WorldWideScience

Sample records for photovoltaic applications systems

  1. Photovoltaic systems for export application. Informal report

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, J.; Campbell, H.; Sajo, A.; Sanz, E. [Univ. of Lowell, MA (United States)

    1988-01-31

    One approach to improving the competitiveness of photovoltaic systems is the development of designs specifically for export applications. In other words, where is it appropriate in a system design to incorporate components manufactured and/or assembled in the receiving country in order to improve the photovoltaic exports from the US? What appears to be needed is a systematic method of evaluating the potential for export from the US of PV systems for various application in different countries. Development of such a method was the goal of this project.

  2. Photovoltaic applications

    International Nuclear Information System (INIS)

    Sidrach, M.

    1992-01-01

    The most common terrestrial applications of photovoltaic plants are reviewed. Classification of applications can be done considering end-use sectors and load profiles (consumption demand). For those systems with direct coupling the working point is determined by the intersection of the load line with the I-V curve Design guidelines are provided for photovoltaic systems. This lecture focusses on the distribution system and safeguards

  3. Applications of photovoltaics

    International Nuclear Information System (INIS)

    Pearsall, N.

    1999-01-01

    The author points out that although photovoltaics can be used for generating electricity for the same applications as many other means of generation, they really come into their own where disadvantages associated with an intermittent unpredictable supply are not severe. The paper discusses the advantages and disadvantages to be taken into account when considering a photovoltaic power system. Five main applications, based on the system features, are listed and explained. They are: consumer, professional, rural electrification, building-integrated, centralised grid connected and space power. A brief history of the applications of photovoltaics is presented with statistical data on the growth of installed capacity since 1992. The developing market for photovoltaics is discussed together with how environmental issues have become a driver for development of building-integrated photovoltaics

  4. Photovoltaic system criteria documents. Volume 1: Guidelines for evaluating the management and operations planning of photovoltaic applications

    Science.gov (United States)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Guidelines are provided to the Field Centers for organization, scheduling, project and cost control, and performance in the areas of project management and operations planning for Photovoltaics Test and Applications. These guidelines may be used in organizing a T and A Project Team for system design/test, site construction and operation, and as the basis for evaluating T and A proposals. The attributes are described for project management and operations planning to be used by the Field Centers. Specifically, all project management and operational issues affecting costs, schedules and performance of photovoltaic systems are addressed. Photovoltaic tests and applications include residential, intermediate load center, central station, and stand-alone systems. The sub-categories of system maturity considered are: Initial System Evaluation Experiments (ISEE); System Readiness Experiments (SRE); and Commercial Readiness Demonstration Projects (CRDP).

  5. Sandia photovoltaic systems definition and application experiment projects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.

    1983-04-01

    A compilation is given of the abstracts and visual material used in presentation at the Fourth Photovoltaic Systems Definition and Applications Projects Integration Meeting held at the Marriott Hotel, April 12-14, 1983, in Albuquerque, New Mexico. The meeting provided a forum for detailed analyses on recently completed and current activities. These activities include systems research, balance-of-system technology development, residential experimentation, and evaluation of intermediate-sized applications.

  6. Application and design of solar photovoltaic system

    International Nuclear Information System (INIS)

    Li Tianze; Lu Hengwei; Jiang Chuan; Hou Luan; Zhang Xia

    2011-01-01

    Solar modules, power electronic equipments which include the charge-discharge controller, the inverter, the test instrumentation and the computer monitoring, and the storage battery or the other energy storage and auxiliary generating plant make up of the photovoltaic system which is shown in the thesis. PV system design should follow to meet the load supply requirements, make system low cost, seriously consider the design of software and hardware, and make general software design prior to hardware design in the paper. To take the design of PV system for an example, the paper gives the analysis of the design of system software and system hardware, economic benefit, and basic ideas and steps of the installation and the connection of the system. It elaborates on the information acquisition, the software and hardware design of the system, the evaluation and optimization of the system. Finally, it shows the analysis and prospect of the application of photovoltaic technology in outer space, solar lamps, freeways and communications.

  7. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  8. Solar photovoltaics for development applications

    Energy Technology Data Exchange (ETDEWEB)

    Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  9. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  10. Photovoltaic system criteria documents. Volume 3: Environmental issues and evaluation criteria for photovoltaic applications

    Science.gov (United States)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    The environmental issues and evaluation criteria relating to the suitability of sites proposed for photovoltaic (PV) system deployment are identified. The important issues are defined, briefly discussed and then developed into evaluation criteria. System designers are provided with information on the environmental sensitivity of PV systems in realistic applications, background material which indicates the applicability of the siting issues identified, and evaluation criteria are defined to facilitate the selection of sites that maximize PV system operation.

  11. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    OpenAIRE

    Muhida, Riza; Mohamad, Nor Hilmi; Legowo, Ari; Irawan, Rudi; Astuti, Winda

    2013-01-01

    Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV) modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT) method is applied to the traffic light system. MPPT is intended to catch up th...

  12. An autonomous photovoltaic system sizing program for office applications in Africa

    OpenAIRE

    Herteleer, Bert; Cappelle, Jan; Driesen, Johan

    2012-01-01

    A spreadsheet tool and underlying model was developed to aid non-expert users in sizing off- or on-grid photovoltaic systems with battery back-up for office applications in Africa. The tool offers the user a number of choices which help in the decision process. The model is based on the concept of energy equivalence and extended by taking into account non-ideal behaviours of photovoltaic system components, modelled as efficiency deviations. The spreadsheet tool uses freely available dat...

  13. A software application for energy flow simulation of a grid connected photovoltaic system

    International Nuclear Information System (INIS)

    Hamad, Ayman A.; Alsaad, Mohammad A.

    2010-01-01

    A computer software application was developed to simulate hourly energy flow of a grid connected photovoltaic system. This software application enables conducting an operational evaluation of a studied photovoltaic system in terms of energy exchange with the electrical grid. The system model consists of a photovoltaic array, a converter and an optional generic energy storage component that supports scheduled charging/discharging. In addition to system design parameters, the software uses hourly solar data and hourly load data to determine the amount of energy exchanged with electrical grid for each hour of the simulated year. The resulting information is useful in assessing the impact of the system on demand for electrical energy of a building that uses it. The software also aggregates these hourly results in daily, monthly and full year sums. The software finds the financial benefit of the system as the difference in grid electrical energy cost between two simultaneously considered cases. One is with load supplied only by the electrical grid, while the other is with the photovoltaic system present and contributing energy. The software supports the energy pricing scheme used in Jordan for domestic consumers, which is based on slices of monthly consumption. By projecting the yearly financial results on the system lifetime, the application weighs the financial benefit resulting from using the system against its cost, thus facilitating an economical evaluation.

  14. Simple economic evaluation and applications experiments for photovoltaic systems for remote sites

    Energy Technology Data Exchange (ETDEWEB)

    Rios, M. Jr.

    1980-01-01

    A simple evaluation of the cost effectiveness of photovoltaic systems is presented. The evaluation is based on a calculation of breakeven costs of photovoltaics (PV) arrays with the levelized costs of two alternative energy sources (1) extension of the utility grid and (2) diesel generators. A selected number of PV applications experiments that are in progress in remote areas of the US are summarized. These applications experiments range from a 23 watt insect survey trap to a 100 kW PV system for a national park complex. It is concluded that PV systems for remote areas are now cost effective in remote small applications with commercially available technology and will be cost competitive for intermediate scale systems (approx. 10 kW) in the 1980s if the DOE 1986 Commercial Readiness Goals are achieved.

