WorldWideScience

Sample records for photovoltaic power conditioner

  1. Power conditioner without isolation transformer; Toransuresu power conditioner no shohin kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okado, C; Itami, T; Kimoto, K [Toshiba Corp., Tokyo (Japan)

    1996-10-27

    A light-weight downsized and high efficiency transformer-less type 4 kW power conditioner (inverter) has been developed. This power conditioner insures the system interconnection protection by monitoring the voltage of two single-phase three-line circuits. The power conditioner has weight of 17.5 kg and efficiency of 94%. Potential fluctuation of photovoltaic cells due to the switching of power devices at the inverter was reduced. Output capacity was reduced in the low input voltage range. Outflow of DC component was prevented in high accuracy by usually correcting the zero point drift of detector, and by using the current detector with excellent linearity. To detect the DC ground fault, and to trip the output side breaker locating at the ground fault current pass, a zero phase converter detection circuit has been developed, by which the DC component can be detected at the DC input side. As a result of performance verification, the efficiency, power factor, EMI level, protection of outflow of DC component, protection of ground fault, protection of single operation detection, and noise level were satisfied. This system is prospective for the diffusion of photovoltaic power generation in the future. 3 refs., 8 figs., 1 tab.

  2. Photovoltaic array: Power conditioner interface characteristics

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  3. Starting and stopping control on power conditioner in photovoltaic power system; Taiyoko hatsuden system ni okeru power conditioner no kido teishi seigyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, M.; Ishihara, Y.; Todaka, T.; Harada, K. [Doshisha University, Kyoto (Japan); Oshiro, H.; Nakamura, H. [Japan Quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    Studies are made about the control of the power conditioner over the maximum power point tracking (MPPT) function in a photovoltaic power generation system. The analysis is conducted by means of computer simulation into the effect of a start/stop function added to the control of MPPT and the effect on the generation of power of the setting of parameters in the start/stop function. The reduction in output power due to difference between the actual operation point and the optimum operation point is evaluated by use of a load matching correction factor. In this simulation, it is assumed that the solar cell array consists of 13 rows in 5 parallel columns, is capable of a normal output of 3.149kW, has a panel tilted at 30 degrees, and faces due south. The power conditioner is assumed to be a system rated at 3kVA, equipped with system interconnection and back flow features. As a result, it is learned that the stop voltage should be set at 180V or lower and the steady voltage near 185.5V for a good result and that there is not much need after all for the start/stop technique. 2 refs., 8 figs., 2 tabs.

  4. Design and Analysis of Grid Connected Photovoltaic Fed Unified Power Quality Conditioner

    Science.gov (United States)

    Dash, Santanu Kumar; Ray, Pravat Kumar

    2016-06-01

    This paper proposes the integration scheme and operation of the Unified Power Quality conditioner (UPQC) with Photovoltaic source as distributed generations for power quality improvement. Thus, it provides a novel PV-grid integration configuration and prevents any adverse situation related to current or voltage in power system. Voltage related issues are maintained by the series part of UPQC and the current related issues are handles by shunt part of the UPQC. The various operation modes of PV-UPQC schemes are broadly classified according to the direction of power flow, (i) Interconnected mode, (ii) Islanding mode. PV-UPQC has advantage over the conventional UPQC scheme as it has developed the capability to compensate the voltage interruption problems Control algorithms for shunt and series part of the UPQC is implemented. Development of the proposed configuration has been designed in the laboratory with control algorithm implemented in dSPACE and results are discussed.

  5. Output characteristics of 40 kW photovoltaic power generation system in ICT; Ibaraki kosen ni okeru 40 kW taiyoko hatsuden shisutemu no shutsuryoku tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sekiguchi, N. [Ibaraki National College of Tech., Ibaraki (Japan); Tani, T. [Science University of Tokyo, Tokyo (Japan)

    1999-11-25

    The photovoltaic power generation system consists of photovoltaic array and power conditioner of the utility connected system. The photovoltaic array parallelly constitutes 18 serial 30 of the modules of 540 sheets, and there is the generating capacity of largest 40 kW. The power conditioner uses 10 kW four units, and it is tracking with function of the maximum output point. This report examined the unconformable rate of photovoltaic array maximum output operating voltage, current and power in simulation and power conditioner input. (author)

  6. High efficiency and long life of a three-phase power conditioner via interleave control

    Directory of Open Access Journals (Sweden)

    Kenji Amei

    2016-01-01

    Full Text Available This study describes the high efficiency and long life of three-phase power conditioners of a photovoltaic (PV system. The current PV system, which is widely spread, has two problems. The first problem is the lifetime of a power conditioner, whereas the other problem is the drop in the efficiency of the conversion because of the characteristics of the solar cell. For those problems, the solar panel and boost chopper circuit were divided into a plurality to configure a power conditioner, and an electrolytic capacitor-less driver with interleave control was realized. The drop in the current generated by the solar cell was suppressed, and an improvement in power generation efficiency was expected. The configuration and principle of a proposed circuit were explained, and results of simulation and experiment were reported.

  7. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  8. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    Science.gov (United States)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  9. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1984-01-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  10. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1985-09-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  11. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  12. A Single-Phase Voltage-Controlled Grid-Connected Photovoltaic System With Power Quality Conditioner Functionality

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Liserre, Marco; Mastromauro, R. A.

    2009-01-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. Also low power PV systems can be designed to improve the power quality. This paper presents a single-phase photovoltaic system that provides grid voltage support and compensation o...

  13. Power Quality Improvement by Unified Power Quality Conditioner Based on CSC Topology Using Synchronous Reference Frame Theory

    Directory of Open Access Journals (Sweden)

    Rajasekaran Dharmalingam

    2014-01-01

    Full Text Available This paper deals with the performance of unified power quality conditioner (UPQC based on current source converter (CSC topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.

  14. Power quality improvement by unified power quality conditioner based on CSC topology using synchronous reference frame theory.

    Science.gov (United States)

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems.

  15. Power Quality Improvement by Unified Power Quality Conditioner Based on CSC Topology Using Synchronous Reference Frame Theory

    Science.gov (United States)

    Dharmalingam, Rajasekaran; Dash, Subhransu Sekhar; Senthilnathan, Karthikrajan; Mayilvaganan, Arun Bhaskar; Chinnamuthu, Subramani

    2014-01-01

    This paper deals with the performance of unified power quality conditioner (UPQC) based on current source converter (CSC) topology. UPQC is used to mitigate the power quality problems like harmonics and sag. The shunt and series active filter performs the simultaneous elimination of current and voltage problems. The power fed is linked through common DC link and maintains constant real power exchange. The DC link is connected through the reactor. The real power supply is given by the photovoltaic system for the compensation of power quality problems. The reference current and voltage generation for shunt and series converter is based on phase locked loop and synchronous reference frame theory. The proposed UPQC-CSC design has superior performance for mitigating the power quality problems. PMID:25013854

  16. UPQC (Unified power Quality Conditioner)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. UPQC (Unified power Quality Conditioner). Hybrid of Shunt and Series compensator. Compensate both Current Quality and Voltage Quality. Costlier Solution as it involves two set of Inverters.

  17. Inverted Unified Power Quality Conditioner to compensate overvoltage

    Directory of Open Access Journals (Sweden)

    Yeison Alberto Garcés Gómez

    2017-07-01

    Full Text Available Introduction: The use of unified power quality conditioners UPQC in the electric systems can correct waveform distortions in a steady state, like harmonics, flicker, and the power factor. Objective: This paper presents a novel approach for active compensation of overvoltage with a UPQC in dual topology or iUPQC. Methodology: The study it is presented in five stages, the section I shows an introduction and the state of the art, section II presents the unified power quality conditioner UPQC, section III describes the generalized reactive power theory applied to the iUPQC (dual topology, section IV shows the numerical simulations and the results and section V presents the conclusions of the study. Results: The results for the application of the iUPQC to the compensation of overvoltage are proved and compared with the more representative theory related to compensation of harmonics and low power factor. Conclusions: The control algorithm presented for the unified power quality conditioner in dual topology allows to compensate the overvoltage in three-phase systems as well as voltage and current harmonics and the low power factor.

  18. Active power line conditioners design, simulation and implementation for improving power quality

    CERN Document Server

    Revuelta, Patricio Salmeron; Litrán, Salvador Pérez

    2015-01-01

    Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality presents a rigorous theoretical and practical approach to active power line conditioners, one of the subjects of most interest in the field of power quality. Its broad approach offers a journey that will allow power engineering professionals, researchers, and graduate students to learn more about the latest landmarks on the different APLC configurations for load active compensation. By introducing the issues and equipment needs that arise when correcting the lack of power quality in power grids

  19. Ventilation-air conditioner system in nuclear power plant

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko.

    1989-01-01

    This invention concerns a ventilation-air conditioner system which enables, upon occurrence of accidents in a nuclear power plant, continuous operation for other adjacent nuclear power plants with no effect of accidents. Air supply system and exhaust system are operated during usual operaiton. If loss of coolants accidents should occur in an adjacent nuclear power plants, operation is switched from ventilation operaiton to the operation of re-cycling system based on an AND logic of three signals, that is, a pressure HIGH signal for the reactor container, a water level LOW signal for the reactor and a radioactivity signal of the ventilation-air conditioner sytem on the side of air supply in the nuclear power plant. Thus, nuclear reactor buildings of the nuclear power plant are from the external atmosphere. Therefore, the radioactivity HIGH signal for switching to the emergency air conditioner system of the nuclear power plant is not actuated due to the loss of coolant accidents in the adjacent nuclear power plant. In addition, since the atmospheric temperature in the nuclear reactor building can be maintained by a cooling device disposed to the recycling system, reactor shutdown can be prevented. (I.S.)

  20. An integrative approach to the design methodology for 3-phase power conditioners in Photovoltaic Grid-Connected systems

    International Nuclear Information System (INIS)

    Rey-Boué, Alexis B.; García-Valverde, Rafael; Ruz-Vila, Francisco de A.; Torrelo-Ponce, José M.

    2012-01-01

    Highlights: ► A design methodology for Photovoltaic grid-connected systems is presented. ► Models of the Photovoltaic Generator and the 3-phase Inverter are described. ► The power factor and the power quality are regulated with vector control. ► Simulation and experimental results validate the design methodology. ► The proposed methodology can be extended to any Renewable or Industrial System. - Abstract: A novel methodology is presented in this paper, for the design of the Power and Control Subsystems of a 3-phase Photovoltaic Grid-Connected system in an easy and comprehensive way, as an integrative approach. At the DC side of the Power Subsystem, the Photovoltaic Generator modeling is revised and a simple model is proposed, whereas at the AC side, a vector analysis is done to deal with the instantaneous 3-phase variables of the grid-connected Voltage Source Inverter. A d–q control approach is established in the Control Subsystem, along with its specific tuned parameters, as a vector control alternative which will allow the decoupled control of the instantaneous active and reactive powers. A particular Case of Study is presented to illustrate the behavior of the design methodology regarding the fulfillment of the Photovoltaic plant specifications. Some simulations are run to study the performance of the Photovoltaic Generator together with the exerted d–q control to the grid-connected 3-phase inverter, and some experimental results, obtained from a built flexible platform, are also shown. The simulations and the experimental results validate the overall performance of the 3-phase Photovoltaic Grid-Connected system due to the attained unitary power factor operation together with good power quality. The final validation of the proposed design methodology is also achieved.

  1. Characterization of the electrical output of flat-plate photovoltaic arrays

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.

  2. Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Rongxiang Zhang

    2015-09-01

    Full Text Available Air conditioners have great potential to participate in power system frequency control. This paper proposes a control strategy to facilitate the active participation of air conditioners. For each air conditioner, a decentralized control law is designed to adjust its temperature set point in response to the system frequency deviation. The decentralized control law accounts for the user’s thermal comfort that is evaluated by a fuzzy algorithm. The aggregation of air conditioners’ response is conducted by using the Monte Carlo simulation method. A structure preserving model is applied to the multi-bus power system, in which air conditioners are aggregated at certain load buses. An inner-outer iteration scheme is adopted to solve power system dynamics. An experiment is conducted on a test air conditioner to examine the performance of the proposed decentralized control law. Simulation results on a test power system verify the effectiveness of the proposed strategy for air conditioners participating in frequency control.

  3. A Wavelet-Based Unified Power Quality Conditioner to Eliminate Wind Turbine Non-Ideality Consequences on Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Bijan Rahmani

    2016-05-01

    Full Text Available The integration of renewable power sources with power grids presents many challenges, such as synchronization with the grid, power quality problems and so on. The shunt active power filter (SAPF can be a solution to address the issue while suppressing the grid-end current harmonics and distortions. Nonetheless, available SAPFs work somewhat unpredictably in practice. This is attributed to the dependency of the SAPF controller on nonlinear complicated equations and two distorted variables, such as load current and voltage, to produce the current reference. This condition will worsen when the plant includes wind turbines which inherently produce 3rd, 5th, 7th and 11th voltage harmonics. Moreover, the inability of the typical phase locked loop (PLL used to synchronize the SAPF reference with the power grid also disrupts SAPF operation. This paper proposes an improved synchronous reference frame (SRF which is equipped with a wavelet-based PLL to control the SAPF, using one variable such as load current. Firstly the fundamental positive sequence of the source voltage, obtained using a wavelet, is used as the input signal of the PLL through an orthogonal signal generator process. Then, the generated orthogonal signals are applied through the SRF-based compensation algorithm to synchronize the SAPF’s reference with power grid. To further force the remained uncompensated grid current harmonics to pass through the SAPF, an improved series filter (SF equipped with a current harmonic suppression loop is proposed. Concurrent operation of the improved SAPF and SF is coordinated through a unified power quality conditioner (UPQC. The DC-link capacitor of the proposed UPQC, used to interconnect a photovoltaic (PV system to the power grid, is regulated by an adaptive controller. Matlab/Simulink results confirm that the proposed wavelet-based UPQC results in purely sinusoidal grid-end currents with total harmonic distortion (THD = 1.29%, which leads to high

  4. Photovoltaic Cells and Systems: Current State and Future Trends

    OpenAIRE

    Hadj Bourdoucen; Joseph A. Jervase; Abdullah Al-Badi; Adel Gastli; Arif Malik

    2000-01-01

    Photovoltaics is the process of converting solar energy into electrical energy. Any photovoltaic system invariably consists of solar cell arrays and electric power conditioners. Photovoltaic systems are reliable, quiet, safe and both environmentally benign and self-sustaining. In addition, they are cost-effective for applications in remote areas. This paper presents a review of solar system components and integration, manufacturing, applications, and basic research related to photovoltaics. P...

  5. Fiscal 2000 achievement report. International demonstrative development of photovoltaic power generation system (Demonstrative study on grid-connected photovoltaic power generation system in Thailand); 2000 nendo seika hokokusho. Taiyoko hatsuden system kokusai kyodo jissho kaihatsu - Taiyoko hatsuden keitou renkei system jissho kenkyu (Tai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    A demonstrative study was conducted in Thailand for grasping the effect on small electricity grids when several photovoltaic power generation systems, including AC modules, are connected to the grid. In fiscal 2000, surveys and studies were conducted about the data of the local power system, where to install the demonstrative system, and how to install the same, which were necessary for working out a basic design for Libong Island newly designated as the site for the demonstrative system. It was then concluded that the demonstrative system be a grid-connected 100 kW-level photovoltaic system comprising one main photovoltaic power station (85 kW), photovoltaic power systems for school buildings (3-6 kW, three schools), and AC modules (110 W, 10 locations). The manufacture of solar cell modules, grid-connected power conditioners, and measuring devices were completed. Civil engineering work and construction were under way on the site, including the construction of a management building, installation of concrete bases for solar cell arrays, construction of fences surrounding the site, and so forth. (NEDO)

  6. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power utilizing system and peripheral technologies (Research and development for enhancing reliability of photovoltaic power generation - Research on long-term reliability of inverter); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (taiyoko hatsuden no shinraisei kojo ni kansuru kenkyu kaihatsu - inverter no choki shinraisei no chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In fiscal 1999, the power conditioner which is the primary component of a photovoltaic power system was subjected to an accelerated test, etc., for the evaluation of its durability. For the accelerated test, operating conditions were so set that acceleration be implemented according to Arrhenius' law at ambient temperature 40 degrees C and relative humidity 36%. For the operation of the power conditioner, it was so set that the operation duration be 3.5 hours with a rest time of 4.5 hours for the night or the like. In the accelerated test conducted as in the previous year, 1100 cycles were completed recording the maximum, equivalent to approximately 8-1/2 years according to Arrhenius' law. After the test, no life affecting changes were detected in specimen device A, B, or D. Specimen C, however, failed during the test. As for the evaluation of durability of components, the electrolytic capacitor in the power conditioner was named. Reliability related literature was investigated and a durability evaluation test was started, with consideration given to the voltage to apply and service temperature. (NEDO)

  7. Intermediate photovoltaic system application experiment operational performance report. Volume 7. Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Performance data are given for a grid-connected photovoltaic power supply at a Massachusetts high school for the month of March, 1982. Data presented include: daily and monthly electrical energy produced; daily and monthly solar energy incident in the array plane; daily and monthly array efficiency; energy produced as a function of power level, voltage, cell temperature, and hour of the day; power conditioner input, output, and efficiency for two power conditioner units and for the overall power conditioning system; daily and monthly photovoltaic energy to load and the corresponding dollar value; grid to load energy from February 17 through April 5; photovoltaic system efficiency; capacity factor; daily system availability; daily and hourly insolation; heating and cooling degree days; hourly and monthly ambient temperature; hourly and monthly wind speed; wind direction distribution; number of freeze/thaw cycles; hourly cell temperature; and data acquisition mode and recording interval plot. Also included are seven summaries of site events. (LEW)

  8. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    Science.gov (United States)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  9. Thermionic reactor power conditioner design for nuclear electric propulsion.

    Science.gov (United States)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  10. Design of Interline Unified Power Quality Conditioner for Power Quality Disturbances using Simulink

    Science.gov (United States)

    Kumaraswamy, G.; Reddy, Y. Rajasekhar; Harikrishna, Ch.

    2012-10-01

    Proliferation of electronic equipment in commercial and industrial processes has resulted in increasingly sensitive electrical loads to be fed from power distribution system which introduce contamination to voltage and current waveforms at the point of common coupling of industrial loads. The unified power quality conditioner (UPQC) is connected between two different feeders (lines), hence this method of connection of the UPQC is called as Interline UPQC (IUPQC).This paper proposes a new connection for a UPQC to improve the power quality of two feeders in a distribution system. Interline Unified Power Quality Conditioner (IUPQC), specifically aims at the integration of series VSC and Shunt VSC to provide high quality power supply by means of voltage sag/swell compensation, harmonic elimination and power factor correction in a power distribution network, so that improved power quality can be made available at the point of common coupling. The structure, control and capability of the IUPQC are discussed in this paper. The efficiency of the proposed configuration has been verified through simulation using MATLAB/ SIMULINK.

  11. Design and Implementation of a Simulator for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Kuang-Hui Tang

    2012-01-01

    Full Text Available Proposed in this paper is the development of a photovoltaic module simulator, one capable of running an output characteristic simulation under normal operation according to various electrical parameters specified and exhibiting multiple advantages of being low cost, small sized, and easy to implement. In comparison with commercial simulation tools, Pspice and Solar Pro, the simulator developed demonstrates a comparable I-V as well as a P-V output characteristic curve. In addition, a series-parallel configuration of individual modules constitutes a photovoltaic module array, which turns into a photovoltaic power generation system with an integrated power conditioner.

  12. Transforming PC Power Supplies into Smart Car Battery Conditioners

    Science.gov (United States)

    Rodriguez-Ascariz, J. M.; Boquete-Vazquez, L.

    2011-01-01

    This paper describes a laboratory project consisting of a PC power supply modification into an intelligent car-battery conditioner with both wireless and wired networking capabilities. Adding a microcontroller to an average PC power supply transforms it into a flexible, intelligent device that can be configured and that is suitable to keep car…

  13. Development of residential solar air conditioning system for electricity power peak cut 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gwon Jong [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    In this research, the converter rectifier unit of the inverter air conditioner is substituted into the bidirectional PWM converter. The DC/DC power converter is established on the DC link between the photovoltaic array and the inverter air conditioner, and the photovoltaic air conditioning system which can be parallel driven which utility is developed. (author). 35 ref., 112 figs.

  14. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  15. Dynamic modeling of brushless dc motor-power conditioner unit for electromechanical actuator application

    Science.gov (United States)

    Demerdash, N. A.; Nehl, T. W.

    1979-01-01

    A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.

  16. An analysis of reliability for photovoltaic systems on the field test project for photovoltaic in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Oozeki, Takashi; Yamada, Takao; Kato, Kazuhiko [National Institute of Advanced Industrial Science and Technology (AIST), Research center for photovoltaic (RCPV), Tsukuba (Japan); Yamamoto, Taiji [New Energy and Industrial Technology Development Organization, MUZA Kawasaki Central Tower, Kanagawa (Japan)

    2008-07-01

    To develop a Photovoltaic (PV) module and cell efficiency are not only important, but also improving PV system performances is the significant technology. The long term reliability is one of the most important in PV systems' performances. In Japan, NEDO (New Energy and Industrial Technology Development Organization) has organized ''Field test (FT) project in Japan'' from FY 1992 up to now. The user of PV systems in the project cooperates for collecting monitoring data and reports the information of maintenance and some failures of PV systems for four years. In this paper, the failures and maintenance information are reported by using MTBF, MTTR, and so on. Moreover, the power conditioner is suspended by some protection or other reason - it is not failure, and the power conditioner can be restarted-which are obtained by PV system user's reports. (orig.)

  17. Size optimization of stand-alone photovoltaic (PV) room air conditioners

    International Nuclear Information System (INIS)

    Chen, Chien-Wei; Zahedi, A.

    2006-01-01

    Sizing of a stand-alone PV system determines the main cost of the system. PV electricity cost is determined by the amount of solar energy received, hence the actual climate and weather conditions such as solar irradiance and ambient temperature affect the size required and cost of the system. Air conditioning demand also depends on the weather conditions. Therefore, sizing a PV powered air conditioner must consider the characteristics of local climate and temperature. In this paper, sizing procedures and special considerations for air conditioning under Melbourne's climatic conditions is presented. The reliability of various PV-battery size combinations is simulated by MATLAB. As a result, excellent system performance can be predicated.(Author)

  18. Automated installation methods for photovoltaic arrays

    Science.gov (United States)

    Briggs, R.; Daniels, A.; Greenaway, R.; Oster, J., Jr.; Racki, D.; Stoeltzing, R.

    1982-11-01

    Since installation expenses constitute a substantial portion of the cost of a large photovoltaic power system, methods for reduction of these costs were investigated. The installation of the photovoltaic arrays includes all areas, starting with site preparation (i.e., trenching, wiring, drainage, foundation installation, lightning protection, grounding and installation of the panel) and concluding with the termination of the bus at the power conditioner building. To identify the optimum combination of standard installation procedures and automated/mechanized techniques, the installation process was investigated including the equipment and hardware available, the photovoltaic array structure systems and interfaces, and the array field and site characteristics. Preliminary designs of hardware for both the standard installation method, the automated/mechanized method, and a mix of standard installation procedures and mechanized procedures were identified to determine which process effectively reduced installation costs. In addition, costs associated with each type of installation method and with the design, development and fabrication of new installation hardware were generated.

  19. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles

    International Nuclear Information System (INIS)

    Miranda, Á.G.; Chen, T.S.; Hong, C.W.

    2013-01-01

    Traditional compressed-refrigerant air conditioning systems consume substantial energy that may reduce the driving performance and cruising mileage of electric vehicles considerably. It is crucial to design a new climate control system, using a direct energy conversion principle, to further aid in the commercialization of modern electric vehicles. A solid state air conditioner model consisting on TECs (thermoelectric chips) as the load, DSSCs (dye sensitized solar cells) as the renewable energy source and high power LiBs (lithium-ion batteries) as an energy storage device are considered for a personal mobility vehicle. The power management between the main power net and the solid state air conditioner interface is designed with an outer proportional-integral controller and an inner passivity based current controller with a loss included model for perfect tracking. This model is intended to comprise thermal and electrical elements which can be tunable for performance benchmarking and optimization of a solid state air conditioning system. Dynamic performance simulations of the solid-state air conditioner are performed, alongside guidelines for feasibility. - Highlights: • Alternative model extraction for dye sensitized solar cells. • Improved and computationally fast model for the cabin air temperature dynamics. • Euler–Lagrange loss included modeling of a buck converter. • Loss-included passivity based inner loop current control. • The thermoelectric chip air conditioner is tested in simulated cooling/heating scenarios

  20. Modeling Photovoltaic Power

    OpenAIRE

    Mavromatakis, F.; Franghiadakis, Y.; Vignola, F.

    2016-01-01

    A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV) facilit...

  1. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  2. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  3. Intermediate photovoltaic system application experiment operational performance. Executive summary. Volume 6 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    Performance data are given for a 95 kW-peak grid connected flat panel photovoltaic power supply at a Massachusetts high school for the month of March 1982. Data presented include daily and monthly electrical energy produced by the photovoltaic system, daily and monthly solar energy incident in the plane of the array, efficiency of the solar cell array and of the power conditioner and of the system overall, the capacity factor, solar insolation, and the data acquisition mode and recording interval plot. (LEW)

  4. Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners

    International Nuclear Information System (INIS)

    Riffat, S.B.; Qiu Guoquan

    2004-01-01

    This paper compares the performance of three types of domestic air-conditioners, namely the vapour compression air-conditioner (VCAC), the absorption air-conditioner (AAC) and the thermoelectric air-conditioner (TEAC). The basic cycles of the three types of air-conditioning systems are described and methods to calculate their coefficients of performance are presented. General specification data for each type of air-conditioner are given, and performance characteristics are presented. The comparison shows that although VCACs have the advantages of high COP and low purchase price, use of these systems will be phased out due to their contribution to the greenhouse effect and depletion of the ozone layer. AACs are generally bulky, complex and expensive but operate on thermal energy, so their operational consumption is low. TEACs are environmental friendly, simple and reliable but still very expensive at present. Their low COP is an additional factor limiting their application for domestic cooling. TEACs however, have a large potential market as air-conditioners for small enclosures, such as cars and submarine cabins, where the power consumption would be low, or safety and reliability would be important

  5. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  6. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  7. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  8. Nanostructured Photovoltaics for Space Power

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA NSTRF proposal entitled Nanostructured Photovoltaics for Space Power is targeted towards research to improve the current state of the art photovoltaic...

  9. FY 2000 report on the demonstrative research for photovoltaic power generation system in Thailand. Demonstrative study on photovoltaic power generation grid-connected system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In relation to the demonstrative study of the photovoltaic power system that is planned in Libong island, Thailand, the FY 2000 results were reported. In this R and D, construction/demonstrative operation were planned for a photovoltaic power station with a generation output of 100kW, photovoltaic power system in school facilities, and system for transmitting/distributing power to houses by connecting the power station and power system. In this fiscal year, the field survey was conducted together with the alteration from Yao Yai island, for which the demonstrative study was planned at first, to Libong island. The electric equipment was selected which met the requests from Thailand and the results of the field survey, and the basic design of the photovoltaic power generation/transmission/distribution system was completed. Based on this, the design/manufacture of photovoltaic power generation modules, power control equipment, measuring equipment, etc. were made. At the construction site of photovoltaic power station, construction work such as land formation was conducted. Further, Thai engineers who visited Japan did the following: discussions about power system, presence at test/inspection of photovoltaic power generation modules, visits to photovoltaic power stations, wind power stations, etc. (NEDO)

  10. Socioeconomic impact of photovoltaic power at Schuchuli, Arizona

    Science.gov (United States)

    Bahr, D.; Garrett, B. G.; Chrisman, C.

    1980-01-01

    The social and economic impact of photovoltaic power on a small, remote native American village is studied. Village history, group life, energy use in general, and the use of photovoltaic-powered appliances are discussed. No significant impacts due to the photovoltaic power system were observed.

  11. Intermediate photovoltaic system application experiment operational performance report. Volume 4, for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Performance data are presented for the months of November and December, 1981 for a photovoltaic power supply at a Massachusetts school building. The data include: monthly and daily electrical energy produced; monthly and daily solar energy received; monthly and daily array efficiency; energy produced as a function of power level, voltage, cell temperature, and hour of the day; input, output, and efficiency of two power conditioner units and for the total power conditioning system; energy supplied by the photovoltaic system to the load during each day and month; photovoltaic system efficiency; capacity factor; daily system availability; monthly and hourly insolation; heating and cooling degree days; number of freeze/thaw cycles per month; monthly and hourly ambient temperature; monthly and hourly wind speed; wind direction distribution; hourly cell temperature; and data acquisition mode and recording interval plot. (LEW)

  12. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  13. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  15. Co-ordinated experimental research into PV power interaction with the supply network - Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, R.; Thornycroft, J.; Munro, D.; Rudkin, E.

    1999-07-01

    This report summarises the findings of a study examining the integration of photovoltaic systems into the UK electricity supply network. Details of research and development in the UK, and the participants in the research project are given. Information on photovoltaics as embedded generators, power conditioner design and performance, and the effects of photovoltaics on the network are outlined, and AC modules, standards, testing and approval schemes are considered. (UK)

  16. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  17. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  18. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  19. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  20. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  1. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  2. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  3. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  4. Wind/photovoltaic power indicators. Third quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  5. Wind/photovoltaic power indicators. Second quarter 2009

    International Nuclear Information System (INIS)

    2009-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  6. Wind/photovoltaic power indicators. Second quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  7. Wind/photovoltaic power indicators. First quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  8. Wind/photovoltaic power indicators. Second quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  9. Wind/photovoltaic power indicators. Fourth quarter 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  10. Wind/photovoltaic power indicators. First quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  11. Wind/photovoltaic power indicators. Third quarter 2009

    International Nuclear Information System (INIS)

    2009-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  12. Wind/photovoltaic power indicators. Fourth quarter 2009

    International Nuclear Information System (INIS)

    2010-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  13. Photovoltaic technologies for commercial power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    Photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  14. Maximum power point tracker for photovoltaic power plants

    Science.gov (United States)

    Arcidiacono, V.; Corsi, S.; Lambri, L.

    The paper describes two different closed-loop control criteria for the maximum power point tracking of the voltage-current characteristic of a photovoltaic generator. The two criteria are discussed and compared, inter alia, with regard to the setting-up problems that they pose. Although a detailed analysis is not embarked upon, the paper also provides some quantitative information on the energy advantages obtained by using electronic maximum power point tracking systems, as compared with the situation in which the point of operation of the photovoltaic generator is not controlled at all. Lastly, the paper presents two high-efficiency MPPT converters for experimental photovoltaic plants of the stand-alone and the grid-interconnected type.

  15. Implementing agreement on photovoltaic power systems - Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2000. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance and design of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, the grid interconnection of building-integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, very large scale photovoltaic power generation systems and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  16. Implementing agreement on photovoltaic power systems - Annual report 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2001. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  17. Wind/photovoltaic power indicators. First quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-06-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  18. Wind/photovoltaic power indicators. Third quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2011-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  19. Wind/photovoltaic power indicators. Fourth quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  20. Wind/photovoltaic power indicators. Second quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  1. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  2. Photovoltaic technologies for commerical power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    The author reports photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  3. Intermediate photovoltaic system application experiment operational performance. Volume 5, for Beverly High School, Beverly, MA. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1982-03-01

    Performance data are given for a grid-connected, 100 kW, flat panel photovoltaic power system at a Massachusetts high school for the month of February 1982. Data include daily and monthly electrical energy produced, daily and monthly plane-of-array incident solar energy, array efficiency, power conditioner efficiency, system efficiency, capacity factor, and monthly average insolation. Also included is the data acquisition mode and recording interval plot. (LEW)

  4. Implementing agreement on photovoltaic power systems - Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2003. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. The programme's tenth anniversary is noted. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system, the deployment of photovoltaic technologies in developing countries and urban-scale PV applications. The status and prospects in the 20 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  5. Radioisotope-powered photovoltaic generator

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Uselman, J.

    1979-01-01

    Disposing of radioactive wastes from nuclear power plants has become one of the most important issues facing the nuclear industry. In a new concept, called a radioisotope photovoltaic generator, a portion of this waste would be used in conjunction with a scintillation material to produce light, with subsequent conversion into electricity via photovoltaic cells. Three types of scintillators and two types of silicon cells were tested in six combinations using 32 P as the radioisotope. The highest system efficiency, determined to be 0.5% when the light intensity was normalized to 100 mW/cm 2 , was obtained using a CsI crystal scintillator and a Helios photovoltaic cell

  6. Power quality enhancement at distribution level utilizing the unified power quality conditioner (UPQC)

    Science.gov (United States)

    Khadkikar, Vinod

    The present doctoral work is based on the philosophy of optimal utilization of the available resources in a most effective and efficient way to improve the product efficiency and to reduce the overall cost. This work proposes a novel control philosophy termed as power angle control (PAC), in which both the series and shunt inverters share the load reactive power in co-ordination with each other without affecting the basic UPQC compensation capabilities. This eventually results in a better utilization of the series inverter, reduction in the shunt inverter rating to some extent and ultimately in the reduction of the overall cost of UPQC. Moreover, in this thesis work several other control approaches are also proposed, such as, unit vector template generation, quadrature voltage injection, generalized single-phase p-q theory and novel current unbalance compensation approach. All the developed concepts are successfully validated through digital simulation as well as extensive experimental investigations. Keywords. power quality, active power filter, unified power quality conditioner, reactive power compensation, harmonics compensation.

  7. Power generation using photovoltaic induction in an isolated power network

    International Nuclear Information System (INIS)

    Kalantar, M.; Jiang, J.

    2001-01-01

    Owing to increased emphasis on renewable resources, the development of suitable isolated power generators driven by energy sources, the development of suitable isolated power generators driven by energy sources such as photovoltaic, wind, small hydroelectric, biogas and etc. has recently assumed greater significance. A single phase capacitor self excited induction generator has emerged as a suitable candidate of isolated power sources. This paper presents performance analysis of a single phase self-excited induction generator driven by photovoltaic (P V) system for low power isolated stand-alone applications. A single phase induction machine can work as a self-excited induction generator when its rotor is driven at suitable speed by an photovoltaic powered do motor. Its excitation is provided by connecting a single phase capacitor bank at a stator terminals. Either to augment grid power or to get uninterrupted power during grid failure stand-alone low capacity ac generators are used. These are driven by photovoltaic, wind power or I C engines using kerosene, diesel, petrol or biogas as fuel. Self-excitation with capacitors at the stator terminals of the stator terminals of the induction machines is well demonstrated experimentally on a P V powered dc motor-induction machine set. The parameters and the excitation requirements of the induction machine run in self-excited induction generator mode are determined. The effects of variations in prime mover speed,terminal capacitance and load power factor on the machine terminal voltage are studied

  8. Development of a solar-powered residential air conditioner: Economic analysis

    Science.gov (United States)

    1975-01-01

    The results of investigations aimed at the development of cost models to be used in the economic assessment of Rankine-powered air conditioning systems for residential application are summarized. The rationale used in the development of the cost model was to: (1) collect cost data on complete systems and on the major equipment used in these systems; (2) reduce these data and establish relationships between cost and other engineering parameters such as weight, size, power level, etc; and (3) derive simple correlations from which cost-to-the-user can be calculated from performance requirements. The equipment considered in the survey included heat exchangers, fans, motors, and turbocompressors. This kind of hardware represents more than 2/3 of the total cost of conventional air conditioners.

  9. Intermediate photovoltaic system application experiment operational performance report. Volume 2 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    For the month of July 1981, performance data are listed and graphed for an intermediate photovoltaic system at a high school in Massachusetts. The energy production, incident solar energy and efficiency are given, and the daily energy production and efficiency, and energy production as a function of power and voltage are graphed. The output of the power conditioner, insolation, heating and cooling loads, temperature and wind data, and the number of freeze-thaw cycles are given. (LEW)

  10. Different Modeling Aspects and Energy Systems of Unified Power Quality Conditioner (UPQC): An Overview

    OpenAIRE

    Deshpande, Payal; Shrivastava, Amit; Khare, Anula

    2016-01-01

    Abstract: This paper highlights the classification of Unified Power Quality Conditioner (UPQC) to enhance the electric power quality at distribution levels. It aims to present a broad overview on the different possible UPQC system configurations for single-phase (two-wire) and three-phase (three-wire and four-wire) networks, different modeling approaches and backup energy storages, and recent developments in the field. It is noticed that several researchers have used different names for the U...

  11. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  12. Photovoltaic power generation system free of bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  13. Fuzzy Controller Design Using FPGA for Photovoltaic Maximum Power Point Tracking

    OpenAIRE

    Basil M Hamed; Mohammed S. El-Moghany

    2012-01-01

    The cell has optimum operating point to be able to get maximum power. To obtain Maximum Power from photovoltaic array, photovoltaic power system usually requires Maximum Power Point Tracking (MPPT) controller. This paper provides a small power photovoltaic control system based on fuzzy control with FPGA technology design and implementation for MPPT. The system composed of photovoltaic module, buck converter and the fuzzy logic controller implemented on FPGA for controlling on/off time of MOSF...

