WorldWideScience

Sample records for photovoltaic solar cell

  1. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  2. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  3. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  4. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  5. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  6. Fuel Cell / electrolyser, Solar Photovoltaic Powered

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents experimental obtained results in the operation ofelectrolyzer powered by solar photovoltaic modules, for the waterelectrolysis and with the obtained hydrogen and oxygen proceeds tothe operation in fuel cell mode, type PEM. The main operatingparameters and conditions to optimize the energy conversion on thesolar-hydrogen-electricity cycle are highlighted, so that those arecomparable or superior to conventional cycles.

  7. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  8. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  9. Interactive Visual Analysis for Organic Photovoltaic Solar Cells

    KAUST Repository

    Abouelhassan, Amal A.

    2017-01-01

    Organic Photovoltaic (OPV) solar cells provide a promising alternative for harnessing solar energy. However, the efficient design of OPV materials that achieve better performance requires support by better-tailored visualization tools than

  10. Monocrystalline silicon solar cells applied in photovoltaic system

    OpenAIRE

    L.A. Dobrzański; A. Drygała; M. Giedroć; M. Macek

    2012-01-01

    Purpose: The aim of the paper is to fabricate the monocrystalline silicon solar cells using the conventional technology by means of screen printing process and to make of them photovoltaic system.Design/methodology/approach: The investigation of current – voltage characteristic to determinate basic electrical properties of monocrystalline silicon solar cells were investigated under Standard Test Condition. Photovoltaic module was produced from solar cells with the largest short-circuit curren...

  11. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  12. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  13. Formation of photovoltaic modules based on polycrystalline solar cells

    OpenAIRE

    L. A. Dobrzański; A. Drygała; A. Januszka

    2009-01-01

    Purpose: The main aim of the paper is formation of photovoltaic modules and analysis of their main electric parameters.Design/methodology/approach: Photovoltaic modules were produced from four polycrystalline silicon solar cells, that were cut and next joined in series. Soft soldering technique and copper-tin strip were used for joining cells.Findings: In order to provide useful power for any application, the individual solar cells must be connected together to give the appropriate current an...

  14. Enhanced Photovoltaic Properties of Gradient Doping Solar Cells

    International Nuclear Information System (INIS)

    Zhang Chun-Lei; Du Hui-Jing; Zhu Jian-Zhuo; Xu Tian-Fu; Fang Xiao-Yong

    2012-01-01

    An optimum design of a-Si:H(n)/a-Si:H(i)/c-Si(p) heterojunction solar cell is realized with 24.27% conversion efficiency by gradient doping of the a-Si:H(n) layer. The photovoltaic properties are simulated by the AFORSHET software. Besides the additional electric field caused by the gradient doping, the enhanced and widen spectral response also improves the solar cell performance compared with the uniform-doping mode. The simulation shows that the gradient doping is efficient to improve the photovoltaic performance of the solar cells. The study is valuable for the solar cell design with excellent performances

  15. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  16. Laminated photovoltaic modules using back-contact solar cells

    Science.gov (United States)

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  17. All-Weather Solar Cells: A Rising Photovoltaic Revolution.

    Science.gov (United States)

    Tang, Qunwei

    2017-06-16

    Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Y.F.Zhang; Y.F.Wang; N.Chen; Y.Y.Wang; Y.Z.Zhang; Z.H.Zhou; L.M.Wei

    2010-01-01

    Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm-2, an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.

  19. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.

    Science.gov (United States)

    Aeberhard, Urs; Rau, Uwe

    2017-06-16

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  20. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-01-01

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module’s electrolumin...

  1. Production of solar photovoltaic cells on the Moon

    Science.gov (United States)

    Criswell, David R.; Ignatiev, Alex

    1991-01-01

    Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.

  2. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  3. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  4. Constructal Optimization of Top Contact Metallization of a Photovoltaic Solar Cell

    OpenAIRE

    Bhakta, Aditya; Bandyopadhyay, Santanu

    2010-01-01

    A top contact metallization of a photovoltaic solar cell collects the current generated by incident solar radiation. Several power-loss mechanisms are associated with the current flow through the front contact grid. The design of the top metal contact grid is one of the most important areas of efficient photovoltaic solar cell design. In this paper, an approach based on the constructal theory is proposed to design the grid pattern in a photovoltaic solar cell, minimizing total resistive losse...

  5. Development and basic photovoltaic characteristics of a solar generator with double-sided silicon cells

    International Nuclear Information System (INIS)

    Aliev, R.; Mansurov, Kh.

    2015-01-01

    A new solar generator consisting of double-sided silicon sensing elements is described. The basic photovoltaic parameters of solar generators are made of mono- and polycrystalline silicon solar cells. (author)

  6. Improving the photovoltaic performance of perovskite solar cells with acetate

    Science.gov (United States)

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-01-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924

  7. Improving the photovoltaic performance of perovskite solar cells with acetate.

    Science.gov (United States)

    Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P

    2016-12-09

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  8. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Graetzel, M. [Institut de Chimie Physique, Ecole Polytechnique Federal de Lausanne (Switzerland)

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  9. Solar Photovoltaic Technology Basics | NREL

    Science.gov (United States)

    Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Photo of a large silicon solar

  10. Geometric photovoltaics applied to amorphous silicon thin film solar cells

    Science.gov (United States)

    Kirkpatrick, Timothy

    Geometrically generalized analytical expressions for device transport are derived from first principles for a photovoltaic junction. Subsequently, conventional planar and unconventional coaxial and hemispherical photovoltaic architectures are applied to detail the device physics of the junction based on their respective geometry. For the conventional planar cell, the one-dimensional transport equations governing carrier dynamics are recovered. For the unconventional coaxial and hemispherical junction designs, new multi-dimensional transport equations are revealed. Physical effects such as carrier generation and recombination are compared for each cell architecture, providing insight as to how non-planar junctions may potentially enable greater energy conversion efficiencies. Numerical simulations are performed for arrays of vertically aligned, nanostructured coaxial and hemispherical amorphous silicon solar cells and results are compared to those from simulations performed for the standard planar junction. Results indicate that fundamental physical changes in the spatial dependence of the energy band profile across the intrinsic region of an amorphous silicon p-i-n junction manifest as an increase in recombination current for non-planar photovoltaic architectures. Despite an increase in recombination current, however, the coaxial architecture still appears to be able to surpass the efficiency predicted for the planar geometry, due to the geometry of the junction leading to a decoupling of optics and electronics.

  11. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    OpenAIRE

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190?mV and ISC of ~9??A, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46?mW confirmed...

  12. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  13. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  14. Solar Energy Materials & Solar Cells Solvent additives for tuning the photovoltaic properties of polymer – fullerene solar cells

    NARCIS (Netherlands)

    Sio, Antonietta De; Madena, Thomas; Huber, Ralph; Deschler, Felix; Como, Enrico Da; Esposito, Salvatore; Hauff, Elizabeth Von

    2011-01-01

    We use solvent additives as a simple method to tune the photovoltaic performance of poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojuncton solar cells. 1,2-dichlorobenzene (oDCB) was used as the reference solvent; chlorobenzene (CB) and 1,2,3,4-

  15. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    Science.gov (United States)

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  16. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics

    KAUST Repository

    Beiley, Zach M.

    2013-10-07

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Concrete embedded dye-synthesized photovoltaic solar cell.

    Science.gov (United States)

    Hosseini, T; Flores-Vivian, I; Sobolev, K; Kouklin, N

    2013-09-25

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology.

  18. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    Science.gov (United States)

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.

  19. Photovoltaic solar concentrator

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  20. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells

    Science.gov (United States)

    Hafez, H. S.; Shenouda, S. S.; Fadel, M.

    2018-03-01

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO2 nanoparticles with an average particle size (10-40 nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100 mW.cm- 2. The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R = 15.6-23.8 mA.W- 1 and η = 0.13-0.25) at AM = 1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology.

  1. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells.

    Science.gov (United States)

    Hafez, H S; Shenouda, S S; Fadel, M

    2018-03-05

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO 2 nanoparticles with an average particle size (10-40nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO 2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100mW.cm -2 . The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R=15.6-23.8mA.W -1 and η=0.13-0.25) at AM=1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Performance of Photovoltaic Modules of Different Solar Cells

    Directory of Open Access Journals (Sweden)

    Ankita Gaur

    2013-01-01

    Full Text Available In this paper, an attempt of performance evaluation of semitransparent and opaque photovoltaic (PV modules of different generation solar cells, having the maximum efficiencies reported in the literature at standard test conditions (STC, has been carried out particularly for the months of January and June. The outdoor performance is also evaluated for the commercially available semitransparent and opaque PV modules. Annual electrical energy, capitalized cost, annualized uniform cost (unacost, and cost per unit electrical energy for both types of solar modules, namely, semitransparent and opaque have also been computed along with their characteristics curves. Semitransparent PV modules have shown higher efficiencies compared to the opaque ones. Calculations show that for the PV modules made in laboratory, CdTe exhibits the maximum annual electrical energy generation resulting into minimum cost per unit electrical energy, whereas a-Si/nc-Si possesses the maximum annual electrical energy generation giving minimum cost per unit electrical energy when commercially available solar modules are concerned. CIGS has shown the lowest capitalized cost over all other PV technologies.

  3. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  4. Understanding the Photovoltaic Performance of Perovskite-Spirobifluorene Solar Cells.

    Science.gov (United States)

    Song, Zhen; Liu, Jiang; Wang, Gang; Zuo, Wentao; Liao, Cheng; Mei, Jun

    2017-11-03

    Lead halide perovskite solar cells with remarkable power conversion efficiency have attracted much attention in recent years. However, there still exist many problems with their use that are not completely understood, and further studies are needed. Herein, the hole-transport layer dependence of the photovoltaic performance of perovskite solar cells is investigated in detail. It is found that devices freshly prepared using pristine 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) and Li-doped spiro-OMeTAD as hole-transport layers exhibit S-shaped current density-voltage curves with poor fill factors. The devices show progressively improved fill factors and efficiencies upon exposure to air, which is attributed to air-induced conductivity improvement in the spiro-OMeTAD layer. After introducing a cobalt salt dopant (FK209) into the spiro-OMeTAD layer, the corresponding devices show remarkable performance without the need of air exposure. These results confirm that the dopant not only increases the conductivity of spiro-OMeTAD layer, but also tunes the surface potential, which helps to improve charge transport and reduce the recombination loss. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Silicon nanostructures for third generation photovoltaic solar cells

    International Nuclear Information System (INIS)

    Conibeer, Gavin; Green, Martin; Corkish, Richard; Cho, Young; Cho, Eun-Chel; Jiang, Chu-Wei; Fangsuwannarak, Thipwan; Pink, Edwin; Huang, Yidan; Puzzer, Tom; Trupke, Thorsten; Richards, Bryce; Shalav, Avi; Lin, Kuo-lung

    2006-01-01

    The concept of third generation photovoltaics is to significantly increase device efficiencies whilst still using thin film processes and abundant non-toxic materials. This can be achieved by circumventing the Shockley-Queisser limit for single band gap devices, using multiple energy threshold approaches. At University of NSW, as part of our work on Third Generation devices, we are using the energy confinement of silicon based quantum dot nanostructures to engineer wide band gap materials to be used as upper cell elements in Si based tandem cells. HRTEM data shows Si nanocrystal formation in oxide and nitride matrixes with a controlled nanocrystal size, grown by layered reactive sputtering and layered PECVD. Photoluminescence evidence for quantum confinement in the Si quantum dots in oxide agrees with the calculated increase in PL energy with reduction in dot size. Resistivity measurements with temperature give tentative proof of conduction and we are investigating junction formation in these materials. We are also using similar Si quantum dot structures in double barrier resonant tunneling structures for use in hot carrier solar cell contacts. These must collect carriers over a limited energy range. Negative differential resistance has been observed in room temperature I-V on these samples, a necessary proof of concept for selective energy filter contacts

  6. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication and Characterization of Organic Photovoltaic Cell using Keithley 2400 SMU for efficient solar cell

    Science.gov (United States)

    Hafeez, Hafeez Y.; Iro, Zaharaddeen S.; Adam, Bala I.; Mohammed, J.

    2018-04-01

    An organic solar cell device or organic photovoltaic cell (OPV) is a class of solar cell that uses conductive organic polymers or small organic molecules for light absorption and charge transport. In this study, we fabricate and characterize an organic photovoltaic cell device and estimated important parameters of the device such as Open Circuit Voltage Voc of 0.28V, Short-Circuit Current Isc of 4.0 × 10-5 A, Maximum Power Pmax of 2.4 × 10-6 W, Fill Factor of 0.214 and the energy conversion efficiency of η=0.00239% were tested using Keithley 2400,source meter under A.M 1.5 (1000/m2) illumination from a Newport Class A solar simulator. Also the I-V characteristics for OPV were drawn.

  8. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    Science.gov (United States)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  9. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION

    International Nuclear Information System (INIS)

    BOWERMAN, B.; FTHENAKIS, V.

    2001-01-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified

  10. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  11. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  12. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  13. Interactive Visual Analysis for Organic Photovoltaic Solar Cells

    KAUST Repository

    Abouelhassan, Amal A.

    2017-12-05

    Organic Photovoltaic (OPV) solar cells provide a promising alternative for harnessing solar energy. However, the efficient design of OPV materials that achieve better performance requires support by better-tailored visualization tools than are currently available, which is the goal of this thesis. One promising approach in the OPV field is to control the effective material of the OPV device, which is known as the Bulk-Heterojunction (BHJ) morphology. The BHJ morphology has a complex composition. Current BHJ exploration techniques deal with the morphologies as black boxes with no perception of the photoelectric current in the BHJ morphology. Therefore, this method depends on a trial-and-error approach and does not efficiently characterize complex BHJ morphologies. On the other hand, current state-of-the-art methods for assessing the performance of BHJ morphologies are based on the global quantification of morphological features. Accordingly, scientists in OPV research are still lacking a sufficient understanding of the best material design. To remove these limitations, we propose a new approach for knowledge-assisted visual exploration and analysis in the OPV domain. We develop new techniques for enabling efficient OPV charge transport path analysis. We employ, adapt, and develop techniques from scientific visualization, geometric modeling, clustering, and visual interaction to obtain new designs of visualization tools that are specifically tailored for the needs of OPV scientists. At the molecular scale, the user can use semantic rules to define clusters of atoms with certain geometric properties. At the nanoscale, we propose a novel framework for visual characterization and exploration of local structure-performance correlations. We also propose a new approach for correlating structural features to performance bottlenecks. We employ a visual feedback strategy that allows scientists to make intuitive choices about fabrication parameters. We furthermore propose a

  14. Design and Photovoltaic Properties of Graphene/Silicon Solar Cell

    Science.gov (United States)

    Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren

    2018-04-01

    Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted widespread attention for the fabrication of high-efficiency and low-cost solar cells. However, their performance is still limited by the working principles of Schottky junctions. Modulating the working mechanism of the solar cells into a quasi p-n junction has advantages, including higher open-circuit voltage (V OC) and less carrier recombination. In this study, Gr/Si quasi p-n junction solar cells were formed by inserting a tunneling Al2O3 interlayer in-between graphene and silicon, which led to obtain the PCE up to 8.48% without antireflection or chemical doping techniques. Our findings could pave a new way for the development of Gr/Si solar cells.

  15. Photovoltaic reciprocity and quasi-Fermi level splitting in nanostructure-based solar cells (Conference Presentation)

    Science.gov (United States)

    Aeberhard, Urs

    2017-04-01

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions [1]. So far, the theory has been verified for a wide range of devices and material systems and forms the basis of a growing number of luminesecence imaging techniques used in the characterization of photovoltaic materials, cells and modules [2-5]. However, there are also some examples where the theory fails, such as in the case of amorphous silicon. In our contribution, we critically assess the assumptions made in the derivation of the theory and compare its predictions with rigorous formal relations as well as numerical computations in the framework of a comprehensive quantum-kinetic theory of photovoltaics [6] as applied to ultra-thin absorber architectures [7]. One of the main applications of the photovoltaic reciprocity relation is the determination of quasi-Fermi level splittings (QFLS) in solar cells from the measurement of luminescence. In nanostructure-based photovoltaic architectures, the determination of QFLS is challenging, but instrumental to assess the performance potential of the concepts. Here, we use our quasi-Fermi level-free theory to investigate existence and size of QFLS in quantum well and quantum dot solar cells. [1] Uwe Rau. Reciprocity relation between photovoltaic quantum efficiency and electrolumines- cent emission of solar cells. Phys. Rev. B, 76(8):085303, 2007. [2] Thomas Kirchartz and Uwe Rau. Electroluminescence analysis of high efficiency cu(in,ga)se2 solar cells. J. Appl. Phys., 102(10), 2007. [3] Thomas Kirchartz, Uwe Rau, Martin Hermle, Andreas W. Bett, Anke Helbig, and Jrgen H. Werner. Internal voltages in GaInP-GaInAs-Ge multijunction solar cells determined by electro- luminescence measurements. Appl. Phys. Lett., 92(12), 2008. [4] Thomas Kirchartz, Anke Helbig, Wilfried Reetz, Michael Reuter, Jürgen H. Werner, and

  16. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  17. PV Status Report 2008. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-09-01

    Photovoltaics is a solar power technology to generate electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report is to combine international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact-finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last five years were on average more than 40%, thus making Photovoltaics one of the fastest growing industries at present. Business analysts predict that the market volume will increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  18. PV Status Report 2010. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2010-08-01

    Photovoltaics is a solar power technology to generate Electricity using semiconductor devices, known as solar cells. A number of solar cells form a solar 'Module' or 'Panel', which can then be combined to solar systems, ranging from a few Watts of electricity output to multi Megawatt power stations. The unique format of the Photovoltaic Status Report combines international up-to-date information about Research Activities with Manufacturing and Market Implementation data of Photovoltaics. These data are collected on a regular basis from public and commercial studies and cross-checked with personal communications. Regular fact finding missions with company visits, as well as meetings with officials from funding organisations and policy makers, complete the picture. Growth in the solar Photovoltaic sector has been robust. Yearly growth rates over the last decade were on average more than 40 %, thus making Photovoltaics one of the fastest growing industries at present. The PV Status Report provides comprehensive and relevant information on this dynamic sector for the public interested, as well as decision-makers in policy and industry.

  19. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    Science.gov (United States)

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  20. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    Science.gov (United States)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  1. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    Science.gov (United States)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  2. Low cost silicon-on-ceramic photovoltaic solar cells

    Science.gov (United States)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  3. Simple Photovoltaic Cells for Exploring Solar Energy Concepts

    Science.gov (United States)

    Appleyard, S. J.

    2006-01-01

    Low-efficiency solar cells for educational purposes can be simply made in school or home environments using wet-chemistry techniques and readily available chemicals of generally low toxicity. Instructions are given for making solar cells based on the heterojunctions Cu/Cu[subscript 2]O, Cu[subscript 2]O/ZnO and Cu[subscript 2]S/ZnO, together with…

  4. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  5. Enhanced Photovoltaic Properties of the Solar Cells Based on Cosensitization of CdS and Hydrogenation

    Directory of Open Access Journals (Sweden)

    Hongcai He

    2015-01-01

    Full Text Available The hydrogenated TiO2 porous nanocrystalline film is modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR method to prepare the cosensitized TiO2 solar cells by CdS quantum dots and hydrogenation. The structure and topography of the composite photoanode film were confirmed by X-ray diffraction and scanning electron microscopy. With deposited CdS nanoparticles, UV absorption spectra of H:TiO2 photoanode film indicated a considerably enhanced absorption in the visible region. The cosensitized TiO2 solar cell by CdS quantum dots and hydrogenation presents much better photovoltaic properties than either CdS sensitized TiO2 solar cells or hydrogenated TiO2 solar cells, which displays enhanced photovoltaic performance with power conversion efficiency (η of 1.99% (Jsc=6.26 mA cm−2, Voc=0.65 V, and FF = 0.49 under full one-sun illumination. The reason for the enhanced photovoltaic performance of the novel cosensitized solar cell is primarily explained by studying the Nyquist spectrums, IPCE spectra, dark current, and photovoltaic performances.

  6. Spectrally-engineered solar thermal photovoltaic devices

    Science.gov (United States)

    Lenert, Andrej; Bierman, David; Chan, Walker; Celanovic, Ivan; Soljacic, Marin; Wang, Evelyn N.; Nam, Young Suk; McEnaney, Kenneth; Kraemer, Daniel; Chen, Gang

    2018-03-27

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.

  7. Customized color patterning of photovoltaic cells

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  8. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  9. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  10. The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells

    Science.gov (United States)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.

    2015-09-01

    Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.

  11. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.; Bera, Ashok; Haque, Mohammed; Baby, Rakhi Raghavan; Del Gobbo, Silvano; Alshareef, Husam N.; Wu, Tao

    2015-01-01

    nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely

  12. Metal-organic frameworks at interfaces of hybrid perovskite solar cells for enhanced photovoltaic properties.

    Science.gov (United States)

    Shen, Deli; Pang, Aiying; Li, Yafeng; Dou, Jie; Wei, Mingdeng

    2018-01-31

    In this study, metal-organic frameworks, as an interfacial layer, were introduced into perovskite solar cells (PSCs) for the first time. An interface modified with the metal-organic framework ZIF-8 efficiently enhanced perovskite crystallinity and grain sizes, and the photovoltaic performance of the PSCs was significantly improved, resulting in a maximum PCE of 16.99%.

  13. Organic thin-film solar cells: next generation low-cost photovoltaic ...

    African Journals Online (AJOL)

    The growing concern about our environment and sustainable development focuses attention on renewable energy sources. One of these sources is the direct conversion of sunlight into electricity by means of photovoltaic cells. Solar energy has the potential to fulfil an important part of the sustainable energy demand for ...

  14. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  15. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  16. Enhancement in photovoltaic performance of phthalocyanine-sensitized solar cells by attapulgite nanoparticles

    International Nuclear Information System (INIS)

    Jin Ling; Chen Dajun

    2012-01-01

    Highlights: ► Dye-sensitized solar cells sensitized by zinc octacarboxylic phthalocyanine. ► Attapulgite nanoparticles have been used to suppress phthalocyanine aggregation. ► Adding attapulgite improves the photovoltaic performance of the dye-sensitized solar cells. - Abstract: Attapulgite nanoparticles were used to improve photovoltaic performance of phthalocyanine-sensitized solar cells. The effects of attapulgite on the devices were investigated in details. Adding of attapulgite into TiO 2 electrodes not only reduced the adsorption of zinc octacarboxylic phthalocyanine but also prevented phthalocyanine aggregation effect, which greatly improved photovoltaic performance of the dye-sensitized solar cell. The solar cell with 10 mg attapulgite nanoparticles dispersed in the dye solution exhibited nearly three times larger photoelectric conversion efficiency under simulated AM 1.5 G irradiation (100 mW cm −2 ) when compared to the pure dye, which was further characterized by the electrochemical impedance spectroscopy (EIS). The EIS studies showed that attapulgite decreased the charge-transfer resistances at the TiO 2 /dye/electrolyte interface, which can promote electron transport.

  17. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, Ming; Ji, Xu; Li, Guoliang; Wei, Shengxian; Li, YingFeng; Shi, Feng

    2011-01-01

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances R s changed from 0 Ω to 1 Ω, the maximum power P m of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower

  18. Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells

    Science.gov (United States)

    Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.

    1982-01-01

    The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.

  19. Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing

    International Nuclear Information System (INIS)

    Van Delft, J A; Garcia-Alonso, D; Kessels, W M M

    2012-01-01

    Atomic layer deposition (ALD) is a vapour-phase deposition technique capable of depositing high quality, uniform and conformal thin films at relatively low temperatures. These outstanding properties can be employed to face processing challenges for various types of next-generation solar cells; hence, ALD for photovoltaics (PV) has attracted great interest in academic and industrial research in recent years. In this review, the recent progress of ALD layers applied to various solar cell concepts and their future prospects are discussed. Crystalline silicon (c-Si), copper indium gallium selenide (CIGS) and dye-sensitized solar cells (DSSCs) benefit from the application of ALD surface passivation layers, buffer layers and barrier layers, respectively. ALD films are also excellent moisture permeation barriers that have been successfully used to encapsulate flexible CIGS and organic photovoltaic (OPV) cells. Furthermore, some emerging applications of the ALD method in solar cell research are reviewed. The potential of ALD for solar cells manufacturing is discussed, and the current status of high-throughput ALD equipment development is presented. ALD is on the verge of being introduced in the PV industry and it is expected that it will be part of the standard solar cell manufacturing equipment in the near future. (paper)

  20. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  1. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  2. Optimization of concentrator photovoltaic solar cell performance through photonic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Harris, James [Stanford Univ., CA (United States)

    2018-04-04

    The goal of this program was to incorporate two new and innovative design concepts into the design and production of CPV cells that have near zero added cost, yet significantly increase the operational efficiency of CPV modules. The program focused developing luminescent coupling effects and radiative cooling layers to increase efficiency and suppress CPV module power losses due to spectral variations and heating. The major results of the program were: 1) The optics of three commercial refractive (Fresnel) concentrators were characterized and prevent application of radiative cooling concepts due to strong mid-IR absorption (4-12µm) required to effectively radiate blackbody radiation from the cells and provide cooling. Investigation of alternative materials for the concentrator lenses produced only undesirable options—materials with reasonable mid-IR transmission for cooling only had about 30-40 visible transmission, thus reducing incident sunlight by >50%. While our investigation was somewhat limited, our work suggests that the only viable concentrator system that can incorporate radiative cooling utilizes reflective optics. 2) With limited ability to test high concentration CPV cells (requires outdoor testing), we acquired both semi-crystalline and crystalline Si cells and tested them in our outdoor facility and demonstrated 4°C cooling using a simple silica layer coating on the cells. 3) Characterizing Si cells in the IR associated with radiative cooling, we observed very significant near-IR absorption that increases the cell operating temperature by a similar amount, 4-5°C. By appropriate surface layer design, one can produce a layer that is highly reflective in the near-IR (1.5-4µm) and highly emissive in the mid-IR (5-15µm), thus reducing cell operational temperature by 10°C and increasing efficiency by ~1% absolute. The radiative cooling effect in c-Si solar cells might be further improved by providing a higher thermal conductive elastomer for

  3. Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mohammadnia, Ali

    2014-01-01

    Highlights: • Simulation of an enhanced ICSSWH system combined with PV panel was conducted. • The present model dose not uses any photovoltaic driven water pump. • High packing factor and tank water mass are caused to high PVT system efficiency. • Larger area of the collector is resulted to lower total PVT system efficiency. - Abstract: A photovoltaic–thermal (PVT) module is a combination of a photovoltaic (PV) panel and a thermal collector for co-generation of heat and electricity. An integrated collector-storage solar water heater (ICSSWH) system, due to its simple and compact structure, offers a promising approach for the solar water heating in the varied climates. The combination of the ICSSWH system with a PV solar system has not been reported. In this paper, simulation of an enhanced ICSSWH system combined with the PV panel has been conducted. The proposed design acts passive. Therefore, it does not use any photovoltaic driven water pump to maintain a flow of water inside the collector. The effects of the solar cell packing factor, the tank water mass and the collector area on the performance of the present PVT system have been investigated. The simulation results showed that the high solar cell packing factor and the tank water mass are caused to the high total PVT system efficiency. Also, larger area of the collector is resulted to lower total PVT system efficiency

  4. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    Science.gov (United States)

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  5. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K., E-mail: mathew.munji@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa); Dyk, E.E. van; Vorster, F.J. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 7700 Port Elizabeth 6031 (South Africa)

    2009-12-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V{sub oc}) and short circuit current (I{sub sc}) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  6. Experimental analysis and modeling of the IV characteristics of photovoltaic solar cells under solar spectrum spot illumination

    International Nuclear Information System (INIS)

    Munji, M.K.; Dyk, E.E. van; Vorster, F.J.

    2009-01-01

    In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (V oc ) and short circuit current (I sc ) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.

  7. Enhanced EOS photovoltaic power system capability with InP solar cells

    Science.gov (United States)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  8. Solar-cell interconnect design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-01-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  9. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  10. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  11. See-Through Dye-Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics

    KAUST Repository

    Heiniger, Leo-Philipp

    2013-08-21

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Interfacial charge separation and photovoltaic efficiency in Fe(ii)-carbene sensitized solar cells.

    Science.gov (United States)

    Pastore, Mariachiara; Duchanois, Thibaut; Liu, Li; Monari, Antonio; Assfeld, Xavier; Haacke, Stefan; Gros, Philippe C

    2016-10-12

    The first combined theoretical and photovoltaic characterization of both homoleptic and heteroleptic Fe(ii)-carbene sensitized photoanodes in working dye sensitized solar cells (DSSCs) has been performed. Three new heteroleptic Fe(ii)-NHC dye sensitizers have been synthesized, characterized and tested. Despite an improved interfacial charge separation in comparison to the homoleptic compounds, the heteroleptic complexes did not show boosted photovoltaic performances. The ab initio quantitative analysis of the interfacial electron and hole transfers and the measured photovoltaic data clearly evidenced fast recombination reactions for heteroleptics, even associated with un unfavorable directional electron flow, and hence slower injection rates, in the case of homoleptics. Notably, quantum mechanics calculations revealed that deprotonation of the not anchored carboxylic function in the homoleptic complex can effectively accelerate the electron injection rate and completely suppress the electron recombination to the oxidized dye. This result suggests that introduction of strong electron-donating substituents on the not-anchored carbene ligand in heteroleptic complexes, in such a way of mimicking the electronic effects of the carboxylate functionality, should yield markedly improved interfacial charge generation properties. The present results, providing for the first time a detailed understanding of the interfacial electron transfers and photovoltaic characterization in Fe(ii)-carbene sensitized solar cells, open the way to a rational molecular engineering of efficient iron-based dyes for photoelectrochemical applications.

  13. Exergy analysis of photovoltaic solar collector

    International Nuclear Information System (INIS)

    Sopian, K.; Othman, M.Y.Hj.

    1998-01-01

    The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)

  14. Impurity photovoltaic effect in silicon solar cell doped with sulphur: A numerical simulation

    International Nuclear Information System (INIS)

    Azzouzi, Ghania; Chegaar, Mohamed

    2011-01-01

    The impurity photovoltaic effect (IPV) has mostly been studied in various semiconductors such as silicon, silicon carbide and GaAs in order to increase infrared absorption and hence cell efficiency. In this work, sulphur is used as the IPV effect impurity incorporated in silicon solar cells. For our simulation we use the numerical device simulator (SCAPS). We calculate the solar cell performances (short circuit current density J sc , open circuit voltage V oc , conversion efficiency η and quantum efficiency QE). We study the influence of light trapping and certain impurity parameters like impurity concentration and position in the gap on the solar cell performances. Simulation results for IPV effect on silicon doped with sulphur show an improvement of the short circuit current and the efficiency for sulphur energy levels located far from the middle of the band gap especially at E c -E t =0.18 eV.

  15. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    Science.gov (United States)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  16. Theory of photovoltaic characteristics of semiconductor quantum dot solar cells

    International Nuclear Information System (INIS)

    Wu, Yuchang; Asryan, Levon V.

    2016-01-01

    We develop a comprehensive rate equations model for semiconductor quantum dot solar cells (QDSCs). The model is based on the continuity equations with a proper account for quantum dots (QDs). A general analytical expression for the total current density is obtained, and the current-voltage characteristic is studied for several specific situations. The degradation in the open circuit voltage of the QDSC is shown to be due to strong spontaneous radiative recombination in QDs. Due to small absorption coefficient of the QD ensemble, the improvement in the short circuit current density is negligible if only one QD layer is used. If spontaneous radiative recombination would be suppressed in QDs, a QDSC with multiple QD layers would have significantly higher short circuit current density and power conversion efficiency than its conventional counterpart. The effects of photoexcitation of carriers from discrete-energy states in QDs to continuum-energy states are discussed. An extended model, which includes excited states in QDs, is also introduced.

  17. Theory of photovoltaic characteristics of semiconductor quantum dot solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuchang, E-mail: yuchangw@cumt.edu.cn [Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221116 (China); School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Asryan, Levon V., E-mail: asryan@vt.edu [Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2016-08-28

    We develop a comprehensive rate equations model for semiconductor quantum dot solar cells (QDSCs). The model is based on the continuity equations with a proper account for quantum dots (QDs). A general analytical expression for the total current density is obtained, and the current-voltage characteristic is studied for several specific situations. The degradation in the open circuit voltage of the QDSC is shown to be due to strong spontaneous radiative recombination in QDs. Due to small absorption coefficient of the QD ensemble, the improvement in the short circuit current density is negligible if only one QD layer is used. If spontaneous radiative recombination would be suppressed in QDs, a QDSC with multiple QD layers would have significantly higher short circuit current density and power conversion efficiency than its conventional counterpart. The effects of photoexcitation of carriers from discrete-energy states in QDs to continuum-energy states are discussed. An extended model, which includes excited states in QDs, is also introduced.

  18. Thin Film CIGS Solar Cells, Photovoltaic Modules, and the Problems of Modeling

    Directory of Open Access Journals (Sweden)

    Antonino Parisi

    2013-01-01

    Full Text Available Starting from the results regarding a nonvacuum technique to fabricate CIGS thin films for solar cells by means of single-step electrodeposition, we focus on the methodological problems of modeling at cell structure and photovoltaic module levels. As a matter of fact, electrodeposition is known as a practical alternative to costly vacuum-based technologies for semiconductor processing in the photovoltaic device sector, but it can lead to quite different structural and electrical properties. For this reason, a greater effort is required to ensure that the perspectives of the electrical engineer and the material scientist are given an opportunity for a closer comparison and a common language. Derived parameters from ongoing experiments have been used for simulation with the different approaches, in order to develop a set of tools which can be used to put together modeling both at single cell structure and complete module levels.

  19. Photovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-02-23

    An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By incorporating five layers of InAs quantum dots into a 500-nm high-GaAs nanowire array, the power conversion efficiency enhancement induced by the quantum dots is six times higher than the power conversion efficiency enhancement in thin-film solar cells which contain the same amount of quantum dots, indicating that the nanowire array structure can benefit the photovoltaic performance of quantum dot solar cells.

  20. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    Science.gov (United States)

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Improving photovoltaic performance of silicon solar cells using a combination of plasmonic and luminescent downshifting effects

    Science.gov (United States)

    Ho, Wen-Jeng; Feng, Sheng-Kai; Liu, Jheng-Jie; Yang, Yun-Chie; Ho, Chun-Hung

    2018-05-01

    This paper reports on efforts to improve the photovoltaic performance of crystalline silicon solar cells by combining the plasmonic scattering of silver nanoparticles (Ag NPs) with the luminescent downshifting (LDS) effects of Eu-doped phosphors. The surface morphology was examined using a scanning electron microscope in conjunction with ImageJ software. Raman scattering and absorbance measurements were used to examine the surface plasmon resonance of Ag NPs of various dimensions in various dielectric environments. The fluorescence emission of the Eu-doped phosphors was characterized via photoluminescence measurements at room temperature. We examined the combination of plasmonic and LDS effects by measuring the optical reflectance and external quantum efficiency. Improvements in the photovoltaic performance of the solar cells were determined by photovoltaic current density-voltage under AM 1.5G illumination. A combination of plasmonic and LDS effects led to an impressive 26.17% improvement in efficiency, whereas plasmonic effects resulted in a 22.63% improvement compared to the cell with a SiO2 ARC of 17.33%.

  2. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nadja Rebecca [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Wehrli, Bernhard [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland)

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L{sup −1} molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L{sup −1}. From OPV, copper (14 μg L{sup −1}), zinc (87 μg L{sup −1}) and silver (78 μg L{sup −1}) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. - Highlights: • Photovoltaics may be disposed in the environment after usage. • Copper indium gallium selenide (CIGS) and organic (OPV) cells were compared. • Morphological and molecular effects were assessed in zebrafish embryos. • Environmental condition affected metal leaching and ecotoxicological activity. • Damaged CIGS cells pose higher risk to the environment than OPV cells.

  3. Solar photovoltaic reflective trough collection structure

    Science.gov (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.

    2015-11-19

    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  4. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  5. Investigating absence of optimal photovoltaics response in CZTS solar cell

    Science.gov (United States)

    Kumar, Atul; Thakur, Ajay D.

    2018-05-01

    Cu2ZnSnS4 (CZTS) has an optimal bandgap of 1.5eV. However contrary to expecting an optimal photovoltaic (PV) behavior is usually not seen from using solution processed approach. Here we try to understand the possible key reasons behind this based on the material attributes. The CZTS film is synthesized using two different solvents of Methoxy-ethanol and DMSO. The effect of air annealing and sulphurisation is studied on these two samples for their phase formation mechanism. XRD, TGA, Raman, UV-Vis, AFM and electrical characterization of the films are performed. A diode behavior is obtained in heterojunction of the CZTS/ZnO. Presence of secondary phases and interfacial recombination leads to poor PV behavior without any PV response.

  6. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  7. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-05

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined ~3.0nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as ~2.1eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0wt%, 0.1wt%, 0.5wt%, 1wt% and 2wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced ~20% by incorporating CdSe NCs with 0.1wt% with respect to those without CdSe NCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells

    Science.gov (United States)

    Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap

    2018-04-01

    In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined 3.0 nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as 2.1 eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0 wt%, 0.1 wt%, 0.5 wt%, 1 wt% and 2 wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1 wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced 20% by incorporating CdSe NCs with 0.1 wt% with respect to those without CdSe NCs.

  9. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  10. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    Science.gov (United States)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  11. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.

    2015-06-01

    Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.

  12. Comparative analysis of photovoltaic principles governing dye-sensitized solar cells and p-n junctions

    Science.gov (United States)

    Bisquert, Juan; Garcia-Canadas, Jorge; Mora-Sero, Ivan; Palomares, Emilio

    2004-02-01

    We discuss a generalized model for a solar cell, and the realization with heterogeneous photochemical photovoltaic converters such as the dye-sensitized solar cell. The different steps involved in the conversion of photon energy to electrical energy, indicate that a key point to consider is maintaining the separation of Fermi levels in the selective contacts to the absorber. In order to understand the irreversible processes limiting the efficient operation of the solar cell, it is necessary to obtain a precise description of the internal distribution of Fermi levels. We suggest the equivalent circuit as a central tool for obtaining such description, in relation with small perturbation measurement techniques. The fundamental steps of excitation and charge separation, and the losses by transport and charge transfer, can be represented by suitable circuit elements, and the overall circuit configuration indicates the operation of the selective contacts. The comparison of the equivalent circuits for heterogeneous dye solar cells and solid-state p-n junctions, shows the significant difference in the mechanisms of the selective contacts of these solar cells.

  13. Numerical simulation of the impurity photovoltaic effect in silicon solar cells doped with thallium

    International Nuclear Information System (INIS)

    Zhao Baoxing; Zhou Jicheng; Chen Yongmin

    2010-01-01

    Many attempts have been made to increase the efficiency of solar cells by introducing a deep impurity level in the semiconductor band gap. Since Tl may be the most suitable impurity for crystalline Si solar cells, the impurity photovoltaic (IPV) effect in silicon solar cell doped with thallium as impurity was investigated by the numerical solar cell simulator SCAPS. Results show that the IPV effect of thallium extends the spectral sensitivity in the sub-band gap range from 1000 to about 1400 nm. When the Tl concentration (N t ) is lower than the base doping density (N D ), the short-circuit current density and efficiency increase with increasing N t . But they decrease rapidly as the impurity density exceeds the shallow base doping density (N t >N D ). The optimum Tl concentration is about equal to the base doping density. For the Si solar cells with high internal reflection coefficients, the IPV effect becomes appreciable (ΔJ sc ∼9 mA/cm 2 and Δη∼2%).

  14. Solar radiation on Mars: Stationary photovoltaic array

    Science.gov (United States)

    Appelbaum, J.; Sherman, I.; Landis, G. A.

    1993-01-01

    Solar energy is likely to be an important power source for surface-based operation on Mars. Photovoltaic cells offer many advantages. In this article we have presented analytical expressions and solar radiation data for stationary flat surfaces (horizontal and inclined) as a function of latitude, season and atmospheric dust load (optical depth). The diffuse component of the solar radiation on Mars can be significant, thus greatly affecting the optimal inclination angle of the photovoltaic surface.

  15. Photovoltaic solar energy: State of the art

    International Nuclear Information System (INIS)

    Van Sark, W.G.J.H.M.; Sinke, W.C.

    1993-03-01

    Attention is paid to developments in the Netherlands of all aspects of photovoltaic (PV) energy: solar cells, components, PV-systems and all kinds of applications. Efficiencies of the present solar cell types still increase, varying from more than 10% for organic/TiO 2 solar cells to 33% for GaAs/GaSb concentrator tandem solar cells. 3 figs., 2 ills., 1 tab

  16. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    Science.gov (United States)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  17. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    Science.gov (United States)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  18. A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    N-cetylpyridinium iodide (N-CPI) as a new electric additive for enhancing photovoltaic performance of the dye-sensitized solar cell (DSSC) was studied.It showed high efficiency for enhancing both the open-circuit voltage and the short-circuit current density of DSSC when the suitable amount of N-CPI as 0.02 M was added in liquid electrolyte.The energy conversion effi- ciency of DSSC increased from 4.429% to 6.535%,with 47.55% enhancement.Therefore,it is a highly efficient electric addi- tive for DSSC.The intrinsic reason is owing to the special molecular structure of N-CPI,which contains two different polarity groups.As a surfactant,N-CPI could form ordered arrangement in liquid electrolyte,which affects the diffusing ability and the redox reaction of I-/I3-,and further affects the photovoltaic performance of DSSC.