  15. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    , detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing...... the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view...

  16. Commercial Application of a Photovoltaic Concentrator system. Phase I. Final report, 1 June 1978-28 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.J.; Anderson, E.R.; Bardwell, K.M.

    1980-04-01

    This report documents the design and analysis of the BDM CAPVC (Commercial Application of a Photovoltaic Concentrator) system. The preliminary design, prototype test and evaluation, system analysis, and final design of a large-scale concentrating photovoltaic system are described. The application is on an attractive new office building which represents a large potential market. The photovoltaic concentrating array is a roof-mounted, single-axis linear parabolic trough, using single crystalline silicon photovoltaic cells. A total of 6720 square feet of aperture is focussed on 13,944 PV cells. The photovoltaic system operates in parallel with the local utility in an augmentary loadsharing operating mode. The array is actively cooled and the thermal energy utilized for building heat during winter months. (WHK)

  17. Photovoltaic Technology and Applications | Othieno | Discovery and ...

    African Journals Online (AJOL)

    Photovoltaic home systems appear to be the most viable alternative source of electricity. The photovoltaic technology is therefore reviewed and recommendations made on their application for rural electrification in the developing nations. Keywords: solar energy, photovoltaic materials, electrification, rural power, cost, ...

  18. A novel application for concentrator photovoltaic in the field of agriculture photovoltaics

    Science.gov (United States)

    Liu, Luqing; Guan, Chenggang; Zhang, Fangxin; Li, Ming; Lv, Hui; Liu, Yang; Yao, Peijun; Ingenhoff, Jan; Liu, Wen

    2017-09-01

    Agriculture photovoltaics is a trend setting area which has already led to a new industrial revolution. Shortage of land in some countries and desertification of land where regular solar panels are deployed are some of the major problems in the photovoltaic industry. Concentrator photovoltaics experienced a decline in applicability after the cost erosion of regular solar panels at the end of the last decade. We demonstrate a novel and unique application for concentrator photovoltaics tackling at a same time the issue of conventional photovoltaics preventing the land being used for agricultural purpose where ever solar panels are installed. We leverage the principle of diffractive and interference technology to split the sun light into transmitted wavelengths necessary for plant growth and reflected wavelengths useful for solar energy generation. The technology has been successfully implemented in field trials and sophisticated scientific studies have been undertaken to evaluate the suitability of this technology for competitive solar power generation and simultaneous high-quality plant growth. The average efficiency of the agriculture photovoltaic system has reached more than 8% and the average efficiency of the CPV system is 6.80%.

  19. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    Science.gov (United States)

    Philippi, T. M.

    1981-01-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  20. International market assessment of stand-alone photovoltaic power systems for cottage industry applications

    Science.gov (United States)

    Philippi, T. M.

    1981-11-01

    The final result of an international assessment of the market for stand-alone photovoltaic systems in cottage industry applications is reported. Nonindustrialized countries without centrally planned economies were considered. Cottage industries were defined as small rural manufacturers, employing less than 50 people, producing consumer and simple products. The data to support this analysis were obtained from secondary and expert sources in the U.S. and in-country field investigations of the Philippines and Mexico. The near-term market for photovoltaics for rural cottage industry applications appears to be limited to demonstration projects and pilot programs, based on an in-depth study of the nature of cottage industry, its role in the rural economy, the electric energy requirements of cottage industry, and a financial analysis of stand-alone photovoltaic systems as compared to their most viable competitor, diesel driven generators. Photovoltaics are shown to be a better long-term option only for very low power requirements. Some of these uses would include clay mixers, grinders, centrifuges, lathes, power saws and lighting of a workshop.

  1. Photovoltaic Cells and Systems: Current State and Future Trends

    OpenAIRE

    Hadj Bourdoucen; Joseph A. Jervase; Abdullah Al-Badi; Adel Gastli; Arif Malik

    2000-01-01

    Photovoltaics is the process of converting solar energy into electrical energy. Any photovoltaic system invariably consists of solar cell arrays and electric power conditioners. Photovoltaic systems are reliable, quiet, safe and both environmentally benign and self-sustaining. In addition, they are cost-effective for applications in remote areas. This paper presents a review of solar system components and integration, manufacturing, applications, and basic research related to photovoltaics. P...

  2. APPLICATION OF A PHOTOVOLTAIC SYSTEM IN WATER ...

    African Journals Online (AJOL)

    use of the Photovoltaic system for water pumping is explored. .... employed to advantage for rural Ethiopia are solar energy, wind ... Kwh/sq.m/day and with a yearly average of about .... equator. Well Data : Total head 62m ... Investment return in photovoltaic potable water ... without any considerable change in performance.

  3. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  4. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  5. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  6. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  7. Implementing agreement on photovoltaic power systems - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2007. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids and PV environmental health and safety activities. The status and prospects in the 22 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  8. Implementing agreement on photovoltaic power systems - Annual report 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2008. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids as well as health and safety activities. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  9. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  10. Implementing agreement on photovoltaic power systems - Annual report 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2006. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications and hybrid systems within mini-grids. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  11. Implementing agreement on photovoltaic power systems - Annual report 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2003. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. The programme's tenth anniversary is noted. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system, the deployment of photovoltaic technologies in developing countries and urban-scale PV applications. The status and prospects in the 20 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  12. Photovoltaics. [research and development of terrestrial electric power systems

    Science.gov (United States)

    Smith, J. L.

    1981-01-01

    The federal government has sponsored a program of research and development on terrestrial photovoltaic systems that is designed to reduce the costs of such systems through technological advances. There are many potential paths to lower system costs, and successful developments have led to increased private investment in photovoltaics. The prices for photovoltaic collectors and systems that appear to be achievable within this decade offer hope that the systems will soon be attractive in utility applications within the United States. Most of the advances achieved will also be directly applicable to the remote markets in which photovoltaic systems are now commercially successful

  13. Implementing agreement on photovoltaic power systems - Annual report 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2005. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  14. Implementing agreement on photovoltaic power systems - Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2004. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries and urban-scale PV applications. The status and prospects in the 21 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  15. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. International guideline for the certification of photovoltaic system components and grid-connected systems

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents a guideline for the certification of photovoltaic system components and grid-connected systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This generic international guideline for the certification of photovoltaic system components and complete grid-connected photovoltaic systems describes a set of recommended methods and tests that may be used to verify the integrity of hardware and installations, compliance with applicable standards/codes and can be used to provide a measure of the performance of components or of entire systems. The guideline is to help ensure that photovoltaic installations are both safe for equipment as well as for personnel when used according to the applicable installation standards and codes. The guideline may be used in any country using the rules stipulated by the applicable standards and codes and by applying them to the guideline's recommended tests. This document uses examples for some tests but does not specify exact test set-ups, equipment accuracy, equipment manufacturers or calibration procedures.

  16. Implementing agreement on photovoltaic power systems - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2009. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed and status reports on the programme's various tasks and sub-tasks are presented, as are activities planned for 2010. The tasks include the exchange and dissemination of information on photovoltaic power systems, a study on very large scale photovoltaic power generation system, photovoltaic services for developing countries, urban-scale PV applications, hybrid systems within mini-grids, PV environmental health and safety activities, performance and reliability of PV systems and high penetration PV in electricity grids. The status and prospects in the 23 countries and organisations participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. Finally, completed tasks are reviewed. These include the performance, reliability and analysis of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, design and operation of modular photovoltaic plants for large scale power generation and photovoltaic power systems in the built environment. The report is completed with a list of Executive Committee members and Operating Agents.