  14. Application of evaporative cooling on the condenser of window-air-conditioner

    International Nuclear Information System (INIS)

    Hajidavalloo, Ebrahim

    2007-01-01

    Reduction of energy consumption is a major concern in the vapor compression refrigeration cycle especially in the area with very hot weather conditions (about 50 deg. C), where window-air-conditioners are usually used to cool homes. In this weather condition performance of air condenser window-air-conditioners decrease sharply and electrical power consumption increase considerably. These problems have activated the research programs in order to improve the performance of window-air-conditioners by enhancing heat transfer rate in the condenser. In this article, a new design with high commercialization potential for incorporating of evaporative cooling in the condenser of window-air-conditioner is introduced and experimentally investigated. A real air conditioner is used to test the innovation by putting two cooling pads in both sides of the air conditioner and injecting water on them in order to cool down the air before it passing over the condenser. The experimental results show that thermodynamic characteristics of new system are considerably improved and power consumption decreases by about 16% and the coefficient of performance increases by about 55%

  15. Application of evaporative cooling on the condenser of window-air-conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, Ebrahim [Shahid Chamran University, Department of Mechanical Engineering, Golestan St., Ahwaz, Khoozestan 61355 (Iran, Islamic Republic of)]. E-mail: hajidae_1999@yahoo.com

    2007-08-15

    Reduction of energy consumption is a major concern in the vapor compression refrigeration cycle especially in the area with very hot weather conditions (about 50 deg. C), where window-air-conditioners are usually used to cool homes. In this weather condition performance of air condenser window-air-conditioners decrease sharply and electrical power consumption increase considerably. These problems have activated the research programs in order to improve the performance of window-air-conditioners by enhancing heat transfer rate in the condenser. In this article, a new design with high commercialization potential for incorporating of evaporative cooling in the condenser of window-air-conditioner is introduced and experimentally investigated. A real air conditioner is used to test the innovation by putting two cooling pads in both sides of the air conditioner and injecting water on them in order to cool down the air before it passing over the condenser. The experimental results show that thermodynamic characteristics of new system are considerably improved and power consumption decreases by about 16% and the coefficient of performance increases by about 55%.

  16. Combined solar photovoltaic and hydroelectric pumped storage power plant

    International Nuclear Information System (INIS)

    Gzraryan, R.V.

    2009-01-01

    Combined model of solar photovoltaic and pumped storage stations aimed at power supply for 40 rural houses are considered. The electric circuits of station and their acting regularities are developed and submitted. The both generation curve of photovoltaic station and load curve of electrical customer are considered. The power of hydraulic unit, pumping unit and photovoltaic station are calculated

  17. Bidding Strategy of Virtual Power Plant with Energy Storage Power Station and Photovoltaic and Wind Power

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2018-01-01

    Full Text Available For the virtual power plants containing energy storage power stations and photovoltaic and wind power, the output of PV and wind power is uncertain and virtual power plants must consider this uncertainty when they participate in the auction in the electricity market. In this context, this paper studies the bidding strategy of the virtual power plant with photovoltaic and wind power. Assuming that the upper and lower limits of the combined output of photovoltaic and wind power are stochastically variable, the fluctuation range of the day-ahead energy market and capacity price is stochastically variable. If the capacity of the storage station is large enough to stabilize the fluctuation of the output of the wind and photovoltaic power, virtual power plants can participate in the electricity market bidding. This paper constructs a robust optimization model of virtual power plant bidding strategy in the electricity market, which considers the cost of charge and discharge of energy storage power station and transmission congestion. The model proposed in this paper is solved by CPLEX; the example results show that the model is reasonable and the method is valid.

  18. Photovoltaic power. Industries and market

    International Nuclear Information System (INIS)

    Muller, J.C.

    2007-01-01

    Photovoltaic conversion should become competitive with respect to other power generation sources before the second half of the 21. century. This article treats first of the different solar cell technologies (monocrystalline and polycrystalline silicon, thin film silicon, cadmium telluride-based materials, copper-indium selenide-based materials, multi-spectral cells, organic cells) with respect to their conversion efficiency, production and energy cost, and environmental impact. A second part describes the solar cells market, its growth with respect to the different applications (isolated sites, decentralized generation, power plants). A third part deals with the perspectives of photovoltaic conversion with respect to the advance in the development of new cell materials. (J.S.)

  19. The atlas of large photovoltaic power plants

    International Nuclear Information System (INIS)

    Ducuing, S.; Guillier, A.; Guichard, M.A.

    2015-01-01

    This document reports all the photovoltaic power plants whose installed power is over 1 MWc and that are operating in France or in project. 446 power plants have been reviewed and their cumulated power reaches 2822 MWc. For each plant the following information is listed: the name of the municipality, the operator, the power capacity, the manufacturer of the photovoltaic panels and the type of technology used, the type of installation (on the ground, on the roof, on the facade, as sun protection,...), the yearly power output (kWh), and the date of commissioning. This review shows that 86% of these plants are ground-based. (A.C.)

  20. Intermediate photovoltaic system application experiment operational performance executive summary. Volume 4. For Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Performance data are given for a 100 kW grid-connected flat panel photovoltaic power supply at a Massachusetts high school for the month of January, 1982. Data given include daily and monthly electrical energy produced, daily and monthly plane-of-array solar energy incident, array efficiency, power conditioner efficiency, system efficiency, capacity factor, and average plane-of-array insolation. Also included are the data acquisition mode and recording interval plot and two site event report summaries involving the data acquisition system. (LEW)

  1. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  2. Capacity enhancement and flexible operation of unified power quality conditioner in smart and microgrid network

    OpenAIRE

    Khadem, Shafiuzzaman Khan; Basu, Malabika; Conlon, Michael F.

    2018-01-01

    This paper presents a new approach to design Unified Power Quality Conditioner (UPQC), termed as distributed UPQC (D-UPQC), for smart or microgrid network where capacity enhancement and flexible operation of UPQC are the important issues. This paper shows the possibility of capacity enhancement and operational flexibility of UPQC through a coordinated control of existing resources. This UPQC consists of a single unit series active power filter (APFse) and multiple shunt APF (APFsh) units in a...

  3. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  4. Intermediate photovoltaic system application experiment operational performance report: Volume 5, for Beverly High School, Beverly, Mass.

    Science.gov (United States)

    1982-02-01

    Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.

  5. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  6. Photovoltaic power supplies: Energy option feasibility. Solare fotovoltaico come opzione energetica

    Energy Technology Data Exchange (ETDEWEB)

    Coiante, D.; Barra, L. (ENEA, Casaccia (Italy). Area Energetica)

    1993-01-01

    Commercialization prospects for grid connected, stand-alone and hydrogen- production photovoltaic power plants are assessed. The paper traces the evolution of the development of photovoltaic modules and correlates trends in R D expenditure and progress made with subsequent drops in the cost of photovoltaic power equipment. Assessments are made of limits in the marketability of grid connected photovoltaic power supplies and comments are made as to the wisdom of the current directions being taken by research groups operating in this field.

  7. Smart Cooling Controlled System Exploiting Photovoltaic Renewable Energy Systems

    Directory of Open Access Journals (Sweden)

    Ahmad Atieh

    2018-03-01

    Full Text Available A smart cooling system to control the ambient temperature of a premise in Amman, Jordan, is investigated and implemented. The premise holds 650 people and has 14 air conditioners with the cooling capacity ranging from 3 to 5 ton refrigerant (TR each. The control of the cooling system includes implementing different electronics circuits that are used to sense the ambient temperature and humidity, count the number of people in the premise and then turn ON/OFF certain air conditioner(s. The data collected by different electronic circuits are fed wirelessly to a microcontroller, which decides which air conditioner will be turned ON/OFF, its location and its desired set cooling temperature. The cooling system is integrated with an on-grid solar photovoltaic energy system to minimize the operational cost of the overall cooling system.

  8. The characteristic analysis of the solar energy photovoltaic power generation system

    Science.gov (United States)

    Liu, B.; Li, K.; Niu, D. D.; Jin, Y. A.; Liu, Y.

    2017-01-01

    Solar energy is an inexhaustible, clean, renewable energy source. Photovoltaic cells are a key component in solar power generation, so thorough research on output characteristics is of far-reaching importance. In this paper, an illumination model and a photovoltaic power station output power model were established, and simulation analysis was conducted using Matlab and other software. The analysis evaluated the condition of solar energy resources in the Baicheng region in the western part of Jilin province, China. The characteristic curve of the power output from a photovoltaic power station was obtained by simulation calculation. It was shown that the monthly average output power of the photovoltaic power station is affected by seasonal changes; the output power is higher in summer and autumn, and lower in spring and winter.

  9. Development of a solar-powered residential air conditioner: Screening analysis

    Science.gov (United States)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  10. Power Inverter Topologies for Photovoltaic Modules - A Review

    DEFF Research Database (Denmark)

    Kjær, Søren Bækhøj; Pedersen, John Kim; Blaabjerg, Frede

    2002-01-01

    This review-paper focuses on the latest development of inverters for photovoltaic AC-Modules. The power range for these inverters is usually within 90 Watt to 500 Watt, which covers the most commercial photovoltaic-modules. Self-commutated inverters have replaced the grid-commutated ones. The same...... is true for the bulky low-frequency transformers versus the high-frequency transformers, which are used to adapt the voltage level. The AC-Module provides a modular design and a flexible behaviour in various grid conditions. It hereby opens the market for photovoltaic-power for everyone at a low cost due...

  11. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power utilizing system and peripheral technologies (Research and development of novel type solar cell module integratable with building materials - Highly durable roof module); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (shinkenzai ittaigata taiyo denchi module no kenkyu kaihatsu - kotaikyusei yane module)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A thin-film solar array, a large roof panel, and an interconnecting power conditioner are integrated into one and single structural member for the development of a residential photovoltaic power system in which a unit AC (alternating current) output is collected from each panel. In fiscal 1999, in the study of highly durable materials for solar cell modules and of their structure, a thin film compound solar cell module was enlarged to 82cm times 71cm, evaluated for performance, and installed on the third test house. In the study of collecting AC power from the solar cell module, a compact power conditioner for a roof panel which had been in test operation on the roof of the laboratory since 1998 was checked for practical performance, improved, and evaluated for system generation efficiency. In the study of a highly durable roof module structure, problems pertaining to heat radiation from the rear side steel sheet, the burning of the junction box, etc., were solved, and the module passed a verification test under the Building Standard Law. In the validation of the roof module for which power generation performance and meteorological conditions had already been continuously measured for 19 months, it was found that the roof module suffered no troubles such as water leak or deformation. (NEDO)

  12. Grid converters for photovoltaic and wind power systems

    CERN Document Server

    Teodorescu, Remus; Rodríguez, Pedro

    2011-01-01

    "Grid Converters for Photovoltaic and Wind Power Systems provides a comprehensive description of the control of grid converters for photovoltaic and wind power systems. The authors present a range of control methods for meeting the latest application, power quality and power conversion requirements and standards, as well as looking towards potential future control functions. Practical examples, exercises, and an accompanying website with simulation models using Matlab and Simulink environments, and PSIM software make this text a pragmatic resource for electrical engineers as well as students taking related courses"--

  13. Development and design of photovoltaic power prediction system

    Science.gov (United States)

    Wang, Zhijia; Zhou, Hai; Cheng, Xu

    2018-02-01

    In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.

  14. Control strategy for Single-phase Transformerless Three-leg Unified Power Quality Conditioner Based on Space Vector Modulation

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...

  15. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  16. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  17. Design of a photovoltaic central power station: flat-plate array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  18. Intermediate photovoltaic system application experiment operational performance, executive summary. Volume 3 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Performance data for the months of November and December, 1981 are given for a utility connected 100 kW solar photovoltaic flat panel power system at a Massachusetts school building. Data given include: monthly and daily energy produced; monthly and daily solar energy incident on the collectors; monthly array efficiency; monthly power conditioner efficiency; monthly system efficiency; monthly capacity factor; and monthly average insolation. Also included are a plot of data acquisition mode and recording interval for each day of each month, and a malfunction report regarding the data acquisition system. (LEW)

  19. Intermediate photovoltaic system application experiment operational performance report. Volume 5 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Performance data are presented for the month of January, 1982 for a grid-connected photovoltaic power supply at a Massachusetts high school. Data presented include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplied to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot. Also included are summaries of two problems with the operating data acquisition system. (LEW)

  20. Modeling Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    F. Mavromatakis

    2016-10-01

    Full Text Available A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV facilities the beam and the diffuse solar irradiances are not recorded. The airmass, the angle of incidence and the efficiency drop due to low values of solar irradiance are taken into account. Currently, the model is validated through the use of high quality data available from the National Renewable Energy Laboratory (USA. The data were acquired with IV tracers while the meteorological conditions were also recorded. Several modules of different technologies were deployed but here we present results from a single crystalline module. The performance of the model is acceptable at a level of 5% despite the assumptions made. The dependence of the residuals upon solar irradiance temperature, airmass and angle of incidence is also explored and future work is described.

  1. Photovoltaic power without batteries for continuous cathodic protection

    Science.gov (United States)

    Muehl, W. W., Sr.

    1994-02-01

    The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.

  2. Design of photovoltaic central power station concentrator array

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  3. Towards photovoltaic powered artificial retina

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2011-11-01

    Full Text Available The aim of this article is to provide an overview of current and future concepts in the field of retinal prostheses, and is focused on the power supply based on solar energy conversion; we introduce the possibility of using PV minimodules as power supply for a new concept of retinal prostheses: Photovoltaic Powered Artificial Retina (PVAR. Main characteristics of these PV modules are presented showing its potential for this application.

  4. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, N. [Freelance Consultant, Hillside House, Swindon SN1 3QA (United Kingdom); Thornycroft, J. [Halcrow Group Ltd, Burderop Park, Swindon SN4 0QD (United Kingdom); Collinson, A. [EA Technology, Capenhurst Technology Park, Chester CH1 6ES (United Kingdom)

    2002-03-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents the results of a risk analysis concerning photovoltaic power systems islanding in low-voltage distribution networks. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. The purpose of this study was to apply formal risk analysis techniques to the issue of islanding of photovoltaic power systems within low voltage distribution networks. The aim was to determine the additional level of risk that islanding could present to the safety of customers and network maintenance staff. The study identified the reliability required for islanding detection and control systems based on standard procedures for developing a safety assurance strategy. The main conclusions are presented and discussed and recommendations are made. The report is concluded with an appendix that lists the relative risks involved.

  5. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    International Nuclear Information System (INIS)

    Hosseini, M.; Shayanfar, H.A.; Fotuhi-Firuzabad, M.

    2009-01-01

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems.

  6. Modeling of unified power quality conditioner (UPQC) in distribution systems load flow

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, M.; Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran); Fotuhi-Firuzabad, M. [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran)

    2009-06-15

    This paper presents modeling of unified power quality conditioner (UPQC) in load flow calculations for steady-state voltage compensation. An accurate model for this device is derived to use in load flow calculations. The rating of this device as well as direction of reactive power injection required to compensate voltage to the desired value (1 p.u.) is derived and discussed analytically and mathematically using phasor diagram method. Since performance of the compensator varies when it reaches to its maximum capacity, modeling of UPQC in its maximum rating of reactive power injection is derived. The validity of the proposed model is examined using two standard distribution systems consisting of 33 and 69 nodes, respectively. The best location of UPQC for under voltage problem mitigation in the distribution network is determined. The results show the validity of the proposed model for UPQC in large distribution systems. (author)

  7. New Application’s Approach to Unified Power Quality Conditioners for Mitigation of Surge Voltages

    Directory of Open Access Journals (Sweden)

    Yeison Alberto Garcés Gomez

    2016-01-01

    Full Text Available This paper outlines a new approach for the compensation of power systems presented through the use of a unified power quality conditioner (UPQC which compensates impulsive and oscillatory electromagnetic transients. The newly proposed control technique involves a dual analysis of the UPQC where the parallel compensator is modelled as a sinusoidal controlled voltage source, while the series compensator is modelled as a sinusoidal controlled current source, opposed to the traditional approach where the parallel and series compensators are modelled as current and voltage nonsinusoidal sources, respectively. Also a new compensation algorithm is proposed through the application of the theory of generalized reactive power; this is then compared with the theory of active and reactive instantaneous power, or pq theory. The results are presented by means of simulations in MATLAB-Simulink®.

  8. Photovoltaic Power for Mars Exploration

    Science.gov (United States)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1997-01-01

    Mars is a challenging environment for the use of solar power. The implications of the low temperatures and low light intensity, solar spectrum modified by dust and changing with time of day and year, indirect sunlight, dust storms, deposited dust, wind, and corrosive peroxide-rich soil are discussed with respect to potential photovoltaic power systems. The power systems addressed include a solar-powered rover vehicle and a human base. High transportation costs dictate high efficiency solar cells or alternatively, a 'thin film' solar cell deposited on a lightweight plastic or thin metal foil.

  9. Photovoltaic Power Control Using MPPT and Boost Converter

    OpenAIRE

    Attou, A.; Massoum, A.; Saidi, M.

    2015-01-01

    —The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells. Therefore, to maximize the efficiency of the renewable energy system, it is necessary to track the maximum power point of the input source. In this paper, a new maximum po...

  10. PowerShades. Transparent photovoltaics and solar shading. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bezzel, E. (PhotoSolar ApS, Taastrup (Denmark)); Univ. of Neuchatel, Institute of Microtechnology, Neuchatel (CH)); Savcor Denmark A/S, Ballerup (Denmark)); Chem-Tec Plating A/S, Uldum (Denmark)); Danish Technological Institute (DTI), Taastrup (Denmark))

    2008-06-15

    This report marks the end of the PSO funded R and D project PowerShades. The objective of the project has been to establish knowledge about the manufacturing of PowerShade transparent photovoltaics and to demonstrate the viability of PowerShade, both as a product and when considered a building element. It has not been the objective to demonstrate a full-scale manufacturing of PowerShade, but to establish the knowledge that enables industrial manufacturing. The overall objective of the project has been achieved, and the large majority of the milestones defined have been met to full extent. It has been shown that PowerShade photovoltaic cells with an electrical efficiency of 5% can be reached, and it is expected that future work will lead to even better efficiency. Also, it has been demonstrated by full size side by side comparison that PowerShade transparent photovoltaics may replace exterior solar shading devices without compromise to the thermal properties of the building. The project has identified a number of work areas that must be addressed before an industrial manufacturing can be established. The efficiency of the photovoltaic generator must be increased and the stability of the entire product documented. Also, some of the identified processing steps must be scaled in capacity before manufacturing can be considered. (author)

  11. Optimal sizing of utility-scale photovoltaic power generation complementarily operating with hydropower: A case study of the world’s largest hydro-photovoltaic plant

    International Nuclear Information System (INIS)

    Fang, Wei; Huang, Qiang; Huang, Shengzhi; Yang, Jie; Meng, Erhao; Li, Yunyun

    2017-01-01

    Highlights: • Feasibility of complementary hydro-photovoltaic operation across the world is revealed. • Three scenarios of the novel operation mode are proposed to satisfy different load demand. • A method for optimally sizing a utility-scale photovoltaic plant is developed by maximizing the net revenue during lifetime. • The influence of complementary hydro-photovoltaic operation upon water resources allocation is investigated. - Abstract: The high variability of solar energy makes utility-scale photovoltaic power generation confront huge challenges to penetrate into power system. In this paper, the complementary hydro-photovoltaic operation is explored, aiming at improving the power quality of photovoltaic and promoting the integration of photovoltaic into the system. First, solar-rich and hydro-rich regions across the world are revealed, which are suitable for implementing the complementary hydro-photovoltaic operation. Then, three practical scenarios of the novel operation mode are proposed for better satisfying different types of load demand. Moreover, a method for optimal sizing of a photovoltaic plant integrated into a hydropower plant is developed by maximizing the net revenue during lifetime. Longyangxia complementary hydro-photovoltaic project, the current world’s largest hydro-photovoltaic power plant, is selected as a case study and its optimal photovoltaic capacities of different scenarios are calculated. Results indicate that hydropower installed capacity and annual solar curtailment rate play crucial roles in the size optimization of a photovoltaic plant and complementary hydro-photovoltaic operation exerts little adverse effect upon the water resources allocation of Longyangxia reservoir. The novel operation mode not only improves the penetration of utility-scale photovoltaic power generation but also can provide a valuable reference for the large-scale utilization of other kinds of renewable energy worldwide.

  12. A novel power converter for photovoltaic applications

    Science.gov (United States)

    Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang

    A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.

  13. Photovoltaic power system reliability considerations

    Science.gov (United States)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  14. Photovoltaic energy in power market

    NARCIS (Netherlands)

    Ho, D.T.; Frunt, J.; Myrzik, J.M.A.

    2009-01-01

    Photovoltaic (PV) penetration in the grid connected power system has been growing. Currently, PV electricity is usually directly sold back to the energy supplier at a fixed price and subsidy. However, subsidies should always be a temporary policy, and will eventually be terminated. A question is

  15. Power electronics and control techniques for maximum energy harvesting in photovoltaic systems

    CERN Document Server

    Femia, Nicola

    2012-01-01

    Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) so

  16. Wind/photovoltaic power indicators. Second quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-08-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  17. Wind/photovoltaic power indicators. Third quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  18. Wind/photovoltaic power indicators. Fourth quarter 2012

    International Nuclear Information System (INIS)

    Reynaud, Didier; Thienard, Helene

    2013-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status. (J.S.)

  19. Wind/photovoltaic power indicators. Third quarter 2010

    International Nuclear Information System (INIS)

    Thienard, Helene

    2010-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  20. Wind/photovoltaic power indicators. Fourth quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-02-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  1. Wind/photovoltaic power indicators. Third quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2013-11-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  2. Wind/photovoltaic power indicators. Third quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  3. Wind/photovoltaic power indicators. First quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-05-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  4. Wind/photovoltaic power indicators. First quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier; Thienard, Helene

    2013-06-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status. (J.S.)

  5. Wind/photovoltaic power indicators. Forth quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-02-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  6. Wind/photovoltaic power indicators. Second quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-08-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  7. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  8. Small photovoltaic setup for the air conditioning system

    Directory of Open Access Journals (Sweden)

    Masiukiewicz Maciej

    2017-01-01

    Full Text Available The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES. The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system. Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  9. Small photovoltaic setup for the air conditioning system

    Science.gov (United States)

    Masiukiewicz, Maciej

    2017-10-01

    The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES). The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV) to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system). Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  10. Comparative analysis of thermal storage cooling and storage battery cooling using photovoltaic generation. Part 2. Research on architectural systematization of energy conversion devices; Taiyoko hatsuden ni yoru chikunetsu reibo to chikuden reibo ni tsuite. 2. Energy henkan no kenchiku system ka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, N; Kimura, G; Fukao, S; Shimizu, T; Sunaga, N; Tsunoda, M; Muro, K; Yamanaka, S [Tokyo Metropolitan University, Tokyo (Japan)

    1996-10-27

    For use in energy self-sufficient buildings, a system was studied capable of retaining for its own use the excess of power produced by a photovoltaic power generation system without releasing it to the commercial system. Summertime cooling was considered. The storage battery cooling system was provided with two solar cell systems and, in the daytime, one was used for cooling and the other for charging batteries for nighttime cooling. In the cold heat storage cooling system, cold heat accumulators (red bricks) were provided in the wall and floor, and under the floor, and the floor was a grating for proper ventilation between the room and underfloor space. With the solar cell-driven air conditioner out of operation, cold heat was fed to the room from the underfloor cold heat accumulators by a fan. In storage battery cooling, solar power covered 60% of what the air conditioner used. In the presence of sufficient power in storage, the air conditioner stayed on at night without buying commercial power, when the room temperature was 25{degree}C. In the cold heat accumulation cooling, 50% of the air conditioner power consumption was covered by solar power. It is recommended to install cold heat accumulators not in the room but in a separate space, such as the underfloor space, where they are exposed to the cooling cold air direct from an air conditioner for future retrieval of cold heat. 2 refs., 9 figs., 3 tabs.

  11. Recent Accomplishments in Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Fikes, John C.; Henley, Mark W.; Mankins, John C.; Howell, Joe T.; Fork, Richard L.; Cole, Spencer T.; Skinner, Mark

    2003-01-01

    Wireless power transmission can be accomplished over long distances using laser power sources and photovoltaic receivers. Recent research at AMOS has improved our understanding of the use of this technology for practical applications. Research by NASA, Boeing, the University of Alabama-Huntsville, the University of Colorado, Harvey Mudd College, and the Naval Postgraduate School has tested various commercial lasers and photovoltaic receiver configurations. Lasers used in testing have included gaseous argon and krypton, solid-state diodes, and fiber optic sources, at wavelengths ranging from the visible to the near infra-red. A variety of Silicon and Gallium Arsenide photovoltaic have been tested with these sources. Safe operating procedures have been established, and initial tests have been conducted in the open air at AMOS facilities. This research is progressing toward longer distance ground demonstrations of the technology and practical near-term space demonstrations.

  12. Ensemble forecasting using sequential aggregation for photovoltaic power applications

    International Nuclear Information System (INIS)

    Thorey, Jean

    2017-01-01

    Our main objective is to improve the quality of photovoltaic power forecasts deriving from weather forecasts. Such forecasts are imperfect due to meteorological uncertainties and statistical modeling inaccuracies in the conversion of weather forecasts to power forecasts. First we gather several weather forecasts, secondly we generate multiple photovoltaic power forecasts, and finally we build linear combinations of the power forecasts. The minimization of the Continuous Ranked Probability Score (CRPS) allows to statistically calibrate the combination of these forecasts, and provides probabilistic forecasts under the form of a weighted empirical distribution function. We investigate the CRPS bias in this context and several properties of scoring rules which can be seen as a sum of quantile-weighted losses or a sum of threshold-weighted losses. The minimization procedure is achieved with online learning techniques. Such techniques come with theoretical guarantees of robustness on the predictive power of the combination of the forecasts. Essentially no assumptions are needed for the theoretical guarantees to hold. The proposed methods are applied to the forecast of solar radiation using satellite data, and the forecast of photovoltaic power based on high-resolution weather forecasts and standard ensembles of forecasts. (author) [fr

  13. Method for Prediction of the Power Output from Photovoltaic Power Plant under Actual Operating Conditions

    Science.gov (United States)

    Obukhov, S. G.; Plotnikov, I. A.; Surzhikova, O. A.; Savkin, K. D.

    2017-04-01

    Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex.

  14. Relay Protection Coordination for Photovoltaic Power Plant Connected on Distribution Network

    OpenAIRE

    Nikolovski, Srete; Papuga, Vanja; Knežević, Goran

    2014-01-01

    This paper presents a procedure and computation of relay protection coordination for a PV power plant connected to the distribution network. In recent years, the growing concern for environment preservation has caused expansion of photovoltaic PV power plants in distribution networks. Numerical computer simulation is an indispensable tool for studying photovoltaic (PV) systems protection coordination. In this paper, EasyPower computer program is used with the module Power Protector. Time-curr...

  15. National Survey Report of Photovoltaic Power Applications in France 2016

    International Nuclear Information System (INIS)

    Kaaijk, Paul; Mehl, Celine; Carrere, Tristan

    2017-06-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Program is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual 'Trends in photovoltaic applications' report. In parallel, National Survey Reports are produced annually by each Task 1 participant. This document is France National Survey Report for the year 2016. Information from this document will be used as input to IEA's annual Trends in photovoltaic applications report

  16. Micromorphology of pelletized soil conditioners

    Science.gov (United States)

    Hirsch, Florian; Dietrich, Nils; Knoop, Christine; Raab, Thomas

    2017-04-01

    Soil conditioners produced by anaerobic digestion and subsequent composting of organic household waste, bear the potential to improve unproductive farmland together with a reduced input risk of unwanted pollutants into the soils. Within the VeNGA project (http://www.biogas-network.de/venga), soil conditioners from anaerobically digested organic household waste are tested for their potential to increase plant growth in glasshouse and field experiments. Because the production techniques of these soil conditioners may influence their physical and chemical behaviour in the soil, two different techniques for pelletizing the soil conditioners where applied. We present findings from a pot experiment with cereal that has been sampled after two months for micromorphological analyses. We visualize the decomposition and the physical behaviour of the soil conditioners. Pellets produced in an agglomeration mixer result in dense balls, that are only slightly decomposed after the trial. But the soil conditioners created under pressure in a screw extruder are rich in voids and have the potential of retaining more soil water.

  17. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM PHOTOVOLTAIC POWER TRACTIOQG UNDER DIFFERENT CONDITIONS

    Directory of Open Access Journals (Sweden)

    Y. Labbi

    2015-08-01

    Full Text Available Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency.In this work, a Particle Swarm Optimization (PSO is proposed for maximum power point tracker for photovoltaic panel, are used to generate the optimal MPP, such that solar panel maximum power is generated under different operating conditions. A photovoltaic system including a solar panel and PSO MPP tracker is modelled and simulated, it has been has been carried out which has shown the effectiveness of PSO to draw much energy and fast response against change in working conditions.

  18. Study of Flexible Load Dispatch to Improve the Capacity of Wind Power Absorption

    Science.gov (United States)

    Yunlei, Yang; Shifeng, Zhang; Xiao, Chang; Da, Lei; Min, Zhang; Jinhao, Wang; Shengwen, Li; Huipeng, Li

    2017-05-01

    The dispatch method which track the trend of load demand by arranging the generation scheme of controllable hydro or thermal units faces great difficulties and challenges. With the increase of renewable energy sources such as wind power and photovoltaic power introduced to grid, system has to arrange much more spinning reserve units to compensate the unbalanced power. How to exploit the peak-shaving potential of flexible load which can be shifted with time or storage energy has become many scholars’ research direction. However, the modelling of different kinds of load and control strategy is considerably difficult, this paper choose the Air Conditioner with compressor which can storage energy in fact to study. The equivalent thermal parameters of Air Conditioner has been established. And with the use of “loop control” strategies, we can predict the regulated power of Air Conditioner. Then we established the Gen-Load optimal scheduling model including flexible load based on traditional optimal scheduling model. At last, an improved IEEE-30 case is used to verify. The result of simulation shows that flexible load can fast-track renewable power changes. More than that, with flexible load and reasonable incentive method to consumers, the operating cost of the system can be greatly cut down.

  19. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  20. Fuzzy-predictive direct power control implementation of a grid connected photovoltaic system, associated with an active power filter

    International Nuclear Information System (INIS)

    Ouchen, Sabir; Betka, Achour; Abdeddaim, Sabrina; Menadi, Abdelkrim

    2016-01-01

    Highlights: • An implementation on dSPACE 1104 of a double stage grid connected photovoltaic system, associated with an active power filter. • A fuzzy logic controller for maximum power point tracking of photovoltaic generator using a boost converter. • Predictive direct power control almost eliminates the effect of harmonics under a unite power factor. • The robustness of control strategies was examined in different irradiance level conditions. - Abstract: The present paper proposes a real time implementation of an optimal operation of a double stage grid connected photovoltaic system, associated with a shunt active power filter. On the photovoltaic side, a fuzzy logic based maximum power point taking control is proposed to track permanently the optimum point through an adequate tuning of a boost converter regardless the solar irradiance variations; whereas, on the grid side, a model predictive direct power control is applied, to ensure both supplying a part of the load demand with the extracted photovoltaic power, and a compensation of undesirable harmonic contents of the grid current, under a unity power factor operation. The implementation of the control strategies is conducted on a small scale photovoltaic system, controlled via a dSPACE 1104 single card. The obtained experimental results show on one hand, that the proposed Fuzzy logic based maximum power taking point technique provides fast and high performances under different irradiance levels while compared with a sliding mode control, and ensures 1.57% more in efficiency. On the other hand, the predictive power control ensures a flexible settlement of active power amounts exchanges with the grid, under a unity power functioning. Furthermore, the grid current presents a sinusoidal shape with a tolerable total harmonic distortion coefficient 4.71%.

  1. A General Constant Power Generation Algorithm for Photovoltaic Systems

    DEFF Research Database (Denmark)

    Tafti, Hossein Dehghani; Maswood, Ali Iftekhar; Konstantinou, Georgios

    2018-01-01

    Photovoltaic power plants (PVPPs) typically operate by tracking the maximum power point in order to maximize conversion efficiency. However, with the continuous increase of installed grid-connected PVPPs, power system operators have been experiencing new challenges, like overloading, overvoltages...... on a hysteresis band controller in order to obtain fast dynamic response under transients and low power oscillation during steady-state operation. The performance of the proposed algorithm for both single- and two-stage PVPPs is examined on a 50-kVA simulation setup of these topologies. Moreover, experimental...... and operation during grid voltage disturbances. Consequently, constant power generation (CPG) is imposed by grid codes. An algorithm for the calculation of the photovoltaic panel voltage reference, which generates a constant power from the PVPP, is introduced in this paper. The key novelty of the proposed...

  2. National Survey Report of Photovoltaic Power Applications in France 2015

    International Nuclear Information System (INIS)

    Kaaijk, Paul; Durand, Yvonnick

    2016-06-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Program is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual report Trends in Photovoltaic Applications. In parallel, National Survey Reports are produced annually by each Task 1 participant. The PVPS web site www.iea-pvps.org also plays an important role in disseminating information arising from the program, including national information. This document is the French National Survey Report on photovoltaics for the year 2015

  3. Technologies for high performance and energy saving in room air conditioners. Shoenegata kokoritsu eakon ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, N. (Toshiba Corp., Tokyo (Japan))

    1994-05-31

    An energy saving inverter type air-conditioner was introduced. It is important to increase the efficiency in the low capacity zone below the rated capacity to realize the energy saving. For the reduction of peak, improving the efficiency in the high capacity operation is also necessary. The power consumption in compressor and in inverter is about 90 % of the total power consumption in air-conditioner. The other 10 % are distributed to the fan motor and the control unit. For achieving the energy saving, the reduction of this 10 % part is also necessary because this 10 % part is constant regardless of the capacity of air-conditioner. The compressor motor was modified to the brushless DC motor with rotor position detecting device to improve the rotor structure and the position detection system. The heat exchanger was changed to a room heat exchanger with slit pattern. For the outdoor heat exchanger, the complex curvature blade fan was adopted. The control system of air-conditioner was changed. The PMV was previously learned and input in the microcomputer to calculate the data. Resultantly, the power consumption was reduced by about 20 % as compared with the conventional air-conditioner. 10 figs., 1 tab.

  4. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production...... of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking...... process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking...

  5. Mathematical model for the power generation from arbitrarily oriented photovoltaic panel

    Directory of Open Access Journals (Sweden)

    Hassan Qusay

    2017-01-01

    Full Text Available In this paper, a mathematical model for modelling the solar radiation components and photovoltaic arrays power outputs from arbitrarily oriented photovoltaic panel has been presented. Base on the model electrical power prediction of the photovoltaic system in realistic local condition has been presented and compared with experimental measurement. The results show the effectiveness of the proposed model, which provides tools to better understand the performance and reliability as well as decision-making tool in designing of a hybrid renewable energy base power generation system. It has been shown that base on the model prediction, the efficiency and possible failures of the system can be found which are important from the technical and economical point of view.

  6. Integrated Photovoltaic System Used as an Alternative Power Source

    Directory of Open Access Journals (Sweden)

    Ionel Laurentiu Alboteanu

    2014-09-01

    Full Text Available This paper presents a solution to use solar energy as an alternative source of electricity to conventional sources. The solution is to use a compact photovoltaic system integrated into a micro smart grid. The studied photovoltaic system is used into concrete application for the power supply lighting in a didactic laboratory.

  7. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    OpenAIRE

    Muhida, Riza; Mohamad, Nor Hilmi; Legowo, Ari; Irawan, Rudi; Astuti, Winda

    2013-01-01

    Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV) modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT) method is applied to the traffic light system. MPPT is intended to catch up th...

  8. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    Science.gov (United States)

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian; Cheng, Feng; Greenwood, Wesley; Hawkins, Jonathan; Willard, Steve

    2017-06-27

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unit and the photovoltaic energy source.

  9. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  10. Photovoltaic power production figures in 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Worldwide figures of photovoltaic power production (in Mw) along 1992 are presented. Worldwide production of modules per manufacturing technology and per manufacturing companies in Europe, USA and Japan are provided as well. The review has used the following sources: ''PV News'', ''PV insider's report'' and ''systems solars''. (Author)

  11. FY 2000 report on the results of the development of commercialization technology of the photovoltaic power system. Summary. R and D of the photovoltaic power generation utilization system/periphery technology (R and D on the improvement of reliability of photovoltaic power generation - Investigative study of long-term reliability of inverter - Separate volume: Data on the life evaluation test); 2000 nendo New sunshine keikaku seika hokokusho(Sokatsu ban). Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (Taiyokohatsuden no shinraisei kojo ni kansuru kenkyu kaihatsu - Inbata no choki shinraisei no chosa kenkyu - Bessatsu : Jumyo hyoka shiken datashu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of establishing a life evaluation method for power conditioner of about several kilowatts for general housing use, the acceleration test was made, and the data were summarized for maintenance of power quality, cooperation with the protection system at power system, insuring of safety of personnel/facilities, etc. As to the acceleration method, by paying attention to heat deterioration of thermal plasticity materials being used for power conditioner and by using the acceleration method using the 10-degree C half law by the Arrhenius law, temperature and humidity were set at 40 degrees C and 36%, respectively. The operation hour and stopping time were fixed at 3.5 hours and 4.5 hours, respectively. The life evaluation measurement by the acceleration test was composed of the continuous evaluation measurement with the aim of early finding the degradation of performance, anomaly, etc. of power conditioner and of the evaluation measurement at specified intervals with the aim of precisely measuring the state of degradation of power conditioner. As a result of the continuous evaluation measurement, the paper reported the data on the rise in temperature inside the power conditioner during the acceleration test and the change in electric characteristics of input/output. (NEDO)

  12. Restoration and construction (buildings). Solar electric power. How to complete a photovoltaic project

    International Nuclear Information System (INIS)

    Bareau, Helene; Juniere, Olivier

    2017-10-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic but comprehensive outlook on the way to complete a solar photovoltaic project in the cases of the restoration or the construction of a building. After a presentation of solar energy, its transformation into electric power, and the installation of solar photovoltaic panels and equipment, the brochure exposes the various steps of a photovoltaic project: economic analysis (cost estimation, budgets, financing incentives, power prices, the choice between selling or using electric power, the contracts, etc.), the planning of the project, the administrative procedure, the selection of a professional installer, how to run the photovoltaic system, how to run the business, etc

  13. Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program

    Science.gov (United States)

    Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam

    2012-01-01

    A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.