  19. The micro-optic photovoltaic behavior of solar cell along with microlens curved glass substrate

    International Nuclear Information System (INIS)

    Xie, Jin; Wu, Keke; Cheng, Jian; Li, Ping; Zheng, Jiahua

    2015-01-01

    Highlights: • A microlens array may be micro-ground on curved photovoltaic glass substrate. • Its micro-optical structure absorbs and scatters the inclined light to solar cell. • It increases conversion efficiency and fill factor in weak and inclined lights. • It improves electricity generation by about 4 times in scattered cloudy daylight. • It produces stronger electricity generation in cloudy day than in sunny day. - Abstract: A hybrid of microlens structure and curved surface may produce high value-added micro-optic performance. Hence, the microlens array is proposed on macro curved glass substrate of thin film solar cell. The objective is to understand how the micro-optic behavior of microlens curved array influences indoor power conversion efficiency and outdoor electricity generation. First, the absorptivities of visible light and infrared light were analyzed in connection with the curved microlens sizes; then the microlens curved glass substrate was fabricated by a Computer Numerical Control (CNC) micro-grinding with micro diamond wheel V-tip; finally, its photovoltaic properties and electricity generation were measured, respectively. It is shown that the microlens curved surface may strongly absorb and scatter light to solar cell. It increases the absorptivity of visible light against plane surface, but it decreases the one of infrared light against microlens surface. When it is applied to solar cell, it enhances the power conversion efficiency by 3.4–10.6% under oblique illumination. When it is applied to solar device, it increases the electricity generation of daylight by 119–106% against microlens surface and by 260–419% against traditional plane surface, respectively. The surprising finding is that it produces much larger electricity generation during cloudy day than during sunny day, but traditional plane surface does not so

  20. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    Science.gov (United States)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  1. Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency

    International Nuclear Information System (INIS)

    Cocoyer, C.; Rocha, L.; Fiorini-Debuisschert, C.; Sicot, L.; Vaufrey, D.; Sentein, C.; Geffroy, B.; Raimond, P.

    2006-01-01

    The weak absorption of the photoactive layer appears as a one of the main factors limiting organic photovoltaic solar cells performances. In order to increase the interaction of the incident light with the photoactive materials, we investigate the effect of a periodic patterning of the solar cells surface with microstructures in the optical wavelength scale. In this aim, we present an original all optical patterning technique of polymer films. The method is based on a laser controlled mass transport in azopolymer films leading to efficient deformation of the film surface in conjunction with the incoming light interference pattern. The technique is used to pattern one-dimensional gratings on the surface of solar cells. In the work presented here, the cell photoactive material is based on the interpenetrated network of a conjugated donor polymer and a fullerene derivative. The cells investigated are illuminated in a reverse configuration through a semi-transparent top cathode. The effect of the periodic structures onto the incident light propagation has been investigated through optical characterizations. We demonstrate that a part of the incident light can be trapped inside the solar cell layers due to diffraction onto the periodic structures

  2. Investigating the Effect of Thermal Annealing Process on the Photovoltaic Performance of the Graphene-Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    Lifei Yang

    2015-01-01

    Full Text Available Graphene-silicon (Gr-Si Schottky solar cell has attracted much attention recently as promising candidate for low-cost photovoltaic application. For the fabrication of Gr-Si solar cell, the Gr film is usually transferred onto the Si substrate by wet transfer process. However, the impurities induced by this process at the graphene/silicon (Gr/Si interface, such as H2O and O2, degrade the photovoltaic performance of the Gr-Si solar cell. We found that the thermal annealing process can effectively improve the photovoltaic performance of the Gr-Si solar cell by removing these impurities at the Gr/Si interface. More interestingly, the photovoltaic performance of the Gr-Si solar cell can be improved, furthermore, when exposed to air environment after the thermal annealing process. Through investigating the characteristics of the Gr-Si solar cell and the properties of the Gr film (carrier density and sheet resistance, we point out that this phenomenon is caused by the natural doping effect of the Gr film.

  3. Photovoltaic Performance of ZnO Nanosheets Solar Cell Sensitized with Beta-Substituted Porphyrin

    Directory of Open Access Journals (Sweden)

    Arumugam Mahesh

    2011-01-01

    Full Text Available The photoanode of dye-sensitized solar cell (DSSC was fabricated using two-dimensional ZnO nanosheets (2D ZnO NSs sensitized with beta-substituted porphyrins photosensitizer, and its photovoltaic performance in solid-state DSSC with TiO2 nanotubes (TiO2 TNs modified poly (ethylene oxide (PEO polymer electrolyte was studied. The ZnO NSs were synthesized through hydrothermal method and were characterized through high-resolution scanning electron microscopy (HRSEM, diffused reflectance spectra (DRS, photoluminescence spectra (PL, and X-ray diffraction (XRD analysis. The crystallinity of the polymer electrolytes was investigated using X-ray diffraction analysis. The photovoltaic performance of the beta-substituted porphyrins sensitized solar cells was evaluated under standard AM1.5G simulated illumination (100 mW cm−2. The efficiency of energy conversion from solar to electrical due to 2D ZnO NSs based DSSCs is 0.13%, which is about 1.6 times higher than that of the control DSSC using ZnO nanoparticles (ZnO NPs as photoanode (0.08%, when TiO2 NTs fillers modified PEO electrolyte was incorporated in the DSSCs. The current-voltage (- and photocurrent-time (- curves proved stable with effective collection of electrons, when the 2D ZnO nanostructured photoanode was introduced in the solid-state DSSC.

  4. Advances in thin-film solar cells for lightweight space photovoltaic power

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  5. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  6. a new analytical modeling method for photovoltaic solar cells based

    African Journals Online (AJOL)

    Zieba Falama R, Dadjé A, Djongyang N and Doka S.Y

    CELLS BASED ON DERIVATIVE POWER FUNCTION ... Received: 25 Jaunary 2016 / Accepted: 25 April 2016 / Published online: 01 May 2016 ..... For the simulation, two electric PV modules for different technologies were used; these.

  7. Photovoltaic Performance of Inverted Polymer Solar Cells Using Hybrid Carbon Quantum Dots and Absorption Polymer Materials

    Science.gov (United States)

    Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick

    2018-05-01

    We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.

  8. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    International Nuclear Information System (INIS)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin; Chen, Zhijian

    2015-01-01

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading

  9. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi; Fujimoto, Kazuya; Suzuki, Atsushi; Balachandran, Jeyadevan; Oku, Takeo, E-mail: oku@mat.usp.ac.jp [Department of Materials Science, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  10. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Xiao, Lixin, E-mail: zjchen@pku.edu.cn, E-mail: lxxiao@pku.edu.cn; Chen, Zhijian, E-mail: zjchen@pku.edu.cn, E-mail: lxxiao@pku.edu.cn [State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Haixi Collaborative Innovation Center for New Display Devices and Systems Integration, Fuzhou University, Fuzhou 350002 (China)

    2015-05-15

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  11. A comparison of solar photovoltaics and molten carbonate fuel cells as commercial power plants

    International Nuclear Information System (INIS)

    Wee, Jung-Ho; Roh, Jae Hyung; Kim, Jeongin

    2011-01-01

    In line with the worldwide trend, Korea has recognized the importance of renewable energy and extensively supported its exploitation. As of August 2009, the largest incentives for renewable energy are offered to solar photovoltaic (PV) systems, which have vastly increased the installations of this system. On the basis of total paid incentives, the second largest beneficiary is the fuel cell (FC) system. This support has contributed to the successful commercialization of the molten carbonate FC (MCFC) as a distributed generation system (DG). Considering the status of energy systems in Korea, solar PV and MCFC systems are likely to be further developed in the country. The present paper analyzes the exploitation of these two energy systems by conducting a feasibility study and a technology assessment in the Korea environment based on many assumptions, conditions and data involved. The feasibility study demonstrates the positive economic gains of the solar PV and MCFC power plants. The unit electricity generation cost of solar PV is twice that of an MCFC system. In addition, the study reveals the slightly greater profitability of the MCFC. Exact estimation of their future economies is impossible because of uncertainties in many future conditions and environments. Nevertheless, the development of solar cells with higher efficiency is undoubtedly the most critical factor in increasing future profits. On the other hand, reductions in the operation and maintenance (O and M) costs and the natural gas (NG) price are the most important issues in raising the viability of the MCFC system. (author)

  12. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  13. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Liwen, E-mail: SANG.Liwen@nims.go.jp [International Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-PRESTO, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Liao, Meiyong; Koide, Yasuo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sumiya, Masatomo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-ALCA, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan)

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  14. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Science.gov (United States)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  15. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    Science.gov (United States)

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  16. PV status report 2004. Research, Solar cell production and market implementation of photovoltaic s

    International Nuclear Information System (INIS)

    Jager-Waldau, A.

    2004-01-01

    The increasing demand for photovoltaic devices leads to the search for new developments with respect to material use and consumption, device design and production technologies, as well as new concepts to increase the overall efficiency. At present solar cell manufacturing is based on single junction device silicon wafer technology with close to 90% market share. Consistent with the time needed for any major change in the energy infrastructure, another 20 to 30 years of sustained and aggressive growth will be required for photovoltaic to substitute a significant share of the conventional energy sources. This growth will be possible if a continuous introduction of new technologies takes place, made possible by sound fundamental research. In October 2004 the Russian Duma ratified the Kyoto Protocol and it can be expected that the Protocol will now be set into force by the beginning of 2005. This recent development will definitively have an impact on the further implementation of renewable energies and photovoltaic is a prime source to deliver it. The Third Edition of the PV Status Report will widen its view to the enlarged European Union as well as the new player China and tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation. The opinion given in this report is based on the current information available to the author, and does not reflect the opinion of the European Commission. (author)

  17. The Influence of Substituent Orientation on the Photovoltaic Performance of Phthalocyanine-Sensitized Solar Cells.

    Science.gov (United States)

    Tejerina, Lara; Martínez-Díaz, M Victoria; Nazeeruddin, Mohammad Khaja; Torres, Tomas

    2016-03-18

    Phthalocyanines (Pcs) are used as sensitizers in dye-sensitized solar cells (DSSCs) because of their stability and intense absorption in the red and near-IR regions. Impressive progress has been made in photovoltaic efficiencies by introduction of bulky peripheral substituents to help suppress macrocycle aggregation. To reach benchmark efficiencies reported for other related dyes, new designs need to be explored. Single carboxy-ZnPc regioisomers substituted at the non-peripheral positions by rigid aryl groups have now been studied, which has shed light on the influence of steric hindrance and/or orientation of the substituent around the anchoring group on the photovoltaic response. The regioisomer bearing the aryl group far away from the anchoring group produces a more effective sensitization of the TiO2 films and higher short-circuit photocurrent density (Jsc). Taking advantage of the good photovoltaic performance in the near-IR region of this ZnPc, it was combined with another appropriate dye for panchromatic sensitization of the mesoporous photoelectrode and an increase of the overall device efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solar energy – new photovoltaic technologies

    DEFF Research Database (Denmark)

    Sommer-Larsen, Peter

    2009-01-01

    Solar energy technologies directly convert sunlight into electricity and heat, or power chemical reactions that convert simple molecules into synthetic chemicals and fuels. The sun is by far the most abundant source of energy, and a sustainable society will need to rely on solar energy as one...... of its major energy sources. Solar energy is a focus point in many strategies for a sustainable energy supply. The European Commission’s Strategic Energy Plan (SET-plan) envisages a Solar Europe Initiative, where photovoltaics and concentrated solar power (CSP) supply as much power as wind mills...... in the future. Much focus is directed towards photovoltaics presently. Installation of solar cell occurs at an unprecedented pace and the expectations of the photovoltaics industry are high: a total PV capacity of 40 GW by 2012 as reported by a recent study. The talk progresses from general solar energy topics...

  19. Organic solar cell modules for specific applications-From energy autonomous systems to large area photovoltaics

    International Nuclear Information System (INIS)

    Niggemann, M.; Zimmermann, B.; Haschke, J.; Glatthaar, M.; Gombert, A.

    2008-01-01

    We report on the development of two types of organic solar cell modules one for energy autonomous systems and one for large area energy harvesting. The first requires a specific tailoring of the solar cell geometry and cell interconnection in order to power an energy autonomous system under its specific operating conditions. We present an organic solar cell module with 22 interconnected solar cells. A power conversion efficiency of 2% under solar illumination has been reached on the active area of 46.2 cm 2 . A voltage of 4 V at the maximum power point has been obtained under indoor illumination conditions. Micro contact printing of a self assembling monolayer was employed for the patterning of the polymer anode. Large area photovoltaic modules have to meet the requirements on efficiency, lifetime and costs simultaneously. To minimize the production costs, a suitable concept for efficient reel-to-reel production of large area modules is needed. A major contribution to reduce the costs is the substitution of the commonly used indium tin oxide electrode by a cheap material. We present the state of the art of the anode wrap through concept as a reel-to-reel suited module concept and show comparative calculations of the module interconnection of the wrap through concept and the standard ITO-based cell architecture. As a result, the calculated overall module efficiency of the anode wrap through module exceeds the overall efficiency of modules based on ITO on glass (sheet resistance 15 Ω/square) and on foils (sheet resistance 60 Ω/square)

  20. Solar spectrum conversion for photovoltaics using nanoparticles

    OpenAIRE

    Sark, W.G.J.H.M. van; Meijerink, A.; Schropp, R.E.I.

    2012-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Conventional single-junction semiconductor solar cells only effectively convert photons of energy close to the semiconductor band gap (Eg) as a result of the mismatch between the incident solar spectrum and the spectral absorption properties...

  1. Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE

    Science.gov (United States)

    Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.

  2. Photovoltaic performance of textured silicon solar cells with MAPbBr3 perovskite nanophosphors to induce luminescent down-shifting

    Science.gov (United States)

    Ho, Wen-Jeng; Li, Guan-Yi; Liu, Jheng-Jie; Lin, Zong-Xian; You, Bang-Jin; Ho, Chun-Hung

    2018-04-01

    This study employed a two-step multi-cycle spin-coating method for the application of MAPbBr3 perovskite nanophosphors on textured silicon solar cells with the aim of enhancing photovoltaic performance through luminescent down-shifting (LDS). The surface morphology and dimensions of the MAPbBr3 perovskite nanophosphors were examined using scanning electron microscopy in conjunction with ImageJ software. The LDS effects of the nanophosphors were revealed by measuring photo-luminance, optical reflectance, and external quantum efficiency. The photovoltaic performance of cells with and without MAPbBr3 perovskite nanophosphors was evaluated according to photovoltaic current density-voltage (J-V) under AM 1.5 G solar illumination. Compared to uncoated cells, two-layer and one-layer coatings of MAPbBr3 perovskite nanophosphors were shown to enhance conversion efficiency by 4.56% and 3.38%, respectively.

  3. Local device parameter extraction of a concentrator photovoltaic cell under solar spot illumination

    Energy Technology Data Exchange (ETDEWEB)

    Munji, M.K.; Okullo, W.; van Dyk, E.E.; Vorster, F.J. [Physics Department, Nelson Mandela Metropolitan University, P O Box 77000, Port Elizabeth 6031 (South Africa)

    2010-12-15

    Focused sunlight can act as a localized source of excess minority carriers in a solar cell. Current signal generated by these carriers gives considerable information about the electrical properties of the cell's material. Point by point current-voltage data were measured for a back point-contact concentrator photovoltaic cell when illuminated by focused sunlight. Two numerical curve fitting procedures: a non-linear two-point interval division and particle swarm optimization algorithm were then applied to extract local parameters (i.e. as function of position) from the current-voltage data at each measurement point. Extracted parameters plotted yields relative spatial information about the electrical properties of a solar cell in a two or three dimensional mapping. The curve fitting routines applied to current-voltage data reveal that performance parameters: short circuit current, open circuit voltage, maximum power and fill factor show distinct variations in the vicinity of the observed current reducing feature. The relative values of the diode ideality factors, series resistance, shunt resistance and reverse saturation currents from both methods showed no significant measurable features that could be distinguished. This shows that the observed reduction in photo-induced current was due to severe recombination in the bulk or around the highly diffused point contacts and not the quality of the multiple p-n junctions of the cell. These approaches allow one to obtain a set of parameters at each local point on the cell which are reasonable and representative of the physical system. (author)

  4. Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells.

    Science.gov (United States)

    Di, Dawei; Perez-Wurfl, Ivan; Gentle, Angus; Kim, Dong-Ho; Hao, Xiaojing; Shi, Lei; Conibeer, Gavin; Green, Martin A

    2010-08-01

    As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO(2)) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H(3)PO(4)) etching, nitrogen (N(2)) gas anneal and forming gas (Ar: H(2)) anneal on the cells' electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I-V, light I-V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement.

  5. Temperature and color management of silicon solar cells for building integrated photovoltaic

    Science.gov (United States)

    Amara, Mohamed; Mandorlo, Fabien; Couderc, Romain; Gerenton, Félix; Lemiti, Mustapha

    2018-01-01

    Color management of integrated photovoltaics must meet two criteria of performance: provide maximum conversion efficiency and allow getting the chosen colors with an appropriate brightness, more particularly when using side by side solar cells of different colors. As the cooling conditions are not necessarily optimal, we need to take into account the influence of the heat transfer and temperature. In this article, we focus on the color space and brightness achieved by varying the antireflective properties of flat silicon solar cells. We demonstrate that taking into account the thermal effects allows freely choosing the color and adapting the brightness with a small impact on the conversion efficiency, except for dark blue solar cells. This behavior is especially true when heat exchange by convection is low. Our optical simulations show that the perceived color, for single layer ARC, is not varying with the position of the observer, whatever the chosen color. The use of a double layer ARC adds flexibility to tune the wanted color since the color space is greatly increased in the green and yellow directions. Last, choosing the accurate material allows both bright colors and high conversion efficiency at the same time.

  6. RANdom SAmple Consensus (RANSAC) algorithm for material-informatics: application to photovoltaic solar cells.

    Science.gov (United States)

    Kaspi, Omer; Yosipof, Abraham; Senderowitz, Hanoch

    2017-06-06

    An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. RANSAC could be used as a "one stop shop" algorithm for developing and validating QSAR models, performing outlier removal, descriptors selection, model development and predictions for test set samples using applicability domain. For "future" predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties and lead to good predictive statistics for these properties. These models were subsequently used to predict the properties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.

  7. Temperature and color management of silicon solar cells for building integrated photovoltaic

    Directory of Open Access Journals (Sweden)

    Amara Mohamed

    2018-01-01

    Full Text Available Color management of integrated photovoltaics must meet two criteria of performance: provide maximum conversion efficiency and allow getting the chosen colors with an appropriate brightness, more particularly when using side by side solar cells of different colors. As the cooling conditions are not necessarily optimal, we need to take into account the influence of the heat transfer and temperature. In this article, we focus on the color space and brightness achieved by varying the antireflective properties of flat silicon solar cells. We demonstrate that taking into account the thermal effects allows freely choosing the color and adapting the brightness with a small impact on the conversion efficiency, except for dark blue solar cells. This behavior is especially true when heat exchange by convection is low. Our optical simulations show that the perceived color, for single layer ARC, is not varying with the position of the observer, whatever the chosen color. The use of a double layer ARC adds flexibility to tune the wanted color since the color space is greatly increased in the green and yellow directions. Last, choosing the accurate material allows both bright colors and high conversion efficiency at the same time.

  8. Luminescent solar concentrators with a bottom-mounted photovoltaic cell: performance optimization and power gain analysis

    Institute of Scientific and Technical Information of China (English)

    Ningning Zhang; Yi Zhang; Jun Bao; Feng Zhang; Sen Yan; Song Sun; Chen Gao

    2017-01-01

    Polymethyl methacrylate (PMMA) plate luminescent solar concentrators with a bottom-mounted (BM-LSCs) photovoltaic (PV) cell are fabricated by using a mixture of Lumogen Red 305 and Yellow 083 fluorescent dyes and a commercial monocrystalline silicon cell.The fabricated LSC with dye concentrations of 40 ppm has the highest power gain of 1.50,which is the highest value reported for the dye-doped PMMA plate LSCs.The power gain of the LSC comes from three parts:the waveguide light,the transmitted light,and the reflected light from a white reflector,and their contributions are analyzed quantitatively.The results suggest that the BM-LSCs have great potential for future low-cost PV devices in building integrated PV applications.

  9. Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure.

    Science.gov (United States)

    Su, Pengyu; Fu, Wuyou; Yao, Huizhen; Liu, Li; Ding, Dong; Feng, Fei; Feng, Shuang; Xue, Yebin; Liu, Xizhe; Yang, Haibin

    2017-10-01

    In this paper, we fabricated a TiO 2 homogeneous hybrid structure for application in perovskite solar cells (PSCs) under ambient conditions. Under the standard air mass 1.5 global (AM 1.5G) illumination, PSCs based on homogeneous hybrid structure present a maximum power conversion efficiency of 5.39% which is higher than that of pure TiO 2 nanosheets. The enhanced properties can be explained by the better contact of TiO 2 nanosheets/nanoparticles with CH 3 NH 3 PbI 3 and fewer pinholes in electron transport materials. The advent of such unique structure opens up new avenues for the future development of high-efficiency photovoltaic cells.

  10. Chapter 1: Reliably Measuring the Performance of Emerging Photovoltaic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rumbles, Garry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reese, Matthew O [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Marshall, Ashley [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-08

    Determining the power conversion efficiency of photovoltaic solar cells, especially those from new, emerging areas of technology, is important if advances in performance are to be made. However, although precise measurements are important, it is the accuracy of these types of measurements that can cause issues. Accurate measurements not only promote the development of new technology platforms, but they also enable comparisons with established technologies and allow assessments of advancements within the same field. This chapter provides insights into how measurements can be made with reasonable accuracy using both the components of the measuring system and a good protocol to acquire good data. The chapter discusses how to measure a calibrated lamp spectrum, determine a spectral mismatch factor, identify the correct reference cell and filter, define the illuminated active area, measure J-V curves to avoid any hysteresis effects, take note of sample degradation issues and avoid the temptation to artificially enhance efficiency data.

  11. Distribution of absorbed heat in luminescent solar concentrator lightguides and effect of temperatures of mounted photovoltaic cells

    NARCIS (Netherlands)

    Rajkumar, V.A.; Weijers, C.; Debije, M.G.

    2015-01-01

    Polymer plates containing fluorescent dyes with photovoltaic cells attached to one or more edges have the potential to be used for solar light collection in the built environment. The heating of the polymer plates and the resulting effects this may have on the operating temperatures of the attached

  12. Solar energy photovoltaic technology: proficiency and performance

    International Nuclear Information System (INIS)

    2006-01-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  13. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    Science.gov (United States)

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  14. Effect of electrode geometry on photovoltaic performance of polymer solar cells

    International Nuclear Information System (INIS)

    Li, Meng; Ma, Heng; Liu, Hairui; Wu, Dongge; Niu, Heying; Cai, Wenjun

    2014-01-01

    This paper investigates the impact of electrode geometry on the performance of polymer solar cells (PSCs). The negative electrodes with equal area (0.09 cm 2 ) but different shape (round, oval, square and triangular) are evaluated with respect to short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency of PSCs. The results show that the device with round electrodes gives the best photovoltaic performance; in contrast, the device with triangular electrodes reveals the worst properties. A maximum of almost a 19% increase in power conversion efficiency with a round electrode is obtained in the devices compared with that of the triangular electrode. To conclude, the electrode boundary curvature has a significant impact on the performance of PSCs. The larger curvature, i.e. sharper electrodes edges, perhaps has a negative effect on exciton separation and carrier transport in photoelectric conversion processes. (paper)

  15. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    International Nuclear Information System (INIS)

    Huang Qi-Zhang; Zhu Yan-Qing; Shi Ji-Fu; Wang Lei-Lei; Zhong Liu-Wen; Xu Gang

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition. (paper)

  16. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    Institute of Scientific and Technical Information of China (English)

    Qi-Zhang Huang; Yan-Qing Zhu; Ji-Fu Shi; Lei-Lei Wang; Liu-Wen Zhong; Gang Xu

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module.The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%.Additionally,with the 3D-printed microfluidic device serving as water cooling,the temperature of the DSC can be effectively controlled,which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module.Moreover,the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%.The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.

  17. Terawatt solar photovoltaics roadblocks and opportunities

    CERN Document Server

    Tao, Meng

    2014-01-01

    Solar energy will undoubtedly become a main source of energy in our life by the end of this century, but how big of a role will photovoltaics play in this new energy infrastructure Besides cost and efficiency, there are other barriers for current solar cell technologies to become a noticeable source of energy in the future. Availability of raw materials, energy input, storage of solar electricity, and recycling of dead modules can all prevent or hinder a tangible impact by solar photovoltaics. This book is intended for readers with minimal technical background and aims to explore not only the fundamentals but also major issues in large-scale deployment of solar photovoltaics. Thought-provoking ideas to overcoming some of the barriers are discussed.

  18. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material.

    Science.gov (United States)

    Todorov, Teodor K; Singh, Saurabh; Bishop, Douglas M; Gunawan, Oki; Lee, Yun Seog; Gershon, Talia S; Brew, Kevin W; Antunez, Priscilla D; Haight, Richard

    2017-09-25

    Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.

  19. The solar photovoltaic

    International Nuclear Information System (INIS)

    2016-02-01

    This publication first outlines challenges and stakes related to the development of renewable energies, and more particularly of photovoltaic solar energy in France and in the World. Principles and applications (connected and autonomous systems) are briefly presented. Some key data regarding installed capacity and its evolution in France and in other countries are briefly commented. The knowledge status of this technology is discussed in terms of strengths (environmental and energetic benefits, modularity, fast decreasing costs, integration into building envelope, local investment and consumer commitment, an added value and job generating sector), and weaknesses (fluctuating production and impact on the supply-demand balance, local impact on the distribution grid, land use, cautions, a sector with some environmental impact, evolutions of the support arrangement in France). Actions undertaken by the ADEME in different areas (support to research and innovation, installation quality, promotion of technologies with less environmental impacts) are reviewed

  20. Photovoltaic and impedance characteristics of modified SILAR grown CdS quantum dot sensitized solar cell

    International Nuclear Information System (INIS)

    Fatehmulla, Amanullah; Farooq, W. A.; Aslam, M.; Atif, M.; Ali, S.M.; Al-Dhafir, A. M.; Yakuphanoglu, F.; Yahia, I.S.

    2014-01-01

    Cadmium Sulphide (CdS) quantum dots (QDs) were deposited on nanostructured TiO 2 film using a modified Successive Ionic Layer Adsorption and Reaction (SILAR) method. Nanostructured TiO 2 on FTO glass and Platinum on FTO are used as photoelectrode and Counter electrode respectively. High resolution Transmission Electron Microscopy (HRT EM) image revealed CdS QDs adsorbed on nanostructured TiO 2 . The photovoltaic characteristics and impedance spectroscopy properties of CdS quantum dot sensitized solar cell (QDSSC) were analyzed under air mass 1.5 illuminations. At the SILAR adsorption time of 2 min (10 cycles), the QDSSC measured a short circuit current density of 2 mA/cm 2 and an open circuit voltage of 0.45 V under air mass 1.5. In a widespread frequency range, the capacitance – voltage, the conductance – voltage, the series resistance - voltage measurements were carried out for the QDSSC applications. A conduct of positive to negative capacitance was observed from the measured characteristics of capacitance - voltage which is attributed to the injection of electrons from FTO electrode into TiO 2 . Key words: Nanostructured TiO 2 , CdS QDSSC, SILAR method, photovoltaic measurements, impedance characteristic

  1. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    Science.gov (United States)

    Zhang, Xianghua; Korolkov, Ilia; Fan, Bo; Cathelinaud, Michel; Ma, Hongli; Adam, Jean-Luc; Merdrignac, Odile; Calvez, Laurent; Lhermite, Hervé; Brizoual, Laurent Le; Pasquinelli, Marcel; Simon, Jean-Jacques

    2018-03-01

    In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2-Sb2Se3-CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  2. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    Directory of Open Access Journals (Sweden)

    Zhang Xianghua

    2018-01-01

    Full Text Available In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2–Sb2Se3–CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  3. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    Science.gov (United States)

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  4. Investigating the role of graphene in the photovoltaic performance improvement of dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Brijesh, E-mail: brijesh.tripathi@sse.pdpu.ac.in [School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); Yadav, Pankaj; Pandey, Kavita; Kanade, Pooja [School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India); Kumar, Manjeet [Department of Materials Engineering, Defence Institute of Advanced Technology, Pune 411025 (India); Kumar, Manoj, E-mail: manoj.kumar@sse.pdpu.ac.in [School of Technology, Pandit Deendayal Petroleum University, Gandhinagar 382007 (India)

    2014-12-15

    Highlights: • Graphene catalytic activity in dye-sensitized solar cell is evaluated. • Two-diode model is used for performance evaluation. • Optical performance of graphene is analyzed. • 36% increase in efficiency has been reported using graphene-coupled counter electrode. - Abstract: This article compares and describes the photovoltaic performance of dye-sensitized solar cell (DSSC) consisting of platinum (Pt) and graphene-coupled-platinum based counter electrodes (CE). The power conversion efficiency of DSSC could be enhanced by 36% with multi-layer graphene flakes (MGF)/Pt CE as compared to Pt CE. Electrochemical impedance spectroscopy and cyclic voltammetry analysis show that DSSC with an MGF/Pt CE exhibits a higher electro-catalytic activity with lower series resistance. Two-diode model has been used to extract the recombination governing and the performance indicating parameters of a DSSC. An enhancement of ≈76% in short-circuit current of MGF/CE based DSSC, as compared to Pt CE, could be attributed to optical and catalytic properties of graphene. This study provides an insight into electronic transport mechanism of DSSC, which changes under the influence of highly catalytic materials such as graphene.

  5. Investigating the role of graphene in the photovoltaic performance improvement of dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Tripathi, Brijesh; Yadav, Pankaj; Pandey, Kavita; Kanade, Pooja; Kumar, Manjeet; Kumar, Manoj

    2014-01-01

    Highlights: • Graphene catalytic activity in dye-sensitized solar cell is evaluated. • Two-diode model is used for performance evaluation. • Optical performance of graphene is analyzed. • 36% increase in efficiency has been reported using graphene-coupled counter electrode. - Abstract: This article compares and describes the photovoltaic performance of dye-sensitized solar cell (DSSC) consisting of platinum (Pt) and graphene-coupled-platinum based counter electrodes (CE). The power conversion efficiency of DSSC could be enhanced by 36% with multi-layer graphene flakes (MGF)/Pt CE as compared to Pt CE. Electrochemical impedance spectroscopy and cyclic voltammetry analysis show that DSSC with an MGF/Pt CE exhibits a higher electro-catalytic activity with lower series resistance. Two-diode model has been used to extract the recombination governing and the performance indicating parameters of a DSSC. An enhancement of ≈76% in short-circuit current of MGF/CE based DSSC, as compared to Pt CE, could be attributed to optical and catalytic properties of graphene. This study provides an insight into electronic transport mechanism of DSSC, which changes under the influence of highly catalytic materials such as graphene

  6. InGaP-based quantum well solar cells: Growth, structural design, and photovoltaic properties

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, Islam E.; Zachary Carlin, C.; Hagar, Brandon G.; Colter, Peter C.; Bedair, S. M., E-mail: bedair@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-03-07

    Raising the efficiency ceiling of multi-junction solar cells (MJSCs) through the use of more optimal band gap configurations of next-generation MJSC is crucial for concentrator and space systems. Towards this goal, we propose two strain balanced multiple quantum well (SBMQW) structures to tune the bandgap of InGaP-based solar cells. These structures are based on In{sub x}Ga{sub 1−x}As{sub 1−z}P{sub z}/In{sub y}Ga{sub 1−y}P (x > y) and In{sub x}Ga{sub 1−x}P/In{sub y}Ga{sub 1−y}P (x > y) well/barrier combinations, lattice matched to GaAs in a p-i-n solar cell device. The bandgap of In{sub x}Ga{sub 1−x}As{sub 1−z}P{sub z}/In{sub y}Ga{sub 1−y}P can be tuned from 1.82 to 1.65 eV by adjusting the well composition and thickness, which promotes its use as an efficient subcell for next generation five and six junction photovoltaic devices. The thicknesses of wells and barriers are adjusted using a zero net stress balance model to prevent the formation of defects. Thin layers of InGaAsP wells have been grown thermodynamically stable with compositions within the miscibility gap for the bulk alloy. The growth conditions of the two SBMQWs and the individual layers are reported. The structures are characterized and analyzed by optical microscopy, X-ray diffraction, photoluminescence, current-voltage characteristics, and spectral response (external quantum efficiency). The effect of the well number on the excitonic absorption of InGaAsP/InGaP SBMQWs is discussed and analyzed.

  7. InGaP-based quantum well solar cells: Growth, structural design, and photovoltaic properties

    International Nuclear Information System (INIS)

    Hashem, Islam E.; Zachary Carlin, C.; Hagar, Brandon G.; Colter, Peter C.; Bedair, S. M.

    2016-01-01

    Raising the efficiency ceiling of multi-junction solar cells (MJSCs) through the use of more optimal band gap configurations of next-generation MJSC is crucial for concentrator and space systems. Towards this goal, we propose two strain balanced multiple quantum well (SBMQW) structures to tune the bandgap of InGaP-based solar cells. These structures are based on In x Ga 1−x As 1−z P z /In y Ga 1−y P (x > y) and In x Ga 1−x P/In y Ga 1−y P (x > y) well/barrier combinations, lattice matched to GaAs in a p-i-n solar cell device. The bandgap of In x Ga 1−x As 1−z P z /In y Ga 1−y P can be tuned from 1.82 to 1.65 eV by adjusting the well composition and thickness, which promotes its use as an efficient subcell for next generation five and six junction photovoltaic devices. The thicknesses of wells and barriers are adjusted using a zero net stress balance model to prevent the formation of defects. Thin layers of InGaAsP wells have been grown thermodynamically stable with compositions within the miscibility gap for the bulk alloy. The growth conditions of the two SBMQWs and the individual layers are reported. The structures are characterized and analyzed by optical microscopy, X-ray diffraction, photoluminescence, current-voltage characteristics, and spectral response (external quantum efficiency). The effect of the well number on the excitonic absorption of InGaAsP/InGaP SBMQWs is discussed and analyzed.

  8. Photovoltaics in the shade : One bypass diode per solar cell revisited

    NARCIS (Netherlands)

    Pannebakker, Boudewijn B.; de Waal, Arjen C.; van Sark, Wilfried G.J.H.M.

    2017-01-01

    Deployment of residential photovoltaic solar energy systems is strongly increasing, which gives rise to problems such as partial shading and pollution, omnipresent in the built environment. Conventional modules are sensitive to the current mismatches introduced by shadows because of their series

  9. Solar photovoltaic markets, economics, technology, and potential

    Energy Technology Data Exchange (ETDEWEB)

    Blais, J.M.J.; Molinski, T.S. [Manitoba Hydro, Winnipeg, MB (Canada)]|[Emerging Energy Systems, Islamabad (Pakistan)

    2008-07-01

    Solar Photovoltaics (PV) are solid state semiconductor electronic devices that transform infrared, visible, or ultraviolet light energy from the sun directly into electrical energy. Selenium was used to create the first solar cell in 1883. In 1954, Bell Laboratories developed the modern day silicon solar cell, whereby impurities were added to silicon through a process called doping. Silicon doped with boron results in a positive electrical charge, while silicon doped with phosphorous results in a negative electrical charge. The atom collision from photons in sunlight provides the necessary energy to free a trapped electron in the doped silicon, which then may flow through a wire creating an electric current. Many different materials besides silicon are used to create solar cells, such as plastics, organic compounds, and theoretically even special paints, while other doping agents besides boron and phosphorous are also used, such as arsenic and gallium. This paper provided an introduction to solar PV and world solar PV growth and markets. A review of solar PV economics was also included. In 2008, the total installed costs of solar photovoltaic cells were in the range of 7 to 10 Canadian dollars. In addition, the advantages and disadvantages of solar PV were presented. Solar technologies under research and development were also discussed and assessed. It was concluded that although solar PV was one of the most expensive forms of renewable generation, there is great potential for solar PV to gain broader based application as costs continue to drop. 11 refs., 1 tab., 1 fig.

  10. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Vasekar, Parag S., E-mail: psvasekar@yahoo.co [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States); Jahagirdar, Anant H.; Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Rd., Cocoa FL, 32922 (United States)

    2010-01-31

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of {approx} 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 {mu}m CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 {mu}m absorber prepared under similar conditions as that of a 2.7 {mu}m thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10{sup -10} mA/cm{sup 2} to 1.78 x 10{sup -8} mA/cm{sup 2}. This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  11. Photovoltaic characterization of Copper-Indium-Gallium Sulfide (CIGS2) solar cells for lower absorber thicknesses

    International Nuclear Information System (INIS)

    Vasekar, Parag S.; Jahagirdar, Anant H.; Dhere, Neelkanth G.

    2010-01-01

    Chalcopyrites are important contenders among thin-film solar cells due to their direct band gap and higher absorption coefficient. Copper-Indium-Gallium Sulfide (CIGS2) is a chalcopyrite material with a near-optimum band gap of ∼ 1.5 eV. Record efficiency of 11.99% has been achieved on a 2.7 μm CIGS2 film prepared by sulfurization at the Florida Solar Energy Center (FSEC) PV Materials Lab. In this work, photovoltaic performance analysis has been carried out for a 1.5 μm absorber prepared under similar conditions as that of a 2.7 μm thick absorber sample. It was observed that there is an increase in diode factor and reverse saturation current density when the absorber thickness was decreased. The diode factor increased from 1.69 to 2.18 and reverse saturation current density increased from 1.04 x 10 -10 mA/cm 2 to 1.78 x 10 -8 mA/cm 2 . This can be attributed to a decrease in the grain size when the absorber thickness is decreased. It was also observed that there is an improvement in the shunt resistance. Improvement in shunt resistance can be attributed to optimized value of i:ZnO for lower absorber thickness and less shunting paths due to a smoother absorber.

  12. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    Science.gov (United States)

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  13. Ultra-high efficiency photovoltaic cells for large scale solar power generation.

    Science.gov (United States)

    Nakano, Yoshiaki

    2012-01-01

    The primary targets of our project are to drastically improve the photovoltaic conversion efficiency and to develop new energy storage and delivery technologies. Our approach to obtain an efficiency over 40% starts from the improvement of III-V multi-junction solar cells by introducing a novel material for each cell realizing an ideal combination of bandgaps and lattice-matching. Further improvement incorporates quantum structures such as stacked quantum wells and quantum dots, which allow higher degree of freedom in the design of the bandgap and the lattice strain. Highly controlled arrangement of either quantum dots or quantum wells permits the coupling of the wavefunctions, and thus forms intermediate bands in the bandgap of a host material, which allows multiple photon absorption theoretically leading to a conversion efficiency exceeding 50%. In addition to such improvements, microfabrication technology for the integrated high-efficiency cells and the development of novel material systems that realizes high efficiency and low cost at the same time are investigated.

  14. PV Status Report 2009. Research, Solar Cell Production and Market Implementation of Photovoltaics

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2009-08-01

    Photovoltaics is a key technology option to realise the shift to a decarbonised energy supply. The solar resources in Europe and world wide are abundant and cannot be monopolised by one country. Regardless for what reasons and how fast the oil price and energy prices increase in the future, Photovoltaics and other renewable energies are the only ones to offer a reduction of prices rather than an increase in the future. As a response to the economic crisis, most of the G20 countries have designed economic recovery packages which include 'green stimulus' measures. However, compared to the new Chinese Energy Revitalisation Plan under discussion, the pledged investments in green energy are marginal. If no changes are made, China which now strongly supports its renewable energy industry, will emerge even stronger after the current financial crisis. In 2008, the Photovoltaic industry production almost doubled and reached a world-wide production volume of 7.3 GWp of Photovoltaic modules. Yearly growth rates over the last decade were in average more than 40%, which makes Photovoltaics one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect lower prices for consumers. The trend that thin-film Photovoltaics grew faster than the overall PV market continued in 2008. The Eighth Edition of the 'PV Status Report' tries to give an overview about the current activities regarding Research, Manufacturing and Market Implementation.

  15. Solar energy developments: photovoltaics

    International Nuclear Information System (INIS)

    Sivoththaman, S.

    2006-01-01

    The annual photovoltaic (PV) energy production crossed the 1 Gigawatt mark a couple of years ago, and continues to grow at rates exceeding 40%. The cost of PV has been continuously dropping due to increased production and also thanks to the technological advances made over the past two decades at the material, device, and system levels. Although PV is still considered expensive, cost-competitiveness is expected to be achieved in the next 5-10 years. With the current PV market 90% dominated by crystalline silicon (Si) material, advances are being made in tackling the Si shortage issue, and new approaches in feedstock refinement are getting shape. On the other hand, progress is being made on thin film-based advanced devices and on novel organic semiconductors. Novel concepts based on quantum physics and nanotechnology do have the ability to improve device performance beyond traditional theoretical limits. The domination of Si is expected to shift when these next generation technologies mature into industry-level scalability. On the system level, advanced back-end electronics provides more efficient power conditioning for modern PV modules. Systems level combinations such as solar thermal/PV hybrids and PV/hydrogen systems are also promising. An overview of recent technology developments will be presented with highlights in the Canadian scenario. (author)

  16. The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications

    Science.gov (United States)

    Scott-Monck, J. A.

    1979-01-01

    The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.