  17. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  18. Performance evaluation of photovoltaic-thermosyphon system for subtropical climate application

    Energy Technology Data Exchange (ETDEWEB)

    Chow, T.T.; He, W.; Chan, A.L.S. [Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR (China); Ji, J. [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Anhui (China)

    2007-01-15

    The rapid development and sales volume of photovoltaic (PV) modules has created a promising business environment in the foreseeable future. However, the current electricity cost from PV is still several times higher than from the conventional power generation. One way to shorten the payback period is to bring in the hybrid photovoltaic-thermal (PVT) technology, which multiplies the energy outputs from the same collector surface area. In this paper, the performance evaluation of a new water-type PVT collector system is presented. The thermal collection making use of the thermosyphon principle eliminates the expense of pumping power. Experimental rigs were successfully built. A dynamic simulation model of the PVT collector system was developed and validated by the experimental measurements, together with two other similar models developed for PV module and solar hot-water collector. These were then used to predict the energy outputs and the payback periods for their applications in the subtropical climate, with Hong Kong as an example. The numerical results show that a payback period of 12 year for the PVT collector system is comparable to the side-by-side system, and is much shorter than the plain PV application. This is a great encouragement in marketing the PVT technology. (author)

  19. Performance evaluation of photovoltaic-thermosyphon system for subtropical climate application

    International Nuclear Information System (INIS)

    Chow, T.T.; He, W.; Chan, A.L.S.; Ji, J.

    2007-01-01

    The rapid development and sales volume of photovoltaic (PV) modules has created a promising business environment in the foreseeable future. However, the current electricity cost from PV is still several times higher than from the conventional power generation. One way to shorten the payback period is to bring in the hybrid photovoltaic-thermal (PVT) technology, which multiplies the energy outputs from the same collector surface area. In this paper, the performance evaluation of a new water-type PVT collector system is presented. The thermal collection making use of the thermosyphon principle eliminates the expense of pumping power. Experimental rigs were successfully built. A dynamic simulation model of the PVT collector system was developed and validated by the experimental measurements, together with two other similar models developed for PV module and solar hot-water collector. These were then used to predict the energy outputs and the payback periods for their applications in the subtropical climate, with Hong Kong as an example. The numerical results show that a payback period of 12 year for the PVT collector system is comparable to the side-by-side system, and is much shorter than the plain PV application. This is a great encouragement in marketing the PVT technology. (author)

  20. Flate-plate photovoltaic power systems handbook for Federal agencies

    Science.gov (United States)

    Cochrane, E. H.; Lawson, A. C.; Savage, C. H.

    1984-01-01

    The primary purpose is to provide a tool for personnel in Federal agencies to evaluate the viability of potential photovoltaic applications. A second objective is to provide descriptions of various photovoltaic systems installed by different Federal agencies under the Federal Photovoltaic Utilization Program so that other agencies may consider similar applications. A third objective is to share lessons learned to enable more effective procurement, design, installation, and operation of future photovoltaic systems. The intent is not to provide a complete handbook, but rather to provide a guide for Federal agency personnel with additional information incorporated by references. The steps to be followed in selecting, procuring, and installing a photovoltaic application are given.

  1. Implementing agreement on photovoltaic power systems - Annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2000. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance and design of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, the grid interconnection of building-integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, very large scale photovoltaic power generation systems and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  2. Implementing agreement on photovoltaic power systems - Annual report 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This annual report for the International Energy Agency (IEA) reports on the programme's activities in 2001. The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative research and development agreements established within the IEA. Its mission is to enhance international collaboration efforts which support the development and deployment of photovoltaic solar energy. In this annual report, the programme's mission and its strategies for reaching four objectives are reviewed. Status reports on the programme's various tasks and sub-tasks are presented. The tasks include the exchange and dissemination of information on photovoltaic power systems, the operational performance, maintenance and sizing of photovoltaic systems, the use of photovoltaic power systems in stand-alone and island applications, grid interconnection of building integrated and other distributed photovoltaic power systems, photovoltaic power systems in the built environment, a study on very large scale photovoltaic power generation system and the deployment of photovoltaic technologies in developing countries. The status and prospects in the 20 countries participating in the programme are presented. Along with country-specific topics, industry activities, research, development and demonstration projects, applications, education and governmental activities as well as future activities are reviewed. The report is completed with a list of Executive Committee members and Operating Agents.

  3. Assessment of the technology required to develop photovoltaic power system for large scale national energy applications

    Science.gov (United States)

    Lutwack, R.

    1974-01-01

    A technical assessment of a program to develop photovoltaic power system technology for large-scale national energy applications was made by analyzing and judging the alternative candidate photovoltaic systems and development tasks. A program plan was constructed based on achieving the 10 year objective of a program to establish the practicability of large-scale terrestrial power installations using photovoltaic conversion arrays costing less than $0.50/peak W. Guidelines for the tasks of a 5 year program were derived from a set of 5 year objectives deduced from the 10 year objective. This report indicates the need for an early emphasis on the development of the single-crystal Si photovoltaic system for commercial utilization; a production goal of 5 x 10 to the 8th power peak W/year of $0.50 cells was projected for the year 1985. The developments of other photovoltaic conversion systems were assigned to longer range development roles. The status of the technology developments and the applicability of solar arrays in particular power installations, ranging from houses to central power plants, was scheduled to be verified in a series of demonstration projects. The budget recommended for the first 5 year phase of the program is $268.5M.

  4. Artificial intelligence techniques for photovoltaic applications: A review

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, Adel [Department of Electronics, Faculty of Sciences Engineering, LAMEL Laboratory, Jijel University, Oulad-aissa, P.O. Box 98, Jijel 18000 (Algeria); Kalogirou, Soteris A. [Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O. Box 50329, Limassol 3603 (Cyprus)

    2008-10-15

    Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more popular nowadays. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with nonlinear problems and once trained can perform prediction and generalization at high speed. AI-based systems are being developed and deployed worldwide in a wide variety of applications, mainly because of their symbolic reasoning, flexibility and explanation capabilities. AI has been used in different sectors, such as engineering, economics, medicine, military, marine, etc. They have also been applied for modeling, identification, optimization, prediction, forecasting and control of complex systems. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in photovoltaic systems application. Problems presented include three areas: forecasting and modeling of meteorological data, sizing of photovoltaic systems and modeling, simulation and control of photovoltaic systems. Published literature presented in this paper show the potential of AI as design tool in photovoltaic systems. (author)

  5. Cost and Performance Model for Photovoltaic Systems

    Science.gov (United States)

    Borden, C. S.; Smith, J. H.; Davisson, M. C.; Reiter, L. J.

    1986-01-01

    Lifetime cost and performance (LCP) model assists in assessment of design options for photovoltaic systems. LCP is simulation of performance, cost, and revenue streams associated with photovoltaic power systems connected to electric-utility grid. LCP provides user with substantial flexibility in specifying technical and economic environment of application.