  14. Photovoltaic power systems market identification and analysis. Final report, January 1977--February 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    This report summarizes the work done by InterTechnology/Solar Corporation, its consultants, Mobil Tyco Solar Energy Corporation and the University of Delaware Institute for Energy Conversion, and its consultants, during the marketing analysis of near and intermediate term photovoltaic power applications. To obtain estimates of the domestic and foreign market potential for photovoltaically powered devices two approaches were used. First, the study was identifying then screening all possible photovoltaic power supply applications. This approach encompassed the first two tasks of the study: (1) a survey of the current uses of photovoltaic systems, both domestic and international, and a projection of the usage of those systems into the future; and (2) a new idea generation task which attempted to come up with new ways of using photovoltaic power. Second, the study required in-depth analysis of key near-term and intermediate-term photovoltaic applications identified during the first phase to obtain reasonable estimates of photovoltaic market potential. This process encompassed the third and fourth tasks of the analysis: (3) refinement of ideas generated in Task 2 so that certain products/applications could be identified, the product defined and a market survey carried out; and (4) development of a detailed product scenario which forecasts sales, barriers to market acceptance, and technical innovationsrequired for proper introduction of the products. The work performed and findings of each task are presented.

  15. Photovoltaic Powering And Control System For Electrochromic Windows

    Science.gov (United States)

    Schulz, Stephen C.; Michalski, Lech A.; Volltrauer, Hermann N.; Van Dine, John E.

    2000-04-25

    A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

  16. Distributed Solar Photovoltaic Power Production - Technology and Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Al [PSE& G; Stuby, Rick [Petra Solar

    2011-11-02

    As part of its nationally recognized Solar 4 All program, PSE&G has partnered with Petra Solar to deploy the world’s first and largest pole attached solar project. The project, based on Petra Solar’s distributed Smart Solar solution, will create a 40 megawatt solar “virtual power plant.” In deployment as 200,000 individual grid-connected solar power producers on utility poles in PSE&G territory, Petra Solar SunWave® solutions leverage Smart Grid communications and high-tech panel-level inverters to implement a robust system with many technical benefits over traditional solar photovoltaic solutions. The program overview, deployment model, smart grid communications and enabling inverter technology and safety features will be presented, as well the future challenges of, and solutions for, solar power intermittency as photovoltaic penetration on the electric grid increases.

  17. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  18. Analysis and experimental verification of a control scheme for unified power quality conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Peng Cheng Zhu; Xun Li; Yong Kang; Jian Chen [Huazhong Univ. of Science and Techmnology, Wuhan (China). Dept. of Electrical Engineering

    2005-07-01

    Improving power quality for sensitive load by a Unified Power Quality Conditioner (UPQC) in a distributed generation system is presented in this paper. The power balance of a UPQC, consisting of back-to-back connected series and shunt Active Filters (AF), is analysed. Based on the analysis a novel control scheme is established in a 2-phase Synchronous Rotating d-q Frame (SRF). In this control scheme, the series AF is controlled as a current source and makes the input current sinusoidal, while the shunt AF is controlled as a voltage source and keeps the load voltage in the normal value. With the proposed control strategy, the UPQC is capable of compensating not only harmonic and reactive currents of the load but also grid voltage distortion. There is no harmonic interference between harmonic-producing loads and harmonic-sensitive loads, which are connected on the common bus. The performance of a UPQC with the proposed control scheme under nonlinear load and grid voltage distortion is investigated with simulation as well as experimental works. (Author)

  19. Control aspects of the Schuchuli Village stand-alone photovoltaic power system

    Science.gov (United States)

    Groumpos, P. P.; Culler, J. E.; Delombard, R.

    1984-11-01

    A photovoltaic power system in an Arizona Indian village was installed. The control subsystem of this photovoltaic power system was analyzed. The four major functions of the control subsystem are: (1) voltage regulation; (2) load management; (3) water pump control; and (4) system protection. The control subsystem functions flowcharts for the control subsystem operation, and a computer program that models the control subsystem are presented.

  20. Solar photovoltaic power forecasting using optimized modified extreme learning machine technique

    Directory of Open Access Journals (Sweden)

    Manoja Kumar Behera

    2018-06-01

    Full Text Available Prediction of photovoltaic power is a significant research area using different forecasting techniques mitigating the effects of the uncertainty of the photovoltaic generation. Increasingly high penetration level of photovoltaic (PV generation arises in smart grid and microgrid concept. Solar source is irregular in nature as a result PV power is intermittent and is highly dependent on irradiance, temperature level and other atmospheric parameters. Large scale photovoltaic generation and penetration to the conventional power system introduces the significant challenges to microgrid a smart grid energy management. It is very critical to do exact forecasting of solar power/irradiance in order to secure the economic operation of the microgrid and smart grid. In this paper an extreme learning machine (ELM technique is used for PV power forecasting of a real time model whose location is given in the Table 1. Here the model is associated with the incremental conductance (IC maximum power point tracking (MPPT technique that is based on proportional integral (PI controller which is simulated in MATLAB/SIMULINK software. To train single layer feed-forward network (SLFN, ELM algorithm is implemented whose weights are updated by different particle swarm optimization (PSO techniques and their performance are compared with existing models like back propagation (BP forecasting model. Keywords: PV array, Extreme learning machine, Maximum power point tracking, Particle swarm optimization, Craziness particle swarm optimization, Accelerate particle swarm optimization, Single layer feed-forward network

  1. SOLAR PHOTOVOLTAIC OUTPUT POWER FORECASTING USING BACK PROPAGATION NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    B. Jency Paulin

    2016-01-01

    Full Text Available Solar Energy is an important renewable and unlimited source of energy. Solar photovoltaic power forecasting, is an estimation of the expected power production, that help the grid operators to better manage the electric balance between power demand and supply. Neural network is a computational model that can predict new outcomes from past trends. The artificial neural network is used for photovoltaic plant energy forecasting. The output power for solar photovoltaic cell is predicted on hourly basis. In historical dataset collection process, two dataset was collected and used for analysis. The dataset was provided with three independent attributes and one dependent attributes. The implementation of Artificial Neural Network structure is done by Multilayer Perceptron (MLP and training procedure for neural network is done by error Back Propagation (BP. In order to train and test the neural network, the datasets are divided in the ratio 70:30. The accuracy of prediction can be done by using various error measurement criteria and the performance of neural network is to be noted.

  2. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  3. Research on a New Control Scheme of Photovoltaic Grid Power Generation System

    Directory of Open Access Journals (Sweden)

    Dong-Hui Li

    2014-01-01

    Full Text Available A new type of photovoltaic grid power generation system control scheme to solve the problems of the conventional photovoltaic grid power generation systems is presented. To aim at the oscillation and misjudgment of traditional perturbation observation method, an improved perturbation observation method comparing to the next moment power is proposed, combining with BOOST step-up circuit to realize the maximum power tracking. To counter the harmonic pollution problem in photovoltaic grid power generation system, the deadbeat control scheme in fundamental wave synchronous frequency rotating coordinate system of power grid is presented. A parameter optimization scheme based on positive feedback of active frequency shift island detection to solve the problems like the nondetection zone due to the import of disturbance in traditional island detection method is proposed. Finally, the results in simulation environment by MATLAB/Simulink simulation and experiment environment verify the validity and superiority of the proposed scheme.

  4. The ARCO 1 megawatt Photovoltaic Power Plant

    Science.gov (United States)

    Rhodes, G. W.; Reilly, M. R.

    The world's largest Photovoltaic Power Plant is in operation and meeting performance specifications on the Southern California Edison (SCE) grid near Hesperia, California. The 1 MW plant designed and constructed by The BDM Corporation, for ARCO Solar Inc., occupies a 20 acre site adjacent to the SCE Lugo substation. The entire design and construction process took 7 1/2 months and was not only on schedule but below budget. Because of its vast photovoltaic experience, BDM was chosen over several engineering firms to perform this complex job. We were provided a conceptual design from ARCO which we quickly refined and immediately initiated construction.

  5. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control

    Science.gov (United States)

    2012-11-01

    reading Current transformer Regen and conditioner Continental Controls CTS-0750-30 1 % of reading Pyranometer Horizontal Campbell...indoor comfort conditions. A pyranometer was used to quantify the efficiency of the solar collector array. Two measurements of electric energy were

  6. Probability of islanding in utility networks due to grid connected photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, B.

    2002-09-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the probability of islanding in utility networks due to grid-connected photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the results on a study on the probability of islanding in power networks with a high penetration level of grid connected PV-systems. The results are based on measurements performed during one year in a Dutch utility network. The measurements of active and reactive power were taken every second for two years and stored in a computer for off-line analysis. The area examined and its characteristics are described, as are the test set-up and the equipment used. The ratios between load and PV-power are discussed. The general conclusion is that the probability of islanding is virtually zero for low, medium and high penetration levels of PV-systems.

  7. Capacity value evaluation of photovoltaic power generation

    International Nuclear Information System (INIS)

    Kurihara, I.

    1993-01-01

    The paper presents an example of capacity value (kW-value) evaluation of photovoltaic generation from power companies generation planning point of view. The method actually applied to evaluate the supplying capability of conventional generation plants is briefly described. 21 figs, 1 tab

  8. Three-phase electronic power converter for photovoltaic system connected to power line; Conversor eletronico de potencia trifasico para sistema fotovoltaico conectado a rede eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Villalva, Marcelo Gradella

    2010-10-15

    This work is a contribution to the study of power converters for photovoltaic distributed generation systems. The main objective is to present the development and results of a three phase power converter for a grid-connected photovoltaic plant. The work presents experimental results and theoretical studies on the modeling and simulation of photovoltaic devices, regulation of the photovoltaic voltage, maximum power point tracking, and the modeling and control of a two-stage grid-connected power converter. (author)

  9. Experimental Analysis on Solar Desiccant Air Conditioner

    OpenAIRE

    Dr. U. V. Kongre, C. M. Singh, A. B. Biswas

    2014-01-01

    The experiment investigated and evaluated the feasibility of an solar desiccant air conditioner. Its effectiveness as a possible air conditioner option used in household air conditioner or as an energy efficient and environmentally friendly alternative to conventional air conditioning units used in houses are evaluated. A solar water heater was used as heat gain. The model utilizes the technology of solar air conditioner system. The purpose in the long term wou...

  10. An Improved Mathematical Model for Computing Power Output of Solar Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Abdul Qayoom Jakhrani

    2014-01-01

    Full Text Available It is difficult to determine the input parameters values for equivalent circuit models of photovoltaic modules through analytical methods. Thus, the previous researchers preferred to use numerical methods. Since, the numerical methods are time consuming and need long term time series data which is not available in most developing countries, an improved mathematical model was formulated by combination of analytical and numerical methods to overcome the limitations of existing methods. The values of required model input parameters were computed analytically. The expression for output current of photovoltaic module was determined explicitly by Lambert W function and voltage was determined numerically by Newton-Raphson method. Moreover, the algebraic equations were derived for the shape factor which involves the ideality factor and the series resistance of a single diode photovoltaic module power output model. The formulated model results were validated with rated power output of a photovoltaic module provided by manufacturers using local meteorological data, which gave ±2% error. It was found that the proposed model is more practical in terms of precise estimations of photovoltaic module power output for any required location and number of variables used.

  11. Grid-Connected Photovoltaic System with Active Power Filtering Functionality

    Directory of Open Access Journals (Sweden)

    Joaquín Vaquero

    2018-01-01

    Full Text Available Solar panels are an attractive and growing source of renewable energy in commercial and residential applications. Its use connected to the grid by means of a power converter results in a grid-connected photovoltaic system. In order to optimize this system, it is interesting to integrate several functionalities into the power converter, such as active power filtering and power factor correction. Nonlinear loads connected to the grid generate current harmonics, which deteriorates the mains power quality. Active power filters can compensate these current harmonics. A photovoltaic system with added harmonic compensation and power factor correction capabilities is proposed in this paper. A sliding mode controller is employed to control the power converter, implemented on the CompactRIO digital platform from National Instruments Corporation, allowing user friendly operation and easy tuning. The power system consists of two stages, a DC/DC boost converter and a single-phase inverter, and it is able to inject active power into the grid while compensating the current harmonics generated by nonlinear loads at the point of common coupling. The operation, design, simulation, and experimental results for the proposed system are discussed.

  12. Bifurcated SEN with Fluid Flow Conditioners

    Directory of Open Access Journals (Sweden)

    F. Rivera-Perez

    2014-01-01

    Full Text Available This work evaluates the performance of a novel design for a bifurcated submerged entry nozzle (SEN used for the continuous casting of steel slabs. The proposed design incorporates fluid flow conditioners attached on SEN external wall. The fluid flow conditioners impose a pseudosymmetric pattern in the upper zone of the mold by inhibiting the fluid exchange between the zones created by conditioners. The performance of the SEN with fluid flow conditioners is analyzed through numerical simulations using the CFD technique. Numerical results were validated by means of physical simulations conducted on a scaled cold water model. Numerical and physical simulations confirmed that the performance of the proposed SEN is superior to a traditional one. Fluid flow conditioners reduce the liquid free surface fluctuations and minimize the occurrence of vortexes at the free surface.

  13. Solar photovoltaic power for water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Wood, J. R.; Crutcher, J. L.; Norbedo, A. J.; Cummings, A. B.

    1980-07-01

    There is a considerable global need for systems which can meet the drinking water requirements of small communities (7000 people or less) from brackish water or from seawater. Solar photovoltaic panels are an ideal source of power for the purpose, primarily because they produce electricity, which can be used to power a membrane type desalting unit, i.e., either a reverse osmosis plant or an electrodialysis unit. In addition, electricity is most convenient for feedwater pumping. This paper addresses considerations which arise in the design and construction of a complete solar powered water desalination system which requires no supply of fuel nor any form of backup power (grid connection or engine generator).

  14. Flexible Power Control of Photovoltaic Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Sangwongwanich, Ariya; Yang, Yongheng

    2018-01-01

    With a still increasing penetration level of grid-connected photovoltaic (PV) systems, more advanced and flexible control functionalities are demanded. To ensure a smooth and friendly integration between the PV systems and the grid, the power generated by the PV system needs to be flexible...

  15. Maximun power point tracker of photovoltaic s panels for stand alone systems

    International Nuclear Information System (INIS)

    Stoll, R; Manno, R

    2005-01-01

    The low energetic efficiency of photovoltaic s panels is known, in addition, due to the use of linear regulators, which dissipate an important bit of the generated energy, the efficiency of the photovoltaic systems is still smaller.Also, the I-V characteristic curve of the photovoltaic modules depends on the solar radiation and the own temperature; consequently, the maximum power point (Wp) changes permanently.In conclusion, to produce electricity with photovoltaic panels is very expensive. However due to preserve the environment this technology is widely used.With the purpose of optimizing the amount of energy produced by the photovoltaic system, two complementary methods are used.One is the Maximum Power Point Tracker (MPPT) system and the other one is the Solar Tracker system.The objective of this project is to reduce that cost increasing the amount of energy produced by the solar panels using a Maximum Power Point Tracker system.This device consists of a DC/DC buck converter of high performance, controlled by a PIC 16F873 micro controller; which carries out the conversions of the analogical signals of the solar array to digital signals (ADC), the PIC output digital signals to the PWM control of the power FET (DAC), and calculates the Duty Cycle (D) for the point of I-V curve where this product becomes maximum.Measurements for different loads and battery charges were made.With the obtained results, the comparisons with a conventional system were made, a greater cession of energy to the load is observed.The main conclusion of this work is: Using a MPPT device to making work the PV module during the greater possible time near the maximum power point, the efficiency of the photovoltaic systems can be increased

  16. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    Science.gov (United States)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  17. Photovoltaic Power Applications in France. National Survey Report 2011

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2012-01-01

    According to the French observation and statistics office (SOeS, 2012-02), the grid-connected installed photovoltaic (PV) power in France during 2011 was 1 634 MW compared with 817 MW in 2010. The installed grid-connected PV power doubled but the total number of systems decreased by 26 %. The 100 % annual power increase comes mainly from medium power systems (36 kW to 250 kW) contributing to 36 % and large power systems (> 250 kW) representing 46 % of annual installed power. Ground-mounted centralised systems connected to the electricity grid during 2011 are estimated at 402 MW and distributed systems (mainly building applications) reached 1 232 MW. Grid-connected cumulative PV power capacity at the end of 2011 was 2 802 MW (242 295 systems), compared with the 1 168 MW (163 004 systems) at the end of 2010. Building integrated residential systems of less than 3 kW represented 89 % of the total number of installations and 20 % of total cumulative power while systems of power greater than 36 kW represented 3 % of the number of installations and 69 % of total cumulative power capacity. By a decree dated 4 March 2011, a new support system was proposed with a target of 500 MW per year of new projects over the next few years. The government's policy confirmed its priority to focus on building-integrated photovoltaic applications. The new support system introduces two separate mechanisms, based on the power of the installations. Under the first mechanism, for installations on buildings of less than 100 kW, feed-in tariffs are adjusted each quarter based on the total volume of projects submitted during the previous quarter. The second support mechanism involves a bidding system for large roof installations and photovoltaic ground-mounted power plants greater than 100 kW. Market incentives and budget There are three kinds of market incentive: enhanced feed-in tariffs, income tax credits and direct financial subsidies from local authorities. The cost of promotion through

  18. Fuel Cell / electrolyser, Solar Photovoltaic Powered

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents experimental obtained results in the operation ofelectrolyzer powered by solar photovoltaic modules, for the waterelectrolysis and with the obtained hydrogen and oxygen proceeds tothe operation in fuel cell mode, type PEM. The main operatingparameters and conditions to optimize the energy conversion on thesolar-hydrogen-electricity cycle are highlighted, so that those arecomparable or superior to conventional cycles.

  19. Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting

    International Nuclear Information System (INIS)

    Tang, Pingzhou; Chen, Di; Hou, Yushuo

    2016-01-01

    As the world’s energy problem becomes more severe day by day, photovoltaic power generation has opened a new door for us with no doubt. It will provide an effective solution for this severe energy problem and meet human’s needs for energy if we can apply photovoltaic power generation in real life, Similar to wind power generation, photovoltaic power generation is uncertain. Therefore, the forecast of photovoltaic power generation is very crucial. In this paper, entropy method and extreme learning machine (ELM) method were combined to forecast a short-term photovoltaic power generation. First, entropy method is used to process initial data, train the network through the data after unification, and then forecast electricity generation. Finally, the data results obtained through the entropy method with ELM were compared with that generated through generalized regression neural network (GRNN) and radial basis function neural network (RBF) method. We found that entropy method combining with ELM method possesses higher accuracy and the calculation is faster.

  20. Potential CO{sub 2} reduction by implementing energy efficiency standard for room air conditioner in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mahlia, T.M.I.; Masjuki, H.H.; Choudhury, I.A.; Saidur, R. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2001-09-01

    This study attempts to predict the environmental impact of implementing an energy efficiency standard for room air conditioners in Malaysia. The ownership of room air conditioners has increased tremendously in this country. At present, there are about 528,792 room air conditioners in Malaysian households. In the year 2020, it will be about 1,511,276. The potential carbon dioxide reduction is based on the predicted electricity savings from implementing a minimum energy efficiency standard for room air conditioners. The electricity savings are calculated based on the predicted electricity consumption by a single air conditioner in the Malaysian household. The replacement of less efficient units of this appliance is reflected in reduced electricity consumption and emissions from power plants. The energy efficiency provisions of this regulation and agreement provide targets to save money, energy and, most importantly, to protect the environment. (Author)

  1. Space shuttle aps propellant thermal conditioner study

    Science.gov (United States)

    Fulton, D. L.

    1973-01-01

    An analytical and experimental effort was completed to evaluate a baffle type thermal conditioner for superheating O2 and H2 at supercritical pressures. The thermal conditioner consisted of a heat exchanger and an integral reactor (gas generator) operating on O2/H2 propellants. Primary emphasis was placed on the hydrogen conditioner with some effort on the oxygen conditioner and a study completed of alternate concepts for use in conditioning oxygen. A hydrogen conditioner was hot fire tested under a range of conditions to establish ignition, heat exchange and response parameters. A parallel technology task was completed to further evaluate the integral reactor and heat exchanger with the side mounted electrical spark igniter.

  2. MODEL PREDICTIVE CONTROL FOR PHOTOVOLTAIC STATION MAXIMUM POWER POINT TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    I. Elzein

    2015-01-01

    Full Text Available The purpose of this paper is to present an alternative maximum power point tracking, MPPT, algorithm for a photovoltaic module, PVM, to produce the maximum power, Pmax, using the optimal duty ratio, D, for different types of converters and load matching.We present a state-based approach to the design of the maximum power point tracker for a stand-alone photovoltaic power generation system. The system under consideration consists of a solar array with nonlinear time-varying characteristics, a step-up converter with appropriate filter.The proposed algorithm has the advantages of maximizing the efficiency of the power utilization, can be integrated to other MPPT algorithms without affecting the PVM performance, is excellent for Real-Time applications and is a robust analytical method, different from the traditional MPPT algorithms which are more based on trial and error, or comparisons between present and past states. The procedure to calculate the optimal duty ratio for a buck, boost and buck-boost converters, to transfer the maximum power from a PVM to a load, is presented in the paper. Additionally, the existence and uniqueness of optimal internal impedance, to transfer the maximum power from a photovoltaic module using load matching, is proved.

  3. Robust Controller to Extract the Maximum Power of a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    OULD CHERCHALI Noureddine

    2014-05-01

    Full Text Available This paper proposes a technique of intelligent control to track the maximum power point (MPPT of a photovoltaic system . The PV system is non-linear and it is exposed to external perturbations like temperature and solar irradiation. Fuzzy logic control is known for its stability and robustness. FLC is adopted in this work for the improvement and optimization of control performance of a photovoltaic system. Another technique called perturb and observe (P & O is studied and compared with the FLC technique. The PV system is constituted of a photovoltaic panel (PV, a DC-DC converter (Boost and a battery like a load. The simulation results are developed in MATLAB / Simulink software. The results show that the controller based on fuzzy logic is better and faster than the conventional controller perturb and observe (P & O and gives a good maximum power of a photovoltaic generator under different changes of weather conditions.

  4. Guidebook for introducing the photovoltaic power generation; Taiyoko hatsuden donyu guidebook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Recently the number of installation of the photovoltaic power system has been increasing. At present, the estimated introduction amount is 70,000-80,000 kW, which is still big in difference with the targeted introduction value. As seen in the increase in the number of installation, the trend toward the introduction is increasing, but there are left problems on the introduction such as 'the cost is high,' 'the information on the installation has not been well known.' Also in future, it is necessary to further promote the installation, tackling factors to hinder the introduction and making efforts to prepare for the introduction environment. In consideration of such background, in this guidebook, the items required when local governmental organizations, business operators, etc. study the introduction of photovoltaic power system were arranged. Also arranged were the outline and introduction samples of photovoltaic power system, general information on the introduction of the subsidy system, etc., procedures of planning/design, how to concretely introduce the related rules, various procedures to be taken, etc. For reference, the guidebook includes drawings of samples, data on the test field projects which have been carried out so far, data on solar radiation, etc. It is expected that the guidebook will be a help to the understanding of the photovoltaic power generation and will connect to further promotion of the introduction. (NEDO)

  5. Guidebook for introducing the photovoltaic power generation; Taiyoko hatsuden donyu guidebook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Recently the number of installation of the photovoltaic power system has been increasing. At present, the estimated introduction amount is 70,000-80,000 kW, which is still big in difference with the targeted introduction value. As seen in the increase in the number of installation, the trend toward the introduction is increasing, but there are left problems on the introduction such as 'the cost is high,' 'the information on the installation has not been well known.' Also in future, it is necessary to further promote the installation, tackling factors to hinder the introduction and making efforts to prepare for the introduction environment. In consideration of such background, in this guidebook, the items required when local governmental organizations, business operators, etc. study the introduction of photovoltaic power system were arranged. Also arranged were the outline and introduction samples of photovoltaic power system, general information on the introduction of the subsidy system, etc., procedures of planning/design, how to concretely introduce the related rules, various procedures to be taken, etc. For reference, the guidebook includes drawings of samples, data on the test field projects which have been carried out so far, data on solar radiation, etc. It is expected that the guidebook will be a help to the understanding of the photovoltaic power generation and will connect to further promotion of the introduction. (NEDO)

  6. Electric efficiency in lighting system and air conditioners replacement and automation of air conditioners split type in public buildings; Eficiencia eletrica na substituicao do sistema de iluminacao e de condicionadores de ar e automacao do sistema de condicionadores de ar tipo split em predios publicos

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Arnulfo Barroso de; Apolonio, Roberto; Silva, Luciana Oliveira da; Gomes, Fernanda Leles [Universidade Federal de Mato Grosso (UFMT), MT (Brazil); Malheiro, Teresa Irene Ribeiro de Carvalho [Instituto Federal de Educacao, Ciencia e Tecnologia de Mato Grosso (IFMT), MT (Brazil); Barros, Regiane Silva de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2010-07-01

    The reduction in expenditure on electricity is a major benefit not only consumers but also to utilities. In this context, this article examines the process of replacing the system of internal lighting, window type air conditioners and automation of Split type air conditioners from buildings of public institutions of the state of Mato Grosso during 2009 year and verifies the reduction in annual consumption of electric power and demand active power. Thus, measurements and calculations performed are presented for the interior lighting systems and air conditioners of these buildings before and after implementation of the process of replacing the system of internal lighting and window type air conditioners and automation of Split type air conditioners. This work is the result of integration among the Dealer Network Energy Rede Cemat, the Federal University of Mato Grosso (UFMT) and the Administration of all public buildings, where the academy answered these real issues, solving the specific problem presented. (author)

  7. Microprocessor Controlled Maximum Power Point Tracker for Photovoltaic Application

    International Nuclear Information System (INIS)

    Jiya, J. D.; Tahirou, G.

    2002-01-01

    This paper presents a microprocessor controlled maximum power point tracker for photovoltaic module. Input current and voltage are measured and multiplied within the microprocessor, which contains an algorithm to seek the maximum power point. The duly cycle of the DC-DC converter, at which the maximum power occurs is obtained, noted and adjusted. The microprocessor constantly seeks for improvement of obtained power by varying the duty cycle

  8. PowerShades II. Optimisation and validation of highly transparent photovoltaic. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-15

    The objective of the project is continued development and validation of a novel Danish photovoltaic product with the work title ''PowerShade''. The PowerShade insulating glazing unit (IGU) is a combination of a strong solar shading device and a power producing photovoltaic coating. The core technology in the PowerShade IGU is a thin film silicon photovoltaic generator applied to a micro structured substrate. The geometry of the substrate provides the unique combination of properties that characterizes the PowerShade module - strong progressive shading, high transparency, and higher electrical output than other semitransparent photovoltaic products with similar transparencies. The project activities fall in two categories, namely development of the processing/product and validation of the product properties. The development part of the project is focussed on increasing the efficiency of the photovoltaic generator by changing from a single-stack type cell to a tandem-stack type cell. The inclusion of PowerShade cells in insulating glazing (IG) units is also addressed in this project. The validation part of the project aims at validation of stability, thermal and optical properties as well as validation of the electrical yield of the product. The validation of thermal and optical properties has been done using full size modules installed in a test facility built during the 2006-08 ''PowerShades'' project. The achieved results will be vital in the coming realisation of a commercial product. Initial processing steps have been automated, and more efficient tandem-type solar cells have been developed. A damp heat test of an IGU has been carried out without any degradation of the solar cell. The PowerShade module assembly concept has been further developed and discussed with different automation equipment vendors and a pick-and-place tool developed. PowerShade's influence on the indoor climate has been modelled and verified by

  9. Cardio-Muscular Conditioner

    Science.gov (United States)

    1993-01-01

    In the mid-sixties, Gary Graham, a Boeing designer, developed a cardiovascular conditioner for a planned Air Force orbiting laboratory. After the project was cancelled, Graham participated in space station conditioning studies for the Skylab program. Twenty years later, he used this expertise to develop the Shuttle 2000-1, a physical therapy and athletic development conditioner, available through Contemporary Designs. The machine is used by football teams, sports clinics and medical rehabilitation centers. Cardiovascular fitness and muscular strength development are promoted through both kinetic and plyometric exercises.

  10. Shuttle APS propellant thermal conditioner study

    Science.gov (United States)

    Pearson, W. E.

    1971-01-01

    A study program was performed to allow selection of thermal conditioner assemblies for superheating O2 and H2 at supercritical pressures. The application was the auxiliary propulsion system (APS) for the space shuttle vehicle. The O2/H2 APS propellant feed system included propellant conditioners, of which the thermal conditioner assemblies were a part. Cryogens, pumped to pressures above critical, were directed to the thermal conditioner assembly included: (1) a gas generator assembly with ignition system and bipropellant valves, which burned superheated O2 and H2 at rich conditions; (2) a heat exchanger assembly for thermal conditioning of the cryogenic propellant; and (3) a dump nozzle for heat exchanger exhaust.

  11. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  12. Simulation of Photovoltaic Power Output for Solar Integration Studies in the Southeast US

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.; Martin, Curtis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.; Tuohy, Aidan P. [Electric Power Research Inst. (EPRI), Knoxville, TN (United States)

    2016-06-01

    We describe the method used to simulate one year of AC power at one-minute intervals for a large collection of hypothetical utility-scale photovoltaic plants of varying size, employing either fixed-tilt PV modules or single-axis tracking, and for distribution-connected photovoltaic (DPV) power systems assumed for a number of metropolitan areas. We also describe the simulation of an accompanying day-ahead forecast of hourly AC power for utility-scale plants and DPV systems such that forecast errors are consistent with errors reported for current forecasting methods. The results of these simulations are intended for use in a study that examines the possible effects of increased levels of photovoltaic (PV) generation bulk on power variability within the Tennessee Valley Authority (TVA) and Southern Company service territories.

  13. Low-voltage grid-connection of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A.; Thornycroft, J.

    1999-07-01

    This report summarises the results of a project aimed at developing technical guidelines concerning grid connected photovoltaic (PV) inverter generators which are to be published in draft form as the {sup U}K Technical Guidelines for Inverter Connected Single Phase Photovoltaic (PV) Generators up to 5kVA{sup .} The background to the use of PV in the UK is traced, and the technical criteria for electrical integration of PV systems, and UK guidelines for grid connected PV systems are examined. The findings of the working group of the International Energy Agency (IEA) Implementing Agreement on Photovoltaic Power Systems are also presented in this report. Appendices discuss the UK technical guidelines, the IEA Task V activities,, utility aspects of grid-connected PV systems, and demonstration tests on grid-connected PV systems, and lists Task V reports.

  14. Prediction of power fluctuation classes for photovoltaic installations and potential benefits of dynamic reserve allocation

    NARCIS (Netherlands)

    Nijhuis, M.; Rawn, B.G.; Gibescu, M.

    2014-01-01

    During partly cloudy conditions, the power delivered by a photovoltaic array can easily fluctuate by three quarters of its rated power in 10 s. Fluctuations from photovoltaics of this size and on this time scale may necessitate adding an additional component to power system secondary and primary

  15. Photovoltaic Power Systems and the National Electrical Code: Suggested Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-02-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently.

  16. Power control strategy of a photovoltaic power plant for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Francois, Bruno [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Degobert, Philippe [Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Robyns, Benoit [Hautes Etudes d' Ingenieur, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP)

    2008-07-01

    Photovoltaic power plants operates currently maximal power point tracking (MPPT). For microgrid applications, however, a PV power plant can not operate in the MPPT mode in all conditions. When a microgrid is islanded from the grid with few loads, a limitation of the produced power by PV plants is required and prescribed by the Distribution System Operator. This paper proposes a power control technique integrated into a dynamic model of a PV power plant by using equivalent continuous models of power electronic converters. The power limitation mode of the PV is performed by applying the correct PV terminal voltage, which corresponds to the prescribed power reference. The proposed global model is validated by simulations with the help of Matlab-Simulink trademark. (orig.)

  17. Wind/photovoltaic power indicators. Fourth quarter 2009; Tableau de bord eolien-photovoltaique. Quatrieme trimestre 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-02-15

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  18. Wind/photovoltaic power indicators. Third quarter 2010; Tableau de bord eolien-photovoltaique. troisieme trimestre 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  19. Wind/photovoltaic power indicators. Second quarter 2011; Tableau de bord eolien-photovoltaique. Deuxieme trimestre 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  20. Wind/photovoltaic power indicators. Third quarter 2009; Tableau de bord eolien-photovoltaique. troisieme trimestre 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  1. Wind/photovoltaic power indicators. Second quarter 2009; Tableau de bord eolien-photovoltaique. Deuxieme trimestre 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-09-15

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  2. Wind/photovoltaic power indicators. First quarter 2011; Tableau de bord eolien-photovoltaique. Premier trimestre 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  3. Wind/photovoltaic power indicators. Second quarter 2010; Tableau de bord eolien-photovoltaique. Deuxieme trimestre 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  4. Wind/photovoltaic power indicators. First quarter 2010; Tableau de bord eolien-photovoltaique. Premier trimestre 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  5. Wind/photovoltaic power indicators. Fourth quarter 2010; Tableau de bord eolien-photovoltaique. Quatrieme trimestre 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  6. Development of a microprocessor controller for stand-alone photovoltaic power systems

    Science.gov (United States)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.

  7. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    International Nuclear Information System (INIS)

    Cooley, W.T.; Adams, S.F.; Reinhardt, K.C.; Piszczor, M.F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cell or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application

  8. Workshop on power conditioning for alternative energy technologies. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.

    1979-01-01

    As various alternative energy technologies such as photovoltaics, wind, fuel cells, and batteries are emerging as potential sources of energy for the future, the need arises for development of suitable power-conditioning systems to interface these sources to their respective loads. Since most of these sources produce dc electricity and most electrical loads require ac, an important component of the required power-conditioning units is a dc-to-ac inverter. The discussions deal with the development of power conditioners for each alternative energy technology. Discussion topics include assessments of current technology, identification of operational requirements with a comparison of requirements for each source technology, the identification of future technology trends, the determination of mass production and marketing requirements, and recommendations for program direction. Specifically, one working group dealt with source technology: photovoltaics, fuel cells and batteries, and wind followed by sessions discussing system size and application: large grid-connected systems, small grid-connected systems, and stand alone and dc applications. A combined group session provided an opportunity to discuss problems common to power conditioning development.

  9. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine; Hou, Tung-Fu; Hsu, Po-Chien; Lin, Tse-Han; Chen, Yan-Tze; Chen, Chi-Wen; Li, Kang; Lee, K.Y.

    2015-01-01

    ). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  10. Wind/photovoltaic power indicators. Third quarter 2011; Tableau de bord eolien-photovoltaique - Troisieme trimestre 2011

    Energy Technology Data Exchange (ETDEWEB)

    Thienard, Helene

    2011-11-15

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  11. Wind/photovoltaic power indicators. Fourth quarter 2011; Tableau de bord eolien-photovoltaique - Quatrieme trimestre 2011

    Energy Technology Data Exchange (ETDEWEB)

    Thienard, Helene

    2012-02-15

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  12. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, Changbiao.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  13. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  14. A general algorithm for flexible active power control of photovoltaic systems

    DEFF Research Database (Denmark)

    Tafti, H. Dehghani; Sangwongwanich, A.; Yang, Y.

    2018-01-01

    The maximum power point tracking (MPPT) is generally implemented in grid-connected photovoltaic (PV) power plants to maximize the energy yield. However, as the penetration level increases, challenging issues such as overloading and over-voltage arise in PV applications. Accordingly, a constant po...... dynamics and low-power oscillations can be obtained. The performance of the proposed strategy is evaluated through simulations and experiments under different irradiance and power reference profiles.......The maximum power point tracking (MPPT) is generally implemented in grid-connected photovoltaic (PV) power plants to maximize the energy yield. However, as the penetration level increases, challenging issues such as overloading and over-voltage arise in PV applications. Accordingly, a constant...... power generation (CPG) operation, in which the PV output power is limited to a specific value, has been imposed by some grid regulators to alleviate the integration challenges. In that case, the combined operation of MPPT and CPG is required, which increases the complexity of the controller design...