  17. Donor/Acceptor Molecular Orientation-Dependent Photovoltaic Performance in All-Polymer Solar Cells.

    Science.gov (United States)

    Zhou, Ke; Zhang, Rui; Liu, Jiangang; Li, Mingguang; Yu, Xinhong; Xing, Rubo; Han, Yanchun

    2015-11-18

    The correlated donor/acceptor (D/A) molecular orientation plays a crucial role in solution-processed all-polymer solar cells in term of photovoltaic performance. For the conjugated polymers PTB7-th and P(NDI2OD-T2), the preferential molecular orientation of neat PTB7-th films kept face-on regardless of the properties of processing solvents. However, an increasing content of face-on molecular orientation in the neat P(NDI2OD-T2) films could be found by changing processing solvents from chloronaphthalene (CN) and o-dichlorobenzene (oDCB) to chlorobenzene (CB). Besides, the neat P(NDI2OD-T2) films also exhibited a transformation of preferential molecular orientation from face-on to edge-on when extending film drying time by casting in the same solution. Consequently, a distribution diagram of molecular orientation for P(NDI2OD-T2) films was depicted and the same trend could be observed for the PTB7-th/P(NDI2OD-T2) blend films. By manufacture of photovoltaic devices with blend films, the relationship between the correlated D/A molecular orientation and device performance was established. The short-circuit current (Jsc) of devices processed by CN, oDCB, and CB enhanced gradually from 1.24 to 8.86 mA/cm(2) with the correlated D/A molecular orientation changing from face-on/edge-on to face-on/face-on, which could be attributed to facile exciton dissociation at D/A interface with the same molecular orientation. Therefore, the power conversion efficiency (PCE) of devices processed by CN, oDCB, and CB improved from 0.53% to 3.52% ultimately.

  18. Influence of thin film thickness of working electrodes on photovoltaic characteristics of dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Lai Yeong-Lin

    2017-01-01

    Full Text Available This paper presents the study of the influence of thin film thickness of working electrodes on the photovoltaic characteristics of dye-sensitized solar cells. Titanium dioxide (TiO2 thin films, with the thickness from 7.67 to 24.3 μm, were used to fabricate the working electrodes of dye-sensitized solar cells (DSSCs. A TiO2 film was coated on a fluorine-doped tin oxide (FTO conductive glass substrate and then sintered in a high-temperature furnace. On the other hand, platinum (Pt solution was coated onto an FTO substrate for the fabrication of the counter electrode of a DSSC. The working electrode immersed in a dye, the counter electrode, and the electrolyte were assembled to complete a sandwich-structure DSSC. The material analysis of the TiO2 films of DSSCs was carried out by scanning electron microscopy (SEM and ultraviolet-visible (UV-Vis spectroscopy, while the photovoltaic characteristics of DSSCs were measured by an AM-1.5 sunlight simulator. The light transmittance characteristics of the TiO2 working electrode depend on the TiO2 film thickness. The thin film thickness of the working electrode also affects the light absorption of a dye and results in the photovoltaic characteristics of the DSSC, including open-circuited voltage (VOC, short-circuited current density (JSC, fill factor, and photovoltaic conversion efficiency.

  19. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  20. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  1. Photoinduced Bulk Polarization and Its Effects on Photovoltaic Actions in Perovskite Solar Cells.

    Science.gov (United States)

    Wu, Ting; Collins, Liam; Zhang, Jia; Lin, Pei-Ying; Ahmadi, Mahshid; Jesse, Stephen; Hu, Bin

    2017-11-28

    This article reports an experimental demonstration of photoinduced bulk polarization in hysteresis-free methylammonium (MA) lead-halide perovskite solar cells [ITO/PEDOT:PSS/perovskite/PCBM/PEI/Ag]. An anomalous capacitance-voltage (CV) signal is observed as a broad "shoulder" in the depletion region from -0.5 to +0.5 V under photoexcitation based on CV measurements where a dc bias is gradually scanned to continuously drift mobile ions in order to detect local polarization under a low alternating bias (50 mV, 5 kHz). Essentially, gradually scanning the dc bias and applying a low alternating bias can separately generate continuously drifting ions and a bulk CV signal from local polarization under photoexcitation. Particularly, when the device efficiency is improved from 12.41% to 18.19% upon chlorine incorporation, this anomalous CV signal can be enhanced by a factor of 3. This anomalous CV signal can be assigned as the signature of photoinduced bulk polarization by distinguishing from surface polarization associated with interfacial charge accumulation. Meanwhile, replacing easy-rotational MA + with difficult-rotational formamidinium (FA + ) cations largely minimizes such anomalous CV signal, suggesting that photoinduced bulk polarization relies on the orientational freedom of dipolar organic cations. Furthermore, a Kelvin probe force microscopy study shows that chlorine incorporation can suppress the density of charged defects and thus enhances photoinduced bulk polarization due to the reduced screening effect from charged defects. A bias-dependent photoluminescence study indicates that increasing bulk polarization can suppress carrier recombination by decreasing charge capture probability through the Coulombic screening effect. Clearly, our studies provide an insightful understanding of photoinduced bulk polarization and its effects on photovoltaic actions in perovskite solar cells.

  2. Theoretical Analysis of Two Novel Hybrid Thermoelectric-Photovoltaic Systems Based on Cu₂ZnSnS₄ Solar Cells.

    Science.gov (United States)

    Lorenzi, Bruno; Contento, Gaetano; Sabatelli, Vincenzo; Rizzo, Antonella; Narducci, Dario

    2017-03-01

    The development and commercialization of Photovoltaic (PV) cells with good cost-efficiency trade-off not using critical raw materials (CRMs) is one of the strategies chosen by the European Community (EC) to address the Energy Roadmap 2050. In this context Cu2ZnSnS4 (CZTS) solar cells are attracting a major interest since they have the potential to combine low price with relatively high conversion efficiencies. Although a ≈9% lab scale efficiency has already been reported for CZTS this technology is still far from being competitive in terms of cost per peak-power (€/Wp) with other common materials. One possible near-future solution to increase the CZTS competiveness comes from thermoelectrics. Actually it has already been shown that Hybrid Thermoelectric-Photovoltaic Systems (HTEPVs) based on CIGS, another kesterite very similar to CZTS, can lead to a significant efficiency improvement. However it has been also clarified how the optimal hybridization strategy cannot come from the simple coupling of solar cells with commercial TEGs, but special layouts have to be implemented. Furthermore, since solar cell performances are well known to decrease with temperature, thermal decoupling strategies of the PV and TEG sections have to be taken. To address these issues, we developed a model for two different HTEPV solutions, both coupled with CZTS solar cells. In the first case we considered a Thermally-Coupled HTEPV device (TC-HTEPV) in which the TEG is placed underneath the solar cell and in thermal contact with it. The second system consists instead of an Optically-Coupled but thermally decoupled device (OC-HTEPV) in which part of the solar spectrum is focused by a non-imaging optical concentrator on the TEG hot side. For both solutions the model returns conversion efficiencies higher than that of the CZTS solar cell alone. Specifically, increases of ≈30% are predicted for both kind of systems considered.

  3. Advancements in n-type base crystalline silicon solar cells and their emergence in the photovoltaic industry.

    Science.gov (United States)

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed.

  4. You're a What? Solar Photovoltaic Installer

    Science.gov (United States)

    Torpey, Elka Maria

    2009-01-01

    This article talks about solar photovoltaic (PV) installer and features Rebekah Hren, a solar PV installer who puts solar panels on roofs and in other sunny places to turn the sun's power into electricity. Hren enjoys promoting renewable energy, in part because it's an emerging field. In solar PV systems, solar cells--devices that convert sunlight…

  5. Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex.

    Science.gov (United States)

    Jiang, Ling; Chen, Wangchao; Zheng, Jiawei; Zhu, Liangzheng; Mo, Li'e; Li, Zhaoqian; Hu, Linhua; Hayat, Tasawar; Alsaedi, Ahmed; Zhang, Changneng; Dai, Songyuan

    2017-08-16

    Organometal halide perovskite solar cells (PSCs) have shown high photovoltaic performance but poor utilization of ultraviolet (UV) irradiation. Lanthanide complexes have a wide absorption range in the UV region and they can down-convert the absorbed UV light into visible light, which provides a possibility for PSCs to utilize UV light for higher photocurrent, efficiency, and stability. In this study, we use a transparent luminescent down-converting layer (LDL) of Eu-4,7-diphenyl-1,10-phenanthroline (Eu-complex) to improve the light utilization efficiency of PSCs. Compared with the uncoated PSC, the PSC coated with Eu-complex LDL on the reverse of the fluorine-doped tin oxide glass displayed an enhancement of 11.8% in short-circuit current density (J sc ) and 15.3% in efficiency due to the Eu-complex LDL re-emitting UV light (300-380 nm) in the visible range. It is indicated that the Eu-complex LDL plays the role of enhancing the power conversion efficiency as well as reducing UV degradation for PSCs.

  6. Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ben Rabha, M.; Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2010-03-15

    Photovoltaic properties of buried metallic contacts (BMCs) with and without application of a front porous silicon (PS) layer on multicrystalline silicon (mc-Si) solar cells were investigated. A Chemical Vapor Etching (CVE) method was used to perform front PS layer and BMCs of mc-Si solar cells. Good electrical performance for the mc-Si solar cells was observed after combination of BMCs and thin PS films. As a result the current-voltage (I-V) characteristics and the internal quantum efficiency (IQE) were improved, and the effective minority carrier diffusion length (Ln) increases from 75 to 110 {mu}m after BMCs achievement. The reflectivity was reduced to 8% in the 450-950 nm wavelength range. This simple and low cost technology induces a 12% conversion efficiency (surface area = 3.2 cm{sup 2}). The obtained results indicate that the BMCs improve charge carrier collection while the PS layer passivates the front surface. (author)

  7. Utilization of solar energy by means of photovoltaic cells on a captive balloon. Sonnenstrahlenenergienutzung durch photovoltaische Zellen auf Fesselballon

    Energy Technology Data Exchange (ETDEWEB)

    Scheib, A.

    1988-02-25

    For the use of solar energy photovoltaic cells are used which are deposited on the envelope of a captive balloon which floats over the ground according to the hot air principle in a sufficient height free of atmospheric influences (about 10 km) and whose stay ropes are used for the transfer of generated electric power. The part of the envelope of the balloon equipped with solar cells is to be made as a plane surface and this solar cell surface can be positioned by means of a variation of the free stay rope lengths controlled automatically in an optimal way according to the sun beam direction. In connection with the absence of atmospheric influences, a generation of maximum energy in great constancy during nearly the whole daytime, is made possible.

  8. Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle

    International Nuclear Information System (INIS)

    Ezzat, M.F.; Dincer, I.

    2016-01-01

    Highlights: • A new integrated fuel cell-photovoltaic system for vehicle application is proposed. • Comprehensive energy and exergy analyses are conducted. • Detailed parametric study is performed. • Overall energy and exergy efficiencies are determined. • Photovoltaic utilization can save 561 g of hydrogen during 3 h drive. - Abstract: This paper deals with a new hybridly powered photovoltaic-fuel cell - Li-ion battery integrated system and is compared to a base system, consisting of PEM fuel cell and Li-ion battery. It investigates the effects of adding photovoltaic arrays to the base system and further effects on the overall energy and exergy efficiencies and hence hydrogen consumption. These two systems are analyzed and assessed both energetically and exergetically. The study results show that the overall energy and exergy efficiencies become 39.46% and 56.3%, respectively at a current density of 1150 mA/cm"2 for system 1 (fuel cell-battery). Moreover, energy and exergy efficiencies are found to be 39.86% and 56.63% at current density of 1150 mA/cm"2 for system 2 (fuel cell-battery-photovoltaics). Utilizing photovoltaic arrays in system 2 would recover 561 g of hydrogen through 3 h of continuous driving at max power of 98.32 kW, which is approximately 11.2% of the hydrogen storage tank used in the proposed systems. The effects of changing various system parameters on energy and exergy efficiencies of the overall system are also examined.

  9. Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final Report. Volume II: Silicon material

    OpenAIRE

    Lutwack, R.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development. The goal of the Silicon Material Task, a part of the FSA Project, was to develop and ...

  10. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    Science.gov (United States)

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  11. Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

    OpenAIRE

    K. Touafek; A. Khelifa; E. H. Khettaf; A. Embarek

    2013-01-01

    Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a h...

  12. Effects of solar photovoltaic technology on the environment in China.

    Science.gov (United States)

    Qi, Liqiang; Zhang, Yajuan

    2017-10-01

    Among the various types of renewable energy, solar photovoltaic has elicited the most attention because of its low pollution, abundant reserve, and endless supply. Solar photovoltaic technology generates both positive and negative effects on the environment. The environmental loss of 0.00666 yuan/kWh from solar photovoltaic technology is lower than that from coal-fired power generation (0.05216 yuan/kWh). The negative effects of solar photovoltaic system production include wastewater and waste gas pollutions, the representatives of which contain fluorine, chromium with wastewater and hydrogen fluoride, and silicon tetrachloride gas. Solar panels are also a source of light pollution. Improper disposal of solar cells that have reached the end of their service life harms the environment through the stench they produce and the damage they cause to the soil. So, the positive and negative effects of green energy photovoltaic power generation technology on the environment should be considered.

  13. Solar photovoltaic: a better tomorrow

    International Nuclear Information System (INIS)

    Signoret, Stephane

    2016-01-01

    This article comments statements and works performed by a professional body (Enerplan) and a think tank (FTS, France Territoire Solaire) which describe a glorious future for solar photovoltaic energy even though the present situation is rather dull. They foresee ground-based solar plants of more than 1 MW, and assess the potential production for very large, medium and small sized roofs, for domestic installations

  14. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  15. Indium phosphide solar cell research in the United States: Comparison with non-photovoltaic sources

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1989-01-01

    Highlights of the InP solar cell research program are presented. Homojunction cells with efficiencies approaching 19 percent are demonstrated, while 17 percent is achieved for ITO/InP cells. The superior radiation resistance of the two latter cell configurations over both Si and GaAs cells has been shown. InP cells aboard the LIPS3 satellite show no degradation after more than a year in orbit. Computed array specific powers are used to compare the performance of an InP solar cell array to solar dynamic and nuclear systems.

  16. Design Approaches for Enhancing Photovoltaic Performance of Silicon Solar Cells Sensitized by Proximal Nanocrystalline Quantum Dots

    Science.gov (United States)

    Shafiq, Natis

    Energy transfer (ET) based sensitization of silicon (Si) using proximal nanocrystal quantum dots (NQDs) has been studied extensively in recent years as a means to develop thin and flexible Si based solar cells. The driving force for this research activity is a reduction in materials cost. To date, the main method for determining the role of ET in sensitizing Si has been optical spectroscopic studies. The quantitative contribution from two modes of ET (namely, nonradiative and radiative) has been reported using time-resolved photoluminescence (TRPL) spectroscopy coupled with extensive theoretical modelling. Thus, optical techniques have established the potential for utilizing ET based sensitization of Si as a feasible way to develop novel NQD-Si hybrid solar cells. However, the ultimate measure of the efficiency of ET-based mechanisms is the generation of electron-hole pairs by the impinging photons. It is therefore important to perform electrical measurements. However, only a couple of studies have attempted electrical quantification of ET modes. A few studies have focused on photocurrent measurements, without considering industrially relevant photovoltaic (PV) systems. Therefore, there is a need to develop a systematic approach for the electrical quantification of ET-generated charges and to help engineer new PV architectures optimized for harnessing the full advantages of ET mechanisms. Within this context, the work presented in this dissertation aims to develop an experimental testing protocol that can be applied to different PV structures for quantifying ET contributions from electrical measurements. We fabricated bulk Si solar cells (SCs) as a test structure and utilized CdSe/ZnS NQDs for ET based sensitization. The NQD-bulk Si hybrid devices showed ˜30% PV enhancement after NQD deposition. We measured external quantum efficiency (EQE) of these devices to quantify ET-generated charges. Reflectance measurements were also performed to decouple contributions of

  17. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  18. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  19. Photovoltaic solar; Solaire photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    This study aims to observe, from european examples, the local governments policies in matter of the photovoltaic development. This approach is very different for each town. The first part evaluates the initiatives, the second part is devoted to the global situation in Europe and the third part brings recommendations. (A.L.B.)

  20. Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Shi, Xusheng; Huang, Qunwu; Cui, Yong; Kang, Xue

    2017-01-01

    Highlights: • Direct-contact liquid film cooling dense-array solar cells was first proposed. • Average temperature was controlled well below 80 °C. • The maximum temperature difference was less than 10 °C. • The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under 589X. - Abstract: This paper presented a new method of cooling dense-array solar cells in high concentrating photovoltaic system by direct-contact liquid film, and water was used as working fluid. An electric heating plate was designed to simulate the dense-array solar cells in high concentrating photovoltaic system. The input power of electric heating plate simulated the concentration ratios. By heat transfer experiments, the effect of water temperatures and flow rates on heat transfer performance was investigated. The results indicated that: the average temperature of simulated solar cells was controlled well below 80 °C under water temperature of 30 °C and flow rate of 300 L/h when concentration ratio ranged between 300X and 600X. The maximum temperature difference among temperature measurement points was less than 10 °C, which showed the temperature distribution was well uniform. The heat transfer coefficient reached up to 11.91 kW/(m"2·K) under concentration ratio of 589X. To improve heat transfer performance and obtain low average temperature of dense-array solar cells, lower water temperature and suitable water flow rate are preferred.

  1. Annealing Effect on Photovoltaic Performance of CdSe Quantum-Dots-Sensitized TiO2 Nanorod Solar Cells

    Directory of Open Access Journals (Sweden)

    Yitan Li

    2012-01-01

    Full Text Available Large area rutile TiO2 nanorod arrays were grown on F:SnO2 (FTO conductive glass using a hydrothermal method at low temperature. CdSe quantum dots (QDs were deposited onto single-crystalline TiO2 nanorod arrays by a chemical bath deposition (CBD method to make a photoelectrode. The solar cell was assembled using a CdSe-TiO2 nanostructure as the photoanode and polysulfide solution as the electrolyte. The annealing effect on optical and photovoltaic properties of CdSe quantum-dots-sensitized TiO2 nanorod solar cells was studied systematically. A significant change of the morphology and a regular red shift of band gap of CdSe nanoparticles were observed after annealing treatment. At the same time, an improved photovoltaic performance was obtained for quantum-dots-sensitized solar cell using the annealed CdSe-TiO2 nanostructure electrode. The power conversion efficiency improved from 0.59% to 1.45% as a consequence of the annealing effect. This improvement can be explained by considering the changes in the morphology, the crystalline quality, and the optical properties caused by annealing treatment.

  2. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    International Nuclear Information System (INIS)

    Li, Weixin; Yang, Junyou; Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-01-01

    Highlights: • TiO 2 nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO 2 shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO 2 electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO 2 nanorods electrode. - Abstract: Ca-doped TiO 2 nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti 4+ was substituted with Ca 2+ successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO 2 electrode was 43% higher than that of the undoped one due to the less recombination possibility

  3. Solar excitation of CdS/Cu2S photovoltaic cells

    Science.gov (United States)

    Boer, K. W.

    1976-01-01

    Solar radiation of five typical clear weather days and under a variety of conditions is used to determine the spectral distribution of the photonflux at different planes of a CdS/Cu2S solar cell. The fractions of reflected and absorbed flux are determined at each of the relevant interfaces and active volume elements of the solar cell. The density of absorbed photons is given in respect to spectral and spatial distribution. The variance of the obtained distribution, with changes in insolation and absorption spectra of the active solar cell layers, is indicated. A catalog of typical examples is given in the appendix.

  4. White butterflies as solar photovoltaic concentrators

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S.; Ffrench-Constant, Richard H.; Mallick, Tapas K.

    2015-07-01

    Man’s harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies’ wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies’ thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  5. White butterflies as solar photovoltaic concentrators.

    Science.gov (United States)

    Shanks, Katie; Senthilarasu, S; Ffrench-Constant, Richard H; Mallick, Tapas K

    2015-07-31

    Man's harvesting of photovoltaic energy requires the deployment of extensive arrays of solar panels. To improve both the gathering of thermal and photovoltaic energy from the sun we have examined the concept of biomimicry in white butterflies of the family Pieridae. We tested the hypothesis that the V-shaped posture of basking white butterflies mimics the V-trough concentrator which is designed to increase solar input to photovoltaic cells. These solar concentrators improve harvesting efficiency but are both heavy and bulky, severely limiting their deployment. Here, we show that the attachment of butterfly wings to a solar cell increases its output power by 42.3%, proving that the wings are indeed highly reflective. Importantly, and relative to current concentrators, the wings improve the power to weight ratio of the overall structure 17-fold, vastly expanding their potential application. Moreover, a single mono-layer of scale cells removed from the butterflies' wings maintained this high reflectivity showing that a single layer of scale cell-like structures can also form a useful coating. As predicted, the wings increased the temperature of the butterflies' thorax dramatically, showing that the V-shaped basking posture of white butterflies has indeed evolved to increase the temperature of their flight muscles prior to take-off.

  6. Role of bromine doping on the photovoltaic properties and microstructures of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Okada, Hiroshi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Organic-inorganic hybrid heterojunction solar cells containing CH{sub 3}NH{sub 3}PbI{sub 3} perovskite compound were fabricated using mesoporous TiO{sub 2} as the electronic transporting layer and spirobifluorence as the hole-transporting layer. The purpose of the present study is to investigate role of bromine (Br) doping on the photovoltaic properties and microstructure of CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells. Photovoltaic, optical properties and microstructures of perovskite-based solar cells were investigated. The X-ray diffraction identified crystal structure of the perovskite layer doped with Br in the solar cell. Scanning electron microscopy observation showed a different behavior of surface morphology and the perovskite crystal structure on the TiO{sub 2} mesoporous structure depending on extent amount of hydrogen doping of Br. The role of bromide halogen doping on the perovskite crystal structure and photovoltaic properties was due to improvement of carrier mobility, optimization of electron structure, band gap related with the photovoltaic parameters of V{sub oc}, J{sub sc} and η. Energy diagram and photovoltaic mechanism of the perovskite solar cells varied with halogen doping was discussed by experimental results.

  7. Role of bromine doping on the photovoltaic properties and microstructures of CH3NH3PbI3 perovskite solar cells

    International Nuclear Information System (INIS)

    Suzuki, Atsushi; Okada, Hiroshi; Oku, Takeo

    2016-01-01

    Organic-inorganic hybrid heterojunction solar cells containing CH 3 NH 3 PbI 3 perovskite compound were fabricated using mesoporous TiO 2 as the electronic transporting layer and spirobifluorence as the hole-transporting layer. The purpose of the present study is to investigate role of bromine (Br) doping on the photovoltaic properties and microstructure of CH 3 NH 3 PbI 3 perovskite solar cells. Photovoltaic, optical properties and microstructures of perovskite-based solar cells were investigated. The X-ray diffraction identified crystal structure of the perovskite layer doped with Br in the solar cell. Scanning electron microscopy observation showed a different behavior of surface morphology and the perovskite crystal structure on the TiO 2 mesoporous structure depending on extent amount of hydrogen doping of Br. The role of bromide halogen doping on the perovskite crystal structure and photovoltaic properties was due to improvement of carrier mobility, optimization of electron structure, band gap related with the photovoltaic parameters of V oc , J sc and η. Energy diagram and photovoltaic mechanism of the perovskite solar cells varied with halogen doping was discussed by experimental results

  8. Charge yield potential of indoor-operated solar cells incorporated into Product Integrated Photovoltaic (PIPV)

    NARCIS (Netherlands)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    2010-01-01

    Solar cell performance parameters (open circuit voltage, short circuit current, fill factor and efficiency) are derived for different solar cell types for the irradiance range 0.1–1000 W/m2. Also it is demonstrated how spectral mismatch factors for indoor lighting conditions are calculated. The

  9. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  10. Tunable photovoltaic effect and solar cell performance of self-doped perovskite SrTiO3

    Directory of Open Access Journals (Sweden)

    K. X. Jin

    2012-12-01

    Full Text Available We report on the tunable photovoltaic effect of self-doped single-crystal SrTiO3 (STO, a prototypical perovskite-structured complex oxide, and evaluate its performance in Schottky junction solar cells. The photovaltaic characteristics of vacuum-reduced STO single crystals are dictated by a thin surface layer with electrons donated by oxygen vacancies. Under UV illumination, a photovoltage of 1.1 V is observed in the as-received STO single crystal, while the sample reduced at 750 °C presents the highest incident photon to carrier conversion efficiency. Furthermore, in the STO/Pt Schottky junction, a power conversion efficiency of 0.88% was achieved under standard AM 1.5 illumination at room temperature. This work establishes STO as a high-mobility photovoltaic semiconductor with potential of integration in self-powered oxide electronics.

  11. Behavior of Electrochemically Prepared CuInSe2 as Photovoltaic Absorber in thin Film Solar Cells

    International Nuclear Information System (INIS)

    Guillen, C; Martinez, M.A.; Dona, J. M.; Herrero, J; Gutierrez, M. T.

    2000-01-01

    Two different objectives have been pursued in the present investigation: 1) optimization of the CuInSe, preparation parameters from electrodeposited precursors, and 2) evaluation of their photovoltaic behavior by preparing and enhancing Mo/CuInSe,/CdS/TCO devices. When Cu-In-Se precursors are directly electrodeposited, the applied potential fit is essential to improve the photovoltaic performance. Suitable absorbers have been also obtained by evaporating an In layer onto electrodeposited Cu-Se precursors. In this case, the substrate temperature during evaporation determines the CuInSe, quality. Similar results have been reached by substituting typical Mo-coated glass substrates by flexible Mo foils. Different TCO tested (ZnO and ITO) have been found equivalent as front electrical contact in the devices. Solar cell performance can be improved by annealing in air at 200 degree centigree. (Author) 46 refs

  12. Nb-TiO{sub 2}/polymer hybrid solar cells with photovoltaic response under inert atmosphere conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lira-Cantu, Monica; Khoda Siddiki, Mahbube; Munoz-Rojas, David; Amade, Roger [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Gonzalez-Pech, Natalia I. [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2, CSIC), Laboratory of Nanostructured Materials for Photovoltaic Energy, Campus UAB, Barcelona (Spain); Instituto Tecnologico y de Estudios Superiores de Monterrey (ITESM), Ave. Eugenio Garza Sada, 64640 Monterrey, N.L. (Mexico)

    2010-07-15

    Hybrid Solar Cells (HSC) applying Nb-TiO{sub 2} in direct contact with a conducting organic polymer, MEH-PPV, show higher stability than the bare TiO{sub 2}-based HSC when analyzed under inert atmosphere conditions. IPCE analyses revealed that inert atmospheres affect directly the semiconductor oxide in the first stages of the analyses but photovoltaic performance stabilizes after several hours. A 20 wt% Nb-doped TiO{sub 2} presented the highest stability and photovoltaic properties. The behavior has been attributed to the solubility limit of Nb within the TiO{sub 2} beyond 20 wt% doping level where the co-existence of NbO{sub 2} is observed. The HSCs were analyzed under controlled N{sub 2} atmosphere and 1000 W/m{sup 2} (AM 1.5) irradiation. (author)

  13. Performance enhancement in organic photovoltaic solar cells using iridium (Ir) ultra-thin surface modifier (USM)

    Science.gov (United States)

    Pandey, Rina; Lim, Ju Won; Kim, Jung Hyuk; Angadi, Basavaraj; Choi, Ji Won; Choi, Won Kook

    2018-06-01

    In this study, Iridium (Ir) metallic layer as an ultra-thin surface modifier (USM) was deposited on ITO coated glass substrate using radio frequency magnetron sputtering for improving the photo-conversion efficiency of organic photovoltaic cells. Ultra-thin Ir acts as a surface modifier replacing the conventional hole transport layer (HTL) PEDOT:PSS in organic photovoltaic (OPV) cells with two different active layers P3HT:PC60BM and PTB7:PC70BM. The Ir USM (1.0 nm) coated on ITO glass substrate showed transmittance of 84.1% and work function of >5.0 eV, which is higher than that of ITO (4.5-4.7 eV). The OPV cells with Ir USM (1.0 nm) exhibits increased power conversion efficiency of 3.70% (for P3HT:PC60BM active layer) and 7.28% (for PTB7:PC70BM active layer) under 100 mW/cm2 illumination (AM 1.5G) which are higher than those of 3.26% and 6.95% for the same OPV cells but with PEDOT:PSS as HTL instead of Ir USM. The results reveal that the chemically stable Ir USM layer could be used as an alternative material for PEDOT:PSS in organic photovoltaic cells.

  14. Polymer Solar Cells – Non Toxic Processing and Stable Polymer Photovoltaic Materials

    DEFF Research Database (Denmark)

    Søndergaard, Roar

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (~1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient...... and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding...... synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells...

  15. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.

    Science.gov (United States)

    Martí, A; Luque, A

    2015-04-22

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.

  16. Fabrication and Photovoltaic Characteristics of Coaxial Silicon Nanowire Solar Cells Prepared by Wet Chemical Etching

    Directory of Open Access Journals (Sweden)

    Chien-Wei Liu

    2012-01-01

    Full Text Available Nanostructured solar cells with coaxial p-n junction structures have strong potential to enhance the performances of the silicon-based solar cells. This study demonstrates a radial junction silicon nanowire (RJSNW solar cell that was fabricated simply and at low cost using wet chemical etching. Experimental results reveal that the reflectance of the silicon nanowires (SNWs declines as their length increases. The excellent light trapping was mainly associated with high aspect ratio of the SNW arrays. A conversion efficiency of ∼7.1% and an external quantum efficiency of ∼64.6% at 700 nm were demonstrated. Control of etching time and diffusion conditions holds great promise for the development of future RJSNW solar cells. Improving the electrode/RJSNW contact will promote the collection of carries in coaxial core-shell SNW array solar cells.

  17. Photovoltaic solar energy

    International Nuclear Information System (INIS)

    Mouratoglou, P.; Therond, P.G.

    2009-01-01

    The most important assets of photovoltaic energy for sustainable development are its simplicity (no need for complicated thermodynamical cycles) and the universal availability of the sun which explains its great popularity. The main restraint to its full development is the high cost of the technologies used. The silicon technology is the historical technology, it has high conversion rates but is expensive because of high fabrication costs. This technology represents 80% of the market. On the other hand the thin film technology with CdTe, CIS or CIGS is promising in terms of costs but requires research works to increase its conversion rate. Japan and Germany are the leader countries in terms of photovoltaic for research, industrial fabrication or state support, they are followed by Spain, Usa, and China. (A.C.)

  18. Photovoltaic. Solar thermal. Solar thermal electricity

    International Nuclear Information System (INIS)

    2009-01-01

    The year 2008 was excellent for solar energy in the European Union. The growth of the installed capacity for photovoltaic was +159% (it means +4747.018 MW) to reach 9689.952 MW and that for solar thermal was +51.5% (it means +3172.5 MW) to reach 19982.7 MW. Worldwide concentrated solar thermal capacity stood at 679 MW in 2009, while this figure may seem low, the sector has a promising future ahead of it. (A.C.)

  19. Fabrication and performance analysis of 4-sq cm indium tin oxide/InP photovoltaic solar cells

    Science.gov (United States)

    Gessert, T. A.; Li, X.; Phelps, P. W.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Large-area photovoltaic solar cells based on direct current magnetron sputter deposition of indium tin oxide (ITO) into single-crystal p-InP substrates demonstrated both the radiation hardness and high performance necessary for extraterrestrial applications. A small-scale production project was initiated in which approximately 50 ITO/InP cells are being produced. The procedures used in this small-scale production of 4-sq cm ITO/InP cells are presented and discussed. The discussion includes analyses of performance range of all available production cells, and device performance data of the best cells thus far produced. Additionally, processing experience gained from the production of these cells is discussed, indicating other issues that may be encountered when large-scale productions are begun.

  20. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  1. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Photovoltaic (PV panels account for a majority of the cost of photovoltaic thermal (PVT panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum efficiencies of 45% to 63% were observed for the double-path-parallel bifacial PVT panel based on the first law of thermodynamics. Single-path bifacial PVT panel represents the highest exergy efficiency (10%. Double-path-parallel bifacial PVT panel is the second preferred design as it generates up to 20% additional total energy compared with the single-path panel. However, the daily average exergy efficiency of a double-path-parallel panel is 0.35% lower than that of a single-path panel.

  2. Influence of rf-magnetron Sputtered ITO and Al:ZnO on Photovoltaic Behaviour Related to CuInSe2-Based Photovoltaic Solar Cells

    International Nuclear Information System (INIS)

    Martinez, M.A.; Guillen, C; Dona, J. M.; Herrero, J; Gutierrez, M. T.

    2000-01-01

    This paper describes several investigations, made in the CIEMAT, on the capability of depositing transparent conducting oxides at room temperature by rf-magnetron sputtering, and their application in CuInSe 2 -based photovoltaic solar cells. ITO and Al:ZnO thin films having simultaneously high transmittance in the visible range and low resistivity, 10 3 -10 - 4 Ωcm, can be obtained only if oxygen mass-flow rate is constrained to a very narrow range (0.5 - 1 sccm). Cell efficiency enhance when transparent conducting oxides are made without intentional heating and, after, the total devices are annealed in air at 200 degree centigree. (Author) 40 refs

  3. Nanosecond pulsed laser ablated sub-10 nm silicon nanoparticles for improving photovoltaic conversion efficiency of commercial solar cells

    Science.gov (United States)

    Rasouli, H. R.; Ghobadi, A.; Ulusoy Ghobadi, T. G.; Ates, H.; Topalli, K.; Okyay, A. K.

    2017-10-01

    In this paper, we demonstrate the enhancement of photovoltaic (PV) solar cell efficiency using luminescent silicon nanoparticles (Si-NPs). Sub-10 nm Si-NPs are synthesized via pulsed laser ablation technique. These ultra-small Si nanoparticles exhibit photoluminescence (PL) character tics at 425 and 517 nm upon excitation by ultra-violet (UV) light. Therefore, they can act as secondary light sources that convert high energetic photons to ones at visible range. This down-shifting property can be a promising approach to enhance PV performance of the solar cell, regardless of its type. As proof-of-concept, polycrystalline commercial solar cells with an efficiency of ca 10% are coated with these luminescent Si-NPs. The nanoparticle-decorated solar cells exhibit up to 1.64% increase in the external quantum efficiency with respect to the uncoated reference cells. According to spectral photo-responsivity characterizations, the efficiency enhancement is stronger in wavelengths below 550 nm. As expected, this is attributed to down-shifting via Si-NPs, which is verified by their PL characteristics. The results presented here can serve as a beacon for future performance enhanced devices in a wide range of applications based on Si-NPs including PVs and LED applications.

  4. Enhancing the photovoltaic performance of bulk heterojunction polymer solar cells by adding Rhodamine B laser dye as co-sensitizer.

    Science.gov (United States)

    Kazemifard, Sholeh; Naji, Leila; Afshar Taromi, Faramarz

    2018-04-01

    Ternary blend (TB) strategy has been considered as an effective method to enhance the photovoltaic performance of bulk heterojunction (BHJ) polymer solar cells (PSCs). Here, we report on TB-based PSCs containing two donor materials; poly-3-hexylthiophene (P3HT) and Rhodamine B (RhB) laser organic dye, and [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM) as an acceptor. The influence of RhB weight percentage and injection volume was extensively studied. To gain insight into the influences of RhB on the photovoltaic performance of PSCs, physicochemical and optical properties of TBs were compared with those of BHJ binary blend as a standard. RhB broadened the light absorption properties of the active layer and played a bridging role between P3HT and PC 61 BM. The PCE and short-circuit current density (Jsc) of the optimized TB-based PSCs comprising of 0.5 wt% RhB reached 5% and 12.12 mA/cm 2 , respectively. Compared to BHJ standard cell, the PCE and the generated current was improved by two orders of magnitude due to higher photon harvest of the active layer, cascade energy level structure of TB components and a considerable decrease in the charge carrier recombination. The results suggest that RhB can be considered as an effective material for application in PSCs to attain high photovoltaic performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Science.gov (United States)

    Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.

    In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.

  6. Widely Applicable n-Type Molecular Doping for Enhanced Photovoltaic Performance of All-Polymer Solar Cells.

    Science.gov (United States)

    Xu, Yalong; Yuan, Jianyu; Sun, Jianxia; Zhang, Yannan; Ling, Xufeng; Wu, Haihua; Zhang, Guobing; Chen, Junmei; Wang, Yongjie; Ma, Wanli

    2018-01-24

    A widely applicable doping design for emerging nonfullerene solar cells would be an efficient strategy in order to further improve device photovoltaic performance. Herein, a family of compound TBAX (TBA= tetrabutylammonium, X = F, Cl, Br, or I, containing Lewis base anions are considered as efficient n-dopants for improving polymer-polymer solar cells (all-PSCs) performance. In all cases, significantly increased fill factor (FF) and slightly increased short-circuit current density (J sc ) are observed, leading to a best PCE of 7.0% for all-PSCs compared to that of 5.8% in undoped devices. The improvement may be attributed to interaction between different anions X - (X = F, Cl, Br, and I) in TBAX with the polymer acceptor. We reveal that adding TBAX at relatively low content does not have a significantly impact on blend morphology, while it can reduce the work function (WF) of the electron acceptor. We find this simple and solution processable n-type doping can efficiently restrain charge recombination in all-polymer solar cell devices, resulting in improved FF and J sc. More importantly, our findings may provide new protocles and insights using n-type molecular dopants in improving the performance of current polymer-polymer solar cells.

  7. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  8. See-Through Dye-Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics

    KAUST Repository

    Heiniger, Leo-Philipp; O'Brien, Paul G.; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P.; Grä tzel, Michael; Ozin, Geoffrey A.; Té treault, Nicolas

    2013-01-01

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power

  9. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.

    Science.gov (United States)

    Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene

    2015-07-27

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

  10. Review of the workshop on low-cost polysilicon for terrestrial photovoltaic solar cell applications

    Science.gov (United States)

    Lutwack, R.

    1986-01-01

    Topics reviewed include: polysilicon material requirements; effects of impurities; requirements for high-efficiency solar cells; economics; development of silane processes; fluidized-bed processor development; silicon purification; and marketing.

  11. Enhanced photovoltaic performance of Sb2S3-sensitized solar cells through surface treatments

    Science.gov (United States)

    Ye, Qing; Xu, Yafeng; Chen, Wenyong; Yang, Shangfeng; Zhu, Jun; Weng, Jian

    2018-05-01

    Efficient antimony sulfide (Sb2S3)-sensitized solar cells were obtained by a sequential treatment with thioacetamide (TA) and 1-decylphosphonic acid (DPA). Compared with the untreated Sb2S3-sensitized solar cells, the power conversion efficiency of the treated Sb2S3 solar cells was improved by 1.80% to 3.23%. The TA treatment improved the Sb2S3 films by reducing impurities and decreasing the film's surface defects, which inhibited the emergence of recombination centers. The DPA treatment reduced the recombination between hole transport materials (HTMs) and the Sb2S3. Therefore, we have presented an efficient strategy to improve the performance of Sb2S3-sensitized solar cells.

  12. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  13. Photovoltaic and photoelectrochemical conversion of solar energy.

    Science.gov (United States)

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  14. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations.

  15. Photovoltaic Cells and Systems: Current State and Future Trends

    OpenAIRE

    Hadj Bourdoucen; Joseph A. Jervase; Abdullah Al-Badi; Adel Gastli; Arif Malik

    2000-01-01

    Photovoltaics is the process of converting solar energy into electrical energy. Any photovoltaic system invariably consists of solar cell arrays and electric power conditioners. Photovoltaic systems are reliable, quiet, safe and both environmentally benign and self-sustaining. In addition, they are cost-effective for applications in remote areas. This paper presents a review of solar system components and integration, manufacturing, applications, and basic research related to photovoltaics. P...

  16. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Md. Khalid Hossain

    Full Text Available In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV–Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell’s (DSSC photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric. Keywords: DSSC, Natural dye, TiO2 photoanode, Dye extracting solvent, Dye-adsorption time

  17. Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells

    Science.gov (United States)

    Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787

  18. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  19. Modular assembly of a photovoltaic solar energy receiver

    Science.gov (United States)

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  20. The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Melas-Kyriazi, John

    2011-04-05

    A detailed investigation of the effect of hole transport material (HTM) pore filling on the photovoltaic performance of solid-state dye-sensitized solar cells (ss-DSCs) and the specific mechanisms involved is reported. It is demonstrated that the efficiency and photovoltaic characteristics of ss-DSCs improve with the pore filling fraction (PFF) of the HTM, 2,2\\',7,7\\'-tetrakis-(N, N-di-p-methoxyphenylamine)9,9\\'-spirobifluorene(spiro-OMeTAD). The mechanisms through which the improvement of photovoltaic characteristics takes place were studied with transient absorption spectroscopy and transient photovoltage/photocurrent measurements. It is shown that as the spiro-OMeTAD PFF is increased from 26% to 65%, there is a higher hole injection efficiency from dye cations to spiro-OMeTAD because more dye molecules are covered with spiro-OMeTAD, an order-of-magnitude slower recombination rate because holes can diffuse further away from the dye/HTM interface, and a 50% higher ambipolar diffusion coefficient due to an improved percolation network. Device simulations predict that if 100% PFF could be achieved for thicker devices, the efficiency of ss-DSCs using a conventional rutheniumdye would increase by 25% beyond its current value. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Melas-Kyriazi, John; Ding, I-Kang; Marchioro, Arianna; Punzi, Angela; Hardin, Brian E.; Burkhard, George F.; Té treault, Nicolas; Grä tzel, Michael; Moser, Jacques-E.; McGehee, Michael D.