  6. Optimization of photovoltaic power systems

    CERN Document Server

    Rekioua, Djamila

    2012-01-01

    Photovoltaic generation is one of the cleanest forms of energy conversion available. One of the advantages offered by solar energy is its potential to provide sustainable electricity in areas not served by the conventional power grid. Optimisation of Photovoltaic Power Systems details explicit modelling, control and optimisation of the most popular stand-alone applications such as pumping, power supply, and desalination. Each section is concluded by an example using the MATLAB(R) and Simulink(R) packages to help the reader understand and evaluate the performance of different photovoltaic syste

  7. Photovoltaics: systems considerations

    Energy Technology Data Exchange (ETDEWEB)

    Haq, A M

    1982-08-01

    Photovoltaics applications to date and the potential uses and growth of this alternative energy source for the future are examined in the light of present world economic conditions. In addition, a more detailed description is given, illustrating the method by which system sizing and design are calculated and mentioning such factors as local solar radiation and insolation levels, humidity, wind loading and altitude, all of which affect the optimal system size. The role of computer programming in these calculations is also outlined, illustrating the way in which deterioration, battery losses, poor weather etc. can be accounted and compensated for in the systems design process. The elements of the actual systems are also described, including details of the solar cells and arrays, the electronic controls incorporated in the systems and the characteristics of the batteries used. A resume of projected costs and current technological advances in silicon processing techniques is given together with an analysis of present and future growth trends in the photovoltaics industry.

  8. Optimization of the photovoltaic-hydrogen supply system of a stand-alone remote-telecom application

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Guillermo; Martinez, Graciano; Galvez, Jose L.; Cuevas, Raquel; Maellas, Jesus [National Institute for Aerospace Technology (INTA), Renewable Energy Department, Ctra. Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Gila, Raul; Bueno, Emilio [Polytechnical School - Alcala de Henares University, Electronics Department, Campus Universitario, Ctra. De Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid (Spain)

    2009-07-15

    Hydrogen is considered as the optimal carrier for the surplus energy storage from renewable resources. Although hydrogen and its application in fuel cell is considered as a high-cost energy system, some cost-efficient solutions have been found for their use in stand-alone applications, which usually depend on the variability of renewable sources that have to be oversized in order to reduce their dependence on external energy sources. This paper shows the results from the simulation of several alternatives of introducing hydrogen technologies to increase the independence of a remote-telecom application fed by photovoltaic panels. Hydrogen is obtained by electrolysis and it is used in a fuel cell when the renewable energy source is not enough to maintain the stand-alone application. TRNSYS simulation environment has been used for evaluating the proposed alternatives. The results show that the best configuration option is that considering the use of hydrogen as a way to storage the surplus of radiation and the management system can vary the number of photovoltaic panels assigned to feed the hydrogen generation, the batteries or the telecom application. (author)

  9. Prospects and strategy for large scale utility applications of photovoltaic power systems

    International Nuclear Information System (INIS)

    Vigotti, R.; Lysen, E.; Cole, A.

    1996-01-01

    The status and prospects of photovoltaic (PV) power systems are reviewed. The market diffusion strategy for the application of PV systems by utilities is described, and the mission, objectives and thoughts of the collaboration programme launched among 18 industrialized countries under the framework of the International Energy Agency are highly with particular reference to technology transfer to developing countries. Future sales of PV systems are expected to grow in the short and medium term mainly in the sector of isolated systems. (R.P.)

  10. National Survey Report of Photovoltaic Power Applications in France 2016

    International Nuclear Information System (INIS)

    Kaaijk, Paul; Mehl, Celine; Carrere, Tristan

    2017-06-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Program is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual 'Trends in photovoltaic applications' report. In parallel, National Survey Reports are produced annually by each Task 1 participant. This document is France National Survey Report for the year 2016. Information from this document will be used as input to IEA's annual Trends in photovoltaic applications report

  11. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    Science.gov (United States)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  12. Application of photovoltaic generating system to electric power in large ship; Taiyoko hatsuden system no ogata senpaku eno oyo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Katagi, T; Ogawa, S; Nishikawa, E; Hashimoto, T [Kobe University of Mercantile Marine, Kobe (Japan); Ishida, K

    1996-10-27

    This paper describes the design of electric power system in a ship with photovoltaic power generating system, to examine applicability of the photovoltaic power generating system to the inboard power source. It also discusses effectiveness of the system for sea environment. At first, the actual route of a car carrier, meteorological data, and quantity of power consumption were picked up from the deck logbook and engine logbook. Then, the installation area of photovoltaic arrays, the quantity of photovoltaic power generation derived from the quantity of solar radiation, and the capacities of batteries and inverters were calculated, to design the electric power system in the ship with photovoltaic power generation system. Moreover, the NOx and SOx emissions were compared between the present power system and the usual power system using diesel power generator, to discuss the effectiveness of the present system for sea environment. Consequently, it was found that the emission of NOx was reduced by about 33% and the emission of SOx was reduced by about 28% compared to the usual power system. The effectiveness for sea environment was confirmed. 9 refs., 5 figs., 4 tabs.

  13. Optimizing electrical load pattern in Kuwait using grid connected photovoltaic systems

    International Nuclear Information System (INIS)

    Al-Hasan, A.Y.; Ghoneim, A.A.; Abdullah, A.H.

    2004-01-01

    Grid connected photovoltaic systems is one of the most promising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because grid power may be used to supplement photovoltaic systems (PV) when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility grid. In this system, the load is the total electrical energy consumption. The main objective of the present work is to optimize the electrical load pattern in Kuwait using grid connected PV systems. In this situation, the electric load demand can be satisfied from both the photovoltaic array and the utility grid. The performance of grid connected photovoltaic systems in the Kuwait climate has been evaluated. It was found that the peak load matches the maximum incident solar radiation in Kuwait, which would emphasize the role of using the PV station to minimize the electrical load demand. In addition, a significant reduction in peak load can be achieved with grid connected PV systems

  14. Materials for Photovoltaic Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana

    Energy priorities are changing nowadays. As mankind will probably have to face energy crisis, factors such as energy independence, energy security, stability of energy supply and the variety of energy sources become much more vital these days. Photovoltaics is exceptional compared to other renewable sources of energy due to its wide opportunity to gain energetic and environmental benefits. An overview of the present state of knowledge of the materials aspects of photovoltaic cells will be given, and new semiconductor materials, including nanomaterials, with potential for application in photovoltaic devices will be identified.

  15. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Research and development of photovoltaic system evaluation technology (Research and development of system evaluation technology - Photovoltaic system data book, separate volume); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu bessatsu (taiyoko hatsuden system data shu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In the research and development of photovoltaic power generation system evaluation technology, great progress has been achieved in performance improvement and cost reduction as far as constituent devices such as power modules and inverters are concerned. In the designing of systems, however, quantitative elucidation of loss and power reduction factors remains insufficient. Under the circumstances, several types of photovoltaic power generation systems expected to be put to practical application in the future are taken up, test facilities are constructed which simulate them, and data are collected. The thus-collected data are utilized for research and development of evaluation techniques necessary for the improvement of photovoltaic system efficiency, such as design parameter quantification, databasing and utilization thereof, and simulation technologies, for the establishment of technologies for optimum designs and optimum operations. The data book accommodates data, arranged in an easy-to-use fashion, collected about verification test facility (interconnected systems, independent systems, and water pump systems) operation, weather conditions, and residential photovoltaic power generation systems. (NEDO)

  16. Overview of photovoltaic and battery applications

    Science.gov (United States)

    Murrell, J. D.; Hellman, Karl H.

    1989-10-01

    The use of solar cells and batteries for power generation and vehicle propulsion is examined. Issues such as energy uses and fuel sources, solar electric power, energy storage for solar photovoltaic systems, batteries for electric cars and applications for other mobile sources are also discussed.

  17. Market assessment of photovoltaic power systems for agricultural applications in Morocco

    Science.gov (United States)

    Steingass, H.; Asmon, I.

