup +} cm{sup −2}. For the same exposure, the I{sub sc} of the 800 nm cell had severely degraded leaving a remaining factor of 0.26.

  4. Comparing solar energy alternatives

    Energy Technology Data Exchange (ETDEWEB)

    White, J R

    1984-01-01

    The paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun.

  5. Comparing solar energy alternatives

    Energy Technology Data Exchange (ETDEWEB)

    White, J R

    1984-01-01

    This paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun. 11 references.

  6. Simulated hail impact testing of photovoltaic solar panels

    Science.gov (United States)

    Moore, D.; Wilson, A.; Ross, R.

    1978-01-01

    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  7. Application and design of solar photovoltaic system

    International Nuclear Information System (INIS)

    Li Tianze; Lu Hengwei; Jiang Chuan; Hou Luan; Zhang Xia

    2011-01-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  8. Designing of new structure PID controller of boost converter for solar photovoltaic stability

    Science.gov (United States)

    Shabrina, Hanifati Nur; Setiawan, Eko Adhi; Sabirin, Chip Rinaldi

    2017-03-01

    Nowadays, the utilization of renewable energy as the source on distributed generation system is increasing. It aims to reduce reliance and power losses from utility grid and improve power stability in near loads. One example of renewable energy technology that have been highly proven on the market is solar photovoltaic (PV). This technology converts photon from sunlight into electricity. However, the fluctuation of solar radiation that often occurs become the main problem for this system. Due to this condition, the power conversion is needed to convert the change frequently in photovoltaic panel into a stable voltage to the system. Developing control of boost converter has important role to keep ability of system stabilization. A conventional PID (Proportional, Integral, Derivative) control is mostly used to achieve this goal. In this research, a design of new structure PID controller of boost converter is offered to better optimize system stability comparing to the conventional PID. Parameters obtained from this PID structure have been successfully yield a stable boost converter output at 200 V with 10% overshoot, 1.5 seconds of settling time, and 1.5% of steady-state error.

  9. Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Adnan; Othman, Mohd Yusof; Ruslan, Mohd Hafidz; Mat, Sohif; Sopian, Kamaruzzaman [Solar Energy Research Institute Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-01-15

    Flat plate photovoltaic/thermal (PV/T) solar collector produces both thermal energy and electricity simultaneously. This paper presents the state-of-the-art on flat plate PV/T collector classification, design and performance evaluation of water, air and combination of water and/or air based. This review also covers the future development of flat plate PV/T solar collector on building integrated photovoltaic (BIPV) and building integrated photovoltaic/thermal (BIPVT) applications. Different designs feature and performance of flat plate PV/T solar collectors have been compared and discussed. Future research and development (R and D) works have been elaborated. The tube and sheet design is the simplest and easiest to be manufactured, even though, the efficiency is 2% lower compared to other types of collectors such as, channel, free flow and two-absorber. It is clear from the review that for both air and water based PV/T solar collectors, the important key factors that influenced the efficiency of the system are the area where the collector covered, the number of passes and the gap between the absorber collector and solar cells. From the literature review, it is obvious that the flat plate PV/T solar collector is an alternative promising system for low-energy applications in residential, industrial and commercial buildings. Other possible areas for the future works of BIPVT are also mentioned. (author)

  10. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  11. Fuel Cell / electrolyser, Solar Photovoltaic Powered

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents experimental obtained results in the operation ofelectrolyzer powered by solar photovoltaic modules, for the waterelectrolysis and with the obtained hydrogen and oxygen proceeds tothe operation in fuel cell mode, type PEM. The main operatingparameters and conditions to optimize the energy conversion on thesolar-hydrogen-electricity cycle are highlighted, so that those arecomparable or superior to conventional cycles.

  12. Diversity in solar photovoltaic energy: Implications for innovation and policy

    NARCIS (Netherlands)

    Subtil Lacerda, J.; van den Bergh, J.C.J.M.

    2016-01-01

    We undertake a qualitative empirical study of the solar photovoltaic (PV) industry in order to investigate the role of diversity in stimulating innovation and diffusion. Based on evolutionary-economic concepts, we identify the main dimensions and components of diversity in the solar PV industry.

  13. SOFAS market inquiry 1998. Solar collectors and photovoltaic modules in the year 1998

    International Nuclear Information System (INIS)

    Nordmann, T.

    1999-04-01

    Beginning 1984, the Swiss Professional Association of Solar Energy Firms (SOFAS) collects data on solar collector and photovoltaic module sales in Switzerland. The data enter the 'Swiss statistics of renewable energy sources' in the annual report of the action programme 'Energy 2000' as well as the 'General energy statistics' of the Swiss government. In this way, the total energy output of solar heating systems (for domestic hot water preparation, space heating, swimming pool heating, and hay drying) as well as that of photovoltaic systems is available since 1993 in Switzerland. For years, the installed collector and module area is growing continuously. Especially for photovoltaics the subsidy programme of the government has a clear impact on the market tabs., figs [de

  14. Photovoltaic reciprocity and quasi-Fermi level splitting in nanostructure-based solar cells (Conference Presentation)

    Science.gov (United States)

    Aeberhard, Urs

    2017-04-01

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions [1]. So far, the theory has been verified for a wide range of devices and material systems and forms the basis of a growing number of luminesecence imaging techniques used in the characterization of photovoltaic materials, cells and modules [2-5]. However, there are also some examples where the theory fails, such as in the case of amorphous silicon. In our contribution, we critically assess the assumptions made in the derivation of the theory and compare its predictions with rigorous formal relations as well as numerical computations in the framework of a comprehensive quantum-kinetic theory of photovoltaics [6] as applied to ultra-thin absorber architectures [7]. One of the main applications of the photovoltaic reciprocity relation is the determination of quasi-Fermi level splittings (QFLS) in solar cells from the measurement of luminescence. In nanostructure-based photovoltaic architectures, the determination of QFLS is challenging, but instrumental to assess the performance potential of the concepts. Here, we use our quasi-Fermi level-free theory to investigate existence and size of QFLS in quantum well and quantum dot solar cells. [1] Uwe Rau. Reciprocity relation between photovoltaic quantum efficiency and electrolumines- cent emission of solar cells. Phys. Rev. B, 76(8):085303, 2007. [2] Thomas Kirchartz and Uwe Rau. Electroluminescence analysis of high efficiency cu(in,ga)se2 solar cells. J. Appl. Phys., 102(10), 2007. [3] Thomas Kirchartz, Uwe Rau, Martin Hermle, Andreas W. Bett, Anke Helbig, and Jrgen H. Werner. Internal voltages in GaInP-GaInAs-Ge multijunction solar cells determined by electro- luminescence measurements. Appl. Phys. Lett., 92(12), 2008. [4] Thomas Kirchartz, Anke Helbig, Wilfried Reetz, Michael Reuter, Jürgen H. Werner, and

  15. Going 'green': trade specialisation dynamics in the solar photovoltaic sector

    International Nuclear Information System (INIS)

    Algieri, Bernardina; Aquino, Antonio; Succurro, Marianna

    2011-01-01

    The present study aims at providing a comprehensive analysis of trade flows and the domestic value creation of the major solar photovoltaic industry at the world level. Solar technologies convert light and heat from the sun into useful energy. The use of the sun's energy can not only reduce the consumption of conventional fuels, thus reducing the emission of detrimental greenhouse gases, but it can also enable a gain in enhanced fuel and energy security along with lessening costs. In addition, green technologies and industries can promote economic growth and international competitiveness, and can offer new business and employment opportunities. It becomes, therefore, extremely important to deeply explore the dynamics of the solar photovoltaic sector. Specifically, the present work analyses the main global trends of this sector and sketches the key players on the world market, including producers, installers, and top traders. Based on an analysis of trade flows at the 6-digit level, the international specialisation patterns are investigated, and the role of various market and trade drivers, including subsidies in the uptake of solar technologies, is identified and examined. - Highlights: → Trade specialisation in solar photovoltaics is examined using an index analysis. → Trade of the US, UK and Germany has an intra-industry nature. → Trade of Italy, Greece and Japan is more inter-industry oriented. → There is a long-run relationship between PV exports, foreign income and prices.

  16. Photovoltaics for professionals solar electric systems marketing, design and installation

    CERN Document Server

    Falk, Antony; Remmers, Karl-Heinz

    2007-01-01

    For the building industry, the installation of photovoltaic systems has become a new field of activity. Interest in solar energy is growing and future business prospects are excellent. Photovoltaics for Professionals describes the practicalities of marketing, designing and installing photovoltaic systems, both grid-tied and stand-alone. It has been written for electricians, technicians, builders, architects and building engineers who want to get involved in this expanding industry. It answers all the beginner's questions as well as serving as a textbook and work of reference

  17. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  18. Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, Arvind

    2010-01-01

    Two solar stills (single slope passive and single slope photovoltaic/thermal (PV/T) active solar still) were fabricated and tested at solar energy park, IIT New Delhi (India) for composite climate. Photovoltaic operated DC water pump was used between solar still and photovoltaic (PV) integrated flat plate collector to re-circulate the water through the collectors and transfer it to the solar still. The newly designed hybrid (PV/T) active solar still is self-sustainable and can be used in remote areas, need to transport distilled water from a distance and not connected to grid, but blessed with ample solar energy. Experiments were performed for 0.05, 0.10, and 0.15 m water depth, round the year 2006-2007 for both the stills. It has been observed that maximum daily yield of 2.26 kg and 7.22 kg were obtained from passive and hybrid active solar still, respectively at 0.05 m water depth. The daily yield from hybrid active solar still is around 3.2 and 5.5 times higher than the passive solar still in summer and winter month, respectively. The study has shown that this design of the hybrid active solar still also provides higher electrical and overall thermal efficiency, which is about 20% higher than the passive solar still.

  19. Production of solar photovoltaic cells on the Moon

    Science.gov (United States)

    Criswell, David R.; Ignatiev, Alex

    1991-01-01

    Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.

  20. Progress in passive solar energy systems. Volume 8. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  1. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  2. Orintsol. Surfaces with assorted inclination: software to calculate the solar radiation; Orientsol. Superficies con distinta inclinacion Software para el calculo de la radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Rus, C.; Almonacid, F.; Hontoria, L.; Perez, P. J.; Munoz, F. J.

    2009-07-01

    The Universidad de Jaen, conscious of the importance of using energy sources respectful with the environment, offers in its Technical Industry Engineer degree, in the specialties of: Mechanics, Electricity and Industrial electronics the optional subjects Solar electricity and Photovoltaic Facilities. With these matters is intended that the students acquire the capability of design, calculate, analyze their different applications. A fundamental aspect in solar facilities is how to know the incident radiation in the plant which we want to analyze or the size. Orintsol software tool, with a didactic aim, facilitates so teaching as learning about solar radiation received on inclined surfaces. (Author) 8 refs.

  3. Photovoltaic solar panels of crystalline silicon: characterization and separation

    International Nuclear Information System (INIS)

    Diasa, P.R.; Benevita, M.G.; Veita, H.M.

    2014-01-01

    The search for alternative power generation sources has been intensified in recent years. One of these alternatives is solar energy, since it is a virtually inexhaustible source and generates relatively small environmental impact compared to other traditional generation sources. The collection of solar energy and its conversion into thermal or electrical energy is only possible through the use of photovoltaic panels. These panels have a limited lifespan and will eventually be replaced by new ones. Thus, in the near future, large amounts of solar modules can be discarded as waste electronics. In order to retrieve important raw materials, reducing production costs and environmental impacts, recycling such materials is important. In this paper, photovoltaic module components were characterized through visual inspection, FRX, EDS and AAS. The glass was identified as ordinary glass (soda-lime glass), which allows reuse without any previous treatment and the metallic filaments were identified as tin- lead coated copper. (author)

  4. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  5. Photovoltaic Power Control Using MPPT and Boost Converter

    OpenAIRE

    Attou, A.; Massoum, A.; Saidi, M.

    2015-01-01

    —The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells. Therefore, to maximize the efficiency of the renewable energy system, it is necessary to track the maximum power point of the input source. In this paper, a new maximum po...

  6. The performance and applicability study of a fixed photovoltaic-solar water disinfection system

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun

    2016-01-01

    Highlights: • A fixed photovoltaic-SODIS (solar water disinfection) system was constructed. • The system could generate electricity and produce clean water simultaneously. • The daily solar generated electricity was much more than the system consumption. • The system can be used for about 90% of whole year in Lhasa and Chennai. • Temperature enhanced the SODIS process for about 60% days of whole year in Chennai. - Abstract: The objective of the study is to construct and evaluate a fixed PV (photovoltaic) cell integrated with SODIS (solar water disinfection) system to treat drinking water and generate electricity under different climate through experimental and simulation methods. The photovoltaic and disinfection performances of the hybrid system were studied by the disinfection of Escherichia coli. The applicability of the system in Lhasa and Chennai was evaluated by analyzing the daily radiation and predicting the daily water temperature and the system electricity output. The results confirm that the temperature would dramatically enhance the SODIS process and shorten the disinfection time, when the water temperature was above 45 °C. The PV cell in the hybrid system could work under low temperature because of the water layer and the generated electricity was much more than the system consumption. The simulation results show that the days with maximum water temperature above 45 °C were more than 60% of whole year in Chennai. The generated electricity of the hybrid system was 49682.3 W h and 45615.9 W h a year in Lhasa and Chennai respectively. It was sufficient to drive the system of whole year. The number of days which realized drinking water treatment was 324 days in Lhasa and 315 days in Chennai a year.

  7. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  8. Effect of dust on performances of single-crisal photovoltaic solar module

    International Nuclear Information System (INIS)

    Benatiallah, A.; Kaddi, L.; Mostefaou, R.; Dakyo, B.

    2006-01-01

    The solar energy is most promising of renewable energy, it is decentralized, own to the environment and inexhaustible. The Sahara area is favorable for the development of this energy in order to provide electrical needs of the population. The production of energy by the photovoltaic system is very fluctuates and depend of meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows, in the present work we have studies the behavior of solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions. The exploitation of the solar energy to satisfy the energy demand in sahara areas is limited by the effect of sand on the performances of photovoltaic generator. In this work, we investigate a experimental study of photovoltaic module performances by influence of dust. Our results show that the sand provoked a fall of the electric parameters of the module, the power deliver by module decreases of 17% according to sand density, as well as the efficiency that falls of 1.9% and the current Icc following a fast variation of 27%. It permitted to show sand density produce a reduction in performances of the solar module, and therefore one regular cleaning of the face is necessry and permits to increase the power and efficiency (specilly in desert area).(Author)

  9. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  10. Development of a solar tracker for photovoltaic applications; Desenvolvimento de um rastreador solar para aplicacoes fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Daniel Rizzo; Lacerda Filho, Adilio Flauzino de; Resende, Ricardo C. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. Engenharia Agricola], E-mail: daniel.carvalho@ufv.br; Possi, Maurilio A [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Ciencia da Computacao; Ferreira, Ana Paula S [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Fitotecnia

    2012-11-01

    In this work are presented the design, construction and relevant results related to the production of electricity using a photovoltaic panel attached to the solar tracking mechanism. The objective was to develop a tracking device with high accuracy, reliable, low cost, high efficiency and easy operation, aiming at the possibility of residential, agricultural and industrial use of solar photovoltaic technologies with high efficiency of conversion. Was evaluated the performance of the tracker, comparing it to a fixed system and based on results analyzed, was observed a significant increase in energy production of photovoltaic panel attached to the tracking system, in relation to the fixed system the slope of the local latitude. Its performance was satisfactory, electromechanical structure requires no maintenance during the trial even when exposed to various weather conditions. The system showed great potential for application, usability and effectivity. (author)

  11. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips

  12. Getting data for prediction of electricity generation from photovoltaic power plants

    International Nuclear Information System (INIS)

    Majer, V.; Hejtmankova, P.

    2012-01-01

    This paper deals with the short term prediction of generated electricity from photovoltaic power plants. This way of electricity generation is strongly dependent on the actual weather, mainly solar radiation and temperature. In this paper the simple method for getting solar radiation data is presented. (Authors)

  13. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  14. Photovoltaic. Solar thermal. Solar thermal electricity;Le Photovoltaique. Le solaire thermique. L'heliothermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  15. Recent advances in solar photovoltaic technology

    International Nuclear Information System (INIS)

    Yoshihiro Hamakawa

    2000-01-01

    The current state of the art in recent progress of Japanese photovoltaic activities are overviewed. Firstly, a new strategy for the renewable energy promotion so called Fundamental Principle to promote New Energy Developments and Utilization, and its action planning for PV technology up to year of 2010 are introduced. The program structure and some tangible actions such as tax reduction for investment in the renewable energy plants, government financial support of 2/3 subsidy of PV system developments for public facilities namely as PV Field Test Experiments, and a 1/2 subsidy for the private solar house as PV House Monitor Plan are presented. Secondly, some new topics in the field of solar cell production technology in Japan and also statistics of the solar cell module productions for three kinds of silicon basis solar cells are summarized. Progress of the conversion efficiency in various types of solar cells are also surveyed. In the final part of paper possible new roles to contribute to the global environmental issues by the PV system developments are proposed. (Author)

  16. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  17. Performance Study of Photovoltaic-Thermal (Pv/T) Solar Collector with ·-Grooved Absorber Plate

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Hafidz Ruslan; Kamaruzzaman Sopian; Jin, G.L.

    2009-01-01

    A hybrid photovoltaic-thermal solar collector has been designed, built and its performance has been studied. The advantage of the collector is that it can generate electricity and heat simultaneously. Photovoltaic module SHARP NE-80E2EA with maximum output power of 80 W was used to generate electricity. The module also acts as heat absorber of the collector. Single pass ·-groove collector made of aluminium sheet with 0.7 mm thickness has been used to collect heat generated. Study was conducted under a designed halogen lamps solar simulator with intensities set at 386 ± 8 Wm -2 and 817 ± 8 Wm -2 . The speed of air passing through the collector was set between (69.6 ± 2.2) x 10 -4 kg/s to (695.8 ± 2.2) x 10 -4 kg/s. The objective of the study is to compare the performance of PV/T collector with and without ·-groove absorber. The study found that the PV/T collector with ·-groove absorber plate has higher efficiency than the PV/T without ·-groove absorber. The electrical and thermal efficiencies are also increased when radiation intensity and speed of air increase. (author)

  18. Evaluation and prediction of solar radiation for energy management based on neural networks

    Science.gov (United States)

    Aldoshina, O. V.; Van Tai, Dinh

    2017-08-01

    Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.

  19. Technologic Information about Photovoltaic Applied in Urban Residences

    OpenAIRE

    Stephanie Fabris Russo; Daiane Costa Guimarães; Jonas Pedro Fabris; Maria Emilia Camargo; Suzana Leitão Russo; José Augusto Andrade Filho

    2016-01-01

    Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban re...

  20. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  1. The use of a sky camera for solar radiation estimation based on digital image processing

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.

    2015-01-01

    The necessary search for a more sustainable global future means using renewable energy sources to generate pollutant-free electricity. CSP (Concentrated solar power) and PV (photovoltaic) plants are the systems most in demand for electricity production using solar radiation as the energy source. The main factors affecting final electricity generation in these plants are, among others, atmospheric conditions; therefore, knowing whether there will be any change in the solar radiation hitting the plant's solar field is of fundamental importance to CSP and PV plant operators in adapting the plant's operation mode to these fluctuations. Consequently, the most useful technology must involve the study of atmospheric conditions. This is the case for sky cameras, an emerging technology that allows one to gather sky information with optimal spatial and temporal resolution. Hence, in this work, a solar radiation estimation using sky camera images is presented for all sky conditions, where beam, diffuse and global solar radiation components are estimated in real-time as a novel way to evaluate the solar resource from a terrestrial viewpoint. - Highlights: • Using a sky camera, the solar resource has been estimated for one minute periods. • The sky images have been processed to estimate the solar radiation at pixel level. • The three radiation components have been estimated under all sky conditions. • Results have been presented for cloudless, partially-cloudy and overcast conditions. • For beam and global radiation, the nRMSE value is of about 11% under overcast skies.

  2. Solar photovoltaic projects in the mainstream power market

    CERN Document Server

    Wolfe, Philip

    2012-01-01

    Develop large-scale solar photovoltaic projects with this book, to feed power into a grid. Contains case studies of the Waldpolenz Energy Park, Germany, Lopburi Solar Plant in Thailand and what will be the world's largest PV plant, the Topaz Solar Farm in California. Also included are interviews from leading figures in the PV industry.Contents cover:planning and structuring projectssiting, planning and connection issuesbuilding and operating projectstechnology basicseconomies of PVhistory and business of PVfinancing and regulationtechnical aspects of system design.Supported by figures and photographs, this is for anyone wanting to master the commercial, professional, financial, engineering or political aspects of developing mega-watt solar PV projects in a mainstream power market.

  3. The Market Value and Cost of Solar Photovoltaic Electricity Production

    OpenAIRE

    Borenstein, Severin

    2008-01-01

    The high cost of power from solar photovoltaic (PV) panels has been a major deterrent to the technology’s market penetration. Proponents have argued, however, that typical analyses overlook many of the benefits of solar PV. Some of those benefits are in the realm of environmental and security externalities, but others occur within the electricity markets. In this paper, I attempt to do a more complete market valuation of solar PV. I incorporate the fact that power from solar PV panels is gene...

  4. Plasmasol, photovoltaic effect in a solar photo plasma. Final report of the project. Concerted action energy - 2003; Plasmasol, effet photovoltaique dans un photoplasma solaire. Rapport final du Projet. Action Concertee Energie - 2003 CNRS-MRNT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this project was to study the feasibility of the solar energy photovoltaic conversion from the photo-ionization of a gaseous medium constituted of metallic vapors. After a bibliography and a recall of based physical data the report presents the absorption of the solar radiation by the cesium vapor, a simplified model of the photovoltaic effect in a photo-plasma, the experimental device and the results. (A.L.B.)

  5. Scheduled Operation of PV Power Station Considering Solar Radiation Forecast Error

    Science.gov (United States)

    Takayama, Satoshi; Hara, Ryoichi; Kita, Hiroyuki; Ito, Takamitsu; Ueda, Yoshinobu; Saito, Yutaka; Takitani, Katsuyuki; Yamaguchi, Koji

    Massive penetration of photovoltaic generation (PV) power stations may cause some serious impacts on a power system operation due to their volatile and unpredictable output. Growth of uncertainty may require larger operating reserve capacity and regulating capacity. Therefore, in order to utilize a PV power station as an alternative for an existing power plant, improvement in controllability and adjustability of station output become very important factor. Purpose of this paper is to develop the scheduled operation technique using a battery system (NAS battery) and the meteorological forecast. The performance of scheduled operation strongly depends on the accuracy of solar radiation forecast. However, the solar radiation forecast contains error. This paper proposes scheduling method and rescheduling method considering the trend of forecast error. More specifically, the forecast error scenario is modeled by means of the clustering analysis of the past actual forecast error. Validity and effectiveness of the proposed method is ascertained through computational simulations using the actual PV generation data monitored at the Wakkanai PV power station and solar radiation forecast data provided by the Japan Weather Association.