    2011-01-01

    A detailed investigation of the effect of hole transport material (HTM) pore filling on the photovoltaic performance of solid-state dye-sensitized solar cells (ss-DSCs) and the specific mechanisms involved is reported. It is demonstrated that the efficiency and photovoltaic characteristics of ss-DSCs improve with the pore filling fraction (PFF) of the HTM, 2,2',7,7'-tetrakis-(N, N-di-p-methoxyphenylamine)9,9'-spirobifluorene(spiro-OMeTAD). The mechanisms through which the improvement of photovoltaic characteristics takes place were studied with transient absorption spectroscopy and transient photovoltage/photocurrent measurements. It is shown that as the spiro-OMeTAD PFF is increased from 26% to 65%, there is a higher hole injection efficiency from dye cations to spiro-OMeTAD because more dye molecules are covered with spiro-OMeTAD, an order-of-magnitude slower recombination rate because holes can diffuse further away from the dye/HTM interface, and a 50% higher ambipolar diffusion coefficient due to an improved percolation network. Device simulations predict that if 100% PFF could be achieved for thicker devices, the efficiency of ss-DSCs using a conventional rutheniumdye would increase by 25% beyond its current value. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.

    Science.gov (United States)

    Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing

    2017-03-01

    The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.

  3. The high intensity solar cell - Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    This paper discusses the problems associated with conventional solar cells at high intensities and presents the design considerations and performance characteristics of the 'high intensity' (HI) solar cell which appears to eliminate the major problems. Test data obtained at greater than 250 AM1 suns gave a peak output power density of 2 W per sq cm at an efficiency exceeding 6% with an unoptimized cell operating at over 100 C. It appears that operation at 1000 AM1 suns at efficiencies greater than 10% is possible. At 1000 AM1 suns and 10% efficiency, the HI cell manufacturing cost is estimated to be $0.25/watt, with multi-megawatt annual production capability already existing within the industrial sector. A high intensity solar system was also analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency.

  4. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  5. Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector

    International Nuclear Information System (INIS)

    Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr

    2016-01-01

    Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.

  6. Effects of Bulky Substituents of Push-Pull Porphyrins on Photovoltaic Properties of Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Higashino, Tomohiro; Kawamoto, Kyosuke; Sugiura, Kenichi; Fujimori, Yamato; Tsuji, Yukihiro; Kurotobi, Kei; Ito, Seigo; Imahori, Hiroshi

    2016-06-22

    To evaluate the effects of substituent bulkiness around a porphyrin core on the photovoltaic properties of porphyrin-sensitized solar cells, long alkoxy groups were introduced at the meso-phenyl group (ZnPBAT-o-C8) and the anchoring group (ZnPBAT-o-C8Cn, n = 4, 8) of an asymmetrically substituted push-pull porphyrin with double electron-donating diarylamino groups and a single electron-withdrawing carboxyphenylethynyl anchoring group. The spectroscopic and electrochemical properties of ZnPBAT-o-C8 and ZnPBAT-o-C8Cn were found to be superior to those of a push-pull porphyrin reference (YD2-o-C8), demonstrating their excellent light-harvesting and redox properties for dye-sensitized solar cells. A power conversion efficiency (η) of the ZnPBAT-o-C8-sensitized solar cell (η = 9.1%) is higher than that of the YD2-o-C8-sensitized solar cell (η = 8.6%) using iodine-based electrolyte due to the enhanced light-harvesting ability of ZnPBAT-o-C8. In contrast, the solar cells based on ZnPBAT-o-C8Cn, possessing the additional alkoxy chains in the anchoring group, revealed the lower η values of 7.3% (n = 4) and 7.0% (n = 8). Although ZnPBAT-o-C8Cn exhibited higher resistance at the TiO2-dye-electrolyte interface by virtue of the extra alkoxy chains, the reduced amount of the porphyrins on TiO2 by excessive addition of coadsorbent chenodeoxycholic acid (CDCA) for mitigating the aggregation on TiO2 resulted in the low η values. Meanwhile, the ZnPBAT-o-C8-sensitized solar cell showed the lower η value of 8.1% than the YD2-o-C8-sensitized solar cell (η = 9.8%) using cobalt-based electrolyte. The smaller η value of the ZnPBAT-o-C8-sensitized solar cell may be attributed to the insufficient blocking effect of the bulky substituents of ZnPBAT-o-C8 under the cobalt-based electrolyte conditions. Overall, the alkoxy chain length and substitution position around the porphyrin core are important factors to affect the cell performance.

  7. Space Solar Cell Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures, characterizes, and analyzes photovoltaic materials and devices. The primary focus is the measurement and characterization of solar cell response...

  8. Radioisotope thermal photovoltaic application of the GaSb solar cell

    Science.gov (United States)

    Morgan, M. D.; Horne, W. E.; Day, A. C.

    1991-01-01

    An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.

  9. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  10. Impact of CH3NH3PbI3-PCBM bulk heterojunction active layer on the photovoltaic performance of perovskite solar cells

    Science.gov (United States)

    Chaudhary, Dhirendra K.; Kumar, Pankaj; Kumar, Lokendra

    2017-10-01

    We report here the impact of CH3NH3PbI3-PCBM bulk heterojunction (BHJ) active layer on the photovoltaic performance of perovskite solar cells. The solar cells were prepared in normal architecture on FTO coated glass substrates with compact TiO2 (c-TiO2) layer on FTO as electron transport layer (ETL) and poly(3-hexylthiophene) (P3HT) as hole transport layer (HTL). For comparison, a few solar cells were also prepared in planar heterojunction structure using CH3NH3PbI3 only as the active layer. The bulk heterojunction CH3NH3PbI3-PCBM active layer exhibited very large crystalline grains of 2-3 μm compared to ∼150 nm only in CH3NH3PbI3 active layer. Larger grains in bulk-heterojunction solar cells resulted in enhanced power conversion efficiency (PCE) through enhancement in all the photovoltaic parameters compared to planar heterojunction solar cells. The bulk-heterojunction solar cells exhibited ∼9.25% PCE with short circuit current density (Jsc) of ∼18.649 mA/cm2, open circuit voltage (Voc) of 0.894 V and Fill Factor (FF) of 0.554. There was ∼36.9% enhancement in the PCE of bulk-heterojunction solar cells compared to that of planar heterojunction solar cells. The larger grains are formed as a result of incorporation on PCBM in the active layer.

  11. Photovoltaic performance of dye-sensitized solar cells with various MWCNT counter electrode structures produced by different coating methods

    International Nuclear Information System (INIS)

    Munkhbayar, B.; Hwang, Seunghwa; Kim, Junhyo; Bae, Kangyoul; Ji, Myoungkuk; Chung, Hanshik; Jeong, Hyomin

    2012-01-01

    Highlights: ► Catalyst on tube surface was removed and the tube caps were opened by purification. ► Highest peak of UV-light absorption was achieved in the purified and ground MWCNTs solution. ► The particles uniformly distributed on glass substrate by spin coating method. ► Highest photoelectric efficiency of DSSCs with MWCNTs counter electrode was achieved 4.94%. - Abstract: We report the successful application of multi-walled carbon nanotubes (MWCNTs) as electrocatalysts for triiodide reduction in dye-sensitized solar cells (DSSCs). To improve the photovoltaic performance of DSSCs, upgrade the quality of MWCNT structure and obtain an optimum deposition approach regarding a counter electrode, the present study was investigated. Three different MWCNT structures, raw, purified and purified and ground, were investigated as platinum (Pt) alternatives for counter electrodes in DSSCs. The counter electrodes were prepared on fluorine-doped tin oxide (FTO) glass substrates by two different techniques: spin coating from fluid-type MWCNTs and screen printing from paste-type MWCNTs. By utilizing a spin-coating technique, a DSSC that was fabricated with a purified and ground MWCNT counter electrode achieved an overall photovoltaic efficiency of 4.94%. This photovoltaic performance is comparable to that of a DSSC using a conventional “Pt” counter electrode fabricated under the same conditions. We found that the grinding method is powerful for increasing specific surface area and porosity. With this technique, macropores can be transformed into mesopores, thereby reducing the agglomeration of the MWCNTs, and with an additional modification, an increased DSSC photovoltaic efficiency results.

  12. Photovoltaic properties of sintered CdS/CdTe solar cells doped with Cu

    International Nuclear Information System (INIS)

    Park, J.W.; Ahn, B.T.; Im, H.B.; Kim, C.S.

    1992-01-01

    In this paper, all polycrystalline CdS/CdTe solar cells doped with Cu are prepared by a screen printing and sintering method. Cell parameters of the sintered CdS/CdTe solar cells have been investigated in an attempt to find out the optimum doping conditions and concentrations of Cu by adding various amounts of CuCl 2 either into CdTe layer or into back contact carbon layer. Cell parameters of the sintered CdS/CdTe solar cells which contained various amounts of CuCl 2 in the CdTe layers before sintering stay at about the same values as the amount of CuCl 2 increases up to 25 ppm, and then decreases sharply as the amount of CuCl 2 further increases. The Cu added in the CdTe layer diffuses into the CdS layer during the sintering of the CdS-CdTe composite at 625 degrees C to densify the CdTe layer and causes the decrease in the optical transmission of CdS resulting in the degradation of the cell performance. In case the Cu dopant was dispersed in the back carbon paint and was followed by annealing, all cell parameters are improved significantly compared with those fabricated by adding CuCl 2 in the CdTe layer before sintering. A sintered CdS/CdTe solar cell which contained 25 ppm CuCl 2 in the carbon paste and was annealed at 350 degrees C for 10 min shows the highest efficiency. The efficiency of this cell is 12.4% under solar irradiation with an intensity of 80.4 mW/cm 2

  13. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  14. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  15. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    OpenAIRE

    Petru Chioncel; Cristian Paul Chioncel; Nicoleta Gillich

    2013-01-01

    This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  16. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  17. Effect of the LHCII pigment-protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells.

    Science.gov (United States)

    Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun

    2014-10-14

    A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.

  18. Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data

    International Nuclear Information System (INIS)

    Islam, Towhidul

    2014-01-01

    We focus on predicting the adoption time probabilities of photo-voltaic solar panels by households using discrete choice experiments and an innovation diffusion model. The primary objective of this research is cohesively mapping the theory of disruptive innovation into diffusion of innovations to aid policy makers by linking two critical uncertainties of new technology: (1) whether households prefer the new attributes of the new technology and how these preferences vary by market segments? and (2) when are they going to adopt (if at all)? Our study uses recent developments of discrete choice experiments and establishes a causal link between the attributes of the technology, attitudinal constructs and socio-demographics, and adoption time probabilities using the Bass diffusion model. The data was collected from Ontario, a province of Canada. The innovation diffusion model allows us to compute the cumulative probability of adoption over time per household. Technology awareness and energy cost saving have a significant effect on the adoption probability, reinforcing the need for effective education. These findings also suggest that campaigns should explain more about investment criteria, feed-in tariffs and environmental attributes. This study findings call for a need to use seeding strategies to accelerate exogenous Word-of-Mouth (WOM) for this new technology. - Highlights: • Adoption of renewable energy (i.e. solar PV panels) and theory of disruptive innovations. • Household level innovation diffusion model from discrete choice experiments with time intent questions. • Variation in adoption probabilities by market segments. • Promotions should explain new attributes and lack of consistency of households especially on market develop policies. • Data from Ontario, province of Canada, with generous feed-in tariff for solar households

  19. Theoretical analysis of the influence of defect parameters on photovoltaic performances of composition graded InGaN solar cells

    International Nuclear Information System (INIS)

    Gorge, V.; Migan-Dubois, A.; Djebbour, Z.; Pantzas, K.; Gautier, S.; Moudakir, T.; Suresh, S.; Ougazzaden, A.

    2013-01-01

    Highlights: ► We have modeled a p–i–n InGaN-based solar cell with gradual bandgap layers. ► InGaN defects have been modeled by two band tails and one localized energy level. ► Energetic position and band tail widths have a low effect on device efficiency. ► The localized defect FWHM has a significant impact on performance. ► The efficiency drops radically when the defect density is higher than the P-doping. - Abstract: In this paper, we have used simulations to evaluate the impact of the distribution of electrically active defects on the photovoltaic performances of InGaN-based solar cell. The simulations were carried out using Silvaco's ATLAS software. We have modeled a P-GaN/Grad-InGaN/i-In 0.53 Ga 0.47 N/Grad-InGaN/N-ZnO where Grad-InGaN corresponds to an InGaN layer with a graded composition. This layer is inserted to eliminate the band discontinuities at the interface between InGaN and the GaN and ZnO layers. The defects were modeled through the introduction of band tails and a Gaussian distribution of defects in i-InGaN material. We have evaluated the influence of band tail widths as well as the parameters of the Gaussian distribution (i.e. defect density, mean position and standard deviation) on the short-circuit current, the open-circuit voltage and the fill-factor (efficiency) of the solar cell. These results have allowed us to identify key structural parameters useful for the optimization of InGaN solar cells, as well as to give realistic estimates of the performances of such cells.

  20. Theoretical analysis of the influence of defect parameters on photovoltaic performances of composition graded InGaN solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorge, V.; Migan-Dubois, A. [LGEP, UMR 8507, CNRS, SUPELEC, UPMC, Universite Paris-Sud 11, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France); Djebbour, Z., E-mail: zakaria.djebbour@uvsq.fr [LGEP, UMR 8507, CNRS, SUPELEC, UPMC, Universite Paris-Sud 11, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex (France); Department of Physics and Engineering Science, University of Versailles UVSQ, 45 Av. Des Etats Unis, 78035 Versailles (France); Pantzas, K. [Georgia Institute of Technology, GT-Lorraine, 2 rue Marconi, 57 070 Metz (France); UMI 2958 Georgia Tech, CNRS, 2 rue Marconi, 57 070 Metz (France); Gautier, S. [UMI 2958 Georgia Tech, CNRS, 2 rue Marconi, 57 070 Metz (France); LMOPS, UMR 7132, CNRS, University of Metz, Supelec, 2 rue E. Belin, 57 070 Metz (France); Moudakir, T.; Suresh, S. [UMI 2958 Georgia Tech, CNRS, 2 rue Marconi, 57 070 Metz (France); Ougazzaden, A. [Georgia Institute of Technology, GT-Lorraine, 2 rue Marconi, 57 070 Metz (France); UMI 2958 Georgia Tech, CNRS, 2 rue Marconi, 57 070 Metz (France)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer We have modeled a p-i-n InGaN-based solar cell with gradual bandgap layers. Black-Right-Pointing-Pointer InGaN defects have been modeled by two band tails and one localized energy level. Black-Right-Pointing-Pointer Energetic position and band tail widths have a low effect on device efficiency. Black-Right-Pointing-Pointer The localized defect FWHM has a significant impact on performance. Black-Right-Pointing-Pointer The efficiency drops radically when the defect density is higher than the P-doping. - Abstract: In this paper, we have used simulations to evaluate the impact of the distribution of electrically active defects on the photovoltaic performances of InGaN-based solar cell. The simulations were carried out using Silvaco's ATLAS software. We have modeled a P-GaN/Grad-InGaN/i-In{sub 0.53}Ga{sub 0.47}N/Grad-InGaN/N-ZnO where Grad-InGaN corresponds to an InGaN layer with a graded composition. This layer is inserted to eliminate the band discontinuities at the interface between InGaN and the GaN and ZnO layers. The defects were modeled through the introduction of band tails and a Gaussian distribution of defects in i-InGaN material. We have evaluated the influence of band tail widths as well as the parameters of the Gaussian distribution (i.e. defect density, mean position and standard deviation) on the short-circuit current, the open-circuit voltage and the fill-factor (efficiency) of the solar cell. These results have allowed us to identify key structural parameters useful for the optimization of InGaN solar cells, as well as to give realistic estimates of the performances of such cells.

  1. Atomic layer deposition for photovoltaics : applications and prospects for solar cell manufacturing

    NARCIS (Netherlands)

    van Delft, J.A.; Garcia-Alonso Garcia, D.; Kessels, W.M.M.

    2012-01-01

    Atomic layer deposition (ALD) is a vapour-phase deposition technique capable of depositing high quality, uniform and conformal thin films at relatively low temperatures. These outstanding properties can be employed to face processing challenges for various types of next-generation solar cells;

  2. Photovoltaic conversion efficiency in copper-phthalocyanine/perylenetetracarboxylic acid benzimidazole heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Tetsuo [Dept. of Materials Science and Technology, Graduate School of Engineering Sciences, Kyushu Univ., Fukuoka (Japan); Nakashima, Takuya [Dept. of Materials Science and Technology, Graduate School of Engineering Sciences, Kyushu Univ., Fukuoka (Japan); Fujita, Yoshimasa [Dept. of Materials Science and Technology, Graduate School of Engineering Sciences, Kyushu Univ., Fukuoka (Japan); Saito, Shogo [Dept. of Materials Science and Technology, Graduate School of Engineering Sciences, Kyushu Univ., Fukuoka (Japan)

    1995-04-01

    Energy conversion efficiency of organic heterojuction-type solar cells was analyzed based on a simplified model. Energy conversion efficiency was expressed by four terms, a proton collection factor, a voltage output factor, an average quantum efficiency of photo-carrier generation and a fill factor. Meanings of low values of former two terms were discussed. (orig.)

  3. Influence of VB group doped TiO2 on photovoltaic performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Liu, Jia; Duan, Yandong; Zhou, Xiaowen; Lin, Yuan

    2013-01-01

    Dye-sensitized solar cell with V B group (vanadium (V), niobium (Nb) and tantalum (Ta)) doped TiO 2 prepared by hydrothermal method shows a higher photovoltaic efficiency compared with the undoped TiO 2 . All the V B doping shift the flat band potential positively and increase the doping density which is investigated by Mott–Schottky plot. The positive shift of flat band potential improves the driving force of injecting electron from the LUMO of dye to the conduction band of TiO 2 and the photocurrent. On the other hand, the increase of doping density accelerates transfer rate of electrons in TiO 2 than the un-doped, which is confirmed by intensity-modulated photocurrent. V-, Nb-, Ta-doped TiO 2 exhibited photovoltaic performance with 7.80%, 8.33%, 8.18%, respectively, compared with that of the cells based on pure TiO 2 (7.42%).

  4. Pilot production of 4 sq cm ITO/InP photovoltaic solar cells

    Science.gov (United States)

    Gessert, T. A.; Li, X.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Experimental results of a pilot production of 32 4-sq cm indium tin oxide (ITO)InP space solar cells are presented. The discussion includes analysis of the device performance of the best cells produced as well as the performance range of all production cells. The experience gained from the production is discussed, indicating other issues that may be encountered when large-scale productions are initiated. Available data on a 4-sq cm ITO/InP cell that was flown on the UoSAT-5 satellite is reported.

  5. Influence of different TiO{sub 2} blocking films on the photovoltaic performance of perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong, E-mail: xhchen@phy.ecnu.edu.cn; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei, E-mail: smhuang@phy.ecnu.edu.cn

    2016-12-01

    Highlights: • TiO{sub 2} blocking layer (BL) was synthesized using various methods. • Effect of BL characteristics on performance of perovskite solar cell was studied. • Charge transfer kinetics of perovskite solar cells with different BLs was explored. • We demonstrated efficient solar cells employing chemical bath deposition based BLs. - Abstract: Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO{sub 2} or Al{sub 2}O{sub 3}) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO{sub 2} compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO{sub 2} compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol’s bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl{sub 4}, respectively. The morphological and micro-structural properties of the formed compact TiO{sub 2} layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO{sub 2} compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO{sub 2} film deposited via the CBD route acts as the most efficient

  6. Influence of polyoxyethylene phytosterol addition in ionic liquid-based electrolyte on photovoltaic performance of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Takahashi, Masashi; Sato, Kei; Sakurai, Sho; Kobayashi, Koichi

    2016-01-01

    Highlights: • The ionic liquid solution of less solvophilic BPS exhibits a better surface active property and a weaker dye-desorption effect. • Photovoltaic performances of the N719- and NKX2677-sensitized DSSCs can be improved by the BPS addition to the IL-based electrolyte. • BPS added to the electrolyte plays a key role in reducing charge-transfer resistance and increasing electron lifetime in the TiO 2 electrode. - Abstract: In this work, we studied influence of polyoxyethylene phytosterol (BPS) addition in ionic liquid (IL)-based electrolyte on photovoltaic performance of dye-sensitized solar cells (DSSCs) using 1-methyl-3-propylimidazolium iodide as an IL. Surface tension, photocurrent density-voltage characteristics and electrochemical impedance spectra were measured to clarify the role of BPS in the DSSCs using three different dyes. The results showed that the IL solution of less solvophilic BPS-EO5 exhibited a better surface active property and a weaker dye-desorption effect than BPS-EO30 and BPS-PO7/EO30. Short-circuit current densities of the N719- and NKX2677-sensitized cells were found to be noticeably increased by the addition of either BPS-EO5 or BPS-EO30 to the IL-based electrolyte in the concentration range of 0.001–0.01 mol dm −3 . Enhanced photovoltaic conversion efficiencies were obtained for these DSSCs, which most likely resulted from the effects of BPS on reducing charge-transfer resistance at the TiO 2 /dye/electrolyte interface and on increasing electron lifetime within the TiO 2 photoanode.

  7. Saddle-shaped porphyrins for dye-sensitized solar cells: new insight into the relationship between nonplanarity and photovoltaic properties.

    Science.gov (United States)

    Shahroosvand, Hashem; Zakavi, Saeed; Sousaraei, Ahmad; Eskandari, Mortaza

    2015-03-07

    We report on the theoretical and experimental studies of the new dye-sensitized solar cells functionalized with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin zinc(II) complexes bearing 2- and 8-bromo substituents at the β positions. In agreement with the results of TD-DFT calculations, the absorption maxima of di- and octa-brominated Zn(II) complexes, ZnTCPPBr2 and ZnTCPPBr8, exhibited large red-shift compared to that of the non-brominated free base porphyrin (H2TCPP). Furthermore, DFT calculations showed that the higher stabilization of the LUMO levels relative to the HOMO ones makes the HOMO-LUMO gap of the brominated Zn-porphyrins models smaller compared to that of the nonbrominated counterparts, which explains the red shifts of the Soret and Q bands of the brominated compounds. Solar cells containing the new saddle-shaped Zn(II) porphyrins were subjected to analysis in a photovoltaic calibration laboratory to determine their solar to electric energy conversion. In this regard, we found that the overall conversion efficiency of ZnTCPPBr8 adsorbed on TiO2 nanocrystalline films was 5 times as large as that of ZnTCPPBr2 adsorbed on the same films. The effect of the increasing number of Br groups on the photovoltaic performance of the complexes was compared to the results of computational methods using ab initio DFT molecular dynamics simulations and quantum dynamics calculations of electronic relaxation to investigate the interfacial electron transfer (IET) in TCPPBrx/TiO2-anatase nanostructures. Better IET in ZnTCPPBr8 compared to ZnTCPPBr2, and in H2TCPP was evaluated from interfacial electron transfer (IET) simulations. The IET results indicate that electron injection in ZnTCPPBr8-TiO2 (τ = 25 fs) can be up to 5 orders of magnitude faster than ZnTCPPBr2-TiO2 (τ = 125 fs). Both experimental and theoretical results demonstrate that the increase of the number of bromo-substituents at the β-pyrrole positions of the porphyrin macrocycle created a new class of

  8. Visualizing nanoscale phase morphology for understanding photovoltaic performance of PTB7: PC71BM solar cell

    Science.gov (United States)

    Supasai, Thidarat; Amornkitbamrung, Vittaya; Thanachayanont, Chanchana; Tang, I.-Ming; Sutthibutpong, Thana; Rujisamphan, Nopporn

    2017-11-01

    Visualizing and controlling the phase separation of the donor and acceptor domains in organic bulk-hetero-junction (BHJ) solar devices made with poly([4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethyl-hexyl)carbon-yl]thieno[3,4-bthiophenediyl]) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) are needed to achieve high power conversion efficiency (PCE). Traditional bright-field (BF) imaging, especially of polymeric materials, produces images of poor contrast when done at the nanoscale level. Clear nanoscale morphologies of the PTB7:PC71BM blends prepared with different 1,8-diiodooctane (DIO) concentrations were seen when using the energy-filtered transmission electron microscopy (EFTEM). The electron energy loss (EELS) spectra of the pure PTB7 and PC71BM samples are centered at 22.7 eV and 24.5 eV, respectively. Using the electrons whose energy losses are in the range of 16-30 eV, detail information of the phase morphology at the nanoscale was obtained. Correlations between the improvement in the photovoltaic performances and the increased electron mobility were seen. These correlations are discussed in terms of the changes (at the nanoscale level) in blending phase morphology when different DIO concentrations are added.

  9. Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells.

    Science.gov (United States)

    Zhang, Jicheng; Xie, SuFei; Lu, Zhen; Wu, Yang; Xiao, Hongmei; Zhang, Xuejuan; Li, Guangwu; Li, Cuihong; Chen, Xuebo; Ma, Wei; Bo, Zhishan

    2017-10-01

    This data contains additional data related to the article "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" (Jicheng Zhang et al., In press) [1]. Data include measurement and characterization instruments and condition, detail condition to fabricate norfullerene solar cell devices, hole-only and electron-only devices. Detail condition about how to control the film morphology of devices via tuning the temperature of substrates was also displayed. More information and more convincing data about the change of film morphology for active layers fabricated from different temperature, which is attached to the research article of "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" was given.

  10. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  11. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.

    Science.gov (United States)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    2014-05-21

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings

    International Nuclear Information System (INIS)

    Atyaoui, Malek; Dimassi, Wissem; Atyaoui, Atef; Elyagoubi, Jalel; Ouertani, Rachid; Ezzaouia, Hatem

    2013-01-01

    The performance improvement of solar cells due to the formation of a porous silicon layer treated with rare earth (Ce, La) in the n + emitter of silicon n + /p junctions has been investigated. The photovoltaic properties of the cells with and without treatment of the porous silicon layer are compared. From the reflection measurements, it was shown that the cells with treated PS layers have lower reflectivity value compared to cell with untreated PS layer. The main result is that the photovoltaic energy conversion efficiency of solar cells can be enhanced by using the treated porous silicon layers with the rare earth (Ce, La) as anti-reflection coatings. -- Highlights: • The reduction of optical loss in silicon (c-Si) solar cells attracts the attention of many researches to achieve high efficiencies. • To attain this aim, the treated PS layers with rare earth (La, Ce) are suggested to be used as an (ARC) of c-Si solar cell. • The result showed a decrease in the optical losses which can explain the improved photovoltaic properties

  13. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings

    Energy Technology Data Exchange (ETDEWEB)

    Atyaoui, Malek, E-mail: atyaoui.malek@yahoo.fr [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95, Hammam Lif 2050 (Tunisia); Dimassi, Wissem [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95,Hammam Lif 2050 (Tunisia); Atyaoui, Atef [Laboratoire de traitement des eaux usées, Centre de recherches et des technologies des eaux, technopole de Borj-Cédria, PB: 273, Soliman 8020 (Tunisia); Elyagoubi, Jalel; Ouertani, Rachid; Ezzaouia, Hatem [Laboratoire de Photovoltaïque, Centre de recherches et des technologies de l' energie, technopole de Borj-Cédria, PB:95,Hammam Lif 2050 (Tunisia)

    2013-09-15

    The performance improvement of solar cells due to the formation of a porous silicon layer treated with rare earth (Ce, La) in the n{sup +} emitter of silicon n{sup +}/p junctions has been investigated. The photovoltaic properties of the cells with and without treatment of the porous silicon layer are compared. From the reflection measurements, it was shown that the cells with treated PS layers have lower reflectivity value compared to cell with untreated PS layer. The main result is that the photovoltaic energy conversion efficiency of solar cells can be enhanced by using the treated porous silicon layers with the rare earth (Ce, La) as anti-reflection coatings. -- Highlights: • The reduction of optical loss in silicon (c-Si) solar cells attracts the attention of many researches to achieve high efficiencies. • To attain this aim, the treated PS layers with rare earth (La, Ce) are suggested to be used as an (ARC) of c-Si solar cell. • The result showed a decrease in the optical losses which can explain the improved photovoltaic properties.

  14. Promoting Effect of Layered Titanium Phosphate on the Electrochemical and Photovoltaic Performance of Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Deng Changsheng

    2010-01-01

    Full Text Available Abstract We reported a composite electrolyte prepared by incorporating layered α-titanium phosphate (α-TiP into an iodide-based electrolyte using 1-ethyl-3-methylimidazolium tetrafluoroborate(EmimBF4 ionic liquid as solvent. The obtained composite electrolyte exhibited excellent electrochemical and photovoltaic properties compared to pure ionic liquid electrolyte. Both the diffusion coefficient of triiodide (I3 − in the electrolyte and the charge-transfer reaction at the electrode/electrolyte interface were improved markedly. The mechanism for the enhanced electrochemical properties of the composite electrolyte was discussed. The highest conversion efficiency of dye-sensitized solar cell (DSSC was obtained for the composite electrolyte containing 1wt% α-TiP, with an improvement of 58% in the conversion efficiency than the blank one, which offered a broad prospect for the fabrication of stable DSSCs with a high conversion efficiency.

  15. Photovoltaic characterization of hybrid solar cells using surface modified TiO2 nanoparticles and poly(3-hexyl)thiophene

    International Nuclear Information System (INIS)

    Guenes, Serap; Marjanovic, Nenad; Nedeljkovic, Jovan M; Sariciftci, Niyazi Serdar

    2008-01-01

    We report on the photovoltaic performance of bulk heterojunction solar cells using novel nanoparticles of 6-palmitate ascorbic acid surface modified TiO 2 as an electron acceptor embedded into the donor poly(3-hexyl)thiophene (P3HT) matrix. Devices were fabricated by using P3HT with varying amounts of red TiO 2 nanoparticles (1:1, 1:2, 1:3 w-w ratio). The devices were characterized by measuring current-voltage characteristics under simulated AM 1.5 conditions. Incident photon to current efficiency (IPCE) was spectrally resolved. The nanoscale morphology of such organic/inorganic hybrid blends was also investigated using atomic force microscopy (AFM).

  16. Solar thermal power and photovoltaic energy are both developing

    International Nuclear Information System (INIS)

    Le Jannic, N.; Houot, G.

    2010-01-01

    Thermodynamic solar energy and photovoltaic energy are expected to reach together a quarter of the world electricity production by 2050. In France the development of thermodynamic solar plants is hampered by the high cost of land in the sunny regions. As for photovoltaic energy, France has the potentiality to become an important producer. Since 2006, the French government has supported photovoltaic energy by proposing incentive electricity purchase prices guaranteed for 20 years. In 2006, the Ines research institute was founded, one of its research fields is the development of high yield silicon cells. (A.C.)

  17. Interface Passivation Effects on the Photovoltaic Performance of Quantum Dot Sensitized Inverse Opal TiO₂ Solar Cells.

    Science.gov (United States)

    Hori, Kanae; Zhang, Yaohong; Tusamalee, Pimsiri; Nakazawa, Naoki; Yoshihara, Yasuha; Wang, Ruixiang; Toyoda, Taro; Hayase, Shuzi; Shen, Qing

    2018-06-25

    Quantum dot (QD)-sensitized solar cells (QDSSCs) are expected to achieve higher energy conversion efficiency than traditional single-junction silicon solar cells due to the unique properties of QDs. An inverse opal (IO)-TiO₂ (IO-TiO₂) electrode is useful for QDSSCs because of its three-dimensional (3D) periodic nanostructures and better electrolyte penetration compared to the normal nanoparticles (NPs)-TiO₂ (NPs-TiO₂) electrode. We find that the open-circuit voltages V oc of the QDSSCs with IO-TiO₂ electrodes are higher than those of QDSSCs with NPs-TiO₂ electrodes. One important strategy for enhancing photovoltaic conversion efficiency of QDSSCs with IO-TiO₂ electrodes is surface passivation of photoanodes using wide-bandgap semiconducting materials. In this study, we have proposed surface passivation on IO-TiO₂ with ZnS coating before QD deposition. The efficiency of QDSSCs with IO-TiO₂ electrodes is largely improved (from 0.74% to 1.33%) because of the enhancements of V oc (from 0.65 V to 0.74 V) and fill factor ( FF ) (from 0.37 to 0.63). This result indicates that ZnS passivation can reduce the interfacial recombination at the IO-TiO₂/QDs and IO-TiO₂/electrolyte interfaces, for which two possible explanations can be considered. One is the decrease of recombination at IO-TiO₂/electrolyte interfaces, and the other one is the reduction of the back-electron injection from the TiO₂ electrode to QDs. All of the above results are effective for improving the photovoltaic properties of QDSSCs.

  18. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  19. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui

    2009-07-10

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents on the photovoltaic performance of sensitized hetero-junction solar cells. In the present study, we investigated the effect of two zwitterionic butyric acid derivatives differing only in the polar moiety attached to their common 4 carbon-chain acid, i.e., 4-guanidinobutyric acid (GBA) and 4-aminobutyric acid (ABA). These two molecules were implemented as coadsorbents in conjunction with Z907Na dye on the SSDSC. It was found that a Z907Na/GBA dye/co-adsorbent combination increases both the open circuit voltage (V oc) and short-circuit current density ( Jsc) as compared to using Z907Na dye alone. The Z907Na/ABA dye/co-adsorbent combination increases the Jsc. Impedance and transient photovoltage investigations elucidate the cause of these remarkable observations. ©2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of the replacement of alkoxyl with alkylthienyl on photovoltaic properties of two small molecule donors for organic solar cells

    Institute of Scientific and Technical Information of China (English)

    Shaoqing Zhang; Liyan Yang; Delong Liu; Chang He; Jianqi Zhang; Yun Zhang; Jianhui Hou

    2017-01-01

    Two benzo[1,2-b:4,5-b']dithiophene (BDT)-based small molecule (SM) donor materials with identical conjugated backbones but different substitution groups,named as DRTB-O and DRTB-T,were well explored to demonstrate the influence of the replacement of alkoxy with alkylthienyl on their photovoltaic properties in fullerene-based and fullerene-free organic solar cells (OSCs).The study shows that the two SM donors possess similar absorption spectra and energy levels but different crystalline structures in solid films.The carrier transport property and phase separation morphologies of the blend films have also been fully investigated.By employing PC71BM as the acceptor,the power conversion efficiency (PCE) of DRTB-O:PC71BM and DRTB-T:PC71BM based devices were 4.91% and 7.08%,respectively.However,by blending with IDIC,the two SM donors exhibited distinctly different photovoltaic properties in fullerene-free OSCs,and the PCE of DRTB-O:IDIC and DRTB-T:IDIC based devices were 0.15% and 9.06%,respectively.These results indicate that the replacement of alkoxyl with alkylthienyl in designing SM donor materials plays an important role in the application of fullerene-free OSCs.

  1. Photovoltaic Performance Enhancement of Silicon Solar Cells Based on Combined Ratios of Three Species of Europium-Doped Phosphors

    Directory of Open Access Journals (Sweden)

    Wen-Jeng Ho

    2018-05-01

    Full Text Available This paper presents a scheme for the enhancement of silicon solar cells in terms of luminescent emission band and photovoltaic performance. The proposed devices are coated with an luminescent down-shifting (LDS layer comprising three species of europium (Eu-doped phosphors mixed within a silicate film (SiO2 using a spin-on film deposition. The three species of phosphor were mixed at ratios of 0.5:1:1.5, 1:1:1, or 1.5:1:0.5 in weight percentage (wt %. The total quantity of Eu-doped phosphors in the silicate solution was fixed at 3 wt %. The emission wavelengths of the Eu-doped phosphors were as follows: 518 nm (specie-A, 551 nm (specie-B, and 609 nm (specie-C. We examined the extended luminescent emission bands via photoluminescence measurements at room temperature. Closely matching the luminescent emission band to the high responsivity band of the silicon semiconductor resulted in good photovoltaic performance. Impressive improvements in efficiency were observed in all three samples: 0.5:1:1.5 (20.43%, 1:1:1 (19.67%, 1.5:1:0.5 (16.81%, compared to the control with a layer of pure SiO2 (13.80%.

  2. Photovoltaic Performance Enhancement of Silicon Solar Cells Based on Combined Ratios of Three Species of Europium-Doped Phosphors.

    Science.gov (United States)

    Ho, Wen-Jeng; You, Bang-Jin; Liu, Jheng-Jie; Bai, Wen-Bin; Syu, Hong-Jhang; Lin, Ching-Fuh

    2018-05-18

    This paper presents a scheme for the enhancement of silicon solar cells in terms of luminescent emission band and photovoltaic performance. The proposed devices are coated with an luminescent down-shifting (LDS) layer comprising three species of europium (Eu)-doped phosphors mixed within a silicate film (SiO₂) using a spin-on film deposition. The three species of phosphor were mixed at ratios of 0.5:1:1.5, 1:1:1, or 1.5:1:0.5 in weight percentage (wt %). The total quantity of Eu-doped phosphors in the silicate solution was fixed at 3 wt %. The emission wavelengths of the Eu-doped phosphors were as follows: 518 nm (specie-A), 551 nm (specie-B), and 609 nm (specie-C). We examined the extended luminescent emission bands via photoluminescence measurements at room temperature. Closely matching the luminescent emission band to the high responsivity band of the silicon semiconductor resulted in good photovoltaic performance. Impressive improvements in efficiency were observed in all three samples: 0.5:1:1.5 (20.43%), 1:1:1 (19.67%), 1.5:1:0.5 (16.81%), compared to the control with a layer of pure SiO₂ (13.80%).

  3. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells

    Science.gov (United States)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei

    2016-12-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.

  4. Polymer solar cells - Non toxic processing and stable polymer photovoltaic materials

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard, R

    2012-07-01

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (approx1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient cell must be achieved. For a continuous success it is therefore essential to transfer the accomplishments from the laboratory to large scale facilities for actual production. In order to do so, several issues have to be approached. Among these are more environmentally friendly processing and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding to several GW{sub peek}, this is not a suitable approach from neither a production nor environmental point of view. As a consequence new materials, which can be processed from more environmentally friendly solvents (preferably water), need to be developed. In this thesis, the issue has been approached through synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells as it slows down diffusion though the active layer, but just as important it renders the layer insoluble. This allows for further processing, using the same solvent, without dissolving already processed layers, and resulted in the first ever reported solar cells where all layers are processed from aqueous or semi-aqueous solution. As previously mentioned many advantages can be achieved by use of thermocleavable materials. Unfortunately the cleavage temperatures are too

  5. Recent advances in solar photovoltaic technology

    International Nuclear Information System (INIS)

    Yoshihiro Hamakawa

    2000-01-01

    The current state of the art in recent progress of Japanese photovoltaic activities are overviewed. Firstly, a new strategy for the renewable energy promotion so called Fundamental Principle to promote New Energy Developments and Utilization, and its action planning for PV technology up to year of 2010 are introduced. The program structure and some tangible actions such as tax reduction for investment in the renewable energy plants, government financial support of 2/3 subsidy of PV system developments for public facilities namely as PV Field Test Experiments, and a 1/2 subsidy for the private solar house as PV House Monitor Plan are presented. Secondly, some new topics in the field of solar cell production technology in Japan and also statistics of the solar cell module productions for three kinds of silicon basis solar cells are summarized. Progress of the conversion efficiency in various types of solar cells are also surveyed. In the final part of paper possible new roles to contribute to the global environmental issues by the PV system developments are proposed. (Author)

  6. Silicon Solar Cell Turns 50

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, J.

    2004-08-01

    This short brochure describes a milestone in solar (or photovoltaic, PV) research-namely, the 50th anniversary of the invention of the first viable silicon solar cell by three researchers at Bell Laboratories.

  7. Enhancement of charge transport properties of small molecule semiconductors by controlling fluorine substitution and effects on photovoltaic properties of organic solar cells and perovskite solar cells.

    Science.gov (United States)

    Yun, Jae Hoon; Park, Sungmin; Heo, Jin Hyuck; Lee, Hyo-Sang; Yoon, Seongwon; Kang, Jinback; Im, Sang Hyuk; Kim, Hyunjung; Lee, Wonmok; Kim, BongSoo; Ko, Min Jae; Chung, Dae Sung; Son, Hae Jung

    2016-11-01

    We prepared a series of small molecules based on 7,7'-(4,4-bis(2-ethylhexyl)-4 H -silolo[3,2- b :4,5- b ']dithiophene-2,6-diyl)bis(4-(5'-hexyl-[2,2'-bithiophene]-5-yl)benzo[ c ][1,2,5]thiadiazole) with different fluorine substitution patterns ( 0F-4F ). Depending on symmetricity and numbers of fluorine atoms incorporated in the benzo[ c ][1,2,5]thiadiazole unit, they show very different optical and morphological properties in a film. 2F and 4F , which featured symmetric and even-numbered fluorine substitution patterns, display improved molecular packing structures and higher crystalline properties in a film compared with 1F and 3F and thus, 2F achieved the highest OTFT mobility, which is followed by 4F . In the bulk heterojunction solar cell fabricated with PC 71 BM, 2F achieves the highest photovoltaic performance with an 8.14% efficiency and 0F shows the lowest efficiency of 1.28%. Moreover, the planar-type perovskite solar cell (PSC) prepared with 2F as a dopant-free hole transport material shows a high power conversion efficiency of 14.5% due to its high charge transporting properties, which were significantly improved compared with the corresponding PSC device obtained from 0F (8.5%). From the studies, it is demonstrated that low variation in the local dipole moment and the narrow distribution of 2F conformers make intermolecular interactions favorable, which may effectively drive crystal formations in the solid state and thus, higher charge transport properties compared with 1F and 3F .

  8. APSA - A new generation of photovoltaic solar arrays

    Science.gov (United States)

    Stella, P. M.; Kurland, R. M.

    1989-01-01

    This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.

  9. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    Science.gov (United States)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  10. Insight Into the Role of PC71BM on Enhancing the Photovoltaic Performance of Ternary Organic Solar Cells.