  15. Photovoltaic power in France, a declining sector

    International Nuclear Information System (INIS)

    Boulanger, V.

    2012-01-01

    Figures from 2011 show an exceptional year in terms of grid connection and a poor year for business because the moratory on photovoltaic power decided end 2010 gave its full effect. The grid connections realized in 2011 resulted from installations decided before the moratory. The situation shows some inconsistencies: the household sector was not concerned by the moratory and nevertheless the drop of sales was sharp and even if the purchase price of the photovoltaic electricity was reduced from 0.58 to 0.35 euro/kWh it stays high when compared to 0.18 euro/kWh in Germany or 0.20 euro/kWh in Italy. The depressed nature of the market seems to go on in 2012. (A.C.)

  16. Photovoltaic power systems and the National Electrical Code: Suggested practices

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  17. Does photovoltaics reduce the environmental intensity of Swiss electrical power?

    International Nuclear Information System (INIS)

    Stucki, M.; Frischknecht, R.

    2010-01-01

    This article presents and discusses knowledge gained from current eco-balances made concerning electricity from solar cells. The use of photovoltaic systems in Switzerland, especially in the light of climate warming, as well as discussions on appropriate locations for the disposal of nuclear wastes are examined. The authors are of the opinion that current eco-balances can provide an objective basis for the development of qualified answers to such questions. The eco-balances for electricity generated by solar cells is discussed in detail. The development of photovoltaic technologies since 1992 is examined and scenarios for the period up to 2050 are discussed. Comparisons are made concerning solar power in Switzerland and Europe and the advantages of using solar power in Switzerland as a replacement for power from non-renewable resources in Europe are discussed

  18. Task V of the IEA Photovoltaic Power Systems Program: Accomplishments and Activities

    International Nuclear Information System (INIS)

    Bower, Ward

    1999-01-01

    The International Energy Agency (IEA) is an energy forum for 24 industrialized countries and was established in 1974 as an autonomous body within the Organization for Economic Cooperation and Development (OECD). The IEA Photovoltaic Power Systems (PVPS) program implementing agreement was signed in 1993, and renewed for another five years in 1998. Twenty-two countries are collaborating under the auspices of the IEA in the PVPS to address common technical and informational barriers that often limit the rate at which photovoltaic technologies advance into the markets. Task V of the IEA PVPS is entitled ''Grid Interconnection of Building-Integrated and Other Dispersed Photovoltaic Power Systems.'' The task sponsored a workshop in September 1997 on grid-interconnection of photovoltaic systems and is planning a second workshop to address impacts of more penetration of dispersed systems into the utility grid. This paper will summarize the accomplishments of Task V over the last five years and will detail the planned work for the next three years

  19. The active control strategy on the output power for photovoltaic-storage systems based on extended PQ-QV-PV Node

    Science.gov (United States)

    Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi

    2017-05-01

    In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.

  20. Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System.

    Science.gov (United States)

    Ma, Nan; Zhang, Kewei; Yang, Ya

    2017-12-01

    Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7-4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8-20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near-UV irradiations. Here, a ferroelectric BaTiO 3 film-based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light-induced photovoltaic-pyroelectric coupled effect. A self-powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Compressive spatio-temporal forecasting of meteorological quantities and photovoltaic power

    NARCIS (Netherlands)

    Tascikaraoglu, A.; Sanandaji, B.M.; Chicco, G.; Cocina, V.; Spertino, F.; Erdinç, O.; Paterakis, N.G.; Catalaõ, J.P.S.

    2016-01-01

    This paper presents a solar power forecasting scheme, which uses spatial and temporal time series data along with a photovoltaic (PV) power conversion model. The PV conversion model uses the forecast of three different variables, namely, irradiance on the tilted plane, ambient temperature, and wind

  2. A short-term spatio-temporal approach for Photovoltaic power forecasting

    NARCIS (Netherlands)

    Tascikaraoglu, A.; Sanandaji, B.M.; Chicco, G.; Cocina, V.; Spertino, F.; Erdinc, Ozan; Paterakis, N.G.; Catalão, J.P.S.

    2016-01-01

    This paper presents a Photovoltaic (PV) power conversion model and a forecasting approach which uses spatial dependency of variables along with their temporal information. The power produced by a PV plant is forecasted by a PV conversion model using the predictions of three weather variables,

  3. Towards a more efficient energy use in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y.; Strijk, R.

    2006-01-01

    This paper analyzes the energy saving and power management solutions necessary to improve the energy consumption efficiency in photovoltaic powered products. Important in the design of such products is not only the energy supply optimization required to deliver the actual energy to fulfil their

  4. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  5. Maximum power point tracking of partially shaded solar photovoltaic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, Shubhajit; Saha, Hiranmay [IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University (India)

    2010-09-15

    The paper presents the simulation and hardware implementation of maximum power point (MPP) tracking of a partially shaded solar photovoltaic (PV) array using a variant of Particle Swarm Optimization known as Adaptive Perceptive Particle Swarm Optimization (APPSO). Under partially shaded conditions, the photovoltaic (PV) array characteristics get more complex with multiple maxima in the power-voltage characteristic. The paper presents an algorithmic technique to accurately track the maximum power point (MPP) of a PV array using an APPSO. The APPSO algorithm has also been validated in the current work. The proposed technique uses only one pair of sensors to control multiple PV arrays. This result in lower cost and higher accuracy of 97.7% compared to earlier obtained accuracy of 96.41% using Particle Swarm Optimization. The proposed tracking technique has been mapped onto a MSP430FG4618 microcontroller for tracking and control purposes. The whole system based on the proposed has been realized on a standard two stage power electronic system configuration. (author)

  6. Grid-connected photovoltaic power systems: survey of inverter and related protection equipments

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, T

    2002-12-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme reports on a survey made on inverter and related protection equipment. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the data obtained from survey of recent inverter technology and inverter protection equipment for grid interconnected PV systems. The results are based on the surveys using a questionnaire to identify the current status of grid-interconnection inverters. This report is to serve as a reference for those interested in installing grid-connected PV systems, electric utility company personnel, manufacturers and researchers. The results of the survey are presented and discussed. Technical and financial data is reviewed and two appendices provide details on the results obtained and those institutions involved in the survey.

  7. Best control strategy for unified power quality conditioner (UPQC) based on simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shayanfar, H.A. [Iran Univ. of Science and Technology, Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering; Tabatabaei, N.M. [Azarbaijan Univ. of Tarbiat Moallem, Tabriz (Iran, Islamic Republic of). Dept. of Electrical Engineering; Mokhtarpour, A. [Islamic Azad Univ., Tabriz (Iran, Islamic Republic of). Dept. of Electrical Engineering

    2007-07-01

    Electronic devices used in both industry and residences need high-quality energy to work properly. Unified Power Quality Conditioners (UPQC) solve any power quality problems faced by these devices. Three new control strategies for UPQCs were presented and their operation was investigated and compared using the MATLAB Simulink simulation software package. A UPQC consists of a Shunt-Active Filter and a Series Active Filter with a common direct current link to compensate for any source currents and delivered voltage to the load. As such, it isolates the utility from current quality problems associated with load. It also isolates the load from the voltage quality problems of the utility. In the first control strategy, the Parallel Active Filter (PAF) and Series Active Filter (SAF) are based on the Fourier transform theory. In the second control strategy, the Parallel Active Filter is based on the power quality theory and the Series Active Filter is based on the Fourier transform theory. In the third control strategy, the Parallel Active Filter is based on Fourier transform theory and the Series Active Filter is based on positive sequence detection. Operating the PAF using these methods compensates for reactive power and current harmonics, while operating the SAF compensates for imbalances, voltage harmonics and positive and zero sequences of utility voltages. MATLAB simulation software was used to explain the compensation resolution and speed of the 3 new control strategies. According to simulation test results, it was concluded that the best compensation speed and resolution can be obtained using the third control strategy. 7 refs., 2 tabs., 24 figs.

  8. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  9. Electric power of residential photovoltaic power system; Jutakuyo taiyoko hatsuden system no hatsudenryo

    Energy Technology Data Exchange (ETDEWEB)

    Asano, K.; Kawamura, H.; Yamanaka, S.; Kawamura, H.; Ono, H.; Hayashi, K.; Naganawa, H. [Meijo University, Nagoya (Japan); Asai, H.

    1996-10-27

    Measurement was done on the annual power generation of a residential photovoltaic power system that was most suitable for the present situation in utilizing solar energy; and an examination was made on the basis of the data of a module in which an optimal operation load control was separately installed in order to operate the system more effectively. As a result, it was found that the introduction of a 3kW class system was currently most desirable as a residential photovoltaic power system, and that the problem of the optimal operation load control was crucial for the more efficient power generation. The resistance value of the optimal operation load was stable between 6 and 8 ohm in the daytime in fine weather. However, it was observed that, where no sufficient insolation was expected, the optimal operation load was ten times as much as in fine weather, being easily influenced by the environmental elements. In addition, it was revealed that, if the operation load was fixed at a specific value (6 ohm) in a clear day, the power generation was only about 85% compared with the case of controlling the optimal operation load. This figure was obtained under comparatively favorable conditions, however. 8 refs., 7 figs.

  10. The atlas of large photovoltaic power plants

    International Nuclear Information System (INIS)

    Le Jannic, N.; Guillier, A.

    2013-01-01

    This document reviews all the photovoltaic power plants settled in France and whose power output is over 1 MWc. 320 facilities have been reported, they are either operating or awaiting to be connected to the grid. The total cumulated power reaches 1542 MWc. For each facility we have the name of the operator, the output power, the name of the manufacturer of the silicon modules and their type (polycrystalline or mono-crystalline), the kind of settling (on the ground or integrated to the building), the annual power output and its date of commissioning. Sunshine level curves are drawn on a map of the country, it ranges from about 1100 kWh/m 2 a year in the northern part to about 1900 kWh/m 2 a year near the mediterranean sea. (A.C.)

  11. Data on Support Vector Machines (SVM model to forecast photovoltaic power

    Directory of Open Access Journals (Sweden)

    M. Malvoni

    2016-12-01

    Full Text Available The data concern the photovoltaic (PV power, forecasted by a hybrid model that considers weather variations and applies a technique to reduce the input data size, as presented in the paper entitled “Photovoltaic forecast based on hybrid pca-lssvm using dimensionality reducted data” (M. Malvoni, M.G. De Giorgi, P.M. Congedo, 2015 [1]. The quadratic Renyi entropy criteria together with the principal component analysis (PCA are applied to the Least Squares Support Vector Machines (LS-SVM to predict the PV power in the day-ahead time frame. The data here shared represent the proposed approach results. Hourly PV power predictions for 1,3,6,12, 24 ahead hours and for different data reduction sizes are provided in Supplementary material.

  12. Self-consumption of electric power from photovoltaic origin. Ademe's advices

    International Nuclear Information System (INIS)

    2018-02-01

    As electric power self-consumption progressively becomes economically attractive for individuals as well as for tertiary, industrial and agricultural sectors, this publication supports the development of self-consumption which displays actual benefits for consumers and for the collectivity as it notably contributes to the development of renewable energies and of roof-based photovoltaic energy production. This publication first outlines stakes and challenges (in terms of greenhouse gas emissions, energy dependence, impacts on air quality and on the environment), and then proposes an overview of possible options for a photovoltaic power production (to sell the whole production, or to partly or totally consume it). It indicates some data illustrating photovoltaic production, gives an overview of the situation regulatory knowledge regarding self-consumption, and of benefits of self-consumption in France

  13. CALCULATION OF OPERATING PARAMETERS OF HIGH-VOLTAGE POWER TAKE-OFF SYSTEM FOR THE PHOTOVOLTAIC FACILITY

    Directory of Open Access Journals (Sweden)

    R.V. Zaitsev

    2016-09-01

    Full Text Available Purpose. To ensure maximum production of electric power by photovoltaic vacilities, in addition to using highly efficient photovoltaic modules equipped with solar radiation concentrators must use a highly effective power take-off system. This paper is inscribed to solving the problem of a highly efficient and economic power take-off system development. Methodology. To solving the problem, we implemented three stages. On the first stage examines the dependence of electrical power from the intensity of the incident solar radiation. Based on this, the second stage is calculated the DC-DC converter resonant circuit and its working parameters, and developed circuit diagram of DC-DC converter. On the third stage, we carry out an analysis of power take-off system with step up DC-DC converter working. Results. In this paper, we carry out the analysis of working efficiency for photovoltaic facility power take-off system with step-up boost converter. The result of such analysis show that the efficiency of such system in a wide range of photovoltaic energy module illumination power is at 0.92, whereas the efficiency of classic power take-off systems does not exceed 0.70. Achieved results allow designing a circuit scheme of a controlled bridge resonant step-up converter with digital control. Proposed scheme will ensure reliable operation, fast and accurate location point of maximum power and conversion efficiency up to 0.96. Originality. Novelty of proposed power take-off system solution constitute in implementation of circuit with DC-DC converters, which as it shown by results of carrying out modeling is the most effective. Practical value. Practical implementation of proposed power take-off system design will allow reducing losses in connective wires and increasing the efficiency of such a system up to 92.5% in wide range of photovoltaic energy modules illumination.

  14. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  15. The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan

    International Nuclear Information System (INIS)

    Nishijima, Daisuke

    2017-01-01

    This study analyzed the impact on the life-cycle CO_2 emissions derived from a specific durable good (i.e., household air conditioners in this study) of industrial technology changes, product lifetime changes, and energy efficiency improvements. I proposed a comprehensive structural decomposition analysis including two factors of average lifetime and energy efficiency trend of household air conditioners and applied the decomposition method to the Japanese environmental input-output tables of 1990, 1995, 2000, and 2005. The empirical results show that “Household air-conditioner sector” itself contributed to reducing life-cycle CO_2 emissions derived from household air conditioners, while other sectors such as “On-site power generation sector” and “Retail trade sector” contributed to increasing life-cycle CO_2 emissions derived from household air conditioners. I also conducted combined scenario analysis about reduction potential of product lifetime and energy efficiency of air conditioners and the results showed the reduction rate of energy efficiency necessary for maintain CO_2 emissions in 2005 at 1990 level on each average lifetime scenario. (e.g. if average lifetime of air conditioners is shortened by 1 year, energy efficiency of air conditioners have to be further improved by 20.6% from current level. - Highlights: • This study provides a decomposition framework for air conditioner’s CO_2 emissions. • Technology, product lifetime and energy efficiency are considered in the framework. • “Household air conditioner” sector contributed to reducing CO_2 emissions largely. • “On-site power generation” indirectly contributed to increasing CO_2 emissions. • I showed the improvement rates of energy efficiency to achieve a reduction target.

  16. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  17. EMISSIONS REDUCTION DATA FOR GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEMS

    Science.gov (United States)

    This study measured the pollutant emission reduction potential of 29 photovoltaic (PV) systems installed on residential and commercial building rooftops across the U.S. from 1993 through 1997. The U.S. Environmental Protection Agency (EPA) and 21 electric power companies sponsor...

  18. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    Science.gov (United States)

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  19. Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems

    Directory of Open Access Journals (Sweden)

    Flavio Ciccarelli

    2018-02-01

    Full Text Available The growing interest in the use of energy storage systems to improve the performance of tramways has prompted the development of control techniques and optimal storage devices, displacement, and sizing to obtain the maximum profit and reduce the total installation cost. Recently, the rapid diffusion of renewable energy generation from photovoltaic panels has also created a large interest in coupling renewable energy and storage units. This study analyzed the integration of a photovoltaic power plant, supercapacitor energy storage system, and railway power system. Random optimization was used to verify the feasibility of this integration in a real tramway electric system operating in the city of Naples, and the benefits and total cost of this integration were evaluated.

  20. Active and reactive power neurocontroller for grid-connected photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    I. Abadlia

    2016-03-01

    Full Text Available Many researchers have contributed to the development of a firm foundation for analysis and design of control applications in grid-connected renewable energy sources. This paper presents an intelligent control algorithm fond on artificial neural networks for active and reactive power controller in grid-connected photovoltaic generation system. The system is devices into two parts in which each part contains an inverter with control algorithm. A DC/DC converter in output voltage established by control magnitude besides maximum power point tracker algorithm always finds optimal power of the PV array in use. A DC/AC hysteresis inverter designed can synchronize a sinusoidal current output with the grid voltage and accurate an independent active and reactive power control. Simulation results confirm the validation of the purpose. Neurocontroller based active and reactive power presents an efficiency control that guarantees good response to the steps changing in active and reactive power with an acceptable current/voltage synchronism. In this paper the power circuit and the control system of the presented grid-connected photovoltaic generation system is simulated and tested by MatLab/Simulink.

  1. Photovoltaic power - An important new energy option

    Science.gov (United States)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  2. Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System

    Energy Technology Data Exchange (ETDEWEB)

    Barney, P.; Ingersoll, D.; Jungst, R.; O' Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-24

    We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

  3. Flasher Powered by Photovoltaic Cells and Ultracapacitors

    Science.gov (United States)

    Eichenberg, Dennis J.; Soltis, Richard F.

    2003-01-01

    A unique safety flasher powered by photovoltaic cells and ultracapacitors has been developed. Safety flashers are used wherever there are needs to mark actually or potentially hazardous locations. Examples of such locations include construction sites, highway work sites, and locations of hazardous operations. Heretofore, safety flashers have been powered by batteries, the use of which entails several disadvantages: Batteries must be kept adequately charged, and must not be allowed to become completely discharged. Batteries have rather short cycle lives, and their internal constituents that react chemically to generate electricity deteriorate (and hence power-generating capacities decrease) over time. The performances of batteries are very poor at low temperatures, which often occur in the circumstances in which safety flashers are most needed. The disposal of batteries poses a threat to the environment. The development of the present photovoltaic/ultracapacitor- powered safety flasher, in which the ultracapacitors are used to store energy, overcomes the aforementioned disadvantages of using batteries to store energy. The ultracapacitors in this flasher are electrochemical units that have extremely high volumetric capacitances because they contain large-surface-area electrodes separated by very small gaps. Ultracapacitors have extremely long cycle lives, as compared to batteries; consequently, it will never be necessary to replace the ultracapacitors in the safety flasher. The reliability of the flasher is correspondingly increased, and the life-of-system cost and the adverse environmental effects of the flasher are correspondingly reduced. Moreover, ultracapacitors have excellent low-temperature characteristics, are maintenance-free, and provide consistent performance over time.

  4. Optimal Capacity Proportion and Distribution Planning of Wind, Photovoltaic and Hydro Power in Bundled Transmission System

    Science.gov (United States)

    Ye, X.; Tang, Q.; Li, T.; Wang, Y. L.; Zhang, X.; Ye, S. Y.

    2017-05-01

    The wind, photovoltaic and hydro power bundled transmission system attends to become common in Northwest and Southwest of China. To make better use of the power complementary characteristic of different power sources, the installed capacity proportion of wind, photovoltaic and hydro power, and their capacity distribution for each integration node is a significant issue to be solved in power system planning stage. An optimal capacity proportion and capacity distribution model for wind, photovoltaic and hydro power bundled transmission system is proposed here, which considers the power out characteristic of power resources with different type and in different area based on real operation data. The transmission capacity limit of power grid is also considered in this paper. Simulation cases are tested referring to one real regional system in Southwest China for planning level year 2020. The results verify the effectiveness of the model in this paper.

  5. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    Science.gov (United States)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  6. Feasibility study on novel room air conditioner with natural cooling capability

    International Nuclear Information System (INIS)

    Han, Zongwei; Liu, Qiankun; Zhang, Yanqing; Zhang, Shuwei; Liu, Jiangzhen; Li, Weiliang

    2016-01-01

    Highlights: • A novel heat pipe combined evaporative cooling room air conditioner is constructed. • The mathematical model of the air conditioner is established. • The reliability of the model is verified by experiments. • The performance of the novel and conventional air conditioner is compared. • The applicability of the novel air conditioner in different areas is investigated. - Abstract: In order to improve the energy efficiency of room air conditioners, this paper proposed a new air conditioner that combined evaporative cooling technology, separate type heat pipe technology, and vapour compression refrigeration technology (called “combined air conditioner”). The mathematical model of the air conditioner was established and its reliability was verified by experiments. Based on the model, the simulation of the operating performance of the combined air conditioner and a conventional air conditioner was studied in typical climate regions during the cooling period, with the following results: In cold and dry areas like Shenyang, compared with the conventional air conditioner, the average cooling coefficient of performance (COP) of the combined air conditioner was increased by 27.40%. As the climate gradually became warmer and humidity gradually increased, the running time of the heat pipe cooling mode was gradually reduced, and then the energy-saving effect of the combined air conditioner became worse. For example, in the hot and humid Guangzhou, the energy saving rate was only 11.81%. Therefore, it was found that the combined air conditioner had good energy-saving potential in cold and dry areas.

  7. Cost estimation of a standalone photovoltaic power system in remote areas of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Samo, S.R.

    2012-01-01

    This paper aims to estimate the anticipated costs incurred from a standalone solar photovoltaic power system for the supply of electricity to the rural community in Sarawak, Malaysia. The life cycle cost analysis with net present value technique was employed for the evaluation of cost system. It was found that purchasing of solar photovoltaic components and the system installation cost will contribute 63% of the total investment and future anticipated costs will add to the remaining. Recurring cost will make 25% and components replacements 75% of future anticipated costs. It was discovered that the power generated from the solar photovoltaic system would be 38 times more expensive than electricity produced from the conventional sources. However, its installation in remote areas could be favourable where the grid-connected power supply is not accessible. (author)

  8. Modeling and Experimental Test of Grid-Tied Photovoltaic Cell Emulating System in the Stand-alone Mode

    Directory of Open Access Journals (Sweden)

    Vu Minh Phap

    2017-06-01

    Full Text Available In recent decades, generation of electricity from solar arrays has been increased to meet the world's growing energy demand. However, the utilization rate of the power conditioner in the grid-tied solar power system is low because the operation of solar panels is dependent on sunlight. Thus, we studied the method that the small scale wind power generating system in size from a few hundred watts to two or three kilowatts can be connected to the grid-tied power conditioner of the solar power system for residential applications with low power ratings (single phase, size is limited to 10kW by emulating characteristic of the solar panel. In this paper, we introduce the application of the grid-tied PV cell emulating system in the stand-alone mode to improve the utilization rate of the power conditioner. The simulation and experimental test results verify that the PV cell emulating system can operate the power conditioner of the gridtied solar power system.

  9. Intelligent system for a remote diagnosis of a photovoltaic solar power plant

    International Nuclear Information System (INIS)

    Sanz-Bobi, M A; San Roque, A Muñoz; Marcos, A de; Bada, M

    2012-01-01

    Usually small and mid-sized photovoltaic solar power plants are located in rural areas and typically they operate unattended. Some technicians are in charge of the supervision of these plants and, if an alarm is automatically issued, they try to investigate the problem and correct it. Sometimes these anomalies are detected some hours or days after they begin. Also the analysis of the causes once the anomaly is detected can take some additional time. All these factors motivated the development of a methodology able to perform continuous and automatic monitoring of the basic parameters of a photovoltaic solar power plant in order to detect anomalies as soon as possible, to diagnose their causes, and to immediately inform the personnel in charge of the plant. The methodology proposed starts from the study of the most significant failure modes of a photovoltaic plant through a FMEA and using this information, its typical performance is characterized by the creation of its normal behaviour models. They are used to detect the presence of a failure in an incipient or current form. Once an anomaly is detected, an automatic and intelligent diagnosis process is started in order to investigate the possible causes. The paper will describe the main features of a software tool able to detect anomalies and to diagnose them in a photovoltaic solar power plant.

  10. Energy reduction of building air-conditioner with phase change material in Thailand

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2014-11-01

    Full Text Available In this study, a concept of using phase change material (PCM for improving cooling efficiency of an air-conditioner had been presented under Thai climate. Paraffin waxes melting point at around 20 °C was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. Moreover, the mathematical model of the air-conditioner with the PCM storage was developed and verified with the testing results. From the study results, it could be seen that the simulated data agreed quite well with the experimental result at the discrepant around 2–4%. Finally, the model was used to analyze the economic result which was found that the electrical consumption of the modified air-conditioner could be decreased 3.09 kW h/d. The electrical power consumption of the modified unit was 36.27 kW h/d at the operating time 15 h/d compared with 39.36 kW h/d of the normal unit at the operating time 12 h/d. The saving cost of the PCM bed could be 9.10% or 170.03 USD and the payback period was 4.15 y.

  11. Sliding-Mode Controller for Maximum Power Point Tracking in Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Paula Andrea Ortiz Valencia

    2015-11-01

    Full Text Available The maximum power point tracking (MPPT of photovoltaic systems must be as fast and accurate as possible to increase the power production, which eventually increases the PV system profitability. This paper proposes and mathematically analyses a sliding-mode controller to provide a fast and accurate maximum power point tracking in grid-connected photovoltaic systems using a single control stage. This approach avoids the circular dependency in the design of classical cascade controllers used to optimize the photovoltaic system operation, and at the same time, it reduces the number of controllers and avoids the use of linearized models to provide global stability in all the operation range. Such a compact solution also reduces the system cost and implementation complexity. To ensure the stability of the proposed solution, detailed mathematical analyses are performed to demonstrate the fulfillment of the transversality, reachability and equivalent control conditions. Finally, the performance of the proposed solution is validated using detailed simulations, executed in the power electronics simulator PSIM, accounting for both environmental and load perturbations.

  12. Energy and economic analysis of a building air-conditioner with a phase change material (PCM)

    International Nuclear Information System (INIS)

    Chaiyat, Nattaporn

    2015-01-01

    Highlights: • Phase change material of Rubitherm20 was applied with the air-conditioner under the climate of Thailand. • PCM was used to reduce cooling load and electrical power of the air-conditioner. • Mathematical model of the packed ball bed of PCM was presented to predict the thermal performance. - Abstract: In this study, a concept of using phase change material (PCM) for improving cooling efficiency of an air-conditioner had been presented under Thailand climate. Rubitherm20 (RT-20) was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. For the experiment, 2 TR of R-134a air-conditioner was chosen to test a pack bed of PCM balls with thickness 40 cm. The pressure drops of the air flowing through the bed were considered with and without a set of by-pass tubes along the height of the storage bed. The mathematical model of the air-conditioner with the PCM storage was developed and verified with the testing results. From the study results, it could be seen that pressure drops of the bed with and without bypass tubes were nearly the same results. Thus, PCM ball pack bed using RT-20 without bypass tubes was used to improve the cooling efficiency of the air-conditioner. The experimental result of the modified unit was compared and verified with the mathematical model, which agreed quite well with the simulation result. Finally, the model was used to analyze the economic result, which found that the electrical consumption of the modified air-conditioner could be decreased around 3.09 kW h/d. The saving cost from the PCM bed could be 9.10% of 170.03 USD/y and the payback period was around 4.15 y

  13. Performance curves of room air conditioners for building energy simulation tools

    International Nuclear Information System (INIS)

    Meissner, José W.; Abadie, Marc O.; Moura, Luís M.; Mendonça, Kátia C.; Mendes, Nathan

    2014-01-01

    Highlights: • Experimental characteristic curves for two room air conditioners are presented. • These results can be implemented in building simulation codes. • The energy consumption under different conditions can numerically determine. • The labeled higher energy efficiency product not always provides the best result. - Abstract: In order to improve the modeling of air conditioners in building simulation tools, the characteristic curves for total cooling capacity, sensible cooling capacity and energy efficiency ratio of two room units were determined. They were obtained by means of standard capacity tests on climatic chambers in a set of environmental conditions described by external dry- and internal wet bulb temperatures. Afterward, the performance of these two units and that of four other units, with and without taking into to account the thermodynamic variations of the surrounding environments on it, were compared using a whole building simulation program for simulating a conditioned space. The comparative analysis showed that the air conditioner with the higher energy efficiency rating not always provides the lowest power consumption in real conditions of use

  14. An algorithm for reduction of extracted power from photovoltaic strings in grid-tied photovoltaic power plants during voltage sags

    DEFF Research Database (Denmark)

    Tafti, Hossein Dehghani; Maswood, Ali Iftekhar; Pou, Josep

    2016-01-01

    strings should be reduced during voltage sags. In this paper, an algorithm is proposed for determining the reference voltage of the PV string which results in a reduction of the output power to a certain amount. The proposed algorithm calculates the reference voltage for the dc/dc converter controller......, based on the characteristics of the power-voltage curve of the PV string and therefore, no modification is required in the the controller of the dc/dc converter. Simulation results on a 50-kW PV string verified the effectiveness of the proposed algorithm in reducing the power from PV strings under......Due to the high penetration of the installed distributed generation units in the power system, the injection of reactive power is required for the medium-scale and large-scale grid-connected photovoltaic power plants (PVPPs). Because of the current limitation of the grid-connected inverter...

  15. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  16. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2013-07-01

    Full Text Available Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT method is applied to the traffic light system. MPPT is intended to catch up the maximum power at daytime in order to charge the battery at the maximum rate in which the power from the battery is intended to be used at night time or cloudy day. MPPT is actually a DC-DC converter that can step up or down voltage in order to achieve the maximum power using Pulse Width Modulation (PWM control. From experiment, we obtained the voltage of operation using MPPT is at 16.454 V, this value has error of 2.6%, if we compared with maximum power point voltage of PV module that is 16.9 V. Based on this result it can be said that this MPPT control works successfully to deliver the power from PV module to battery maximally.

  17. Air-conditioner filters enriching dust mites allergen.

    Science.gov (United States)

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (Pair-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens.

  18. Practical design considerations for photovoltaic power station

    Science.gov (United States)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  19. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    , detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing...... the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view...

  20. Feasibility Study of Seawater Electrolysis for Photovoltaic/Fuel Cell Hybrid Power System for the Coastal Areas in Thailand

    Science.gov (United States)

    Srisiriwat, A.; Pirom, W.

    2017-10-01

    Solar photovoltaic cell and fuel cell are the practicable options to realize as a possible hybrid power system because the power of the sun cannot be utilized at night or cloudy days but hydrogen has been found as an ideal energy carrier for being transportable, storable, and converting energy though fuel cell. Hydrogen storage is chosen for its ability to obtain a clean energy option. Electrolysis, which is the simplest process to produce hydrogen, can be powered by the dc voltage from the photovoltaic cell instead of using the battery as power supply. This paper concentrates on a feasibility study of seawater electrolysis using photovoltaic power integrated fuel cell system for the coastal cities in Thailand. The proposed system composed of photovoltaic arrays, seawater electrolyzer and fuel cell is presented when the 10-kW of fuel cell electrical power is considered. The feasibility study of hydrogen production and energy analysis of this proposed system is also evaluated.

  1. Influence of environmental characteristics and climatic factors on mites in the dust of air-conditioner filters.

    Science.gov (United States)

    Wu, J; Liu, Z G; Ran, P X; Wang, B

    2009-12-01

    To investigate mites in the dust of air-conditioner filters (MACF) in China, a total of 652 dust samples were collected from six cities: Guangzhou (n = 129), Nanchang (n = 127), Shanghai (n = 113), Xian (n = 93), Beijing (n = 93), and Shenyang (n = 79). Tarsonemus granarius was the most dominant species (87.2%). Dermatophagoides pteronyssinus and Dermatophagoides farinae only represented 7.0 and 3.0% of total mites, respectively. With latitude increasing, both mite occurrence rate (P air-conditioner age, utilization time and power. Wall and window type air-conditioner had higher risk of finding MACF than the floor type air-conditioner. As far as the cleaning interval time of ACF was concerned, higher risk ratio and the highest density of MACF were found in the time stage of >3, air-conditioner filters are potential indoor threat to asthma and allergy sufferers. In this study, we find that the storage mite Tarsonemus granarius is the predominant species of mites in the dust of air-conditioner filters (MACF). Thus, the possible clinical importance of T. granarius should cause more our attentions in the future. The abundance and distribution of MACF are also found significantly varied in different climatic regions of China. When we try to assess the possible risk of MACF, more attentions should be focused on subtropical region than temperate region. The influence analysis of environmental characteristics on the prevalence of MACF will shed light on the establishment of mite control strategy and the design of mite defense air-conditioner.

  2. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    Science.gov (United States)

    Philippi, T. M.

    1981-01-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  3. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    Science.gov (United States)

    Philippi, T. M.

    1981-11-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  4. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use (International cooperation project - collection of information on IEA photovoltaic power generation program); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development, verification, analysis and information exchange have been performed based on the 'Treaty to Execute the Research and Cooperation Program on Photovoltaic Power Generation System'. The IEA/REWP/PVPS activities in fiscal 1999 include the participation to the two executive committee meetings (Valencia and Sydney), and the subcommittee activities. The subcommittee activities are as follows: Task I: information exchange on and proliferation of the photovoltaic power generation systems, Task II: operation performance and design of the photovoltaic power generation systems, Task III: design and operation of the independent type and the island use power plants, Task VII: Building integrated photovoltaic power generation systems, Task VI, Sub-task 5: investigations and researches on possibility for photovoltaic power generation systems utilizing unutilized lands including deserts, and Task IX: technical cooperation to expand photovoltaic power generation system markets. (NEDO)

  5. Report on achievements in fiscal 1998. Development of technologies to put photovoltaic power generation systems into practical use (International cooperation project - collection of information on IEA photovoltaic power generation program); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development, verification, analysis and information exchange have been performed based on the 'Treaty to Execute the Research and Cooperation Program on Photovoltaic Power Generation System'. The IEA/REWP/PVPS activities in fiscal 1999 include the participation to the two executive committee meetings (Valencia and Sydney), and the subcommittee activities. The subcommittee activities are as follows: Task I: information exchange on and proliferation of the photovoltaic power generation systems, Task II: operation performance and design of the photovoltaic power generation systems, Task III: design and operation of the independent type and the island use power plants, Task VII: Building integrated photovoltaic power generation systems, Task VI, Sub-task 5: investigations and researches on possibility for photovoltaic power generation systems utilizing unutilized lands including deserts, and Task IX: technical cooperation to expand photovoltaic power generation system markets. (NEDO)

  6. A report on the performance of a grid connected photovoltaic power generation system

    International Nuclear Information System (INIS)

    Mohd Azhar Abdul Rahman; Mohd Surif Abdul Wahab; Azmi Omar

    2000-01-01

    Malaysia is located almost on the equator and is blessed with an abundance of sunlight almost all year round. So obviously, with the right planning and strategies that are coupled to the right technology and development in the market, the potential for photovoltaic system as an alternative source of power in this country looks promising and is constantly gaining ground and popularity. Sunlight is free and the photovoltaic system is also emission and pollution free which is a guest boost to the current worldwide effort to reduce the global environmental problems. Utility giant Tenaga Nasional Berhad is in line with the Government aspiration to promote the development of solar photovoltaic in the country, who believe in the success and acceptance potential of the photovoltaic system as an alternative source of power generation for long term energy option. In March 1998, a contract was awarded by Tenaga Nasional Berhad to its research subsidiary, Tenaga Nasional Research and Development Sdn. Bhd. to undertake a pilot research project on the development of a grid connected photovoltaic system. This research project is co-funded by the Electric Supply Industry Trust fund. One of the main objective of this research project is to seek the best approach to popularize the Grid Connected Photovoltaic System for domestic as well as suitable commercial premises in this country. This paper will report the initial findings of the project in terms of technical capability and commercial liability. (Author)

  7. Methodology for the design of a stand-alone photovoltaic power supply

    OpenAIRE

    López Seguel, Julio; Seleme Junior, Seleme Isaac; Donoso-Garcia, Pedro F; Ferreira Morais, Lenin Martins; Cabaleiro Cortizo, Porfirio; Severo Mendes, Marcos A

    2013-01-01

    This paper presents a complete methodology for the design of an autonomous photovoltaic system to maximize the use of solar energy. It is a method that prioritizes the best cost-effective choice at every step of the project. In order to ensure the proper use and extended battery life time, a control strategy for charging the batteries is proposed. Experimental results are provided for a stand-alone photovoltaic system with low electrical power, intended primarily for the illumination and basi...

  8. Photovoltaic array for Martian surface power

    Science.gov (United States)

    Appelbaum, J.; Landis, G. A.

    1992-01-01

    Missions to Mars will require electric power. A leading candidate for providing power is solar power produced by photovoltaic arrays. To design such a power system, detailed information on solar-radiation availability on the Martian surface is necessary. The variation of the solar radiation on the Martian surface is governed by three factors: (1) variation in Mars-Sun distance; (2) variation in solar zenith angle due to Martian season and time of day; and (3) dust in the Martian atmosphere. A major concern is the dust storms, which occur on both local and global scales. However, there is still appreciable diffuse sunlight available even at high opacity, so that solar array operation is still possible. Typical results for tracking solar collectors are also shown and compared to the fixed collectors. During the Northern Hemisphere spring and summer the isolation is relatively high, 2-5 kW-hr/sq m-day, due to the low optical depth of the Martian atmosphere. These seasons, totalling a full terrestrial year, are the likely ones during which manned mission will be carried out.