  6. Modeling of four-terminal solar photovoltaic systems for field application

    Science.gov (United States)

    Vahanka, Harikrushna; Purohit, Zeel; Tripathi, Brijesh

    2018-05-01

    In this article a theoretical framework for mechanically stacked four-terminal solar photovoltaic (FTSPV) system has been proposed. In a mechanical stack arrangement, a semitransparent CdTe panel has been used as a top sub-module, whereas a μc-Si solar panel has been used as bottom sub-module. Theoretical modeling has been done to analyze the physical processes in the system and to estimate reliable prediction of the performance. To incorporate the effect of material, the band gap and the absorption coefficient data for CdTe and μc-Si panels have been considered. The electrical performance of the top and bottom panels operated in a mechanical stack has been obtained experimentally for various inter-panel separations in the range of 0-3 cm. Maximum output power density has been obtained for a separation of 0.75 cm. The mean value of output power density from CdTe (top panel) has been calculated as 32.3 Wm-2 and the mean value of output power density from μc-Si, the bottom panel of four-terminal photovoltaic system has been calculated as ˜3.5 Wm-2. Results reported in this study reveal the potential of mechanically stacked four-terminal tandem solar photovoltaic system towards an energy-efficient configuration.

  7. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  8. Solar photovoltaic power for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J. R.; Crutcher, J. L.; Norbedo, A. J.; Cummings, A. B.

    1980-07-01

    There is a considerable global need for systems which can meet the drinking water requirements of small communities (7000 people or less) from brackish water or from seawater. Solar photovoltaic panels are an ideal source of power for the purpose, primarily because they produce electricity, which can be used to power a membrane type desalting unit, i.e., either a reverse osmosis plant or an electrodialysis unit. In addition, electricity is most convenient for feedwater pumping. This paper addresses considerations which arise in the design and construction of a complete solar powered water desalination system which requires no supply of fuel nor any form of backup power (grid connection or engine generator).

  9. Enhanced Photovoltaic Properties of the Solar Cells Based on Cosensitization of CdS and Hydrogenation

    Directory of Open Access Journals (Sweden)

    Hongcai He

    2015-01-01

    Full Text Available The hydrogenated TiO2 porous nanocrystalline film is modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR method to prepare the cosensitized TiO2 solar cells by CdS quantum dots and hydrogenation. The structure and topography of the composite photoanode film were confirmed by X-ray diffraction and scanning electron microscopy. With deposited CdS nanoparticles, UV absorption spectra of H:TiO2 photoanode film indicated a considerably enhanced absorption in the visible region. The cosensitized TiO2 solar cell by CdS quantum dots and hydrogenation presents much better photovoltaic properties than either CdS sensitized TiO2 solar cells or hydrogenated TiO2 solar cells, which displays enhanced photovoltaic performance with power conversion efficiency (η of 1.99% (Jsc=6.26 mA cm−2, Voc=0.65 V, and FF = 0.49 under full one-sun illumination. The reason for the enhanced photovoltaic performance of the novel cosensitized solar cell is primarily explained by studying the Nyquist spectrums, IPCE spectra, dark current, and photovoltaic performances.

  10. Current challenges in organic photovoltaic solar energy conversion.

    Science.gov (United States)

    Schlenker, Cody W; Thompson, Mark E

    2012-01-01

    Over the last 10 years, significant interest in utilizing conjugated organic molecules for solid-state solar to electric conversion has produced rapid improvement in device efficiencies. Organic photovoltaic (OPV) devices are attractive for their compatibility with low-cost processing techniques and thin-film applicability to flexible and conformal applications. However, many of the processes that lead to power losses in these systems still remain poorly understood, posing a significant challenge for the future efficiency improvements required to make these devices an attractive solar technology. While semiconductor band models have been employed to describe OPV operation, a more appropriate molecular picture of the pertinent processes is beginning to emerge. This chapter presents mechanisms of OPV device operation, based on the bound molecular nature of the involved transient species. With the intention to underscore the importance of considering both thermodynamic and kinetic factors, recent progress in elucidating molecular characteristics that dictate photovoltage losses in heterojunction organic photovoltaics is also discussed.

  11. Study of the development of solar energy in Rhone-Alpes. Presentation of the photovoltaic sector, Presentation of the solar thermal sector, Sunshine mapping, Assessment of installations by the end 2009, Development potential for solar thermal energy, Development potential for solar photovoltaic energy

    International Nuclear Information System (INIS)

    2010-12-01

    A first part proposes a wide presentation of the photovoltaic sector with an overview of largest plants, a market analysis (on the 2001-2009 period in the World, Europe and France, per technology, in terms of industrial tissue and R and D activity in France, evolution per region and per technology), a presentation of the different technologies (from the first to the third generation, in terms of costs, and of perspective for the different sectors), an environmental assessment of the different sectors (CO 2 emissions and avoided emissions), a presentation of the main actors of the photovoltaic sector (silicon producers, cell producers, thin layer producers, developers), a presentation of tracking technologies (trackers gains), and a perspective for the photovoltaic sector in Europe and in the World. In a same way, a second part presents the solar thermal sector: market analysis, active and passive technologies, solar concentration technology, environmental assessment, future perspective in Europe and in the World. A sunshine mapping is then proposed for the Rhone-Alpes region. The next part discusses various stakes: regulation for roof-based installations and for ground-based photovoltaic plants with respect to various issues (land planning, environment, biodiversity, agriculture, landscape, cultural heritage, natural risks). The next part proposes an assessment of solar thermal and photovoltaic installations at the end of 2009

  12. Solar constant values for estimating solar radiation

    International Nuclear Information System (INIS)

    Li, Huashan; Lian, Yongwang; Wang, Xianlong; Ma, Weibin; Zhao, Liang

    2011-01-01

    There are many solar constant values given and adopted by researchers, leading to confusion in estimating solar radiation. In this study, some solar constant values collected from literature for estimating solar radiation with the Angstroem-Prescott correlation are tested in China using the measured data between 1971 and 2000. According to the ranking method based on the t-statistic, a strategy to select the best solar constant value for estimating the monthly average daily global solar radiation with the Angstroem-Prescott correlation is proposed. -- Research highlights: → The effect of the solar constant on estimating solar radiation is investigated. → The investigation covers a diverse range of climate and geography in China. → A strategy to select the best solar constant for estimating radiation is proposed.

  13. Development and basic photovoltaic characteristics of a solar generator with double-sided silicon cells

    International Nuclear Information System (INIS)

    Aliev, R.; Mansurov, Kh.

    2015-01-01

    A new solar generator consisting of double-sided silicon sensing elements is described. The basic photovoltaic parameters of solar generators are made of mono- and polycrystalline silicon solar cells. (author)

  14. Generation of hot carriers for photon management in future photovoltaics

    NARCIS (Netherlands)

    de Jong, E.M.L.D.; Saeed, S.; Sinke, W.C.; Gregorkiewicz, T.

    2015-01-01

    The most important limitation for the efficiency of photovoltaic energy conversion is related to the mismatch between the broadband character of the solar radiation and the spectral sensitivity of solar cells. Large losses appear at both sides of the solar spectrum. Low-energy photons are not

  15. Utility-Scale Solar Photovoltaic Power Plants : A Project Developer’s Guide

    OpenAIRE

    International Finance Corporation

    2015-01-01

    With an installed capacity greater than 137 gigawatts (GWs) worldwide and annual additions of about 40 GWs in recent years, solar photovoltaic (PV) technology has become an increasingly important energy supply option. A substantial decline in the cost of solar PV power plants (80 percent reduction since 2008) has improved solar PV’s competitiveness, reducing the needs for subsidies and ena...

  16. Solar photovoltaic/thermal residential experiment. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Darkazalli, G.

    1980-07-01

    Month-by-month energy transfer data between an occupied residence and its energy supply systems are presented. The data were obtained during the first phase of photovoltaic/thermal residential research conducted at the University of Texas at Arlington/Solar Energy Research Facility. This research was part of the US Department of Energy Photovoltaic/Thermal Project managed by the M.I.T. Lincoln Laboratory. Energy transfer data are divided into different categories depending on how the energy is consumed. Energy transfers between some system components are also categorized. These components include a flat-plate thermal collector array, a flat-plate photovoltaic array, a dc-to-ac inverter, thermal storage tanks, and a series heat pump. System operations included directing surplus electrical energy (generated by the photovoltaic array) into the local utility grid. The heat pump used off-peak utility power to chill water during the cooling season.

  17. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells

    Science.gov (United States)

    Benduhn, Johannes; Tvingstedt, Kristofer; Piersimoni, Fortunato; Ullbrich, Sascha; Fan, Yeli; Tropiano, Manuel; McGarry, Kathryn A.; Zeika, Olaf; Riede, Moritz K.; Douglas, Christopher J.; Barlow, Stephen; Marder, Seth R.; Neher, Dieter; Spoltore, Donato; Vandewal, Koen

    2017-06-01

    Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5% and the optimal optical gap increases to 1.45-1.65 eV, that is, 0.2-0.3 eV higher than for technologies with minimized non-radiative voltage losses.

  18. 17th European photovoltaic solar energy conference and exhibition, Munich 22.-26.10.2001

    International Nuclear Information System (INIS)

    Nowak, S.

    2002-01-01

    This report for the Swiss Federal Office of Energy (SFOE) summarises the photovoltaics (PV) conference and exhibition held in Munich in October 2001 from the Swiss point of view. The contributions made by representatives of Swiss institutions and companies are presented including papers on the progress being made in third generation crystalline and multi-crystalline silicon technology, amorphous and micro-crystalline silicon solar cells, thin film solar cells based on compound semiconductors and thermo-photovoltaics. Further papers deal with PV modules on the market, building-integrated solar power systems and new developments in PV systems technology. The exhibition that accompanied the conference, including the 12 Swiss exhibitors who were present, is reviewed as are international market developments. Contributions concerning the application of photovoltaics in developing countries are also reviewed

  19. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    Science.gov (United States)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  20. Investigating the Effect of Thermal Annealing Process on the Photovoltaic Performance of the Graphene-Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    Lifei Yang

    2015-01-01

    Full Text Available Graphene-silicon (Gr-Si Schottky solar cell has attracted much attention recently as promising candidate for low-cost photovoltaic application. For the fabrication of Gr-Si solar cell, the Gr film is usually transferred onto the Si substrate by wet transfer process. However, the impurities induced by this process at the graphene/silicon (Gr/Si interface, such as H2O and O2, degrade the photovoltaic performance of the Gr-Si solar cell. We found that the thermal annealing process can effectively improve the photovoltaic performance of the Gr-Si solar cell by removing these impurities at the Gr/Si interface. More interestingly, the photovoltaic performance of the Gr-Si solar cell can be improved, furthermore, when exposed to air environment after the thermal annealing process. Through investigating the characteristics of the Gr-Si solar cell and the properties of the Gr film (carrier density and sheet resistance, we point out that this phenomenon is caused by the natural doping effect of the Gr film.

  1. Clear-Sky Probability for the August 21, 2017, Total Solar Eclipse Using the NREL National Solar Radiation Database

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Roberts, Billy J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kutchenreiter, Mark C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Steve [Solar Resource Solutions, LLC, Lakewood, CO (United States); Stoffel, Tom [Solar Resource Solutions, LLC, Lakewood, CO (United States)

    2017-07-21

    The National Renewable Energy Laboratory (NREL) and collaborators have created a clear-sky probability analysis to help guide viewers of the August 21, 2017, total solar eclipse, the first continent-spanning eclipse in nearly 100 years in the United States. Using cloud and solar data from NREL's National Solar Radiation Database (NSRDB), the analysis provides cloudless sky probabilities specific to the date and time of the eclipse. Although this paper is not intended to be an eclipse weather forecast, the detailed maps can help guide eclipse enthusiasts to likely optimal viewing locations. Additionally, high-resolution data are presented for the centerline of the path of totality, representing the likelihood for cloudless skies and atmospheric clarity. The NSRDB provides industry, academia, and other stakeholders with high-resolution solar irradiance data to support feasibility analyses for photovoltaic and concentrating solar power generation projects.

  2. Photovoltaic modules with cylindrical waveguides in a system for the secondary concentration of solar radiation

    Science.gov (United States)

    Andreev, V. M.; Davidyuk, N. Yu.; Ionova, E. A.; Rumyantsev, V. D.

    2013-09-01

    The parameters of the concentrating photoelectric modules with triple-junction (InGaP/GaAs/Ge) solar cells whose focusing system contains an original secondary optical element are studied. The element consists of a plane-convex lens in optical contact with the front surface of an intermediate glass plate and a cylindrical waveguide that is located on the rear side of the glass plate above the surface of the solar element. It is demonstrated that the structure of the secondary optical element provides a wide misorientation characteristic of the concentrator and the cylindrical waveguide allows a more uniform radiation density over the surface of the solar cell. The effect of chromatic aberration in the primary and secondary optical systems on the parameters of photoelectric modules is analyzed. It is demonstrated that the presence of waveguides with a length of 3-5 mm leads to effective redistribution of radiation over the surface of the solar cell whereas shorter and longer waveguides provide the local concentration of radiation at the center of the photodetecting area.

  3. Radiation resistance of amorphous silicon alloy solar cells

    International Nuclear Information System (INIS)

    Hanak, J.J.; Chen, E.; Myatt, A.; Woodyard, J.R.

    1987-01-01

    The radiation resistance of a-Si alloy solar cells when bombarded by high energy particles is reviewed. The results of investigations of high energy proton radiation resistance of a-Si alloy thin film photovoltaic cells are reported. Irradiations were carried out with 200 keV and 1.00 MeV protons with fluences ranging betweeen 1E11 and 1E15 cm-2. Defect generation and passivation mechanisms were studied using the AM1 conversion efficiency and isochronal anneals. It is concluded that the primary defect generation mechanism results from the knock-on of Si and Ge in the intrinsic layer of the cells. The defect passivation proceeds by the complex annealing of Si and Ge defects and not by the simple migration of hydrogen

  4. A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model

    Directory of Open Access Journals (Sweden)

    Ping-Huan Kuo

    2018-04-01

    Full Text Available The photovoltaic (PV systems generate green energy from the sunlight without any pollution or noise. The PV systems are simple, convenient to install, and seldom malfunction. Unfortunately, the energy generated by PV systems depends on climatic conditions, location, and system design. The solar radiation forecasting is important to the smooth operation of PV systems. However, solar radiation detected by a pyranometer sensor is strongly nonlinear and highly unstable. The PV energy generation makes a considerable contribution to the smart grids via a large number of relatively small PV systems. In this paper, a high-precision deep convolutional neural network model (SolarNet is proposed to facilitate the solar radiation forecasting. The proposed model is verified by experiments. The experimental results demonstrate that SolarNet outperforms other benchmark models in forecasting accuracy as well as in predicting complex time series with a high degree of volatility and irregularity.

  5. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  6. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    International Nuclear Information System (INIS)

    Ashhab, Moh'd Sami S.

    2008-01-01

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data

  7. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, Moh' d Sami S. [Department of Mechanical Engineering, The Hashemite University, Zarqa 13115 (Jordan)

    2008-11-15

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data. (author)

  8. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  9. Simulations of hybrid system varying solar radiation and microturbine response time

    Directory of Open Access Journals (Sweden)

    Yolanda Fernández Ribaya

    2015-07-01

    Full Text Available Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico.The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  10. Simulations of hybrid system varying solar radiation and microturbine response time

    Energy Technology Data Exchange (ETDEWEB)

    Fernández Ribaya, Yolanda, E-mail: fernandezryolanda@uniovi.es; Álvarez, Eduardo; Paredes Sánchez, José Pablo; Xiberta Bernat, Jorge [Department of Energy E.I.M.E.M., University of Oviedo. 13 Independencia Street 2" n" d floor, 36004, Oviedo (Spain)

    2015-07-15

    Hybrid power systems, such as combinations of renewable power sources with intermittent power production and non-renewable power sources, theoretically increase the reliability and thus integration of renewable sources in the electrical system. However, a recent increase in the number of hybrid installations has sparked interest in the effects of their connection to the grid, especially in remote areas. This paper analyses a photovoltaic-gas microturbine hybrid system dimensioned to be installed in La Paz (Mexico).The research presented in this paper studies and quantifies the effects on the total electric power produced, varying both the solar radiation and the gas microturbine response time. The gas microturbine and the photovoltaic panels are modelled using Matlab/Simulink software, obtaining a platform where different tests to simulate real conditions have been executed. They consist of diverse ramps of irradiance that replicate solar radiation variations, and different microturbine response times reproduced by the time constants of a first order transfer function that models the microturbine dynamic response. The results obtained show that when radiation varies quickly it does not produce significant differences in the power guarantee or the microturbine gas consumption, to any microturbine response time. However, these two parameters are highly variable with smooth radiance variations. The maximum total power variation decreases greatly as the radiation variation gets lower. In addition, by decreasing the microturbine response time, it is possible to appreciably increase the power guarantee although the maximum power variation and gas consumption increase. Only in cases of low radiation variation is there no appreciable difference in the maximum power variation obtained by the different turbine response times.

  11. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  12. Solar Energy Technician/Installer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  13. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  14. Citywide Impacts of Cool Roof and Rooftop Solar Photovoltaic Deployment on Near-Surface Air Temperature and Cooling Energy Demand

    Science.gov (United States)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Martilli, A.

    2016-10-01

    Assessment of mitigation strategies that combat global warming, urban heat islands (UHIs), and urban energy demand can be crucial for urban planners and energy providers, especially for hot, semi-arid urban environments where summertime cooling demands are excessive. Within this context, summertime regional impacts of cool roof and rooftop solar photovoltaic deployment on near-surface air temperature and cooling energy demand are examined for the two major USA cities of Arizona: Phoenix and Tucson. A detailed physics-based parametrization of solar photovoltaic panels is developed and implemented in a multilayer building energy model that is fully coupled to the Weather Research and Forecasting mesoscale numerical model. We conduct a suite of sensitivity experiments (with different coverage rates of cool roof and rooftop solar photovoltaic deployment) for a 10-day clear-sky extreme heat period over the Phoenix and Tucson metropolitan areas at high spatial resolution (1-km horizontal grid spacing). Results show that deployment of cool roofs and rooftop solar photovoltaic panels reduce near-surface air temperature across the diurnal cycle and decrease daily citywide cooling energy demand. During the day, cool roofs are more effective at cooling than rooftop solar photovoltaic systems, but during the night, solar panels are more efficient at reducing the UHI effect. For the maximum coverage rate deployment, cool roofs reduced daily citywide cooling energy demand by 13-14 %, while rooftop solar photovoltaic panels by 8-11 % (without considering the additional savings derived from their electricity production). The results presented here demonstrate that deployment of both roofing technologies have multiple benefits for the urban environment, while solar photovoltaic panels add additional value because they reduce the dependence on fossil fuel consumption for electricity generation.

  15. Intelligent system for a remote diagnosis of a photovoltaic solar power plant

    International Nuclear Information System (INIS)

    Sanz-Bobi, M A; San Roque, A Muñoz; Marcos, A de; Bada, M

    2012-01-01

    Usually small and mid-sized photovoltaic solar power plants are located in rural areas and typically they operate unattended. Some technicians are in charge of the supervision of these plants and, if an alarm is automatically issued, they try to investigate the problem and correct it. Sometimes these anomalies are detected some hours or days after they begin. Also the analysis of the causes once the anomaly is detected can take some additional time. All these factors motivated the development of a methodology able to perform continuous and automatic monitoring of the basic parameters of a photovoltaic solar power plant in order to detect anomalies as soon as possible, to diagnose their causes, and to immediately inform the personnel in charge of the plant. The methodology proposed starts from the study of the most significant failure modes of a photovoltaic plant through a FMEA and using this information, its typical performance is characterized by the creation of its normal behaviour models. They are used to detect the presence of a failure in an incipient or current form. Once an anomaly is detected, an automatic and intelligent diagnosis process is started in order to investigate the possible causes. The paper will describe the main features of a software tool able to detect anomalies and to diagnose them in a photovoltaic solar power plant.

  16. Improving the photovoltaic performance of perovskite solar cells with acetate

    Science.gov (United States)

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-01-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924

  17. Improving the photovoltaic performance of perovskite solar cells with acetate.

    Science.gov (United States)

    Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P

    2016-12-09

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  18. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  19. The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells

    Science.gov (United States)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.

    2015-09-01

    Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.

  20. Photovoltaic energy: environmental and economic analysis of axis solar trackers for photovoltaic installations; Energia fotovoltaica: analise economica ambiental de seguidores solares para instalacoes fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Andrea Galvao; Bertolon, Expedito; Pacca, Sergio [Universidade de Sao Paulo (EACH/USP), SP (Brazil). Escola de Artes, Ciencias e Humanidades. Curso de Gestao Ambiental

    2008-07-01

    In this work we present an economic assessment photovoltaic systems using single axis and dual axis solar trackers. The analysis was carried out for the city of Sao Paulo and the results show that in comparison with fixed installations, the single axis system and the dual axis system produce respectively 19.6% and 24.7% more power. The power output of the dual axis system is 4.3% greater than the power output of the single axis system. Considering an annual discount rate of 12% and the equipment cost, the cost of the surplus energy due to the use of the single axis and the dual axis trackers was R$0.25/kWh and R$0.18/kWh. Because the average cost of electricity produced by photovoltaic modules is R$3/kWh, we recommend the installation of solar trackers. (author)

  1. Solar photovoltaic water pumping system using a new linear actuator

    OpenAIRE

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  2. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  3. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  4. Design and development of hybrid energy generator (photovoltaics) with solar tracker

    Science.gov (United States)

    Mohiuddin, A. K. M.; Sabarudin, Mohamad Syabil Bin; Khan, Ahsan Ali; Izan Ihsan, Sany

    2017-03-01

    This paper is the outcome of a small scale hybrid energy generator (hydro and photovoltaic) project. It contains the photovoltaics part of the project. The demand of energy resources is increasing day by day. That is why people nowadays tend to move on and changes their energy usage from using fossil fuels to a cleaner and green energy like hydro energy, solar energy etc. Nevertheless, energy is hard to come by for people who live in remote areas and also campsites in the remote areas which need continuous energy sources to power the facilities. Thus, the purpose of this project is to design and develop a small scale hybrid energy generator to help people that are in need of power. This main objective of this project is to develop and analyze the effectiveness of solar trackers in order to increase the electricity generation from solar energy. Software like Solidworks and Arduino is used to sketch and construct the design and also to program the microcontroller respectively. Experimental results show the effectiveness of the designed solar tracker sytem.