    Science.gov (United States)

    Wang, Bei; Fu, Yingying; Yan, Chi; Zhang, Rui; Yang, Qingqing; Han, Yanchun; Xie, Zhiyuan

    2018-01-01

    The development of non-fullerene acceptor molecules have remarkably boosted power conversion efficiency (PCE) of polymer solar cells (PSCs) due to the improved spectral coverage and reduced energy loss. An introduction of fullerene molecules into the non-fullerene acceptor-based blend may further improve the photovoltaic performance of the resultant ternary PSCs. However, the underlying mechanism is still debatable. Herein, the ternary PSCs based on PBDB-T:ITIC:PC 71 BM blend were fabricated and its PCE was increased to 10.2% compared to 9.2% for the binary PBDB-T:ITIC devices and 8.1% for the PBDB-T:PC 71 BM PSCs. Systematic investigation was carried out to disclose the effect of PC 71 BM on the blend morphology and charge transport behavior. It is found that the PC 71 BM tends to intermix with the PBDB-T donor compared to the ITIC counterpart. A small amount of PC 71 BM in the ternary blend is helpful for ITIC to aggregate and form efficient electron-transport pathways. Accordingly, the electron mobility is increased and the density of electron traps is decreased in the ternary blend in comparison with the PBDB-T:ITIC blend. Finally, the suppressed bimolecular recombination and enhanced charge collection lead to high PCE for the ternary solar cells.

  11. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots

    Science.gov (United States)

    Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.

    2017-11-01

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  12. Modelling on c-Si/a-Si:H wire solar cells: some key parameters to optimize the photovoltaic performance

    Directory of Open Access Journals (Sweden)

    Alvarez J.

    2012-07-01

    Full Text Available Solar cells based on silicon nano- or micro-wires have attracted much attention as a promising path for low cost photovoltaic technology. The key point of this structure is the decoupling of the light absorption from the carriers collection. In order to predict and optimize the performance potential of p- (or n- doped c-Si/ n-(or p- doped a-Si:H nanowire-based solar cells, we have used the Silvaco-Atlas software to model a single-wire device. In particular, we have noticed a drastic decrease of the open-circuit voltage (Voc when increasing the doping density of the silicon core beyond an optimum value. We present here a detailed study of the parameters that can alter the Voc of c-Si(p/a-Si:H (n wires according to the doping density in c-Si. A comparison with simulation results obtained on planar c-Si/a-Si:H heterojunctions shows that the drop in Voc, linked to an increase of the dark current in both structures, is more pronounced for radial junctions due to geometric criteria. These numerical modelling results have lead to a better understanding of transport phenomena within the wire.

  13. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects.

    Science.gov (United States)

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-21

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  14. Influence of Different Surface Modifications on the Photovoltaic Performance and Dark Current of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    XU Weiwei; DAI Songyuan; HU Linhua; ZHANG Changneng; XIAO Shangfeng; LUO Xiangdong; JING Weiping; WANG Kongjia

    2007-01-01

    The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. One was to apply a compact layer between the conductive glass substrate and nanoporous TiO2 film. Another was to produce TiO2 nanoparticles among the microstructure by TiCU treatment. A suitable concentration and number of times for TiCU treatment were found in our experiment. The dark current is suppressed by surface modifications, leading to a significant improvement in the solar cells performance. An excessive concentration of TiCU will produce more surface states and introduce a larger dark current reversely. The dye is also regarded as a source of charge recombination in dark to some extent, due to an amount of surface protonations introduced by the interfacial link in the conductive glass substrate/dye interface and dye/TiO2 interface.

  15. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.

    Science.gov (United States)

    Prado, Silvio J; Marques, Gilmar E; Alcalde, Augusto M

    2017-11-08

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of [Formula: see text] theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  16. Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer.

    Science.gov (United States)

    Xie, Yulin; Lu, Kai; Duan, Jiashun; Jiang, Youyu; Hu, Lin; Liu, Tiefeng; Zhou, Yinhua; Hu, Bin

    2018-04-25

    Electron and hole transport layers have critical impacts on the overall performance of perovskite solar cells (PSCs). Herein, for the first time, a solution-processed cobalt (Co)-doped NiO X film was fabricated as the hole transport layer in inverted planar PSCs, and the solar cells exhibit 18.6% power conversion efficiency. It has been found that an appropriate Co-doping can significantly adjust the work function and enhance electrical conductivity of the NiO X film. Capacitance-voltage ( C- V) spectra and time-resolved photoluminescence spectra indicate clearly that the charge accumulation becomes more pronounced in the Co-doped NiO X -based photovoltaic devices; it, as a consequence, prevents the nonradiative recombination at the interface between the Co-doped NiO X and the photoactive perovskite layers. Moreover, field-dependent photoluminescence measurements indicate that Co-doped NiO X -based devices can also effectively inhibit the radiative recombination process in the perovskite layer and finally facilitate the generation of photocurrent. Our work indicates that Co-doped NiO X film is an excellent candidate for high-performance inverted planar PSCs.

  17. Photovoltaic solar energy. Proceedings; Photovoltaische Solarenergie. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the 21st symposium 'Photovoltaic Solar Energy' of the Ostbayerisches Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) at Banz Monastery (Bad Staffelstein, Federal Republic of Germany) between 8th and 10th March, 2006, the following lessons were held: (1) Basic conditions for a market support programme in the European context (EEG) (Winfried Hoffmann); (2) Actual developments in the German market of photovoltaics (Gerhard Stryi-Hipp); (3) Become a part of the global economic survey of Task 2 ''PV cost over time'' (Thomas Nordmann); (4) The market of photovoltaic will be a European market in the future (Murray Cameron); (5) Development and state of the art of the photovoltaic industry in the Peoples Republic of China (Frank Haugwitz); (6) Silicon for the photovoltaic industry (Karl Hesse); (7) Cell technology: Impulses for a cost effective photovoltaic with valuable silicon (Rolf Brendel); (8) Thin-film solar modules for the photovoltaic - state of the art and industrial perspectives (Michael Powalla); (9) Modules - bottleneck and flood of orders: How to act an installer? (Helmut Godard); (10) Photovoltaic open-field systems - Actual experiences and conflict lines (Ole Langniss); (11) Comparison of actual and future trends of Balance-of-System costs for large scale ground based PV systems with crystalline and thin-film modules (Manfred Baechler); (12) Financing PX projects from a Bank perspective (Joachim Treder); (13) Criteria of quality for solar fonds - Criteria of evaluation for capital investors and self-commitment for emission houses (Ulla Meixner); (14) Analysis of the distribution pathways for photovoltaic plants from the manufacturer to the final customer considering the decreasing demand and increasing prices (Michael Forst); (15) Solar power 2005 - Evaluation of real operational data of 1,000 plants in Germany (Gerd Heilscher); (16) Improvement of PV-inverter efficiency - targets, pathways

  18. Analysis of Catalytic Material Effect on the Photovoltaic Properties of Monolithic Dye-sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Natalita Maulani Nursam

    2017-12-01

    Full Text Available Dye-sensitized solar cells (DSSC are widely developed due to their attractive appearance and simple fabrication processes. One of the challenges that arise in the DSSC fabrication involves high material cost associated with the cost of conductive substrate. DSSC with monolithic configuration was then developed on the basis of this motivation. In this contribution, titanium dioxide-based monolithic type DSSCs were fabricated on a single fluorine-doped transparent oxide coated glass using porous ZrO2 as spacer. Herein, the catalytic material for the counter-electrode was varied using carbon composite and platinum in order to analyze their effect on the solar cell efficiency. Four-point probe measurement revealed that the carbon composite exhibited slightly higher conductivity with a sheet resistance of 9.8 Ω/sq and 10.9 Ω/sq for carbon and platinum, respectively. Likewise, the photoconversion efficiency of the monolithic cells with carbon counter-electrode almost doubled the efficiency of the cells with platinum counter-electrode. Our results demonstrate that carbon could outperform the performance of platinum as catalytic material in monolithic DSSC.

  19. Improving the photovoltaic performance of dye-sensitized solar cell by graphene/titania photoanode

    International Nuclear Information System (INIS)

    Zhao, Junchang; Wu, Jihuai; Zheng, Ming; Huo, Jinghao; Tu, Yongguang

    2015-01-01

    Highlights: • A colloid of graphene/titania is prepared, and thus a graphene/titania film is made. • The film shows high porosity, large surface area and small transfer resistance. • The cell with graphene/titania photoanode obtains a conversion efficiency of 7.52%. • Which is increased by 18% compared to the cell with pristine titania electrode. - Abstract: A mixed colloid of graphene and titania is synthesized by a one-step hydrothermal reaction, thus a graphene/titania film photoanode is prepared. The graphene/titania film shows high porosity and large specific surface area, which favors a full adsorption of sensitized dye. On the other hand, the graphene/titania electrode has smaller charge transfer resistance than the pristine titania electrode, which replies that the graphene/titania electrode accelerates electronic transportation and suppresses the charge recombination. Under an optimal condition, the dye-sensitized solar cell based on graphene/titania photoanode achieve a power conversion efficiency of 7.52%, which is increased by 17.7% compared to the cell based on the pristine titania electrode under a simulated solar light irradiation of 100 mW·cm −2

  20. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode

    International Nuclear Information System (INIS)

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-01-01

    In this work Nb-doped anatase TiO 2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO 2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO 2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell. (paper)

  1. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.

    Science.gov (United States)

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-10-18

    In this work Nb-doped anatase TiO2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell.

  2. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    Science.gov (United States)

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  3. Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Suri, Poonam; Mehra, R.M. [Department of Electronic Science, University of Delhi South Campus, New Delhi 110021 (India)

    2007-03-23

    The efficiency of dye sensitized solar cell depends on the number of factors such as impedance due to anions in the electrolytes, oxidation-reduction process of anions and size of cations of the electrolyte. This paper reports the effect of electrolytes on the photovoltaic performance of hybrid dye sensitized ZnO solar cells based on Eosin Y dye. The size of the cations has been varied by choosing different electrolytes such as LiBr+Br{sub 2}, LiI+I{sub 2}, tetrapropylammonium iodide +I{sub 2} in mixed solvent of acetronitrile and ethylene carbonate. The impedance of anions has been determined by electrochemical impedance spectra. It is observed that Br{sup -}/Br{sub 3}{sup -} offers high impedance as compared to I{sup -}/I{sub 3}{sup -} couple. The oxidation-reduction reactions of electrolytes are measured by linear sweep voltammogram. It is found that Br{sup -}/Br{sub 3}{sup -} is more suitable than an I{sup -}/I{sub 3}{sup -} couple in dye sensitized solar cell (DSSC) in terms of higher open-circuit photovoltage production and higher overall energy conversion efficiency. This is attributed to more positive potential of the dye sensitizer than that of Br{sup -}/Br{sub 3}{sup -}. The gain in V{sub oc} was due to the enlarged energy level difference between the redox potential of the electrolyte and the Fermi level (E{sub f}) of ZnO and the suppressed charge recombination as well. (author)

  4. Anticorrelation between exciplex emission and photovoltaic efficiency in PPV polymer based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chunhong, Yin; Neher, Dieter [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany); Kietzke, Thomas [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany); nstitute of Materials Research and Engineering (IMRE), Research Link 3, 117602 Singapore (Singapore); Hoerhold, Hans-Heinrich [University of Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Humboldtstr. 10, 07743 Jena (Germany)

    2007-07-01

    By studying the photoluminescence emission and photovoltaic properties of blends of PPV-based electron donating and accepting polymers, we observed a strict anticorrelation between the relative exciplex emission in the solid state and the photovoltaic efficiency of corresponding blend devices. Thermal annealing led to a decrease in exciplex emission accompanied by an increase in photovoltaic efficiency. Comparative studies on defined bi-layer geometries bilayer devices did not show any influence on the annealing step. Consequently, we conclude that the photocurrent is mainly determined by the efficiency to form free carriers rather than by the transport and free carrier recombination.

  5. Improvements in CdTe- and CIGS-based thin-film solar cells and investigation on new materials for photovoltaic applications.

    OpenAIRE

    Rosa, Greta

    2018-01-01

    Currently, thin-film solar cells are one of the most promising technologies for low-cost renewable energy production. CdTe- and CuInGaSe2-based cells, which achieved record efficiencies of 22.1% and 22.6% respectively, are the most attractive among thin-film solar cells. These high efficiencies have had a huge influence in making them highly competitive in the photovoltaic market, with an estimated final cost per module lower than US $ 0.50 per peak-watt. At the Thin Film Laboratory of the...

  6. Characteristics and optimization of ZnO/CdS/CZTS photovoltaic solar cell

    Science.gov (United States)

    Gueddim, A.; Bouarissa, N.; Naas, A.; Daoudi, F.; Messikine, N.

    2018-02-01

    In the present contribution a ZnO/CdS/CZTS structure with new thicknesses of the different layers has been proposed using solar cell capacitance simulator. The objective of this study is the improvement of the device efficiency while varying the thickness of the various layers and the CZTS system energy band-gap. Our results showed that cells with optimal values of thicknesses of 0.1, 0.02 and 1 µm for ZnO window layer, CdS buffer layer and CZTS absorber layer, respectively give conversion efficiency of 23.56%. Furthermore, the higher performance of these cells is obtained for a CZTS band-gap energy of about 1.45 eV. The obtained conversion efficiency is comparable to those previously reported in the literature.

  7. Diamond-Like Carbon Coatings as Encapsulants for Photovoltaic Solar Cells

    International Nuclear Information System (INIS)

    Pern, F. J.; Panosyan, Zh.; Gippius, A. A.; Kontsevoy, J. A.; Touryan, K.; Voskanyan, S.; Yengibaryan, Y.

    2005-01-01

    High-quality single-layer and bilayer diamond-like carbon (DLC) thin films are fabricated by two technologies, namely, ion-assisted plasma-enhanced deposition (IAPED) and electron cyclotron resonance (ECR) deposition. Deposition on various substrates, such as sapphires and solar cells, has been performed at low substrate temperatures (50 ∼ 80 C). The two deposition technologies allow good control over the growth conditions to produce DLC films with desired optical properties, thickness, and energy bandgap. The bilayer-structured DLC can be fabricated by using IAPED for the bottom layer followed by ECR for the top layer, or just by IAPED for both layers with different compositions. The DLC films have shown good spatial uniformity, density, microhardness, and adhesion strength. They exhibit excellent stability against attack by strong acids, prolonged damp-heat exposure at 85 C and 85% relative humidity, mechanical scratch, ultrasonication, and irradiation by ultraviolet (UV), protons, and electrons. When deposited on crystalline Si and GaAs solar cells in single-layer and/or bilayer structure, the DLC films not only serve as antireflection coating and protective encapsulant, but also improve the cell efficiencies

  8. Measuring The Contact Resistances Of Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    Simple method devised to measure contact resistances of photovoltaic solar cells. Method uses readily available equipment and applicable at any time during life of cell. Enables evaluation of cell contact resistance, contact-end resistance, contact resistivity, sheet resistivity, and sheet resistivity under contact.

  9. Effect of thermal annealing in vacuum on the photovoltaic properties of electrodeposited Cu2O-absorber solar cell

    Directory of Open Access Journals (Sweden)

    Dimopoulos T.

    2014-07-01

    Full Text Available Heterojunction solar cells were fabricated by electrochemical deposition of p-type, cuprous oxide (Cu2O absorber on sputtered, n-type ZnO layer. X-ray diffraction measurements revealed that the as-deposited absorber consists mainly of Cu2O, but appreciable amounts of metallic Cu and cupric oxide (CuO are also present. These undesired oxidation states are incorporated during the deposition process and have a detrimental effect on the photovoltaic properties of the cells. The open circuit voltage (VOC, short circuit current density (jSC, fill factor (FF and power conversion efficiency (η of the as-deposited cells are 0.37 V, 3.71 mA/cm2, 35.7% and 0.49%, respectively, under AM1.5G illumination. We show that by thermal annealing in vacuum, at temperatures up to 300 °C, compositional purity of the Cu2O absorber could be obtained. A general improvement of the heterojunction and bulk materials quality is observed, reflected upon the smallest influence of the shunt and series resistance on the transport properties of the cells in dark and under illumination. Independent of the annealing temperature, transport is dominated by the space-charge layer generation-recombination current. After annealing at 300 °C the solar cell parameters could be significantly improved to the values of: VOC = 0.505 V, jSC = 4.67 mA/cm2, FF = 47.1% and η = 1.12%.

  10. Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Giménez, Sixto; Boix, Pablo P.; Shen, Qing; Calvo, Mauricio E.; Taghavinia, Nima; Azam Iraji zad; Toyoda, Taro; Míguez, Hernán

    2012-01-01

    Highlights: ► Electrode nanostructure and quantum dot growth method have a clear influence in the final quantum dot solar cell performance. ► Higher V oc values are systematically obtained for TiO 2 morphologies with decreasing surface area. ► Higher V oc values are systematically obtained for cells using CBD growth method in comparison with SILAR method. - Abstract: Here we analyze the effect of two relevant aspects related to cell preparation on quantum dot sensitized solar cells (QDSCs) performance: the architecture of the TiO 2 nanostructured electrode and the growth method of quantum dots (QD). Particular attention is given to the effect on the photovoltage, V oc , since this parameter conveys the main current limitation of QDSCs. We have analyzed electrodes directly sensitized with CdSe QDs grown by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR). We have carried out a systematic study comprising structural, optical, photophysical and photoelectrochemical characterization in order to correlate the material properties of the photoanodes with the functional performance of the manufactured QDSCs. The results show that the correspondence between photovoltaic conversion efficiency and the surface area of TiO 2 depends on the QDs deposition method. Higher V oc values are systematically obtained for TiO 2 morphologies with decreasing surface area and for cells using CBD growth method. This is systematically correlated to a higher recombination resistance of CBD sensitized electrodes. Electron injection kinetics from QDs into TiO 2 also depends on both the TiO 2 structure and the QDs deposition method, being systematically faster for CBD. Only for electrodes prepared with small TiO 2 nanoparticles SILAR method presents better performance than CBD, indicating that the small pore size disturb the CBD growth method. These results have important implications for the optimization of QDSCs.

  11. Photovoltaic performance of hybrid ITO/PEDOT:PSS/n-SnS/Al solar cell structure

    Science.gov (United States)

    Jain, Priyal; Arun, P.

    2016-07-01

    The present paper discusses the performance of ITO/PEDOT:PSS/n-SnS/Al structured solar cells fabricated by thermal evaporation. The performance characterizing parameters such as the open circuit voltage, short circuit current density, series resistance, parallel resistance, ideality factor and the overall efficiency were found to be dependent on the SnS grain size in the nano-meter regime and incident light intensity. The experimental work directly reconfirms the theoretical results and ideas raised in the literature by early researchers.

  12. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye

    Science.gov (United States)

    Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin

    2018-04-01

    Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.

  13. Efficient mineralization of the antibiotic trimethoprim by solar assisted photoelectro-Fenton process driven by a photovoltaic cell.

    Science.gov (United States)

    Zhang, Yanyu; Wang, Aimin; Tian, Xiujun; Wen, Zhenjun; Lv, Hanjiao; Li, Desheng; Li, Jiuyi

    2016-11-15

    In this study, a novel self-sustainable solar assisted photoelectro-Fenton (SPEF) system driven by a solar photovoltaic cell was developed for the efficient mineralization of antibiotic trimethoprim (TMP) in water. A comparative degradation of 200mgL(-1) TMP by RuO2/Ti anodic oxidation (AO), anodic oxidation with H2O2 electrogeneration (AO-H2O2), electro-Fenton (EF) and SPEF was investigated. SPEF was proved to exhibit the highest oxidation power, i.e., more than 80% TOC was removed after 360min SPEF treatment of 200mgL(-1) of TMP under optimal conditions at pH 3.0, 1.0mM Fe(2+) and 18mAcm(-2). Influences of current density, pH, initial Fe(2+) and initial TMP concentration on SPEF process were also studied. Ten aromatic intermediates generated from hydroxylation, carbonylation and demethylation reactions were identified using UPLC-QTOF-MS/MS system during the SPEF treatment, together with three carboxylic acids (oxamic, oxalic and formic acids) and two inorganic ions (NH4(+) and NO3(-)) measured. Therefore, a reasonable pathway of TMP degradation in SPEF process was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Voltage Quality Improvement Using Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Denisa Galzina

    2015-06-01

    This paper briefly shows the methods of power quality improvement, and then the results of on-site power quality measurements in the grid before and after the connection of the solar photovoltaic system.

  15. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    Science.gov (United States)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  16. Effects of ZnO nanowire synthesis parameters on the photovoltaic performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui; Myoung, Jihyun; Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr

    2012-06-30

    Determination of the effects of ZnO nanowires on the efficiency of ZnO nanowire-based dye-sensitized solar cells (DSSCs) is important. In this study, we determined the effects of different OH{sup -} precursors, concentrations, the ratio of zinc nitrate to hexamethylene tetramine (HMT), and the hydrothermal synthesis temperature on the physical, crystal, and optical properties of ZnO nanowires and investigated the performance of the resulting DSSCs. We observed that ZnO nanowires synthesized using an equimolar ratio of HMT to zinc nitrate yielded a DSSC with high incident photon-to-current efficiency (IPCE), cell efficiency, short circuit current density (J{sub sc}), and fill factor (FF), and low ZnO-dye-electrolyte interface resistance due to an increased amount of dye and a decreased density of defects. Furthermore, ZnO nanowires made using optimal concentrations and ratios of zinc nitrate to HMT had a high surface area and low defect density. All the photovoltaic performance parameters of DSSCs assessed such as IPCE, cell efficiency, J{sub sc}, open circuit potential (V{sub oc}), and FF increased with synthesis temperature, which was related to a decrease in the resistance at the ZnO-dye-electrolyte interface. We attributed these results to an increased amount of dye facilitated by a large nanowire surface area and fast electron transfer because of the improved crystalline structure of the ZnO nanowires and their low defect density. By optimizing the ZnO nanowires, we increased DSSC efficiency to 0.26% using ZnO nanowires synthesized with 25 mM of both zinc nitrate and HMT at 90 Degree-Sign C, while only a 0.02% increase in efficiency was obtained when NH{sub 4}OH was used as OH{sup -} precursor. - Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based dye-sensitized solar cells (DSSCs) Black-Right-Pointing-Pointer Correlation of synthesis parameters with ZnO nanowires' properties and DSSC performance Black

  17. Decolorizing textile wastewater with Fenton's reagent electrogenerated with a solar photovoltaic cell.

    Science.gov (United States)

    Figueroa, Sandra; Vázquez, Leticia; Alvarez-Gallegos, A

    2009-02-01

    In this work it is demonstrated that Fenton's reagent can be electroproduced with abundant and cheap feedstock: oxygen saturated wastewater and solar energy. Experiments were carried out in a divided electrochemical flow cell using two electrodes: a three dimensional reticulated vitreous carbon cathode and stainless steel anode. Fenton's reagent is produced by oxygen reduction on the cathode in the presence of 1mM Fe(2+). The influence of electrolyte nature and its concentration and potential difference on the current efficiency, as well as the rate of Fenton's reagent electroproduction is discussed and it is concluded that over this extended range of conditions the current efficiency, for Fenton's reagent production, fell within the range 50-70%. It is possible to electroproduce a stoichiometric amount of Fenton reagent for the oxidation of 0.061mM Reactive Black 5 (in tap water+0.05M Na(2)SO(4), approximately pH 2.8). Similar results were obtained for solutions containing 0.1mM Acid Green 25. Some practical applications in the field of water treatment are included. The energy required for drive electrochemical reaction is supplied to the flow cell by means of a commercial solar panel.

  18. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells

    International Nuclear Information System (INIS)

    Berson, S.

    2007-10-01

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Disubstituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillar P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillar layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6% on glass and 3.3 % on plastic were reached without annealing. (author)

  19. Synthesis, characterization and nano-structuration of poly-thiophene derivatives for organic photovoltaic solar cells

    International Nuclear Information System (INIS)

    Berson, S.

    2007-10-01

    This work is devoted to the synthesis of poly-thiophene derivatives with low bandgap and preserving high oxidation potential. Di-substituted thiophenes and 'Donor-Acceptor' bi-thiophenes were synthesized and then polymerized. The side chains of these polymers, donor or acceptor, were modified in order to tune the properties of material as well from the optical point of view as electrochemical. These polymers were also tested in blend with PCBM in bulk-heterojunction photovoltaic cells. Voc delivered by the devices showed a linear dependence according to the potential of oxidation of the polymers. Copolymers containing cyano-thiophene and alkyl- or alkoxy-thiophene showed values of 0.8 V. However, in spite of power conversion efficiency of 1 %, these performances remain lower than the one obtained with the P3HT. Optimizations in terms of morphology are certainly necessary. Indeed, the morphology of the active layer plays a key role in obtaining high power conversion efficiency. An original technique of nano-structuration of the polymer on a nano-metric scale was developed during this work, leading to the development of fibrillary P3HT. These nano-structures, presenting an important degree of order, are formed spontaneously in solution. Their rate compared to amorphous material is perfectly controllable and adjustable in solution and in solid state. Measurements of mobilities show a strong improvement of the transport of load within these fibrillary layers compared to a traditional film of P3HT obtained without annealing. Power conversion efficiencies of 3.6 % on glass and 3.3 % on plastic were reached without annealing. (author)

  20. The development and utilization of solar photovoltaic cells: An assessment of the potential for a new energy technology

    Science.gov (United States)

    Cyr, K. J.

    1981-01-01

    The Government set the goal of accelerating the adaptation of photovoltaics by reducing system costs to a competitive level and overcoming the technical, institutional, legal, environmental, and social barriers impeding the diffusion of photovoltaic technology. The technology of silicon solar arrays was examined and the status of development efforts are reviewed. The political, legal, economic, social, and environmental issues are discussed, and several methods for selecting development projects are described. A number of market forecasting techniques, including time trend, judgemental, and econometric methods, were reviewed, and the results of these models are presented.

  1. Producer responsibility and recycling solar photovoltaic modules

    International Nuclear Information System (INIS)

    McDonald, N.C.; Pearce, J.M.

    2010-01-01

    Rapid expansion of the solar photovoltaic (PV) industry is quickly causing solar to play a growing importance in the energy mix of the world. Over the full life cycle, although to a smaller degree than traditional energy sources, PV also creates solid waste. This paper examines the potential need for PV recycling policies by analyzing existing recycling protocols for the five major types of commercialized PV materials. The amount of recoverable semiconductor material and glass in a 1 m 2 area solar module for the five types of cells is quantified both physically and the profit potential of recycling is determined. The cost of landfill disposal of the whole solar module, including the glass and semiconductor was also determined for each type of solar module. It was found that the economic motivation to recycle most PV modules is unfavorable without appropriate policies. Results are discussed on the need to regulate for appropriate energy and environmental policy in the PV manufacturing industry particularly for PV containing hazardous materials. The results demonstrate the need to encourage producer responsibility not only in the PV manufacturing sector but also in the entire energy industry.

  2. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Directory of Open Access Journals (Sweden)

    Tetsuro Hori

    2010-11-01

    Full Text Available Organic thin-film solar cells with a conducting polymer (CP/fullerene (C60 interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene (PAT6/Au have been improved by the insertion of molybdenum trioxide (VI (MoO3 and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  3. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Science.gov (United States)

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers. PMID:28883360

  4. Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells

    Institute of Scientific and Technical Information of China (English)

    Nanaji Islavath; S Saroja; K Srinivas Reddy; P C Harikesh; G Veerappan; Shrikant V Joshi; Easwaramoorthi Ramasamy

    2017-01-01

    High-efficiency perovskite solar cells (PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere,which hampers upscaling and real-time performance assessment of this exciting photovoltaic technology.In this work,we have systematically studied the feasibility of allambient-processing of PSCs and evaluated their photovoltaic performance.It has been shown that phasepure crystalline tetragonal MAPbI3 perovskite films are instantly formed in ambient air at room temperature by a two-step spin coating process,undermining the need for dry atmosphere and post-annealing.All-ambient-processed PSCs with a configuration of FTO/TiO2/MAPbI3/Spiro-OMeTAD/Au achieve opencircuit voltage (990 mV) and short-circuit current density (20.31 mA/cm2) comparable to those of best reported glove-box processed devices.Nevertheless,device power conversion efficiency is still constrained at 5% by the unusually low fill-factor of 0.25.Dark current-voltage characteristics reveal poor conductivity of hole-transporting layer caused by lack of oxidized spiro-OMeTAD species,resulting in high seriesresistance and decreased fill-factor,The study also establishes that the above limitations can be readily overcome by employing an inorganic p-type semiconductor,copper thiocyanate,as ambient-processable hole-transporting layer to yield a fill-factor of 0.54 and a power conversion efficiency of 7.19%.The present findings can have important implications in industrially viable fabrication of large-area PSCs.

  5. Light illumination intensity dependence of photovoltaic parameter in polymer solar cells with ammonium heptamolybdate as hole extraction layer.

    Science.gov (United States)

    Liu, Zhiyong; Niu, Shengli; Wang, Ning

    2018-01-01

    A low-temperature, solution-processed molybdenum oxide (MoO X ) layer and a facile method for polymer solar cells (PSCs) is developed. The PSCs based on a MoO X layer as the hole extraction layer (HEL) is a significant advance for achieving higher photovoltaic performance, especially under weaker light illumination intensity. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements show that the (NH 4 ) 6 Mo 7 O 24 molecule decomposes and forms the molybdenum oxide (MoO X ) molecule when undergoing thermal annealing treatment. In this study, PSCs with the MoO X layer as the HEL exhibited better photovoltaic performance, especially under weak light illumination intensity (from 100 to 10mWcm -2 ) compared to poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)-based PSCs. Analysis of the current density-voltage (J-V) characteristics at various light intensities provides information on the different recombination mechanisms in the PSCs with a MoO X and PEDOT:PSS layer as the HEL. That the slopes of the open-circuit voltage (V OC ) versus light illumination intensity plots are close to 1 unity (kT/q) reveals that bimolecular recombination is the dominant and weaker monomolecular recombination mechanism in open-circuit conditions. That the slopes of the short-circuit current density (J SC ) versus light illumination intensity plots are close to 1 reveals that the effective charge carrier transport and collection mechanism of the MoO X /indium tin oxide (ITO) anode is the weaker bimolecular recombination in short-circuit conditions. Our results indicate that MoO X is an alternative candidate for high-performance PSCs, especially under weak light illumination intensity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. PAPER PRINTED PHOTOVOLTAIC CELLS: EMERGING METHOD OF PV CELL PRODUCTION

    OpenAIRE

    Nikhil S. Mane*, Avinash M. Patil2, Vishal P. Patil3

    2017-01-01

    An Solar energy is a renewable method for the energy production. The use of solar energy is increasing day by day and share of solar energy is increasing in the power sector of India. But as per pollution increases with energy consumption the need of solar energy will goes on increase in recent future as solar energy is a best option in both thermal and photovoltaic energy conversion processes. Photovoltaic cells are compact and has no movable parts which provides them effectiveness and easy ...

  7. Method of making photovoltaic cell

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2017-06-20

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  8. Grid-Optimization Program for Photovoltaic Cells

    Science.gov (United States)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  9. Cooling design and evaluation for photovoltaic cells within constrained space in a CPV/CSP hybrid solar system

    International Nuclear Information System (INIS)

    Wang, Sheng; Shi, Junxiang; Chen, Hsiu-Hung; Schafer, Steven R.; Munir, Moiz; Stecker, Greg; Pan, Wei; Lee, Jong-Jan; Chen, Chung-Lung

    2017-01-01

    Highlights: • A practical cooling solution is proposed for a novel CPV/CSP hybrid solar system. • Both passive and active cooling techniques were systematically investigated. • Comprehensive experimental and numerical studies were conducted for optimal design. • Active cooling is in great need for a high waste heat flux of 21.8 W/cm 2 . • Passive cooling becomes attractive for a waste heat flux less than 13.0 W/cm 2 . - Abstract: A hybrid solar energy system has been designed by combining the advantages of concentrated solar power (CSP) technology and high performance concentrated photovoltaic (CPV) cells which outperforms either single technology. Thermal management is crucial to CPV cells in this hybrid solar system, as concentrated solar radiation onto the PV cells leads to higher heat flux. If the heat is not dissipated effectively, it can cause obvious temperature rise and efficiency reduction in the cell. In addition, the constrained space available for PV cell cooling in such hybrid solar systems presents more challenges. In this study both passive cooling and active cooling techniques were systematically investigated in both numerical and experimental ways. For the passive cooling method, two different designs from off-the-shelf heat pipes with radial fins or annular fins were proposed and studied under various heat rejection requirements. Results shows that heat pipes with radial fins exhibited narrow capability of dumping the heat, while heat pipes with annular fins presented better performances under the same conditions. Numerical optimal designs of annular fin numbers and fin gaps were then carried out and experimentally validated, indicating a capability of dumping moderate waste heat (∼45 W). For active cooling technique, a comprehensive study of designing plate fin heatsinks were conducted corresponding to high Ingress Protection (IP) rated off-the-shelf fans. Results show that with a less than 2 W fan power consumption, this active

  10. Electro-chemical development of CuInGaSe2-based photovoltaic solar cells

    Science.gov (United States)

    Tolan, Gavin James

    The aim of this work was to make low cost, high efficiency, graded bandgap, thin film CuInGaSe2 solar cells by electrodeposition, using novel device designs proposed by Dharmadasa et al. These new designs were first experimentally tested using well researched GaAs and AlxGa(1-x)As materials grown using MOCVD, these ideas were then transferred to electrodeposited CuInGaSe2.New designs of graded bandgap solar cells based on p-type window materials, using the well researched GaAs and AlxGa(1-x)As alloy system, have been experimentally tested. The size of the cell was gradually scaled up from 0.5 mm diameter (0.002 cm2) to 3x3 mm2 (0.090 cm2) and to 5x5 mm2 (0.250 cm2), these were then assessed using I-V and QE techniques. The devices showed Voc in the range of 1070-1175 mV, exceeding reported values, FF in the range 0.80-0.87, and Jsc in the range 11-12 mA cm-2. The reason for the low current density was believed to be due to the GaAs capping layer used in the device, which acted as a filter. To confirm this, a second set of devices was fabricated, replacing the GaAs cap with GaAlP, this increased the Jsc to 14 mA cm-2, Voc and FF remained the same.New PV device structures based on CuInGaSe2 starting from the front contact, instead of the conventional Mo back contact, have been grown by electrodeposition from aqueous solutions using a single bath. In order to investigate the effect of bath concentrations on the film properties, 3 different bath concentrations were used. PEC was used to determine the electrical conduction of these layers, and it was found that it was possible to grow p+, p, i, n, n+ layers by changing the deposition voltage. XRF was used to determine the stoichiometry of the corresponding layers, and XRD to investigate the bulk structure. The morphological properties were studied using AFM and SEM. A four-layer n-n-i-p solar cell structure was initially fabricated and I-V measurements were carried out to assess the devices. The devices were PV active

  11. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells.

    Science.gov (United States)

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah; Lee, Sangwook; Kim, Dong Hoe; Zhu, Kai; Shin, Hyunjung; Kim, Jin Young

    2017-12-06

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb x MA 1-x )PbI 3 ) films and the photovoltaic performance of (Rb x MA 1-x )PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc ) and the short circuit photocurrent density (J sc ) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the single tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05 MA 0.95 )PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0 ). The optimized (Rb x MA 1-x )PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.

  12. Performance comparison between ethanol phase-change immersion and active water cooling for solar cells in high concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Wang, Yiping; Wen, Chen; Huang, Qunwu; Kang, Xue; Chen, Miao; Wang, Huilin

    2017-01-01

    Highlights: • Thermal performances of ethanol phase-change immersion and active water cooling are compared. • Effects of operation parameters on ethanol phase-change immersion are studied. • Optimum filling ratio is 30% for ethanol phase-change immersion cooling system. • Exergy efficiency of ethanol phase-change immersion method increases by 57%. - Abstract: This paper presents an optimized ethanol phase-change immersion cooling method to obtain lower temperature of dense-array solar cells in high concentrating photovoltaic system. The thermal performances of this system were compared with a conventional active water cooling system with minichannels from the perspectives of start-up characteristic, temperature uniformity, thermal resistance and heat transfer coefficient. This paper also explored the influences of liquid filling ratio, absolute pressure and water flow rate on thermal performances. Dense-array LEDs were used to simulate heat power of solar cells worked under high concentration ratios. It can be observed that the optimal filling ratio was 30% in which the thermal resistance was 0.479 °C/W and the heat transfer coefficient was 9726.21 W/(m 2 ·°C). To quantify the quality of energy output of two cooling systems, exergy analysis are conducted and maximum exergy efficiencies were 17.70% and 11.27%, respectively. The experimental results represent an improvement towards thermal performances of ethanol phase-change immersion cooling system due to the reduction in contact thermal resistance. This study improves the operation control and applications for ethanol phase-change immersion cooling technology.

  13. Solution for Improve the Efficiency of Solar Photovoltaic Installation

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2013-01-01

    Full Text Available This paper present a solution for improving efficiency of solar photovoltaic installation, realized with fixed solar photovoltaic modules, placed in solar parks or individual installations. The proposed solution to increase the radiation on the solar photovoltaic panels is to use some thin plates covered with a reflective blanket, mounted in front of the solar photovoltaic modules, with the possibility of their adjustment.

  14. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  15. Improved semiconductors for photovoltaic solar cells. Quarterly report No. 1, July 1-September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The purpose of the work on this contract is to study the suitability of Zn/sub 3/P/sub 2/ as a photovoltaic material for large scale terrestrial use. Zn/sub 3/P/sub 2/ was chosen for study because those of its physical parameters which could be gleaned from a rather sparse literature match fairly well the criteria for optimum terrestrial photovoltaic materials. The main emphasis in the quarter has been on material preparation. Materials synthesis has been successful, with a fair number of useable single crystals produced with the bulk material. In addition, thin films have been produced in a preliminary way on various substrates. Initial electrical and optical studies have been carried out in both single crystals and films, but the results of these studies are of a preliminary nature only.

  16. Structural and optical properties of electrodeposited culnSe2 thin films for photovoltaic solar cells

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.; Galiano, F.

    1990-01-01

    Optical an structural properties of electrodeposited copper indium diselenide, CulnSe2, thin films were studied for its application in photovoltaic devices. X-ray diffraction patterns showed that thin films were grown in chalcopyrite phase after suitable treatments. Values of Eg for the CulnSe2 thin films showed a dependence on the deposition potential as determined by optical measurements. (Author) 47 refs

  17. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Shan Su

    2013-01-01

    Full Text Available The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors. In this study, I analyzed the trends and developments of the solar photovoltaic industry in Taiwan and in the globe. And I also investigated the positioning and competitive advantage of Taiwanese firms in the value chain of the global solar photovoltaic industry. I found that Taiwanese firms continue to have an important and indispensable role in the global solar photovoltaic industry by either differentiation or cost advantage.

  18. Alkoxybenzothiadiazole-Based Fullerene and Nonfullerene Polymer Solar Cells with High Shunt Resistance for Indoor Photovoltaic Applications.

    Science.gov (United States)

    Park, Song Yi; Li, Yuxiang; Kim, Jaewon; Lee, Tack Ho; Walker, Bright; Woo, Han Young; Kim, Jin Young

    2018-01-31

    We synthesized three semicrystalline polymers (PTTBT BO , PDTBT BO , and P2FDTBT BO ) by modulating the intra- and intermolecular noncovalent Coulombic interactions and investigated their photovoltaic characteristics under various light intensities. Low series (R s ) and high shunt (R sh ) resistances are essential prerequisites for good device properties under standard illumination (100 mW cm -2 ). Considering these factors, among three polymers, PDTBT BO polymer solar cells (PSCs) exhibited the most desirable characteristics, with peak power conversion efficiencies (PCE) of 7.52 and 9.60% by being blended with PC 71 BM under standard and dim light (2.5 mW cm -2 ), respectively. P2FDTBT BO PSCs exhibited a low PCE of 3.69% under standard light due to significant charge recombination with high R s (9.42 Ω cm 2 ). However, the PCE was remarkably improved by 2.3 times (8.33% PCE) under dim light, showing negligible decrease in open-circuit voltage and remarkable increase in fill factor, which is due to an exceptionally high R sh of over 1000 kΩ cm 2 . R s is less significant under dim light because the generated current is too small to cause noticeable R s -induced voltage losses. Instead, high R sh becomes more important to avoid leakage currents. This work provides important tips to further optimize PSCs for indoor applications with low-power electronic devices such as Internet of things sensors.

  19. Enhanced photovoltaic properties in graphitic carbon nanospheres networked TiO{sub 2} nanocomposite based dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Radhe [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Sahoo, Satyaprakash, E-mail: satya504@gmail.com [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Chitturi, Venkateswara Rao [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Williams, Joseph D. [Department of Biomedical and Chemical Engineering, Syracuse University, L.C. Smith College of Engineering and Computer Science, Syracuse, NY (United States); Resto, Oscar [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Katiyar, Ram S., E-mail: rkatiyar@hpcf.uprrp.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States)

    2015-08-25

    Highlights: • Nano size graphitic carbon nanospheres were prepared from MWCNTs. • TiO{sub 2}/GCNS composite was used as the photoanode in dye-sensitized solar cell. • An improved photovoltaic performance with GCNS–TiO{sub 2} composite was noticed. - Abstract: In this work, we report a novel carbon based TiO{sub 2} nanocomposite electron injection layer (photoanode) toward the improved performance of DSSCs. Graphitic carbon nanospheres (GCNSs) were synthesized by a unique acidic treatment of multi-wall carbon nanotubes. GCNS–TiO{sub 2} nanocomposites with different concentrations of GCNSs (ranging from 5 to 20 μL) were prepared to use as photoanodes in DSSCs. Structural and morphological properties of GCNS–TiO{sub 2} nanocomposites were analyzed by Raman spectroscopy and ultra-high resolution transmission electron microscopy techniques, respectively. A systematic increment in the short circuit current density (J{sub SC}) and open circuit voltage (V{sub OC}) of DSSC was observed by increasing GCNS concentration up to an optimal value, possibly due to the combined effect of slight rise in quasi-Fermi level and higher carrier transport rate in the resultant composite. Thus, a significant enhancement of ∼47% in the efficiency of DSSC containing GCNS–TiO{sub 2} photoanode was observed as compare to DSSC with pure TiO{sub 2} photoanode.