    1981-01-01

    Results of a month-long study in Morocco aimed at assessing the market potential for stand-alone photovoltaic systems in agriculture and rural service applications are presented. The following applications, requiring less than 15 kW of power, are described: irrigation, cattle watering, refrigeration, crop processing, potable water and educational TV. Telecommunications and transportation signalling applications, descriptions of power and energy use profiles, assessments of business environment, government and private sector attitudes towards photovoltaics, and financing were also considered. The Moroccan market presents both advantages and disadvantages for American PV manufacturers. The principle advantages of the Moroccan market are: a limited grid, interest in and present use of PV in communications applications, attractive investment incentives, and a stated policy favoring American investment. Disadvantages include: lack of government incentives for PV use, general unfamiliarity with PV technology, high first cost of PV, a well-established market network for diesel generators, and difficulty with financing. The market for PV in Morocco (1981-1986), will be relatively small, about 340 kwp. The market for PV is likely to be more favorable in telecommunications, transport signalling and some rural services. The primary market appears to be in the public (i.e., government) rather than private sector, due to financial constraints and the high price of PV relative to conventional power sector.

  18. Recent progresses and achievements in photovoltaic-phase change material technology: A review with special treatment on photovoltaic thermal-phase change material systems

    International Nuclear Information System (INIS)

    Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.

    2016-01-01

    Highlights: • Broad summary of phase change materials based cooling for photovoltaic modules. • Compendium on phase change materials that are mostly used in photovoltaic systems. • Extension of heat availability period by 75–100% with phase change material. • Heat storage potential improves by 33–50% more with phase change material. • Future trend and move in photovoltaic thermal research. - Abstract: This communication lays out an appraisal on the recent works of phase change materials based thermal management techniques for photovoltaic systems with special focus on the so called photovoltaic thermal-phase change material system. Attempt has also been made to draw wide-ranging classification of both photovoltaic and photovoltaic thermal systems and their conventional cooling or heat harvesting methods developed so far so that feasible phase change materials application area in these systems can be pointed out. In addition, a brief literature on phase change materials with particular focus on their solar application has also been presented. Overview of the researches and studies establish that using phase change materials for photovoltaic thermal control is technically viable if some issues like thermal conductivity or phase stability are properly addressed. The photovoltaic thermal-phase change material systems are found to offer 33% (maximum 50%) more heat storage potential than the conventional photovoltaic-thermal water system and that with 75–100% extended heat availability period and around 9% escalation in output. Reduction in temperature attained with photovoltaic thermal-phase change material system is better than that with regular photovoltaic-thermal water system, too. Studies also show the potential of another emerging technology of photovoltaic thermal-microencapsulated phase change material system that makes use of microencapsulated phase change materials in thermal regulation. Future focus areas on photovoltaic thermal-phase change

  19. Analysis of batteries for use in photovoltaic systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Podder, A; Kapner, M

    1981-02-01

    An evaluation of 11 types of secondary batteries for energy storage in photovoltaic electric power systems is given. The evaluation was based on six specific application scenarios which were selected to represent the diverse requirements of various photovoltaic systems. Electrical load characteristics and solar insulation data were first obtained for each application scenario. A computer-based simulation program, SOLSIM, was then developed to determine optimal sizes for battery, solar array, and power conditioning systems. Projected service lives and battery costs were used to estimate life-cycle costs for each candidate battery type. The evaluation considered battery life-cycle cost, safety and health effects associated with battery operation, and reliability/maintainability. The 11 battery types were: lead-acid, nickel-zinc, nickel-iron, nickel-hydrogen, lithium-iron sulfide, calcium-iron sulfide, sodium-sulfur, zinc-chlorine, zinc-bromine, Redox, and zinc-ferricyanide. The six application scenarios were: (1) a single-family house in Denver, Colorado (photovoltaic system connected to the utility line); (2) a remote village in equatorial Africa (stand-alone power system); (3) a dairy farm in Howard County, Maryland (onsite generator for backup power); (4) a 50,000 square foot office building in Washington, DC (onsite generator backup); (5) a community in central Arizona with a population of 10,000 (battery to be used for dedicated energy storage for a utility grid-connected photovoltaic power plant); and (6) a military field telephone office with a constant 300 W load (trailer-mounted auxiliary generator backup). Recommendations for a research and development program on battery energy storage for photovoltaic applications are given, and a discussion of electrical interfacing problems for utility line-connected photovoltaic power systems is included. (WHK)

  20. A comparative study on three types of solar utilization technologies for buildings: Photovoltaic, solar thermal and hybrid photovoltaic/thermal systems

    International Nuclear Information System (INIS)

    Huide, Fu; Xuxin, Zhao; Lei, Ma; Tao, Zhang; Qixing, Wu; Hongyuan, Sun

    2017-01-01

    Highlights: • Models of Solar thermal, Photovoltaic and Photovoltaic/thermal systems are developed. • Experiments are performed to validate the simulation results. • Annual performances of the three solar systems used in china are predicted. • Energy comparison between the three solar systems is analyzed. - Abstract: Buildings need energy including heat and electricity, and both of them can be provided by the solar systems. Solar thermal and photovoltaic systems absorb the solar energy and can supply the heat and electricity for buildings, respectively. However, for the urban residential buildings, the limited available area makes installation of the solar thermal collectors and photovoltaic modules together impossible. A hybrid photovoltaic/thermal system can simultaneously generate heat and electricity, which is deemed to be quite suitable for the urban residential buildings application. And yet, for a rural house of China, the available area for installation of the solar collectors is large but daily domestic hot water demand of a rural family is generally not exceeded 300 L. If only the hybrid photovoltaic/thermal collectors are installed on the whole available area, this will lead to an overproduction of the thermal energy, especially in summer. Moreover, buildings requiring for the heat and electricity are different in different regions and different seasons. In this paper, simulation models of the solar thermal, photovoltaic and hybrid photovoltaic/thermal systems are presented, and experiments are also performed to validate the simulation results. Using the validated models, performances of the three solar systems for residential applications were predicted. And energy comparison between the three solar systems used in Hongkong, Lhasa, Shanghai and Beijing of China, respectively, were also studied. Results show that, for the urban residential building with limited available installation space, a hybrid photovoltaic/thermal system may have the

  1. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2013-07-01

    Full Text Available Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT method is applied to the traffic light system. MPPT is intended to catch up the maximum power at daytime in order to charge the battery at the maximum rate in which the power from the battery is intended to be used at night time or cloudy day. MPPT is actually a DC-DC converter that can step up or down voltage in order to achieve the maximum power using Pulse Width Modulation (PWM control. From experiment, we obtained the voltage of operation using MPPT is at 16.454 V, this value has error of 2.6%, if we compared with maximum power point voltage of PV module that is 16.9 V. Based on this result it can be said that this MPPT control works successfully to deliver the power from PV module to battery maximally.

  2. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    Science.gov (United States)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-01-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  3. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    Science.gov (United States)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  4. Modeling photovoltaic systems for AC appliances

    Directory of Open Access Journals (Sweden)

    Andreea Maria Neaca

    2009-10-01

    Full Text Available In this paper is described the development of a model which can simulate the performance of a photovoltaic (PV system under specific meteorological conditions and transforming the DC current into AC current. In this model, the accent stands on the design of a series charge regulator. It is treated also the benefit of creating a circuit, with different methods, that can test the maximum power point trackers (MPPT for different photovoltaic applications.

  5. Integrated Photovoltaic System Used as an Alternative Power Source

    Directory of Open Access Journals (Sweden)

    Ionel Laurentiu Alboteanu

    2014-09-01

    Full Text Available This paper presents a solution to use solar energy as an alternative source of electricity to conventional sources. The solution is to use a compact photovoltaic system integrated into a micro smart grid. The studied photovoltaic system is used into concrete application for the power supply lighting in a didactic laboratory.