  9. Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  10. SIMULATION OF NEW SIMPLE FUZZY LOGIC MAXIMUM POWER POINT TRACKER FOR PHOTOVOLTAIC ARRAY

    Directory of Open Access Journals (Sweden)

    H. Serhoud

    2015-08-01

    Full Text Available A new simple fuzzy method used for tracking the maximum power point tracker (MPPT for photovoltaic systems is proposed. The input parameters   and duty cycle D are used to generate the optimal MPPT under different operating conditions, The photovoltaic system simulated and constructed by photovoltaic arrays, a DC/DC boost converter, a fuzzy MPPT control and a resistive load, The Fuzzy control law designed and the results in a simulation platform will be presented and compare to Perturbation and observation (P&O controller.

  11. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  12. Experimental Learning of Digital Power Controller for Photovoltaic Module Using Proteus VSM

    Directory of Open Access Journals (Sweden)

    Abhijit V. Padgavhankar

    2014-01-01

    Full Text Available The electric power supplied by photovoltaic module depends on light intensity and temperature. It is necessary to control the operating point to draw the maximum power of photovoltaic module. This paper presents the design and implementation of digital power converters using Proteus software. Its aim is to enhance student’s learning for virtual system modeling and to simulate in software for PIC microcontroller along with the hardware design. The buck and boost converters are designed to interface with the renewable energy source that is PV module. PIC microcontroller is used as a digital controller, which senses the PV electric signal for maximum power using sensors and output voltage of the dc-dc converter and according to that switching pulse is generated for the switching of MOSFET. The implementation of proposed system is based on learning platform of Proteus virtual system modeling (VSM and the experimental results are presented.

  13. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    Science.gov (United States)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of

  14. 1 mm3-sized optical neural stimulator based on CMOS integrated photovoltaic power receiver

    Science.gov (United States)

    Tokuda, Takashi; Ishizu, Takaaki; Nattakarn, Wuthibenjaphonchai; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Sawan, Mohamad; Ohta, Jun

    2018-04-01

    In this work, we present a simple complementary metal-oxide semiconductor (CMOS)-controlled photovoltaic power-transfer platform that is suitable for very small (less than or equal to 1-2 mm) electronic devices such as implantable health-care devices or distributed nodes for the Internet of Things. We designed a 1.25 mm × 1.25 mm CMOS power receiver chip that contains integrated photovoltaic cells. We characterized the CMOS-integrated power receiver and successfully demonstrated blue light-emitting diode (LED) operation powered by infrared light. Then, we integrated the CMOS chip and a few off-chip components into a 1-mm3 implantable optogenetic stimulator, and demonstrated the operation of the device.

  15. DSP control of photovoltaic power generation system adding the function of shunt active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Seo, H.-R.; Kim, K.-H.; Park, Y.-G.; Park, M.; Yu, I.-K. [Changwon National Univ., SarimDong (Korea, Republic of). Dept. of Electrical Engineering

    2007-07-01

    The growing number of power electronics-based equipment has created a problem on the quality of electric power supply since both high power industrial loads and domestic loads cause harmonics in the network voltage. Power quality problems can occur in the system or can be caused by the consumer. Active filter (AF) is widely used to compensate current harmonics and/or current imbalance of harmonic-producing loads. The power output of a photovoltaic (PV) system is directly affected by weather conditions. When alternating current (AC) power supply is required, power conversion by an inverter and an MPPT control is necessary. The proliferation of nonlinear loads such as inverter of PV power generation system can be treated as a harmonic source for the power distribution system. As such, the PV system combined with the function of the active filter system can be useful for the application in power distribution systems. This paper described a PV-AF system using DSP to prove that it is possible to combine AF theory to the three phase PV system connected to utility and verify it through experimental results. The paper described the control method of the PV-AF system, with reference to the photovoltaic power generation system, shunt active filter and PV-AF system. The experimental set-up was also presented. A laboratory system was designed and constructed to confirm the viability of the proposed PV-AF system. The test results revealed the stability and effectiveness of the proposed PV-AF system. 12 refs., 1 tabs., 12 figs.

  16. Smart Global Maximum Power Point Tracking Controller of Photovoltaic Module Arrays

    Directory of Open Access Journals (Sweden)

    Long-Yi Chang

    2018-03-01

    Full Text Available This study first explored the effect of shading on the output characteristics of modules in a photovoltaic module array. Next, a modified particle swarm optimization (PSO method was employed to track the maximum power point of the multiple-peak characteristic curve of the array. Through the optimization method, the weighting value and cognition learning factor decreased with an increasing number of iterations, whereas the social learning factor increased, thereby enhancing the tracking capability of a maximum power point tracker. In addition, the weighting value was slightly modified on the basis of the changes in the slope and power of the characteristic curve to increase the tracking speed and stability of the tracker. Finally, a PIC18F8720 microcontroller was coordinated with peripheral hardware circuits to realize the proposed PSO method, which was then adopted to track the maximum power point of the power–voltage (P–V output characteristic curve of the photovoltaic module array under shading. Subsequently, tests were conducted to verify that the modified PSO method exhibited favorable tracking speed and accuracy.

  17. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Science.gov (United States)

    2010-10-01

    ... and Air Conditioners. 52.223-12 Section 52.223-12 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  18. Valence of wind power, photovoltaic and peak-load power plants as a part of the entire electricity system

    International Nuclear Information System (INIS)

    Schüppel, A.

    2014-01-01

    The transition to a higher share of renewable energy sources in the electricity sector leads to a multitude of challenges for the current electricity system. Within this thesis, the development of wind power and photovoltaics generation capacities in Germany is analysed based on the evaluation of technical and economic criteria. In order to derive those criteria, different scenarios with a separated and combined increase of wind and photovoltaics capacity are simulated using the model ATLANTIS. The results are compared to a reference scenario without additional wind and PV capacities. Furthermore, the value and functionality of the energy only market based on economic methods, as well as the value of peak load power plants based on opportunity costs are determined. The results of this thesis show, that the current market system is able to gain an additional annual welfare of four to six billion Euro at the best. This result shows that the task of optimising the power plant dispatch is well fulfilled by the current market design. However, the effects, e.g. fuel costs, which may influence this margin. The value of wind power and photovoltaics within the overall electricity system can be derived from the effort which is necessary to integrate these generation technologies into the existing system, and the changes in total costs of electricity generation. Based on the evaluation of time dependencies (seasonality of energy yield from wind and PV) as well as the development of total generation costs, the conclusion can be drawn that wind power is the more suitable RES generation technology for Germany. However, when it comes to grid integration measures, PV shows better results due to a higher generation potential in Southern Germany, which leads to a higher degree of utilisation. Therefore, there is no need to transport electricity from Northern to Southern Germany as it is the case with wind power. A common expansion of wind power and photovoltaics even shows slight

  19. Investigation of the behavior of a three phase grid-connected photovoltaic system to control active and reactive power

    Energy Technology Data Exchange (ETDEWEB)

    Tsengenes, Georgios; Adamidis, Georgios [Department of Electrical Engineering and Computer Engineering, Democritus University of Thrace, University Campus Kimmeria, 67100 Xanthi (Greece)

    2011-01-15

    In this paper, a photovoltaic (PV) system, with maximum power point tracking (MPPT), connected to a three phase grid is presented. The connection of photovoltaic system on the grid takes place in one stage using voltage source inverter (VSI). For a better utilization of the photovoltaic system, the control strategy applied is based on p-q theory. According to this strategy during sunlight the system sends active power to the grid and at the same time compensates the reactive power of the load. In case there is no sunlight (during the night for instance), the inverter only compensates the reactive power of the load. In this paper the use of p-q theory to supply the grid with active power and compensate the reactive power of the load is investigated. The advantage of this control strategy is that the photovoltaic system is operated the whole day. Furthermore, the p-q theory uses simple algebraic calculations without demanding the use of PLL to synchronize the inverter with the grid. (author)

  20. Short-Term Photovoltaic Power Generation Forecasting Based on Multivariable Grey Theory Model with Parameter Optimization

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhong

    2017-01-01

    Full Text Available Owing to the environment, temperature, and so forth, photovoltaic power generation volume is always fluctuating and subsequently impacts power grid planning and operation seriously. Therefore, it is of great importance to make accurate prediction of the power generation of photovoltaic (PV system in advance. In order to improve the prediction accuracy, in this paper, a novel particle swarm optimization algorithm based multivariable grey theory model is proposed for short-term photovoltaic power generation volume forecasting. It is highlighted that, by integrating particle swarm optimization algorithm, the prediction accuracy of grey theory model is expected to be highly improved. In addition, large amounts of real data from two separate power stations in China are being employed for model verification. The experimental results indicate that, compared with the conventional grey model, the mean relative error in the proposed model has been reduced from 7.14% to 3.53%. The real practice demonstrates that the proposed optimization model outperforms the conventional grey model from both theoretical and practical perspectives.

  1. Bacterial community structures in air conditioners installed in Japanese residential buildings.

    Science.gov (United States)

    Hatayama, Kouta; Oikawa, Yurika; Ito, Hiroyuki

    2018-01-01

    The bacterial community structures in four Japanese split-type air conditioners were analyzed using a next-generation sequencer. A variety of bacteria were detected in the air filter of an air conditioner installed on the first floor. In the evaporator of this air conditioner, bacteria belonging to the genus Methylobacterium, or the family of Sphingomonadaceae, were predominantly detected. On the other hand, the majority of bacteria detected in the air filters and evaporators of air conditioners installed on the fifth and twelfth floors belonged to the family Enterobacteriaceae. The source of bacteria belonging to the family Enterobacteriaceae may have been aerosols generated by toilet flushing in the buildings. Our results suggested the possibility that the bacterial contamination in the air conditioners was affected by the floor level on which they were installed. The air conditioner installed on the lower floor, near the ground, may have been contaminated by a variety of outdoor bacteria, whereas the air conditioners installed on floors more distant from the ground may have been less contaminated by outdoor bacteria. However, these suppositions may apply only to the specific split-type air conditioners that we analyzed, because our sample size was small.

  2. Impact of Balance Of System (BOS) costs on photovoltaic power systems

    Science.gov (United States)

    Hein, G. F.; Cusick, J. P.; Poley, W. A.

    1978-01-01

    The Department of Energy has developed a program to effect a large reduction in the price of photovoltaic modules, with significant progress already achieved toward the 1986 goal of 50 cents/watt (1975 dollars). Remaining elements of a P/V power system (structure, battery storage, regulation, control, and wiring) are also significant cost items. The costs of these remaining elements are commonly referred to as Balance-of-System (BOS) costs. The BOS costs are less well defined and documented than module costs. The Lewis Research Center (LeRC) in 1976/77 and with two village power experiments that will be installed in 1978. The costs were divided into five categories and analyzed. A regression analysis was performed to determine correlations of BOS Costs per peak watt, with power size for these photovoltaic systems. The statistical relationship may be used for flat-plate, DC systems ranging from 100 to 4,000 peak watts. A survey of suppliers was conducted for comparison with the predicted BOS cost relationship.

  3. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device...

  4. Building America Case Study: Photovoltaic Systems with Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Direct current (DC) power optimizers and microinverters (together known as module-level power electronics, or MLPE) are one of the fastest growing market segments in the solar industry. According to GTM Research in The Global PV Inverter Landscape 2015, over 55% of all residential photovoltaic (PV) installations in the United States used some form of MLPE in 2014.

  5. A Method of Dynamic Extended Reactive Power Optimization in Distribution Network Containing Photovoltaic-Storage System

    Science.gov (United States)

    Wang, Wu; Huang, Wei; Zhang, Yongjun

    2018-03-01

    The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.

  6. SUNRAYCE 1993: Working safely with lead-acid batteries and photovoltaic power systems

    Science.gov (United States)

    Dephillips, M. P.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-11-01

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have 'hands-on' contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  7. Report on demonstrative research on photovoltaic power generation system in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of installation and demonstrative operation in Myanmar of a power generation system combining a small-scale photovoltaic power generation system, a wind power generation system, and a diesel generator, research and development is being made under a six year plan starting in 1999 and ending in 2004. Comparative discussions were given on the installation location of the power generation system for the climatic conditions in Chaungthar and Letkhokekone, whereas the final decision was given on Chaungthar. This project plans installation of a photovoltaic power generation system of 80 kW, a wind power generation system of 40 kW, and a diesel generator of 60 kW. Power generation will start at 6 o'clock in the morning and continue to 11 o'clock at night every day, with a storage battery of 1,000 Ah and a stabilized load comprising of ice maker units to be installed. Observation of wind power and solar insolation is being continued with an aim of acquiring data over a period of one year or longer, whereas the data as have been forecasted are being acquired at the present. The diesel generator was manufactured in Japan, which has been arrived at the port of Yangon in February 2001, and installed at the site in Chaungthar in March. (NEDO)

  8. Three-level grid-connected photovoltaic inverter with maximum power point tracking

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2013-01-01

    Highlight: ► This paper reports a novel 3-level grid connected photovoltaic inverter. ► The inverter features maximum power point tracking and grid current shaping. ► The inverter can be acted as an active filter and a renewable power source. - Abstract: This paper presents a systematic way of designing control scheme for a grid-connected photovoltaic (PV) inverter featuring maximum power point tracking (MPPT) and grid current shaping. Unlike conventional design, only four power switches are required to achieve three output levels and it is not necessary to use any phase-locked-loop circuitry. For the proposed scheme, a simple integral controller has been designed for the tracking of the maximum power point of a PV array based on an improved extremum seeking control method. For the grid-connected inverter, a current loop controller and a voltage loop controller have been designed. The current loop controller is designed to shape the inverter output current while the voltage loop controller can maintain the capacitor voltage at a certain level and provide a reference inverter output current for the PV inverter without affecting the maximum power point of the PV array. Experimental results are included to demonstrate the effectiveness of the tracking and control scheme.

  9. National Survey Report of PV Power Applications in France 2012. Photovoltaic Power Applications in France - National Survey Report 2012

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2013-05-01

    The PV power of all grid-connected photovoltaic systems installed in 2012 stood at 1 079 MW. This represented a 38 % fall compared with 2011. New grid-connected distributed systems, the majority of which were building-integrated, represented a total power of 756 MW, while grid-connected centralised ground-based power plants accounted for 323 MW. New PV installations in mainland France accounted for 35 % of total new electricity production capacity commissioned in 2012. The off-grid stand-alone photovoltaic system sector remains marginal with around 0,2 MW installed. The cumulative power capacity of all photovoltaic systems in operation at the end of 2012 stood at 4 003 MW (281 724 systems) representing an increase of 37% compared with 2011. Residential systems less than or equal to 3 kW accounted for 86% of all installations and 16 % of total power capacity, while systems exceeding 250 kW accounted for 0,3% of all installations and 44% of total capacity. In 2012, photovoltaic electricity production accounted for 0,7% of France's total electricity production. In France, the estimated average price of European-manufactured photovoltaic modules stood at 0,72 EUR/W in 2012. The fall in prices observed over the last two years has led to substantial growth in the medium-power and high-power systems sector. The turnkey price stood at around 3,7 EUR/W in 2012 for building-integrated residential systems (IAB) using European modules. The price of simplified building-integrated systems (ISB) on commercial and industrial buildings stood at 2,0 EUR/W, and at 1,6 EUR/W for high-power grid-connected ground-mounted systems (all prices mentioned are exclusive of VAT). The French photovoltaic component industry faced stiff international competition in 2012. The industrial value chain has, on the whole, remained relatively unscathed, but small installation companies have been the worst affected. Upstream of the PV sector, photovoltaic-grade silicon manufacturing is currently at

  10. Impact Analysis of Peng-Hu Power System Connected with a Photovoltaic System

    DEFF Research Database (Denmark)

    Wang, Li; Nguyen, Ha Thi; Yan, Chih-Hao

    2014-01-01

    With the rapid increase of photovoltaic (PV) systems installed in power systems in the recent years, the negative impacts on power quality of distribution networks due to highpenetration PV systems can be increased. This paper presents the system-impact analyzed results of a 0.6-MW PV system conn...

  11. Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea

    International Nuclear Information System (INIS)

    Hong, Sungjun; Chung, Yanghon; Woo, Chungwon

    2015-01-01

    South Korea, as the 9th largest energy consuming in 2013 and the 7th largest greenhouse gas emitting country in 2011, established ‘Low Carbon Green Growth’ as the national vision in 2008, and is announcing various active energy policies that are set to gain the attention of the world. In this paper, we estimated the decrease of photovoltaic power generation cost in Korea based on the learning curve theory. Photovoltaic energy is one of the leading renewable energy sources, and countries all over the world are currently expanding R and D, demonstration and deployment of photovoltaic technology. In order to estimate the learning rate of photovoltaic energy in Korea, both conventional 1FLC (one-factor learning curve), which considers only the cumulative power generation, and 2FLC, which also considers R and D investment were applied. The 1FLC analysis showed that the cost of power generation decreased by 3.1% as the cumulative power generation doubled. The 2FCL analysis presented that the cost decreases by 2.33% every time the cumulative photovoltaic power generation is doubled and by 5.13% every time R and D investment is doubled. Moreover, the effect of R and D investment on photovoltaic technology took after around 3 years, and the depreciation rate of R and D investment was around 20%. - Highlights: • We analyze the learning effects of photovoltaic energy technology in Korea. • In order to calculate the learning rate, we use 1FLC (one-factor learning curve) and 2FLC methods, respectively. • 1FLC method considers only the cumulative power generation. • 2FLC method considers both cumulative power generation and knowledge stock. • We analyze a variety of scenarios by time lag and depreciation rate of R and D investment

  12. Multi-objective optimal power flow for active distribution network considering the stochastic characteristic of photovoltaic

    Science.gov (United States)

    Zhou, Bao-Rong; Liu, Si-Liang; Zhang, Yong-Jun; Yi, Ying-Qi; Lin, Xiao-Ming

    2017-05-01

    To mitigate the impact on the distribution networks caused by the stochastic characteristic and high penetration of photovoltaic, a multi-objective optimal power flow model is proposed in this paper. The regulation capability of capacitor, inverter of photovoltaic and energy storage system embedded in active distribution network are considered to minimize the expected value of active power the T loss and probability of voltage violation in this model. Firstly, a probabilistic power flow based on cumulant method is introduced to calculate the value of the objectives. Secondly, NSGA-II algorithm is adopted for optimization to obtain the Pareto optimal solutions. Finally, the best compromise solution can be achieved through fuzzy membership degree method. By the multi-objective optimization calculation of IEEE34-node distribution network, the results show that the model can effectively improve the voltage security and economy of the distribution network on different levels of photovoltaic penetration.

  13. Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle

    International Nuclear Information System (INIS)

    Ezzat, M.F.; Dincer, I.

    2016-01-01

    Highlights: • A new integrated fuel cell-photovoltaic system for vehicle application is proposed. • Comprehensive energy and exergy analyses are conducted. • Detailed parametric study is performed. • Overall energy and exergy efficiencies are determined. • Photovoltaic utilization can save 561 g of hydrogen during 3 h drive. - Abstract: This paper deals with a new hybridly powered photovoltaic-fuel cell - Li-ion battery integrated system and is compared to a base system, consisting of PEM fuel cell and Li-ion battery. It investigates the effects of adding photovoltaic arrays to the base system and further effects on the overall energy and exergy efficiencies and hence hydrogen consumption. These two systems are analyzed and assessed both energetically and exergetically. The study results show that the overall energy and exergy efficiencies become 39.46% and 56.3%, respectively at a current density of 1150 mA/cm"2 for system 1 (fuel cell-battery). Moreover, energy and exergy efficiencies are found to be 39.86% and 56.63% at current density of 1150 mA/cm"2 for system 2 (fuel cell-battery-photovoltaics). Utilizing photovoltaic arrays in system 2 would recover 561 g of hydrogen through 3 h of continuous driving at max power of 98.32 kW, which is approximately 11.2% of the hydrogen storage tank used in the proposed systems. The effects of changing various system parameters on energy and exergy efficiencies of the overall system are also examined.

  14. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power generation system evaluation technology (Research and development of system evaluation technology - Separate volume: Collection of data of photovoltaic power generation systems); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu - Bessatsu: taiyoko hatsuden system data shu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the establishment of technologies for optimum designs and optimum operation for various types of photovoltaic power systems, data are compiled in this volume, collected from the field test facilities and residential photovoltaic power systems. Operating data and meteorological data from the field test facilities (interconnection system, independent system, and water pump system) are arranged as easy-to-use supplementary data to help studies in relation to the 'energy flow in the test field facility systems' which is in the fiscal 1999 achievement report. As for data collected from residential photovoltaic power systems, they are arranged as easy-to-use supplementary data to help studies in relation to the 'Data and evaluation of residential photovoltaic power systems' which again belongs in the fiscal 1999 achievement report. (NEDO)

  15. Socioeconomic impact of photovoltaic power at Schuchulik, Arizona. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahr, D.; Garrett, B.G.; Chrisman, C.

    1980-10-01

    Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. In some respects, Schuchuli resembles many of the rural villages in other parts of the world. For example, it's relatively small in size (about 60 residents), composed of a number of extended family groupings, and remotely situated relative to major population centers (190 km, or 120 miles, from Tucson). Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes ad other village buildings, family refrigerators and a communal washing machine and sewing machine. The project, managed for the US Department of Energy by the NASA Lewis Research Center, provided for a one-year socio-economic study to assess the impact of a relatively small amount of electricity on the basic living environment of the villagers. The results of that study are presented, including village history, group life, energy use in general and the use of the photovoltaic-powered appliances. No significant impacts due to the photovoltaic power system were observed.

  16. Application of photovoltaic generating system to electric power in large ship; Taiyoko hatsuden system no ogata senpaku eno oyo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Katagi, T; Ogawa, S; Nishikawa, E; Hashimoto, T [Kobe University of Mercantile Marine, Kobe (Japan); Ishida, K

    1996-10-27

    This paper describes the design of electric power system in a ship with photovoltaic power generating system, to examine applicability of the photovoltaic power generating system to the inboard power source. It also discusses effectiveness of the system for sea environment. At first, the actual route of a car carrier, meteorological data, and quantity of power consumption were picked up from the deck logbook and engine logbook. Then, the installation area of photovoltaic arrays, the quantity of photovoltaic power generation derived from the quantity of solar radiation, and the capacities of batteries and inverters were calculated, to design the electric power system in the ship with photovoltaic power generation system. Moreover, the NOx and SOx emissions were compared between the present power system and the usual power system using diesel power generator, to discuss the effectiveness of the present system for sea environment. Consequently, it was found that the emission of NOx was reduced by about 33% and the emission of SOx was reduced by about 28% compared to the usual power system. The effectiveness for sea environment was confirmed. 9 refs., 5 figs., 4 tabs.

  17. SUNRAYCE 93: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-11-03

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems, and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have {open_quotes}hands-on{close_quotes} contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use, and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  18. Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles.

    Science.gov (United States)

    Kim, Hyun-Jin; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    In this in vitro study, nystatin-alginate microparticles were successfully fabricated to control the release of nystatin from a commercial dental tissue conditioner. These nystatin-alginate microparticles were spherical and had a slightly rough surface. The microparticles incorporated into the tissue conditioner were distributed homogeneously throughout the tissue conditioner matrix. The incorporation of the microparticles did not deteriorate the mechanical properties of the original material. The agar diffusion test results showed that the tissue conditioner containing the microparticles had a good antifungal effect against Candida albicans. The nystatin-alginate microparticles efficiently controlled the release of nystatin from the tissue conditioner matrix over the experimental period of 14 days. Moreover, the nystatin-alginate microparticles incorporated in the tissue conditioner showed effective antifungal function even at lower concentrations of nystatin. The current study suggests that the tissue conditioner containing the nystatin-alginate microparticle carrier system has potential as an effective antifungal material.

  19. Evaluation of Hybrid Power Plants using Biomass, Photovoltaics and Steam Electrolysis for Hydrogen and Power Generation

    Science.gov (United States)

    Petrakopoulou, F.; Sanz, J.

    2014-12-01

    Steam electrolysis is a promising process of large-scale centralized hydrogen production, while it is also considered an excellent option for the efficient use of renewable solar and geothermal energy resources. This work studies the operation of an intermediate temperature steam electrolyzer (ITSE) and its incorporation into hybrid power plants that include biomass combustion and photovoltaic panels (PV). The plants generate both electricity and hydrogen. The reference -biomass- power plant and four variations of a hybrid biomass-PV incorporating the reference biomass plant and the ITSE are simulated and evaluated using exergetic analysis. The variations of the hybrid power plants are associated with (1) the air recirculation from the electrolyzer to the biomass power plant, (2) the elimination of the sweep gas of the electrolyzer, (3) the replacement of two electric heaters with gas/gas heat exchangers, and (4) the replacement two heat exchangers of the reference electrolyzer unit with one heat exchanger that uses steam from the biomass power plant. In all cases, 60% of the electricity required in the electrolyzer is covered by the biomass plant and 40% by the photovoltaic panels. When comparing the hybrid plants with the reference biomass power plant that has identical operation and structure as that incorporated in the hybrid plants, we observe an efficiency decrease that varies depending on the scenario. The efficiency decrease stems mainly from the low effectiveness of the photovoltaic panels (14.4%). When comparing the hybrid scenarios, we see that the elimination of the sweep gas decreases the power consumption due to the elimination of the compressor used to cover the pressure losses of the filter, the heat exchangers and the electrolyzer. Nevertheless, if the sweep gas is used to preheat the air entering the boiler of the biomass power plant, the efficiency of the plant increases. When replacing the electric heaters with gas-gas heat exchangers, the

  20. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. International cooperation projects (Collection of information on IEA photovoltaic power generation program); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Items of information were collected on development of technologies to put photovoltaic power generation systems into practical use, the international cooperation projects, and the IEA photovoltaic power generation program. This paper summarizes the achievements in fiscal 1999. In the activities of IEA/REWP/PVPS in the current fiscal year, the 13th and 14th Executive Committee meetings, and the 3rd Executive Conference were held. The Task 1 has performed such activities as ISR, NSR, Newsletters, and opening the Internet homepage. The Task 2 activities included structuring about 260 databases for the operation characteristics of photovoltaic power generation systems, and completing the internal material handbooks on measurement and monitoring. A new work plan was prepared for the Task 3 regarding an independent photovoltaic power generation plant for use in an island. For the building integrated photovoltaic power generation system in the Task 7, survey activities were executed by utilizing expertise conferences on building designs, system technologies, and non-technical impediments. In the feasibility survey and research on large-scale photovoltaic power generation utilizing unused land such as desert for the Task 8, the programs were established. (NEDO)

  1. Evaluation of nodal reliability risk in a deregulated power system with photovoltaic power penetration

    DEFF Research Database (Denmark)

    Zhao, Qian; Wang, Peng; Goel, Lalit

    2014-01-01

    Owing to the intermittent characteristic of solar radiation, power system reliability may be affected with high photovoltaic (PV) power penetration. To reduce large variation of PV power, additional system balancing reserve would be needed. In deregulated power systems, deployment of reserves...... and customer reliability requirements are correlated with energy and reserve prices. Therefore a new method should be developed to evaluate the impacts of PV power on customer reliability and system reserve deployment in the new environment. In this study, a method based on the pseudo-sequential Monte Carlo...... simulation technique has been proposed to evaluate the reserve deployment and customers' nodal reliability with high PV power penetration. The proposed method can effectively model the chronological aspects and stochastic characteristics of PV power and system operation with high computation efficiency...

  2. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    Science.gov (United States)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  3. Applications of photovoltaics

    International Nuclear Information System (INIS)

    Pearsall, N.

    1999-01-01

    The author points out that although photovoltaics can be used for generating electricity for the same applications as many other means of generation, they really come into their own where disadvantages associated with an intermittent unpredictable supply are not severe. The paper discusses the advantages and disadvantages to be taken into account when considering a photovoltaic power system. Five main applications, based on the system features, are listed and explained. They are: consumer, professional, rural electrification, building-integrated, centralised grid connected and space power. A brief history of the applications of photovoltaics is presented with statistical data on the growth of installed capacity since 1992. The developing market for photovoltaics is discussed together with how environmental issues have become a driver for development of building-integrated photovoltaics

  4. Optimal Sizing of a Photovoltaic-Hydrogen Power System for HALE Aircraft by means of Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Victor M. Sanchez

    2015-01-01

    Full Text Available Over the last decade there has been a growing interest in the research of feasibility to use high altitude long endurance (HALE aircrafts in order to provide mobile communications. The use of HALEs for telecommunication networks has the potential to deliver a wide range of communication services (from high-quality voice to high-definition videos, as well as high-data-rate wireless channels cost effectively. One of the main challenges of this technology is to design its power supply system, which must provide the enough energy for long time flights in a reliable way. In this paper a photovoltaic/hydrogen system is proposed as power system for a HALE aircraft due its high power density characteristic. In order to obtain the optimal sizing for photovoltaic/hydrogen system a particle swarm optimizer (PSO is used. As a case study, theoretical design of the photovoltaic/hydrogen power system for three different HALE aircrafts located at 18° latitude is presented. At this latitude, the range of solar radiation intensity was from 310 to 450 Wh/sq·m/day. The results obtained show that the photovoltaic/hydrogen systems calculated by PSO can operate during one year with efficacies ranging between 45.82% and 47.81%. The obtained sizing result ensures that the photovoltaic/hydrogen system supplies adequate energy for HALE aircrafts.

  5. Capacity enhancement and flexible operation of unified power quality conditioner in smart and microgrid network

    Directory of Open Access Journals (Sweden)

    Shafiuzzaman Khan Khadem

    2018-01-01

    Full Text Available This paper presents a new approach to design Unified Power Quality Conditioner (UPQC, termed as distributed UPQC (D-UPQC, for smart or microgrid network where capacity enhancement and flexible operation of UPQC are the important issues. This paper shows the possibility of capacity enhancement and operational flexibility of UPQC through a coordinated control of existing resources. This UPQC consists of a single unit series active power filter (APFse and multiple shunt APF (APFsh units in a distributed (parallel mode. These units can be connected with a common/separate dc linked capacitor(s. The requirement of capacity enhancement arises from the flexibility to cope up with the increased harmonic load demand at low voltage (LV distribution network. This can be accomplished by a coordinated control where multiple APFsh units are operated by utilizing the capacity of APFse while it is in idle/low mode using. Operational flexibility can be accomplished by compensating (i the reactive and harmonic current individually or (ii splitting the combined reactive and harmonic current/power among the APFsh units. Design and control issues have been discussed to identify the capacity enhancement limit with the possibility of operational flexibility. A system then has been simulated in MATLAB to show the effectiveness of D-UPQC in capacity enhancement and flexible operation by applying its existing resource utilization capability.

  6. On the impact of NWP model resolution and power source disaggregation on photovoltaic power prediction

    Czech Academy of Sciences Publication Activity Database

    Eben, Kryštof; Juruš, Pavel; Resler, Jaroslav; Pelikán, Emil; Krč, Pavel

    2011-01-01

    Roč. 8, - (2011), EMS2011-667-4 [EMS Annual Meeting /11./ and European Conference on Applications of Meteorology /10./. 12.09.2011-16.09.2011, Berlin] Institutional research plan: CEZ:AV0Z10300504 Keywords : photovoltaic power prediction * NWP * numerical model parameterization Subject RIV: DG - Athmosphere Sciences, Meteorology

  7. Benchmarking of Constant Power Generation Strategies for Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    With a still increase of grid-connected Photovoltaic (PV) systems, challenges have been imposed on the grid due to the continuous injection of a large amount of fluctuating PV power, like overloading the grid infrastructure (e.g., transformers) during peak power production periods. Hence, advanced...

  8. Highly Reliable Transformerless Photovoltaic Inverters With Leakage Current and Pulsating Power Elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV-to-ground parasi......This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common-mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Furthermore, the proposed inverter can also eliminate the well-known double-line-frequency pulsating...... power that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long-lifetime film capacitors instead of electrolytic capacitors to improve the reliability...

  9. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  10. Photovoltaic Energy Harvester with Power Management System

    Directory of Open Access Journals (Sweden)

    M. Ferri

    2010-01-01

    Full Text Available We present a photovoltaic energy harvester, realized in 0.35-μm CMOS technology. The proposed system collects light energy from the environment, by means of 2-mm2 on-chip integrated microsolar cells, and accumulates it in an external capacitor. While the capacitor is charging, the load is disconnected. When the energy in the external capacitor is enough to operate the load for a predefined time slot, the load is connected to the capacitor by a power management circuit. The choice of the value of the capacitance determines the operating time slot for the load. The proposed solution is suitable for discrete-time-regime applications, such as sensor network nodes, or, in general, systems that require power supply periodically for short time slots. The power management circuit includes a charge pump, a comparator, a level shifter, and a linear voltage regulator. The whole system has been extensively simulated, integrated, and experimentally characterized.

  11. ICCP cathodic protection of tanks with photovoltaic power supply

    Directory of Open Access Journals (Sweden)

    Janowski Mirosław

    2016-01-01

    Full Text Available Corrosion is the result of the electrochemical reaction between a metal or composite material usually having conducting current properties. Control of corrosion related defect is a very important problem for structural integrity in ground based structures. Cathodic protection (CP is a technique to protect metallic structures against corrosion in an aqueous environment, it is employed intense on the steel drains in oil and gas industry, specifically to protect underground tanks and pipelines. CP is commonly applied to a coated structure to provide corrosion control to areas where the coating may be damaged. It may be applied to existing structures to prolong their life. There are two types of cathodic protection systems: sacrificial (galvanic anode cathodic protection (SACP; the other system is Impressed Current Cathodic Protection (ICCP. Majority of the structures protected employ impressed current system. The main difference between the two is that SACP uses the galvanic anodes which are electrochemically more electronegative than the structure to be protected - the naturally occurring electrochemical potential difference between different metallic elements to provide protection; ICCP uses an external power source (electrical generator with D.C. with inert anodes, and this system is used for larger structures, or where electrolyte resistivity is high and galvanic anodes cannot economically deliver enough current to provide protection. The essential of CP is based on two parameters, the evolution of the potential and the current of protection. A commonly accepted protection criterion used for steel is a potential value of minus 850 mV. ICCP system consist of anodes connected to a DC power source. As power sources may be used such as solar panels, wind turbines, etc. The object of this study is analysis of the possibilities and operating parameters of ICCP system supplied with photovoltaic solar panels. Photovoltaic generator made up of the

  12. Survey on the cost of the photovoltaic power system; Taiyoko hatsuden cost chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Comparisons were made of the power generation cost in Indonesia and Thailand between the photovoltaic power system and other power systems. From the difference in technical standards with Japan, trially calculated were the amount of the potential introduction and the possibly reduced cost. In Indonesia, a plan has started for the introduction of a 50W system to 1 million houses in the unelecrified area, but the introduction has not been so promoted as planned. In Thailand, a plan is being carried out for the introduction of the battery charge station system, but the introduction has remained small-scaled. Comparisons were made among the solar home system in Indonesia, the battery charge station system in Thailand, the diesel engine power generation, and the grid connection with the existing power distribution system. The result concluded that the solar home system is low-priced though it depends on the distance from the existing distribution line and the power consumption amount. Moreover, it was found that the system would be more economical than in the case of Japan if obeying international standards for the photovoltaic power system. 6 refs., 15 figs., 56 tabs.

  13. FY 2000 report on the results of the development of commercialization technology of the photovoltaic power system. International cooperation project (Collection of the information on the IEA photovoltaic power generation program); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu kokusai jigyo kyoryoku (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Based on 'the Implementing agreement for a research cooperation project on the photovoltaic power system' being promoted by IEA, collection of the information on the photovoltaic power system was made, and the FY 2000 results were summarized. In Task I: Exchange of the information on the photovoltaic power system and the spread, the final report on 'the study on added values of PV system' was made. In Task II: Operational performance and design of the photovoltaic power system and subsystem, specifications for new database were determined, and the existing data were checked/revised/added. In Task III: Design and operation of the stand-alone type and remote island use photovoltaic power plant, survey was conducted of the present situation of technical standards and quality guarantee. In Task 7: Photovoltaic power system integrated with construction materials, work was done for making a book of installation samples of the PV system integrated with construction materials in each country. In Task 8: Investigative study of possibilities of the large-scale photovoltaic power generation using the unused land such as desert, a report making of the secondary survey was started. (NEDO)

  14. FY 2000 report on the results of the development of commercialization technology of the photovoltaic power system. International cooperation project (Collection of the information on the IEA photovoltaic power generation program); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu kokusai jigyo kyoryoku (IEA taiyoko hatsuden program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Based on 'the Implementing agreement for a research cooperation project on the photovoltaic power system' being promoted by IEA, collection of the information on the photovoltaic power system was made, and the FY 2000 results were summarized. In Task I: Exchange of the information on the photovoltaic power system and the spread, the final report on 'the study on added values of PV system' was made. In Task II: Operational performance and design of the photovoltaic power system and subsystem, specifications for new database were determined, and the existing data were checked/revised/added. In Task III: Design and operation of the stand-alone type and remote island use photovoltaic power plant, survey was conducted of the present situation of technical standards and quality guarantee. In Task 7: Photovoltaic power system integrated with construction materials, work was done for making a book of installation samples of the PV system integrated with construction materials in each country. In Task 8: Investigative study of possibilities of the large-scale photovoltaic power generation using the unused land such as desert, a report making of the secondary survey was started. (NEDO)

  15. Solar photovoltaic projects in the mainstream power market

    CERN Document Server

    Wolfe, Philip

    2012-01-01

    Develop large-scale solar photovoltaic projects with this book, to feed power into a grid. Contains case studies of the Waldpolenz Energy Park, Germany, Lopburi Solar Plant in Thailand and what will be the world's largest PV plant, the Topaz Solar Farm in California. Also included are interviews from leading figures in the PV industry.Contents cover:planning and structuring projectssiting, planning and connection issuesbuilding and operating projectstechnology basicseconomies of PVhistory and business of PVfinancing and regulationtechnical aspects of system design.Supported by figures and photographs, this is for anyone wanting to master the commercial, professional, financial, engineering or political aspects of developing mega-watt solar PV projects in a mainstream power market.