  20. Techno-economic feasibility analysis of hydrogen fuel cell and solar photovoltaic hybrid renewable energy system for academic research building

    International Nuclear Information System (INIS)

    Singh, Anand; Baredar, Prashant; Gupta, Bhupendra

    2017-01-01

    Highlights: • A HFC and SPV HRES for stand-alone applications is proposed. • The FC program computes the optimum cost of HRES components. • HOMER pro software to calculate the optimum performance of HRES. - Abstract: A hydrogen fuel cell (HFC) and solar photovoltaic (SPV) hybrid renewable energy system (HRES) for stand-alone applications is proposed. This system arrangement of a hydrogen tank, battery, and an electrolyzer are used as like the energy storage. The economic viability of using HRES power to supply the electrical load demand of academic research building located at 23°12′N latitude and 77°24′E longitudes, India is examined. The fuzzy logic program computes the optimum value of capital and replacement cost of the components, which is then utilized in HOMER pro software to calculate the optimum performance of HRES. The results shows the HFC and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The AC primary load consuming 20712.63 kWh/year out of total power generation of HRES which is 24570.72 kWh/year. The excess of electricity produced by HRES is 791.7709 kWh/year with the optimized cost of energy, unmet electrical load and capacity shortage of 0%.

  1. Hydrogenated TiO{sub 2} film for enhancing photovoltaic properties of solar cells and self-sensitized effect

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongcai; Yang, Kui; Wang, Ning, E-mail: ning-wang@uestc.edu.cn; Luo, Feifei; Chen, Haijun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2013-12-07

    Hydrogenated TiO{sub 2} film was obtained by annealing TiO{sub 2} film at 350 °C for 2 h with hydrogen, and TiO{sub 2} films were prepared by screen printing on fluorine-doped tin oxide glass. Structural characterization by X-ray diffraction and electron microscopy did not show obvious difference between hydrogenated TiO{sub 2} film and pristine TiO{sub 2} film. Through optical and electrochemical characterization, the hydrogenated TiO{sub 2} film showed enhanced absorption and narrowed band gap, as well as reduced TiO{sub 2} surface impedance and dark current. As a result, an obviously enhanced photovoltaic effect was observed in the solar cell with hydrogenated TiO{sub 2} as photoanode without adding any dye due to the self-sensitized effect of hydrogenated TiO{sub 2} film, which excited electrons injecting internal conduction band of TiO{sub 2} to generate more photocurrent.

  2. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  3. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  4. Competing in the Global Solar Photovoltaic Industry: The Case of Taiwan

    OpenAIRE

    Yu-Shan Su

    2013-01-01

    The top five solar cell supply countries in the world in sequential order are China, Taiwan, the United States of America, Japan, and Germany. The capacity of Taiwanese solar cell production is ranked top two in the globe. The competitive advantage of the Taiwanese electronics firms has facilitated the rapid developments to its solar photovoltaic industry. The Taiwanese solar photovoltaic industry possesses a large size and a complete value chain of upstream, midstream, and downstream sectors...

  5. Photovoltaic cell module and method of forming

    Science.gov (United States)

    Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay

    2017-12-12

    A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.

  6. Mathematical models for photovoltaic solar panel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jose Airton A. dos; Gnoatto, Estor; Fischborn, Marcos; Kavanagh, Edward [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], Emails: airton@utfpr.edu.br, gnoatto@utfpr.edu.br, fisch@utfpr.edu.br, kavanagh@utfpr.edu.br

    2008-07-01

    A photovoltaic generator is subject to several variations of solar intensity, ambient temperature or load, that change your point of operation. This way, your behavior should be analyzed by such alterations, to optimize your operation. The present work sought to simulate a photovoltaic generator, of polycrystalline silicon, by characteristics supplied by the manufacturer, and to compare the results of two mathematical models with obtained values of field, in the city of Cascavel, for a period of one year. (author)

  7. Bi-functional TiO2 cemented Ag grid under layer for enhancing the photovoltaic performance of a large-area dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Lan Zhang; Wu Jihuai; Lin Jianming; Huang, Miaoliang

    2012-01-01

    Graphical abstract: Enhanced photovoltaic performance of large-area DSSC with conductive grids in the photo and counter electrodes. Highlights: ► TiO 2 protected Ag grids is made for using as electrode in large-area DSSC. ► The electrode has high conductivity and low internal resistance. ► TiO 2 protected Ag grids electrode avoids iodine corrosion in electrolyte. ► The TiO 2 layer also play a blocking layer role. ► Above factors enhance the photovoltaic performance of large-area DSSC. - Abstract: A bi-functional TiO 2 cemented Ag grid under layer for enhanced the photovoltaic performance of a large-area dye-sensitized solar cell (DSSC) is prepared with a simple way. The conductive printing paste contains micro-sized Ag powders and nano-sized TiO 2 cementing agent. The conductive printing paste can be well cemented on the FTO glass and form high conductive grids with Ag powders sintered together by the nano-sized TiO 2 particles. The formed conductive grid is protected with a TiO 2 thin layer and TiO 2 sol treatment to avoid the iodine corrosion. The addition of the TiO 2 cemented conductive grid can decrease the internal resistance of the large-area dye-sensitized solar cell when it is prepared in the photo and counter electrodes. Furthermore, the protecting TiO 2 thin layer and the TiO 2 sol treatment can be done on the whole area of the large-area photo electrode to both play as the blocking under layer at the same time, which can also enhance the photovoltaic performance of the large-area dye-sensitized solar cell.

  8. PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance

    Science.gov (United States)

    Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei

    2017-08-01

    Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.

  9. Photocurrent of Photovoltaic Cells

    Science.gov (United States)

    Peeler, Seth; McIntyre, Max; Cossel, Raquel; Bowser, Chris; Tzolov, Marian

    Photovoltaic cells can be used to harness clean, renewable energy from light. Examined in this project were photovoltaic cells based on a bulk heterojunction between PCPDTBT and PCBM sandwiched between an ITO anode and an Al cathode. Current-voltage characteristics and impedance spectra for multiple photovoltaic devices were taken under varying DC electrical bias and different level of illumination. This data was interpreted in terms of an equivalent circuit with linear elements, e.g. capacitance, series resistance, and parallel resistance. A physical interpretation of each circuit element will be presented. The spectral response of the devices was characterized by optical transmission and photocurrent spectroscopy using a spectrometer in the spectral range from 300 to 900 nm. The DC measurements confirmed that the devices are electrically rectifying. The AC measurements allowed modeling of the devices as a dielectric between two electrodes with injection current passing through it. The characteristic peaks for both PCBDTBT and PCBM are clearly visible in both the photocurrent and transmission data. The good correlation between the photocurrent and transmission data indicates photocurrent generation due to absorption in both materials constituting the heterojunction.

  10. Optimum energy levels and offsets for organic donor/acceptor binary photovoltaic materials and solar cells

    International Nuclear Information System (INIS)

    Sun, S.-S.

    2005-01-01

    Optimum frontier orbital energy levels and offsets of an organic donor/acceptor binary type photovoltaic material have been analyzed using classic Marcus electron transfer theory in order to achieve the most efficient photo induced charge separation. This study reveals that, an exciton quenching parameter (EQP) yields one optimum donor/acceptor frontier orbital energy offset that equals the sum of the exciton binding energy and the charge separation reorganization energy, where the photo generated excitons are converted into charges most efficiently. A recombination quenching parameter (RQP) yields a second optimum donor/acceptor energy offset where the ratio of charge separation rate constant over charge recombination rate constant becomes largest. It is desirable that the maximum RQP is coincidence or close to the maximum EQP. A third energy offset is also identified where charge recombination becomes most severe. It is desirable that the most severe charge recombination offset is far away from maximum EQP offset. These findings are very critical for evaluating and fine tuning frontier orbital energy levels of a donor/acceptor pair in order to realize high efficiency organic photovoltaic materials

  11. Concentration of solar radiation by white backed photovoltaic panels.

    Science.gov (United States)

    Smestad, G; Hamill, P

    1984-12-01

    In this paper, we present an analysis of the concentration achieved by white backed photovoltaic panels. Concentration is due to the trapping by light scattered in the refractive plate to which the solar cell is bonded. Using the reciprocity relation and assuming the ideal case of a Lambertian distribution, a detailed model is formulated that includes the effects of the thickness and walls of the concentrator. This model converges to the thermodynamic limit and is found to be consistent with experimental results for a wide range of cell sizes. Finally, the model is generalized to multiple-cell photovoltaic panels.

  12. Optical design of a solar flux homogenizer for concentrator photovoltaics

    Science.gov (United States)

    Kreske, Kathi

    2002-04-01

    An optical solution is described for the redistribution of the light reflected from a 400-m2 paraboloidal solar concentrating dish as uniformly as possible over an approximately 1-m2 plane. Concentrator photovoltaic cells will be mounted at this plane, and they require a uniform light distribution for high efficiency. It is proposed that the solar cells will be mounted at the output of a rectangular receiver box with reflective sidewalls (i.e., a kaleidoscope), which will redistribute the light. I discuss the receiver box properties that influence the light distribution reaching the solar cells.

  13. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  14. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    Science.gov (United States)

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  15. The influence of annealing temperature on the interface and photovoltaic properties of CdS/CdSe quantum dots sensitized ZnO nanorods solar cells.

    Science.gov (United States)

    Qiu, Xiaofeng; Chen, Ling; Gong, Haibo; Zhu, Min; Han, Jun; Zi, Min; Yang, Xiaopeng; Ji, Changjian; Cao, Bingqiang

    2014-09-15

    Arrays of ZnO/CdS/CdSe core/shell nanocables with different annealing temperatures have been investigated for CdS/CdSe quantum dots sensitized solar cells (QDSSCs). CdS/CdSe quantum dots were synthesized on the surface of ZnO nanorods that serve as the scaffold via a simple ion-exchange approach. The uniform microstructure was verified by scanning electron microscope and transmission electron microscope. UV-Visible absorption spectrum and Raman spectroscopy analysis indicated noticeable influence of annealing temperature on the interface structural and optical properties of the CdS/CdSe layers. Particularly, the relationship between annealing temperatures and photovoltaic performance of the corresponding QDSSCs was investigated employing photovoltaic conversion, quantum efficiency and electrochemical impedance spectra. It is demonstrated that higher cell efficiency can be obtained by optimizing the annealing temperature through extending the photoresponse range and improving QD layer crystal quality. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effect of electrodeposition and annealing of ZnO on optical and photovoltaic properties of the p-Cu2O/n-ZnO solar cells

    International Nuclear Information System (INIS)

    Hussain, Sajad; Cao Chuanbao; Nabi, Ghulam; Khan, Waheed S.; Usman, Zahid; Mahmood, Tariq

    2011-01-01

    Highlights: → The p-Cu 2 O/n-ZnO heterojunction was fabricated by using electrodeposition and rf sputtering techniques, respectively. → The effect of electrodeposition on optical and photovoltaic properties of the p-Cu 2 O/n-ZnO solar cells has been examined. → The preannealing of ZnO thin films has enhanced the efficiency of solar cells. → The efficiency of the solar cell was measured 0.46%. - Abstract: Cu 2 O/ZnO p-n heterojunction solar cells were fabricated by rf sputtering deposition of n-ZnO layer, followed by electrodeposition of p-Cu 2 O layer. The different electrodeposition potentials were applied to deposit Cu 2 O on ZnO. The particle size, crystal faces, crystallinity of Cu 2 O is important factor which determine the p-n junction interface and consequently their effect on the performance of the heterojunction solar cell. It is observed that at -0.6 V, p-Cu 2 O film generates fewer surface states in the interband region due to the termination of [1 1 0] resulting in higher efficiency (0.24%) with maximum particle size (53 nm). The bandgap of Cu 2 O at this potential is found to be 2.17 eV. Furthermore, annealing of ZnO film was performed to get rid of deteriorating one and two dimensional defects, which always reduce the performance of solar cell significantly. We found that the solar cell performance efficiency is nearly doubled by increasing the annealing temperature of ZnO thin films due to increasing electrical conductance and electron mobility. Doping studies and fine tuning of the junction morphology will be necessary to further improve the performance of Cu 2 O/ZnO heterojunction solar cells.

  17. A comparison of performance of flat and bent photovoltaic luminescent solar concentrators

    NARCIS (Netherlands)

    Vishwanathan, B.; Reinders, A. H.M.E.; de Boer, D.K.G.; Desmet, L.; Ras, A. J.M.; Zahn, F. H.; Debije, M.G.

    2015-01-01

    To employ new solar photovoltaic technologies in products and buildings, many systems need to be adapted. Inspired by the cylindrical shape, in this work we have evaluated the performance of luminescent solar concentrator photovoltaic (LSC-PV) elements with narrow PV cell strips that could be

  18. CuIn{sub 1-x}Ga{sub x}Se{sub 2} photovoltaic devices for tandem solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Seyrling, S. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland)], E-mail: seyrling@phys.ethz.ch; Calnan, S. [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom); Buecheler, S. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Huepkes, J. [Institut fuer Energieforschung, Photovoltaik, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Wenger, S. [Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPF Lausanne, 1015 Lausanne (Switzerland); Bremaud, D.; Zogg, H. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Tiwari, A.N. [Thin Film Physics Group, Laboratory for Solid-State Physics, ETH Zuerich, Technopark, Technoparkstrasse 1, 8005 Zuerich (Switzerland); Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire, LE11 3TU (United Kingdom)

    2009-02-02

    CuIn{sub 1-x}Ga{sub x}Se{sub 2} (CIGS) solar cells show a good spectral response in a wide range of the solar spectrum and the bandgap of CIGS can be adjusted from 1.0 eV to 1.7 eV by increasing the gallium-to-indium ratio of the absorber. While the bandgaps of Ga-rich CIGS or CGS devices make them suitable for top or intermediate cells, the In rich CIGS or CIS devices are well suited to be used as bottom cells in tandem solar cells. The photocurrent can be adapted to the desired value for current matching in tandem cells by changing the composition of CIGS which influences the absorption characteristics. Therefore, CIGS layers with different [Ga]/[In + Ga] ratios were grown on Mo and ZnO:Al coated glass substrates. The grain size, composition of the layers, and morphology strongly depend on the Ga content. Layers with Ga rich composition exhibit smaller grain size and poor photovoltaic performance. The current densities of CIGS solar cells on ZnO:Al/glass varied from 29 mA cm{sup -2} to 13 mA cm{sup -2} depending on the Ga content, and 13.5% efficient cells were achieved using a low temperature process (450 deg. C ). However, Ga-rich solar cells exhibit lower transmission than dye sensitized solar cells (DSC). Prospects of tandem solar cells combining a DSC with CIGS are presented.

  19. Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting.

    Science.gov (United States)

    Jia, Yi; Zhang, Zexia; Xiao, Lin; Lv, Ruitao

    2016-12-01

    A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasible method to improve cell's performance and the device can also work as a self-powered gas sensor beyond a solar cell. It shows a significant improvement in cell efficiency (more than 200 times) after NO2 molecules doping (device working as a solar cell) and a fast, reversible response property for NO2 detection (device working as a gas sensor). Such multifunctional CNT-SiNW structure can be expected to open a new avenue for developing self-powered, efficient toxic gas-sensing devices in the future.

  20. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  1. Effect of the grain sizes on the photovoltaic parameters of CdTe solar cells prepared by close space sublimation method

    International Nuclear Information System (INIS)

    Potlog, T.

    2007-01-01

    Thin Film CdS/CdTe solar cells were fabricated by Close Space Sublimation at the substrate temperature ranging from 300 degrees ± 5 degrees to 340 degrees ± degrees. The best photovoltaic parameters were achieved at substrate temperature 320 degrees and source temperature 610 degrees. The open circuit voltage and current density changes significantly with the substrate temperature and depends on the dimension of the grain sizes. Grain size is an efficiency limiting parameter for CdTe layers with large grains. The open circuit voltage and current density are the best for the cells having dimension of grains between 1.0 μm and ∼ 5.0 μm. CdS/CdTe solar cells with an efficiency of ∼ 10% were obtained. (author)

  2. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  3. Surface Design in Solid-State Dye Sensitized Solar Cells: Effects of Zwitterionic Co-adsorbents on Photovoltaic Performance

    KAUST Repository

    Wang, Mingkui; Grä tzel, Carole; Moon, Soo-Jin; Humphry-Baker, Robin; Rossier-Iten, Nathalie; Zakeeruddin, Shaik M.; Grä tzel, Michael

    2009-01-01

    In solid-state dye sensitized solar cells (SSDSCs) charge recombination at the dye-hole transporting material interface plays a critical role in the cell efficiency. For the first time we report on the influence of dipolar coadsorbents

  4. Microstructures and Photovoltaic Properties of Zn(AlO/Cu2O-Based Solar Cells Prepared by Spin-Coating and Electrodeposition

    Directory of Open Access Journals (Sweden)

    Takeo Oku

    2014-03-01

    Full Text Available Copper oxide (Cu2O-based heterojunction solar cells were fabricated by spin-coating and electrodeposition methods, and photovoltaic properties and microstructures were investigated. Zinc oxide (ZnO and Cu2O were used as n- and p-type semiconductors, respectively, to fabricate photovoltaic devices based on In-doped tin oxide/ZnO/Cu2O/Au heterojunction structures. Short-circuit current and fill factor increased by aluminum (Al doping in the ZnO layer, which resulted in the increase of the conversion efficiency. The efficiency was improved further by growing ZnO and Cu2O layers with larger crystallite sizes, and by optimizing the Al-doping by spin coating.

  5. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeok Im

    2014-08-01

    Full Text Available Perovskite CH3NH3PbI3 light absorber is deposited on the mesoporous TiO2 layer via one-step and two-step coating methods and their photovoltaic performances are compared. One-step coating using a solution containing CH3NH3I and PbI2 shows average power conversion efficiency (PCE of 7.5%, while higher average PCE of 13.9% is obtained from two-step coating method, mainly due to higher voltage and fill factor. The coverage, pore-filling, and morphology of the deposited perovskite are found to be critical in photovoltaic performance of the mesoporous TiO2 based perovskite solar cells.

  6. H3PO4 treated surface modified CuS counter electrodes with high electrocatalytic activity for enhancing photovoltaic performance of quantum dot-sensitized solar cells

    Science.gov (United States)

    Panthakkal Abdul Muthalif, Mohammed; Sunesh, Chozhidakath Damodharan; Choe, Youngson

    2018-05-01

    Herein we report a simple synthetic strategy to prepare highly efficient and surface modified CuS counter electrodes (CEs) for quantum dot-sensitized solar cells (QDSSCs) in the presence of phosphoric acid (H3PO4) using the chemical bath deposition method. This is the first report of successful treatment of H3PO4 on the surface of CuS CEs for designing a high-performance QDSSCs with improved photovoltaic properties. After optimization, the 4 ml H3PO4 treated CuS CE-based QDSSC exhibits excellent photovoltaic performance with a conversion efficiency (η) of 4.20% (Voc = 0.592 V, Jsc = 13.35 mA cm-2, FF = 0.532) under one full-sun illumination (100 mW cm-2, AM 1.5 G).

  7. Exploring the Effects of the Pb2+ Substitution in MAPbI3 on the Photovoltaic Performance of the Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Frolova, Lyubov A; Anokhin, Denis V; Gerasimov, Kirill L; Dremova, Nadezhda N; Troshin, Pavel A

    2016-11-03

    Here we report a systematic study of the Pb 2+ substitution in the hybrid iodoplumbate MAPbI 3 with a series of elements affecting optoelectronic, structural, and morphological properties of the system. It has been shown that even partial replacement of lead with Cd 2+ , Zn 2+ , Fe 2+ , Ni 2+ , Co 2+ , In 3+ , Bi 3+ , Sn 4+ , and Ti 4+ results in a significant deterioration of the photovoltaic characteristics. On the contrary, Hg-containing hybrid MAPb 1-x Hg x I 3 salts demonstrated a considerably improved solar cell performance at optimal mercury loading. This result opens up additional dimension in the compositional engineering of the complex lead halides for designing novel photoactive materials with advanced optoelectronic and photovoltaic properties.

  8. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  9. Flexible Solar Cells

    NARCIS (Netherlands)

    Galagan, Y.

    2018-01-01

    This chapter discusses roll-to-roll (R2R) manufacturing of organic and perovskite solar cells (PSCs), as these emerging photovoltaic (PV) technologies can be fabricated using well-known R2R printing and coating processes that are widely used in the industry. The manufacturing of PV devices starts

  10. Solar photovoltaic research and development program of the Air Force Aero Propulsion Laboratory. [silicon solar cell applicable to satellite power systems

    Science.gov (United States)

    Wise, J.

    1979-01-01

    Progress is reported in the following areas: laser weapon effects, solar silicon solar cell concepts, and high voltage hardened, high power system technology. Emphasis is placed on solar cells with increased energy conversion efficiency and radiation resistance characteristics for application to satellite power systems.

  11. Microwave-assisted aqueous synthesis of ultralong ZnO nanowires: photoluminescence and photovoltaic performance for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Min, C.; Shen, X.; Sheng, W. [Jiangsu University, School of Materials Science and Engineering, Zhenjiang (China)

    2009-09-15

    Ultralong ZnO nanowires were successfully prepared on a large scale by a microwave-assisted aqueous route without using any surfactant or template at relatively low temperature of 120 C. The obtained nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectrum (EDX). The growth mechanism and photoluminescence of the one-dimensional nanostructure, and photovoltaic performances for dye-sensitized solar cell (DSSC) of the nanowires were discussed in detail. (orig.)

  12. Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtarova, Anna; Valdueza-Felip, Sirona; Redaelli, Luca; Durand, Christophe; Monroy, Eva; Eymery, Joël, E-mail: joel.eymery@cea.fr [Université Grenoble Alpes, 38000 Grenoble (France); CEA-CNRS group “Nanophysique et semiconducteurs”, CEA-INAC-PHELIQS, 17 av. des Martyrs, 38054 Grenoble (France); Bougerol, Catherine [Université Grenoble Alpes, 38000 Grenoble (France); CEA-CNRS group “Nanophysique et semiconducteurs”, Institut Néel-CNRS, 25 av. des Martyrs, 38042 Grenoble (France)

    2016-04-18

    We investigate the photovoltaic performance of pseudomorphic In{sub 0.1}Ga{sub 0.9}N/GaN multiple-quantum well (MQW) solar cells as a function of the total active region thickness. An increase in the number of wells from 5 to 40 improves the short-circuit current and the open-circuit voltage, resulting in a 10-fold enhancement of the overall conversion efficiency. Further increasing the number of wells leads to carrier collection losses due to an incomplete depletion of the active region. Capacitance-voltage measurements point to a hole diffusion length of 48 nm in the MQW region.

  13. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules; Calculo de la Temperature de Operacion de Celulas Solares en un Panel Fotovoltaico Plano

    Energy Technology Data Exchange (ETDEWEB)

    Chenlo, F.

    2002-07-01

    Two procedures (simplified and complete) to determine the operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show the dependence of this temperature on several environment (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, antirreflexive optical coatings, etc) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author)

  14. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO₂ Based CdS Quantum Dot Sensitized Solar Cells.

    Science.gov (United States)

    Atif, M; Farooq, W A; Fatehmulla, Amanullah; Aslam, M; Ali, Syed Mansoor

    2015-01-19

    Cadmium sulphide (CdS) quantum dot sensitized solar cells (QDSSCs) based on screen-printed TiO₂ were assembled using a screen-printing technique. The CdS quantum dots (QDs) were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO) electrode into TiO₂.

  15. The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube-silicon solar cells.

    Science.gov (United States)

    Stolz, Benedikt W; Tune, Daniel D; Flavel, Benjamin S

    2016-01-01

    Recent results in the field of carbon nanotube-silicon solar cells have suggested that the best performance is obtained when the nanotube film provides good coverage of the silicon surface and when the nanotubes in the film are aligned parallel to the surface. The recently developed process of dry shear aligning - in which shear force is applied to the surface of carbon nanotube thin films in the dry state, has been shown to yield nanotube films that are very flat and in which the surface nanotubes are very well aligned in the direction of shear. It is thus reasonable to expect that nanotube films subjected to dry shear aligning should outperform otherwise identical films formed by other processes. In this work, the fabrication and characterisation of carbon nanotube-silicon solar cells using such films is reported, and the photovoltaic performance of devices produced with and without dry shear aligning is compared.

  16. Solar Radiation on Mars: Tracking Photovoltaic Array

    Science.gov (United States)

    Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos

    1994-01-01

    A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.

  17. Siting Solar Photovoltaics at Airports: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Romero, R.

    2014-06-01

    Airports present a significant opportunity for hosting solar technologies due to their open land; based on a 2010 Federal Aviation Administration study, the US Department of Agriculture, and the US Fish and Wildlife Service, there's potential for 116,704 MW of solar photovoltaics (PV) on idle lands at US airports. PV has a low profile and likely low to no impact on flight operations. This paper outlines guidance for implementing solar technologies at airports and airfields, focusing largely on the Federal Aviation Administration's policies. The paper also details best practices for siting solar at airports, provides information on the Solar Glare Hazard Analysis Tool, and highlights a case study example where solar has been installed at an airport.

  18. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.

  19. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.

    Science.gov (United States)

    Celik, Ilke; Mason, Brooke E; Phillips, Adam B; Heben, Michael J; Apul, Defne

    2017-04-18

    An ex-ante life cycle inventory was developed for single walled carbon nanotube (SWCNT) PV cells, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device. The environmental impact of unit energy generation from the mono-Si PV technology was used as a reference point. Compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. The effects of lifetime and efficiency on the environmental impacts were further examined. This analysis showed that if the SWCNT device efficiency had the same value as the best efficiency of the material under comparison, to match the total normalized impacts of the mono- and poly-Si, CIGS, CdTe, and a-Si devices, the SWCNT devices would need a lifetime of 2.8, 3.5, 5.3, 5.1, and 10.8 years, respectively. It was also found that if the SWCNT PV has an efficiency of 4.5% or higher, its energy payback time would be lower than other existing and emerging PV technologies. The major impacts of SWCNT PV came from the cell's materials synthesis.

  20. Didactic trainer. Solar photovoltaic panels analysis; Analisis de paneles solares fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.; Ruiz, J.; Gorjon, J.; Quiles, J. A.; Cavaller, N.; Bodega, J.; Alonso-Abella, M.; Chenlo, F.

    2009-07-01

    The Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) and the Instituto de Ensenanza Secundaria Virgen de la Paloma (IES VP), through their respective Metrology and Electricity-Electronics departments, have established a first agreement of co-operation with the aim of introducing and enhancing the solar photovoltaic energy within the professional teachings field. This agreements is a result of the compromise of designing entirely in the Electricity-electronics department of IES VP a didactic trainer prototype which enables to analyze cells and photovoltaic panels, all under the supervision and logistic-technical support of CIEMAT Photovoltaic Laboratory. (Author)

  1. Synthesis of Zn-doped TiO{sub 2} microspheres with enhanced photovoltaic performance and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Wang Lingling [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Liu Bingkun; Zhai Jiali; Fan Haimei; Wang Dejun; Lin Yanhong [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China); Xie Tengfeng, E-mail: xietf@jlu.edu.cn [State Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University, Changchun 130023 (China)

    2011-07-15

    Highlights: > Near-monodisperse Zn-doped TiO{sub 2} microspheres have been synthesized. > The photovoltaic properties of the samples were examined by SPS, FISPS and TPV measurements. > Surface photovoltage results revealed Zn doping can promote charge transfer in TiO{sub 2} film electrode. - Abstract: Zn-doped TiO{sub 2} microspheres have been synthesized by introducing a trace amount of zinc nitrate hexahydrate to the reaction system. Scanning electron microscope (SEM), field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) have been utilized to characterize the samples. Both surface photovoltage spectroscopy (SPS) technique based on lock-in amplifier and transient photovoltage (TPV) measurement reveal that the slight doping of Zn can promote the separation of photo-generated charges as well as restrain the recombination due to the strong interface built-in electric field and the decreasing of surface trap states. The photovoltaic parameters of dye-sensitized solar cells (DSSCs) based on Zn-doped TiO{sub 2} are significantly better, compared to that of a cell based on undoped TiO{sub 2}. The relation between the performance of DSSCs and their photovoltaic properties is also discussed.

  2. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    Science.gov (United States)

    Muthalif, Mohammed Panthakkal Abdul; Lee, Young-Seok; Sunesh, Chozhidakath Damodharan; Kim, Hee-Je; Choe, Youngson

    2017-02-01

    In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including JSC = 9.40 mA cm-2, VOC = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, JSC = 7.12 mA cm-2, VOC = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV-vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  3. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    Science.gov (United States)

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  4. 77 FR 25400 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-04-30

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Alignment of... crystalline silicon photovoltaic cells, whether or not assembled into modules (solar cells) from the People's... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Initiation of...

  5. 77 FR 37877 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-06-25

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Preliminary... crystalline silicon photovoltaic cells, whether or not assembled into modules (``solar cells''), from the.... Correction In the Federal Register notice Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled...

  6. Iron sulphide solar cells

    Science.gov (United States)

    Ennaoui, A.; Tributsch, H.

    1984-12-01

    The abundant, naturally occurring natural compound pyrite (FeS2) can be used as a semiconducting material for photoelectrochemical and photovoltaic solar cells. Unlike most of the intensively studied photoactive materials, pyrite solar cell production would never be limited by the availability of the elements or by their compatibility with the environment. An energy gap of 0.95 eV has been determined for pyrite, and it is noted that the theoretical efficiency limit for solar energy conversion in this material is of the order of 15-20 percent.

  7. Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application

    Science.gov (United States)

    Chen, Zhiliang; Yang, Guang; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Ma, Junjie; Wang, Hao; Fang, Guojia

    2017-05-01

    Perovskite solar cells have developed rapidly in recent years as the third generation solar cells. In spite of the great improvement achieved, there still exist some issues such as undesired hysteresis and indispensable high temperature process. In this work, bulk heterojunction perovskite-phenyl-C61-butyric acid methyl ester solar cells have been prepared to diminish hysteresis using a facile two step spin-coating method. Furthermore, high quality tin oxide films are fabricated using pulse laser deposition technique at room temperature without any annealing procedure. The as fabricated tin oxide film is successfully applied in bulk heterojunction perovskite solar cells as a hole blocking layer. Bulk heterojunction devices based on room temperature tin oxide exhibit almost hysteresis-free characteristics with power conversion efficiency of 17.29% and 14.0% on rigid and flexible substrates, respectively.

  8. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  9. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    International Nuclear Information System (INIS)

    Muthalif, Mohammed Panthakkal Abdul; Lee, Young-Seok; Sunesh, Chozhidakath Damodharan; Kim, Hee-Je; Choe, Youngson

    2017-01-01

    Highlights: • Cu-doped CdS QDs were deposited on TiO_2 by SILAR method. • Cu-doped CdS electrodes contributes reduction of charge recombination and longer electron lifetime. • A promising power conversion efficiency of 3% is obtained for the Cu-doped CdS Quantum dot sensitized solar cell. - Abstract: In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including J_S_C = 9.40 mA cm"−"2, V_O_C = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, J_S_C = 7.12 mA cm"−"2, V_O_C = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV–vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  10. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Muthalif, Mohammed Panthakkal Abdul [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Lee, Young-Seok [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Sunesh, Chozhidakath Damodharan [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Kim, Hee-Je [School of Electrical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of); Choe, Youngson, E-mail: choe@pusan.ac.kr [Department of Polymer Science and Chemical Engineering, Pusan National University, Geumjeong-Ku, Jangjeong-Dong, Busan 609-735 (Korea, Republic of)

    2017-02-28

    Highlights: • Cu-doped CdS QDs were deposited on TiO{sub 2} by SILAR method. • Cu-doped CdS electrodes contributes reduction of charge recombination and longer electron lifetime. • A promising power conversion efficiency of 3% is obtained for the Cu-doped CdS Quantum dot sensitized solar cell. - Abstract: In this article, we have systematically probed the effect of Cu-doping in CdS quantum dots (QDs) to enhance the photovoltaic performance of the quantum dot-sensitized solar cells (QDSSCs). The Cu-doped CdS photoanodes were prepared by successive ionic layer adsorption and reaction (SILAR) method and the corresponding cell devices were fabricated using CuS counter electrodes with a polysulfide electrolyte. The photovoltaic performance results demonstrate that 3 mM Cu-doped CdS QDs based QDSSCs exhibit the efficiency (η) of 3% including J{sub SC} = 9.40 mA cm{sup −2}, V{sub OC} = 0.637 V, FF = 0.501, which are higher than those with bare CdS (η = 2.05%, J{sub SC} = 7.12 mA cm{sup −2}, V{sub OC} = 0.588 V, FF = 0.489). The structural, topographical and optical properties of the thin films have been studied with the help of X-ray diffraction pattern (XRD), atomic force microscopy (AFM) and UV–vis spectrophotometer. Electrochemical impedance spectroscopy (EIS) and open circuit voltage decay (OCVD) measurements indicate that Cu-dopant can inhibit the charge recombination at the photoanode/electrolyte interface and extend the lifetime of electrons. These results reveal that incorporation of copper metal in CdS QDs is a simple and effective method to improve the photovoltaic properties of QDSSCs.

  11. Photovoltaic Cells and Modules towards Terawatt Era

    Institute of Scientific and Technical Information of China (English)

    Vitezslav Benda

    2017-01-01

    Progresses in photovoltaic technologies over the past years are evident from the lower costs,the rising efficiency,to the great improvements in system reliability and yield.Cumulative installed power yearly growths were on an average more than 40% in the period from 2007 to 2016 and in 2016,the global cumulative photovoltaic power installed has reached 320 GWp.The level 0.5 TWp could be reached before 2020.The production processes in the solar industry still have great potential for optimization both wafer based and thin film technologies.Trends following from the present technology levels are discussed,also taking into account other parts of photovoltaic systems that influence the cost of electrical energy produced.Present developments in the three generations of photovoltaic modules are discussed along with the criteria for the selection of appropriate photovoltaic module manufacturing technologies.The wafer based crystalline silicon (c-silicon) technologies have the role of workhorse of present photovoltaic power generation,representing more than 90% of total module production.Further technology improvements have to be implemented without significantly increasing costs per unit,despite the necessarily more complex manufacturing processes involved.The tandem of c-silicon and thin film cells is very promising.Durability may be a limiting factor of this technology due to the dependence of the produced electricity cost on the module service time.

  12. Morphological Effect of CNT/TiO2 Nanocomposite Photoelectrodes Dye-Sensitized Solar Cell on Photovoltaic Performance with Various Annealing Temperatures

    Directory of Open Access Journals (Sweden)

    Mohd Zikri Razali

    2015-01-01

    Full Text Available This research focused on the fabrication of dye-sensitized solar cell based on a photoanode of carbon nanotube/titanium dioxide (CNT/TiO2 nanocomposite photoanode synthesized through acid-catalyzed sol-gel method. The results show the improvement of the chemical and electrical properties of the solar cells annealed at different temperatures. The CNT/TiO2 colloidal solution was synthesized using titanium tetraisopropoxide and CNT/2-propanol solution. The thin films were doctor-bladed on a fluorine tin oxide glass before being annealed at 550, 650, and 750°C. The field emission scanning electron microscopy morphological images show that the thin films were homogenously distributed and maintained their spherical structures. The X-ray diffraction patterns show that the films consisted of anatase and rutile phases with large crystallite sizes due to temperature increment. The atomic force microscopy analysis presents the thin film roughness in terms of root mean square roughness. The photovoltaic performance was analyzed using IV curve and electrochemical impedance spectroscopy (EIS. The thin films annealed at 750°C had the highest energy conversion efficiency at 5.23%. The EIS analysis estimated the values of the effective electron lifetime (τeff, effective electron diffusion coefficient, effective electron diffusion (Ln, and effective recombination rate constant (keff. A large τeff, small keff, and longer Ln can improve photovoltaic performance efficiency.

  13. Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.

    Science.gov (United States)

    Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won

    2015-09-14

    The adsorption mechanism for the N719 dye on a TiO2 electrode was examined by the kinetic and diffusion models (pseudo-first order, pseudo-second order, and intra-particle diffusion models). Among these methods, the observed adsorption kinetics are well-described using the pseudo-second order model. Moreover, the film diffusion process was the main controlling step of adsorption, which was analysed using a diffusion-based model. The photodynamic properties in dye-sensitized solar cells (DSSCs) were investigated using time-resolved transient absorption techniques. The photodynamics of the oxidized N719 species were shown to be dependent on the adsorption time, and also the adsorbed concentration of N719. The photovoltaic parameters (Jsc, Voc, FF and η) of this DSSC were determined in terms of the dye adsorption amounts. The solar cell performance correlates significantly with charge recombination and dye regeneration dynamics, which are also affected by the dye adsorption amounts. Therefore, the photovoltaic performance of this DSSC can be interpreted in terms of the adsorption kinetics and the photodynamics of oxidized N719.

  14. Performance investigation of a wind turbine–solar photovoltaic panels–fuel cell hybrid system installed at İncek region – Ankara, Turkey

    International Nuclear Information System (INIS)

    Devrim, Yılser; Bilir, Levent

    2016-01-01

    Highlights: • A hybrid system with a wind turbine, photovoltaic panels and a fuel cell was studied. • 3 kW wind turbine, 17.97 m 2 photovoltaics, 1.2 kW fuel cell and 4.7 kW electrolyzer was used. • The system can meet the entire demand of a residential house in Ankara, Turkey. • Only exception is in November, when the energy lack can be compensated from the grid. - Abstract: Renewable energy use in the world increases year by year. However, in many cases it is not possible to cover the electrical energy need of even a single house using only one renewable energy resource due to its intermittent nature. At this point, hybrid systems are applied to overcome this problem. This study focuses on the combination of photovoltaic solar panels, a small scale wind turbine, an electrolyzer and a proton exchange membrane fuel cell hybrid system for electrical power generation for an average house of 150 m 2 located at İncek region of Ankara, Turkey. Solar and wind energies were used as primary sources and a proton exchange membrane fuel cell is used as the backup power. The hybrid system was modeled and the results indicate that the use of the selected wind turbine with a 3 kW capacity along with photovoltaic panels with 17.97 m 2 area is sufficient to provide the required 5 h operation of the electrolyzer, which in turn provides the necessary hydrogen and oxygen to the fuel cell. Since the daily energy needed by the investigated house was taken as 5 kW h, the fuel cell with a net power output of 1 kW supplies all electrical demand with its 5 h operation. The outcomes show that the hybrid system is capable to provide all electrical need of the house all year round, except November. The electrical energy production of the proposed system is considerably higher than the demand in many months and this surplus electricity can be used in order to support the cooling and heating system of the considered house.

  15. Photovoltaic performance of TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent in dye-sensitized solar cells.

    Science.gov (United States)

    Kwon, Oh Oun; Kim, Eui Jin; Lee, Jae Hyeok; Kim, Tae Young; Park, Kyung Hee; Kim, Sang Yook; Suh, Hwa Jin; Lee, Hyo Jung; Lee, Jae Wook

    2015-02-05

    To improve the photovoltaic conversion efficiency in dye-sensitized solar cells (DSSCs), TiO2 electrode adsorbed with gardenia yellow purified by nonionic polymeric sorbent was successfully formulated on nanoporous TiO2 surface. Adsorption and desorption properties of crude gardenia yellow solution on a macroporous resin, XAD-1600, were investigated to purify gardenia yellow because of its strong adsorption and desorption abilities as well as high selectivity. To this end, adsorption equilibrium and kinetic data were measured and fitted using adsorption isotherms and kinetic models. Adsorption and desorption breakthrough curves in a column packed with XAD-1600 resin was obtained to optimize the separation process of gardenia yellow. The photovoltaic performance of the photo-electrode adsorbed with the crude and purified gardenia yellow in DSSCs was compared from current-voltage measurements. The results showed that the photovoltaic conversion efficiency was highly dependent on how to separate and purify gardenia yellow as a photosensitizer. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Evaluation of limiting factors affecting photovoltaic performance of low-temperature-processed TiO₂ films in dye-sensitized solar cells.