  6. Photovoltaic systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-12-01

    Each of the Department of Energy's Photovoltaic Systems Program projects funded and/or in existence during fiscal year 1978 (October 1, 1977 through September 30, 1978) are described. The project sheets list the contractor, principal investigator, and contract number and funding and summarize the programs and status. The program is divided into various elements: program assessment and integration, research and advanced development, technology development, system definition and development, system application experiments, and standards and performance criteria. (WHK)

  7. National Survey Report of Photovoltaic Power Applications in France 2015

    International Nuclear Information System (INIS)

    Kaaijk, Paul; Durand, Yvonnick

    2016-06-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Program is to promote and facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. Task 1 activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation. An important deliverable of Task 1 is the annual report Trends in Photovoltaic Applications. In parallel, National Survey Reports are produced annually by each Task 1 participant. The PVPS web site www.iea-pvps.org also plays an important role in disseminating information arising from the program, including national information. This document is the French National Survey Report on photovoltaics for the year 2015

  8. Eliminating Ground Current in a Transformerless Photovoltaic Application

    DEFF Research Database (Denmark)

    Lopez, Ocar; Freijedo, Francisco D.; Yepes, Alejandro G.

    2010-01-01

    For low-power grid-connected applications, a singlephase converter can be used. In photovoltaic (PV) applications, it is possible to remove the transformer in the inverter to reduce losses, costs, and size. Galvanic connection of the grid and the dc sources in transformerless systems can introduce...

  9. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  10. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  11. The performance and applicability study of a fixed photovoltaic-solar water disinfection system

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun

    2016-01-01

    Highlights: • A fixed photovoltaic-SODIS (solar water disinfection) system was constructed. • The system could generate electricity and produce clean water simultaneously. • The daily solar generated electricity was much more than the system consumption. • The system can be used for about 90% of whole year in Lhasa and Chennai. • Temperature enhanced the SODIS process for about 60% days of whole year in Chennai. - Abstract: The objective of the study is to construct and evaluate a fixed PV (photovoltaic) cell integrated with SODIS (solar water disinfection) system to treat drinking water and generate electricity under different climate through experimental and simulation methods. The photovoltaic and disinfection performances of the hybrid system were studied by the disinfection of Escherichia coli. The applicability of the system in Lhasa and Chennai was evaluated by analyzing the daily radiation and predicting the daily water temperature and the system electricity output. The results confirm that the temperature would dramatically enhance the SODIS process and shorten the disinfection time, when the water temperature was above 45 °C. The PV cell in the hybrid system could work under low temperature because of the water layer and the generated electricity was much more than the system consumption. The simulation results show that the days with maximum water temperature above 45 °C were more than 60% of whole year in Chennai. The generated electricity of the hybrid system was 49682.3 W h and 45615.9 W h a year in Lhasa and Chennai respectively. It was sufficient to drive the system of whole year. The number of days which realized drinking water treatment was 324 days in Lhasa and 315 days in Chennai a year.

  12. Investigation of Photovoltaic Assisted Misting System Application for Arbor Refreshment

    Directory of Open Access Journals (Sweden)

    Hikmet Esen

    2015-01-01

    Full Text Available In this study, for the first time in the literature, solar assisted cooler with misting system established on an arbor with an area of 24 m2 and georeferenced in Elazig (38.6775° N, 39.1707° E, Turkey, is presented. Here, we present a system that reduces interior temperature of the arbor while increasing humidity. Also, the system generates required electricity with a solar photovoltaic module to power pressurized water pump through an inverter and stores it in a battery for use when there is no sunlight. The model of the photovoltaic module was implemented using a Matlab program. As a result of being an uncomplicated system, return on investment for the system is 3.7 years.

  13. Performance characteristics of solar-photovoltaic flywheel-storage systems

    Science.gov (United States)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  14. Fabrication and performance analysis of concentrated hybrid photovoltaic system

    Directory of Open Access Journals (Sweden)

    Murthy Krishna

    2018-01-01

    Full Text Available Sun is the most important source of renewable source of energy. During the past few decades there has been an ever-increasing interest in Photovoltaic (PV cells as it directly converts solar radiation into electricity. This paper involves the performance study of photovoltaic system under concentrated solar radiation. The main problem with the concentration solar energy is the drastic increase in temperature of the photovoltaic module resulting in a decrease in performance efficiency of the system. This problem of overheating of the system can be overcome by providing cooling which would ensure operation of the module in the optimal temperature range. Hence, the setup would function as a hybrid model serving the dual purpose of power generation while also utilizing the waste heat for water heating applications. The experimental set up consist of a novel arrangement of concentrator and reflector and the cooling system. The Hybrid Photovoltaic System was repeatedly tested under real time conditions on several days. A comparison was drawn between the results obtained from direct exposure of a standard photovoltaic module to that obtained from the hybrid system in order to better understand the improvement in performance parameters. The study shown a significant improvement of output of standard photovoltaic module under the concentrated solar radiation.

  15. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  16. Design optimization of photovoltaic powered water pumping systems

    International Nuclear Information System (INIS)

    Ghoneim, A.A.

    2006-01-01

    The use of photovoltaics as the power source for pumping water is one of the most promising areas in photovoltaic applications. With the increased use of water pumping systems, more attention has been paid to their design and optimum utilization in order to achieve the most reliable and economical operation. This paper presents the results of performance optimization of a photovoltaic powered water pumping system in the Kuwait climate. The direct coupled photovoltaic water pumping system studied consists of the PV array, DC motor, centrifugal pump, a storage tank that serves a similar purpose to battery storage and a maximum power point tracker to improve the efficiency of the system. The pumped water is desired to satisfy the domestic needs of 300 persons in a remote area in Kuwait. Assuming a figure of 40 l/person/day for water consumption, a volume of 12 m 3 should be pumped daily from a deep well throughout the year. A computer simulation program is developed to determine the performance of the proposed system in the Kuwait climate. The simulation program consists of a component model for the PV array with maximum power point tracker and component models for both the DC motor and the centrifugal pump. The five parameter model is adapted to simulate the performance of amorphous silicon solar cell modules. The size of the PV array, PV array orientation and the pump-motor-hydraulic system characteristics are varied to achieve the optimum performance for the proposed system. The life cycle cost method is implemented to evaluate the economic feasibility of the optimized photovoltaic powered water pumping system. At the current prices of PV modules, the cost of the proposed photovoltaic powered water pumping system is found to be less expensive than the cost of the conventional fuel system. In addition, the expected reduction in the prices of photovoltaic modules in the near future will make photovoltaic powered water pumping systems more feasible

  17. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  18. Prospects and strategy for large scale utility applications of photovoltaic power systems

    International Nuclear Information System (INIS)

    Cole, A.; Vigotti, R.; Lysen, E.