  5. The solar photovoltaic

    International Nuclear Information System (INIS)

    2016-02-01

    This publication first outlines challenges and stakes related to the development of renewable energies, and more particularly of photovoltaic solar energy in France and in the World. Principles and applications (connected and autonomous systems) are briefly presented. Some key data regarding installed capacity and its evolution in France and in other countries are briefly commented. The knowledge status of this technology is discussed in terms of strengths (environmental and energetic benefits, modularity, fast decreasing costs, integration into building envelope, local investment and consumer commitment, an added value and job generating sector), and weaknesses (fluctuating production and impact on the supply-demand balance, local impact on the distribution grid, land use, cautions, a sector with some environmental impact, evolutions of the support arrangement in France). Actions undertaken by the ADEME in different areas (support to research and innovation, installation quality, promotion of technologies with less environmental impacts) are reviewed

  6. Studies of a photovoltaic-thermal solar during system for rural applications

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Y.; Yatim, B.; Bakar, N.A. [Kebangsaan Malaysia Univ., Bangi, Selangor (Malaysia). Center for Applied Physics Studies; Sopian, K. [Kebangsaan Malaysia Univ., Bangi, Selangor (Malaysia). Dept. of Mechanical and Material Engineering

    2007-07-01

    The use of solar drying is increasing in areas where the use of abundant, renewable and clean solar energy is advantageous. Particularly in developing countries and in rural areas, the traditional open-air drying methods are being substituted by the more effective and more economic solar drying technologies. Since the air collector is the most important component of a solar food drying system, improvement of the design of collectors would lead to better performance of the system. This paper presented a new design of a photovoltaic-thermal (PVT) solar drying system. In order to achieve an efficient design of an air collector suitable for a solar dryer, the results of an experimental study of PVT solar air collector was conducted and presented. The paper presented the methodology and discussed a series of experiments that were conducted under Malaysian climatic conditions. The paper discussed the design of a double pass photovoltaic-thermal solar air collector with compound parabolic concentrator (CPC) and fins. The collector design concept and the collector array were demonstrated. The performance of the collector was examined over a wide range of operating conditions. Results of the test were then presented and discussed. It was concluded that the performance of the solar collector was satisfactory. The quality attributes such as colour, flavour, and taste were significantly improved since it was protected from rain, dust, and insects, in contrast to sun drying. 10 refs., 8 figs.

  7. Climate and land-use change impacts on potential solar photovoltaic power generation in the Black Sea region

    International Nuclear Information System (INIS)

    Gunderson, I.; Goyette, S.; Gago-Silva, A.; Quiquerez, L.; Lehmann, A.

    2015-01-01

    Highlights: • The solar resource is sufficient to provide PV power at suitable locations within the Black Sea catchment. • Climate change will not significantly impact the solar resource, although uncertainty exists. • Land-use change will significantly impact potential PV power, although socio-economic factors will have more importance. • It is important to strengthen regional cooperation for the integration of renewable energy resources. - Abstract: Climate change is a naturally occurring phenomenon that has recently been greatly impacted by anthropogenic greenhouse gas (GHG) emissions. One of the main contributing sectors to GHG emissions is the energy sector, due to its high dependency on fossil fuels. Renewable energy systems, notably solar energy, can be an effective climate change mitigation alternative. Photovoltaic (PV) technology provides an interesting method to produce electricity through a virtually infinite renewable resource at the human time scale: solar radiation. This study evaluates the current and future solar energy potential through the use of grid-connected PV power plants at the scale of countries within the Black Sea catchment. Simulated data are used to determine potential change in climate and land-use according to two different development scenarios. Incident solar radiation flux from re-analyses, spatial interpolation, and the application of the Delta change method are used to assess the current and future solar resource potential within this catchment. Potential sites suitable for PV power plants are selected following a Fuzzy logic approach, and thus the total potential solar energy through PV power generation can be determined. Results show that climate change will have little impact on the solar radiation resource, while land-use change induces more variability. However, regardless of the scenario followed, the solar energy potential is sufficient to provide an interesting contribution to the electricity generation mix of

  8. Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress

    KAUST Repository

    Tang, Jiang; Sargent, Edward H.

    2010-01-01

    of the solar radiation enable potential efficient and low-cost photovoltaic devices. Careful optimization of quantum dot passivation and device configuration leads to solar cells with AM1.5G efficiency as high as 5.1% Copyright © 2011 WILEY-VCH Verlag GmbH & Co

  9. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  10. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  11. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    Science.gov (United States)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  12. Performance of a photovoltaic panel connected to a solar tracking; Desempenho de um painel fotovoltaico acoplado a um rastreador solar

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Alcione Rodrigo; Souza, Samuel N. Melegari de; Ricieri, Reinaldo Prandini [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil)], Email: artessaro@pop.com.br; Ferruzi, Yuri [Faculdade Assis Gurgacz (FAG), Cascavel, PR (Brazil)

    2006-07-01

    The used photovoltaic panels currently, still possess low an efficiency, around 8,84%. As this efficiency is characteristic of the photovoltaic plate, it was used in this research, a different system of the conventional. This differentiated system nothing more is that a mechanism that makes with that the photovoltaic panel if puts into motion of form to always keep its perpendicular photovoltaic cells to the sun. Of ownership of two monocrystals photovoltaic panels, of same mark and model, it was possible to mount two systems of solar capitation. One of them, installed of the form established in the memorandum of understanding, directed northward geographic to an inclination of 37 deg in relation to the ground, and the other panel mounted in top of a tracking mechanism, that tends to keep the perpendicular photovoltaic cell to the solar rays. The chain samples and tension, had been extracted, in the two systems, conventional and dredge, in intervals of time of forty minutes, being effected in the period of the eight hours of the morning until the six hours of the afternoon, tantalizing 16 samples. The ambient temperature also was collected in these intervals of time. The results had been more satisfactory in the tracking system, more evidenced an energy exploitation of 20,74% and an efficiency of 2,052% than in the system with the conventionally mounted photovoltaic module. (author)

  13. Observatory of photovoltaic solar energy in France - 20. edition

    International Nuclear Information System (INIS)

    2016-12-01

    After an overview of important events in the World regarding the development of photovoltaic solar energy in 2016, and predictions regarding new connected installations in 2016, this document present graphs and figures which illustrate the evolution of the photovoltaic fleet in the World, the comparison of production costs of new electric power generation capacities, the evolution of the French photovoltaic power production since 2009, the evolution of the distribution of the French fleet in terms of installation power (from large projects to residential), of connections to the grid, of number of connections and purchase tariffs for the different types of installations (residential, medium roofs, large roofs, very large roofs, very large ground-based or roof-based projects) and for queuing projects, in terms of evolution of purchase tariffs since 2011, and of evolution of impact on the CSPE financing system

  14. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, Ming; Ji, Xu; Li, Guoliang; Wei, Shengxian; Li, YingFeng; Shi, Feng

    2011-01-01

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances R s changed from 0 Ω to 1 Ω, the maximum power P m of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower

  15. Solar Energy Resource Characteristics of Photovoltaic Power Station in Shandong Province%山东省光伏电站太阳能资源特征

    Institute of Scientific and Technical Information of China (English)

    薛德强; 王新; 王新堂

    2013-01-01

    [Objective] The aim was to analyze characters of solar energy in photovoltaic power stations in Shandong Province.[Method] The models of total solar radiation and scattered radiation were determined,and solar energy resources in photovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan,Fushan and Juxian in 1988-2008.[Result] Solar energy in northern regions in Shandong proved most abundant,which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°,decreasing by 2°-3° compared with local latitude.Total solar radiation received by the slope with optimal angle of tilt exceeded 1600 kw·h/(m2·a),increasing by 16% compared with horizontal planes.The maximal irradiance concluded by WRF in different regions tended to be volatile in 1020-1060W/m2.[Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.%[目的]分析山东省光伏电站太阳能资源特征.[方法]利用1988~2008年山东省123个县市水平面日照、云量观测资料和年济南、福山、莒县辐射观测资料,确定太阳总辐射、散射辐射计算模型,并进行光伏电站太阳能资源评估.[结果]山东半岛北部、鲁北地区为太阳能资源很丰富区,较适宜光伏发电;太阳能光伏阵列的最佳倾角在35°左右,与当地纬度相比减小2°~3°;年最佳倾角坡面接收的太阳总辐射量在1600 kW·h/(m2·a)以上,可比当地水平面上多接受16%左右的总辐射量.用WRF数值模式获得各地最大辐照度在1020-1060 W/m2之间.[结论]该研究为山东省光伏电站的建设提供了基础资料.

  16. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  17. Experimental research on charging characteristics of a solar photovoltaic system by the pressure-control method

    Institute of Scientific and Technical Information of China (English)

    Hua ZHU; Zhang-lu XU; Zi-juan CAO

    2011-01-01

    The charging characteristics of the valve-regulated lead acid (VRLA) battery driven by solar energy were experimentally studied through the pressure-control method in this paper. The aims of the research were to increase charging efficiency to make the most of solar energy and to improve charging quality to prolong life of battery. The charging process of a 12 V 12 A.h VRLA battery has been tested under the mode of a stand-alone photovoltaic (PV) system. Results show that the pressure-control method can effectively control PV charging of the VRLA battery and make the best of PV cells through the maximum power point tracking (MPPT). The damage of VRLA battery by excess oxygen accumulation can be avoided through the inner pressure control of VRLA battery. Parameters such as solar radiation intensity, charging power, inner pressure of the battery, and charging current and voltage during the charging process were measured and analyzed.

  18. Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, E.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-11-01

    Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements of the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.

  19. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    Science.gov (United States)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  20. Solar energy photovoltaic technology: proficiency and performance; L'energie solaire maitrise et performance photovoltaiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  1. Comparison of the Energy Conversion Efficiency of a Solar Chimney and a Solar PV-Powered Fan for Ventilation Applications

    Directory of Open Access Journals (Sweden)

    Lubomír Klimeš

    2018-04-01

    Full Text Available A study into the performance of a solar chimney and a solar photovoltaic (PV-powered fan for ventilation applications was carried out using numerical simulations. The performance of the solar chimney was compared with that of a direct current (DC fan powered by a solar PV panel. The comparison was carried out using the same area of the irradiated surface—the area of the solar absorber plate in the case of the solar chimney and the area of the solar panel in the case of the photovoltaic-powered fan. The two studied cases were compared under various solar radiation intensities of incident solar radiation. The results indicate that the PV-powered fans significantly outperform solar chimneys in terms of converting solar energy into the kinetic energy of air motion. Moreover, ventilation with PV-powered fans offers more flexibility in the arrangement of the ventilation system and also better control of the air flow rates in the case of battery storage.

  2. Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, D.

    1980-06-01

    The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

  3. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Shen, Jingchun; Xu, Jihuan; Yu, Xiaotong

    2014-01-01

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COP th ) and the advanced performance coefficient (COP PV/T ) of such a system. Moreover, a simple comparison

  4. Solar India - 82: national solar energy convention

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This document is the proceedings of the Solar India - 82 conference, which was held 17-19 December 1982. The papers are organized into functional groupings which include: (1) solar radiation, (2) flat plate solar collectors and solar water heaters, (3) solar concentrators, (4) solar air heaters and dryers, (5) solar ponds and energy storage, (6) solar cookers, (7) solar stills, (8) selective coatings, (9) photovoltaics, (10) space heating and cooling, (11) bio-energy, and (12) miscellaneous papers. The vast majority of the papers describe work carried out in India, the vast majority of the papers also contain relatively readable abstracts.

  5. Experimental investigation of an optical water filter for Photovoltaic/Thermal conversion module

    International Nuclear Information System (INIS)

    Al-Shohani, Wisam A.M.; Sabouri, Aydin; Al-Dadah, Raya; Mahmoud, Saad; Butt, Haider

    2016-01-01

    Highlights: • New design of Photovoltaic/Thermal system is proposed. • Using the optical water layer as a spectrum splitter is tested experimentally. • Optical rig is developed to study the optical performance of water layer. • Energy conversion under different water layer thicknesses is determined. - Abstract: This paper presents an experimental investigation of a novel optical water filter used for Photovoltaic/Thermal and Concentrating Photovoltaic/Thermal modules. A water layer is used as a spectrum splitter of solar radiation placed above the photovoltaic cells and as a thermal working fluid simultaneously. The water layer absorbs the ultraviolet and part of infrared, which are not used by the photovoltaic, but transmits the visible and some of infrared to the solar cell surface which are used by the photovoltaic. In this work, the transmittance of the optical water filter was measured for different water thicknesses (1, 2, 3, 4, and 5 cm) and radiation wavelength ranging from 0.35 to 1 μm. Results show that there is a significant effect of the water layer thickness on the transmittance of the spectra where the transmittance decreases as the water layer increases. Moreover, energy conversion rate of photovoltaic with the optical water filter at different water layer thicknesses has been determined.

  6. Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Y.F.Zhang; Y.F.Wang; N.Chen; Y.Y.Wang; Y.Z.Zhang; Z.H.Zhou; L.M.Wei

    2010-01-01

    Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm-2, an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.

  7. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Varo, Pilar [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Bertoluzzi, Luca [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Bisquert, Juan, E-mail: bisquert@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Coll, Mariona [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Catalonia (Spain); Huang, Jinsong [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States); Jimenez-Tejada, Juan Antonio [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Kirchartz, Thomas [IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Faculty of Engineering and CENIDE, University of Duisburg–Essen, Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nechache, Riad; Rosei, Federico [INRS—Center Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2 (Canada); Yuan, Yongbo [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States)

    2016-10-07

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  8. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    International Nuclear Information System (INIS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-01-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  9. Can quantum coherent solar cells break detailed balance?

    International Nuclear Information System (INIS)

    Kirk, Alexander P.

    2015-01-01

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells

  10. Producer responsibility and recycling solar photovoltaic modules

    International Nuclear Information System (INIS)

    McDonald, N.C.; Pearce, J.M.

    2010-01-01

    Rapid expansion of the solar photovoltaic (PV) industry is quickly causing solar to play a growing importance in the energy mix of the world. Over the full life cycle, although to a smaller degree than traditional energy sources, PV also creates solid waste. This paper examines the potential need for PV recycling policies by analyzing existing recycling protocols for the five major types of commercialized PV materials. The amount of recoverable semiconductor material and glass in a 1 m 2 area solar module for the five types of cells is quantified both physically and the profit potential of recycling is determined. The cost of landfill disposal of the whole solar module, including the glass and semiconductor was also determined for each type of solar module. It was found that the economic motivation to recycle most PV modules is unfavorable without appropriate policies. Results are discussed on the need to regulate for appropriate energy and environmental policy in the PV manufacturing industry particularly for PV containing hazardous materials. The results demonstrate the need to encourage producer responsibility not only in the PV manufacturing sector but also in the entire energy industry.

  11. Assessment of low-cost manufacturing process sequences. [photovoltaic solar arrays

    Science.gov (United States)

    Chamberlain, R. G.

    1979-01-01

    An extensive research and development activity to reduce the cost of manufacturing photovoltaic solar arrays by a factor of approximately one hundred is discussed. Proposed and actual manufacturing process descriptions were compared to manufacturing costs. An overview of this methodology is presented.

  12. THE ANALISYS OF THE PHOTOVOLTAIC AND ELECTRIC PARAMETERS OF A COOLING HYBRID SYSTEM. CASE STUDY

    Directory of Open Access Journals (Sweden)

    MARE R.

    2017-09-01

    Full Text Available The paper presents the interdependence between photovoltaic and electric parameters of a solar thermoelectric cooler. It emphasises the importance of the solar radiation during two experiments made in the same day, in different weather conditions. Also, it is shown that while the photovoltaic power is directly dependent on the photovoltaic current intensity, the electric power varies along with the voltage. All these have great influence upon the battery – the main component responsible for the operation of the cooling hybrid system.

  13. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    The part of the solar power production from photovlotaïcs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy in the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. The objective of this study is to present an approach based on Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) to highlight the scaling properties of global solar irradiance data G(t). The scale of invariance is detected on this dataset using the Empirical Mode Decomposition in association with arbitrary-order Hilbert spectral analysis, a generalization of (HHT) or Hilbert Spectral Analysis (HSA). The first step is the EMD, consists in decomposing the normalized global solar radiation data G'(t) into several Intrinsic Mode Functions (IMF) Ci(t) without giving an a priori basis. Consequently, the normalized original solar radiation sequence G'(t) can be written as a sum of Ci(t) with a residual rn. From all IMF modes, a joint PDF P(f,A) of locally and instantaneous frequency f and amplitude A, is estimated. To characterize the scaling behavior in amplitude-frequency space, an arbitrary-order Hilbert marginal spectrum is defined to: Iq(f) = 0 P (f,A)A dA (1) with q × 0 In case of scale

  14. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    OpenAIRE

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190?mV and ISC of ~9??A, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46?mW confirmed...

  15. Performance investigation of a concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator

    International Nuclear Information System (INIS)

    Feng, Chaoqing; Zheng, Hongfei; Wang, Rui; Ma, Xinglong

    2016-01-01

    Highlights: • A common design method of a cycloidal transmissive Fresnel solar concentrator was presented. • The gallium arsenide high concentrated solar was used as the receiver. • High efficiency of electric generating could be achieved at noon. • Fresnel solar concentrator was studied and compared in hazy weather and clear weather. - Abstract: A design method of a cycloidal transmissive Fresnel solar concentrator which can provide a certain width focal line was presented in this study. Based on the optical principle of refraction, the dimensions of each wedge-shaped element of Fresnel lens are calculated. An optical simulation has been done to obtain the optical efficiency of the concentrator for different tracking error and axial incidence angle. It has been found that about 80% of the incident sunlight can still be gathered by the absorber when the tracking error is within 0.7°. When the axial angle of incidence is within 10°, it almost has no influence to the receiving rate. The concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator has been designed in this paper. Take the gallium arsenide high concentrated battery as the receiver, experimental research about cylindrical Fresnel concentrating photovoltaic/thermal system is undertaken in the real sky. Main parameters are tested such as the temperature distribution on receiver, electric energy and thermal energy outputs of concentrating photovoltaic/thermal system, the efficiency of multipurpose utilization of electric and heat, and so on. The test results in clear weather show that maximum electric generating efficiency is about 18% at noon, the maximum heat receiving rate of cooling water is about 45%. At noon time (11:00–13:00), the total efficiency of thermal and electricity can reach more than 55%. Performance of this concentrating photovoltaic/thermal system with transmissive Fresnel solar concentrator is studied and compared in two types typical weather, hazy

  16. Effects of nanometric hydrophobic layer on performances of solar photovoltaic collectors

    Directory of Open Access Journals (Sweden)

    Andrei BUTUZA

    2014-11-01

    Full Text Available The study refers to the experimental investigation of solar photovoltaic collectors' behaviour when the glazed surface is treated with a nanometric layer of hydrophobic solution. The experiment was carried out on two photovoltaic collectors, of which one was considered as reference and the other one was coated with a commercial hydrophobic solution. It was studied the evolution of the following electrical parameters: current, voltage, power, efficiency and daily energy production. The voltage was almost unaffected, but for all the others parameters, important drop were recorded. The preliminary conclusion of the study is that the use of hydrophobic solutions, for the treatment of glazed surfaces of solar collectors is not recommended. This hypothesis needs supplementary investigations and measurements in the context of reduced available information concerning the optical properties of hydrophobic solutions.

  17. Solar radiation - to - power generation models for one-axis tracking PV system with on-site measurements from Eskisehir, Turkey

    Science.gov (United States)

    Filik, Tansu; Başaran Filik, Ümmühan; Nezih Gerek, Ömer

    2017-11-01

    In this study, new analytic models are proposed for mapping on-site global solar radiation values to electrical power output values in solar photovoltaic (PV) panels. The model extraction is achieved by simultaneously recording solar radiation and generated power from fixed and tracking panels, each with capacity of 3 kW, in Eskisehir (Turkey) region. It is shown that the relation between the solar radiation and the corresponding electric power is not only nonlinear, but it also exhibits an interesting time-varying characteristic in the form of a hysteresis function. This observed radiation-to-power relation is, then, analytically modelled with three piece-wise function parts (corresponding to morning, noon and evening times), which is another novel contribution of this work. The model is determined for both fixed panels and panels with a tracking system. Especially the panel system with a dynamic tracker produces a harmonically richer (with higher values in general) characteristic, so higher order polynomial models are necessary for the construction of analytical solar radiation models. The presented models, characteristics of the hysteresis functions, and differences in the fixed versus solar-tracking panels are expected to provide valuable insight for further model based researches.

  18. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  19. Can Integrated Micro-Optical Concentrator Technology Revolutionize Flat-Plate Photovoltaic Solar Energy Harvesting?

    Science.gov (United States)

    Haney, Michael W.

    2015-12-01

    The economies-of-scale and enhanced performance of integrated micro-technologies have repeatedly delivered disruptive market impact. Examples range from microelectronics to displays to lighting. However, integrated micro-scale technologies have yet to be applied in a transformational way to solar photovoltaic panels. The recently announced Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC) program aims to create a new paradigm in solar photovoltaic panel technology based on the incorporation of micro-concentrating photo-voltaic (μ-CPV) cells. As depicted in Figure 1, MOSAIC will integrate arrays of micro-optical concentrating elements and micro-scale PV elements to achieve the same aggregated collection area and high conversion efficiency of a conventional (i.e., macro-scale) CPV approach, but with the low profile and mass, and hopefully cost, of a conventional non-concentrated PV panel. The reduced size and weight, and enhanced wiring complexity, of the MOSAIC approach provide the opportunity to access the high-performance/low-cost region between the conventional CPV and flat-plate (1-sun) PV domains shown in Figure 2. Accessing this portion of the graph in Figure 2 will expand the geographic and market reach of flat-plate PV. This talk reviews the motivation and goals for the MOSAIC program. The diversity of the technical approaches to micro-concentration, embedded solar tracking, and hybrid direct/diffuse solar resource collection found in the MOSAIC portfolio of projects will also be highlighted.

  20. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency

    NARCIS (Netherlands)

    Desmet, L.; Ras, A.J.M.; Boer, de D.K.G.; Debije, M.G.

    2012-01-01

    We report conversion efficiencies of experimental single and dual light guide luminescent solar concentrators. We have built several 5¿¿cm×5¿¿cm and 10¿¿cm×10¿¿cm luminescent solar concentrator (LSC) demonstrators consisting of c-Si photovoltaic cells attached to luminescent light guides of Lumogen

  1. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-01-01

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module’s electrolumin...

  2. Optical design of a solar flux homogenizer for concentrator photovoltaics

    Science.gov (United States)

    Kreske, Kathi

    2002-04-01

    An optical solution is described for the redistribution of the light reflected from a 400-m2 paraboloidal solar concentrating dish as uniformly as possible over an approximately 1-m2 plane. Concentrator photovoltaic cells will be mounted at this plane, and they require a uniform light distribution for high efficiency. It is proposed that the solar cells will be mounted at the output of a rectangular receiver box with reflective sidewalls (i.e., a kaleidoscope), which will redistribute the light. I discuss the receiver box properties that influence the light distribution reaching the solar cells.

  3. Transient analysis of the double pass photovoltaic thermal solar collector

    International Nuclear Information System (INIS)

    Alfegi, Ebrahim M.; Sopian, Kamaruzzaman; Abakr, Yousif A.