    Science.gov (United States)

    Lee, Taek-Yong; Kim, Hui-Seon; Park, Nam-Gyu

    2014-04-14

    Limiting factors affecting photovoltaic performance of dye-sensitized solar cell employing low-temperature-processed TiO2 films were investigated. TiO2 films were prepared at a low temperature of 200 °C using the normal alcohol-containing binder-free TiO2 paste (LT200). Their photovoltaic performance was compared to a high-temperature (550 °C) annealed TiO2 film prepared using a polymer binder containing TiO2 paste (HT550). Compared to the proportional increase in conversion efficiency with TiO2 film thickness upto 14 μm for HT550, the increase in efficiency was terminated at relatively smaller thickness of about 8 μm for LT200 mainly due to unaugmented photocurrent. From the transient photocurrent-voltage studies, the electron transport rate was found to be almost identical, while charge recombination was one order of magnitude faster for LT200. Consequently, the electron diffusion length was more than 2-3 times shorter for LT200 than for HT550. Electron diffusion length and electron life time obtained from electrochemical impedance analysis were well consistent with those observed from transient measurement. Density of states (DOS) was evaluated to be shallow and narrow in LT200, which was responsible for limiting photovoltaic performance in the low-temperature processed TiO2 film. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  18. Application and design of solar photovoltaic system

    International Nuclear Information System (INIS)

    Li Tianze; Lu Hengwei; Jiang Chuan; Hou Luan; Zhang Xia

    2011-01-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  19. Enhanced photovoltaic performance and long-term stability of dye-sensitized solar cells by incorporating SiO{sub 2} nanoparticles in binary ionic liquid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hsin-Fang; Wu, Jhih-Lin; Hsu, Po-Ya [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tung, Yung-Liang [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30013, Taiwan, ROC (China); Ouyang, Fan-Yi [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Kai, Ji-Jung, E-mail: jjkai@ess.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2013-02-01

    Hydrophilic SiO{sub 2} nanoparticles in a binary ionic liquid (bi-IL) consisting of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methyl-imidazolium dicyanimide (EMIDCA) facilitated electron transfer and solidified the electrolyte for a dye-sensitized solar cell (DSC). We investigated the dependence of charge transport and photovoltaic performance on the composition of bi-IL electrolytes with varied ratio of SiO{sub 2} nanoparticles. The electrochemical impedance spectra revealed a decreased resistance to charge transfer at the Pt counter electrode (R{sub ct1}) when SiO{sub 2} (up to 2.0 wt.%) was added, improving the photovoltaic parameters. The DSC based on a TiO{sub 2} nanocrystalline film (thickness 14.2 μm) with a composite ionic gel electrolyte of EMIDCA/PMII bi-IL (33 vol.% of EMIDCA) incorporating SiO{sub 2} (2 wt.%) exhibited a power conversion efficiency of 5.28% under simulated solar illumination (AM 1.5 G, 100 mW cm{sup −} {sup 2}). The durability of DSC with a SiO{sub 2} solidified electrolyte was superior to that of a liquid one, exhibiting good stability at 60 °C in darkness during an accelerated test for 1000 h. - Highlights: ► SiO{sub 2} nanoparticles were introduced in a binary ionic liquid electrolyte. ► Effect of various ratios of SiO{sub 2} nanoparticles in gel electrolytes was studied. ► Mechanism of charge transfer with addition of SiO{sub 2} nanoparticles was discussed. ► An enhanced solar to electric energy conversion efficiency of 5.28% was achieved. ► Thermal stability of a quasi-solid state dye-sensitized solar cell was improved.

  20. Effects of alkyl chain length and substituent pattern of fullerene bis-adducts on film structures and photovoltaic properties of bulk heterojunction solar cells.

    Science.gov (United States)

    Tao, Ran; Umeyama, Tomokazu; Kurotobi, Kei; Imahori, Hiroshi

    2014-10-08

    A series of alkoxycarbonyl-substituted dihydronaphthyl-based [60]fullerene bis-adduct derivatives (denoted as C2BA, C4BA, and C6BA with the alkyl chain of ethyl, n-butyl, and n-hexyl, respectively) have been synthesized to investigate the effects of alkyl chain length and substituent pattern of fullerene bis-adducts on the film structures and photovoltaic properties of bulk heterojunction polymer solar cells. The shorter alkyl chain length caused lower solubility of the fullerene bis-adducts (C6BA > C4BA > C2BA), thereby resulting in the increased separation difficulty of respective bis-adduct isomers. The device performance based on poly(3-hexylthiophene) (P3HT) and the fullerene bis-adduct regioisomer mixtures was enhanced by shortening the alkyl chain length. When using the regioisomerically separated fullerene bis-adducts, the devices based on trans-2 and a mixture of trans-4 and e of C4BA exhibited the highest power conversion efficiencies of ca. 2.4%, which are considerably higher than those of the C6BA counterparts (ca. 1.4%) and the C4BA regioisomer mixture (1.10%). The film morphologies as well as electron mobilities of the P3HT:bis-adduct blend films were found to affect the photovoltaic properties considerably. These results reveal that the alkyl chain length and substituent pattern of fullerene bis-adducts significantly influence the photovoltaic properties as well as the film structures of bulk heterojunction solar cells.

  1. Development of Inorganic Solar Cells by Nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang; Huey Liang Hwang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light,have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  2. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  3. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  4. Solar photovoltaic power for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J. R.; Crutcher, J. L.; Norbedo, A. J.; Cummings, A. B.

    1980-07-01

    There is a considerable global need for systems which can meet the drinking water requirements of small communities (7000 people or less) from brackish water or from seawater. Solar photovoltaic panels are an ideal source of power for the purpose, primarily because they produce electricity, which can be used to power a membrane type desalting unit, i.e., either a reverse osmosis plant or an electrodialysis unit. In addition, electricity is most convenient for feedwater pumping. This paper addresses considerations which arise in the design and construction of a complete solar powered water desalination system which requires no supply of fuel nor any form of backup power (grid connection or engine generator).

  5. 77 FR 73017 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-12-07

    ... photovoltaic cells, whether or not assembled into modules (solar cells), from the People's Republic of China... published its final determination in the countervailing duty investigation of solar cells from the PRC.\\2... covered by this order is crystalline silicon photovoltaic cells, and modules, laminates, and panels...

  6. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  7. Solar Photovoltaic Electricity Applications in France. National Survey Report 2007

    International Nuclear Information System (INIS)

    Claverie, Andre; Jacquin, Philippe

    2008-01-01

    The overall power of installed PV systems in France in 2007 was 31,3 MW which represents a significant growth compared to 2006. This increase is mainly due to the national fiscal measures (new feed-in tariff and tax credit) launched in 2006. The implemented feed-in tariff model application supports building integration of photovoltaic generators with a much higher financial incentive than other type of photovoltaic installations. In the same way, local authorities like regional councils and departmental councils developed new policies to promote photovoltaics through specific grants. As the building integration of photovoltaic generators is encouraged by a feed-in tariff bonus, innovative products are appearing on the market or are under development. In parallel, actors like architects, designers, engineers are now paying attention to building integration of photovoltaic components (BIPV). New actors such as financial institutions, energy operators, and private investors have developed ambitious projects. With the increase of the market, new firms have been created including engineering, consultancies, electricity producers, PV products distributors and retailers, installation and maintenance companies. Photovoltaic industrial sector is getting stronger and large investments have been undertaken in order to develop a vertical integration of the photovoltaic value chain, from feedstock silicon production to final photovoltaic products. A new private-public consortium called 'PV Alliance Lab Fab' has been set up and an important R and D project under the name of 'Solar Nano Crystal' should start by the end of 2008. At the same time, R and D activities focus on photovoltaic silicon cells/modules conversion efficiency and long term reliability, production costs, new materials and device design, yield, environmental impact of industrial processes and optimisation of control and monitoring of photovoltaic systems. In addition to the ADEME and ANR

  8. Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb(3+), Er(3+)-incorporated nanocrystalline TiO2 electrodes.

    Science.gov (United States)

    Zhu, Guang; Wang, Hongyan; Zhang, Quanxin; Zhang, Li

    2015-08-01

    Near infrared to visible up-conversion of light by rare earth ion-doped phosphors (NaYF4:Yb(3+), Er(3+)) that convert multiple photons of lower energy to higher energy photons offer new possibilities for improved performance of photovoltaic devices. Here, up-conversion phosphor NaYF4:Yb(3+), Er(3+) doped nanocrystalline TiO2 films are designed and used as a electrode for dye-sensitized solar cells, and the photovoltaic performance of DSSCs based on composite electrodes are investigated. The results show the cell with NaYF4:Yb(3+), Er(3+) achieves a power conversion efficiency of 7.65% under one sun illumination (AM 1.5G, 100mWcm(-2)), which is an increase of 14% compared to the cell without NaYF4:Yb(3+), Er(3+) (6.71%). The performance improvement is attributed to the dual effects of enhanced light harvesting from extended light absorption range and increased light scattering, and lower electron transfer resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Enhancement of photovoltaic performance of flexible perovskite solar cells by means of ionic liquid interface modification in a low temperature all solution process

    Science.gov (United States)

    Chu, Weijing; Yang, Junyou; Jiang, Qinghui; Li, Xin; Xin, Jiwu

    2018-05-01

    The quality of interface between the electron transport layer (ETL) and perovskite is very crucial to the photovoltaic performance of a flexible perovskite solar cell fabricated under low-temperature process. This work demonstrates a room temperature ionic liquid modification strategy to the interface between ZnO layer and MAPbI3 film for high performance flexible perovskite solar cells based on a PET substrate. [BMIM]BF4 ionic liquid modification can significantly improve the surface quality and wettability of the ZnO ETL, thus greatly increase the charge mobility of ZnO ETL and improve the crystalline of perovskite film based on it. Moreover, the dipolar polarization layer among the ZnO ETL with perovskite, built by modification, can adjust the energy level between the ZnO ETL and perovskite and facilitates the charge extraction. Therefore, an overall power conversion efficiency (PCE) of 12.1% have been achieved under standard illumination, it increases by 1.4 times of the flexible perovskite solar cells on a pristine ZnO ETL.

  10. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.

    Science.gov (United States)

    Zeng, Qingsen; Chen, Zhaolai; Zhao, Yue; Du, Xiaohang; Liu, Fangyuan; Jin, Gan; Dong, Fengxia; Zhang, Hao; Yang, Bai

    2015-10-21

    Aqueous processed nanocrystal (NC) solar cells are attractive due to their environmental friendliness and cost effectiveness. Controlling the bandgap of absorbing layers is critical for achieving high efficiency for single and multijunction solar cells. Herein, we tune the bandgap of CdTe through the incorporation of Se via aqueous process. The photovoltaic performance of aqueous CdSexTe1-x NCs is systematically investigated, and the impacts of charge generation, transport, and injection on device performance for different compositions are deeply discussed. We discover that the performance degrades with the increasing Se content from CdTe to CdSe. This is mainly ascribed to the lower conduction band (CB) of CdSexTe1-x with higher Se content, which reduces the driving force for electron injection into TiO2. Finally, the performance is improved by mixing CdSexTe1-x NCs with conjugated polymer poly(p-phenylenevinylene) (PPV), and power conversion efficiency (PCE) of 3.35% is achieved based on ternary NCs. This work may provide some information to further optimize the aqueous-processed NC and hybrid solar cells.

  11. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter.

    Science.gov (United States)

    Nouri, Esmaiel; Mohammadi, Mohammad Reza; Xu, Zong-Xiang; Dracopoulos, Vassilios; Lianos, Panagiotis

    2018-01-24

    Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO 2 /reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters. An enhanced electron lifetime and recombination resistance led to an increase in the short circuit current density, open circuit voltage and fill factor. The device based on a T/RGO mesoporous layer with an optimal RGO content of 0.2 wt% showed 22% higher photoconversion efficiency and higher stability compared with pristine TiO 2 -based devices.

  12. Photovoltaic performance of bifacial dye sensitized solar cell using chemically healed binary ionic liquid electrolyte solidified with SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Cosar, Burak; Icli, Kerem Cagatay; Yavuz, Halil Ibrahim; Ozenbas, Macit

    2013-01-01

    Highlights: ► A bifacial DSSC is realized and irradiated from front and rear sides. ► Maximum efficiency was found for 70% PMII/30% (EMIB(CN) 4 ) electrolyte composition. ► A significant increase in photocurrent using 0.1 M GuSCN and 0.4 M NMB was observed. ► Addition of SiO 2 nanoparticles to the electrolyte enhanced photovoltaic efficiency. ► Dispersed SiO 2 particles are found to be more efficient compared to SiO 2 overlayer. - Abstract: In this study, we investigated the effect of electrolyte composition, photoanode thickness, and the additions of GuSCN (guanidinium thiocyanate), NMB (N-methylbenimidazole), and SiO 2 on the photovoltaic performance of DSSCs (dye sensitized solar cells). A bifacial DSSC is realized and irradiated from front and rear sides. The devices give maximum photovoltaic efficiencies for 70% PMII (1-propyl-3-methyl-imidazolium iodide)/30% (EMIB(CN) 4 ) (1-ethyl-3-methyl-imidazolium tetracyanoborate) electrolyte composition and 10 μm thick photoanode coating which is considered to be the ideal coating thickness for the diffusion length of electrolyte and dye absorption. A significant increase in the photocurrent for DSSCs with optimum molarity of 0.1 M GuSCN was observed due to decreased recombination which is believed to be surface passivation effect at photoanode electrolyte interface suppressing recombination rate. Moreover, optimum NMB molarity was found to be 0.4 for maximum efficiency. Addition of SiO 2 to the electrolyte both as an overlayer and dispersed particles enhanced rear side illuminated cells where dispersed particles are found to be more efficient for the front side illuminated cells due to additional electron transport properties. Best rear side illuminated cell efficiency was 3.2% compared to front side illuminated cell efficiency of 4.2% which is a promising result for future rear side dye sensitized solar cell applications where front side illumination is not possible like tandem structures and for cells

  13. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  14. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  15. Flexible Solar Cells

    Science.gov (United States)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  16. Influence of structural variations in push-pull zinc porphyrins on photovoltaic performance of dye-sensitized solar cells.

    Science.gov (United States)

    Yi, Chenyi; Giordano, Fabrizio; Cevey-Ha, Ngoc-Le; Tsao, Hoi Nok; Zakeeruddin, Shaik M; Grätzel, Michael

    2014-04-01

    We designed and synthesized two new zinc porphyrin dyes for dye-sensitized solar cells (DSCs). Subtle molecular structural variation in the dyes significantly influenced the performance of the DSC devices. By utilizing these dyes in combination with a cobalt-based redox electrolyte using a photoanode made of mesoporous TiO2 , we achieved a power conversion efficiency (PCE) of up to 12.0 % under AM 1.5 G (100 mW cm(-2)) simulated solar light. Moreover, we obtained a high PCE of 6.4 % for solid-state dye-sensitized solar cells by using 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene as a hole-transporting material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Study of the defects related to oxygen in Czochralski silicon destined to photovoltaic solar cells - Influence of isovalent impurities

    International Nuclear Information System (INIS)

    Tanay, Florent

    2013-01-01

    This study aims at understanding the effects of two main defects related to oxygen, the boron-oxygen complexes (responsible for light-induced degradation of the carrier lifetime) and the thermal donors (among other things, responsible for variations of the conductivity), on the electric and photovoltaic properties of silicon. More precisely, the interactions of isovalent impurities, known for modifying the oxygen spatial distribution, with these defects were studied. Two experimental protocols were first developed to evaluate the light-induced degradation of the carrier lifetime in iron-rich silicon. Then, the introduction in silicon of germanium and tin in high quantity were shown not to significantly influence the conversion efficiency of the cells. However, contrary to recent studies from the literature, no reduction due to germanium co-doping or to tin co-doping of the light-induced degradation of the photovoltaic performances was observed. However carbon was shown to lead to a slowdown of the degradation due to boron-oxygen complexes. Moreover contrary to tin which has no influence on the thermal donor generation, germanium slows down their formation. An empirical expression has been proposed to take into account this effect for a large range of germanium concentrations. Eventually in highly doped and compensated silicon, the thermal donor generation is identical as in conventional silicon, which experimentally confirms that the thermal donor formation is limited by the electron density. (author) [fr

  18. The Photovoltaic Performance of Doped-CuI Hole Conductors for Solid State Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Amalina, M N; Najwa, A A E; Abdullah, M H; Musa, M Z; Rusop, M

    2013-01-01

    The iodine doped copper (I) iodide (I 2 : CuI) at different weight of iodine dopant have been prepared to investigate its thin films properties and photovoltaic performance. A novel method of mist atomization technique has been used for the deposition of CuI materials. The structural and electrical properties of CuI thin films deposited on the glass substrates were studied. The thin films morphology examined by FESEM shows a variation of crystal size and structure. Brick-like structure with smooth faces and sharp edges were seen for the doped thin films. The CuI thin films at 30 mg of iodine doping shows the highest resistivity of 4.56 × 101 Ω cm which caused by the surface traps create by iodine doping. The photovoltaic performance of ss-DSSC on the effect of variation iodine doping was investigated. The ss-DSSC fabricated with undoped CuI materials shows the highest efficiency of 1.05% while the 40 mg I 2 content shows the lowest conversion efficiency of 0.45%. The crystals size of CuI and its degree of crystallization are greatly contributed to the high filling fraction of the porous TiO 2 layer and hence the cells performance.

  19. Behavior of Electrochemically Prepared CuInSe{sub 2} as Photovoltaic Absorber in thin Film Solar Cells; Comportamiento del CuInSe{sub 2} Basado en Precursores Electrodepositados como Absorbente Fotovoltaico en Celulas Solares de Lamina Delgada

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C; Martinez, M A; Dona, J M; Herrero, J; Gutierrez, M T [Ciemat.Madrid (Spain)

    2000-07-01

    Two different objective have been pursued in the present investigation: (1) optimization of the CuInSe{sub 2} preparation parameters from electrodeposited precursors, and (2) evaluation of their photovoltaic behavior by preparing and enhancing Mo/CuInSe{sub 2}/CdS/TCO devices. When Cu-In-Se precursors are directly electrodeposited, the applied potential fit is essential to improve the photovoltaic performance. Suitable absorbers have been also obtained by evaporing an In layer onto electrodeposited Cu-Se precursors. In this case, the substrate temperature during evaporation determines the CuInSe{sub 2} quality. Similar results have been reached by substituting typical Mo-Coated glass substrates by flexible Mo foils. Different TCO tested (ZnO and ITO) have been found equivalent as front electrical contact in the devices. Solar cell performance can be improved by annealing in air at 200 degree centigree. (Author) 46 refs.

  20. All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cells

    DEFF Research Database (Denmark)

    Liu, Yao; Larsen-Olsen, Thue Trofod; Zhao, Xingang

    2013-01-01

    Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using...

  1. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  2. Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells

    International Nuclear Information System (INIS)

    Xu, Ning; Ji, Jie; Sun, Wei; Han, Lisheng; Chen, Haifei; Jin, Zhuling

    2015-01-01

    Graphical abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, respectively. Experimental results show that direct irradiation affects the electrical performance of the system dominantly. Fitting results of electrical performance offer simple and reliable methods to analyze the system performance. - Highlights: • A point-focus Fresnel lens photovoltaic/thermal system is proposed and studied. • The system presents an instantaneous electrical efficiency of 28%. • The system has a highest instantaneous thermal efficiency of 54%. • Direct irradiation has the dominant effect on the electrical performance. • Fitting results offer simple and reliable methods to analyze system performances. - Abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, which means the overall efficiency of the system can be more than 80%. A mathematical model for calculating cell temperature is proposed to solve difficult measurement of cell temperature in a system. Moreover, characteristics of electrical performance under various direct

  3. Synthesis of zinc phthalocyanine with large steric hindrance and its photovoltaic performance for dye-sensitized solar cells.

    Science.gov (United States)

    Lin, Li; Peng, Bosi; Shi, Wenye; Guo, Yingying; Li, Renjie

    2015-03-28

    A zinc phthalocyanine (ZnPc) derivative (Zn-tri-PcNc-8) containing tri-benzonaphtho-condensed porphyrazine with one carboxylic and six diphenylphenoxy peripheral substitutions was designed and synthesized as a sensitizer for dye-sensitized solar cells (DSSCs). For the purpose of extending the absorption spectra while minimizing the formation of ZnPc molecular aggregates, bulky 2,6-diphenylphenoxy groups were used as electron donor moieties, and the carboxylic group as an anchoring group to graft the sensitizer onto the semiconductor. It was found that a TiO2-based solar cell sensitized by Zn-tri-PcNc-8 shows a maximum incident photon-to-current conversion efficiency in the red/near-IR light range (650-750 nm), and a solar cell sensitized at near room temperature (30 °C) for 48 h exhibits the best efficiency (3.01%). The efficiency was much higher than that (1.96%) for a solar cell sensitized by its analogue (Zn-tri-PcNc-2) having one carboxyl and three tert-butyl groups without chenodeoxycholic acid (CDCA), indicating that the introduction of six bulky diphenylphenoxy substitutions with large steric hindrance in the ZnPc macrocycle can effectively suppress the molecular aggregates, thus resulting in an improved conversion efficiency. The present results shed light on an effective solution to adjust the ZnPc property via chemical modification such as changing the "push-pull" effect and adding large steric hindrance substituents to further improve the efficiency of the phthalocyanine-sensitized solar cell.

  4. Photovoltaic solar energy: which realities for 2020? Summarized synthesis

    International Nuclear Information System (INIS)

    2011-01-01

    This report first describes the situation of the photovoltaic as situated at a crossroad with strong development possibilities for the French photovoltaic sector. It presents the photovoltaic energy as a competitive, regulatory and ecologic one, and therefore inescapable. It outlines stakes and obstacles of the French situation regarding the development of this sector. It highlights the economic and social benefit investing in this sector. Some propositions are stated for the promotion of the photovoltaic solar sector. Challenges are identified

  5. Photovoltaic cell and production thereof

    Science.gov (United States)

    Narayanan, Srinivasamohan [Gaithersburg, MD; Kumar, Bikash [Bangalore, IN

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  6. Transparent contacts for stacked compound photovoltaic cells

    Science.gov (United States)

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  7. Preparation of brookite TiO2 nanoparticles with small sizes and the improved photovoltaic performance of brookite-based dye-sensitized solar cells.

    Science.gov (United States)

    Xu, Jinlei; Wu, Shufang; Jin, Jingpeng; Peng, Tianyou

    2016-11-10

    Brookite TiO 2 nanoparticles with small sizes (hereafter denoted as BTP particles) were synthesized through the hydrothermal treatment of TiCl 4 solution with Pb(NO 3 ) 2 as an additive. The obtained BTP particles have a large specific surface area (∼122.2 m 2 g -1 ) and relatively uniform particle sizes (∼10 nm) with the coexistence of a small quantity of nanorods with a length of ∼100 nm. When used as a photoanode material for dye-sensitized solar cells (DSSCs), the BTP particles show a much higher dye-loading content than the brookite TiO 2 quasi nanocubes (denoted as BTN particles) with a mean size of ∼50 nm and a specific surface area of ∼34.2 m 2 g -1 that were prepared through a similar hydrothermal process but without the addition of Pb(NO 3 ) 2 . The fabricated BTP film-based solar cell with an optimized film thickness gives a conversion efficiency up to 6.36% with a 74% improvement when compared to the BTN film-based one (3.65%) under AM 1.5G one sun irradiation, while the corresponding bilayer brookite-based solar cell by using brookite TiO 2 submicrometer particles as an overlayer of the BTP film displays a significantly enhanced efficiency of 7.64%. Both of them exceed the current record (5.97%) for the conversion efficiency of pure brookite-based DSSCs reported in the literature. The present results not only demonstrate a really simple synthesis of brookite TiO 2 nanoparticles with both high phase purity and a large surface area, but also offer an efficient approach to improve the photovoltaic performance of brookite-based solar cells by offsetting brookite's inherent shortages such as lower dye-loading and poor conductivity as compared to anatase.

  8. Influence of TiCl4 post-treatment condition on TiO2 electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells.

    Science.gov (United States)

    Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-10-01

    Titanium tetrachloride (TiCl4) treatment processed by chemical bath deposition is usually adopted as pre- and post-treatment for nanocrystalline titanium dioxide (TiO2) film deposition in the dye-sensitized solar cells (DSSCs) technology. TiCl4 post-treatment is a widely known method capable of improving the performance of dye-sensitized solar cells. In this work, the effect of TiCl4 post-treatment on the TiO2 electrode is proposed and compared to the untreated film. A TiO2 passivating layer was deposited on FTO glass by RF magnetron sputtering. The TiO2 sol prepared sol-gel method, nanoporous TiO2 upper layer was deposited by screen printing method on the passivating layer. TiCl4 post-treatment was deposited on the substrate by hydrolysis of TiCl4 aqueous solution. Crystalline structure was adjusted by various TiCl4 concentration and dipping time: 20 mM-150 mM and 30 min-120 min. The conversion efficiency was measured by solar simulator (100 mW/cm2). The dye-sensitized solar cell using TiCl4 post-treatment was measured the maximum conversion efficiency of 5.04% due to electron transport effectively. As a result, the DSSCs based on TiCl4 post-treatment showed better photovoltaic performance than cells made purely of TiO2 nanoparticles. The relative DSSCs devices are characterized in terms of short circuit current density, open circuit voltage, fill factor, conversion efficiency.

  9. Rational design of tetraphenylethylene-based luminescent down-shifting molecules: photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units.

    Science.gov (United States)

    Li, Yilin; Li, Zhipeng; Ablekim, Tursunjan; Ren, Tianhui; Dong, Wen-Ji

    2014-12-21

    A rational design strategy of novel fluorophores for luminescent down-shifting (LDS) application was proposed and tested in this paper. Three new fluorophores (1a-c) with specific intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) characteristics were synthesized as LDS molecules for increasing the output short circuit current density (Jsc) of a CdTe solar cell. Photophysical studies of their solution and solid states, and photovoltaic measurements of their PMMA solid films applied on a CdTe solar cell suggested that the specific spectroscopic properties and Jsc enhancement effects of these molecules were highly related to their chemical structures. The Jsc enhancement effects of these fluorophores were measured on both a CdTe small cell and a large panel. An increase in the output Jsc by as high as 5.69% for a small cell and 8.88% for a large panel was observed. Compared to a traditional LDS molecule, Y083, these fluorophores exhibited more superior capabilities of LDS.

  10. Synchrotron X-ray imaging applied to solar photovoltaic silicon

    International Nuclear Information System (INIS)

    Lafford, T A; Villanova, J; Plassat, N; Dubois, S; Camel, D

    2013-01-01

    Photovoltaic (PV) cell performance is dictated by the material of the cell, its quality and purity, the type, quantity, size and distribution of defects, as well as surface treatments, deposited layers and contacts. A synchrotron offers unique opportunities for a variety of complementary X-ray techniques, given the brilliance, spectrum, energy tunability and potential for (sub-) micron-sized beams. Material properties are revealed within in the bulk and at surfaces and interfaces. X-ray Diffraction Imaging (X-ray Topography), Rocking Curve Imaging and Section Topography reveal defects such as dislocations, inclusions, misorientations and strain in the bulk and at surfaces. Simultaneous measurement of micro-X-Ray Fluorescence (μ-XRF) and micro-X-ray Beam Induced Current (μ-XBIC) gives direct correlation between impurities and PV performance. Together with techniques such as microscopy and Light Beam Induced Current (LBIC) measurements, the correlation between structural properties and photovoltaic performance can be deduced, as well as the relative influence of parameters such as defect type, size, spatial distribution and density (e.g [1]). Measurements may be applied at different stages of solar cell processing in order to follow the evolution of the material and its properties through the manufacturing process. Various grades of silicon are under study, including electronic and metallurgical grades in mono-crystalline, multi-crystalline and mono-like forms. This paper aims to introduce synchrotron imaging to non-specialists, giving example results on selected solar photovoltaic silicon samples.

  11. SOLAR PHOTOVOLTAIC OUTPUT POWER FORECASTING USING BACK PROPAGATION NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    B. Jency Paulin

    2016-01-01

    Full Text Available Solar Energy is an important renewable and unlimited source of energy. Solar photovoltaic power forecasting, is an estimation of the expected power production, that help the grid operators to better manage the electric balance between power demand and supply. Neural network is a computational model that can predict new outcomes from past trends. The artificial neural network is used for photovoltaic plant energy forecasting. The output power for solar photovoltaic cell is predicted on hourly basis. In historical dataset collection process, two dataset was collected and used for analysis. The dataset was provided with three independent attributes and one dependent attributes. The implementation of Artificial Neural Network structure is done by Multilayer Perceptron (MLP and training procedure for neural network is done by error Back Propagation (BP. In order to train and test the neural network, the datasets are divided in the ratio 70:30. The accuracy of prediction can be done by using various error measurement criteria and the performance of neural network is to be noted.

  12. Turning the Moon into a Solar Photovoltaic Paradise

    Science.gov (United States)

    Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter

    2006-01-01

    Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.

  13. Optimizing Grid Patterns on Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  14. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO2 Based CdS Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Atif

    2015-01-01

    Full Text Available Cadmium sulphide (CdS quantum dot sensitized solar cells (QDSSCs based on screen-printed TiO2 were assembled using a screen-printing technique. The CdS quantum dots (QDs were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO electrode into TiO2.

  15. Photovoltaic characterization of hybrid solar cells using surface modified TiO{sub 2} nanoparticles and poly(3-hexyl)thiophene

    Energy Technology Data Exchange (ETDEWEB)

    Guenes, Serap [Yildiz Technical University, Faculty of Arts and Science, Department of Physics, Davutpasa Campus, 34220, Esenler, Istanbul (Turkey); Marjanovic, Nenad [Plastic electronic GmbH, Rappetsederweg 28, A-4040 Linz (Austria); Nedeljkovic, Jovan M [Vinca Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade (Serbia); Sariciftci, Niyazi Serdar [Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, A-4040, Linz (Austria)], E-mail: sgunes@yildiz.edu.tr

    2008-10-22

    We report on the photovoltaic performance of bulk heterojunction solar cells using novel nanoparticles of 6-palmitate ascorbic acid surface modified TiO{sub 2} as an electron acceptor embedded into the donor poly(3-hexyl)thiophene (P3HT) matrix. Devices were fabricated by using P3HT with varying amounts of red TiO{sub 2} nanoparticles (1:1, 1:2, 1:3 w-w ratio). The devices were characterized by measuring current-voltage characteristics under simulated AM 1.5 conditions. Incident photon to current efficiency (IPCE) was spectrally resolved. The nanoscale morphology of such organic/inorganic hybrid blends was also investigated using atomic force microscopy (AFM)

  16. Towards 3rd generation organic tandem solar cells with 20% efficiency: Accelerated discovery and rational design of carbon-based photovoltaic materials through massive distributed volunteer computing

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru-Guzik, Alan [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2016-11-04

    Clean, affordable, and renewable energy sources are urgently needed to satisfy the 10s of terawatts (TW) energy need of human beings. Solar cells are one promising choice to replace traditional energy sources. Our broad efforts have expanded the knowledge of possible donor materials for organic photovoltaics, while increasing access of our results to the world through the Clean Energy Project database (www.molecularspace.org). Machine learning techniques, including Gaussian Processes have been used to calibrate frontier molecular orbital energies, and OPV bulk properties (open-circuit voltage, percent conversion efficiencies, and short-circuit current). This grant allowed us to delve into the solid-state properties of OPVs (charge-carrier dynamics). One particular example allowed us to predict charge-carrier dynamics and make predictions about future hydrogen-bonded materials.

  17. Preparation and photovoltaic properties of CdS quantum dot-sensitized solar cell based on zinc tin mixed metal oxides.

    Science.gov (United States)

    Cao, Jiupeng; Zhao, Yifan; Zhu, Yatong; Yang, Xiaoyu; Shi, Peng; Xiao, Hongdi; Du, Na; Hou, Wanguo; Qi, Genggeng; Liu, Jianqiang

    2017-07-15

    The present study reports a new type of quantum dot sensitized solar cells (QDSSCs) using the zinc tin mixed metal oxides (MMO) as the anode materials, which were obtained from the layered double hydroxide (LDH) precursor. The successive ionic layer adsorption and reaction (SILAR) method is applied to deposit CdS quantum dots. The effects of sensitizing cycles on the performance of CdS QDSSC are studied. Scanning electron microscopy (SEM), Transmission electron microscope (TEM) and X-ray diffraction (XRD) are used to identify the surface profile and crystal structure of the mixed metal oxides anode. The photovoltaic performance of the QDSSC is studied by the electrochemical method. The new CdS QDSSC exhibits power conversion efficiency (PCE) up to 0.48% when the anode was sensitized for eight cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Photovoltaic cells employing zinc phosphide

    Science.gov (United States)

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  19. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  20. Technology Roadmaps: Solar photovoltaic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Solar PV power is a commercially available and reliable technology with a significant potential for long-term growth in nearly all world regions. This roadmap estimates that by 2050, PV will provide around 11% of global electricity production and avoid 2.3 gigatonnes (Gt) of CO2 emissions per year. Achieving this roadmap's vision will require an effective, long-term and balanced policy effort in the next decade to allow for optimal technology progress, cost reduction and ramp-up of industrial manufacturing for mass deployment. Governments will need to provide long-term targets and supporting policies to build confidence for investments in manufacturing capacity and deployment of PV systems. PV will achieve grid parity -- i.e. competitiveness with electricity grid retail prices -- by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.

  1. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  2. The role of low light intensity: A step towards understanding the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells

    Science.gov (United States)

    Lojpur, Vesna; Mitrić, Miodrag; Validžić, Ivana Lj

    2018-05-01

    We report here an optic/lens system that we used so far, for cooling the surface of solar cells, the reduction of light intensity and the change of light distribution that reaches the surface of the solar cell. The objective was to improve photovoltaic characteristics under very low light illumination, as well as to understand the connection between light, optic/lens and photovoltaic behavior for Sb2S3 thin-film solar cells. It was found that for all so far designed thin-film solar cells made and based on the synthesized Sb2S3, optics/lens system causes an increase in open circuit voltage (VOC) and short circuit current (ISC) and thus the efficiencies of made solar devices. Values of energy gaps for the thin-films made devices were in the range from 1.4 to 2 eV. Improvements of the photovoltaic response of the designed devices are found to be better at the lower light intensity (5% sun), than at higher intensities of light. For the same intensity of light used optic/lens improves the efficiency of the devices, by changing the light distribution. Other processes that are related to the optics/lens system, leading to an increase in ISC and VOC and consequently to an increase in efficiencies of the designed devices, are investigated.

  3. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control.

    Science.gov (United States)

    Gopi, Chandu V V M; Venkata-Haritha, M; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-08-07

    To make quantum-dot-sensitized solar cells (QDSSCs) competitive, photovoltaic parameters comparable to those of other emerging solar cell technologies are necessary. In the present study, ZnSe was used as an alternative to ZnS, one of the most widely used passivation materials in QDSSCs. ZnSe was deposited on a TiO2-CdS-CdSe photoanode to form a core-shell structure, which was more efficient in terms of reducing the electron recombination in QDSSCs. The development of an efficient passivation layer is a requirement for preventing recombination processes in order to attain high-performance and stable QDSSCs. A layer of inorganic Mn-ZnSe was applied to a QD-sensitized photoanode to enhance the adsorption and strongly inhibit interfacial recombination processes in QDSSCs, which greatly improved the power conversion efficiency. Impedance spectroscopy revealed that the combined Mn doping with ZnSe treatment reduces interfacial recombination and increases charge collection efficiency compared with Mn-ZnS, ZnS, and ZnSe. A solar cell based on the CdS-CdSe-Mn-ZnSe photoanode yielded excellent performance with a solar power conversion efficiency of 5.67%, Voc of 0.584 V, and Jsc of 17.59 mA cm(-2). Enhanced electron transport and reduced electron recombination are responsible for the improved Jsc and Voc of the QDSSCs. The effective electron lifetime of the device with Mn-ZnSe was higher than those with Mn-ZnS, ZnSe, and ZnS, leading to more efficient electron-hole separation and slower electron recombination.

  4. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  5. Flexible, Lightweight Quantum Dot Solar Cells Using Plasmonic-Enhanced Light Absorption

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar cells, or photovoltaic cells, are critical to NASA operations due to the abundance and availability of solar power. Current photovoltaic technology is based on...

  6. Effect of ZnO decoration on the photovoltaic performance of TiO{sub 2} based dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Long; Zhai, Bao-gai [School of Mathematics and Physics, Changzhou University, Jiangsu 213164 (China); Ma, Qing-lan [School of Electronics and Information, Nantong University, Jiangsu 226019 (China); Huang, Yuan Ming, E-mail: dongshanisland@126.com [School of Electronics and Information, Nantong University, Jiangsu 226019 (China)

    2014-08-25

    Highlights: • Various ZnO morphologies coated TiO{sub 2} photoanodes are formed and applied to DSSCs. • The effect of photoanode morphology on performance of DSSCs was studied. • ZnO NRs@TiO{sub 2} electrode provides more dye absorption and fast transfer pathway. • The η of DSSC with ZnO NRs@TiO{sub 2} is increased over fourfold than other DSSCs. - Abstract: ZnO nanoparticles and one-dimensional vertically aligned ZnO nanorods were grown on the TiO{sub 2} layers in the photoanodes via the hydrothermal method at 60 and 90 °C, respectively. The effect of ZnO decoration on the photovoltaic performance of TiO{sub 2} based dye sensitized solar cells (DSSCs) was investigated. The morphologies, crystalline structures and optical properties of the synthesized ZnO nanoparticles and ZnO nanorods were characterized by field-emission scanning electron microscope, X-ray diffractometer and photoluminescence spectroscopy, respectively. The photocurrent–voltage curves of the fabricated DSSCs showed that the ZnO nanorods decorated DSSCs exhibited better photovoltaic performance than the ZnO nanoparticles decorated DSSCs. The improved performance of the ZnO nanorods decorated DSSCs can be ascribed to the fact that the vertically aligned ZnO nanorods provide high specific surface area for dye adsorption and the efficient pathway for electron transportation.

  7. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer.

    Science.gov (United States)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-13

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC 71 BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  8. Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer

    Science.gov (United States)

    Rafique, Saqib; Abdullah, Shahino Mah; Shahid, Muhammad Mehmood; Ansari, Mohammad Omaish; Sulaiman, Khaulah

    2017-01-01

    This work demonstrates the high performance graphene oxide (GO)/PEDOT:PSS doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk heterojunction organic photovoltaic device. The devices were tested on merits of their power conversion efficiency (PCE), reproducibility, stability and further compared with the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of individual GO or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. In case of single GO HTL, an inhomogeneous coating of ITO caused the poor performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon direct contact with ITO reduced the device performance. The improvement in the photovoltaic performance is mainly ascribed to the increased charge carriers mobility, short circuit current, open circuit voltage, fill factor, and decreased series resistance. The well matched work function of GO and PEDOT:PSS is likely to facilitate the charge transportation and an overall reduction in the series resistance. Moreover, GO could effectively block the electrons due to its large band-gap of ~3.6 eV, leading to an increased shunt resistance. In addition, we also observed the improvement in the reproducibility and stability.

  9. Revealing the influence of Cyano in Anchoring Groups of Organic Dyes on Adsorption Stability and Photovoltaic Properties for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chen, Wei-Chieh; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang

    2017-07-10

    Determining an ideal adsorption configuration for a dye on the semiconductor surface is an important task in improving the overall efficiency of dye-sensitized solar cells. Here, we present a detailed investigation of different adsorption configurations of designed model dyes on TiO 2 anatase (101) surface using first principles methods. Particularly, we aimed to investigate the influence of cyano group in the anchoring part of dye on its adsorption stability and the overall photovoltaic properties such as open circuit voltage, electron injection ability to the surface. Our results indicate that the inclusion of cyano group increases the stability of adsorption only when it adsorbs via CN with the surface and it decreases the photovoltaic properties when it does not involve in binding. In addition, we also considered full dyes based on the results of model dyes and investigated the different strength of acceptor abilities on stability and electron injection ability. Among the various adsorption configurations considered here, the bidentate bridging mode (A3) is more appropriate one which has higher electron injection ability, larger V OC value and more importantly it has higher dye loading on the surface.

  10. Investigation of exciton photodissociation, charge transport and photovoltaic response of poly(N-vinyl carbazole):TiO2 nanocomposites for solar cell applications

    International Nuclear Information System (INIS)

    Dridi, C; Chaabane, H; Barlier, V; Davenas, J; Ouada, H Ben

    2008-01-01

    The photogeneration of charge carriers in spin-coated thin films of nanocrystalline (nc-)TiO 2 particles dispersed in a semiconducting polymer, poly(N-vinylcarbazole) (PVK), has been studied by photoluminescence and charge transport measurements. The solvent and the TiO 2 particle concentration have been selected to optimize the composite morphology. A large number of small domains leading to a large interface and an improved exciton dissociation could be obtained with tetrahydrofuran (THF). The charge transport mechanism and trap distribution at low and high voltage in ITO/nc-TiO 2 :PVK/Al diodes in the dark could be identified by current-voltage measurements and impedance spectroscopy. The transport mechanism is space charge limited with an exponential trap distribution in the high voltage regime (1-4 V), whereas a Schottky process with a barrier height of about 0.9 eV is observed at low bias voltages ( sc and open circuit voltage V oc for a 30% TiO 2 volume content corresponding to the morphology exhibiting the best dispersion of TiO 2 particles. A degradation of the photovoltaic properties is induced at higher compositions by the formation of larger TiO 2 aggregates. A procedure has been developed to extract the physical parameters from the J-V characteristics in the dark and under illumination on the basis of an equivalent circuit. The variation of the solar cell parameters with the TiO 2 composition confirms that the photovoltaic response is optimum for 30% TiO 2 volume content. It is concluded that the photovoltaic properties of nc-TiO 2 :PVK nanocomposites are controlled by the interfacial area between the donor and the acceptor material and are limited by the dispersion of the TiO 2 nanoparticles in the polymer

  11. Adverse Effects of Excess Residual PbI2 on Photovoltaic Performance, Charge Separation, and Trap-State Properties in Mesoporous Structured Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Hao-Yi; Hao, Ming-Yang; Han, Jun; Yu, Man; Qin, Yujun; Zhang, Pu; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping

    2017-03-17

    Organic-inorganic halide perovskite solar cells have rapidly come to prominence in the photovoltaic field. In this context, CH 3 NH 3 PbI 3 , as the most widely adopted active layer, has been attracting great attention. Generally, in a CH 3 NH 3 PbI 3 layer, unreacted PbI 2 inevitably coexists with the perovskite crystals, especially following a two-step fabrication process. There appears to be a consensus that an appropriate amount of unreacted PbI 2 is beneficial to the overall photovoltaic performance of a device, the only disadvantageous aspect of excess residual PbI 2 being viewed as its insulating nature. However, the further development of such perovskite-based devices requires a deeper understanding of the role of residual PbI 2 . In this work, PbI 2 -enriched and PbI 2 -controlled perovskite films, as two extreme cases, have been prepared by modulating the crystallinity of a pre-deposited PbI 2 film. The effects of excess residual PbI 2 have been elucidated on the basis of spectroscopic and optoelectronic studies. The initial charge separation, the trap-state density, and the trap-state distribution have all been found to be adversely affected in PbI 2 -enriched devices, to the detriment of photovoltaic performance. This leads to a biphasic recombination process and accelerates the charge carrier recombination dynamics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The photovoltaic performance of Ag2S quantum dots-sensitized solar cells using plasmonic Au nanoparticles/TiO2 working electrodes

    Science.gov (United States)

    Badawi, Ali; Mostafa, Nasser Y.; Al-Hosiny, Najm M.; Merazga, Amar; Albaradi, Ateyyah M.; Abdel-Wahab, F.; Atta, A. A.