    1995-01-01

    The paper reviews the status and prospects of photovoltaic power systems and the R and D trends (silicon performances, thin films, balance of systems components), and describes the market diffusion strategy for the application of PV systems: at the short and medium term level, isolated systems for rural electricity supply in IEA member countries and decentralized energy supply (remote users and village power) in developing countries; at the medium and long term level, decentralized building integration in urban and rural areas, power stations for peak power and local grid support. The objectives of the IEA collaboration programme launched among 18 industrialized countries are summarized, with particular reference to technology transfer to developing countries. 4 figs

  19. Performance of small-scale photovoltaic systems and their potential for rural electrification in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Stutenbaeumer, Ulrich; Negash, Tesfaye; Abdi, Amensisa [Addis Ababa Univ., Dept. of Physics, Addis Ababa (Ethiopia)

    1999-09-01

    The performance of small-scale stand-alone photovoltaic systems is tested under the climatic conditions of Addis Ababa, Ethiopia. With climatic data obtained at a station in the Rift Valley, the photovoltaic systems performance is estimated for those climatic conditions. The economics of small-scale stand-alone photovoltaic system applications under Ethiopian conditions are analysed. The potential of photovoltaics for the rural electrification of Ethiopia is discussed. (Author)

  20. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  1. Analysis of the economics of photovoltaic-diesel-battery energy systems for remote applications

    Science.gov (United States)

    Brainard, W. A.

    1983-01-01

    Computer simulations were conducted to analyze the performance and operating cost of a photovoltaic energy source combined with a diesel generator system and battery storage. The simulations were based on the load demand profiles used for the design of an all photovoltaic energy system installed in the remote Papago Indian Village of Schuchuli, Arizona. Twenty year simulations were run using solar insolation data from Phoenix SOLMET tapes. Total energy produced, energy consumed, operation and maintenance costs were calculated. The life cycle and levelized energy costs were determined for a variety of system configurations (i.e., varying amounts of photovoltaic array and battery storage).

  2. Modeling of four-terminal solar photovoltaic systems for field application

    Science.gov (United States)

    Vahanka, Harikrushna; Purohit, Zeel; Tripathi, Brijesh

    2018-05-01

    In this article a theoretical framework for mechanically stacked four-terminal solar photovoltaic (FTSPV) system has been proposed. In a mechanical stack arrangement, a semitransparent CdTe panel has been used as a top sub-module, whereas a μc-Si solar panel has been used as bottom sub-module. Theoretical modeling has been done to analyze the physical processes in the system and to estimate reliable prediction of the performance. To incorporate the effect of material, the band gap and the absorption coefficient data for CdTe and μc-Si panels have been considered. The electrical performance of the top and bottom panels operated in a mechanical stack has been obtained experimentally for various inter-panel separations in the range of 0-3 cm. Maximum output power density has been obtained for a separation of 0.75 cm. The mean value of output power density from CdTe (top panel) has been calculated as 32.3 Wm-2 and the mean value of output power density from μc-Si, the bottom panel of four-terminal photovoltaic system has been calculated as ˜3.5 Wm-2. Results reported in this study reveal the potential of mechanically stacked four-terminal tandem solar photovoltaic system towards an energy-efficient configuration.

  3. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  4. Photovoltaic power systems and the National Electrical Code: Suggested practices

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, J. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  5. Grid converters for photovoltaic and wind power systems

    CERN Document Server

    Teodorescu, Remus; Rodríguez, Pedro

    2011-01-01

    "Grid Converters for Photovoltaic and Wind Power Systems provides a comprehensive description of the control of grid converters for photovoltaic and wind power systems. The authors present a range of control methods for meeting the latest application, power quality and power conversion requirements and standards, as well as looking towards potential future control functions. Practical examples, exercises, and an accompanying website with simulation models using Matlab and Simulink environments, and PSIM software make this text a pragmatic resource for electrical engineers as well as students taking related courses"--

  6. Power electronics and control techniques for maximum energy harvesting in photovoltaic systems

    CERN Document Server

    Femia, Nicola

    2012-01-01

    Incentives provided by European governments have resulted in the rapid growth of the photovoltaic (PV) market. Many PV modules are now commercially available, and there are a number of power electronic systems for processing the electrical power produced by PV systems, especially for grid-connected applications. Filling a gap in the literature, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems brings together research on control circuits, systems, and techniques dedicated to the maximization of the electrical power produced by a photovoltaic (PV) so

  7. Photovoltaic power systems market identification and analysis. Final report, January 1977--February 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    This report summarizes the work done by InterTechnology/Solar Corporation, its consultants, Mobil Tyco Solar Energy Corporation and the University of Delaware Institute for Energy Conversion, and its consultants, during the marketing analysis of near and intermediate term photovoltaic power applications. To obtain estimates of the domestic and foreign market potential for photovoltaically powered devices two approaches were used. First, the study was identifying then screening all possible photovoltaic power supply applications. This approach encompassed the first two tasks of the study: (1) a survey of the current uses of photovoltaic systems, both domestic and international, and a projection of the usage of those systems into the future; and (2) a new idea generation task which attempted to come up with new ways of using photovoltaic power. Second, the study required in-depth analysis of key near-term and intermediate-term photovoltaic applications identified during the first phase to obtain reasonable estimates of photovoltaic market potential. This process encompassed the third and fourth tasks of the analysis: (3) refinement of ideas generated in Task 2 so that certain products/applications could be identified, the product defined and a market survey carried out; and (4) development of a detailed product scenario which forecasts sales, barriers to market acceptance, and technical innovationsrequired for proper introduction of the products. The work performed and findings of each task are presented.

  8. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P. [and others

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PV market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.

  9. Performance analysis of the Single-Phase Grid-Connected Inverter of a photovoltaic system in water and wind applications

    Directory of Open Access Journals (Sweden)

    Borkowski Dariusz

    2016-01-01

    Full Text Available Single-phase grid connected inverters are nowadays broadly developed and tested in various types of applications especially in photovoltaic systems. The main aim of the inverter control strategy is to extract the maximum energy from the PV system which corresponds to the maximum power at certain conditions. However, the MPPT methods are also important in other renewable energy conversion systems. This paper analyses the performance of a commercially available photovoltaic inverter in water and wind systems. Presented models are implemented in a laboratory test bench in the form of torque characteristics realised by an induction motor fed by the inverter with vector control. The parameters are scaled into relative variables to provide a proper performance comparison. Presented tests include step response to assess the performance of a system dynamic. The dynamic tests showed a fast response of the investigated systems. The MPPT tracking accuracy tested under realistic profiles is similar for both cases: 98% and 96% respectively for the wind and water systems. These results prove the satisfactory performance of the MPPT of the PV microinverter in these applications.

  10. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power generation system evaluation technology (Research and development of system evaluation technology); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development is conducted for the acquisition of a system evaluation technique for predicting the performance of standard photovoltaic power systems and evaluation technologies applicable to residential photovoltaic power systems different from each other in terms of tilt and direction, district, solar cell type, etc. In fiscal 1999, using data collected from the Hamamatsu field test facilities and residential photovoltaic power systems installed across Japan, various design parameters, such as the irregularity compensation coefficient, temperature compensation coefficient, and the incidence compensation coefficient were determined, and, using the parameters as the secondary estimation values, design parameters were updated. In the development of simulation technologies, basic studies were made about the shadow compensation coefficient, spectral response fluctuation compensation coefficient, and the composition of polyhedral arrays. Moreover, studies were made about the estimation of large area insolation, based on the horizontal surface insolation data collected at 21 sites of residential photovoltaic power systems in the Kanto district. (NEDO)

  11. Photovoltaics as an operating energy system

    Science.gov (United States)

    Jones, G. J.; Post, H. N.; Thomas, M. G.

    In the short time since the discovery of the modern solar cell in 1954, terrestrial photovoltaic power system technology has matured in all areas, from collector reliability to system and subsystem design and operations. Today's PV systems are finding widespread use in powering loads where conventional sources are either unavailable, unreliable, or too costly. A broad range of applications is possible because of the modularity of the technology---it can be used to power loads ranging from less than a watt to several megawatts. This inherent modularity makes PV an excellent choice to play a major role in rural electrification in the developing world. The future for grid-connected photovoltaic systems is also very promising. Indications are that several of today's technologies, at higher production rates and in megawatt-sized installations, will generate electricity in the vicinity of $0.12/kWh in the near future.