    2006-01-01

    A mathematical model of a double pass photovoltaic thermal (PV/T) solar collector is reported in this work. It is composed of five couple unsteady nonlinear partial differential equations which are solved by using Gear implicit numerical scheme. That model was validated against experimental data and was found to accurately predict the temperature of the circulated air as well as the temperature distribution of every static elements in a two-pass PV/T solar collector.(Author)

  4. Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing

    International Nuclear Information System (INIS)

    Van Delft, J A; Garcia-Alonso, D; Kessels, W M M

    2012-01-01

    Atomic layer deposition (ALD) is a vapour-phase deposition technique capable of depositing high quality, uniform and conformal thin films at relatively low temperatures. These outstanding properties can be employed to face processing challenges for various types of next-generation solar cells; hence, ALD for photovoltaics (PV) has attracted great interest in academic and industrial research in recent years. In this review, the recent progress of ALD layers applied to various solar cell concepts and their future prospects are discussed. Crystalline silicon (c-Si), copper indium gallium selenide (CIGS) and dye-sensitized solar cells (DSSCs) benefit from the application of ALD surface passivation layers, buffer layers and barrier layers, respectively. ALD films are also excellent moisture permeation barriers that have been successfully used to encapsulate flexible CIGS and organic photovoltaic (OPV) cells. Furthermore, some emerging applications of the ALD method in solar cell research are reviewed. The potential of ALD for solar cells manufacturing is discussed, and the current status of high-throughput ALD equipment development is presented. ALD is on the verge of being introduced in the PV industry and it is expected that it will be part of the standard solar cell manufacturing equipment in the near future. (paper)

  5. Study on photovoltaic cell laying scheme of solar house in architecture design%建筑设计中太阳能小屋光伏电池铺设方案研究

    Institute of Scientific and Technical Information of China (English)

    吴孟桃; 郑现菊

    2017-01-01

    In order to solve the photovoltaic cells laying problem existing in the photovoltaic building,a calculation model of the solar radiation amount of the tilted surface was constructed in consideration of the direct,reflected and scattered solar ra-diation. The laying material is selected reasonably to analyze and simulate the laying form of the specific house,so as to choose the optimal installation method of the photovoltaic cell. The type of the photovoltaic cell and connection way of the inverter are analyzed to calculate the investment cost and benefit. On the basis of the optimal laying scheme,a model of the solar photovoltaic house was designed to save the energy.%为解决光伏建筑中光伏电池铺设问题,考虑到太阳光的直射、反射和散射等三种辐射,建立了倾斜面上太阳辐射总量的计算模型.合理地选择铺设材料,对给定小屋的铺设形式作了分析与模拟,选取光伏电池的最优安装方式.分析光伏电池的类型和逆变器的连接方式,计算得到投资成本与收益.以最优铺设方案为基础设计太阳能光电小屋模型,达到节能目的.

  6. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  7. An adaptive wavelet-network model for forecasting daily total solar-radiation

    International Nuclear Information System (INIS)

    Mellit, A.; Benghanem, M.; Kalogirou, S.A.

    2006-01-01

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet-networks are feed-forward networks using wavelets as activation functions. Wavelet-networks have been used successfully in various engineering applications such as classification, identification and control problems. In this paper, the use of adaptive wavelet-network architecture in finding a suitable forecasting model for predicting the daily total solar-radiation is investigated. Total solar-radiation is considered as the most important parameter in the performance prediction of renewable energy systems, particularly in sizing photovoltaic (PV) power systems. For this purpose, daily total solar-radiation data have been recorded during the period extending from 1981 to 2001, by a meteorological station in Algeria. The wavelet-network model has been trained by using either the 19 years of data or one year of the data. In both cases the total solar radiation data corresponding to year 2001 was used for testing the model. The network was trained to accept and handle a number of unusual cases. Results indicate that the model predicts daily total solar-radiation values with a good accuracy of approximately 97% and the mean absolute percentage error is not more than 6%. In addition, the performance of the model was compared with different neural network structures and classical models. Training algorithms for wavelet-networks require smaller numbers of iterations when compared with other neural networks. The model can be used to fill missing data in weather databases. Additionally, the proposed model can be generalized and used in different locations and for other weather data, such as sunshine duration and ambient temperature. Finally, an application using the model for sizing a PV-power system is presented in order to confirm the validity of this model

  8. Photovoltaics: systems considerations

    Energy Technology Data Exchange (ETDEWEB)

    Haq, A M

    1982-08-01

    Photovoltaics applications to date and the potential uses and growth of this alternative energy source for the future are examined in the light of present world economic conditions. In addition, a more detailed description is given, illustrating the method by which system sizing and design are calculated and mentioning such factors as local solar radiation and insolation levels, humidity, wind loading and altitude, all of which affect the optimal system size. The role of computer programming in these calculations is also outlined, illustrating the way in which deterioration, battery losses, poor weather etc. can be accounted and compensated for in the systems design process. The elements of the actual systems are also described, including details of the solar cells and arrays, the electronic controls incorporated in the systems and the characteristics of the batteries used. A resume of projected costs and current technological advances in silicon processing techniques is given together with an analysis of present and future growth trends in the photovoltaics industry.

  9. The behavior of temperature in photovoltaic panels efficiency at different levels of incidence of solar radiance associated with temperature; O comportamento da temperatura na eficiencia de paineis fotovoltaicos em diferentes niveis de incidencia da radiancia solar associado a temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Roger N.; Jesus, Manoel M.A.; Tarricone, Georgia [Universidade Tecnologica Federal do Paran (UTFPR), Apucarana, PR (Brazil)], email: rogernmichels@utfpr.edu.br; Gnoatto, Estor; Kavanagh, Edward [Universidade Tecnologica Federal do Paran (UTFPR), Medianeira, PR (Brazil)

    2011-07-01

    The efficiency of photovoltaic panels is related to factors of construction of the cell, as well as external factors. One of the external factors, which negatively affects the efficiency of photovoltaic panels, is the temperature. This work analyzes the influence of temperature on the efficiency of photovoltaic panels, with different levels of incidence of solar radiation (500, 700, 900 and 1000 Wm{sup -2}). The photovoltaic system, composed of photovoltaic panels and a positive displacement pump was installed at the Federal Technological University of Parana in the city of Medianeira. Data were collected during the period of one year, but only data from clear days were used, which did not occur to the influence of shading of clouds on the values obtained. Observed in this work, the temperature increase in photovoltaic panels, makes the efficiency decreases due to the decrease of voltage and power. (author)

  10. 3D LOCAL SCALE SOLAR RADIATION MODEL BASED ON URBAN LIDAR DATA

    Directory of Open Access Journals (Sweden)

    P. M. Redweik

    2012-09-01

    Full Text Available The aim of the present study is to obtain the direct, diffuse and reflected solar energy that reaches a generic point of an urban landscape regardless of its location on a roof, on the ground or on a façade. The vertical façades embody a discontinuity in a digital elevation surface function and most models fail in the determination of solar radiation for points on façades. The presented algorithm solves the problem in an integrated way: starting with a georreferenced LIDAR data cloud covering a 400 × 400 m2 urban area resampled in a 1m × 1m mesh, applies a new shadow algorithm over roofs, terrain and façades for each time frame, applies the Kumar solar radiation model for the calculation of direct, diffuse and reflected irradiation for each 1x1m raster cell on non vertical surfaces of roof and terrain, and calculates total and mean irradiation of each 1 meter wide column of vertical façade based on the illuminated area at each time frame. The results for each time frame are integrated for the wished time period from one hour to one year, being the time steps also selectable, allowing several kinds of solar radiation and shadowing studies. GIS were used to evaluate monthly averages of solar radiation for a particular location as well as to map the photovoltaic potential of the building façades and their roofs according to determined classes of potential.

  11. Solar radiation over India

    Energy Technology Data Exchange (ETDEWEB)

    Mani, A; Rangarajan, S

    1982-01-01

    Solar radiation data, on horizontal and sloped surfaces, are provided derived from other meteorological parameters at 145 stations covering all major climatic zones of the country. Two methods were used to compute solar radiation, one using regression techniques to derive radiation from sunshine and cloudiness, the other from extra-terrestrial radiation, allowing for its depletion by absorption and scattering in the atmosphere. The methods of calculating the daily global radiation tilt factor using an anisotropic model for diffuse solar radiation are described. The results of statistical analysis of global solar radiation data recorded at 16 stations are presented. Appendices contain an extensive bibliograpny, sun path diagrams for latitudes 6/sup 0/N to 36/sup 0/N, and tables for the calculation of Local Apparent Time from Indian Standard Time.

  12. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    Science.gov (United States)

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  13. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    International Nuclear Information System (INIS)

    Lafford, T A; Villanova, J; Plassat, N; Dubois, S; Camel, D

    2013-01-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  14. Photovoltaic-thermal (PV/T) solar collectors: Features and performance modelling

    International Nuclear Information System (INIS)

    Atienza-Márquez, Antonio; Bruno, Joan Carles; Coronas, Alberto; Korolija, Ivan; Greenough, Richard; Wright, Andy

    2017-01-01

    Currently, the electrical efficiency of photovoltaic (PV) solar cells ranges between 5–25%. One of the most important parameters that affects the electrical efficiency of a PV collector is the temperature of its cells: the higher temperature, the lower is the efficiency. Photovoltaic/thermal (PV/T) technology is a potential solution to ensure an acceptable solar energy conversion. The PV/T technology produces both electrical and thermal energy simultaneously. It is suitable for low temperature applications (25–40 o C) and overall efficiency increases compared to individual collectors. This paper describes an installation in a single-family house where PV/T collectors are coupled with a ground heat exchanger and a heat pump for domestic hot water and space heating purposes. The aim of this work is twofold. First, the features of the PV/T technology are analyzed. Second, a model of a flat-plate PV/T water collector was developed in TRNSYS in order to analyze collectors performance. (author)

  15. Community-scale solar photovoltaics: housing and public development examples

    Energy Technology Data Exchange (ETDEWEB)

    Komoto, K.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at community-scale photovoltaics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The aim of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. This report provides examples of housing developments and incorporated townships that have integrated multiple stakeholder values into business solutions. The authors are of the opinion that builders, developers, architects and engineers need to consider orientation, aesthetics, load diversity, energy efficiency, grid infrastructure and end use. Residential and commercial building owners or occupants need to consider the design of electric services relative to loads, green image, and economic opportunities such as feed-in tariffs. Local government should give preference to granting permission to high-performance building projects. It is suggested that the finance and insurance sector consider the operational savings in overall debt allowances. System manufacturers and integrators should develop standardised systems. In the emerging PV community market, utilities are quickly gaining awareness of business opportunities. The need for professionals and skilled labour is quoted as having grown as drastically as the PV market itself.

  16. Proceedings of the international photovoltaic solar energy conference held in Glasgow 1-5 May 2000

    International Nuclear Information System (INIS)

    Anon.

    2001-02-01

    The European Photovoltaic Solar Energy Conferences are dedicated to accelerating the impetus towards sustainable development of global PV markets. The 16th in the series, held in Glasgow UK, brought together more than 1500 delegates from 72 countries, and provided an important and vital forum for information exchange in the field. The Conference Proceedings place on record a new phase of market development and scientific endeavour in the PV industry, representing current and innovative thinking in all aspects of the science, technology, markets and business of photovoltaics. In three volumes, the Proceedings present some 790 papers selected for presentation by the scientific review committee of the 16th European Photovoltaic Solar Energy Conference. The Comprehensive range of topics covered comprises: Fundamentals, Novel Devices and New Materials. Thin Film Cells and Technologies. Space Cells and Systems. Crystalline Silicon Solar Cells and Technologies. PV Integration in Buildings. PV Modules and Components of PV Systems. Implementation, Strategies, National Programs and Financing Schemes. Market Deployment in Developing Countries. (author)

  17. Energy performance of a concentrated photovoltaic energy system with static linear Fresnel lenses integrated in a greenhouse

    NARCIS (Netherlands)

    B.A.J. van Tuijl; Piet Sonneveld; J. Campen; Gert-Jan Swinkels; H.J.J. Janssen; G.P.A Bot

    2011-01-01

    A new type of greenhouse with linear Fresnel lenses in the cover performing as a concentrated photovoltaic (CPV) system is presented. The CPV system retains all direct solar radiation, while diffuse solar radiation passes through and enters into the greenhouse cultivation system. The removal of all

  18. Solar Energy Materials & Solar Cells Solvent additives for tuning the photovoltaic properties of polymer – fullerene solar cells

    NARCIS (Netherlands)

    Sio, Antonietta De; Madena, Thomas; Huber, Ralph; Deschler, Felix; Como, Enrico Da; Esposito, Salvatore; Hauff, Elizabeth Von

    2011-01-01

    We use solvent additives as a simple method to tune the photovoltaic performance of poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojuncton solar cells. 1,2-dichlorobenzene (oDCB) was used as the reference solvent; chlorobenzene (CB) and 1,2,3,4-

  19. Photovoltaic solar panels of crystalline silicon: characterization and separation; Paineis solares fotovoltaicos de silicio cristalino: caracterizacao e separacao

    Energy Technology Data Exchange (ETDEWEB)

    Diasa, P.R.; Benevita, M.G.; Veita, H.M., E-mail: pablo.dias@ufrgs.br [Universidade Federal do Rio Grande do Sul (LACOR/UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Corrosao, Protecao e Reciclagem de Materiais

    2014-07-01

    The search for alternative power generation sources has been intensified in recent years. One of these alternatives is solar energy, since it is a virtually inexhaustible source and generates relatively small environmental impact compared to other traditional generation sources. The collection of solar energy and its conversion into thermal or electrical energy is only possible through the use of photovoltaic panels. These panels have a limited lifespan and will eventually be replaced by new ones. Thus, in the near future, large amounts of solar modules can be discarded as waste electronics. In order to retrieve important raw materials, reducing production costs and environmental impacts, recycling such materials is important. In this paper, photovoltaic module components were characterized through visual inspection, FRX, EDS and AAS. The glass was identified as ordinary glass (soda-lime glass), which allows reuse without any previous treatment and the metallic filaments were identified as tin- lead coated copper. (author)

  20. Organic thin-film solar cells: next generation low-cost photovoltaic ...

    African Journals Online (AJOL)

    The growing concern about our environment and sustainable development focuses attention on renewable energy sources. One of these sources is the direct conversion of sunlight into electricity by means of photovoltaic cells. Solar energy has the potential to fulfil an important part of the sustainable energy demand for ...

  1. InGaN High-Temperature Photovoltaic Cells

    Science.gov (United States)

    Starikov, David

    2015-01-01

    This Phase II project developed Indium-Gallium-Nitride (InGaN) photovoltaic cells for high-temperature and high-radiation environments. The project included theoretical and experimental refinement of device structures produced in Phase I as well as modeling and optimization of solar cell device processing. The devices have been tested under concentrated air mass zero (AM0) sunlight, at temperatures from 100 degC to 250 degC, and after exposure to ionizing radiation. The results are expected to further verify that InGaN can be used for high-temperature and high-radiation solar cells. The large commercial solar cell market could benefit from the hybridization of InGaN materials to existing solar cell technology, which would significantly increase cell efficiency without relying on highly toxic compounds. In addition, further development of this technology to even lower bandgap materials for space applications would extend lifetimes of satellite solar cell arrays due to increased radiation hardness. This could be of importance to the Departmentof Defense (DoD) and commercial satellite manufacturers.

  2. Lightning Surge Analysis on a Large Scale Grid-Connected Solar Photovoltaic System

    OpenAIRE

    Nur Hazirah Zaini; Mohd Zainal Abidin Ab. Kadir; Mohd Amran Mohd Radzi; Mahdi Izadi; Norhafiz Azis; Nor Izzati Ahmad; Mohd Solehin Mohd Nasir

    2017-01-01

    Solar photovoltaic (PV) farms currently play a vital role in the generation of electrical power in different countries, such as Malaysia, which is moving toward the use of renewable energy. Malaysia is one of the countries with abundant sunlight and thus can use solar PV farms as alternative sources for electricity generation. However, lightning strikes frequently occur in the country. Being installed in open and flat areas, solar PV farms, especially their electronic components, are at great...

  3. Solar photovoltaic power forecasting using optimized modified extreme learning machine technique

    Directory of Open Access Journals (Sweden)

    Manoja Kumar Behera

    2018-06-01

    Full Text Available Prediction of photovoltaic power is a significant research area using different forecasting techniques mitigating the effects of the uncertainty of the photovoltaic generation. Increasingly high penetration level of photovoltaic (PV generation arises in smart grid and microgrid concept. Solar source is irregular in nature as a result PV power is intermittent and is highly dependent on irradiance, temperature level and other atmospheric parameters. Large scale photovoltaic generation and penetration to the conventional power system introduces the significant challenges to microgrid a smart grid energy management. It is very critical to do exact forecasting of solar power/irradiance in order to secure the economic operation of the microgrid and smart grid. In this paper an extreme learning machine (ELM technique is used for PV power forecasting of a real time model whose location is given in the Table 1. Here the model is associated with the incremental conductance (IC maximum power point tracking (MPPT technique that is based on proportional integral (PI controller which is simulated in MATLAB/SIMULINK software. To train single layer feed-forward network (SLFN, ELM algorithm is implemented whose weights are updated by different particle swarm optimization (PSO techniques and their performance are compared with existing models like back propagation (BP forecasting model. Keywords: PV array, Extreme learning machine, Maximum power point tracking, Particle swarm optimization, Craziness particle swarm optimization, Accelerate particle swarm optimization, Single layer feed-forward network

  4. An active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Teo, H.G.; Lee, P.S.; Hawlader, M.N.A.

    2012-01-01

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  5. Novel Concepts for Silicon Based Photovoltaics and Photoelectrochemistry

    NARCIS (Netherlands)

    Han, L.

    2015-01-01

    Long term concerns about climate change and fossil fuel depletion will require a transition towards energy systems powered by solar radiation or other renewable sources. Novel concepts based on silicon materials and devices are investigated for applications in the next generation photovoltaic (PV)

  6. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Chávez Urbiola

    2013-01-01

    Full Text Available An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation sensors, a differential amplifier, and two servomotors. The hot side of the TEGs at midday has a temperature of around 200°C, and the cold side is approximately 50°C. The thermosiphon cooling system was designed to absorb the heat passing through the TEGs and provide optimal working conditions. The system generates 20 W of electrical energy and 200 W of thermal energy stored in water with a temperature of around 50°C. The hybrid system studied can be considered as an alternative to photovoltaic/thermal systems, especially in countries with abundant solar radiation, such as Mexico, China, and India.

  7. Photovoltaics in the shade : One bypass diode per solar cell revisited

    NARCIS (Netherlands)

    Pannebakker, Boudewijn B.; de Waal, Arjen C.; van Sark, Wilfried G.J.H.M.

    2017-01-01

    Deployment of residential photovoltaic solar energy systems is strongly increasing, which gives rise to problems such as partial shading and pollution, omnipresent in the built environment. Conventional modules are sensitive to the current mismatches introduced by shadows because of their series

  8. Behavior of Photovoltaic System during Solar Eclipse in Prague

    Directory of Open Access Journals (Sweden)

    Martin Libra

    2016-01-01

    Full Text Available PV power plants have been recently installed in very large scale. So the effects of the solar eclipse are of big importance especially for grid connected photovoltaic (PV systems. There was a partial solar eclipse in Prague on 20th March 2015. We have evaluated the data from our facility in order to monitor the impact of this natural phenomenon on the behavior of PV system, and these results are presented in the paper. The behavior of PV system corresponds with the theoretical assumption. The power decrease of the PV array corresponds with the relative size of the solar eclipse. I-V characteristics of the PV panel correspond to the theoretical model presented in our previous work.

  9. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  10. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  11. Research Progress of utilization in Solar Photovoltaic and Photothermal%太阳能光伏光热利用的研究进展

    Institute of Scientific and Technical Information of China (English)

    张鹏; 陈林

    2015-01-01

    Solar is the new renewable energy that we have been trying to develop, the mature solar photovoltaic technology that related to solar energy are mainly photovoltaic power generation and solar water heaters, etc. This paper explained research progress of the utilization of solar photovoltaic solar thermal through the analysis of utilization of solar photovoltaic solar thermal.%太阳能是我们一直在尽力开发的、全新的可再生能源,目前发展比较成熟的、与太阳能有关的主要有太阳能光伏发电技术、太阳能热水器等,通过分析太阳能光伏光热的利用情况,说明太阳能光伏光热利用的研究进展。

  12. The Semitransparent Photovoltaic Films for Mediterranean Greenhouse: A New Sustainable Technology

    Directory of Open Access Journals (Sweden)

    Alvaro Marucci

    2012-01-01

    Full Text Available Mediterranean countries offer very favorable climatic conditions for growing plants in a protected environment: as a matter of fact, the high solar radiation allows the use of greenhouses with simple structures, covered with plastic film and without fixed installations for winter heating. They are called “Mediterranean greenhouses” and are totally different from those in Central and Northern Europe. In the photovoltaic greenhouses, the cover on the pitch facing south is usually replaced by very opaque panels. However, this solution compromises the possibility to grow plants in covered and protected environments since solar radiation availability is limited and strongly nonuniform. In order to overcome this problem, semitransparent photovoltaic materials can be used to let the solar energy, necessary for plant growth, pass into the green house. The aim of this research is to analyze the radiometric properties of innovative semitransparent flexible photovoltaic materials in order to evaluate their performances in comparison with materials commonly used in the coverage of the greenhouses. Particular attention is paid to the transmittance of these materials in the visible range and in the long wave infrared for the achievement of greenhouse effect.

  13. A novel application for concentrator photovoltaic in the field of agriculture photovoltaics

    Science.gov (United States)

    Liu, Luqing; Guan, Chenggang; Zhang, Fangxin; Li, Ming; Lv, Hui; Liu, Yang; Yao, Peijun; Ingenhoff, Jan; Liu, Wen

    2017-09-01

    Agriculture photovoltaics is a trend setting area which has already led to a new industrial revolution. Shortage of land in some countries and desertification of land where regular solar panels are deployed are some of the major problems in the photovoltaic industry. Concentrator photovoltaics experienced a decline in applicability after the cost erosion of regular solar panels at the end of the last decade. We demonstrate a novel and unique application for concentrator photovoltaics tackling at a same time the issue of conventional photovoltaics preventing the land being used for agricultural purpose where ever solar panels are installed. We leverage the principle of diffractive and interference technology to split the sun light into transmitted wavelengths necessary for plant growth and reflected wavelengths useful for solar energy generation. The technology has been successfully implemented in field trials and sophisticated scientific studies have been undertaken to evaluate the suitability of this technology for competitive solar power generation and simultaneous high-quality plant growth. The average efficiency of the agriculture photovoltaic system has reached more than 8% and the average efficiency of the CPV system is 6.80%.

  14. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  15. Influence of spectral solar radiation to the generating power of photovoltaic module; Taiyo denchi shutsuryoku eno taiyoko supekutoru eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Minaki, S.; Ishihara, Y.; Todaka, T.; Harada, K. [Doshisha University, Kyoto (Japan); Oshiro, T.; Nakamura, H. [Japan quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    As to the influence of spectral solar radiation to generating power of solar cells, a study was conducted from the aspects of season, time zone, intensity of solar radiation, etc. In the study, spectral responsive variation correction coefficients were introduced as evaluation values expressing the influence of spectral solar radiation. For the spectral distribution, an all sky spectral pyranometer by wavelength was used, and data were used which were obtained in the measurement in experimental facilities of the solar techno center. Concerning solar cell relative spectral sensitivity values, used were relative spectral sensitivity values of monocrystal and amorphous standard solar cells to the short-circuit current. Spectral response variation correction coefficients are coefficients correcting variations in conversion efficiency of solar cells due to changes in the spectral distribution. The changes of spectral responsive variation correction coefficients were studied using data obtained during April 1994 and March 1996. As a result, it was found that the coefficients showed large changes in summer and small ones in winter and that amorphous solar cells indicate this trend conspicuously. 3 refs., 6 figs., 3 tabs.