  16. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  17. Photovoltaic-Concentrator Based Power Beaming For Space Elevator Application

    International Nuclear Information System (INIS)

    Becker, Daniel E.; Chiang, Richard; Keys, Catherine C.; Lyjak, Andrew W.; Starch, Michael D.; Nees, John A.

    2010-01-01

    The MClimber team, at the Student Space Systems Fabrication Laboratory of the University of Michigan, has developed a prototype robotic climber for competition in the NASA sponsored Power Beaming Challenge. This paper describes the development of the system that utilizes a simple telescope to deliver an 8 kW beam to a photovoltaic panel in order to power a one kilometer climb. Its unique approach utilizes a precision GPS signal to track the panel. Fundamental systems of the project were implemented using a design strategy focusing on robustness and modularity. Development of this design and its results are presented.

  18. Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies

    Energy Technology Data Exchange (ETDEWEB)

    Enrique, J.M.; Duran, E.; Andujar, J.M. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain); Sidrach-de-Cardona, M. [Departamento de Fisica Aplicada, II, Universidad de Malaga (Spain)

    2007-01-15

    The operating point of a photovoltaic generator that is connected to a load is determined by the intersection point of its characteristic curves. In general, this point is not the same as the generator's maximum power point. This difference means losses in the system performance. DC/DC converters together with maximum power point tracking systems (MPPT) are used to avoid these losses. Different algorithms have been proposed for maximum power point tracking. Nevertheless, the choice of the configuration of the right converter has not been studied so widely, although this choice, as demonstrated in this work, has an important influence in the optimum performance of the photovoltaic system. In this article, we conduct a study of the three basic topologies of DC/DC converters with resistive load connected to photovoltaic modules. This article demonstrates that there is a limitation in the system's performance according to the type of converter used. Two fundamental conclusions are derived from this study: (1) the buck-boost DC/DC converter topology is the only one which allows the follow-up of the PV module maximum power point regardless of temperature, irradiance and connected load and (2) the connection of a buck-boost DC/DC converter in a photovoltaic facility to the panel output could be a good practice to improve performance. (author)

  19. Getting data for prediction of electricity generation from photovoltaic power plants

    International Nuclear Information System (INIS)

    Majer, V.; Hejtmankova, P.

    2012-01-01

    This paper deals with the short term prediction of generated electricity from photovoltaic power plants. This way of electricity generation is strongly dependent on the actual weather, mainly solar radiation and temperature. In this paper the simple method for getting solar radiation data is presented. (Authors)

  20. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  1. Improving the Output Power Stability of a High Concentration Photovoltaic System with Supercapacitors: A Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Yu-Pei Huang

    2015-01-01

    Full Text Available The output power of a high concentration photovoltaic (HCPV system is very sensitive to fluctuating tracking errors and weather patterns. To help compensate this shortcoming, supercapacitors have been successfully incorporated into photovoltaic systems to improve their output power stability. This study examined the output power stability improvement of an HCPV module with a supercapacitor integrated into its circuit. Furthermore, the equivalent model of the experimental circuit is presented and analyzed. Experimental results suggest that integrating a supercapacitor into an HCPV module could improve its output power stability and further extend its acceptance angle. This paper provides preliminary data of the improvement and its evaluation method, which could be utilized for further improvements to an HCPV system.

  2. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial air conditioners and... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions apply...

  3. 75 FR 72739 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners

    Science.gov (United States)

    2010-11-26

    ...: Correction Factor for Room Air Conditioners AGENCY: Office of the General Counsel, Department of Energy (DOE... air conditioners. The petition seeks temporary enforcement forbearance, or in the alternative, a... procedures for room air conditioners. Public comment is requested on whether DOE should grant the petition...

  4. A Three-Port Topology Comparison for a Low Power Stand-Alone Photovoltaic System

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    Three-port converter (TPC) topologies for renewable energy systems aim to provide higher efficiency and power density than conventional cascaded structures. This work proposes an analytical comparison of different TPC topologies for a photovoltaic LED lamp stand-alone system. A comparison using c...... component stress factor (CSF) is performed, which gives a quantitative measure of the performance of the converter. The candidate topologies are compared to each other according to a defined LED lighting strategy and a solar irradiation profile.......Three-port converter (TPC) topologies for renewable energy systems aim to provide higher efficiency and power density than conventional cascaded structures. This work proposes an analytical comparison of different TPC topologies for a photovoltaic LED lamp stand-alone system. A comparison using...

  5. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    Science.gov (United States)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  6. Need Analysis for Air Conditioners in Public Sector of Surabaya City Government

    Directory of Open Access Journals (Sweden)

    Dwiarti Larasputri

    2017-01-01

    Full Text Available In typical buildings, air conditioners have the biggest percentage in energy consumption among all sectors. It makes a good management for air conditioners is needed and important in order to use the energy efficiently. Having a very hot and humid weather, it gives impact that most of buildings in Surabaya installed air conditioners, including Surabaya City Government office buildings. However, there is no regulation nor guidance how to manage air conditioners in Surabaya City Government, while Surabaya itself has a goal to become a green-eco city. Then, the existing condition of air conditioners usage in Surabaya Government units (SKPDs is evaluated. The evaluation resulted that most of air conditioners were over capacity and not all of them were efficient in energy consumption. Therefore, a need analysis is required to help Surabaya City Government managing its air conditioners better. By applying two different concepts, one is based on the architectural view and another one is based on green building criteria, the existing condition is analyzed and two procedures of need analysis are produced. The procedures can be implemented for two different conditions of office building rooms in Surabaya City Government.

  7. Present condition and the future of photovoltaic generating systems. Part 5. Future perspective of photovoltaic power systems; Taiyo hikarihatsuden system no genjo to shorai. 5. Taiyo hikarihatsuden system no shorai tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Horigome, T

    1994-12-20

    In this paper, as the future perspective of photovoltaic power systems, the establishment of the legal environment for the popularization of the photovoltaic power systems in large amounts and the future prediction of the popularization of power generation are described. Specially the following grand ideas are introduced: building in high seas regeneratable energy transformation plants with solar energy as the main energy, generating combined power of photovoltaic, solar heat, wave and temperature difference of the sea water, biomass, solar-bio power generating without CO2 exhaustion, building hard solar plants to produce electricity, hydrogen, methanol and fresh water from regeneratable energy, and breeding fish, shells and see weed in the sea pasture land under the plants, which are the so called `Energy sea pasture high breed plants (REPO Plan)` and also space power generating i.e. setting up special satellites for solar power generation in synchronous orbits, generating power through solar batteries or solar heat and then transmitting it to the earth through microwave. 12 refs., 4 figs.

  8. [Gohieria fusca found in dust of air-conditioner filters].

    Science.gov (United States)

    Qiang, Chai; Xiao-Dong, Zhan; Wei, Guo; Chao-Pin, Li

    2017-09-25

    To investigate the pollution status of Gohieria fusca in the air conditioner-filters of different places in Wuhu City. The dust samples were collected from the filters of air-conditioners in dining rooms, shopping malls, hotels and households between June and September, 2013, and G. fusca was detected in the dust samples. There were 430 dust samples collected and 98 were G. fusca positive with the breeding rate of 22.79%. The difference of breeding rates of G. fusca were statistically significant among the different places ( χ 2 =18.294, P air-conditioner filters in Wuhu City gravely.

  9. Photovoltaic electricity industry and markets Status and trends in France 1992-2002 - Technical report. Survey report of photovoltaic power applications in France 2002

    International Nuclear Information System (INIS)

    Claverie, Andre; Juquois, Fabrice

    2003-01-01

    The report provides a picture of the photovoltaic industry and its applications in France covering the years 1992 to end 2002. The main stream of photovoltaic (PV) activity in France is that of off-grid power systems. Nevertheless, the ADEME and other public authority partners decided in 1999 to contribute to the funding of grid-connected distributed photovoltaic power systems. During the year 2002, 3,4 MW of photovoltaic power systems were installed in France and its overseas departments. The annual off-grid PV power system market remains stable at around 2,4 MW per year and that of grid-connected distributed power systems reached almost 1 MW in 2002. The total cumulative installed PV power in France is 17 MW of which 15 MW are off-grid systems and 2 MW are grid-connected distributed PV power systems. This installed capacity represents the annual production of 15 GWh of electricity. The PV cell/module industry remains very active. The annual production of photovoltaic multi-crystalline silicon cells increased by 25 % during the year 2002 to reach 17 MW while the production of amorphous silicon thin film modules increased slightly to go over half a megawatt. Two French companies started introducing on the market photovoltaic modules specifically designed for building integration. Price of photovoltaic power systems is decreasing towards 20 euros per watt for off-grid systems under public funding and turnkey prices for grid-connected distributed PV power systems vary from 6 to 8 euros per watt according to the level of building integration. Business turnover of main companies covering the whole field of cell/module manufacturing and PV power system developers/installers, increased 18 % in 2002 to reach 130 million euros. Due to a Governmental decision taken in 1998, the ADEME increased its annual public budget for the promotion of PV in France to reach around 10 MEUR per year. This new measure allowed a) to reactivate the ADEME's research and technological

  10. Detecting photovoltaic solar panels using hyperspectral imagery and estimating solar power production

    Science.gov (United States)

    Czirjak, Daniel

    2017-04-01

    Remote sensing platforms have consistently demonstrated the ability to detect, and in some cases identify, specific targets of interest, and photovoltaic solar panels are shown to have a unique spectral signature that is consistent across multiple manufacturers and construction methods. Solar panels are proven to be detectable in hyperspectral imagery using common statistical target detection methods such as the adaptive cosine estimator, and false alarms can be mitigated through the use of a spectral verification process that eliminates pixels that do not have the key spectral features of photovoltaic solar panel reflectance spectrum. The normalized solar panel index is described and is a key component in the false-alarm mitigation process. After spectral verification, these solar panel arrays are confirmed on openly available literal imagery and can be measured using numerous open-source algorithms and tools. The measurements allow for the assessment of overall solar power generation capacity using an equation that accounts for solar insolation, the area of solar panels, and the efficiency of the solar panels conversion of solar energy to power. Using a known location with readily available information, the methods outlined in this paper estimate the power generation capabilities within 6% of the rated power.

  11. Optimal sizing method for constituent elements of stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Hirotada; Oi, Yoichi [Hokuriku Electric Power Co., Inc. Toyama (Japan)

    1988-12-25

    The purpose of the report was to calculate the optimal volume of constituent elements of stand-alone photovoltaic power systems, based on the distribution of global radiation on an inclined surface (herein-after called flux of solar radiation), which had been previously measured, and the size of load to be supplied. The least power generation cost was calculated, supposing that setting load was 176kWh/month and the loss of load probability (LOLP) was 1%, by using actual amount of solar radiation in May 1985. The cost was divided into two components: one was proportionate to the size of solar cell, and the other was in proportion to the battery volume. And then, the cost of twenty-year operation(TLC) was calculated. The size of array and the battery volume, which minimize the cost, can be determined when TLC is differentiate. Since auxiliary power source is not attached to this system, it is necessary to restrict the load in order to meet the electric power shortage. In case of the cost at construction in 1984, a standard model indicating the least power generation cost is a photovoltaic system with the array size of A=49.0m{sup 2} and the battery volume of Q=568(Ah). 4 refs., 9 figs., 10 tabs.

  12. Real time estimation of photovoltaic modules characteristics and its application to maximum power point operation

    Energy Technology Data Exchange (ETDEWEB)

    Garrigos, Ausias; Blanes, Jose M.; Carrasco, Jose A. [Area de Tecnologia Electronica, Universidad Miguel Hernandez de Elche, Avda. de la Universidad s/n, 03202 Elche, Alicante (Spain); Ejea, Juan B. [Departamento de Ingenieria Electronica, Universidad de Valencia, Avda. Dr Moliner 50, 46100 Valencia, Valencia (Spain)

    2007-05-15

    In this paper, an approximate curve fitting method for photovoltaic modules is presented. The operation is based on solving a simple solar cell electrical model by a microcontroller in real time. Only four voltage and current coordinates are needed to obtain the solar module parameters and set its operation at maximum power in any conditions of illumination and temperature. Despite its simplicity, this method is suitable for low cost real time applications, as control loop reference generator in photovoltaic maximum power point circuits. The theory that supports the estimator together with simulations and experimental results are presented. (author)

  13. Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations

    International Nuclear Information System (INIS)

    Desideri, U.; Zepparelli, F.; Morettini, V.; Garroni, E.

    2013-01-01

    Highlights: ► Life cycle was assessed for both concentrated solar power and photovoltaic systems. ► The PV plant has a higher environmental impact than the CSP plant. ► The Global Warming Potential is lower for the CSP than for the PV plant. ► The energy payback time is lower for the CSP than for the PV plant. -- Abstract: Solar energy is an important alternative energy source to fossil fuels and theoretically the most available energy source on the earth. Solar energy can be converted into electric energy by using two different processes: by means of thermodynamic cycles and the photovoltaic conversion. Solar thermal technologies, sometimes called thermodynamic solar technologies, operating at medium (about 500 °C) and high temperatures (about 1000 °C), have recently attracted a renewed interest and have become one of the most promising alternatives in the field of solar energy utilization. Photovoltaic conversion is very interesting, although still quite expensive, because of the absence of moving components and the reduced operating and management costs. The main objectives of the present work are: •to carry out comparative technical evaluations on the amount of electricity produced by two hypothetical plants, located on the same site, for which a preliminary design was made: a solar thermal power plant with parabolic trough collectors and a photovoltaic plant with a single-axis tracking system; •to carry out a comparative analysis of the environmental impact derived from the processes of electricity generation during the whole life cycle of the two hypothetical power plants. First a technical comparison between the two plants was made assuming that they have the same nominal electric power and then the same total covered surface. The methodology chosen to evaluate the environmental impact associated with the power plants is the Life Cycle Assessment (LCA). It allows to analyze all the phases of the life cycle of the plants, from the extraction of

  14. Compressor motor for air conditioners realizing high efficiency and low cost; Kokoritsu tei cost wo jitsugenshita eakonyo asshukuki motor

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Y.; Kawamura, K.; Imazawa, K. [Toshiba Corp., Tokyo (Japan)

    2000-01-01

    The compressor motor accounts for most of the consumption of electric power in an air conditioner. To promote energy-saving, Toshiba has been progressively changing the compressor motors in its air conditioners to high-efficiency brushless DC motors. We have now developed a new compressor motor in order to achieve even greater energy-saving. A concentrated winding system was adopted featuring direct winding on the teeth of the stator core, for the first time in the industry. As a result, it was possible to realize a high-efficiency, compact, lightweight, and low-cost motor. Moreover, by constructing a new system for production, we were able to improve productivity and quality. The newly developed motor is expected to contribute to the further diffusion of energy-saving air conditioners. (author)

  15. Survey for making a data book on the new energy technological development (photovoltaic power generation); Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (taiyoko hatsuden)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Data on the photovoltaic power generation are synthetically collected, systematized, and summarized as a data book on the photovoltaic power system. Main details are as follows: photovoltaic power systems were listed by usage, by size of power generation, and by authority concerned. Significance of adopting the photovoltaic system is stated at each level of each user of the country, local governments and individuals. As to the present situation of the solar cell market, solar cells were arranged in terms of production volume by region, production volume by type, production volume by company, shipment by usage, production amount, and price. With regard to policies of each country on the photovoltaic power system, those of advanced countries including Japan were summed up. Concerning the introduction of the system in each country, examples of the introduction were made clear, and at the same time the estimated volume of and the target for introduction of the photovoltaic power system were summarized. In respect to the subsidy system for the introduction of the photovoltaic power system, arranged were the subsidy system, the preferential tax system and the loan system.

  16. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - R and D of evaluation technology of the photovoltaic power system. Separate volume. R and D of the system evaluation technology (Data book on the photovoltaic power system); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu - System hyoka gijutsu no kenkyu kaihatsu (Bessatsu : Taiyoko hatsuden system data shu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of establishing the optimum design and optimum operation technology of various kinds of photovoltaic power system, data were collected to make a data book on various kinds of photovoltaic power system of which the future commercialization is expected. Included in this data book were the monthly report on operation data on demonstrative test facilities at the Hamamatsu site of JQA (Japan Quality Assurance Organization), daily graph of insolation/temperature, monthly graph of wind direction/wind velocity. Further, as the data on the residential use photovoltaic power system, data on the following were summed up: information on the site of installation of the residential use photovoltaic power system (photo information, the state of installation such as sites installed more in FY 2000, drawings of module arrangement and measuring point layout, etc.), daily report on operation (graph of daily trends, daily report by site, hourly report by site, daily report on all sites, hourly report on all sites), operation data and performance indices, list of troubles arising in the residential use photovoltaic power system, other system information about residential use measuring data, power generation characteristics and {alpha}{sub pmax} of residential use solar cell modules, etc. (NEDO)

  17. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-Jiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed. (author)

  18. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weijiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang Chunlu, E-mail: chunlu.zhang@carrier.utc.co [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.

  19. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    International Nuclear Information System (INIS)

    Zhang Weijiang; Zhang Chunlu

    2011-01-01

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.

  20. Energy performance analysis for a photovoltaic, diesel, battery hybrid power supply system

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-03-01

    Full Text Available This paper looks at an energy performance analysis for a photovoltaic, diesel, and battery hybrid power supply system. The procedure starts by the identification of the hourly load requirements for a typical target consumer and the concept of load...

  1. Re-considering the Economics of Photovoltaic Power

    Energy Technology Data Exchange (ETDEWEB)

    Bazilian, M. [International Institute for Applied Systems Analysis IIASA, Laxenburg (Austria); Onyeji, I. [United Nations Industrial Development Organization UNIDO, Vienna (Austria); Liebreich, M.; Chase, J. [Bloomberg New Energy Finance BNEF, London (United Kingdom); MacGill, I. [University of New South Wales, Sydney (Australia); Shah, J. [KMR Infrastructure, Washington DC (United States); Gielen, D. [International Renewable Energy Agency IRENA, IITC, Bonn (Germany); Arent, D. [Joint Institute for Strategic Energy Analysis, Colorado (United States); Landfear, D. [AGL Energy Limited, Sydney (Australia); Zhengrong, S. [Suntech Power Holdings, Wuxi (China)

    2012-05-15

    We briefly consider the recent dramatic reductions in the underlying costs and market prices of solar photovoltaic (PV) systems, and their implications for decision-makers. In many cases, current PV costs and the associated market and technological shifts witnessed in the industry have not been fully noted by decision-makers. The perception persists that PV is prohibitively expensive, and still has not reached competitiveness? We find that the commonly used analytical comparators for PV vis a vis other power generation options may add further confusion. In order to help dispel existing misconceptions, we provide some level of transparency on the assumptions, inputs and parameters in calculations relating to the economics of PV. The paper is aimed at informing policy makers, utility decision-makers, investors and advisory services, in particular in high-growth developing countries, as they weigh the suite of power generation options available to them.

  2. [Research on dust mite allergen gathered from filters of air-conditioners].

    Science.gov (United States)

    Zhan, Xiao-dong; Wu, Hua; Hu, Hui-min; Li, Chao-pin

    2015-12-01

    To discuss the relation between the dust mite allergen (Der) in air-conditioner filters and the asthma attack. The dust samples were collected from the filters of air-conditioners in dining rooms, shopping malls, hotels and households, respectively. The concentrations of Der f 1 and Der p1 were detected by ELISA, and the dust mite immune activities were determined by dot-ELISA. The concentrations of Der f 1 in the dining rooms, shopping malls, hotels and households were 1.52, 1.24, 1.31 µg/g and 1.46 µg/g respectively, and the concentrations of Der p 1 were 1.23, 1.12, 1.16 µg/ g and 1.18 µg, respectively. One hour after the running of air-conditioners, the concentrations of Der f 1 and Der p 1 in the air were higher than those before the running of air-conditioners, and the differences were significant (P air-conditioners in domestic houses in Wuhu City, and the allergens can induce asthma.

  3. Spectra of conditionalization and typicality in the multiverse

    Science.gov (United States)

    Azhar, Feraz

    2016-02-01

    An approach to testing theories describing a multiverse, that has gained interest of late, involves comparing theory-generated probability distributions over observables with their experimentally measured values. It is likely that such distributions, were we indeed able to calculate them unambiguously, will assign low probabilities to any such experimental measurements. An alternative to thereby rejecting these theories, is to conditionalize the distributions involved by restricting attention to domains of the multiverse in which we might arise. In order to elicit a crisp prediction, however, one needs to make a further assumption about how typical we are of the chosen domains. In this paper, we investigate interactions between the spectra of available assumptions regarding both conditionalization and typicality, and draw out the effects of these interactions in a concrete setting; namely, on predictions of the total number of species that contribute significantly to dark matter. In particular, for each conditionalization scheme studied, we analyze how correlations between densities of different dark matter species affect the prediction, and explicate the effects of assumptions regarding typicality. We find that the effects of correlations can depend on the conditionalization scheme, and that in each case atypicality can significantly change the prediction. In doing so, we demonstrate the existence of overlaps in the predictions of different "frameworks" consisting of conjunctions of theory, conditionalization scheme and typicality assumption. This conclusion highlights the acute challenges involved in using such tests to identify a preferred framework that aims to describe our observational situation in a multiverse.

  4. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  5. Conceptual design and systems analysis of photovoltaic power systems. Volume III(1). Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pittman, P.F.

    1977-05-01

    Conceptual designs were made and analyses were performed on three types of solar photovoltaic power systems. Included were Residential (1 to 10 kW), Intermediate (0.1 to 10 MW), and Central (50 to 1000 MW) Power Systems to be installed in the 1985 to 2000 time period. Subsystem technology presented here includes: insolation, concentration, silicon solar cell modules, CdS solar cell module, array structure, battery energy storage, power conditioning, residential power system architectural designs, intermediate power system structural design, and central power system facilities and site survey.

  6. Renewable energy distributed power system with photovoltaic/ thermal and bio gas power generators

    International Nuclear Information System (INIS)

    Haider, M.U.; Rehman, S.U.

    2011-01-01

    The energy shortage and environmental pollution is becoming an important problem in these days. Hence it is very much important to use renewable power technologies to get rid of these problems. The important renewable energy sources are Bio-Energy, Wind Energy, Hydrogen Energy, Tide Energy, Terrestrial Heat Energy, Solar Energy, Thermal Energy and so on. Pakistan is rich in all these aspects particularly in Solar and Thermal Energies. In major areas of Pakistan like in South Punjab, Sind and Baluchistan the weather condition are very friendly for these types of Renewable Energies. In these areas Solar Energy can be utilized by solar panels in conjunction with thermal panels. The Photovoltaic cells are used to convert Solar Energy directly to Electrical Energy and thermal panels can be uses to convert solar energy into heat energy and this heat energy will be used to drive some turbine to get Electrical Energy. The Solar Energy can be absorbed more efficiently by any given area of Solar Panel if these two technologies can be combined in such a way that they can work together. The first part of this paper shows that how these technologies can be combined. Furthermore it is known to all that photovoltaic/thermal panels depend entirely on weather conditions. So in order to maintain constant power a biogas generator is used in conjunction with these. (author)

  7. SUNRAYCE 95: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States). Biomedical and Environmental Assessment Group

    1994-05-27

    This document is a power system and battery safety handbook for participants in the SUNRAYCE 95 solar powered electric vehicle program. The topics of the handbook include batteries, photovoltaic modules, safety equipment needed for working with sulfuric acid electrolyte and batteries, battery transport, accident response, battery recharging and ventilation, electrical risks on-board vehicle, external electrical risks, electrical risk management strategies, and general maintenance including troubleshooting, hydrometer check and voltmeter check.

  8. Optimal sizing method for stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Groumpos, P P; Papageorgiou, G

    1987-01-01

    The total life-cycle cost of stand-alone photovoltaic (SAPV) power systems is mathematically formulated. A new optimal sizing algorithm for the solar array and battery capacity is developed. The optimum value of a balancing parameter, M, for the optimal sizing of SAPV system components is derived. The proposed optimal sizing algorithm is used in an illustrative example, where a more economical life-cycle cost has bene obtained. The question of cost versus reliability is briefly discussed.

  9. Advances in thin-film solar cells for lightweight space photovoltaic power

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  10. Viewpoint Mitigation of emissions through energy efficiency standards for room air conditioners in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Amalina, M.A.

    2004-01-01

    Malaysian economy has grown rapidly in the last two decades. This growth has increased the ownership of household electrical appliances including room air conditioners. The number of users of air conditioners is predicted to grow dramatically in Malaysian households in the future. To reduce energy consumption in the residential sector, the Malaysia Energy Commission is considering implementing minimum energy efficiency standards for room air conditioners in early 2004. This paper attempts to predict the potential mitigation of emissions through energy efficiency standards for room air conditioners in Malaysia. The calculations were based on the growth of room air conditioners ownership data in Malaysian households. The study found that the energy efficiency standards for room air conditioners would mitigate a significant amount of emissions in this country

  11. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  12. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  13. Subsidized project for development of technology in putting photovoltaic power generation system into practice. Report of international joint demonstrative R and D on photovoltaic power generation system; Taiyoko hatsuden system kokusai kyodo jissho kaihatsu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The following joint researches are in progress utilizing natural conditions and social systems in Nepal, Mongolia, Thailand, Malaysia and Vietnam for the purpose of enhancing environmental adaptability, reliability, etc., of technologies. (1) Nepal; accelerated demonstrative research utilizing highland conditions, (2) Mongolia; demonstrative research of movable type photovoltaic power generation system, (3) Thailand; demonstrative research of photovoltaic generation system for battery-charging stations, (4) Malaysia; accelerated demonstrative research utilizing tropical conditions, and (5) Vietnam; demonstrative research of hybrid system on photovoltaic power generation and micro hydro power generation. The research assets of (1) and (3) whose researches have been finished were provided gratis for the co-researcher countries. In (5), on the basis of the geographical conditions such as annual average quantity of solar radiation, conduit for water-turbine, energy complementing relation, load demand, and degree of installation difficulty, Trang Village in Vietnam was selected, with a system decided on PV:100 kW/MH:25 kW/control system. The MH is an induction generator. The primary pieces of equipment are a generator, a storage battery, an inverter and a system control panel. (NEDO)

  14. Photovoltaic Shading Testbed for Module-Level Power Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; Meydbray, J.; Donovan, M.; Forrest, J.

    2012-05-01

    This document describes a repeatable test procedure that attempts to simulate shading situations, as would be experienced by typical residential rooftop photovoltaic (PV) systems. This type of shading test is particularly useful to evaluate the impact of different power conversion setups, including microinverters, DC power optimizers and string inverters, on overall system performance. The performance results are weighted based on annual estimates of shade to predict annual performance improvement. A trial run of the test procedure was conducted with a side by side comparison of a string inverter with a microinverter, both operating on identical 8kW solar arrays. Considering three different shade weighting conditions, the microinverter was found to increase production by 3.7% under light shading, 7.8% under moderate shading, and 12.3% under heavy shading, relative to the reference string inverter case. Detail is provided in this document to allow duplication of the test method at different test installations and for different power electronics devices.

  15. 新能源光伏发电系统的应用%Application of photovoltaic power generation system of new energy

    Institute of Scientific and Technical Information of China (English)

    牟洪波; 贾承悦

    2014-01-01

    The new energy solar photovoltaic power generation system and its sustainable , clean without pollution and safety is the development direction of future energy.Application and photovoltaic power generation system more deeply into power the vast number of customers, in this paper, Qilu Industrial University 5MW photovoltaic power station as an example, introduces the main equipment of grid connected photovoltaic power generation system and the technical conditions and requirements .%新能源太阳能光伏发电系统其可持续性,清洁无污染及安全性是未来能源的发展方向。光伏发电系统的应用越来越深入到广大的电力客户当中,本文以齐鲁工业大学5MW光伏发电站为例,介绍了光伏发电系统并网的主要设备以及技术条件和要求。

  16. Design for Reliability of Power Electronics for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Blaabjerg, Frede

    2016-01-01

    Power electronics is the enabling technology for optimizing energy harvesting from renewable systems like Photovoltaic (PV) and wind power systems, and also for interfacing grid-friendly energy systems. Advancements in the power semiconductor technology (e.g., wide band-gap devices) have pushed...... the conversion efficiency of power electronics to above 98%, where however te reliability of power electronics is becoming of high concern. Therefore, it is important to design for reliable power electronic systems to lower the risks of many failures during operation; otherwise will increase the cost...... for maintenance and reputation, thus affecting the cost of PV energy. Today's PV power conversion applications require the power electronic systems with low failure rates during a service life of 20 years or even more. To achieve so, it is vital to know the main life-limiting factors of power electronic systems...

  17. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  18. Energy efficiency and energy saving air conditioners window and split type; Eficiencia energetica e economia de energia de condicionadores de ar tipo janela e split

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edson Palhares de; Cardoso, Rafael Balbino; Nogueira, Luiz Augusto Horta [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2010-07-01

    The air-conditioners of window end Split type are responsible for a significant portion of energy consumption in residential sector of Brazil, from 20% of the sector. This study evaluates the impact energy of the Seal Program PROCEL in air-conditioners of window end Split type, showing the efficiency gains for the country in terms of energy saving. For this evaluation it was considered the effects of temperature and loss of performance due to age, PROCEL Stamp Program resulted in a power savings of 664 GWh in air-conditioners of window type residential sector in 2008. (author)

  19. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  20. Intermediate-sized photovoltaic plants to supply power villages: Future developments

    International Nuclear Information System (INIS)

    Previ, A.

    1990-01-01

    The activity promoted by the European Communities, aimed at demonstrating the feasibility of supplying both active and passive power distribution networks by means of photovoltaic plants (PV) has been highly successful. The PV plants at Aghia Roumeli, Pellworm, Rondulinu, and Vulcano are stand-alone plants that can supply small isolated communities. The plant at Kytnos supplies power to the grid with the help of electrochemical storage; the plants at Pellworm, and Vulcano can also supply power to the grid, the first with e.c. storage and the second without such storage. This paper gives an overview of the activity promoted by the Communities EEC-DGXII research group aimed at demonstrating the feasibility of supplying both active and passive power distribution networks by means of PV plants. Possible improvements of the power conditioning sub-system are presented

  1. Design description of the Tangaye Village photovoltaic power system

    Science.gov (United States)

    Martz, J. E.; Ratajczak, A. F.

    1982-01-01

    The engineering design of a stand alone photovoltaic (PV) powered grain mill and water pump for the village of Tangaye, Upper Volta is described. The socioeconomic effects of reducing the time required by women in rural areas for drawing water and grinding grain were studied. The suitability of photovoltaic technology for use in rural areas by people of limited technical training was demonstrated. The PV system consists of a 1.8-kW (peak) solar cell array, 540 ampere hours of battery storage, instrumentation, automatic controls, and a data collection and storage system. The PV system is situated near an improved village well and supplies d.c. power to a grain mill and a water pump. The array is located in a fenced area and the mill, battery, instruments, controls, and data system are in a mill building. A water storage tank is located near the well. The system employs automatic controls which provide battery charge regulation and system over and under voltage protection. This report includes descriptions of the engineering design of the system and of the load that it serves; a discussion of PV array and battery sizing methodology; descriptions of the mechanical and electrical designs including the array, battery, controls, and instrumentation; and a discussion of the safety features. The system became operational on March 1, 1979.

  2. Maximum power analysis of photovoltaic module in Ramadi city

    Energy Technology Data Exchange (ETDEWEB)

    Shahatha Salim, Majid; Mohammed Najim, Jassim [College of Science, University of Anbar (Iraq); Mohammed Salih, Salih [Renewable Energy Research Center, University of Anbar (Iraq)

    2013-07-01

    Performance of photovoltaic (PV) module is greatly dependent on the solar irradiance, operating temperature, and shading. Solar irradiance can have a significant impact on power output of PV module and energy yield. In this paper, a maximum PV power which can be obtain in Ramadi city (100km west of Baghdad) is practically analyzed. The analysis is based on real irradiance values obtained as the first time by using Soly2 sun tracker device. Proper and adequate information on solar radiation and its components at a given location is very essential in the design of solar energy systems. The solar irradiance data in Ramadi city were analyzed based on the first three months of 2013. The solar irradiance data are measured on earth's surface in the campus area of Anbar University. Actual average data readings were taken from the data logger of sun tracker system, which sets to save the average readings for each two minutes and based on reading in each one second. The data are analyzed from January to the end of March-2013. Maximum daily readings and monthly average readings of solar irradiance have been analyzed to optimize the output of photovoltaic solar modules. The results show that the system sizing of PV can be reduced by 12.5% if a tracking system is used instead of fixed orientation of PV modules.

  3. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Labeling for central air conditioners, heat... (âAPPLIANCE LABELING RULEâ) Required Disclosures § 305.12 Labeling for central air conditioners, heat pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and...

  4. Evaluation of environmental and physiological factors of a whole ceiling-type air conditioner using a salivary biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Yusuke; Yamaguchi, Masaki [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Morito, Naomi; Nishimiya, Hajime; Yamagishi, Hideyuki [Asahi Kasei Homes Corporation, R and D Laboratories, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)

    2009-06-15

    In order to improve environmental condition such as humidity and airflow in living spaces, a whole ceiling-type air conditioner is proposed. This novel air conditioner exhaust dispersed airflow from the whole ceiling by using a 3-dimensional knit fabric. The purpose of this paper is to reveal the effects when controlling humidity and airflow using the whole ceiling-type air conditioner compared to a commercialized concentrated exhaust air conditioner (normal-type air conditioner) under the same temperature. Salivary {alpha}-amylase activity (SAA) was used as an index of sympathetic nervous activity. An acute experiment for a 15 min period was conducted using 12 healthy young female adults. No significant differences in room and skin temperatures were observed between the whole ceiling-type air conditioner and the normal-type air conditioner. The whole ceiling-type air conditioner showed 11.1% lower humidity than the normal-type air conditioner. The whole ceiling-type air conditioner showed one-thirteenth the airflow of the normal-type air conditioner. As a result, the PMV of the whole ceiling-type air conditioner was more comfortable level than the normal one. Moreover, subjective evaluation questionnaire revealed a significant difference was observed in wind perception (windy). The SAA of subjects under the whole ceiling-type air conditioner showed significantly low values compared with the normal-type air conditioner. It was found that the subject's sympathetic nervous activity has been inactivated under the conditions of the whole ceiling-type air conditioner. Thus, it was revealed that the whole ceiling-type air conditioner provides a more comfortable air environment by reducing physical stimulations to humans. (author)

  5. A maximum power point tracking for photovoltaic-SPE system using a maximum current controller

    Energy Technology Data Exchange (ETDEWEB)

    Muhida, Riza [Osaka Univ., Dept. of Physical Science, Toyonaka, Osaka (Japan); Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Park, Minwon; Dakkak, Mohammed; Matsuura, Kenji [Osaka Univ., Dept. of Electrical Engineering, Suita, Osaka (Japan); Tsuyoshi, Akira; Michira, Masakazu [Kobe City College of Technology, Nishi-ku, Kobe (Japan)

    2003-02-01

    Processes to produce hydrogen from solar photovoltaic (PV)-powered water electrolysis using solid polymer electrolysis (SPE) are reported. An alternative control of maximum power point tracking (MPPT) in the PV-SPE system based on the maximum current searching methods has been designed and implemented. Based on the characteristics of voltage-current and theoretical analysis of SPE, it can be shown that the tracking of the maximum current output of DC-DC converter in SPE side will track the MPPT of photovoltaic panel simultaneously. This method uses a proportional integrator controller to control the duty factor of DC-DC converter with pulse-width modulator (PWM). The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment. (Author)

  6. Development of a solar powered residential air conditioner (General optimization)

    Science.gov (United States)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  7. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    Science.gov (United States)

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  8. Design and Implementation of Photovoltaic Maximum Power Point Tracking Controller

    Directory of Open Access Journals (Sweden)

    Fawaz S. Abdullah

    2018-03-01

    Full Text Available  The power supplied by any solar array depends upon the environmental conditions as weather conditions (temperature and radiation intensity and the incident angle of the radiant source. The work aims to study the maximum power tracking schemes that used to compare the system performance without and with different types of controllers. The maximum power points of the solar panel under test studied and compared with two controller's types.  The first controller is the proportional- integral - derivative controller type and the second is the perturbation and observation algorithm controller. The associated converter system is a microcontroller based type, whereas the results studied and compared of greatest power point of the Photovoltaic panels under the different two controllers. The experimental tests results compared with simulation results to verify accurate performance.