    2018-06-01

    The photovoltaic performance of silver sulfide (Ag2S) quantum dots-sensitized solar cells (QDSSCs) using different concentrations (0, 0.05, 0.1, 0.3 and 0.5 wt.%) of plasmonic Au nanoparticles (NPs)/titania (TiO2) electrodes has been investigated. Ag2S quantum dots (QDs) were adsorbed onto the Au NPs/titania electrodes using the successive ionic layer adsorption and reaction (SILAR) deposition technique. The morphological properties of the Au NPs and the prepared titania electrodes were characterized using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The energy-dispersive X-ray (EDX) spectra of the bare titania and Ag2S QDs-sensitized titania electrodes were recorded. The optical properties of the prepared Ag2S QDs-sensitized titania electrodes were measured using a UV-visible spectrophotometer. The estimated energy band gap of Ag2S QDs-sensitized titania electrodes is 1.96 eV. The photovoltaic performance of the assembled Ag2S QDSSCs was measured under 100 mW/cm2 solar illumination. The optimal photovoltaic parameters were obtained as follows: open circuit voltage Voc = 0.50 V, current density Jsc = 3.18 mA/cm2, fill factor (FF) = 0.35 and energy conversion efficiency η = 0.55% for 0.3 wt.% of Au NPs/titania electrode. These results are attributed to the enhancement in the absorption and decrease in the electron-hole pairs recombination rate. The open circuit voltage decay (OCVD) measurements of the assembled Ag2S QDSSCs were measured. The calculated electron lifetime (τ) in Ag2S QDSSCs with Au NPs/titania electrodes is at least one order of magnitude more than that with bare titania electrode. The cut-on-cut-off cycles of the solar illumination measurements show the rapid sensitivity and good reproducibility of the assembled Ag2S QDSSCs.

  13. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Varo, Pilar [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Bertoluzzi, Luca [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Bisquert, Juan, E-mail: bisquert@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Coll, Mariona [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Catalonia (Spain); Huang, Jinsong [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States); Jimenez-Tejada, Juan Antonio [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Kirchartz, Thomas [IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Faculty of Engineering and CENIDE, University of Duisburg–Essen, Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nechache, Riad; Rosei, Federico [INRS—Center Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2 (Canada); Yuan, Yongbo [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States)

    2016-10-07

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  14. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    International Nuclear Information System (INIS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-01-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  15. Solar breeder: Energy payback time for silicon photovoltaic systems

    Science.gov (United States)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  16. Three dimensional corrugated organic photovoltaics for building integration; improving the efficiency, oblique angle and diffuse performance of solar cells

    OpenAIRE

    Kettle, Jeff; Bristow, Noel; Sweet, Tracy K. N.; Jenkins, Nick; Benatto, Gisele Alves dos Reis; Jørgensen, Mikkel; Krebs, Frederik C

    2015-01-01

    The lamination of OPV modules to corrugated roof cladding has been undertaken. The 3-dimensional form of the cladding provides three advantages for outdoor OPV deployment; firstly the ‘footprint’ of the solar cell is reduced, which leads to B10% improved power conversion (PCE) efficiency per unit area. Secondly, the oblique angle performance is enhanced, leading to increased output in the early morning and evening. Indoor characterisation showed a 9-fold enhancement in efficiency was obtainab...

  17. Improving the photovoltaic parameters in Quantum dot sensitized solar cells through employment of chemically deposited compact titania blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Prasad, M.B., E-mail: rajendraprasadmb75@gmail.com [Advanced Physics Laboratory, Department of Physics, SavitibaiPhule Pune University, Pune, 411007 (India); National Defence Academy, Khadakwasla, Pune, 411023 (India); Kadam, Vishal [Advanced Physics Laboratory, Department of Physics, SavitibaiPhule Pune University, Pune, 411007 (India); Joo, Oh-Shim [Korea Institute of Science and Technology, PO Box No. 131, Chongryang, Seoul, 130-650 (Korea, Republic of); Pathan, Habib M. [Advanced Physics Laboratory, Department of Physics, SavitibaiPhule Pune University, Pune, 411007 (India)

    2017-06-15

    Incorporation of compact blocking layer at the Transparent Conducting Oxide (TCO)/Electrolyte interface is an effective method to improve the device performance in QDSSC through mitigation of electron recombinations at this interface. This paper reports the most facile and cost effective method of depositing a rutile titania Compact Layer (CL) over Fluorine doped Tin Oxide (FTO) substrate and its application in titania based CdS QD sensitized solar cells. The deposited compact layers are characterized to study their structural, optical, morphological and electrochemical properties using X-Ray Diffractometry, UV–Visible spectroscopy, Scanning electron microscopy, Cyclic Voltammetry and Contact Angle measurements. Sandwich solar cells are fabricated using these CL based electrodes and characterized using Electrochemical Impedance Spectroscopy, Open Circuit Voltage Decay and J-V characteristics. The CL incorporated CdS QDSSC showed more than 100% increase in the photoconversion efficiency (1.68%) as compared to its bare FTO counterpart (0.73%) proving the efficacy of employed strategy. - Highlights: • Deposited titania compact layer by a facile room temperature chemical bath method. • Employed this to mitigate back electron transfer at TCO/Electrolyte interface. • Compact layer incorporation has improved the solar cell performance by 130%.

  18. Subcell Debye behavior analysis of order–disorder effects in triple-junction InGaP-based photovoltaic solar cells

    International Nuclear Information System (INIS)

    Hsiao, Jui-Ju; Chen, Hung-Ing; Huang, Yi-Jen; Wang, Jen-Cheng; Lu, Bing-Yuh; Wu, Ya-Fen; Nee, Tzer-En

    2015-01-01

    Analysis was made of the Subcell Debye behavior of the order–disorder effects in triple-junction InGaP-based photovoltaic solar cells fabricated by a metal organic vapor phase epitaxy (MOVPE) system with careful adjustment of the growth conditions. The order–disorder configurations of the InGaP subcells were investigated after post-annealing treatment at various temperatures in a nitrogen atmosphere. Temperature-dependent photoluminescence (PL) measurements over a broad temperature range provided insight into the roles of the thermophysical phenomena connected with the ordering and disordering in the InGaP alloys. The thermally-related spectroscopic observations associated with the ordering effects on the photon–phonon interactions were confirmed by the McCumber–Sturge theory. The variations of both the full width at half-maximum (FWHM) and shift in the peak of PL with temperature were analyzed. According to the width-related PL observations the effective photon–phonon coupling coefficient and the Debye temperature were 0.53 meV and 424 K, respectively; according to shift-related PL observations of the as-grown sample they were 0.3247 eV and 430 K, respectively, for the width-related PL observation they were 0.29 meV and 421 K; and from the shift-related PL observations for the as-grown ordered samples they were 0.3142 eV and 425 K, respectively, implying that the spontaneously disordered InGaP heterostructures met the demand for improvement of photovoltaic devices. Both the effective photon–phonon coupling coefficient and the Debye temperatures were characterized as functions of the annealing temperature. The Debye temperatures obtained for the disordered and ordered top subcells were consistent with the universal Gruneisen–Bloch relation. - Highlights: • Analysis was made of the Subcell Debye behavior in photovoltaic solar cells. • The order–disorder configurations of the InGaP subcells were investigated. • The Debye temperatures were

  19. Subcell Debye behavior analysis of order–disorder effects in triple-junction InGaP-based photovoltaic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Jui-Ju; Chen, Hung-Ing; Huang, Yi-Jen; Wang, Jen-Cheng [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan ROC (China); Lu, Bing-Yuh [Department of Electronic Engineering, Tungnan University, No.152, Sec. 3, Beishen Road, Shenkeng District, New Taipei City, Taiwan ROC (China); Wu, Ya-Fen [Department of Electronic Engineering, Ming Chi University of Technology, 84 Gungjuan Road, Taishan District, New Taipei City, Taiwan ROC (China); Nee, Tzer-En, E-mail: neete@mail.cgu.edu.tw [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan ROC (China)

    2015-12-15

    Analysis was made of the Subcell Debye behavior of the order–disorder effects in triple-junction InGaP-based photovoltaic solar cells fabricated by a metal organic vapor phase epitaxy (MOVPE) system with careful adjustment of the growth conditions. The order–disorder configurations of the InGaP subcells were investigated after post-annealing treatment at various temperatures in a nitrogen atmosphere. Temperature-dependent photoluminescence (PL) measurements over a broad temperature range provided insight into the roles of the thermophysical phenomena connected with the ordering and disordering in the InGaP alloys. The thermally-related spectroscopic observations associated with the ordering effects on the photon–phonon interactions were confirmed by the McCumber–Sturge theory. The variations of both the full width at half-maximum (FWHM) and shift in the peak of PL with temperature were analyzed. According to the width-related PL observations the effective photon–phonon coupling coefficient and the Debye temperature were 0.53 meV and 424 K, respectively; according to shift-related PL observations of the as-grown sample they were 0.3247 eV and 430 K, respectively, for the width-related PL observation they were 0.29 meV and 421 K; and from the shift-related PL observations for the as-grown ordered samples they were 0.3142 eV and 425 K, respectively, implying that the spontaneously disordered InGaP heterostructures met the demand for improvement of photovoltaic devices. Both the effective photon–phonon coupling coefficient and the Debye temperatures were characterized as functions of the annealing temperature. The Debye temperatures obtained for the disordered and ordered top subcells were consistent with the universal Gruneisen–Bloch relation. - Highlights: • Analysis was made of the Subcell Debye behavior in photovoltaic solar cells. • The order–disorder configurations of the InGaP subcells were investigated. • The Debye temperatures were

  20. Enhanced charge transport and photovoltaic performance of PBDTTT-C-T/PC70BM solar cells via UV-ozone treatment.

    Science.gov (United States)

    Adhikary, Prajwal; Venkatesan, Swaminathan; Adhikari, Nirmal; Maharjan, Purna P; Adebanjo, Olusegun; Chen, Jihua; Qiao, Qiquan

    2013-10-21

    In this work, the electron transport layer of PBDTTT-C-T/PC70BM polymer solar cells were subjected to UV-ozone treatment, leading to improved cell performances from 6.46% to 8.34%. The solar cell efficiency reached a maximum of 8.34% after an optimal 5 minute UV-ozone treatment, and then decreased if treated for a longer time. To the best of our knowledge, the mechanism behind the effects of UV-ozone treatment on the improvement of charge transport and cell performance is not fully understood. We have developed a fundamental understanding of the UV-ozone treatment mechanism, which explains both the enhancements in charge transport and photovoltaic performance at an optimal treatment time, and also the phenomenon whereby further treatment time leads to a drop in cell efficiency. Transient photocurrent measurements indicated that the cell charge transport times were 1370 ns, 770 ns, 832 ns, 867 ns, and 1150 ns for the 0 min, 5 min, 10 min, 15 min, and 20 min UV-ozone treatment times, respectively. Therefore the 5 min UV-ozone treatment time led to the shortest transport time and the most efficient charge transport in the cells. The 5 min UV-ozone treated sample exhibited the highest peak intensity (E2) in the Raman spectra of the treated films, at about 437 cm(-1), indicating that it possessed the best wurtzite phase crystallinity of the ZnO films. Further increasing the UV-ozone treatment time from 5 to 20 min induced the formation of p-type defects (e.g. interstitial oxygen atoms), pushing the ZnO Fermi-level further away from the vacuum level, and decreasing the wurtzite crystallinity.

  1. Enhanced photovoltaic performance of CH3NH3PbBrXI3-X-based perovskite solar cells via anti-solvent extraction

    Science.gov (United States)

    Jiang, Zhaoyi; Zhang, Weijia; Lu, Chaoqun; Ma, Denghao; Liu, Haixu; Yu, Wei; Zhang, Yu; Ma, Qiang; Zhang, Yulong

    2018-06-01

    In this paper, the two-step sequential deposition method was used to prepare the CH3NH3PbBrXI3-X films by introducing CH3NH3Br in the precursors. The surface morphology of the PbI2 films was controlled by anti-solvent extraction (ASE) to improve the microstructure and photo-physical properties of the perovskite films. It was noteworthy that, compared to the compact PbI2 films, the porous PbI2 films facilitated the growth of crystals and bromine incorporation in films, and the prepared perovskite films exhibited enlarged grain size, increased light absorption, enhanced Br incorporation and prolonged carrier lifetime, which resulted in excellent photo-electrical properties of the CH3NH3PbBrXI3-X films. With porous PbI2 templates, the inverted planar perovskite solar cells based on films with appropriate Br incorporation (CH3NH3Br/CH3NH3I mole ratio = 3/7) showed a photovoltaic conversion efficiency (PCE) of 14.9%, and the stability of the devices in air was elevated. Consequently, the high-quality CH3NH3PbBrXI3-X films can be obtained with porous PbI2 templates for improving the performance of the perovskite solar cells.

  2. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    KAUST Repository

    Baran, Derya

    2016-11-21

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

  3. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    KAUST Repository

    Baran, Derya; Ashraf, Raja; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Rö hr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

  4. Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Funda, Shuji; Ohki, Tatsuya; Liu, Qiming; Hossain, Jaker; Ishimaru, Yoshihiro; Ueno, Keiji; Shirai, Hajime [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan)

    2016-07-21

    We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated C{sub α} = C{sub β} configuration attributed to a thiophene ring in PEDOT and an out-of-plane configuration of -SO{sub 3} groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, I{sub qui}/I{sub ben}. The highest power conversion efficiency for the spin-coated PEDOT:PSS/c-Si heterojunction solar cells was 13.3% for I{sub qui}/I{sub ben} = 9–10 without employing any light harvesting methods.

  5. Effect of tube depth on the photovoltaic performance of CdS quantum dots sensitized ZnO nanotubes solar cells

    International Nuclear Information System (INIS)

    Yang, Lili; Zhang, Zhiqiang; Yang, Jinghai; Yan, Yongsheng; Sun, Yunfei; Cao, Jian; Gao, Ming

    2012-01-01

    Highlights: ► ZnO nanotubes as photoanode can enhance the energy conversion efficiency. ► ZnO nanotubes with larger surface area can load more CdS QDs to absorb more light. ► ZnO nanotubes can provide two transfer channels for photo-injected carrier. - Abstract: High-density and vertically-aligned ZnO nanotubes (ZNTs) with different depth and ZnO nanorods (ZNRs) were used as photoelectrodes to assemble the CdS quantum dots sensitized solar cells (QDSSCs). In comparison with the CdS sensitized ZNRs solar cell, up to 170% enhancement in energy conversion efficiency was achieved for the CdS sensitized ZNTs under the white light illumination intensity of 100 mW/cm 2 . The investigation about the effects of tube depth on the photovoltaic performance of ZNTs/CdS electrodes revealed that at least two factors induce the enhancement of their conversion efficiency. One is that the higher surface-volume ratio of ZNTs can effectively increase the loading amount of CdS QDs, which can effectively absorb the light. The other is that the outer and inner wall of ZNTs can provide two transfer channels for photo-injected carriers, which can improve the efficiency of current collection.

  6. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    Science.gov (United States)

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. PowerShades. Transparent photovoltaics and solar shading. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bezzel, E. (PhotoSolar ApS, Taastrup (Denmark)); Univ. of Neuchatel, Institute of Microtechnology, Neuchatel (CH)); Savcor Denmark A/S, Ballerup (Denmark)); Chem-Tec Plating A/S, Uldum (Denmark)); Danish Technological Institute (DTI), Taastrup (Denmark))

    2008-06-15

    This report marks the end of the PSO funded R and D project PowerShades. The objective of the project has been to establish knowledge about the manufacturing of PowerShade transparent photovoltaics and to demonstrate the viability of PowerShade, both as a product and when considered a building element. It has not been the objective to demonstrate a full-scale manufacturing of PowerShade, but to establish the knowledge that enables industrial manufacturing. The overall objective of the project has been achieved, and the large majority of the milestones defined have been met to full extent. It has been shown that PowerShade photovoltaic cells with an electrical efficiency of 5% can be reached, and it is expected that future work will lead to even better efficiency. Also, it has been demonstrated by full size side by side comparison that PowerShade transparent photovoltaics may replace exterior solar shading devices without compromise to the thermal properties of the building. The project has identified a number of work areas that must be addressed before an industrial manufacturing can be established. The efficiency of the photovoltaic generator must be increased and the stability of the entire product documented. Also, some of the identified processing steps must be scaled in capacity before manufacturing can be considered. (author)

  8. 77 FR 17439 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-03-26

    ... cells or solar cells assembled into modules or panels, and thus quantity is not recorded consistently in... silicon photovoltaic cells, whether or not assembled into modules (solar cells) from the People's Republic... History The Department initiated a countervailing duty (CVD) investigation of solar cells from the PRC on...

  9. Solar energy photovoltaic technology: proficiency and performance; L'energie solaire maitrise et performance photovoltaiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Total is committed to making the best possible of the planet's fossil fuel reserves while fostering the emergence of other solutions, notably by developing effective alternatives. Total involves in photovoltaics when it founded in 1983 Total Energies, renamed Tenesol in 2005, a world leader in the design and installation of photovoltaic solar power systems. This document presents Total's activities in the domain: the global challenge of energy sources and the environment, the energy collecting by photovoltaic electricity, the silicon technology for cell production, solar panels and systems to distribute energy, research and development to secure the future. (A.L.B.)

  10. Solar photovoltaics in Sri Lanka: a short history

    International Nuclear Information System (INIS)

    Gunaratne, L.

    1994-01-01

    With a significant unelectrified rural population, Sri Lanka has followed the evolution of solar photovoltaic (PV) technology in the West very closely since the 1970s as terrestrial applications for photovoltaics were developed. It was not until 1980 that the Sri Lankan government embarked on the promotion of solar photovoltaics for rural domestic use when the Ceylon Electricity Board formed the Energy Unit. In addition, Australian and Sri Lankan government-funded pilot projects have given the local promoters further valuable insight into how and how not to promote solar photovoltaics. The establishment of community-based solar photovoltaic programmes by non-governmental organizations has developed a novel approach to bridge the gap between this state-of-the-art technology and the remotely located end-users. (author)

  11. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  12. Improved photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  13. Standard Specification for Solar Simulation for Terrestrial Photovoltaic Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification provides means for classifying solar simulators intended for indoor testing of photovoltaic devices (solar cells or modules), according to their spectral match to a reference spectral irradiance, non-uniformity of spatial irradiance, and temporal instability of irradiance. 1.2 Testing of photovoltaic devices may require the use of solar simulators. Test Methods that require specific classification of simulators as defined in this specification include Test Methods E948, E1036, and E1362. 1.3 This standard is applicable to both pulsed and steady state simulators and includes recommended test requirements used for classifying such simulators. 1.4 A solar simulator usually consists of three major components: (1) light source(s) and associated power supply; (2) any optics and filters required to modify the output beam to meet the classification requirements in Section 4; and (3) the necessary controls to operate the simulator, adjust irradiance, etc. 1.5 A light source that does not mee...

  14. Modeling of a solar photovoltaic water pumping system under the influence of panel cooling

    Directory of Open Access Journals (Sweden)

    Chinathambi Gopal

    2017-01-01

    Full Text Available In this paper, the performance of a solar photovoltaic water pumping system was improved by maintaining the cell temperature in the range between 30°C and 40°C. Experiments have been conducted on a laboratory experimental set-up installed with 6.4 m2 solar panel (by providing air cooling either on the top surface or over the beneath surface of the panel to operate a centrifugal pump with a rated capacity of 0.5 HP. The performance characteristics of the photovoltaic panel (such as, cell temperature, photovoltaic panel output, and photovoltaic efficiency, pump performance characteristics (such as pump efficiency and discharge, and system performance characteristics are observed with reference to solar irradiation, ambient temperature and wind velocity. A thermal model has been developed to predict the variations of photovoltaic cell temperature based on the measured glass and tedlar temperatures. The influences of cell temperature and solar irradiation on the performance of the system are described. The results concluded that cooling of photovoltaic panel on beneath surface has maintained the cell temperature in the range between 30°C and 40°C and improved the overall efficiency by about 1.8% when compared to the system without panel cooling.

  15. New Sunshine Program for fiscal 2000. Development of photovoltaic power system commercialization technology (Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology - Surveys and studies of peripheral key technologies/Surveys of environmentally-friendliness enhancement for next-generation solar cell development); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (Shuhen yoso gijutsu ni kansuru kenkyu chosa, Jisedai taiyodenchi kaihatsu kankyo tekioka chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Though the trends of solar cell development are becoming increasingly diverse across the world, yet none has emerged to promise a stable solar cell supply in the future. Under the circumstances, studies were conducted to clarify strategies for solar cell technology development which would be well adapted to Japan's social environments, with the trends of development in the United States and European countries taken into consideration. The surveys covered the research and development and diffusion of photovoltaic power generation in the United States and European countries, and their solar cell research and development strategies and trends of development were put together. Surveys were also conducted into the research and development of unconventional types of solar cells, such as the dye-sensitized solar cell, organic solar cell, conjugate polymer solar cell, and the polymer/C{sub 60} based solar cell, and into the status of resources of materials for solar cells such as gallium, arsenic, cadmium, tellurium, indium, selenium, and germanium. Regarding the future of photovoltaic power generation research and development, it was concluded that commercialization technology development and basic research and development should continue. Also pointed out was the importance of the enlargement of the market for photovoltaic power generation systems. (NEDO)

  16. New Sunshine Program for fiscal 2000. Development of photovoltaic power system commercialization technology (Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology - Surveys and studies of peripheral key technologies/Surveys of environmentally-friendliness enhancement for next-generation solar cell development); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu (Shuhen yoso gijutsu ni kansuru kenkyu chosa, Jisedai taiyodenchi kaihatsu kankyo tekioka chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Though the trends of solar cell development are becoming increasingly diverse across the world, yet none has emerged to promise a stable solar cell supply in the future. Under the circumstances, studies were conducted to clarify strategies for solar cell technology development which would be well adapted to Japan's social environments, with the trends of development in the United States and European countries taken into consideration. The surveys covered the research and development and diffusion of photovoltaic power generation in the United States and European countries, and their solar cell research and development strategies and trends of development were put together. Surveys were also conducted into the research and development of unconventional types of solar cells, such as the dye-sensitized solar cell, organic solar cell, conjugate polymer solar cell, and the polymer/C{sub 60} based solar cell, and into the status of resources of materials for solar cells such as gallium, arsenic, cadmium, tellurium, indium, selenium, and germanium. Regarding the future of photovoltaic power generation research and development, it was concluded that commercialization technology development and basic research and development should continue. Also pointed out was the importance of the enlargement of the market for photovoltaic power generation systems. (NEDO)

  17. Effect of Different CH3NH3PbI3 Morphologies on Photovoltaic Properties of Perovskite Solar Cells

    Science.gov (United States)

    Chen, Lung-Chien; Lee, Kuan-Lin; Wu, Wen-Ti; Hsu, Chien-Feng; Tseng, Zong-Liang; Sun, Xiao Hong; Kao, Yu-Ting

    2018-05-01

    In this study, the perovskite layers were prepared by two-step wet process with different CH3NH3I (MAI) concentrations. The cell structure was glass/FTO/TiO2-mesoporous/CH3NH3PbI3 (MAPbI3)/spiro-OMeTAD/Ag. The MAPbI3 perovskite films were prepared using high and low MAI concentrations in a two-step process. The perovskite films were optimized at different spin coating speed and different annealing temperatures to enhance the power conversion efficiency (PCE) of perovskite solar cells. The PCE of the resulting device based on the different perovskite morphologies was discussed. The PCE of the best cell was up to 17.42%, open circuit voltage of 0.97 V, short current density of 24.06 mA/cm2, and fill factor of 0.747.

  18. Photovoltaic investigation of minority carrier lifetime in the heavily-doped emitter layer of silicon junction solar cell

    Science.gov (United States)

    Ho, C.-T.

    1982-01-01

    The results of experiments on the recombination lifetime in a phosphorus diffused N(+) layer of a silicon solar cell are reported. The cells studied comprised three groups of Czochralski grown crystals: boron doped to one ohm-cm, boron doped to 6 ohm-cm, and aluminum doped to one ohm-cm, all with a shunt resistance exceeding 500 kilo-ohms. The characteristic bulk diffusion length of a cell sample was determined from the short circuit current response to light at a wavelength of one micron. The recombination rates were obtained by measurement of the open circuit voltage as a function of the photogeneration rate. The recombination rate was found to be dependent on the photoinjection level, and is positive-field controlled at low photoinjection, positive-field influence Auger recombination at a medium photoinjection level, and negative-field controlled Auger recombination at a high photoinjection level.

  19. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  20. Influence of doped-charge transport layers on the photovoltaic performance of donor-acceptor blend p-i-n type organic solar cells

    Directory of Open Access Journals (Sweden)

    D. Gebeyehu

    2004-06-01

    Full Text Available This report demonstrates external power conversion efficiencies of 2% under 100 mW/cm2 simulated AM1.5 illumination for organic thin-film photovoltaic cells using a phthalocyanine-fullerene (ZnPc/C60 bulk heterojunction as an active layer, embedded into a p-i-n type architecture with doped wide-gap charge transport layers. For an optically optimized device, we found internal quantum efficiency (IQE of above 80% under short circuit conditions. Such optically thin cells with high internal quantum efficiency are an important step towards high efficiency tandem cells. The p-i-n architecture allows for the design of solar cells with high internal quantum efficiency where only the photoactive region absorbs visible light and recombination losses at contacts are avoided. The I-V characteristics, power conversion efficiencies, the dependence of short circuit current on incident white light intensity, incident photon to collected electron efficiency (IPCE and absorption spectra of the active layer system are discussed.

  1. Better chances for photovoltaic solar energy

    International Nuclear Information System (INIS)

    Sinke, W.C.

    1992-01-01

    There is a growing interest in the use of solar energy based on the policy to reduce the emission of carbon dioxide and acidifying pollutants, and the desire to save energy, in particular with regard to the increase of energy consumption, which can be expected to occur in the near future in developing countries. After a brief introduction on the efficiencies of monocrystalline silicon (m-Si), polycrystalline silicon (p-Si) and amorphous silicon (a-Si) solar cells realized sofar, attention is paid to two remarkable developments in solar cell research. One is at Texas Instruments where silicon balls in aluminium foil are fabricated, for which the average energy efficiency realized sofar is 10% for small surfaces (10 cm 2 ). The cell is called the spheral solar cell. A second development is at the Federal Institute for Technology in Lausanne, Switzerland, where the researchers O'Regan and Graetzel reported on the development of a photo-electrochemical solar cell with a high efficiency and good stability. Their cell is dye sensitized, which means that the light absorption function of the cell is separated from the load transport function. Finally brief attention is paid to the introduction and use of solar home systems in Indonesia. 5 figs

  2. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency

    NARCIS (Netherlands)

    Desmet, L.; Ras, A.J.M.; Boer, de D.K.G.; Debije, M.G.

    2012-01-01

    We report conversion efficiencies of experimental single and dual light guide luminescent solar concentrators. We have built several 5¿¿cm×5¿¿cm and 10¿¿cm×10¿¿cm luminescent solar concentrator (LSC) demonstrators consisting of c-Si photovoltaic cells attached to luminescent light guides of Lumogen

  3. Study of Temperature Coefficients for Parameters of Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Daniel Tudor Cotfas

    2018-01-01

    Full Text Available The temperature is one of the most important factors which affect the performance of the photovoltaic cells and panels along with the irradiance. The current voltage characteristics, I-V, are measured at different temperatures from 25°C to 87°C and at different illumination levels from 400 to 1000 W/m2, because there are locations where the upper limit of the photovoltaic cells working temperature exceeds 80°C. This study reports the influence of the temperature and the irradiance on the important parameters of four commercial photovoltaic cell types: monocrystalline silicon—mSi, polycrystalline silicon—pSi, amorphous silicon—aSi, and multijunction InGaP/InGaAs/Ge (Emcore. The absolute and normalized temperature coefficients are determined and compared with their values from the related literature. The variation of the absolute temperature coefficient function of the irradiance and its significance to accurately determine the important parameters of the photovoltaic cells are also presented. The analysis is made on different types of photovoltaics cells in order to understand the effects of technology on temperature coefficients. The comparison between the open-circuit voltage and short-circuit current was also performed, calculated using the temperature coefficients, determined, and measured, in various conditions. The measurements are realized using the SolarLab system, and the photovoltaic cell parameters are determined and compared using the LabVIEW software created for SolarLab system.

  4. Photovoltaic. Solar electricity, a sustainable source of energy

    International Nuclear Information System (INIS)

    Stryi-Hipp, Gerhard; Loyen, Richard; Knaack, Jan; Chrometzka, Thomas

    2008-06-01

    This German publication outlines that solar energy is now essential to any sustainable energy mix, and describes the operation principle of solar photovoltaic energy production. It describes how it can be applied for the production of electricity in isolated areas, and for individual housing as well as commercial buildings, and presents the concept of ground-based solar plants. The next part discusses the development of the photovoltaic market (its huge potential, its world size) and indicates the different associated arrangements of financial support or subsidy. It also discusses how photovoltaic markets can be developed, and proposes an overview of the German model

  5. Quantum dot solar cell

    International Nuclear Information System (INIS)

    Ahamefula, U.C.; Sulaiman, M.Y.; Sopian, K.; Ibarahim, Z.; Ibrahim, N.; Alghoul, M.A.; Haw, L.C.; Yahya, M.; Amin, N.; Mat, S.; Ruslan, M.H.

    2009-01-01

    Full text: The much awaited desire of replacing fossil fuel with photovoltaic will remain a fairy tale if the myriad of issues facing solar cell development are marginalized. Foremost in the list is the issue of cost. Silicon has reached a stage where its use on large scale can no longer be lavishly depended upon. The demand for high grade silicon from the microelectronics and solar industries has soared leading to scarcity. New approach has to be sought. Notable is the increased attention on thin films such as cadmium telluride, copper indium gallium diselenide, amorphous silicon, and the not so thin non-crystalline family of silicon. While efforts to address the issues of stability, toxicity and efficiency of these systems are ongoing, another novel approach is quietly making its appearance - quantum dots. Quantum dots seem to be promising candidates for solar cells because of the opportunity to manipulate their energy levels allowing absorption of a wider solar spectrum. Utilization of minute quantity of these nano structures is enough to bring the cost of solar cell down and to ascertain sustainable supply of useful material. The paper outlines the progress that has been made on quantum dot solar cells. (author)

  6. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Paola Sansoni

    2015-01-01

    Full Text Available Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can be performed in laboratory under controllable and reproducible conditions. A methodology to execute solar exposure tests is proposed and practically applied on photovoltaic cells for a solar cogeneration system. The cells are measured with concentrated solar light obtained utilizing a large Fresnel lens mounted on a sun tracker. Outdoor measurements monitor the effects of the exposure of two multijunction photovoltaic cells to focused sunlight. The main result is the continuous acquisition of the V-I (voltage-current curve for the cells in different conditions of solar concentration and temperature of exercise to assess their behavior. The research investigates electrical power extracted, efficiency, temperatures reached, and possible damages of the photovoltaic cell.

  7. Photovoltaic module and laminate

    Science.gov (United States)

    Bunea, Gabriela E.; Kim, Sung Dug; Kavulak, David F.J.

    2018-04-10

    A photovoltaic module is disclosed. The photovoltaic module has a first side directed toward the sun during normal operation and a second, lower side. The photovoltaic module comprises a perimeter frame and a photovoltaic laminate at least partially enclosed by and supported by the perimeter frame. The photovoltaic laminate comprises a transparent cover layer positioned toward the first side of the photovoltaic module, an upper encapsulant layer beneath and adhering to the cover layer, a plurality of photovoltaic solar cells beneath the upper encapsulant layer, the photovoltaic solar cells electrically interconnected, a lower encapsulant layer beneath the plurality of photovoltaic solar cells, the upper and lower encapsulant layers enclosing the plurality of photovoltaic solar cells, and a homogenous rear environmental protection layer, the rear environmental protection layer adhering to the lower encapsulant layer, the rear environmental protection layer exposed to the ambient environment on the second side of the photovoltaic module.

  8. The investigation on different light harvesting layers and their sufficient effect on the photovoltaic characteristics in dye sensitized solar cell

    Directory of Open Access Journals (Sweden)

    Mohammad Mazloum-Ardakani

    2017-01-01

    Full Text Available Titanium dioxide-based nanofibers (TiO2 nanofiber were prepared by an electrospinning technique. The electrospun composite fibers were synthesized at different concentrations of titanium isopropoxide (25.35, 50.69, 76.05 wt% and calcinated at different temperatures (450 oC, 650 oC and 850 oC for 2 h. The diameters of nanofibers decreased by increasing the inorganic part of composite nanofibers and principally depicted anatase, anatase- rutile and rutile phases. By increasing temperature from 450 oC to 850 oC, the anatase phase decreased whereas the rutile phase increased. The different optimized TiO2 nanofibers were prepared and utilized as a sufficient scattering layer for the photoanode in dye sensitized solar cells. Then, the electron transport and recombination in TiO2 nanofiber based dye sensitized solar cells (DSSCs was investigated. It was shown that the electron life time in DSSCs with TiO2 nanofibers, as a scattering layer, increases in different photoanode electrodes compared to that on DSSCs based on nanoparticles. As a result, conversion efficiency of 5.6% is realized, which is 55.37% higher than TiO2 photoanodes without addition of nanofibers as a scattering layer.

  9. Effect of Non-fullerene Acceptors' Side Chains on the Morphology and Photovoltaic Performance of Organic Solar Cells.

    Science.gov (United States)

    Zhang, Cai'e; Feng, Shiyu; Liu, Yahui; Hou, Ran; Zhang, Zhe; Xu, Xinjun; Wu, Youzhi; Bo, Zhishan

    2017-10-04

    Three indacenodithieno[3,2-b]thiophene (IT) cored small molecular acceptors (ITIC-SC6, ITIC-SC8, and ITIC-SC2C6) were synthesized, and the influence of side chains on their performances in solar cells was systematically probed. Our investigations have demonstrated the variation of side chains greatly affects the charge dissociation, charge mobility, and morphology of the donor:acceptor blend films. ITIC-SC2C6 with four branched side chains showed improved solubility, which can ensure the polymer donor to form favorable fibrous nanostructure during the drying of the blend film. Consequently, devices based on PBDB-ST:ITIC-SC2C6 demonstrated higher charge mobility, more effective exciton dissociation, and the optimal power conversion efficiency up to 9.16% with an FF of 0.63, a J sc of 15.81 mA cm -2 , and a V oc of 0.92 V. These results reveal that the side chain engineering is a valid way of tuning the morphology of blend films and further improving PCE in polymer solar cells.

  10. Photovoltaic Cell Operation on Mars

    Science.gov (United States)

    Landis, Geoffrey A.; Kerslake, Thomas; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    The Martian surface environment provides peculiar challenges for the operation of solar arrays: low temperature, solar flux with a significant scattered component that varies in intensity and spectrum with the amount of suspended atmospheric dust, and the possibility of performance loss due to dust deposition on the array surface. This paper presents theoretical analyses of solar cell performance on the surface of Mars and measurements of cells under Martian conditions.

  11. Solar photovoltaic water pumping for remote locations

    International Nuclear Information System (INIS)

    Meah, Kala; Fletcher, Steven; Ula, Sadrul

    2008-01-01

    Many parts of the world as well as the western US are rural in nature and consequently do not have electrical distribution lines in many parts of villages, farms, and ranches. Distribution line extension costs can run from USD 10,000 to USD 16,000/km, thereby making availability of electricity to small water pumping projects economically unattractive. But, ground water and sunlight are available, which make solar photovoltaic (SPV) powered water pumping more cost effective in these areas' small scale applications. Many western states including Wyoming are passing through the sixth year of drought with the consequent shortages of water for many applications. The Wyoming State Climatologist is predicting a possible 5-10 years of drought. Drought impacts the surface water right away, while it takes much longer to impact the underground aquifers. To mitigate the effect on the livestock and wildlife, Wyoming Governor Dave Freudenthal initiated a solar water pumping initiative in cooperation with the University of Wyoming, County Conservation Districts, Rural Electric Cooperatives, and ranching organizations. Solar water pumping has several advantages over traditional systems; for example, diesel or propane engines require not only expensive fuels, they also create noise and air pollution in many remote pristine areas. Solar systems are environment friendly, low maintenance, and have no fuel cost. In this paper the design, installation, site selection, and performance monitoring of the solar system for small-scale remote water pumping will be presented. This paper also presents technical, environmental, and economic benefits of the SPV water pumping system compared to stand alone generator and electric utility. (author)

  12. Hybrid window layer for photovoltaic cells

    Science.gov (United States)

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  13. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Directory of Open Access Journals (Sweden)

    Snegirjovs A.

    2016-12-01

    Full Text Available Information on the electrical-driven solar air conditioning (SAC is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW. In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  14. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Science.gov (United States)

    Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L.

    2016-12-01

    Information on the electrical-driven solar air conditioning (SAC) is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC) systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average) systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW). In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  15. The characteristic analysis of the solar energy photovoltaic power generation system

    Science.gov (United States)

    Liu, B.; Li, K.; Niu, D. D.; Jin, Y. A.; Liu, Y.

    2017-01-01

    Solar energy is an inexhaustible, clean, renewable energy source. Photovoltaic cells are a key component in solar power generation, so thorough research on output characteristics is of far-reaching importance. In this paper, an illumination model and a photovoltaic power station output power model were established, and simulation analysis was conducted using Matlab and other software. The analysis evaluated the condition of solar energy resources in the Baicheng region in the western part of Jilin province, China. The characteristic curve of the power output from a photovoltaic power station was obtained by simulation calculation. It was shown that the monthly average output power of the photovoltaic power station is affected by seasonal changes; the output power is higher in summer and autumn, and lower in spring and winter.

  16. Wide-angle light-trapping electrode for photovoltaic cells.

    Science.gov (United States)

    Omelyanovich, Mikhail M; Simovski, Constantin R

    2017-10-01

    In this Letter, we experimentally show that a submicron layer of a transparent conducting oxide that may serve a top electrode of a photovoltaic cell based on amorphous silicon when properly patterned by notches becomes an efficient light-trapping structure. This is so for amorphous silicon thin-film solar cells with properly chosen thicknesses of the active layers (p-i-n structure with optimal thicknesses of intrinsic and doped layers). The nanopatterned layer of transparent conducting oxide reduces both the light reflectance from the photovoltaic cell and transmittance through the photovoltaic layers for normal incidence and for all incidence angles. We explain the physical mechanism of our light-trapping effect, prove that this mechanism is realized in our structure, and show that the nanopatterning is achievable in a rather easy and affordable way that makes our method of solar cell enhancement attractive for industrial adaptations.

  17. Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells.

    Science.gov (United States)

    Chetia, Tridip Ranjan; Barpuzary, Dipankar; Qureshi, Mohammad

    2014-05-28

    A combination of 3-dimensional (3D) hollow mesoporous ZnO microspheres (ZnO HMSP) and vertically grown one-dimensional ZnO nanowires (1D ZnO NWs) on a fluorine doped tin oxide (FTO) coated glass substrate has been investigated as a photoanode for a CdS quantum dot-sensitized solar cell (QSSC). A comparative study of the photovoltaic performance of the solar cell with devices fabricated with pristine ZnO HMSPs and ZnO NWs was carried out. The proposed photovoltaic device exhibits an enhancement in power conversion efficiency (PCE) upto ∼74% and ∼35%, as compared to the 1D ZnO NW and ZnO HMSP based solar cells. The maximum incident photon-to-current conversion efficiency (IPCE) for the solar cell was observed to be ∼40%, whereas for the devices fabricated with bare ZnO HMSP and ZnO NW the IPCE were only ∼32% and ∼19%, respectively. The enhanced photovoltaic performance of the solar cell is attributed to the high Brunauer-Emmett-Teller (BET) surface area, efficient light-scattering effects and facilitated diffusion of the electrolyte for better functioning of the redox couple (S(2-)/Sn(2-)) in the hybrid photoanode. Moreover, a faster electron transport through 1D ZnO NWs provides better charge collection from the photoactive layer, which leads to an increase in the short circuit current density of the device. The present study highlights the design and development of a new hybrid photoanode for solar harvesting.

  18. Radiation effect on the optical and electrical properties of CdSe(In)/p-Si heterojunction photovoltaic solar cells

    Institute of Scientific and Technical Information of China (English)

    M. Ashry; S. Fares

    2012-01-01

    The efficiency and radiation resistance of solar cells are graded.They are then fabricated in the form of n-CdeSe(In)/p-Si heterojunction cells by electron beam evaporation of a stoichiomteric mixture of CdSe and In to make a thin film on a p-Si single crystal wafer with a thickness of 100 μm and a resistivity of ~ 1.5Ω·cm at a temperature of 473 K.The short-circuit current density (jsc),open-circuit voltage (Voc),fill factor (ff) and conversion efficiency (η) under 100 mW/cm2 (AM1) intensity,are 20 mA/cm2,0.49 V,0.71 and 6% respectively.The cells were exposed to different electron doses (electron beam accelerator of energy 1.5 MeV,and beam intensity 25 mA).The cell performance parameters are measured and discussed before and after gamma and electron beam irradiation.

  19. Standard Terminology Relating to Photovoltaic Solar Energy Conversion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

  20. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.