  16. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting Inc., Emerald Isle, NC (United States); Thomas, Patrick [1790 Analytics LLC., Haddonfield, NJ (United States)

    2011-04-01

    DOE's Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  17. Solar energy an introduction

    CERN Document Server

    Mackay, Michael E

    2015-01-01

    Solar Energy presents an introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion, giving both a detailed and broad perspective of the field. It is aimed at the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. A chapter considering solar radiation, basic principles applied to solar energy, semiconductor physics, and light absorption brings the reader on equal footing with the technology of either solar generated electrical current or useful heat. Details of how a solar cell works and then production of current from a photovoltaic device is discussed. Characterization of a solar cell is examined, allowing one the ability to interpret the current-voltage relation, followed by discussion of parameter extraction from this relation. This information can be used to understand what limits the performance of a given solar cell with the potential to optimize its pe...

  18. Analysis and comparison between a concentrating solar and a photovoltaic power plant

    International Nuclear Information System (INIS)

    Desideri, Umberto; Campana, Pietro Elia

    2014-01-01

    Highlights: • The performance of CSP and PV plants were compared with similar assumptions. • The influence of the site on the performance of CSP and PV plants is determined. • CSP plants performance is always higher in locations where DNI is prevailing. • CSP levelized electricity costs are generally lower than those from PV plants. • PV plants may produce larger amounts of electricity where the DNI is not prevailing. - Abstract: Solar energy is a source, which can be exploited in two main ways to generate power: direct conversion into electric energy using photovoltaic panels and by means of a thermodynamic cycle. In both cases the amount of energy, which can be converted, is changing daily and seasonally, causing a discontinuous electricity production. In order to limit this drawback, concentrated solar power plants (CSP) and photovoltaic plants (PV) can be equipped with a storage system that can be configured not only for covering peak-loads but also for the base-load after the sunset or before the sunrise. In CSP plants it is the sun’s thermal energy to be stored, whereas in PV applications it is the electrical energy to be stored in batteries, although this is not economically and environmentally feasible in large-scale power plants. The main aim of this paper is to study the performance of concentrated solar power plants equipped with molten salts thermal storage to cover a base load of 3 MW el . In order to verify the possibility of storing effectively the thermal energy and to design a plant for base load operation, two locations were chosen for the study: Gela in southern Italy, and Luxor in Egypt. The electricity production of the CSP facilities has been analyzed and then compared with the electricity production of PV plants. Two different comparisons were done, one by sizing the PV plant to provide the same peak power and one using the same collectors surface. This paper has also highlighted some important issues in site selection and in

  19. Radiation hard solar cell and array

    International Nuclear Information System (INIS)

    Russell, R.L.

    1975-01-01

    A power generating solar cell for a spacecraft solar array is hardened against transient response to nuclear radiation while permitting normal operation of the cell in a solar radiation environment by shunting the cell with a second solar cell whose contacts are reversed relative to the power cell to form a cell module, exposing the power cell only to the solar radiation in a solar radiation environment to produce an electrical output at the module terminals, and exposing both cells to the nuclear radiation in a nuclear radiation environment so that the radiation induced currents generated by the cells suppress one another

  20. Fundamental aspects affecting the return on investment from solar power plants

    International Nuclear Information System (INIS)

    Cintula, B.; Viglas, D.

    2012-01-01

    The article deals with fundamental parameters of solar cells-conversion efficiency of solar radiation into electricity and price of solar cells. These two aspects affect each other, so it is important to deal with both at once. In introduction are described the theoretical solutions about efficiency analysis. Furthermore the article is focused on a description of materials used in the photovoltaic cells. In addition, the article shows the price trend of photovoltaic cells for the last year. Finally, these two aspects are evaluated for return on investment in photovoltaic power plants. (Authors)

  1. Solar Energy Prospecting in Remote Alaska: An Economic Analysis of Solar Photovoltaics in the Last Frontier State

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    This report provides a high-level examination of the potential economics of solar energy in rural Alaska across a geographically diverse sample of remote Alaska Native villages throughout the state. It analyzes at a high level what combination of diesel fuel prices, solar resource quality, and photovoltaic (PV) system costs could lead to an economically competitive moderate-scale PV installation at a remote village. The goal of this analysis is to provide a baseline economic assessment to highlight the possible economic opportunities for solar PV in rural Alaska for both the public and private sectors.

  2. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  3. Role of bromine doping on the photovoltaic properties and microstructures of CH3NH3PbI3 perovskite solar cells

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Okada, Hiroshi; Oku, Takeo

    2016-01-01

    Organic-inorganic hybrid heterojunction solar cells containing CH 3 NH 3 PbI 3 perovskite compound were fabricated using mesoporous TiO 2 as the electronic transporting layer and spirobifluorence as the hole-transporting layer. The purpose of the present study is to investigate role of bromine (Br) doping on the photovoltaic properties and microstructure of CH 3 NH 3 PbI 3 perovskite solar cells. Photovoltaic, optical properties and microstructures of perovskite-based solar cells were investigated. The X-ray diffraction identified crystal structure of the perovskite layer doped with Br in the solar cell. Scanning electron microscopy observation showed a different behavior of surface morphology and the perovskite crystal structure on the TiO 2 mesoporous structure depending on extent amount of hydrogen doping of Br. The role of bromide halogen doping on the perovskite crystal structure and photovoltaic properties was due to improvement of carrier mobility, optimization of electron structure, band gap related with the photovoltaic parameters of V oc , J sc and η. Energy diagram and photovoltaic mechanism of the perovskite solar cells varied with halogen doping was discussed by experimental results

  4. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  5. Physics of Quantum Structures in Photovoltaic Devices

    Science.gov (United States)

    Raffaelle, Ryne P.; Andersen, John D.

    2005-01-01

    There has been considerable activity recently regarding the possibilities of using various nanostructures and nanomaterials to improve photovoltaic conversion of solar energy. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of three-dimensional arrays of zero-dimensional conductors (i.e., quantum dots) in an ordinary p-i-n solar cell structure. Quantum dots and other nanostructured materials may also prove to have some benefits in terms of temperature coefficients and radiation degradation associated with space solar cells. Two-dimensional semiconductor superlattices have already demonstrated some advantages in this regard. It has also recently been demonstrated that semiconducting quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. Improvement in thin film cells utilizing conjugated polymers has also be achieved through the use of one-dimensional quantum structures such as carbon nanotubes. It is believed that carbon nanotubes may contribute to both the disassociation as well as the carrier transport in the conjugated polymers used in certain thin film photovoltaic cells. In this paper we will review the underlying physics governing some of the new photovoltaic nanostructures being pursued, as well as the the current methods being employed to produce III-V, II-VI, and even chalcopyrite-based nanomaterials and nanostructures for solar cells.

  6. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Studies of a photovoltaic-thermal solar dryi system for rural applications

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    Importance of solar drying in increasing worldwide. especially in areas where the use of abundant, renewable and clean solar energy is essentially advantageous. In developing countries and in rural areas the traditional open-air drying methods should be substituted by the more effective and more economic solar drying technologies. In the present work, a new design of a photovoltaic-thermal (PV/T) solar drying system was fabricated. An experimental study of PV/T solar air collector has been performed towards achieving n efficient design of air collector suitable foe a solar dryer. A series of experiments were conducted based on the ASHRAE standard, under Malaysia Climatic conditions. The performance of the collector is examined over a wide range of operating conditions. Results of the test are presented and discussed.(Author)

  8. Observatory of photovoltaic solar energy in France. Launching of the 19. edition - Quarterly publication, September 2016

    International Nuclear Information System (INIS)

    2016-09-01

    After a brief and synthetic overview of trends regarding solar photovoltaic energy in France and in the World (evolution of the numbers of connections and installations), this publication proposes graphs which illustrate the evolution of the distribution of new electricity production capacities in France, in Europe and in the USA, the evolution of connected photovoltaic power in the different World regions, a comparison of levelized cost of electricity between the different production sources, the evolution of the share of photovoltaic electricity in raw power consumption, the quarterly evolution of the number and power of connected photovoltaic installations between 2008 and 2016, the quarterly evolution of connections and purchase prices for different power ranges (less than 9 kW, 9-100 kW, 100-250 kW, 250 kW-1 MW, more than 1 MW), the evolution of the number and power of queuing projects, the quarterly evolution of solar photovoltaic electricity purchase prices in France, the evolution of the impact on the CSPE (contribution to the electricity public service)

  9. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Directory of Open Access Journals (Sweden)

    Snegirjovs A.

    2016-12-01

    Full Text Available Information on the electrical-driven solar air conditioning (SAC is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW. In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  10. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Science.gov (United States)

    Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L.

    2016-12-01

    Information on the electrical-driven solar air conditioning (SAC) is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC) systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average) systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW). In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  11. Estimating hourly direct and diffuse solar radiation for the compilation of solar radiation distribution maps

    International Nuclear Information System (INIS)

    Ueyama, H.

    2005-01-01

    This paper presents a new method for estimating hourly direct and diffuse solar radiation. The essence of the method is the estimation of two important factors related to solar radiation, atmospheric transmittance and a dimensionless parameter, using empirical and physical equations and data from general meteorological observation stations. An equation for atmospheric transmittance of direct solar radiation and a dimensionless parameter representing diffuse solar radiation are developed. The equation is based on multiple regression analysis and uses three parameters as explanatory variates: calculated hourly extraterrestrial solar radiation on a horizontal plane, observed hourly sunshine duration and hourly precipitation as observed at a local meteorological observatory. The dimensionless parameter for estimating a diffuse solar radiation is then determined by linear least squares using observed hourly solar radiation at a local meteorological observatory. The estimated root mean square error (RMSE) of hourly direct and diffuse solar radiation is about 0.0-0.2 MJ¥m(-2)¥h(-1) in each mean period. The RMSE of the ten-day and monthly means of these quantities is about 0.0-0.2 MJ¥m(-2)¥h(-1), based on comparisons with AMeDAS station data, located at a distance of 6 km

  12. Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations

    International Nuclear Information System (INIS)

    Desideri, U.; Zepparelli, F.; Morettini, V.; Garroni, E.

    2013-01-01

    Highlights: ► Life cycle was assessed for both concentrated solar power and photovoltaic systems. ► The PV plant has a higher environmental impact than the CSP plant. ► The Global Warming Potential is lower for the CSP than for the PV plant. ► The energy payback time is lower for the CSP than for the PV plant. -- Abstract: Solar energy is an important alternative energy source to fossil fuels and theoretically the most available energy source on the earth. Solar energy can be converted into electric energy by using two different processes: by means of thermodynamic cycles and the photovoltaic conversion. Solar thermal technologies, sometimes called thermodynamic solar technologies, operating at medium (about 500 °C) and high temperatures (about 1000 °C), have recently attracted a renewed interest and have become one of the most promising alternatives in the field of solar energy utilization. Photovoltaic conversion is very interesting, although still quite expensive, because of the absence of moving components and the reduced operating and management costs. The main objectives of the present work are: •to carry out comparative technical evaluations on the amount of electricity produced by two hypothetical plants, located on the same site, for which a preliminary design was made: a solar thermal power plant with parabolic trough collectors and a photovoltaic plant with a single-axis tracking system; •to carry out a comparative analysis of the environmental impact derived from the processes of electricity generation during the whole life cycle of the two hypothetical power plants. First a technical comparison between the two plants was made assuming that they have the same nominal electric power and then the same total covered surface. The methodology chosen to evaluate the environmental impact associated with the power plants is the Life Cycle Assessment (LCA). It allows to analyze all the phases of the life cycle of the plants, from the extraction of

  13. Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mohammadnia, Ali

    2014-01-01

    Highlights: • Simulation of an enhanced ICSSWH system combined with PV panel was conducted. • The present model dose not uses any photovoltaic driven water pump. • High packing factor and tank water mass are caused to high PVT system efficiency. • Larger area of the collector is resulted to lower total PVT system efficiency. - Abstract: A photovoltaic–thermal (PVT) module is a combination of a photovoltaic (PV) panel and a thermal collector for co-generation of heat and electricity. An integrated collector-storage solar water heater (ICSSWH) system, due to its simple and compact structure, offers a promising approach for the solar water heating in the varied climates. The combination of the ICSSWH system with a PV solar system has not been reported. In this paper, simulation of an enhanced ICSSWH system combined with the PV panel has been conducted. The proposed design acts passive. Therefore, it does not use any photovoltaic driven water pump to maintain a flow of water inside the collector. The effects of the solar cell packing factor, the tank water mass and the collector area on the performance of the present PVT system have been investigated. The simulation results showed that the high solar cell packing factor and the tank water mass are caused to the high total PVT system efficiency. Also, larger area of the collector is resulted to lower total PVT system efficiency

  14. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  15. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.

    2015-06-01

    Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.

  16. Modelling of storage of the photovoltaic energy by super-capacitors

    International Nuclear Information System (INIS)

    Camara, Mohamed Ansoumane

    2011-01-01

    The storage by ultra-capacitors of photovoltaic energy is modeled in order to have an accurate and accessible model to integrate ultra-capacitors into solar energy conversion systems. Ultra-capacitors are modeled by a multi-branch circuit representation composed of resistors and capacitors with variable voltage whose values are determined by an accurate characterization experiment. Moreover, all the elements of a typical photovoltaic energy conversion system are modeled by using the Matlab/Simulink software (solar radiation, photovoltaic arrays, regulator, batteries and charges). The energy storage model by ultra-capacitors is then validated by the good agreement of measured values taken in real conditions with the results provided by simulations. Finally, two examples are proposed and discussed: the determination of the storage duration of ultra-capacitors versus solar irradiance and ambient temperature, and the integration of ultra-capacitors in the electrical feeding system of a DC motor to reduce the electrical current peak of the battery at the start of the motor. (author) [fr

  17. Investigation of interface morphology and composition mixing in CdTe/CdS heterojunction photovoltaic materials using synchrotron radiation

    International Nuclear Information System (INIS)

    Soo, Y.L.; Huang, S.; Kao, Y.H.; Compaan, A.D.

    1998-01-01

    The interface microstructure in thin film photovoltaic materials is an important problem which can severely affect the light-conversion efficiency and stability of heterojunction solar cells. This is a long-standing fundamental problem, but has not been studied in the past by effective probing methods. In the present experiment, the interfacial roughness, correlation lengths of interface height fluctuations, effects of heat treatment, and diffusion of Te atoms across the heterojunction interface have been investigated by means of grazing incidence x-ray scattering and angular dependence of x-ray fluorescence using synchrotron radiation. We thus demonstrate that these x-ray techniques can provide a powerful tool for nondestructive characterization of the interfacial roughness and intermixing of selected atomic species in heterojunction photovoltaic materials. copyright 1998 American Institute of Physics

  18. Study on Forecasting Method of Hour-to-hour Solar Radiation over Photovoltaic Power Generation Region of Caidamu Basin%柴达木光伏发电地区逐时太阳辐射预报方法研究

    Institute of Scientific and Technical Information of China (English)

    保广裕; 张景华; 钱有海; 当周卓玛; 杨莲

    2012-01-01

    Based on the conventional meteorological data of sunshine and surface temperature of 10 weather stations as well as the solar radiation data of Gangchai and Germu over Caidamu basin in 2005~2009,the impact of weather circulation situation and its impacting system upon solar energy photovoltaic power generation is analyzed.From the study of synoptic meteorology and statistics,a practical forecasting index and forecasting method is tracked out,and by which a dynamic forecasting method and forecasting service system of hour-to-hour solar radiation over the photovoltaic power generation region of Caidamu basin is established.%本文利用2005~2009年柴达木盆地10个气象站的日照、地面温度等常规气象资料以及刚察和格尔木的辐射资料,分析了柴达木盆地影响太阳能光伏发电高影响天气的环流形势与影响系统。从天气学和统计学方面进行了研究,探索出了实用的预报指标和预报方法,建立了柴达木盆地太阳能光伏地区逐时太阳辐射动态预报方法和预报服务系统。

  19. Turning the Moon into a Solar Photovoltaic Paradise

    Science.gov (United States)

    Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter

    2006-01-01

    Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.

  20. Nonimaging solar concentrator with near-uniform irradiance for photovoltaic arrays

    Science.gov (United States)

    O'Gallagher, Joseph J.; Winston, Roland; Gee, Randy

    2001-11-01

    We report results of a study our group has undertaken to design a solar concentrator with uniform irradiance on a planar target. This attribute is especially important for photovoltaic concentrators. We find that a variety of optical mixers, some incorporating a moderate level of concentration, can be quite effective in achieving near uniform irradiance.

  1. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  2. Fabrication and Characterization of Organic Photovoltaic Cell using Keithley 2400 SMU for efficient solar cell

    Science.gov (United States)

    Hafeez, Hafeez Y.; Iro, Zaharaddeen S.; Adam, Bala I.; Mohammed, J.

    2018-04-01

    An organic solar cell device or organic photovoltaic cell (OPV) is a class of solar cell that uses conductive organic polymers or small organic molecules for light absorption and charge transport. In this study, we fabricate and characterize an organic photovoltaic cell device and estimated important parameters of the device such as Open Circuit Voltage Voc of 0.28V, Short-Circuit Current Isc of 4.0 × 10-5 A, Maximum Power Pmax of 2.4 × 10-6 W, Fill Factor of 0.214 and the energy conversion efficiency of η=0.00239% were tested using Keithley 2400,source meter under A.M 1.5 (1000/m2) illumination from a Newport Class A solar simulator. Also the I-V characteristics for OPV were drawn.

  3. RESEARCH INTO PHOTOVOLTAIC MODULES EFFICIENCY IN THE ŻYWIEC BESKIDS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Danuta Hilse

    2014-10-01

    Full Text Available Research into photovoltaic modules in the highlands, based on the example of the Żywiec Beskids, was conducted in 2009 in the town of Stryszawa on the border between the regions of Lesser Poland and Silesia. It involved measurements of the quantity of the produced electric power in three different systems of diverse power (570 Wp, 360 Wp oraz 200 Wp and different technical solutions (rotary modules tracing the Sun rotation and stationary modules. Efficiency of the photovoltaic modules was compared to the intensity of the solar radiation in the city of Żywiec. This way the efficiency of the solar energy processing was determined. The conducted research indicates that with the intensity of the solar radiation amounting to 890 kWh/ m2·year it is possible to produce electric power in the quantity of over 150 kWh/m2·year (rotary modules or about 110 kWh/ m2·year (stationary modules. The highest efficiency of the solar energy processing into the electric energy has been observed in the winter season (ca. 26%.

  4. Solar Photovoltaic Electricity Applications in France. National Survey Report 2008

    International Nuclear Information System (INIS)

    Durand, Yvonnick; Jacquin, Philippe

    2009-01-01

    According to a report by the French Renewable Energy Syndicate (SER), France had an installed photovoltaic fleet of 180 MW in late 2008, a substantial increase from 2007 (75 MW). This growth is largely due to the government's market-supporting policy that implemented a tax and tariff policy which encourages individuals to invest in so-called 'building integrated' systems; the goal of this policy is to bring together innovation in the building industry and the development of renewable energy among the French energy mix. The key event for the future of renewable energy and the photovoltaic sector in France was the 'Grenelle of the Environment'. This government initiative, launched in late 2007, became the subject of public debate and afterwards led to a bill which set the conditions under which France wishes to grow solar power's share of its energy mix. Working committees that bring together representatives from government authorities and industrial and public renewable energy stakeholders have proposed benchmarks. A few proposals with particular significance for photovoltaic power have been adopted by the government: - objectives for PV cumulative installed capacity in France of 1 100 MW in 2012 and 5 400 MW in 2020; - confirmation until 2012 of the current feed-in tariffs and the creation of an additional one targeting installations on large buildings such as commercial and industrial sheds. This tariff shall be set approximately at 0,45 EUR per kWh; - a call for tenders for the construction by 2011 of at least one solar photovoltaic power plant in each French region, for a total installed capacity of 300 MW. The nationally initiated actions for growing the market are heavily relayed by public assistance to regional councils, general councils, communities of communes and communes themselves, in accordance with their own particular specifications. The incentive to purchase electricity produced by built-in installations has caused a

  5. Simulation of Hybrid Photovoltaic Solar Assisted Loop Heat Pipe/Heat Pump System

    Directory of Open Access Journals (Sweden)

    Nannan Dai

    2017-02-01

    Full Text Available A hybrid photovoltaic solar assisted loop heat pipe/heat pump (PV-SALHP/HP water heater system has been developed and numerically studied. The system is the combination of loop heat pipe (LHP mode and heat pump (HP mode, and the two modes can be run separately or compositely according to the weather conditions. The performances of independent heat pump (HP mode and hybrid loop heat pipe/heat pump (LHP/HP mode were simulated and compared. Simulation results showed that on typical sunny days in spring or autumn, using LHP/HP mode could save 40.6% power consumption than HP mode. In addition, the optimal switchover from LHP mode to HP mode was analyzed in different weather conditions for energy saving and the all-year round operating performances of the system were also simulated. The simulation results showed that hybrid LHP/HP mode should be utilized to save electricity on sunny days from March to November and the system can rely on LHP mode alone without any power consumption in July and August. When solar radiation and ambient temperature are low in winter, HP mode should be used

  6. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  7. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  8. Life-Cycle Assessment of Solar Charger with Integrated Organic Photovoltaics

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Espinosa Martinez, Nieves; Krebs, Frederik C

    2017-01-01

    OPV panel, enabling the possibility to be charged from the sun, and not only from the grid. In this paper, two well-established power bank products using amorphous silicon solar panels (a-Si PV) and a regular power bank without any portable solar panel is compared to HeLi-on. The environmental impact...... of the products is quantified with the aim of indicate where eco-design improvements would make a difference and to point out performance of a portable solar panel depending on the context of use (Denmark and China), realistic disposal scenarios and the recycling relevance particularly concerning metals content.......Organic photovoltaics (OPV) applied in a commercial product comprising a solar charged power bank is subjected to a life cycle assessment (LCA) study. Regular power banks harvest electricity from the grid only. The solar power bank (called HeLi-on) is however, a power bank that includes a portable...

  9. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    Science.gov (United States)

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  10. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Photovoltaic (PV panels account for a majority of the cost of photovoltaic thermal (PVT panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum efficiencies of 45% to 63% were observed for the double-path-parallel bifacial PVT panel based on the first law of thermodynamics. Single-path bifacial PVT panel represents the highest exergy efficiency (10%. Double-path-parallel bifacial PVT panel is the second preferred design as it generates up to 20% additional total energy compared with the single-path panel. However, the daily average exergy efficiency of a double-path-parallel panel is 0.35% lower than that of a single-path panel.

  11. Flexo-photovoltaic effect.

    Science.gov (United States)

    Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin

    2018-04-19

    It is highly desirable to discover photovoltaic mechanisms that enable a higher efficiency of solar cells. Here, we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We introduce strain gradients using either an atomic force microscope or a micron-scale indentation system, creating giant photovoltaic currents from centrosymmetric single crystals of SrTiO 3 , TiO 2 , and Si. This strain-gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p - n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018, American Association for the Advancement of Science.