  9. Utilization of air conditioner condenser as water heater in an effort to energy conservation

    Science.gov (United States)

    Sonawan, Hery; Saputro, Panji; Kurniawan, Iden Muhtar

    2018-04-01

    This paper presents an experimental study of utilization of air conditioner condenser as water heater. Modification of existing air conditioner system is an effort to harvest waste heat energy from condenser. Modification is conducted in order to test the system into two mode tests, first mode with one condenser and second mode with two condensers. Harvesting the waste heat from condenser needs a theoretical and practice study to see how much the AC performance changes if modifications are made. It should also be considered how the technique of harvesting waste heat for water heating purposes. From the problem, this paper presents a comparison between AC performance before and after modification. From the experiment, an increase in compressor power consumption is 4.3% after adding a new condenser. The hot water temperature is attained to 69 °C and ready for warm bath. The increase in power consumption is not too significant compared to the attainable hot water temperature. Also seen that the value of condenser Performance Factor increase from 5.8 to 6.25 or by 7.8%.

  10. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  11. Performance of unified power quality conditioner (UPQC) based on fuzzy controller for attenuating of voltage and current harmonics

    Science.gov (United States)

    Milood Almelian, Mohamad; Mohd, Izzeldin I.; Asghaiyer Omran, Mohamed; Ullah Sheikh, Usman

    2018-04-01

    Power quality-related issues such as current and voltage distortions can adversely affect home and industrial appliances. Although several conventional techniques such as the use of passive and active filters have been developed to increase power quality standards, these methods have challenges and are inadequate due to the increasing number of applications. The Unified Power Quality Conditioner (UPQC) is a modern strategy towards correcting the imperfections of voltage and load current supply. A UPQC is a combination of both series and shunt active power filters in a back-to-back manner with a common DC link capacitor. The control of the voltage of the DC link capacitor is important in achieving a desired UPQC performance. In this paper, the UPQC with a Fuzzy logic controller (FLC) was used to precisely eliminate the imperfections of voltage and current harmonics. The results of the simulation studies using MATLAB/Simulink and Simpower system programming for R-L load associated through an uncontrolled bridge rectifier was used to assess the execution process. The UPQC with FLC was simulated for a system with distorted load current and a system with distorted source voltage and load current. The outcome of the comparison of %THD in the load current and source voltage before and after using UPQC for the two cases was presented.

  12. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...... presented firstly, where much more attention has been paid on specific requirements, like Low Voltage Ride-Through (LVRT) and reactive power injection capability. To perform the functions of those systems, advanced control strategies are presented with much more emphasis on the LVRT operation with reactive...

  13. Integrated cascade of photovoltaic cells as a power supply for integrated circuits

    NARCIS (Netherlands)

    Mouthaan, A.J.

    1984-01-01

    ICs can be powered directly when a supply voltage source capable of generating a multiple of the open circuit voltage of one pn-junction is available on a chip. Two schemes have been investigated for cascading photovoltaic cells on the chip. The structures can be made compatible with standard

  14. 77 FR 28519 - Test Procedure Guidance for Room Air Conditioners, Residential Dishwashers, and Residential...

    Science.gov (United States)

    2012-05-15

    ... Guidance for Room Air Conditioners, Residential Dishwashers, and Residential Clothes Washers: Public... procedures for room air conditioners, residential dishwashers, and residential clothes washers. DATES: DOE...'s existing test procedures for residential room air conditioners, residential dishwashers, and...

  15. Collection of outlines of Sunshine Program achievement reports for fiscal 1988. Solar energy (Light utilizing technology and heat utilizing technology); 1988 nendo sunshine keikaku seika hokokusho gaiyoshu. Taiyo energy (hikari riyo gijutsu / netsu riyo gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Collected concerning the research and development of photovoltaic power systems are the basic research on solar cells; research and development of new-type photovoltaic power systems; and research and development of amorphous solar cells. Collected concerning the development of technologies for the practical application of photovoltaic power systems are the experiment, refining, and verification of low-cost silicon; experiment, fabrication, and verification of solar panels; research on the practical application of high-efficiency crystal-based solar cells; research and development of amorphous solar cells; research and development of solar cell evaluation systems; development of peripheral technologies; research and development of photovoltaic power-aided systems; research and development of centralized photovoltaic power systems; and development of photothermal hybrid type photovoltaic power systems. Collected concerning heat-utilizing technologies are the research and development of solar thermal electric power generation systems; research and development of solar air-conditioners and hot water supply systems; and development of practical application technologies for industrial solar systems. Collected also are international cooperative projects on solar energy technologies. (NEDO)

  16. US photovoltaic patents: 1991--1993

    Energy Technology Data Exchange (ETDEWEB)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  17. Improvement of maximum power point tracking perturb and observe algorithm for a standalone solar photovoltaic system

    International Nuclear Information System (INIS)

    Awan, M.M.A.; Awan, F.G.

    2017-01-01

    Extraction of maximum power from PV (Photovoltaic) cell is necessary to make the PV system efficient. Maximum power can be achieved by operating the system at MPP (Maximum Power Point) (taking the operating point of PV panel to MPP) and for this purpose MPPT (Maximum Power Point Trackers) are used. There are many tracking algorithms/methods used by these trackers which includes incremental conductance, constant voltage method, constant current method, short circuit current method, PAO (Perturb and Observe) method, and open circuit voltage method but PAO is the mostly used algorithm because it is simple and easy to implement. PAO algorithm has some drawbacks, one is low tracking speed under rapid changing weather conditions and second is oscillations of PV systems operating point around MPP. Little improvement is achieved in past papers regarding these issues. In this paper, a new method named 'Decrease and Fix' method is successfully introduced as improvement in PAO algorithm to overcome these issues of tracking speed and oscillations. Decrease and fix method is the first successful attempt with PAO algorithm for stability achievement and speeding up of tracking process in photovoltaic system. Complete standalone photovoltaic system's model with improved perturb and observe algorithm is simulated in MATLAB Simulink. (author)

  18. Photovoltaic power: the inadequate purchase price

    International Nuclear Information System (INIS)

    Finon, D.

    2009-01-01

    The current policy of guaranteed purchase prices applied to photovoltaic power lacks rationality: prices are not graduated, commitment times are too long, there is no capping to capacity developed, subsidies (tax credit, direct subsidy, etc) are complex and give too favourable a return time. The lack of differentiation between products may also delay the emergence of new PV technologies. As a result, it is legitimate to envisage a cost/benefit analysis of future subsidies and to wonder about Frances ability, as a second rank player, to catch up with the leaders (Germany, Japan, United States). The report does not criticize policy based on purchase prices in itself: this is suitable or technology close to commercial operation in that it guarantees stable terms close to wholesale electricity market prices. It does, however, criticize adequacy in terms of less advanced PV technology, which results in purchase prices five times that of wind power. The report proposes re-targeting the system to take account of the significant stakes in PV power. Costly incentives for installing land PV cells and units should be quickly reduced, while industrial demonstration budgets deserve increases to further the development of new technologies (improved crystal silicon and thin layers). The demonstration phase and industrial development should be the primary focus, where a large part of potentially promising reductions in costs are likely to be achieved. (author)

  19. New Sunshine Program for Fiscal 2000. International cooperative project for developing photovoltaic power system practicalization technology (General edition); 2000 nendo New sunshine keikaku. Taiyoko hatsuden system jitsuyoka gijustu kaihatsu kokusai kyoryoku jigyo (Sogoban)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Fiscal 2000 international cooperation for the research, development, and popularization of photovoltaic power systems is compiled. In carrying out international cooperation relating to the photovoltaic power generation program of IEA (International Energy Agency), etc., officers were sent to the 15th and 16th executive committee meetings, where they deliberated on plan formulation and budget making. They also participated in the activities of Task 1: Exchange and dissemination of information on photovoltaic power systems, Task 2: Operational performance and design of photovoltaic power systems and subsystems, Task 3: Use of photovoltaic power systems in stand-alone and island applications, Task 5: Design and grid interconnection of building integrated and other dispersed photovoltaic systems, Task 7: Photovoltaic power systems in the built environment, Task 8: Study on very large scale photovoltaic power generation systems in deserts and other unexploited regions, and Task 9: Technical co-operation for photovoltaic market deployment. A discussion was made on the holding of a 4th IEA photovoltaic power system executive conference. In addition, Japan-Australia and Japan-Oman bilateral cooperative projects were implemented. (NEDO)

  20. A Method of Maximum Power Control in Single-phase Utility Interactive Photovoltaic Generation System by using PWM Current Source Inverter

    Science.gov (United States)

    Neba, Yasuhiko

    This paper deals with a maximum power point tracking (MPPT) control of the photovoltaic generation with the single-phase utility interactive inverter. The photovoltaic arrays are connected by employing the PWM current source inverter to the utility. The use of the pulsating dc current and voltage allows the maximum power point to be searched. The inverter can regulate the array voltage and keep the arrays to the maximum power. This paper gives the control method and the experimental results.

  1. Research on DC Micro-grid system of photovoltaic power generation

    Science.gov (United States)

    Zheng, Yiming; Wang, Xiaohui

    2018-01-01

    The use of energy has become a topic of concern, the demand of people for power grows in number or quantity with the development of economy. It is necessary to consider using new forms of power supply-microgrid system for distributed power supply. The power supply mode can not only effectively solve the problem of excessive line loss in the large power grid, but also can increase the reliability of the power supply, and is economical and environmental friendly. With the increasing of DC loads, in order to improve the utilization efficiency, the DC microgrid power supply problems are begin to be researched and integrated with the renewable energy sources. This paper researched the development of microgrid, compared AC microgrid with DC microgrid, summarized the distribution of DC bus voltage level, the DC microgrid network form, the control mode and the main power electronics elements of DC microgrid of photovoltaic power generation system. Today, the DC microgrid system is still in the development stage without uniform voltage level standard, however, it will come into service in the future.

  2. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Room Air Conditioners E Appendix E to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix E to Part 305—Room Air Conditioners Range Information Manufacturer's rated cooling capacity in Btu...

  3. Utility-Scale Solar Photovoltaic Power Plants : A Project Developer’s Guide

    OpenAIRE

    International Finance Corporation

    2015-01-01

    With an installed capacity greater than 137 gigawatts (GWs) worldwide and annual additions of about 40 GWs in recent years, solar photovoltaic (PV) technology has become an increasingly important energy supply option. A substantial decline in the cost of solar PV power plants (80 percent reduction since 2008) has improved solar PV’s competitiveness, reducing the needs for subsidies and ena...

  4. Integrating Photovoltaic Systems in Power System: Power Quality Impacts and Optimal Planning Challenges

    Directory of Open Access Journals (Sweden)

    Aida Fazliana Abdul Kadir

    2014-01-01

    Full Text Available This paper is an overview of some of the main issues in photovoltaic based distributed generation (PVDG. A discussion of the harmonic distortion produced by PVDG units is presented. The maximum permissible penetration level of PVDG in distribution system is also considered. The general procedures of optimal planning for PVDG placement and sizing are also explained in this paper. The result of this review shows that there are different challenges for integrating PVDG in the power systems. One of these challenges is integrated system reliability whereas the amount of power produced by renewable energy source is consistent. Thus, the high penetration of PVDG into grid can decrease the reliability of the power system network. On the other hand, power quality is considered one of the challenges of PVDG whereas the high penetration of PVDGs can lead to more harmonic propagation into the power system network. In addition to that, voltage fluctuation of the integrated PVDG and reverse power flow are two important challenges to this technology. Finally, protection of power system with integrated PVDG is one of the most critical challenges to this technology as the current protection schemes are designed for unidirectional not bidirectional power flow pattern.

  5. Effect of conditioner load on the polishing pad surface during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Min; Qin, Hong Yi; Hong, Seok Jun; Jeon, Sang Hyuk; Kulkarni, Atul; Kim, Tae Sun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    During the Chemical mechanical planarization (CMP), the pad conditioning process can affect the pad surface characteristics. Among many CMP process parameters, the improper applied load on the conditioner arm may have adverse effects on the polyurethane pad. In this work, we evaluated the pad surface properties under the various conditioner arm applied during pad conditioning process. The conditioning pads were evaluated for surface topography, surface roughness parameters such as Rt and Rvk and Material removal rate (MRR) and within-wafer non-uniformity after wafer polishing. We observed that, the pad asperities were collapsed in the direction of conditioner rotation and blocks the pad pores applied conditioner load. The Rvk value and MRR were founded to be in relation with 4 > 1 > 7 kgF conditioner load. Hence, this study shows that, 4 kgF applied load by conditioner is most suitable for the pad conditioning during CMP.

  6. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    Science.gov (United States)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  7. Mold contamination of automobile air conditioner systems.

    Science.gov (United States)

    Kumar, P; Lopez, M; Fan, W; Cambre, K; Elston, R C

    1990-02-01

    Eight cars belonging to patients who were found to have exacerbation of allergic rhinitis and bronchial asthma after turning on the air conditioner in their cars were examined. Mold concentrations inside the passenger compartment with the a/c turned off and at different climate control settings were lower than concentrations in the outside air. After turning on the air conditioner to "Max", cultures obtained at various intervals revealed that mold concentrations decreased significantly with time. Furthermore, placement of a filter at the portal of entry of outside air significantly reduced the mold concentration in the passenger compartment.

  8. Influence of local air velocity from air conditioner evaluated by salivary and skin biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Masaki; Takahashi, Takayuki; Yoshino, Yuichiro; Sasaki, Makoto [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Nishimiya, Hajime [Asahi Kasei Homes Corporation, R and D Laboratories, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)

    2010-11-15

    The purpose of this paper is to reveal both the psychosomatic and the physical effects of local air velocity from an air conditioner using biomarkers which can be collected noninvasively. Salivary {alpha}-amylase activity (SAA) and salivary cortisol were used as the indexes of psychosomatic effects. The total protein (TP) collected from stratum corneum was used as an index of the physical condition of dry skin. A continuous experiment over a 5 days period in summer was conducted using 8 healthy young male adults for 2-types of airflow conditioners, a whole ceiling-type air conditioner (without local air velocity) and a normal-type air conditioner (with local air velocity). The subjects felt cool, windy, dry and uncomfortable when under the normal-type air conditioner as determined in a subjective evaluation. The SAA under the normal-type air conditioner fluctuated more widely than with the whole ceiling-type air conditioner. The level of salivary cortisol decreased more in a day under the normal-type air conditioner than with the whole ceiling-type air conditioner. These results showed that reducing local air velocity may provide more healthy psychosomatic conditions over the long-term. Moreover, the TP of a drying-exposed skin area showed a significant change during this experiment whereas the TP of drying-protected area was relatively unchanged. It was indicated that one week's exposure to local air velocity conditions possibly influences the drying of facial skin. Thus, air movement at low velocity can be provides more comfortable conditions not only psychosomatically but also physically. (author)

  9. Research and development of system to utilize photovoltaic energy. Study on the scenario for the diffusion of photovoltaic power generating systems; Taiyoko hatsuden riyo sytem no kenkyu kaihatsu. Taiyoko hatsuden donyu fukyu scenario sakusei no tame no chosa

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on a survey to prepare scenario for the diffusion of photovoltaic power generating systems. Introduction target planned with help of a diffusion simulation was verified by calculations using simulation models. The calculations made the following points clear: facility costs and power generation costs for photovoltaic power generation systems, amount of introduced photovoltaic power generation systems, number of facilities introducing photovoltaic power generation systems, policy cost to achieve the target, annual power generation amount, oil substituting effect, carbon dioxide reducing effect, and market sizes. Power generation cost in fiscal 2000 would drop down to 53 yen per kWh in new installation in independent houses and down to 31 yen per kWh in systems used in schools. These reductions are the result of progress in mass production as a result of positively implementing the aiding policies. The required diffusion aiding policies revealed from the simulation results include expansion of subsidy operations for house construction, introduction of the systems into public facilities performed by public organizations, aid to system introduction into private business entities, subsidy to facility investments, and enforcement of power purchase institutions. 3 figs.

  10. Energy saved neon sign lighting power supply for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanitteerapan, T.; Dokpikul, S.; Arunrungrasmi, S. [King Mongkut Univ. of Technology Thonburi, Bangmod, Tungkru, Bangkok (Thailand). Dept. of Electrical Technology Education, Faculty of Industrial Education

    2007-07-01

    Petroleum oil, natural gas and fossil fuels are commonly used in power plants for electrical power generation. However, because of their negative environmental impacts, energy and environmental savings from renewable energy resources are necessary choices. Solar energy can be converted to the electrical voltage by using solar arrays. This process can be used in many electrical applications. This paper introduced a neon sign lighting power supply for a small photovoltaic powered stand-alone commercial advertising board for a remote area in Thailand. The circuit implementation was very simple, consisting of an active switch device, a resonant capacitor and high frequency transformer. The control also operated as a fixed frequency and fixed duty ratio controller. The paper discussed the principle of neon sign lighting, power circuit operation, and control circuit operation. To verify the proposed power supply, the circuit experiment of the proposed power supply for the neon sign lighting was applied to a 10 foot long, 10 millimeter diameter bulb. The neon sign was ignited smoothly with little power consumption. 2 refs., 1 tab., 10 figs.

  11. Organic photovoltaics

    DEFF Research Database (Denmark)

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  12. Market assessment of photovoltaic power systems for agricultural applications in Morocco

    Science.gov (United States)

    Steingass, H.; Asmon, I.

    1981-01-01

    Results of a month-long study in Morocco aimed at assessing the market potential for stand-alone photovoltaic systems in agriculture and rural service applications are presented. The following applications, requiring less than 15 kW of power, are described: irrigation, cattle watering, refrigeration, crop processing, potable water and educational TV. Telecommunications and transportation signalling applications, descriptions of power and energy use profiles, assessments of business environment, government and private sector attitudes towards photovoltaics, and financing were also considered. The Moroccan market presents both advantages and disadvantages for American PV manufacturers. The principle advantages of the Moroccan market are: a limited grid, interest in and present use of PV in communications applications, attractive investment incentives, and a stated policy favoring American investment. Disadvantages include: lack of government incentives for PV use, general unfamiliarity with PV technology, high first cost of PV, a well-established market network for diesel generators, and difficulty with financing. The market for PV in Morocco (1981-1986), will be relatively small, about 340 kwp. The market for PV is likely to be more favorable in telecommunications, transport signalling and some rural services. The primary market appears to be in the public (i.e., government) rather than private sector, due to financial constraints and the high price of PV relative to conventional power sector.

  13. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  14. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles

  15. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  16. Performance simulation of a grid connected photovoltaic power system using TRNSYS 17

    Science.gov (United States)

    Raja Sekhar, Y.; Ganesh, D.; Kumar, A. Suresh; Abraham, Raju; Padmanathan, P.

    2017-11-01

    Energy plays an important role in a country’s economic growth in the current energy scenario, the major problem is depletion of energy sources (non-renewable) are more than being formed. One of the prominent solutions is minimizing the use of fossil fuels by utilization of renewable energy resources. A photovoltaic system is an efficient option in terms of utilizing the solar energy resource. The electricity output produced by the photovoltaic systems depends upon the incident solar radiation. This paper examines the performance simulation of 200KW photovoltaic power system at VIT University, Vellore. The main objective of this paper is to correlate the results between the predicted simulation data and the experimental data. The simulation tool used here is TRNSYS. Using TRNSYS modelling prediction of electricity produced throughout the year can be calculated with the help of TRNSYS weather station. The deviation of the simulated results with the experimented results varies due to the choice of weather station. Results from the field test and simulation results are to be correlated to attain the maximum performance of the system.

  17. An automotive thermoelectric-photovoltaic hybrid energy system using maximum power point tracking

    International Nuclear Information System (INIS)

    Zhang Xiaodong; Chau, K.T.

    2011-01-01

    In recent years, there has been active research on exhaust gas waste heat energy recovery for automobiles. Meanwhile, the use of solar energy is also proposed to promote on-board renewable energy and hence to improve their fuel economy. In this paper, a new thermoelectric-photovoltaic (TE-PV) hybrid energy system is proposed and implemented for automobiles. The key is to newly develop the power conditioning circuit using maximum power point tracking so that the output power of the proposed TE-PV hybrid energy system can be maximized. An experimental system is prototyped and tested to verify the validity of the proposed system.

  18. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  19. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    .... EERE-2010-BT-TP-0038] Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting... methodologies and gather comments on testing residential central air conditioners and heat pumps designed to use... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...

  20. A new DC/AC boost transformerless converter in application of photovoltaic power generation

    DEFF Research Database (Denmark)

    Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents a new DC/AC boost transformerless converter in the applications of photovoltaic (PV) power generation. A new circuit topology of single phase full bridge power inverter with additional DC/DC boost stage is proposed. The proposed topology overcomes two commonly existing......, and then converts the DC into AC to supply the load. A special modulation technique is proposed to eliminate the leakage current which is commonly presents in PV transformerless power generation, helps to increase the system efficiency and output performance....

  1. A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2017-08-01

    Full Text Available To solve the problem of solar abandoning, which is accompanied by the rapid development of photovoltaic (PV power generation, a demonstration of a photovoltaic-battery energy storage system (PV-BESS power plant has been constructed in Qinghai province in China. However, it is difficult for the PV-BESS power plant to survive and develop with the current electricity price mechanism and subsidy policy. In this paper, a three-part electricity price mechanism is proposed based on a deep analysis of the construction and operation costs and economic income. The on-grid electricity price is divided into three parts: the capacity price, graded electricity price, and ancillary service price. First, to ensure that the investment of the PV-BESS power plant would achieve the industry benchmark income, the capacity price and benchmark electricity price are calculated using the discounted cash flow method. Then, the graded electricity price is calculated according to the grade of the quality of grid-connected power. Finally, the ancillary service price is calculated based on the graded electricity price and ancillary service compensation. The case studies verify the validity of the three-part electricity price mechanism. The verification shows that the three-part electricity price mechanism can help PV-BESS power plants to obtain good economic returns, which can promote the development of PV-BESS power plants.

  2. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  3. Novel simplified hourly energy flow models for photovoltaic power systems

    International Nuclear Information System (INIS)

    Khatib, Tamer; Elmenreich, Wilfried

    2014-01-01

    Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems

  4. The protection of photovoltaic power systems from lightning

    Science.gov (United States)

    Rogers, C. B.

    Lightning protection techniques at nine prototype photovoltaic power system sites with outputs from 18-225 kW are described. Noting that protection schemes are devised to fit isokeraunic data for specific sites, grounding is cited as a common feature for all systems. The grounds are, in separate instances, connected to junction boxes, frames of the solar cell panels, lead from the dc center, from the dc negative terminal, from the frames and equipment, at the array turntable, or from the building rebar frames. The dc power cables are protected by either metal conduit, metal conduit ground wire, direct burial, by rigid metal conduit, ground conductors, or by ground conductors at the ends of the conduit run. Costs run from 0.01-0.28$/W, with all the systems outfitted with bypass and blocking diodes. Direct stroke protection is viewed as less important than isokeraunic data.

  5. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    Science.gov (United States)

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  6. Photovoltaic solar system connected to the electric power grid operating as active power generator and reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, F.L.; Moraes, A.J.; Guimaraes, G.C.; Sanhueza, S.M.R.; Vaz, A.R. [Federal University of Uberlandia (UFU), MG (Brazil)

    2009-07-01

    In the case of photovoltaic solar systems (PV) acting as a distributed generation (DG), the DC energy obtained is fed through the power-conditioning unit (inverter) to the grid. The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can be utilized instead of CSI, we can generate reactive power commensurate with the remaining unused capacity at any given point in time. According to the theory of instantaneous power, the reactive and active power of inverter can be regulated by changing the amplitude and the phase of the output voltage of the inverter. Based on this theory, the active power output and the reactive power compensation (RPC) of the system are realized simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of PV system can still be used to improve the utilization factor of the inverter. The MATLAB simulation results validate the feasibility of the method. (author)

  7. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  8. Flate-plate photovoltaic power systems handbook for Federal agencies

    Science.gov (United States)

    Cochrane, E. H.; Lawson, A. C.; Savage, C. H.

    1984-01-01

    The primary purpose is to provide a tool for personnel in Federal agencies to evaluate the viability of potential photovoltaic applications. A second objective is to provide descriptions of various photovoltaic systems installed by different Federal agencies under the Federal Photovoltaic Utilization Program so that other agencies may consider similar applications. A third objective is to share lessons learned to enable more effective procurement, design, installation, and operation of future photovoltaic systems. The intent is not to provide a complete handbook, but rather to provide a guide for Federal agency personnel with additional information incorporated by references. The steps to be followed in selecting, procuring, and installing a photovoltaic application are given.

  9. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  10. Sensorless Reserved Power Control Strategy for Two-Stage Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Blaabjerg, Frede

    2016-01-01

    Due to still increasing penetration level of grid-connected Photovoltaic (PV) systems, advanced active power control functionalities have been introduced in grid regulations. A reserved power control, where the active power from the PV panels is reserved during operation, is required for grid...... support. In this paper, a cost-effective solution to realize the reserved power control for grid-connected PV systems is proposed. The proposed solution routinely employs a Maximum Power Point Tracking (MPPT) control to estimate the available PV power and a Constant Power Generation (CPG) control...... to achieve the power reserve. In this method, the irradiance measurements that have been used in conventional control schemes to estimate the available PV power are not required, and thereby being a sensorless solution. Simulations and experimental tests have been performed on a 3-kW two-stage single...

  11. 20-kW solar photovoltaic flat-panel power system for an uninterruptible power-system load in El Paso, Texas. Phase II. System fabrication. Final report October 1, 1979-May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Risser, V.V.

    1981-12-01

    The system plans, construction, integration and test, and performance evaluation are discussed for the photovoltaic power supply at the Newman Power Station in El Paso, Texas. The system consists of 64 parallel-connected panels, each panel containing nine series-connected photovoltaic modules. The system is connected, through power monitoring equipment, to an existing DC bus that supplies uninterruptible power to a computer that controls the power generating equipment. The site is described and possible environmental hazards are assessed. Site preparation and the installation of the photovoltaic panels, electrical cabling, and instrumentation subsystems are described. System testing includes initial system checkout, module performance test, control system test. A training program for operators and maintenance personnel is briefly described, including visual aids. Performance data collection and analysis are described, and actual data are compared with a computer simulation. System drawings are included. (LEW)

  12. Photovoltaic module diagnostics by series resistance monitoring and temperature and rated power estimation

    DEFF Research Database (Denmark)

    Sera, Dezso; Teodorescu, Remus; Rodriguez, Pedro

    2008-01-01

    One of the most important parameters, which characterize a photovoltaic panel health state, is its series resistance. An increase of this normally indicates bad contacts between cells or panels. Another important property, which characterizes the aging of the panel is the reduction of its MPP power...

  13. Effects of natural and synthetic soil conditioners on soil moisture ...

    African Journals Online (AJOL)

    The efficacy of a natural soil conditioner, Coco-Peat (C-P), and synthetic soil conditioners, Terawet (T-200) and Teraflow (T-F), in improving soil moisture content were examined on five Ghanaian soil series (Akroso, Akuse, Amo, Hake and Oyarifa). In general, the water retention of T-200 and C-P treated soils were similar ...

  14. A CSMP commutation model for design study of a brushless dc motor power conditioner for a cruise missile fin control actuator

    Science.gov (United States)

    MacMillan, P. N.

    1985-06-01

    Recent improvements in rare earth magnets have made it possible to construct strong, lightweight, high horsepower dc motors. This has occasioned a reassessment of electromechanical actuators as alternatives to comparable pneumatic and hydraulic systems for use as flight control actuators for tactical missiles. A dynamic equivalent circuit model for the analysis of a small four pole brushless dc motor fed by a transistorized power conditioner utilizing high speed switching power transistors as final elements is presented. The influence of electronic commutation on instantaneous dynamic motor performance is particularly demonstrated and good correlation between computer simulation and typical experimentally obtained performance data is achieved. The model is implemented in CSMP language and features more accurate air gap flux representation over previous work. Hall effect sensor rotor position feedback is simulated. Both constant and variable air gap flux is modeled and the variable flux model treats the flux as a fundamental and one harmonic.

  15. Residential air-conditioner usage in China and efficiency standardization

    International Nuclear Information System (INIS)

    Wu, Jianghong; Liu, Chaopeng; Li, Hongqi; Ouyang, Dong; Cheng, Jianhong; Wang, Yuanxia; You, Shaofang

    2017-01-01

    Determining the real energy consumption and usage pattern of a room air-conditioner (RAC) are important issues from the point of view of both RAC design and evaluation of its energy efficiency. An air-conditioner's running time is fundamental data for the calculation of SEER and APF values. Therefore, in 2010, a nationwide investigation of RAC usage was conducted and 400 selected air-conditioning-units were monitored for a full year to obtain data on their cooling and heating usage. Two running time curves (cooling and heating) were obtained for the air-conditioners as a function of outdoor air temperatures using statistical analysis. The results show that the 27–30 °C temperature range accounts for more than 52% of the cooling time. Conversely, the 0–8 °C temperature range is associated with more than 75% of the heating time. The research presented in this paper has significantly contributed to China's new variable-speed RAC efficiency standard (GB21455-2013). It also has far-reaching implications for both the air-conditioner industry and energy policy in China due to its different method of calculating energy efficiency. - Highlights: • A nationwide survey to realize China's residential air-conditions usage behaviors. • Air-conditioner running time-environment temperature curves are obtained. • The peak heating demand and peak cooling demand happen at 28 °C and 4 °C, respectively. • The temperature of 27 °C–30 °C accounts for over 52% refrigeration time. • The temperature of 0 °C–8 °C occupies more than 75% heating time.

  16. ENERGY STAR Certified Room Air Conditioners

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Room Air Conditioners that are effective as of...

  17. Energy production estimation for Kosh-Agach grid-tie photovoltaic power plant for different photovoltaic module types

    Science.gov (United States)

    Gabderakhmanova, T. S.; Kiseleva, S. V.; Frid, S. E.; Tarasenko, A. B.

    2016-11-01

    This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed.

  18. Energy production estimation for Kosh-Agach grid-tie photovoltaic power plant for different photovoltaic module types

    International Nuclear Information System (INIS)

    Gabderakhmanova, T S; Frid, S E; Tarasenko, A B; Kiseleva, S V

    2016-01-01

    This paper is devoted to calculation of yearly energy production, demanded area and capital costs for first Russian 5 MW grid-tie photovoltaic (PV) plant in Altay Republic that is named Kosh-Agach. Simple linear calculation model, involving average solar radiation and temperature data, grid-tie inverter power-efficiency dependence and PV modules parameters is proposed. Monthly and yearly energy production, equipment costs and demanded area for PV plant are estimated for mono-, polycrystalline and amorphous modules. Calculation includes three types of initial radiation and temperature data—average day for every month from NASA SSE, average radiation and temperature for each day of the year from NASA POWER and typical meteorology year generated from average data for every month. The peculiarities for each type of initial data and their influence on results are discussed. (paper)

  19. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    Science.gov (United States)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  20. Prospects and strategy for large scale utility applications of photovoltaic power systems

    International Nuclear Information System (INIS)

    Cole, A.; Vigotti, R.; Lysen, E.

    1995-01-01

    The paper reviews the status and prospects of photovoltaic power systems and the R and D trends (silicon performances, thin films, balance of systems components), and describes the market diffusion strategy for the application of PV systems: at the short and medium term level, isolated systems for rural electricity supply in IEA member countries and decentralized energy supply (remote users and village power) in developing countries; at the medium and long term level, decentralized building integration in urban and rural areas, power stations for peak power and local grid support. The objectives of the IEA collaboration programme launched among 18 industrialized countries are summarized, with particular reference to technology transfer to developing countries. 4 figs

  1. Capacity modulation of an inverter-driven multi-air conditioner using electronic expansion valves

    International Nuclear Information System (INIS)

    Choi, J.M.; Kim, Y.C.

    2003-01-01

    An inverter-driven multi-air conditioner provides the benefits of comfort, energy conservation and easy maintenance. Recently, the multi-air conditioner has been employed in small and medium-sized buildings. However, the performance data and control algorithm for multi-air conditioners are limited in literature due to complicated system parameters and operating conditions. In the present study, the performance of an inverter-driven multi-air conditioner having two indoor units with electronic expansion valves (EEV) was measured by varying indoor loads, EEV opening, and compressor speed. Based on the experimental results, the operating characteristics and capacity modulation of the inverter-driven multi-air conditioner are discussed. As a result, it is suggested that the superheats for both indoor units have to be maintained around 4 o C by utilizing the EEVs in this system, and consequently, the compressor speed needs to be adjusted to provide optimum cooling capacity for each indoor unit

  2. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  3. The life cycle rebound effect of air-conditioner consumption in China

    International Nuclear Information System (INIS)

    Liu, Jingru; Sun, Xin; Lu, Bin; Zhang, Yunkun; Sun, Rui

    2016-01-01

    Highlights: • Develop a life cycle rebound effect model. • Assess the life cycle rebound effect of Chinese room air conditioners. • Conduct a questionnaire to assess the consumption behavior of Chinese room air conditioners. • Rebound effect should be considered by energy policy makers. - Abstract: Governments worldwide are attempting to reduce energy consumption and environmental pollution by confronting environmental problems and adopting more energy-efficient products. However, because of the rebound effect, energy-saving targets cannot always be fully achieved, and sometimes greater energy consumption is generated. Research on the rebound effect from the perspective of industrial ecology considers not only direct energy consumption but also its life cycle negative impacts on the environment with China’s rapid economic development and simultaneously improving quality of life, the ownership of room air conditioners (RACs) has increased more than three hundred times, and air conditioners’ energy consumption has increased one thousand times over the last twenty years. The Air Conditioner Energy Efficiency Standard is one of the most important measures in China for reducing the amount of energy consumed by RACs. This paper introduces a life cycle based method to estimate the rebound effect of Chinese RACs consumption. This model provides a product’s life-cycle view to assess the rebound effect, considering the contribution of both producer and consumer. Based on the established life cycle rebound effect model, we compared urban household RAC consumption behaviour before and after the launch of the Air Conditioner Energy Efficiency Standard. A rebound effect in RAC consumption was found that there was a longer daily usage period in the household as air conditioner efficiency levels improved. The life cycle rebound effect of household air-conditioner consumption was calculated to be 67%. The main conclusion obtained from this study is that policies and

  4. Research on a Micro-Grid Frequency Modulation Strategy Based on Optimal Utilization of Air Conditioners

    Directory of Open Access Journals (Sweden)

    Qingzhu Wan

    2016-12-01

    Full Text Available With the proportion of air conditioners increasing gradually, they can provide a certain amount of frequency-controlled reserves for a micro-grid. Optimizing utilization of air conditioners and considering load response characteristics and customer comfort, the frequency adjustment model is a quadratic function model between the trigger temperature of the air conditioner compressor, and frequency variation is provided, which can be used to regulate the trigger temperature of the air conditioner when the micro-grid frequency rises and falls. This frequency adjustment model combines a primary frequency modulation method and a secondary frequency modulation method of the energy storage system, in order to optimize the frequency of a micro-grid. The simulation results show that the frequency modulation strategy for air conditioners can effectively improve the frequency modulation ability of air conditioners and frequency modulation effects of a micro-grid in coordination with an energy storage system.

  5. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    Science.gov (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  6. Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner (APC) and shunt capacitor inharmonic distorted distribution system

    Institute of Scientific and Technical Information of China (English)

    Mohammadi Mohammad

    2017-01-01

    Due to development of distribution systems and increase in electricity demand, the use of capacitor banks increases. From the other point of view, nonlinear loads generate and inject considerable harmonic currents into power system. Under this condition if capacitor banks are not properly selected and placed in the power system, they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels. With attention of disadvantages of passive filters, such as occurring resonance, nowadays the usage of this type of harmonic compensator is restricted. On the other side, one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion, performs power factor correction, and improves the overall power quality as active power conditioner (APC). Therefore, the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition. This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics. The algorithm is based on particle swarm optimization (PSO). The objective function includes the cost of power losses, energy losses and those of the capacitor banks and APCs.

  7. Review on Forecast Methods for Photovoltaic Power Generation%太阳能光伏发电量预报方法的发展

    Institute of Scientific and Technical Information of China (English)

    李芬; 陈正洪; 成驰; 段善旭

    2011-01-01

    Solar photovoltaic technology is becoming one of the hot issues in the field of renewable energy generation.In future, China's large-scale grid-connected photovoltaic power generation system will be continuously in rapid development. But, so far, the exploring of photovoltaic power generation forecasting is still weak, and there are few methods available to meet the practical needs ofphotovoltaic power generation prediction in China. Photovoltaic power generation prediction means to accurately predict solar irradiances at first, and then in combination with the analysis of the historic power generation data of photovoltaic power station, to further forecast photovoltaic power.In this paper, we briefly introduce and classify several types ofphotovoltaic power generation forecasting models,such as the simulation-prediction method based on global solar radiation prediction and photovoltaic simulator, the physical prediction method based on global solar radiation prediction and photoelectric conversion efficiency model,the statistic-dynamic method based on the meteorological data and photoelectric power generation data processing and numerical weather prediction. Meanwhile, we also simply introduce photovoltaic power generation forecasting platform's construction abroad.%太阳能光伏发电技术成为当今世界可再生能源发电领域的一个研究热点.在未来,我国大规模的并网光伏发电系统将持续快速发展,但目前我国对太阳能光伏发电量预报方法的研究还很薄弱,几乎没有可满足实际太阳能光伏发电量预报需求的方法和系统.太阳能光伏发电量预报,主要是通过太阳总辐射的准确预报,结合光伏电站历史发电量数据分析,进而得到光伏发电量预报.通过对国内外太阳能光伏发电量预报方法的介绍和分类,以及对国际上太阳能光伏发电量预报系统建设的介绍,希望对我国太阳能光伏发电量预报系统发展起到一定的促进和推动作用.