  12. Photovoltaic solar energy: which realities for 2020? Summarized synthesis; Solaire photovoltaique: quelles realites pour 2020?. Synthese resumee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report first describes the situation of the photovoltaic as situated at a crossroad with strong development possibilities for the French photovoltaic sector. It presents the photovoltaic energy as a competitive, regulatory and ecologic one, and therefore inescapable. It outlines stakes and obstacles of the French situation regarding the development of this sector. It highlights the economic and social benefit investing in this sector. Some propositions are stated for the promotion of the photovoltaic solar sector. Challenges are identified

  13. Socio- economic impact study of the electrification by the photovoltaic solar system in the AIJ/RPTES project area

    International Nuclear Information System (INIS)

    2000-04-01

    This report is a summary of the results of the study relating to the socio-economical impact of the electrification by photovoltaic solar system in the zones of the project AIJ/RPTES. The localities concerned with the study are the provinces of BALE and the MOUHOUN. The data analyzes relating to the electrification by solar system of the zones of the project AIJ/RPTES, revealed that solar electrical energy contributed to a significant degree to the socio-economic development, especially at the level of the structures having profited from the solar equipment. The principal conclusions drawn from these analyzes attested that: the solar system corresponds as well as possible for rural environment as well on the technological level as on the capacity plan of maintenance. The following reasons come to corroborate this fact: the weakness of the costs of management of the photovoltaic modules; the photovoltaic technic, in spite of a low incidental maximum power (1 kw/ m 2 ), satisfied the priority needs for the rural populations (lighting, access to information and education, conservation of the vaccines in the CSPS, etc). - be photovoltaic installations cause: an average financial profit by CSPS of 180 487.5 FCFA/an, and a financial economy in the parents of the new-born babies estimated at 36,600 FCFA/an in each CSPS; an average financial economy by household of 49,452 FCFA/an [fr

  14. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  15. Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)

    Science.gov (United States)

    1993-01-01

    The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on a variety of cells were also presented.

  16. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  17. Prospects of solar energy in the coastal areas of Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Emetere, Moses E., E-mail: moses.emetere@covenantuniversity.edu.ng; Akinyemi, Marvel L., E-mail: samuel.sanni@covenantuniversity.edu.ng [Department of Physics, Covenant University Canaan land, P.M.B 1023, Ota (Nigeria)

    2016-02-01

    The climatic factors in the coastal areas are cogent in planning a stable and functional solar farm. The experiment performed in this study entails a day-to-day solar radiation pattern in coastal areas. The results show that the solar radiation pattern in coastal region portends danger to the performance of solar photovoltaic (PV) module and its lifecycle. The efficiency of the PV module was tested in the harmattan where dust is a major hindrance. The results were related to meteorological parameters which influences the solar radiation over an area. The solar radiation pattern in coastal areas was traced to the solar sectional shading theory which was summarized and explained.

  18. PowerShades. Transparent photovoltaics and solar shading. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bezzel, E. (PhotoSolar ApS, Taastrup (Denmark)); Univ. of Neuchatel, Institute of Microtechnology, Neuchatel (CH)); Savcor Denmark A/S, Ballerup (Denmark)); Chem-Tec Plating A/S, Uldum (Denmark)); Danish Technological Institute (DTI), Taastrup (Denmark))

    2008-06-15

    This report marks the end of the PSO funded R and D project PowerShades. The objective of the project has been to establish knowledge about the manufacturing of PowerShade transparent photovoltaics and to demonstrate the viability of PowerShade, both as a product and when considered a building element. It has not been the objective to demonstrate a full-scale manufacturing of PowerShade, but to establish the knowledge that enables industrial manufacturing. The overall objective of the project has been achieved, and the large majority of the milestones defined have been met to full extent. It has been shown that PowerShade photovoltaic cells with an electrical efficiency of 5% can be reached, and it is expected that future work will lead to even better efficiency. Also, it has been demonstrated by full size side by side comparison that PowerShade transparent photovoltaics may replace exterior solar shading devices without compromise to the thermal properties of the building. The project has identified a number of work areas that must be addressed before an industrial manufacturing can be established. The efficiency of the photovoltaic generator must be increased and the stability of the entire product documented. Also, some of the identified processing steps must be scaled in capacity before manufacturing can be considered. (author)

  19. Economic analysis of photovoltaic systems for the residential market under China's new regulation

    International Nuclear Information System (INIS)

    Rodrigues, Sandy; Chen, Xiaoju; Morgado-Dias, F.

    2017-01-01

    China has recently changed its regulation for producing energy from photovoltaic solar panels in order to encourage the use of the solar resource. This new regulation started with offering subsidies at a national level and this was later followed by local subsidies in addition to the national one. Being a large country, China has regions with good solar exposure and others with poor exposure. Each region has a different electricity price and the energy is purchased based on the Grid Coal Power electricity price that also varies throughout the country. In this work we analyze the economic profitability of different regions considering the solar radiation levels, savings in self-consumption, cash flows from injecting power into the grid and local prices for installations to show that the best return is obtained in the places with better solar radiation or where the electricity price is higher. The regional Feed-In tariffs help to compensate for lower radiation levels but do not make these regions very attractive from an investment perspective. - Highlights: • Summarizes national and local feed in tariffs for China for the residential market. • Provides average local prices for 1 kW, 3 kW and 5 kW photovoltaic installations. • Selects city with best IRR, NPV and DPBP based on prices, subsidies and radiation. • Performs sensitivity analysis to check which parameter has more effect on results.

  20. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...... heating systems, different solar radiation models can be used. The calculation of beam radiation from a horizontal surface to a tilted surface can be done exactly whereas different solar radiation models can calculate the sky diffuse radiation. The sky diffuse radiation can either be assumed evenly...... in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...

  1. Battery charging characteristics in small scaled photovoltaic system using resonant DC-DC converter with electric isolation

    International Nuclear Information System (INIS)

    Isoda, H.; Kimura, G.; Shioya, M.

    1990-01-01

    The solar energy has been drawing attention of the whole world as a clean and infinite energy, since the globe resource, the globe ecology and so on came into question. The wide applications of the solar energy are being expected in a range from electric power plants to household systems. But the output power induced in the photovoltaic modules is influenced by an intensity of the solar radiation, a temperature of the solar cells and so on, so the various useful forms of the solar energy are being proposed for a purpose of stable power supply. a system described in this paper is a small scaled photovoltaic system with storage batteries. This paper describes the theoretical analyses of the photovoltaic system using a resonant DC-DC converter in order to clarify a desirable circuit condition, besides the experimental results of the battery charging characteristics are presented

  2. Variability of Photovoltaic Power in the State of Gujarat Using High Resolution Solar Data

    Energy Technology Data Exchange (ETDEWEB)

    Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weekley, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhang, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoltenberg, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parsons, B. [Evergreen Renewable Consulting, CO (United States); Batra, P. [Central Electricity Authority, New Delhi (India); Mehta, B. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India); Patel, D. [Gujarat Energy Transmission Corporation Ltd., Vadodara (India)

    2014-03-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  3. SHADOW EFFECT ON PHOTOVOLTAIC POTENTIALITY ANALYSIS USING 3D CITY MODELS

    Directory of Open Access Journals (Sweden)

    N. Alam

    2012-07-01

    Full Text Available Due to global warming, green-house effect and various other drawbacks of existing energy sources, renewable energy like Photovoltaic system is being popular for energy production. The result of photovoltaic potentiality analysis depends on data quality and parameters. Shadow rapidly decreases performance of the Photovoltaic system and it always changes due to the movement of the sun. Solar radiation incident on earth's atmosphere is relatively constant but the radiation at earth's surface varies due to absorption, scattering, reflection, change in spectral content, diffuse component, water vapor, clouds and pollution etc. In this research, it is being investigated that how efficiently real-time shadow can be detected for both direct and diffuse radiation considering reflection and other factors in contrast with the existing shadow detection methods using latest technologies and what is the minimum quality of data required for this purpose. Of course, geometric details of the building geometry and surroundings directly affect the calculation of shadows. In principle, 3D city models or point clouds, which contain roof structure, vegetation, thematically differentiated surface and texture, are suitable to simulate exact real-time shadow. This research would develop an automated procedure to measure exact shadow effect from the 3D city models and a long-term simulation model to determine the produced energy from the photovoltaic system. In this paper, a developed method for detecting shadow for direct radiation has been discussed with its result using a 3D city model to perform a solar energy potentiality analysis.

  4. Photovoltaic array for Martian surface power

    Science.gov (United States)

    Appelbaum, J.; Landis, G. A.

    1992-01-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  5. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.; Bera, Ashok; Haque, Mohammed; Baby, Rakhi Raghavan; Del Gobbo, Silvano; Alshareef, Husam N.; Wu, Tao

    2015-01-01

    nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely

  6. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  7. Efficiency optimization of a photovoltaic water pumping system for irrigation in Ouargla, Algeria

    Science.gov (United States)

    Louazene, M. L.; Garcia, M. C. Alonso; Korichi, D.

    2017-02-01

    This work is technical study to contribute to the optimization of pumping systems powered by solar energy (clean) and used in the field of agriculture. To achieve our goals, we studied the techniques that must be entered on a photovoltaic system for maximum energy from solar panels. Our scientific contribution in this research is the realization of an efficient photovoltaic pumping system for irrigation needs. To achieve this and extract maximum power from the PV generator, two axes have been optimized: 1. Increase in the uptake of solar radiation by choice an optimum tilt angle of the solar panels, and 2. it is necessary to add an adaptation device, MPPT controller with a DC-DC converter, between the source and the load.

  8. Interfacial charge separation and photovoltaic efficiency in Fe(ii)-carbene sensitized solar cells.

    Science.gov (United States)

    Pastore, Mariachiara; Duchanois, Thibaut; Liu, Li; Monari, Antonio; Assfeld, Xavier; Haacke, Stefan; Gros, Philippe C

    2016-10-12

    The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.

  9. Photovoltaic Energy-Assisted Electrocoagulation of a Synthetic Textile Effluent

    OpenAIRE

    Thelma Beatriz Pavón-Silva; Hipólito Romero-Tehuitzil; Gonzálo Munguia del Río; Jorge Huacuz-Villamar

    2018-01-01

    The feasibility of using photovoltaic modules to power a continuous 14 L electrochemical reactor applied to remove an azo dye with an efficiency of 70% is reported. The photovoltaic modules were directly connected, and the system efficiency was observed properly maintained when currents were applied in the range of 2.5 to 7.9 A. This value depends on solar radiation. Likewise, it was found that the efficiency depends mainly on the current density and the flow rate prevailing in the reactor.

  10. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  11. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  12. Prismatic TIR (total internal reflection) low-concentration PV (photovoltaics)-integrated façade for low latitudes

    International Nuclear Information System (INIS)

    Sabry, Mohamed

    2016-01-01

    Low-concentration Façade-integrated Photovoltaic system in the form of TIR (total internal reflection) prismatic segmented façade could play an effective role in reducing the direct component of solar radiation transmitting through buildings, hence reducing both cooling and artificial lighting load on such buildings. A prismatic segmented façade is capable of allowing diffused skylight to transmit through it to the building interior, while preventing most of the direct solar radiation and converting it into clean energy by means of the integrated PV (​photovoltaics) cells. A range of prismatic TIR segmented façades with different head angles has been designed based on the geographical latitude of the chosen location. Each façade configuration is simulated by ray-tracing technique and its performance is investigated against realistic direct solar radiation data in two clear sky days representing summer and winter of the targeted location. Ray tracing simulations revealed that all of the selected configurations could collect most of the direct solar radiation in summer. In contrary, larger head angle of the segmented façade could collect wider intervals around the noon time till reaching a head angle of 23° at which most of the incident direct solar radiation could be collected. - Highlights: • 5 different head angles of prismatic segmented PV-integrated Façade are ray-traced. • Transmitted and PV-collected solar radiation percentages are determined. • DNI daily profiles with associated solar altitudes and azimuth data are simulated. • Expected transmitted and PV collected solar radiation are calculated for the proposed segments.

  13. Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency

    Directory of Open Access Journals (Sweden)

    C. Baccouch

    2016-11-01

    Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally   it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.

  14. Solar thermal power and photovoltaic energy are both developing; Solaire a concentration et solaire photovoltaique: la main dans la main

    Energy Technology Data Exchange (ETDEWEB)

    Le Jannic, N.; Houot, G.

    2010-11-15

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  15. Developing a mobile stand alone photovoltaic generator

    International Nuclear Information System (INIS)

    Soler-Bientz, R.; Ricalde-Cab, L.O.; Solis-Rodriguez, L.E.

    2006-01-01

    This paper describes a recent work developed to create a mobile stand alone photovoltaic generator that can be easily relocated in remote areas to evaluate the feasibility of photovoltaic energy applications. A set of sensors were installed to monitor the electric current and voltage of the energy generated, the energy stored and the energy used by the loads that may be connected to the system. Other parameters like solar radiations (both on the horizontal and on the photovoltaic generation planes) and temperatures (of both the environment and the photovoltaic module) were monitored. This was done while considering the important role of temperature in the photovoltaic module performance. Finally, a measurement and communication hardware was installed to interface the system developed with a conventional computer. In this way, the performance of the overall system in real rural conditions could be evaluated efficiently. Visual software that reads, visualizes and saves the data generated by the system was also developed by means of the LabVIEW programming environment

  16. A distributed big data storage and data mining framework for solar-generated electricity quantity forecasting

    Science.gov (United States)

    Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia

    2012-02-01

    Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.

  17. Solar Photovoltaic Electricity Applications in France. National Survey Report 2007

    International Nuclear Information System (INIS)

    Claverie, Andre; Jacquin, Philippe

    2008-01-01

    The overall power of installed PV systems in France in 2007 was 31,3 MW which represents a significant growth compared to 2006. This increase is mainly due to the national fiscal measures (new feed-in tariff and tax credit) launched in 2006. The implemented feed-in tariff model application supports building integration of photovoltaic generators with a much higher financial incentive than other type of photovoltaic installations. In the same way, local authorities like regional councils and departmental councils developed new policies to promote photovoltaics through specific grants. As the building integration of photovoltaic generators is encouraged by a feed-in tariff bonus, innovative products are appearing on the market or are under development. In parallel, actors like architects, designers, engineers are now paying attention to building integration of photovoltaic components (BIPV). New actors such as financial institutions, energy operators, and private investors have developed ambitious projects. With the increase of the market, new firms have been created including engineering, consultancies, electricity producers, PV products distributors and retailers, installation and maintenance companies. Photovoltaic industrial sector is getting stronger and large investments have been undertaken in order to develop a vertical integration of the photovoltaic value chain, from feedstock silicon production to final photovoltaic products. A new private-public consortium called 'PV Alliance Lab Fab' has been set up and an important R and D project under the name of 'Solar Nano Crystal' should start by the end of 2008. At the same time, R and D activities focus on photovoltaic silicon cells/modules conversion efficiency and long term reliability, production costs, new materials and device design, yield, environmental impact of industrial processes and optimisation of control and monitoring of photovoltaic systems. In addition to the ADEME and ANR

  18. Reduction of solar photovoltaic resources due to air pollution in China.

    Science.gov (United States)

    Li, Xiaoyuan; Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L

    2017-11-07

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003-2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth's Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m 2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20-25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. Published under the PNAS license.

  19. Comment on Kirk's “Analysis of quantum coherent solar photovoltaic cells”

    International Nuclear Information System (INIS)

    Chapin, K.R.; Cohen, D.; Das, S.; Dorfman, K.; Jha, P.K.; Kim, M.; Svidzinsky, A.; Vetter, P.; Voronine, D.V.

    2013-01-01

    We present our scientific and philosophical analysis of the comments made in the recent paper of A.P. Kirk, “An Analysis of Quantum Coherent Solar Photovoltaic Cells” Physica B 407 (2012) 544. We highlight the key role of quantum coherence in the enhancement of the photocell power without violating the laws of thermodynamics

  20. Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress

    KAUST Repository

    Tang, Jiang

    2010-09-14

    Colloidal quantum dots (CQDs) are solution-processed semiconductors of interest in low-cost photovoltaics. Tuning of the bandgap of CQD films via the quantum size effect enables customization of solar cells\\' absorption profile to match the sun\\'s broad visible- and infrared-containing spectrum reaching the earth. Here we review recent progress in the realization of low-cost, efficient solar cells based on CQDs. We focus in particular on CQD materials and approaches that provide both infrared and visible-wavelength solar power conversion CQD photovoltaics now exceed 5% solar power conversion efficiency, achieved by the introduction of a new architecture, the depleted-heterojunction CQD solar cell, that jointly maximizes current, voltage, and fill factor. CQD solar cells have also seen major progress in materials processing for stability, recently achieving extended operating lifetimes in an air ambient. We summarize progress both in device operation and also in gaining new insights into materials properties and processing - including new electrical contact materials and deposition techniques, as well as CQD synthesis, surface treatments, film-forming technologies - that underpin these rapid advances. Infrared colloidal quantum dots that absorb most of the solar radiation enable potential efficient and low-cost photovoltaic devices. Careful optimization of quantum dot passivation and device configuration leads to solar cells with AM1.5G efficiency as high as 5.1% Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    OpenAIRE

    Yu, Xiangchun; Lin, Qingqing; Zhou, Xuedong; Yang, Zhibin

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province, fresh water resource becomes increasingly insufficient. Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy. This needs modern irrigation method. Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture, and will have directive significance for Hainan Province developi...

  2. Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings

    International Nuclear Information System (INIS)

    Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.

    2017-01-01

    This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)

  3. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Graetzel, M. [Institut de Chimie Physique, Ecole Polytechnique Federal de Lausanne (Switzerland)

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  4. Photovoltaic Energy-Assisted Electrocoagulation of a Synthetic Textile Effluent

    Directory of Open Access Journals (Sweden)

    Thelma Beatriz Pavón-Silva

    2018-01-01

    Full Text Available The feasibility of using photovoltaic modules to power a continuous 14 L electrochemical reactor applied to remove an azo dye with an efficiency of 70% is reported. The photovoltaic modules were directly connected, and the system efficiency was observed properly maintained when currents were applied in the range of 2.5 to 7.9 A. This value depends on solar radiation. Likewise, it was found that the efficiency depends mainly on the current density and the flow rate prevailing in the reactor.

  5. Performance of Photovoltaic Modules of Different Solar Cells

    Directory of Open Access Journals (Sweden)

    Ankita Gaur

    2013-01-01

    Full Text Available In this paper, an attempt of performance evaluation of semitransparent and opaque photovoltaic (PV modules of different generation solar cells, having the maximum efficiencies reported in the literature at standard test conditions (STC, has been carried out particularly for the months of January and June. The outdoor performance is also evaluated for the commercially available semitransparent and opaque PV modules. Annual electrical energy, capitalized cost, annualized uniform cost (unacost, and cost per unit electrical energy for both types of solar modules, namely, semitransparent and opaque have also been computed along with their characteristics curves. Semitransparent PV modules have shown higher efficiencies compared to the opaque ones. Calculations show that for the PV modules made in laboratory, CdTe exhibits the maximum annual electrical energy generation resulting into minimum cost per unit electrical energy, whereas a-Si/nc-Si possesses the maximum annual electrical energy generation giving minimum cost per unit electrical energy when commercially available solar modules are concerned. CIGS has shown the lowest capitalized cost over all other PV technologies.

  6. Multiple Solutions for Reconfiguration to Address Partial Shading Losses in Solar Photovoltaic Arrays

    Science.gov (United States)

    Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna

    2018-03-01

    Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.

  7. A thermoeconomic model of a photovoltaic heat pump

    International Nuclear Information System (INIS)

    Mastrullo, R.; Renno, C.

    2010-01-01

    In this paper the model of a heat pump whose evaporator operates as a photovoltaic collector, is studied. The energy balance equations have been used for some heat pump components, and for each layer of the photovoltaic evaporator: covering glaze, photovoltaic modules, thermal absorber plate, refrigerant tube and insulator. The model has been solved by means of a program using proper simplifications. The system input is represented by the solar radiation intensity and the environment temperature, that influence the output electric power of the photovoltaic modules and the evaporation power. The model results have been obtained referring to the photovoltaic evaporator and the plant operating as heat pump, in terms of the photovoltaic evaporator layers temperatures, the refrigerant fluid properties values in the cycle fundamental points, the thermal and mechanical powers, the efficiencies that characterize the plant performances from the energy, exergy and economic point of view. This study allows to realize a thermoeconomic comparison between a photovoltaic heat pump and a traditional heat pump under the same working conditions.

  8. Thermal and photovoltaic solar system in Urban hotel; Sistema solar termico y fotovoltaico en hotel urbano

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.; Perpinan, O.; Ramirez, F.; Eyras, R.; Vega, J.

    2004-07-01

    The article describes the Solar Energy installations that are being carried out in the Hotel Monte Malaga promoted by the Gabriel Rojas Group. We can consider this project to be pioneer in Spain since it uses Photovoltaic Solar Panels as parasols in facades in order to reduce its frozen load and with the intention of producing electric energy that will be injected to the grid. In addition, solar collectors over roof are being used distributed in a totally integrated way with the building for the preheating of the sanitary hot water producing a saving of around 90% of the natural gas consume. This entire project is carried out in an ultramodern design using different bioclimatic techniques that turns this building into a singular one. (Author)

  9. Research and development of evaluation system for photovoltaic power generation system. Research and development on evaluation technology of photovoltaic power generating systems; Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu. System hyoka gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of evaluation technology for photovoltaic power generating systems in fiscal 1994. (1) On preparation of test facility and measuring instrument, the pyrheliometer with a photovoltaic device as sensor was developed. (2) On collection and analysis of data, operation data of interconnection system, stand alone system, and water pump system were collected, and energy flow was analyzed. The following were also analyzed: time variation of a-Si solar cell modules, fluctuation correction factor of spectrum response, that of nonlinear response of crystalline solar cells, effect of solar radiation intensity and wind velocity on temperature rise of modules, and correction factor of DC circuit losses. (3) On on-site measurement technology, the array output measuring instrument was developed on the basis of capacitor charge system. (4) On simulation technology, simulation analyses of energy flow, optimum capacity of interconnection systems, correction factor of solar radiation, and capacity of array storage batteries were conducted. 3 figs., 6 tabs.

  10. Solar photovoltaic. Competitiveness and economic evaluation. Comparative and models; Energia solar fotovoltaica. Competitividad y evaluacion economica. comparativa y modelos

    Energy Technology Data Exchange (ETDEWEB)

    Collado Fernandez, E.; Colmenar Santos, A.; Peire Arroba, J.; Carpio Ibanez, J.; Castro Gil, M. A.

    2010-07-01

    Limits have been evaluated in the medium and long term economic competitiveness of solar photovoltaic energy in general and Spain in particular, considering the level of evolution that must have this form of energy production, until it become cevitamin with the other traditional energy sources and other emerging growth. to conduct the study, has developed a scenario-based methodology photovoltaic, which has taken account of the Spanish state regulation because it is vital operation on the road to real competitiveness relative to other types of energy. (Author) 10 refs.