  8. Fiscal 2000 report on the international joint verification of photovoltaic power generation system. Verification of hybrid system comprising photovoltaic power generation system and micro-hydroelectric power generation systems; 2000 nendo taiyoko hatsuden system kokusai kyodo jissho kaihatsu hokokusho. Taiyoko micro suiryoku hybrid system jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    Research was conducted in Vietnam for the development of a hybrid system comprising a photovoltaic power generation system and a micro-hydroelectric power generation system. In verification test operation, data measurement had been under way for approximately 18 months since it was started in September 1999. The rate of days on which effective data were obtained throughout this period was 93.4%. Power generated by the micro-hydroelectric power generation system was 19.4kWh/d with so small a capacity factor of 3.2%. The capacity factor of the photovoltaic power generation system was again very small at 4.5% since the amount consumed by the load was as small as 131.0kWh/d. Weather data of solar radiation and precipitation were being collected smoothly. In the study of hybrid system optimization, the effect of inductor generator activation upon the inverter was taken up. In the study of capacity balance optimization between the constituent elements of the hybrid system, methodology was established and verified, and calculations were carried out. (NEDO)

  9. Summary of third international executive conference on photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W.

    2001-07-01

    towards sustainable buildings fully into account. A further aim was to share the lessons learned from recent market experience on the full range of additional values that arise from the use of photovoltaic power systems and how those values impact on customer choice. Further, the promotion of international co-operation between the private and public sectors on policies for the removal of key constraints and for the promotion, financing and implementation of solar photovoltaic electricity projects was discussed. The conference was expected to achieve the following outcomes: Stronger relationships and networks between the participants and, through them, also between the sectors represented; A better definition of the added values of PV which influence customer choice; Recommendations which can be implemented by each of the business sectors represented at the conference for the orderly future development of the most important future PV markets; Recommendations to the IEA for ways in which it could enhance collaboration with both governments and industry, using its unique position to assist the future development of PV markets.

  10. 75 FR 7987 - Energy Conservation Standards for Residential Clothes Dryers and Room Air Conditioners: Public...

    Science.gov (United States)

    2010-02-23

    ... Conservation Standards for Residential Clothes Dryers and Room Air Conditioners: Public Meeting and... conservation standards for residential clothes dryers and room air conditioners; the analytical framework..., Mailstop EE-2J, Public Meeting for Residential Clothes Dryers and Room Air Conditioners, EERE-2007-BT-STD...

  11. 75 FR 14368 - Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public...

    Science.gov (United States)

    2010-03-25

    ... Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public Meeting and Availability... conservation standards for residential central air conditioners and heat pumps; the analytical framework..., Mailstop EE-2J, Public Meeting for Residential Central Air Conditioners and Heat Pumps, EERE-2008-BT- STD...

  12. An Adaptive Model Predictive Load Frequency Control Method for Multi-Area Interconnected Power Systems with Photovoltaic Generations

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng

    2017-11-01

    Full Text Available As the penetration level of renewable distributed generations such as wind turbine generator and photovoltaic stations increases, the load frequency control issue of a multi-area interconnected power system becomes more challenging. This paper presents an adaptive model predictive load frequency control method for a multi-area interconnected power system with photovoltaic generation by considering some nonlinear features such as a dead band for governor and generation rate constraint for steam turbine. The dynamic characteristic of this system is formulated as a discrete-time state space model firstly. Then, the predictive dynamic model is obtained by introducing an expanded state vector, and rolling optimization of control signal is implemented based on a cost function by minimizing the weighted sum of square predicted errors and square future control values. The simulation results on a typical two-area power system consisting of photovoltaic and thermal generator have demonstrated the superiority of the proposed model predictive control method to these state-of-the-art control techniques such as firefly algorithm, genetic algorithm, and population extremal optimization-based proportional-integral control methods in cases of normal conditions, load disturbance and parameters uncertainty.

  13. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  14. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.

    2015-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Moreover, the proposed inverter can also eliminate the well-known double line frequency pulsating power....... The mechanism of leakage current suppression and the closed-loop control of pulsating power decoupling are discussed in the paper in details. A 500 W prototype was also built and tested in the laboratory, and both simulation and experimental results are finally presented to show the excellent performance...

  15. Study on load levelling by means of the control of air conditioner operation; Kuchoki kado seigyo ni yoru fuka heijunka ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, H. [Hiroshima University, Hiroshima (Japan); Sadakuni, S. [Japan Broadcasting Corp., Tokyo (Japan)

    1995-04-20

    The recent drastic increase in the number of air conditioners has caused sharp and narrow peaks in summer seasons due to the inherent temperature sensitive characteristics. The authors proposed to reduce the peak power demand by controlling air conditioner operations, verifying its effectiveness on peak demand clipping. However, the former study has shortcomings in that any qualitative treatment of room temperatures or pleasant feeling was not attempted and it did not provide a way of assessing peak demand clipping in a power system as a whole. In this paper, we shall first propose a new control method that can compromise pleasant feeling and reduction in power demand. Although air conditioners are used to pursue `pleasant feeling`, this contradicts to reduce power consumption and further more the concept of `pleasant feeling` is very vague. Hence, `Weber-Fechner`s law` is utilized to quantify the pleasant feeling which is treated as fuzzy quantity. Fuzzy co-ordination method is used to compromise power demand curtailment and pleasantness. In the second part of this paper, we shall propose an approach of assessing the amount of peak load clipping when the newly proposed control strategy is adopted in a real size power system: A decrease in the required generation capacity is estimated provided that the Loss of Load Probability (LOLP) is maintained at the same level before and after the application of the new control strategy. The reduction can be regarded as a dividend of load management. 5 refs., 9 figs., 5 tabs.

  16. Strategies for reducing the environmental impacts of room air conditioners in Europe

    International Nuclear Information System (INIS)

    Grignon-Masse, Laurent; Riviere, Philippe; Adnot, Jerome

    2011-01-01

    In Europe, buildings tend to be equipped with individual air conditioners, which constitute a fast growing electrical end-use. In this context, this study aims to assess the environmental impacts of European individual air conditioners and to analyse policy strategies to reduce these impacts. After analysing the European context concerning individual air conditioners, the environmental impacts of European air conditioners are assessed using a Life Cycle Analysis approach. The following step consists in studying, both technically and economically, different improvement options aiming at reducing the environmental impacts of these appliances. These results, obtained at the product level, are then generalised at the European level and different policy measures are defined and analysed. The main conclusion is that the implementation of a Minimum Energy Performance Standard based on Least Life Cycle Costs could save up to 49 TWh and 20 MtCO 2-eq in 2020 and be economically beneficial to the European end-user. - Research highlights: → A methodology based on Life Cycle Analysis is applied to European air conditioners. → Environmental impacts are mainly due to energy consumption. → There is a high potential for energy savings at very low costs for end users.

  17. Diamond encapsulated photovoltaics for transdermal power delivery.

    Science.gov (United States)

    Ahnood, A; Fox, K E; Apollo, N V; Lohrmann, A; Garrett, D J; Nayagam, D A X; Karle, T; Stacey, A; Abberton, K M; Morrison, W A; Blakers, A; Prawer, S

    2016-03-15

    A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980 nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7 W/cm(2), a peak output power of 2.7 mW is delivered to the implant with an active PV cell dimension of 1.5 × 1.5 × 0.06 mm(3). This corresponds to a volumetric power output density of ~20 mW/mm(3), significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. An improved maximum power point tracking method for a photovoltaic system

    Science.gov (United States)

    Ouoba, David; Fakkar, Abderrahim; El Kouari, Youssef; Dkhichi, Fayrouz; Oukarfi, Benyounes

    2016-06-01

    In this paper, an improved auto-scaling variable step-size Maximum Power Point Tracking (MPPT) method for photovoltaic (PV) system was proposed. To achieve simultaneously a fast dynamic response and stable steady-state power, a first improvement was made on the step-size scaling function of the duty cycle that controls the converter. An algorithm was secondly proposed to address wrong decision that may be made at an abrupt change of the irradiation. The proposed auto-scaling variable step-size approach was compared to some various other approaches from the literature such as: classical fixed step-size, variable step-size and a recent auto-scaling variable step-size maximum power point tracking approaches. The simulation results obtained by MATLAB/SIMULINK were given and discussed for validation.

  19. Effective policies for renewable energy - the example of China's wind power - lessons for China's photovoltaic power

    International Nuclear Information System (INIS)

    Wang, Qiang

    2010-01-01

    China, one of the global biggest emitter of CO 2 , needs promotion renewable energy to reduce air pollution from its surging fossil fuel use, and to increase its energy supply security. Renewable energy in its infancy needs policy support and market cultivation. Wind power installed capacity has boomed in recent year in China, as a series of effective support policies were adopted. In this paper, I review the main renewable energy policies regarding to China's wind power, including the Wind Power Concession Program, Renewable Energy Law, and a couple of additional laws and regulations. Such policies have effectively reduced the cost of wind power installed capacity, stimulated the localization of wind power manufacture, and driven the company investment in wind power. China is success in wind power installed capacity, however, success in wind-generated electricity has yet achieved, mainly due to the backward grid system and lack of quota system. The paper ends with the recommended best practice of the China's wind power installed capacity might be transferable to China's photovoltaic power generation. (author)

  20. Design of a signal conditioner for the Fermilab Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Giannelli, Pietro [Turin Polytechnic

    2012-01-01

    This thesis describes the design of a remotely-programmable signal conditioner for the harmonic measurement of accelerator magnets. A 10-channel signal conditioning circuit featuring bucking capabilities was designed from scratch and implemented to the level of the printed circuit board layout. Other system components were chosen from those available on the market. Software design was started with the definition of routine procedures. This thesis is part of an upgrade project for replacing obsolescent automated test equipment belonging to the Fermilab Magnet Test Facility. The design started with a given set of requirements. Using a top-down approach, all the circuits were designed and their expected performances were theoretically predicted and simulated. A limited prototyping phase followed. The printed circuit boards were laid out and routed using a CAD software and focusing the design on maximum electromagnetic interference immunity. An embedded board was selected for controlling and interfacing the signal conditioning circuitry with the instrumentation network. Basic low level routines for hardware access were defined. This work covered the entire design process of the signal conditioner, resulting in a project ready for manufacturing. The expected performances are in line with the requirements and, in the cases where this was not possible, approval of trade-offs was sought and received from the end users. Part I deals with the global structure of the signal conditioner and the subdivision in functional macro-blocks. Part II treats the hardware design phase in detail, covering the analog and digital circuits, the printed circuit layouts, the embedded controller and the power supply selection. Part III deals with the basic hardware-related routines to be implemented in the final software.

  1. Photovoltaics. [research and development of terrestrial electric power systems

    Science.gov (United States)

    Smith, J. L.

    1981-01-01

    The federal government has sponsored a program of research and development on terrestrial photovoltaic systems that is designed to reduce the costs of such systems through technological advances. There are many potential paths to lower system costs, and successful developments have led to increased private investment in photovoltaics. The prices for photovoltaic collectors and systems that appear to be achievable within this decade offer hope that the systems will soon be attractive in utility applications within the United States. Most of the advances achieved will also be directly applicable to the remote markets in which photovoltaic systems are now commercially successful

  2. Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Fernando Lessa Tofoli

    2015-01-01

    Full Text Available The generation of electricity from photovoltaic (PV arrays has been increasingly considered as a prominent alternative to fossil fuels. However, the conversion efficiency is typically low and the initial cost is still appreciable. A required feature of a PV system is the ability to track the maximum power point (MPP of the PV array. Besides, MPP tracking (MPPT is desirable in both grid-connected and stand-alone photovoltaic systems because the solar irradiance and temperature change throughout the day, as well as along seasons and geographical conditions, also leading to the modification of the I×V (current versus voltage and P×V (power versus voltage curves of the PV module. MPPT is also justified by the relatively high cost of the energy generated by PV systems if compared with other sources. Since there are various MPPT approaches available in the literature, this work presents a comparative study among four popular techniques, which are the fixed duty cycle method, constant voltage (CV, perturb and observe (P&O, and incremental conductance (IC. It considers different operational climatic conditions (i.e., irradiance and temperature, since the MPP is nonlinear with the environment status. PSIM software is used to validate the assumptions, while relevant results are discussed in detail.

  3. Observer-Based Load Frequency Control for Island Microgrid with Photovoltaic Power

    Directory of Open Access Journals (Sweden)

    Chaoxu Mu

    2017-01-01

    Full Text Available As renewable energy is widely integrated into the power system, the stochastic and intermittent power generation from renewable energy may cause system frequency deviating from the prescribed level, especially for a microgrid. In this paper, the load frequency control (LFC of an island microgrid with photovoltaic (PV power and electric vehicles (EVs is investigated, where the EVs can be treated as distributed energy storages. Considering the disturbances from load change and PV power, an observer-based integral sliding mode (OISM controller is designed to regulate the frequency back to the prescribed value, where the neural network observer is used to online estimate the PV power. Simulation studies on a benchmark microgrid system are presented to illustrate the effectiveness of OISM controller, and comparative results also demonstrate that the proposed method has a superior performance for stabilizing the frequency over the PID control.

  4. Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Aminmohammad Saberian

    2014-01-01

    Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.

  5. User evaluation of photovoltaic-powered vaccine refrigerator/freezer systems

    Science.gov (United States)

    Ratajczak, Anthony F.

    1987-03-01

    The NASA Lewis Research Center has concluded a project to develop and field test photovoltaic-powered refrigerator/freezers for vaccine storage in remote areas of developing countries. As a conclusion to this project, questionnaires were sent to the in-country administrators for each test site probing user acceptance of the systems and attitudes regarding procurement of additional systems. Responses indicate that the systems had a positive effect on the local communities, that they made a positive impression on the local health authorities, and that system cost and scarcity of funds are the major barriers to procurements of additional systems.

  6. Space photovoltaic power generation. Uchu taiyo hatsuden ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, I [Electrotechnical Laboratory, Tsukuba (Japan)

    1993-07-20

    Introduction is made of space photovoltaic power generation which is the ultimate clean energy source. This is a system to obtain electric energy from the solar cells placed on a geostatic orbit and transmit the power onto the earth by microwave. The US formulates a plan of placing 60[times]5GW power generation satellites to obtain 300GW power on the earth in 2000. As for the scale of space structure, the array of solar cells is dimensionally 10km[times]5km and the power transmitting antenna is 1km in diameter. The electric energy is amplified to microwave and power-transmitted by wireless onto the earth. The ground rectenna which receives it is dimensionally 10km[times]13km. The biggest difficulty consists in transportation of construction materials onto the orbit. In Japan, activity comprises three matters, which are research committee organized three years ago by the Agency of Industrial Science and technology, 10MW class model conceptually designed by the Institute of Space and Astronautical Science, and experiment conducted by Kyoto University on the power transmission by wireless. Pertaining to the research on the space power generation, the following two points are judged still unclarified: Reason for which the electric power companies did not apply the power transmission by wireless regarded as high in transmission efficiency. Influence of the microwave on the ionosphere and biosystem. 7 refs., 4 figs.

  7. Photovoltaic barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The photovoltaic sector is continuing on track, just as the extent of solar energy's electricity-generating potential is dawning on the public mind. The annual global installation figure was up more than twofold in 2010 (rising from just short of 7000 MWp in 2009). It leapt to over 16000 MWp, bringing worldwide installed photovoltaic capacity close to 38000 MWp. The photovoltaic power generated in the European Union at the end of 2010 reached 22.5 TWh which means an additional capacity of 13023 MWp during 2010. Concerning the cumulated installed capacity, Germany and Spain rank first and second in the European Union with respectively 17370 MWp and 3808 MWp

  8. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The european Union photovoltaic market reached the limits of the sector supply capacity for the first time. Meanwhile the prospects of growth in the photovoltaic market are still just as good as before. Silicon producers have finally responded to the expectations of the photovoltaic industry by announcing new production capacities. These extensions led to massively investing in new production capacities, in phase with ever greater demand. This increase in demand remains, however dependent upon the energy policy. (A.L.B.)

  9. Project finance and photovoltaic power plants : a theoretical and practical perspective

    OpenAIRE

    Aasgaard, Anne Kristine

    2010-01-01

    Project finance is a defined structure for developing new activity which involves establishing the project as a separate unit. The review of literature exhibits the distinctive characteristics of project finance and provides a rationale of this form of financing. Project finance entails financial modelling, risk management, legal aspects and the creation of a financial structure. The thesis explores practical use of project finance in a case study of a photovoltaic power plant and presents a ...

  10. Enhanced power quality based single phase photovoltaic distributed generation system

    Science.gov (United States)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  11. Investigation of extra power loss sharing among photovoltaic inverters caused by reactive power management in distribution networks

    DEFF Research Database (Denmark)

    Demirok, Erhan; Sera, Dezso; Teodorescu, Remus

    2014-01-01

    load and power loss on the feeders and individual inverters. Simplified energy loss evaluation is carried out here by using analytical average loss modeling of 2-level full bridge inverter coupled with network load flow analysis simulating one month period. The study shows that whatever Q control......Grid-connected photovoltaic (PV) inverters tailored with reactive power management feature can support the grid voltage especially when the voltage fluctuates near its admissible limits. Although Q control allows reducing the grid voltage elevation along the distribution feeder, it brings extra...... is selected, extra power loss is not a substantial amount to take into consideration. Similarly, loss difference among the inverters located at the various points is negligible....

  12. A low-power photovoltaic system with energy storage for radio communications: Description and design methodology

    Science.gov (United States)

    Chapman, C. P.; Chapman, P. D.; Lewison, A. H.

    1982-01-01

    A low power photovoltaic system was constructed with approximately 500 amp hours of battery energy storage to provide power to an emergency amateur radio communications center. The system can power the communications center for about 72 hours of continuous nonsun operation. Complete construction details and a design methodology algorithm are given with abundant engineering data and adequate theory to allow similar systems to be constructed, scaled up or down, with minimum design effort.

  13. Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration

    Directory of Open Access Journals (Sweden)

    T. T. Chow

    2012-01-01

    Full Text Available The market of solar thermal and photovoltaic electricity generation is growing rapidly. New ideas on hybrid solar technology evolve for a wide range of applications, such as in buildings, processing plants, and agriculture. In the building sector in particular, the limited building space for the accommodation of solar devices has driven a demand on the use of hybrid solar technology for the multigeneration of active power and/or passive solar devices. The importance is escalating with the worldwide trend on the development of low-carbon/zero-energy buildings. Hybrid photovoltaic/thermal (PVT collector systems had been studied theoretically, numerically, and experimentally in depth in the past decades. Together with alternative means, a range of innovative products and systems has been put forward. The final success of the integrative technologies relies on the coexistence of robust product design/construction and reliable system operation/maintenance in the long run to satisfy the user needs. This paper gives a broad review on the published academic works, with an emphasis placed on the research and development activities in the last decade.

  14. Equivalent Method of Integrated Power Generation System of Wind, Photovoltaic and Energy Storage in Power Flow Calculation and Transient Simulation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The integrated power generation system of wind, photovoltaic (PV) and energy storage is composed of several wind turbines, PV units and energy storage units. The detailed model of integrated generation is not suitable for the large-scale powe.r system simulation because of the model's complexity and long computation time. An equivalent method for power flow calculation and transient simulation of the integrated generation system is proposed based on actual projects, so as to establish the foundation of such integrated system simulation and analysis.

  15. Photovoltaic venture analysis. Final report. Volume III. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Costello, D.; Posner, D.; Schiffel, D.; Doane, J.; Bishop, C.

    1978-07-01

    This appendix contains a brief summary of a detailed description of alternative future energy scenarios which provide an overall backdrop for the photovoltaic venture analysis. Also included is a summary of a photovoltaic market/demand workshop, a summary of a photovoltaic supply workshop which used cross-impact analysis, and a report on photovoltaic array and system prices in 1982 and 1986. The results of a sectorial demand analysis for photovoltaic power systems used in the residential sector (single family homes), the service, commercial, and institutional sector (schools), and in the central power sector are presented. An analysis of photovoltaics in the electric utility market is given, and a report on the industrialization of photovoltaic systems is included. A DOE information memorandum regarding ''A Strategy for a Multi-Year Procurement Initiative on Photovoltaics (ACTS No. ET-002)'' is also included. (WHK)

  16. A Comparative case study of remote area power supply systems using photovoltaic-battery vs thermoelectric-battery configuration

    NARCIS (Netherlands)

    Tan, Lippong; Date, Abhijit; Zhang, Bingjie; Singh, Baljit; Ganguly, Sayantan

    The paper presents a comparative study of two types of remote area power supply (RAPS) systems, which are the existing photovoltaic-based (PV) configuration and the proposed thermoelectric-based (TE) configuration. Both RAPS systems are solar-based power generators and sized according to Melbourne

  17. Maximum Power Point Tracking Control of Photovoltaic Systems: A Polynomial Fuzzy Model-Based Approach

    DEFF Research Database (Denmark)

    Rakhshan, Mohsen; Vafamand, Navid; Khooban, Mohammad Hassan

    2018-01-01

    This paper introduces a polynomial fuzzy model (PFM)-based maximum power point tracking (MPPT) control approach to increase the performance and efficiency of the solar photovoltaic (PV) electricity generation. The proposed method relies on a polynomial fuzzy modeling, a polynomial parallel......, a direct maximum power (DMP)-based control structure is considered for MPPT. Using the PFM representation, the DMP-based control structure is formulated in terms of SOS conditions. Unlike the conventional approaches, the proposed approach does not require exploring the maximum power operational point...

  18. NEDO Forum 2000. Solar technology development session (photovoltaic power generation system and our living); Taiyoko gijutsu kaihatsu session. Taiyoko hatsuden system to watashi tachi no kurashi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The following themes were presented at the present session: (1) energy and environmental problems, and expectation to the photovoltaic power generation system, (2) our living and photovoltaic power generation, and (3) energy policies of Kobe Municipality based on lessons from the earthquake disaster. Item (1) describes: if the total electric power obtained in 20 years from the photovoltaic power generation system of 3 kW output for residential houses is converted into amount of petroleum consumed by thermal power plants, it corresponds to about 850 twenty-liter polyethylene tanks; to build a photovoltaic power generation system, energy corresponding to about 100 polyethylene tanks is used; therefore, subtraction results in saving of about 750 tanks; ordinary houses discharge about 3,500 kg of CO2 annually; and the photovoltaic power generation system serves to reduce about 1,000 kg of CO2 emission annually. Item (2) describes: in markets in 2010, more than 80% of the power generation system is served for housing; profitable price of power generation value is about 55/kW; more than 50% of the value is occupied by the value for other than power generation; and more than 80% of the system for housing will be of roof-material type in 2005. Item (3) introduces the energy diversification taken by Kobe Municipality after the earthquake disaster, and the energy policies, including the 'life spot' policy. (NEDO)

  19. Photovoltaic Shading Testbed for Module-Level Power Electronics: 2016 Performance Data Update

    Energy Technology Data Exchange (ETDEWEB)

    Deline, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Meydbray, Jenya [PV Evolution Labs (PVEL), Davis, CA (United States); Donovan, Matt [PV Evolution Labs (PVEL), Davis, CA (United States)

    2016-09-01

    The 2012 NREL report 'Photovoltaic Shading Testbed for Module-Level Power Electronics' provides a standard methodology for estimating the performance benefit of distributed power electronics under partial shading conditions. Since the release of the report, experiments have been conducted for a number of products and for different system configurations. Drawing from these experiences, updates to the test and analysis methods are recommended. Proposed changes in data processing have the benefit of reducing the sensitivity to measurement errors and weather variability, as well as bringing the updated performance score in line with measured and simulated values of the shade recovery benefit of distributed PV power electronics. Also, due to the emergence of new technologies including sub-module embedded power electronics, the shading method has been extended to include power electronics that operate at a finer granularity than the module level. An update to the method is proposed to account for these emerging technologies that respond to shading differently than module-level devices. The partial shading test remains a repeatable test procedure that attempts to simulate shading situations as would be experienced by typical residential or commercial rooftop photovoltaic (PV) systems. Performance data for multiple products tested using this method are discussed, based on equipment from Enphase, Solar Edge, Maxim Integrated and SMA. In general, the annual recovery of shading losses from the module-level electronics evaluated is 25-35%, with the major difference between different trials being related to the number of parallel strings in the test installation rather than differences between the equipment tested. Appendix D data has been added in this update.

  20. Report `A field test project for the disaster prevention type photovoltaic power generation (Kobe city, Hyogo prefecture)`; `Bosaigata taiyoko hatsuden field test jigyo (Hyogoken Kobeshi)` hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-12

    An experiment was conducted on the introduction of the disaster prevention type photovoltaic power system provided with storage batteries to public facilities, etc., considering not only the use of new energy from the environmental aspect, but the emergency use. In fiscal 1995, 5kW-output photovoltaic power systems were installed on the rooftop of Hiyodori and Takamaru regional welfare centers and a 30kW photovoltaic power system on the rooftop of the Hyogo Ward Office. Demonstrative tests of these systems started for collection of various data. Now that the systems were installed at the regional welfare center managed mostly by regional citizens and the ward office which is an administrative office familiar with regional residents, the understanding of and familiarity with the photovoltaic power system were obtained from regional residents, and also people were enlightened on the use of solar energy in such a point as economization of power rates using the interconnected power system. Further, for life supports, it was made possible to secure minimum electric power in emergency and to secure functions of disaster prevention spots. 3 figs.

  1. Photovoltaic technologies

    OpenAIRE

    Bagnall, Darren M; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power in...

  2. A thermoeconomic model of a photovoltaic heat pump

    International Nuclear Information System (INIS)

    Mastrullo, R.; Renno, C.

    2010-01-01

    In this paper the model of a heat pump whose evaporator operates as a photovoltaic collector, is studied. The energy balance equations have been used for some heat pump components, and for each layer of the photovoltaic evaporator: covering glaze, photovoltaic modules, thermal absorber plate, refrigerant tube and insulator. The model has been solved by means of a program using proper simplifications. The system input is represented by the solar radiation intensity and the environment temperature, that influence the output electric power of the photovoltaic modules and the evaporation power. The model results have been obtained referring to the photovoltaic evaporator and the plant operating as heat pump, in terms of the photovoltaic evaporator layers temperatures, the refrigerant fluid properties values in the cycle fundamental points, the thermal and mechanical powers, the efficiencies that characterize the plant performances from the energy, exergy and economic point of view. This study allows to realize a thermoeconomic comparison between a photovoltaic heat pump and a traditional heat pump under the same working conditions.

  3. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  4. Characterization of Photovoltaic Generators

    Science.gov (United States)

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  5. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power generation system evaluation technology (Research and development of system evaluation technology); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development is conducted for the acquisition of a system evaluation technique for predicting the performance of standard photovoltaic power systems and evaluation technologies applicable to residential photovoltaic power systems different from each other in terms of tilt and direction, district, solar cell type, etc. In fiscal 1999, using data collected from the Hamamatsu field test facilities and residential photovoltaic power systems installed across Japan, various design parameters, such as the irregularity compensation coefficient, temperature compensation coefficient, and the incidence compensation coefficient were determined, and, using the parameters as the secondary estimation values, design parameters were updated. In the development of simulation technologies, basic studies were made about the shadow compensation coefficient, spectral response fluctuation compensation coefficient, and the composition of polyhedral arrays. Moreover, studies were made about the estimation of large area insolation, based on the horizontal surface insolation data collected at 21 sites of residential photovoltaic power systems in the Kanto district. (NEDO)

  6. Preliminary Feasibility Study on Application of Very Large Scale-Photovoltaic Power Generation in China

    Institute of Scientific and Technical Information of China (English)

    Hu Xuehao; Zhou Xiaoxin; Bai Xiaomin; Zhang Wentao

    2005-01-01

    Solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21century, the pictures of VLS-PV power generation is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed.

  7. The photovoltaic sector in Germany, where does it go?

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Opinion polls show that photovoltaic power is very popular in Germany. This sector employs about 130.000 people and although a lot of solar modules are imported from China, other components like current inverters are fabricated in Germany and as a whole the trade balance is positive and the export rate nears 50%. In 2011 Germany invested 25 billion euros in the photovoltaic sector and now about 5% of the consumed electricity is photovoltaic power. Photovoltaic power reached grid parity in february 2012 for some consumers and the German government decided to reduce the purchase tariff drastically which may jeopardize the aim of having a photovoltaic park of 51 GWc by 2020. (A.C.)

  8. Distributed photovoltaic architecture powering a DC bus: Impact of duty cycle and load variations on the efficiency of the generator

    Science.gov (United States)

    Allouache, Hadj; Zegaoui, Abdallah; Boutoubat, Mohamed; Bokhtache, Aicha Aissa; Kessaissia, Fatma Zohra; Charles, Jean-Pierre; Aillerie, Michel

    2018-05-01

    This paper focuses on a photovoltaic generator feeding a load via a boost converter in a distributed PV architecture. The principal target is the evaluation of the efficiency of a distributed photovoltaic architecture powering a direct current (DC) PV bus. This task is achieved by outlining an original way for tracking the Maximum Power Point (MPP) taking into account load variations and duty cycle on the electrical quantities of the boost converter and on the PV generator output apparent impedance. Thereafter, in a given sized PV system, we analyze the influence of the load variations on the behavior of the boost converter and we deduce the limits imposed by the load on the DC PV bus. The simultaneous influences of 1- the variation of the duty cycle of the boost converter and 2- the load power on the parameters of the various components of the photovoltaic chain and on the boost performances are clearly presented as deduced by simulation.

  9. Fundamentals of Grid Connected Photo-Voltaic Power Electronic Converter Design

    OpenAIRE

    Evju, Svein Erik

    2007-01-01

    In this master thesis the basic theory of grid connected photo-voltaic systems is explained, giving an introduction to the different aspects of system design. Starting with a look at the standards concerning grid connection of distributed resources, and working its way through how the photo-voltaic cells work, to how photo-voltaic modules with electrical converters can be arranged. Some different converter topologies suitable for use with photo-voltaics are found, and based on these topologie...

  10. Information report from the Economic Affairs commission on photovoltaic energy

    International Nuclear Information System (INIS)

    2009-01-01

    Today and for several years to come, photovoltaic energy represents only a minimal part of the world's electric power production. Photovoltaic energy is only at its beginnings, however several countries have already taken opportunities in the business. This report gives a comprehensive information about photovoltaic energy (basic principles, conversion systems, photovoltaic power plants, incentive programs in other developed countries, regulations ...) and arguments for the development of a structured photovoltaic energy policy in France

  11. The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize

    Directory of Open Access Journals (Sweden)

    Sarah Wettstein

    2017-09-01

    Full Text Available Agriculture is under pressure to reduce its environmental impact. The use of renewable energy sources has potential to decrease these impacts. Maize is one of the most significant crops in South Africa and approximately 241,000 hectares are irrigated. This irrigation is most commonly powered by grid electricity generated using coal. However, South Africa has high solar irradiation, which could be used to generate photovoltaic electricity. The aim of this study was to determine the environmental mitigation potential of replacing grid-powered irrigation in South African maize production with photovoltaic irrigation systems using Life Cycle Assessment. The study included the value chain of maize production from cultivation to storage. Replacing grid electricity with photovoltaic-generated electricity leads to a 34% reduction in the global warming potential of maize produced under irrigation, and—applied at a national level—could potentially reduce South Africa’s greenhouse gas emissions by 536,000 t CO2-eq. per year. Non-renewable energy demand, freshwater eutrophication, acidification, and particulate matter emissions are also significantly lowered. Replacing grid electricity with renewable energy in irrigation has been shown to be an effective means of reducing the environmental impacts associated with South African maize production.

  12. Performance of a prototype micro wind turbine in the manmade wind field from air conditioner of buildings

    Directory of Open Access Journals (Sweden)

    K. H. Goh

    2012-03-01

    Full Text Available Harnessing waste energy from the manmade air fields of buildings presents a new area of renewable energy to explore. Due to the unpredictability of the natural wind, this study is to evaluate the practicality for harnessing waste energy from the air conditioner exhaust units which are a more constant and predictable source available in the buildings. A prototype of the micro wind turbine has been designed to minimize the negative effect of the exhaust sources. After the micro wind turbine was manufactured, the performance of the turbine was tested in the selected air conditioner exhaust unit. Increasing the rotor solidity and decreasing the resistance of the generator contribute to improved starting torque and decreased generator break in torque respectively in the design. The power generation of the micro wind turbine increases with an increase of the rotor speed. The 24-hour operation of the prototype presents an observation for both exhaust performance and power generation prediction when the prototype is mounted on the exhaust unit.

  13. Overview of Grid Codes for Photovoltaic Integration

    DEFF Research Database (Denmark)

    Zheng, Qianwei; Li, Jiaming; Ai, Xiaomeng

    2017-01-01

    The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration in differ......The increasing grid-connected photovoltaic (PV) power stations might threaten the safety and stability of power system. Therefore, the grid code is developed for PV power stations to ensure the security of PV integrated power systems. In this paper, requirements for PV power integration...

  14. Photovoltaic barometer

    International Nuclear Information System (INIS)

    2014-01-01

    The global solar photovoltaic market enjoyed a strong revival in 2013. Preliminary estimates put it in excess of 37 GWp, compared to 30 GWp in 2012 and 2011. The solar photovoltaic sector led the annual installed capacity ratings for renewable energies, taking worldwide capacity up to 137 GWp by the end of the year which means a 35% year-on-year increase. At global level the high growth markets - China, Japan and America - contrast sharply with the contracting European Union market. The strong recovery of the global photovoltaic market is due to the drop in module prices which in some zones has dropped below the conventional electricity price. In the E.U, in 2013 the photovoltaic electricity reached 80.2 TWh while the capacity connected during this year was 9922.2 MWp. Concerning the capacity connected in 2013 the 2 main contributors in Europe are Germany (3310.0 MWc) and Italy (1462.0 MWc). These 2 countries represent also 68% of the cumulated and connected capacity in Europe. All along the article various charts and tables give the figures of the photovoltaic capacity per inhabitant for each E.U country in 2013, the electricity production from photovoltaic power for each E.U country, and the main photovoltaic module manufacturers in 2013 worldwide reporting production and turnover

  15. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  16. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power

  17. Economics of hybrid photovoltaic power plants

    Energy Technology Data Exchange (ETDEWEB)

    Breyer, Christian

    2012-08-16

    The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of 'grid-parity' and 'fuel-parity' concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and

  18. A FEASIBILITY STUDY ON THE APPLICATION OF PHOTOVOLTAIC PANELS AS SUPPLEMENTARY POWER GENERATION FOR RESIDENCES IN SERRA CATARINENSE

    OpenAIRE

    Garcia, Dariu Schulle; Madruga, Gabriel Granzotto; Policapo Américo, Jonatas; Rodrigo de Oliveira, Joaquim; Frizzo Stefenon, Stéfano

    2017-01-01

    This article aims to present a study on the applicability of isolated photovoltaic systems. Therefore, it was necessary to conduct an economic feasibility analysis through a basic dimensioning of a photovoltaic power system, using as basis a residence located in the Serra Catarinense. This discussion was based on studies of Cabral et al (2013), Serrão (2010), and Vasconcelos (2013). The methodology was qualitative and quantitative by analyzing the inci...

  19. Fiscal 1999 research report. Data collection for development of new energy technology (Photovoltaic power generation); 1999 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa (taiyoko hatsuden) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    As a part of systematic data preparations on new energy technology, this research aims at collection and analysis of data on domestic and overseas applications, diffusion targets, concrete examples, policies, laws, subsidy systems, and the latest technology development trends of photovoltaic power generation, and at preparation of its basic data through integration and systematization of the collected data. The research items are as follows: domestic and overseas applications, diffusion targets, concrete examples, policies, laws, subsidy systems, productions of solar cells, typical photovoltaic power generation costs, trial calculations of CO{sub 2} reduction in photovoltaic power generation, technology development trends, technology development issues, issues for faster diffusion, configurations and conceptual charts of photovoltaic power systems, and major domestic and overseas trends. As a supplement, domestic and overseas manufacturers of solar cells, and manufacturers of photovoltaic power systems are listed with their addresses. The solar cell production capacities of major countries are also arranged. (NEDO)

  20. Energizing architecture. Design and photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lueling, Claudia (ed.)

    2009-07-01

    Power generation by photovoltaic systems and buildings is much more than just an alternative to traditional electric power generation. As the planning and design of photovoltaics is increasingly shifting to the forefront, it is rapidly becoming a new challenge for architecture. This book describes the whole spectrum of possible applications - from inspiration to detail - of photovoltaics as an integral part of building envelopes and introduces groundbreaking examples and visions for the future, in which photovoltaic elements work as a successful part of exterior facades - combined with highly luminous and economical illuminated wallpaper and curtains inside buildings. Its range extends from early designs by artists such as Daniel Hausig to aspects of material selection to detail drawings of implemented solutions. The enormous variety of possible applications of this new (building) material demonstrates the huge potential it possesses. (orig.)