  11. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  12. Solar photovoltaic water pumping for remote locations

    International Nuclear Information System (INIS)

    Meah, Kala; Fletcher, Steven; Ula, Sadrul

    2008-01-01

    Many parts of the world as well as the western US are rural in nature and consequently do not have electrical distribution lines in many parts of villages, farms, and ranches. Distribution line extension costs can run from USD 10,000 to USD 16,000/km, thereby making availability of electricity to small water pumping projects economically unattractive. But, ground water and sunlight are available, which make solar photovoltaic (SPV) powered water pumping more cost effective in these areas' small scale applications. Many western states including Wyoming are passing through the sixth year of drought with the consequent shortages of water for many applications. The Wyoming State Climatologist is predicting a possible 5-10 years of drought. Drought impacts the surface water right away, while it takes much longer to impact the underground aquifers. To mitigate the effect on the livestock and wildlife, Wyoming Governor Dave Freudenthal initiated a solar water pumping initiative in cooperation with the University of Wyoming, County Conservation Districts, Rural Electric Cooperatives, and ranching organizations. Solar water pumping has several advantages over traditional systems; for example, diesel or propane engines require not only expensive fuels, they also create noise and air pollution in many remote pristine areas. Solar systems are environment friendly, low maintenance, and have no fuel cost. In this paper the design, installation, site selection, and performance monitoring of the solar system for small-scale remote water pumping will be presented. This paper also presents technical, environmental, and economic benefits of the SPV water pumping system compared to stand alone generator and electric utility. (author)

  13. On the Effectiveness of Feed-in Tariffs in the Development of Photovoltaic Solar

    NARCIS (Netherlands)

    E. Dijkgraaf (Elbert); T. van Dorp (Tom); E. Maasland (Emiel)

    2014-01-01

    markdownabstract__Abstract__ Growing concern for climate change and rising scarcity of fossil fuels prompted governments to stimulate the development of renewables. This paper empirically tests whether feed-in tariff (FIT) policies have been effective in the development of photovoltaic solar

  14. Role of bromine doping on the photovoltaic properties and microstructures of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Okada, Hiroshi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Organic-inorganic hybrid heterojunction solar cells containing CH{sub 3}NH{sub 3}PbI{sub 3} perovskite compound were fabricated using mesoporous TiO{sub 2} as the electronic transporting layer and spirobifluorence as the hole-transporting layer. The purpose of the present study is to investigate role of bromine (Br) doping on the photovoltaic properties and microstructure of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells. Photovoltaic, optical properties and microstructures of perovskite-based solar cells were investigated. The X-ray diffraction identified crystal structure of the perovskite layer doped with Br in the solar cell. Scanning electron microscopy observation showed a different behavior of surface morphology and the perovskite crystal structure on the TiO{sub 2} mesoporous structure depending on extent amount of hydrogen doping of Br. The role of bromide halogen doping on the perovskite crystal structure and photovoltaic properties was due to improvement of carrier mobility, optimization of electron structure, band gap related with the photovoltaic parameters of V{sub oc}, J{sub sc} and η. Energy diagram and photovoltaic mechanism of the perovskite solar cells varied with halogen doping was discussed by experimental results.

  15. Variability of Power from Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.

    2014-04-01

    India has ambitious goals for high utilization of variable renewable power from wind and solar, and deployment has been proceeding at a rapid pace. The western state of Gujarat currently has the largest amount of solar generation of any Indian state, with over 855 Megawatts direct current (MWDC). Combined with over 3,240 MW of wind, variable generation renewables comprise nearly 18% of the electric-generating capacity in the state. A new historic 10-kilometer (km) gridded solar radiation data set capturing hourly insolation values for 2002-2011 is available for India. We apply an established method for downscaling hourly irradiance data to one-minute irradiance data at potential PV power production locations for one year, 2006. The objective of this report is to characterize the intra-hour variability of existing and planned photovoltaic solar power generation in the state of Gujarat (a total of 1.9 gigawatts direct current (GWDC)), and of five possible expansion scenarios of solar generation that reflect a range of geographic diversity (each scenario totals 500-1,000 MW of additional solar capacity). The report statistically analyzes one year's worth of power variability data, applied to both the baseline and expansion scenarios, to evaluate diurnal and seasonal power fluctuations, different timescales of variability (e.g., from one to 15 minutes), the magnitude of variability (both total megawatts and relative to installed solar capacity), and the extent to which the variability can be anticipated in advance. The paper also examines how Gujarat Energy Transmission Corporation (GETCO) and the Gujarat State Load Dispatch Centre (SLDC) could make use of the solar variability profiles in grid operations and planning.

  16. A Nonlinear Autoregressive Exogenous (NARX Neural Network Model for the Prediction of the Daily Direct Solar Radiation

    Directory of Open Access Journals (Sweden)

    Zina Boussaada

    2018-03-01

    Full Text Available The solar photovoltaic (PV energy has an important place among the renewable energy sources. Therefore, several researchers have been interested by its modelling and its prediction, in order to improve the management of the electrical systems which include PV arrays. Among the existing techniques, artificial neural networks have proved their performance in the prediction of the solar radiation. However, the existing neural network models don’t satisfy the requirements of certain specific situations such as the one analyzed in this paper. The aim of this research work is to supply, with electricity, a race sailboat using exclusively renewable sources. The developed solution predicts the direct solar radiation on a horizontal surface. For that, a Nonlinear Autoregressive Exogenous (NARX neural network is used. All the specific conditions of the sailboat operation are taken into account. The results show that the best prediction performance is obtained when the training phase of the neural network is performed periodically.

  17. Organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the International Conference and Exhibition at 16th September,2010 at the Maritim Hotel (Wuerzburg, Federal Republic of Germany) the following lectures were held: (1) History of Organic Photovoltaics (Niyazi Serdar Sariciftci); (2) PV Activities at the ZAE Bayern (Vladimir Dyakonov); (3) Progress in Solid State DSC (Peter Erk); (4) Polymer Semiconductors for OPV (Mats Andersson); (5) Fullerene Derivative N-Types in Organic Solar Cells (David Kronholm); (6) Modelling Charge-Transport in Organic Photovoltaic Materials (Jenny Nelson); (7) Multi Junction Modules R and D Status and Outlook (Paul Blom); (8) Imaging Technologies for Organic Solar Cells (Jonas Bachmann); (9) Production of Multi-junction Organic Photovoltaic Cells and Modules (Martin Pfeiffer); (10) Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-roll Processing (Frederik Christian Krebs); (11) Industrial Aspects and Large Scale OPV Production (Jens Hauch).

  18. Nighttime radiative cooling potential of unglazed and PV/T solar collectors: parametric and experimental analyses

    DEFF Research Database (Denmark)

    Pean, Thibault Quentin; Gennari, Luca; Olesen, Bjarne W.

    2015-01-01

    Nighttime radiative cooling technology has been studied both by means of simulations and experiments, to evaluate its potential and to validate the existing theoretical models used to describe it. Photovoltaic/thermal panels (PV/T) and unglazed solar collectors have been chosen as case studies....... The obtained values showed a good agreement with the ones found in the literature about solar panels or other kinds of heat sinks used for radiative cooling applications. The panels provided a cooling performance per night ranging between 0.2 and 0.9 kWh/m2 of panel. The COP values (defined as the ratio....... An experimental setup has been constructed and tested during summer of 2014, at the Technical University of Denmark. The cooling performance (heat loss) has been measured simultaneously for both types of panels, installed side-by-side. The experimental results have been compared with the results from a commercial...

  19. Solar photovoltaic system design optimization by shading analysis to maximize energy generation from limited urban area

    International Nuclear Information System (INIS)

    Rachchh, Ravi; Kumar, Manoj; Tripathi, Brijesh

    2016-01-01

    Highlights: • Scheme to maximize total number of solar panels in a given area. • Enhanced energy output from a fixed area without compromising the efficiency. • Capacity and generated energy are enhanced by more than 25%. - Abstract: In the urban areas the demand of solar power is increasing due to better awareness about the emission of green house gases from conventional thermal power plants and significant decrease in the installation cost of residential solar power plants. But the land cost and the under utilization of available space is hindering its further growth. Under these circumstances, solar photovoltaic system installation needs to accommodate the maximum number of solar panels in either roof-top or land-mounted category. In this article a new approach is suggested to maximize the total number of solar panels in a given area with enhanced energy output without compromising the overall efficiency of the system. The number of solar panels can be maximized in a solar photovoltaic energy generation system by optimizing installation parameters such as tilt angle, pitch, gain factor, altitude angle and shading to improve the energy yield. In this paper mathematical analysis is done to show that the capacity and generated energy can be enhanced by more than 25% for a given land area by optimization various parameters.

  20. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  1. ADielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    Institute of Scientific and Technical Information of China (English)

    寿春晖; 骆仲泱; 王涛; 沈伟东; ROSENGARTEN Gary; 王诚; 倪明江; 岑可法

    2011-01-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.%In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications.The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented.A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed.The calculated results show the advantages of this spectrally selective method for solar power generation.

  2. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K., E-mail: mathew.munji@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa); Dyk, E.E. van; Vorster, F.J. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa)

    2009-12-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V{sub oc}) and short circuit current (I{sub sc}) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  3. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    International Nuclear Information System (INIS)

    Munji, M.K.; Dyk, E.E. van; Vorster, F.J.

    2009-01-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V oc ) and short circuit current (I sc ) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  4. Socio-Cultural Dimensions of Cluster vs. Single Home Photovoltaic Solar Energy Systems in Rural Nepal

    Directory of Open Access Journals (Sweden)

    Kimber Haddix McKay

    2010-02-01

    Full Text Available This paper analyzes the socio-cultural dimensions of obstacles facing solar photovoltaic projects in two villages in rural Nepal. The study was conducted in Humla District, Nepal, one of the most remote and impoverished regions of the country. There are no roads in the district, homes lack running water and villagers’ health suffers from high levels of indoor air pollution from open cooking/heating fires and the smoky torches traditionally burned for light. The introduction of solar energy is important to these villagers, as it removes one major source of indoor air pollution from homes and provides brighter light than the traditional torches. Solar energy is preferable in many villages in the region due to the lack of suitable streams or rivers for micro-hydroelectric projects. In the villages under study in this paper, in-home solar electricity is a novel and recent innovation, and was installed within the last three years in two different geo-spatial styles, depending upon the configuration of homes in the village. In some villages, houses are grouped together, while in others households are widely dispersed. In the former, solar photovoltaic systems were installed in a “cluster” fashion with multiple homes utilizing power from a central battery store under the control of the householder storing the battery bank. In villages with widely spaced households, a single home system was used so that each home had a separate solar photovoltaic array, wiring system and battery bank. It became clear that the cluster system was the sensible choice due to the geographic layout of certain villages, but this put people into management groups that did not always work well due to caste or other differences. This paper describes the two systems and their management and usage costs and benefits from the perspective of the villagers themselves.

  5. Experimental validation of a heat transfer model for concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Sendhil Kumar, Natarajan; Matty, Katz; Rita, Ebner; Simon, Weingaertner; Ortrun, Aßländer; Alex, Cole; Roland, Wertz; Tim, Giesen; Tapas Kumar, Mallick

    2012-01-01

    In this paper, a three dimensional heat transfer model is presented for a novel concentrating photovoltaic design for Active Solar Panel Initiative System (ASPIS). The concentration ratio of two systems (early and integrated prototype) are 5× and 10× respectively, designed for roof-top integrated Photovoltaic systems. ANSYS 12.1, CFX package was effectively used to predict the temperatures of the components of the both ASPIS systems at various boundary conditions. The predicted component temperatures of an early prototype were compared with experimental results of ASPIS, which were carried out in Solecta – Israel and at the Austrian Institute of Technology (AIT) – Austria. It was observed that the solar cell and lens temperature prediction shows good agreement with Solecta measurements. The minimum and maximum deviation of 3.8% and 17.9% were observed between numerical and Solecta measurements and the maximum deviations of 16.9% were observed between modeling and AIT measurements. Thus, the developed validated thermal model enables to predict the component temperatures for concentrating photovoltaic systems. - Highlights: ► Experimentally validated heat transfer model for concentrating Photovoltaic system developed. ► Predictions of solar cell temperatures for parallactic tracking CPV system for roof integration. ► The ASPIS module contains 2 mm wide 216 solar cells manufactured based on SATURN technology. ► A solar cell temperature of 44 °C was predicted for solar radiation intensity was 1000 W/m 2 and ambient temperature was 20 °C. ► Average deviation was 6% and enabled to predict temperature of any CPV system.

  6. Solar photovoltaics development. Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Fenhann, J.

    1998-09-01

    This is the final report on the status and long-term perspectives for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion and alternative technologies, part of the programme for Socio-Economic Research on Fusion. After a short introduction about the most promising PV technologies the report concentrates on the present market trends showing that the PV sales has been growing 16% over the last 9 years, 28% over the last 3 years and expanded by 43% last year to a global total of 126.7 MWp 1n 1997. The annual shipment is largest in U.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market, since they are already economically competitive. However, often the financial mechanisms and necessary organisational set-up are missing. At the moment many big PV manufacturers are working to get good successful reference cases in developing countries. But now the on-grid installations in developed countries are beginning to increase. The main growth area in on-grid domestic installations, where there are big programs running in Japan (5000 MWp installed in 2010), U.S. (3000 MWp in 2010) and the Netherlands (1450 MWp in 2020). Looking at the perspectives a continuation of the high growth in solar PV production will continue supported by the United Nations Framework Convention on Climate Change and the Kyoto Protocol. The PV industry has already announced increases in production capacity large enough for a continuation of last year high growth. The report shows status and perspectives for production costs for solar PV until 2050. (au) 13 refs.

  7. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ran [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ardani, Kristen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    NREL has been modeling U.S. photovoltaic (PV) system costs since 2009. This report benchmarks costs of U.S. solar PV for residential, commercial, and utility-scale systems built in the first quarter of 2016 (Q1 2016). Our methodology includes bottom-up accounting for all system and project-development costs incurred when installing residential, commercial, and utility-scale systems, and it models the capital costs for such systems.

  8. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2016

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ran; Chung, Donald; Lowder, Travis; Feldman, David; Ardani, Kristen; Margolis, Robert

    2016-07-19

    NREL has been modeling U.S. photovoltaic (PV) system costs since 2009. This report benchmarks costs of U.S. solar PV for residential, commercial, and utility-scale systems built in the first quarter of 2016 (Q1 2016). Our methodology includes bottom-up accounting for all system and project-development costs incurred when installing residential, commercial, and utility-scale systems, and it models the capital costs for such systems.

  9. Deconstructing Solar Photovoltaic Pricing: The Role of Market Structure, Technology, and Policy

    Energy Technology Data Exchange (ETDEWEB)

    Gillingham, Kenneth [Yale Univ., New Haven, CT (United States); Deng, Hao [Yale Univ., New Haven, CT (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nemet, Gregory [Univ. of Wisconsin, Madison, WI (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rai, Varun [Univ. of Texas, Austin, TX (United States); Dong, C. G. [Univ. of Texas, Austin, TX (United States)

    2014-12-15

    Solar photovoltaic (PV) system prices in the United States display considerable heterogeneity both across geographic locations and within a given location. Such heterogeneity may arise due to state and federal policies, differences in market structure, and other factors that influence demand and costs. This paper examines the relative importance of such factors on equilibrium solar PV system prices in the United States using a detailed dataset of roughly 100,000 recent residential and small commercial installations. As expected, we find that PV system prices differ based on characteristics of the systems. More interestingly, we find evidence suggesting that search costs and imperfect competition affect solar PV pricing. Installer density substantially lowers prices, while regions with relatively generous financial incentives for solar PV are associated with higher prices.

  10. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 1: Working group and panel reports

    Science.gov (United States)

    1973-01-01

    Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.

  11. Solar technology assessment project. Volume 6: Photovoltaic technology assessment

    Science.gov (United States)

    Backus, C. E.

    1981-04-01

    Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.

  12. Availability of solar radiation and standards for solar access

    Energy Technology Data Exchange (ETDEWEB)

    Casabianca, G.A.; Evans, J.M. [Research Centre Habitat and Energy, Facultad de Arquitectura, Diseno y Urbanismo, Universidad de Buenos Aires, Capital Federal (Argentina)

    1997-12-31

    In southern Argentina, a region between latitudes 38 deg C and 55 deg C S, the heating demand in the residential sector is high while the availability of solar radiation is limited. A new proposal for solar access standards has been developed, taking into account the climatic conditions of each location, the effective availability of solar radiation and the direct sunlight requirements. This study analyses the climatic conditions for the Patagonia, relating heating demand and solar radiation availability in different sites, and presents the development of new sunlight standards that respond to these regional conditions. As a result of this study, the new Argentine standard TRAM 11.603 includes new conditions to protect solar access and provide design recommendations. (orig.) 4 refs.

  13. Fluctuation characteristics of solar radiation in crop cultivation

    International Nuclear Information System (INIS)

    Hayashi, S.; Suzuki, H.

    1996-01-01

    The objective of this study was to clarify the fluctuation of solar radiation for long and short periods, which is very crucial for plant growth. Data obtained from a meteorological observatory were used to investigate solar radiation and sunshine duration for a long period. For a short period, observation of global solar radiation and sky solar radiation were conducted in a glass house and at an open field. (1) Yearly average percentage of solar radiation at Kagawa from 1973 to 1994 was 44.3%, and its coefficient of variation was 3.9%. The percentage of possible sunshine and the coefficient were larger than those of solar radiation, 47.3% and 56% respectively. (2) Percentage of possible solar radiation and percentage of possible sunshine showed seasonal variation. Those coefficients of variation both increased exponentially with cloud amount. (3) Variations of global solar radiation and direct solar radiation were more remarkable in the glass house than those in the open field, while variations of sky solar radiation were small in the house and at the open field. (4) The fluctuation of solar radiation observed every 5 minutes was presented as the difference of radiation, present value minus the preceding value. The difference was positive in the morning, negative in the afternoon at the open field. In the house both positive and negative values were obtained the whole day. (5) Diurnal variation of ratio of direct solar radiation to sky solar radiation showed a parabolic effect, whereas it had irregular and large fluctuations at the open field

  14. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  15. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  16. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    Science.gov (United States)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  17. Solar photovoltaic systems and their use as grid-connected generators in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Munro, D K; Hacker, R J; Thornycroft, J M [Halcrow Gilbert Associates Ltd., Swindon (United Kingdom)

    1995-10-01

    There is an increasing interest in the use of building-integrated solar photovoltaic generators as grid-connected generators. This paper discusses the experience with this technology in Europe. Typical systems and their integration into domestic and non-domestic buildings are described. Information is provided on the energy output that can be expected from the systems and the economics of their use. The paper provides an overview of the requirements for photovoltaic systems as grid-connected generation plant in the United Kingdom. (Author)

  18. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    Science.gov (United States)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  19. Survey of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    In developing this survey of photovoltaic systems, the University of Alabama in Huntsville assembled a task team to perform an extensive telephone survey of all known photovoltaic manufacturers. Three US companies accounted for 77% of the total domestic sales in 1978. They are Solarex Corporation, Solar Power Croporation, and ARCO Solar, Inc. This survey of solar photovoltaic (P/V) manufacturers and suppliers consists of three parts: a catalog of suppliers arranged alphabetically, data sheets on specific products, and typical operating, installation, or maintenance instructions and procedures. This report does not recommend or endorse any company product or information presented within as the results of this survey.

  20. Analysis of Long-Term Global Solar Radiation, Sunshine Duration and Air Temperature Data of Ankara and Modeling with Curve Fitting Methods

    Directory of Open Access Journals (Sweden)

    Mehmet YEŞİLBUDAK

    2018-03-01

    Full Text Available The information about solar parameters is important in the installation of photovoltaic energy systems that are reliable, environmentally friendly and sustainable. In this study, initially, long-term global solar radiation, sunshine duration and air temperature data of Ankara are analyzed on the annual, monthly and daily basis, elaborately. Afterwards, three different empirical methods that are polynomial, Gaussian and Fourier are used for the purpose of modeling long-term monthly total global solar radiation, monthly total sunshine duration and monthly mean air temperature data. The coefficient of determination and the root mean square error are computed as statistical test metrics in order to compare data modeling performance of the mentioned empirical methods. The empirical methods that provide the best results enable to model the solar characteristics of Ankara more accurately and the achieved outcomes constitute the significant resource for other locations with similar climatic conditions.

  1. Photovoltaic: state of the arts in France and in the world

    International Nuclear Information System (INIS)

    Jurczak, Ch.; Leclerq, M.

    2005-01-01

    The author analyzes the photovoltaic world solar market. He discusses the photovoltaic solar electricity production cost and more particularly the photovoltaic solar industry in France and the thermal solar. (A.L.B.)

  2. The market of solar and photovoltaic energies. Grid parity, new support mechanisms, and innovations in financing modes: perspectives by 2018 and overview of actors

    International Nuclear Information System (INIS)

    2015-01-01

    This study first proposes an analysis and a discussion of perspectives for the sector of solar and photovoltaic energies. It identifies the main determining factors of the sector activity, proposes an overview of the sector activity between 2006 and 2015 (evolution of determining factors, installed power, production of photovoltaic electricity, installations on private dwellings, electricity price, foreign trade of photovoltaic arrays, turnover for the solar thermal and photovoltaic sector), discusses perspectives by 2018 in terms of installed power, of turnover, and of opportunities and threats. The second part proposes a description of the sector context: analysis of structural brakes and drivers, overview of the world market, installed power and photovoltaic electricity production in Europe, and overview of the French context of photovoltaic solar energy (energy policy, commitment of public authorities, electricity purchase tariff, and competitiveness of photovoltaic electricity). The third part evokes highlights of the sector and discusses the offer evolution: emergence of new financing modes, technological innovations, diversification of activity, international activity of French actors, and takeovers and optimisation of organisations. The fourth part reports an analysis of the competition context: competition pressure on array manufacturers, pressure on solar plant operators, and analysis of substitutes to solar energy. The fifth part proposes an overview of the economic structure and existing competing forces of the sector in France, and provides sheets of data for the main French actors. The last part proposes economic and financial indicators to assess and compare the performance of 200 enterprises belonging to this sector

  3. Fabrication and performance analysis of 4-sq cm indium tin oxide/InP photovoltaic solar cells

    Science.gov (United States)

    Gessert, T. A.; Li, X.; Phelps, P. W.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Large-area photovoltaic solar cells based on direct current magnetron sputter deposition of indium tin oxide (ITO) into single-crystal p-InP substrates demonstrated both the radiation hardness and high performance necessary for extraterrestrial applications. A small-scale production project was initiated in which approximately 50 ITO/InP cells are being produced. The procedures used in this small-scale production of 4-sq cm ITO/InP cells are presented and discussed. The discussion includes analyses of performance range of all available production cells, and device performance data of the best cells thus far produced. Additionally, processing experience gained from the production of these cells is discussed, indicating other issues that may be encountered when large-scale productions are begun.

  4. Analysis and simulation of water supply systems with photovoltaic pumping; Analise e simulacao de sistemas de abastecimento de agua com tecnologia fotovoltaica

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Olga de Castro

    1996-09-01

    During the last two decades, a remarkable progress on the technology of photovoltaic pumping systems (PVP) has been observed. The decrease in the costs of the photovoltaic module and the increase in the efficiency of photovoltaic pumping systems (generator and motor-pump) make PVP systems a good option for rural communities. Most analysis and simulations of PVP systems, utility function, assume the existence of a linear relationship between the hydraulic power and the solar collected radiation. Usually, more general relations exist between those variables. This work presents a new procedure for the analysis and simulation of PVP systems, which uses the utility function to consider the fluctuations in solar radiation, and leads to analytical solutions for PVP systems whose behavior can be represented by general functions, including linear relations as a particular case. The system analyzed considers the energy source (solar radiation) and the components of the water supply system like water source, photovoltaic array, subsystem for conversion of electric into hydraulic energy and, finally, hydraulic network. An analytical procedure to calculate absorbed solar radiation in the optical layers of the photovoltaic module was developed, substituting the conventional ray tracing method. The volume of pumped water was obtained integrating the water flow rate through time, considering the fluctuations related to the behavior of solar radiation and the minimum level of radiation necessary to produce useful energy. The mathematical properties of the utility function allow to derive analytical solutions for the integrals of water flow and hydraulic power. At the same time, we developed a spreadsheet which allows tho visualize the behavior of all variables involved in the process and offers the possibility of simulating different situations in order to maximize the amount of pumped water for any given system. The results obtained through the new procedure were compared with

  5. Optimization of a PV/T (photovoltaic/thermal) active solar still

    International Nuclear Information System (INIS)

    Saeedi, F.; Sarhaddi, F.; Behzadmehr, A.

    2015-01-01

    In this paper, the optimization of a PV/T (photovoltaic/thermal) active solar still is carried out. Analytical expressions for glass cover temperature, basin temperature, brackish water temperature and fresh water productivity are obtained by writing energy balance for different components of PV/T active solar still. The output electrical power of PV/T active solar still is calculated by four-parameter I–V (current–voltage) model. Objective function in present study is the energy efficiency of PV/T active solar still. A computer simulation program has been developed in order to obtain thermal and electrical parameters, respectively. The simulation results of the present study are in fair agreement with the experimental data of previous literatures. Finally, the optimization of PV/T active solar still has been carried out and the optimized value of mass flow rate, number of PV/T collector and the objective function have been obtained. Furthermore, the effect of various operating parameters on energy efficiency have been investigated. - Highlights: • The comprehensive optimization of a PV/T active solar still is carried out. • Present study is based on numerical simulation. • A modified energy efficiency for PV/T active solar still is obtained. • The effect of design and operating parameters is investigated on energy efficiency

  6. Performance evaluation of solar photovoltaic panel driven refrigeration system

    Science.gov (United States)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  7. An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system

    International Nuclear Information System (INIS)

    Erdil, Erzat; Ilkan, Mustafa; Egelioglu, Fuat

    2008-01-01

    A hybrid system, composed of a photovoltaic (PV) module and a solar thermal collector is constructed and tested for energy collection at a geographic location of Cyprus. Normally, it is required to install a PV system occupying an area of about 10 m 2 in order to produce electrical energy; 7 kWh/day, required by a typical household. In this experimental study, we used only two PV modules of area approximately 0.6 m 2 (i.e., 1.3x0.47 m 2 ) each. PV modules absorb a considerable amount of solar radiation that generate undesirable heat. This thermal energy, however, may be utilized in water pre-heating applications. The proposed hybrid system produces about 2.8 kWh thermal energy daily. Various attachments that are placed over the hybrid modules lead to a total of 11.5% loss in electrical energy generation. This loss, however, represents only 1% of the 7 kWh energy that is consumed by a typical household in northern Cyprus. The pay-back period for the modification is less than 2 years. The low investment cost and the relatively short pay-back period make this hybrid system economically attractive

  8. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  9. Testing, Performance and Reliability Evaluation of Charge Controllers for Solar Photovoltaic Home Lighting System in India

    OpenAIRE

    Adarsh Kumar; ChandraShekhar Sharma; Dr. Rajesh Kumar; Avinashkumar haldkar

    2016-01-01

    :Charge controller is the most important part of a Solar Photovoltaic Home LightingSystem (SPVHLS) which controls the charging ofbattery from photovoltaic (PV) module and discharging of battery through load. This paper analyzes testresults of fourteen charge controllers (CC) available in Indiaaccording to the Ministry of New and RenewableEnergy (MNRE) specification. The different parameters of charge controllers to be tested arebattery high voltage disconnect (HVD), lo...

  10. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  11. Hydrogen as the solar energy translator. [in photochemical and photovoltaic processes

    Science.gov (United States)

    Kelley, J. H.

    1979-01-01

    Many concepts are being investigated to convert sunlight to workable energy forms with emphasis on electricity and thermal energy. The electrical alternatives include direct conversion of photons to electricity via photovoltaic solar cells and solar/thermal production of electricity via heat-energy cycles. Solar cells, when commercialized, are expected to have efficiencies of about 12 to 14 percent. The cells would be active about eight hours per day. However, solar-operated water-splitting process research, initiated through JPL, shows promise for direct production of hydrogen from sunlight with efficiencies of up to 35 to 40 percent. The hydrogen, a valuable commodity in itself, can also serve as a storable energy form, easily and efficiently converted to electricity by fuel cells and other advanced-technology devices on a 24-hour basis or on demand with an overall efficiency of 25 to 30 percent. Thus, hydrogen serves as the fundamental translator of energy from its solar form to electrical form more effectively, and possibly more efficiently, than direct conversion. Hydrogen also can produce other chemical energy forms using solar energy.

  12. A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data Using a Generalized Regression Artificial Neural Network

    OpenAIRE

    Khatib, Tamer; Elmenreich, Wilfried

    2015-01-01

    This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle, and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that...

  13. Models of diffuse solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)

    2008-04-15

    For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)

  14. Solar and infrared radiation measurements

    CERN Document Server

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  15. Grid-connected photovoltaic systems. Projecting, construction, sales - hints for expert technicians. 3. new rev. ed.; Netzgekoppelte Photovoltaikanlangen. Planung, Errichtung und Verkauf fuer den Handwerksprofi

    Energy Technology Data Exchange (ETDEWEB)

    Sandner, Thomas

    2013-02-01

    Photovoltaic conversion is one of the most efficient and also one of the fastest-growing sustainable technologies. The book starts by presenting the fundamentals of photovoltaic conversion and solar radiation and then proceeds to describe the components of grid-connected PV systems. Other issues of this book consider: On-site visit and selection of a suitable generator array; The Renewable Energy Law and the development of photovoltaic conversion in Germany; Business topics such as costs and prices, marketing, quality assurance; Internal use of solar power.

  16. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  17. Solar program of the Research Institute/UPM

    Energy Technology Data Exchange (ETDEWEB)

    Nimmo, B.; Dabbagh, A.; Said, S.

    1980-07-01

    Projects are described and results presented for three of the solar related activities presently underway: Solar Radiation Monitoring, Effects of Dust Accumulation on Collector Performance, and Salt Gradient Solar Pond Analytical and Experimental Studies. Measurements of total horizontal and direct radiation have been made continuously since May, 1979 and the data are presented in a user oriented format on an hourly basis. These results have been extended by calculation to allow presentation on an hourly basis of diffuse radiation and total radiation on a surface tilted to the local latitude angle. The system is presently being expanded to allow measurement of several additional radiation parameters of interest as well as six meteorological parameters. Some results are presented to show the effects of atmospheric dust on radiation attenuation, as well as the clearness index, anti K/sub T/. Results are also presented for a related study, the impact of surface dust accumulation on the performance of photovoltaic and thermal collectors. Continuous monitoring of the peak watt output of a small photovoltaic panel during a period which included severe dust storms showed a decrease in performance of sixty percent (60%) relative to the clean panel output. Settling of dust on the surface of a solar pond does not, on the other hand, appear to be a problem. The salt gradient solar pond work is proceeding on two fronts: analytical and experimental. Preliminary results are presented for a varying property transient one dimensional computer model currently being used in design studies. Preliminary experimental results are also presented for temperature profiles measured in our small prototype pond.

  18. Special issue photovoltaic

    International Nuclear Information System (INIS)

    2004-01-01

    In this letter of the INES (french National Institute of the Solar Energy), a special interest is given to photovoltaic realizations in Europe. Many information are provided on different topics: the China future fifth world producer of cells in 2005, batteries and hydrogen to storage the solar energy and a technical sheet on a photovoltaic autonomous site installation for electric power production. (A.L.B.)

  19. Automatic actinometric system for diffuse radiation measurement

    Science.gov (United States)

    Litwiniuk, Agnieszka; Zajkowski, Maciej

    2015-09-01

    Actinometric station is using for measuring solar of radiation. The results are helpful in determining the optimal position of solar panels relative to the Sun, especially in today's world, when the energy coming from the Sun and other alternative sources of energy become more and more popular. Polish climate does not provide as much energy as in countries in southern Europe, but it is possible to increase the amount of energy produced by appropriate arrangement of photovoltaic panels. There is the possibility of forecasting the amount of produced energy, the cost-effectiveness and profitability of photovoltaic installations. This implies considerable development opportunities for domestic photovoltaic power plants. This article presents description of actinometric system for diffuse radiation measurement, which is equipped with pyranometer - thermopile temperature sensor, amplifier AD620, AD Converter ADS1110, microcontroller Atmega 16, SD card, GPS module and LCD screen.

  20. Public acceptance of residential solar photovoltaic technology in Malaysia

    Directory of Open Access Journals (Sweden)

    Salman Ahmad

    2017-11-01

    Full Text Available Purpose – Gaining independence from fossil fuels and combating climate change are the main factors to increase the generation of electricity from renewable fuels. Amongst the renewable technologies, solar photovoltaic (PV is believed to have the largest potential. However, the number of people adopting solar PV technologies is still relatively low. Therefore, the purpose of this paper is to examine the household consumers’ acceptance of solar PV technology being installed on their premises. Design/methodology/approach – To examine the solar PV technology acceptance, this study uses technology acceptance model (TAM as a reference framework. A survey was conducted to gather data and to validate the research model. Out of 780 questionnaires distributed across Malaysia, 663 were returned and validated. Findings – The analysis revealed that perceived ease of use, perceived usefulness and attitude to use significantly influenced behavioural intention to use solar PV technology. Research limitations/implications – This study contributes by extending the understanding of public inclination towards the adoption of solar PV technology. Also, this study contributes in identifying the areas which need to be examined further. However, collecting data from urban peninsular Malaysian respondents only limits the generalization of the results. Practical implications – On the policy front, this study reveals that governmental support is needed to trigger PV acceptance. Originality/value – This paper uses TAM to analyse the uptake of solar PV technology in Malaysian context.

  1. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India

    Directory of Open Access Journals (Sweden)

    B. Shiva Kumar

    2015-11-01

    Full Text Available The growing energy demand in developing nations has triggered the issue of energy security. This has made essential to utilize the untapped potential of renewable resources. Grid connected PV systems have become the best alternatives in renewable energy at large scale. Performance analysis of these grid connected plants could help in designing, operating and maintenance of new grid connected systems. A 10 MW photovoltaic grid connected power plant commissioned at Ramagundam is one of the largest solar power plants with the site receiving a good average solar radiation of 4.97 kW h/m2/day and annual average temperature of about 27.3 degrees centigrade. The plant is designed to operate with a seasonal tilt. In this study the solar PV plant design aspects along with its annual performance is elaborated. The various types of power losses (temperature, internal network, power electronics, grid connected etc. and performance ratio are also calculated. The performance results of the plant are also compared with the simulation values obtained from PV syst and PV-GIS software. The final yield (Y F of plant ranged from 1.96 to 5.07 h/d, and annual performance ratio (PR of 86.12%. It has 17.68% CUF with annual energy generation of 15798.192 MW h/Annum.

  2. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  3. Solar radiation in the Brazilian northeast

    Energy Technology Data Exchange (ETDEWEB)

    Tiba, Chigueru [Federal University of Pernambuco, Pernambuco (Brazil)

    2000-07-01

    The significant increase in recent years of the number of rural electrification systems (some thousands of them do exist) using photovoltaic technology installed in the Northeast of Brazil (1,500,000 km{sup 2}, approximately 42 million people) used for illumination or water pumping, calls for an improvement on the design procedures in order to reduce the burden of capital costs per unit of generated power. Such objective can be accomplished as long as a better knowledge about the solar resource is achieved, considering how much these applications depend on it. The sources of information on solar radiation in Brazil are quite varied at both institutional and publication level. At institutional Meteorology (INMET), State Departments of Agriculture, research institute, universities and electric power generation and distribution utilities. Progress reports or scientific and technical journals are the main publishing vehicles where this information can be found. This way, data quality varies considerably, showing, spatial and temporal discontinuities, in addition to the fact that measurement instruments and physical units of registered data are not standardized. The Solarimetric Atlas of Brazil was recently published and it contains that information, which is grouped, evaluated, qualified, and presented in a standardized way. It is one of the best currently existing sources of information, and in certainly consists of almost the entirety of the existing information on the solar resource (data on solar radiation and sunshine hours) in Brazil. By using this database, simultaneous records of solar radiation (measured with pyranoghaps or pyranometers) and sunshine hours with heliographs were obtained in 35 different places in the Northeast region. Coefficients a and b were calculated for those different places using Angstrom's correlation. Using the geostatistical interpolation method known as kriging, the values of a and b were placed on contour maps, the coverage of

  4. Proceedings of the IASTED international conference on solar energy : SOE 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, M.H. [International Association of Science and Technology for Development, Calgary, AB (Canada)] (ed.)

    2009-07-01

    This solar energy conference was attended by international researchers and practitioners working with leading edge solar energy technology as well as related areas such as renewable energy and clean energy. The topics of discussion included nanotechnologies for solar energy; photovoltaic energy; solar fuel cells; solar-powered vehicles; solar thermal energy; thin film batteries; desalination systems; solar cooling; clean energy; renewable energy; biomass energy; sustainability; flexible solar cells; hybrid power generation; organic solar cells; remote sensing of solar radiation; solar thermal conversion; sustainable buildings; and thin film silicon solar cells. Some of the presentations discussed the application of solar energy in agriculture, environment, economics and home construction. The sessions were entitled: grid connection and energy conversion; photovoltaic and nanotechnology; solar energy and applications; and solar thermal energy. Seventeen of the 18 presentations have been catalogued separately for inclusion in this database.

  5. A sunny future: expert elicitation of China's solar photovoltaic technologies

    Science.gov (United States)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  6. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  7. 相变储能光伏太阳能热泵干燥系统的研究%Research on Phase Change Energy Storage Photovoltaic Solar Heat Pump Drying System

    Institute of Scientific and Technical Information of China (English)

    胡静; 蒋绿林; 侯亚祥; 王昌领; 张亮

    2017-01-01

    The experimental platform of phase change energy storage photovoltaic solar heat pump drying system is estab-lished in this paper ,it is introduced the way of the system and the matching of photovoltaic solar heating evaporator and dc compressor is calculated and finally the experiment data is analyzed in detail .It is concluded that when the solar radiation amount is 800 W/m2 and photovoltaic solar heating evaporator area is 12 m2 ,heat capacity is 10 kW and solar photovoltaic power generation is 6 .2 kW·h ,in which the photovoltaic power consumption is greater than the compressor ,meeting the op-eration requirements without additional power .The COP of system is 3 .25 .The phase change energy storage can solve run-ning problem of the system ,which is caused by the amount of solar irradiance fluctuation ,and so it has significant energy saving and environmental protection .%建立了相变储能光伏太阳能热泵干燥系统实验平台,介绍了系统的运行方式以及太阳能光伏集热蒸发器与直流压缩机的匹配计算,最后对实验数据进行了分析。结果表明,太阳能辐照量为800 W/m2、光伏集热蒸发器面积为12m2的条件下,系统制热功率为10kW,太阳能光伏集热蒸发器发电量为6.2kW·h,大于直流压缩机的耗电量,满足供电要求;实验所得系统COP为3.25。相变储能可以解决太阳辐照波动导致的系统运行不稳定问题,具有显著的节能性和环保性。

  8. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    Science.gov (United States)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  9. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  10. Workshop proceedings: Photovoltaic conversion of solar energy for terrestrial applications. Volume 2: Invited papers

    Science.gov (United States)

    1973-01-01

    A photovoltaic device development plan is reported that considers technological as well as economical aspects of single crystal silicon, polycrystal silicon, cadmium sulfide/copper sulfide thin films, as well as other materials and devices for solar cell energy conversion systems.

  11. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi; Fujimoto, Kazuya; Suzuki, Atsushi; Balachandran, Jeyadevan; Oku, Takeo, E-mail: oku@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  12. Solar ultraviolet radiation from cancer induction to cancer prevention: solar ultraviolet radiation and cell biology.

    Science.gov (United States)

    Tuorkey, Muobarak J

    2015-09-01

    Although decades have elapsed, researchers still debate the benefits and hazards of solar ultraviolet radiation (UVR) exposure. On the one hand, humans derive most of their serum 25-hydroxycholecalciferol [25(OH)D3], which has potent anticancer activity, from solar UVB radiation. On the other hand, people are more aware of the risk of cancer incidence associated with harmful levels of solar UVR from daily sunlight exposure. Epidemiological data strongly implicate UV radiation exposure as a major cause of melanoma and other cancers, as UVR promotes mutations in oncogenes and tumor-suppressor genes. This review highlights the impact of the different mutagenic effects of solar UVR, along with the cellular and carcinogenic challenges with respect to sun exposure.

  13. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  14. General Committee for solar photovoltaic energy: results and proposals. General committee for solar photovoltaic energy Solar photovoltaic: which realities by 2020? Summarized synthesis + Extended synthesis + Analyses and proposals + Press conference October 27, 2011

    International Nuclear Information System (INIS)

    2011-10-01

    Published by a French professional body which gathers several actors of the solar photovoltaic sector, this document proposes a rather detailed overview of the sector and of its perspectives. It notably outlines that this energy production mode is clean, competitive, creating jobs, and is to become mandatory, that it represents a strategic opportunity to boost the French economy, and that France already possesses actual assets with research and development laboratories, an existing industrial fabric, energy majors, and a committed building sector. It also states some proposals for a stronger development. Theses proposals address power objectives, introduction of adapted purchase tariffs, a support to French and European offers, and so on

  15. Optimal sizing method for constituent elements of stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Hirotada; Oi, Yoichi [Hokuriku Electric Power Co., Inc. Toyama (Japan)

    1988-12-25

    The purpose of the report was to calculate the optimal volume of constituent elements of stand-alone photovoltaic power systems, based on the distribution of global radiation on an inclined surface (herein-after called flux of solar radiation), which had been previously measured, and the size of load to be supplied. The least power generation cost was calculated, supposing that setting load was 176kWh/month and the loss of load probability (LOLP) was 1%, by using actual amount of solar radiation in May 1985. The cost was divided into two components: one was proportionate to the size of solar cell, and the other was in proportion to the battery volume. And then, the cost of twenty-year operation(TLC) was calculated. The size of array and the battery volume, which minimize the cost, can be determined when TLC is differentiate. Since auxiliary power source is not attached to this system, it is necessary to restrict the load in order to meet the electric power shortage. In case of the cost at construction in 1984, a standard model indicating the least power generation cost is a photovoltaic system with the array size of A=49.0m{sup 2} and the battery volume of Q=568(Ah). 4 refs., 9 figs., 10 tabs.

  16. The value of solar: Prices and output from distributed photovoltaic generation in South Australia

    International Nuclear Information System (INIS)

    Maine, Tony; Chapman, Paul

    2007-01-01

    The Australian government's Solar Cities Program sees great value in so-called 'cost-reflective pricing', code for valuing solar at pool prices. We test that proposition in South Australia where pool prices and insolation are often high and we show that there were few days in 2004 when the pool price gives better outcomes than if the solar is valued at the regulated and fixed, so-called standing contract price. We also find that the illustrative day used in the Solar Cities Program literature to promote the notion of cost-reflective pricing is highly atypical. Finally, we consider ways in which the incentive to install distributed photovoltaic generation might be improved

  17. [The property and applications of the photovoltaic solar panel in the region of diagnostic X-ray].

    Science.gov (United States)

    Hirota, Jun'ichi; Tarusawa, Kohetsu; Kudo, Kohsei

    2010-10-20

    In this study, the sensitivity in the diagnostic X-ray region of the single crystalline Si photovoltaic solar panel, which is expected to grow further, was measured by using an X-ray tube. The output voltage of the solar panel was clearly proportional to the tube voltage and a good time response in the irradiation time setting of the tube was measured. The factor which converts measured voltage to irradiation dose was extracted experimentally using a correction filter to investigate the ability of the solar panel as a dose monitor. The obtained conversion factors were N(S) = 13 ± 1[µV/µSv/s] for the serial and N(P) = 58 ± 2[µV/µSv/s] for the parallel connected solar panels, both with the Al 1 mm + Cu 0.1 mm correction filter, respectively. Therefore, a good dose dependence of the conversion factor was confirmed by varying the distance between the X-ray tube and the solar panel with that filter. In conclusion, a simple extension of our results pointed out the potential of a new concept of measurements using, for example, the photovoltaic solar panel, the direct dose measurement from X-ray tube and real time estimation of the exposed dose in IVR.

  18. Automatic data acquisition system for a photovoltaic solar plant

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.; Barrio, C.L.; Guerra, A.G.

    1986-01-01

    An autonomous monitoring system for photovoltaic solar plants is described. The system is able to collect data about the plant's physical and electrical characteristics and also about the environmental conditions. It may present the results on a display, if requested, but its main function is measuring periodically a set of parameters, including several points in the panel I-V characteristics, in an unattended mode. The data are stored on a magnetic tape for later processing on a computer. The system hardware and software are described, as well as their main functions.

  19. Fiscal 1974 Sunshine Project result report. Research on solar energy utilization systems (photovoltaic power generation); Taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report summarizes the research result on the guide for developing solar cells. The report includes (1) standard measurement method for solar cells, (2) system configuration and installation site, (3) optimum design and profitability of solar cells and (4) raw materials and pollution prevention. In the 1st research, study was made on the standard for solar radiation intensity, the definition and measurement methods for spectral profiles, and the measurement conditions for solar cells. In the 2nd research, study was made on various basic data for the scale of photovoltaic power systems. In the 3rd research, since it is necessary to obtain characteristics of solar cells with any profiles of physical constants such as impurity, minority carrier life and mobility by simulation of solar cell actions, research was made on the measurement method of minority carrier lives by using a prepared computer program. Technical and economical comparisons were also made between Si solar cells with various structures. In the 4th research, survey was made on various data for compound semiconductors, and study was made on industrial waste pollution. (NEDO)

  20. Utilization of photovoltaic solar energy technology for rural electricity supply at Sabah

    International Nuclear Information System (INIS)

    Mohd Noh Dalimin

    1996-01-01

    The conversion of sunlight to electrical energy using photovoltaic systems for lighting, water pumping, telecommunications and vaccine refrigeration are already proven, commercially available and in many, are economically viable. More and more houses in rural areas of Sabah are connected to solar powered infra structural development needs such as street lights, radio repeater station, telecommunication and high-voltage beacons. To meet the infra structural and environmental challenges, especially in remote locations and with prospects of greater economic competitiveness, central and distributed grid connected photovoltaic systems are now being evaluated in Mandahan, Papar and in Marak Parak, Kota Marudu. This paper reports on the progress with the application of the technology and the prospects for wider dissemination