  12. Photovoltaic power system reliability considerations

    Science.gov (United States)

    Lalli, V. R.

    1980-01-01

    This paper describes an example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems. This particular application was for a solar cell power system demonstration project in Tangaye, Upper Volta, Africa. The techniques involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of a fail-safe and planned spare parts engineering philosophy.

  13. A new and inexpensive temperature-measuring system. Application to photovoltaic solar facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bohorquez, Miguel Angel Martinez; Enrique Gomez, Juan Manuel; Andujar Marquez, Jose Manuel [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva, Carretera Huelva - Palos de la, Frontera S/N, 21819 Huelva (Spain)

    2009-06-15

    This article presents the design, construction and testing of a new and inexpensive digital sensor-based temperature-measuring system, whose principal characteristics are: precision, ease of connection, immunity to noise, remote operation and easy scaling, and all this at a very low cost. This new digital sensor-based measuring system overcomes the traditional problems of digital measuring sensors, offering characteristics similar to Pt100-based measuring systems, and therefore can be used in any installation where reliable temperature measurement is necessary. It is especially suitable for installations where cost is a deciding factor in the choice of measuring system. It presents a practical application of the developed instrumentation system for use in photovoltaic solar facilities. This new temperature-measuring system has been registered in the Spanish Patent and Trademark Office with the number P200803364. (author)

  14. Photovoltaic technology and applications: Overview for the workshop on photochemistry research opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Benner, J.P. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The business surrounding photovoltaic energy conversion for terrestrial applications has changed dramatically in the last several years. It is now a business that makes money. Industry is responding. with manufacturing capacity expansions, and planned expansions, that will triple U.S. annual output within the next eighteen months. The majority of this product is exported (70%) where it is proven to be a cost competitive alternative. This industry provides experience in manufacturing and reliability in fielded systems that will serve as the basis for extrapolating growth to larger-scale installations and utility systems. The largest part of the National Photovoltaic Program budget supports assisting industry in advancing manufacturing technology and stimulating applications to reduce cost and expand the evolving industry. A growing segment of society looks to photovoltaics as an alternative that may be needed to replace conventional electric generating capacity. The grand challenge for photovoltaics is to make the technology economically competitive for large scale electric power generation before real or perceived evidence of environmental damage from conventional sources dictates its use at economically disruptive costs.

  15. The performance and economical analysis of grid-connected photovoltaic systems in Daegu, Korea

    International Nuclear Information System (INIS)

    Kim, Ju-Young; Jeon, Gyu-Yeob; Hong, Won-Hwa

    2009-01-01

    The distribution of the photovoltaic systems is faced with technological and economic problems, and the businesses and corporations feel burdened by the photovoltaic system's dubious economic value and high construction costs. Thus, not too many enterprises or private citizens have been participating in the business of installing photovoltaic systems. Moreover, because of lack of skills in integrating engineering and architectural design, they are experiencing difficulties even in using the technologies that have already been developed and available for application. To provide the basic information and specific data required for making the guidelines for developing photovoltaic technologies, this paper evaluates the system types, the actual state of operation, and performance of the two photovoltaic systems that are installed in Kiemyung University's Osan Building and Dongho Elementary School in Daegu Metropolitan City

  16. Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems

    International Nuclear Information System (INIS)

    Zahedi, A.

    2006-01-01

    Environmental concerns are growing and interest in environmental issues is increasing and the idea of generating electricity with less pollution is becoming more and more attractive. Unlike conventional generation systems, fuel of the solar photovoltaic energy is available at no cost. And solar photovoltaic energy systems generate electricity pollution-free and can easily be installed on the roof of residential as well as on the wall of commercial buildings as grid-connected PV application. In addition to grid-connected rooftop PV systems, solar photovoltaic energy offers a solution for supplying electricity to remote located communities and facilities, those not accessible by electricity companies. The interest in solar photovoltaic energy is growing worldwide. Today, more than 3500MW of photovoltaic systems have been installed all over the world. Since 1970, the PV price has continuously dropped [8]. This price drop has encouraged worldwide application of small-scale residential PV systems. These recent developments have led researchers concerned with the environment to undertake extensive research projects for harnessing renewable energy sources including solar energy. The usage of solar photovoltaic as a source of energy is considered more seriously making future of this technology looks promising. The objective of this contribution is to present the latest developments in the area of solar photovoltaic energy systems. A further objective of this contribution is to discuss the long-term prospect of the solar photovoltaic energy as a sustainable energy supply. [Author

  17. Photovoltaic systems engineering

    CERN Document Server

    Messenger, Roger A

    2010-01-01

    BackgroundPopulation and Energy DemandEnergy UnitsCurrent World Energy Use PatternsExponential GrowthHubbert's Gaussian ModelNet Energy, Btu Economics, and the Test for SustainabilityDirect Conversion of Sunlight to Electricity with PhotovoltaicsThe SunThe Solar SpectrumThe Effect of Atmosphere on SunlightSunlight SpecificsCapturing SunlightIntroduction to PV SystemsThe PV CellThe PV ModuleThe PV ArrayEnergy StoragePV System LoadsPV System AvailabilityAssociated System Electronic ComponentsGeneratorsBalance of System (BOS) ComponentsGrid-Connected Utility-Interactive PV SystemsApplicable Codes and StandardsDesign Considerations for Straight Grid-Connected PV SystemsDesign of a System Based on Desired Annual System PerformanceDesign of a System Based on Available Roof SpaceDesign of a Microinverter-Based SystemDesign of a Nominal 21 kW System that Feeds a Three-Phase Distribution PanelDesign of a Nominal 250 kW SystemSystem Performance MonitoringMechanical ConsiderationsImportant Properties of MaterialsEstabli...

  18. Application of the DTC control in the photovoltaic pumping system

    International Nuclear Information System (INIS)

    Moulay-Idriss, Chergui; Mohamed, Bourahla

    2013-01-01

    Highlights: ► To improve the efficiency of PV systems, under different temperature and irradiance conditions. ► The MPPT and different control method for the induction motor were applied. ► The DTC in PV pumping system introduced and performance studied. ► The introductions of DTC in PV systems are very promising. ► Optimizing the water pumping system speed response characteristic by DTC. - Abstract: We aim to find a better control and optimization among the different functions of a solar pumping system. The photovoltaic panel can provide a maximum power only for defined output voltage and current. In addition, the operation to get the maximum power depends on the terminals of load, mostly a non-linear load like induction motor. In this work, we propose an intelligent control method for the maximum power point tracking of a photovoltaic system under variable temperature and irradiance conditions. The system was tested without maximum power point tracking, with the use of Scalar-Based control motor, but we cannot maintain the speed optimal. Next, we developed several methods for the control. Finally, we have chosen the Direct Torque Control.

  19. Annual performance of building-integrated photovoltaic/water-heating system for warm climate application

    International Nuclear Information System (INIS)

    Chow, T.T.; Chan, A.L.S.; Fong, K.F.; Lin, Z.; He, W.; Ji, J.

    2009-01-01

    A building-integrated photovoltaic/water-heating (BiPVW) system is able to generate higher energy output per unit collector area than the conventional solar systems. Through computer simulation with energy models developed for this integrative solar system in Hong Kong, the results showed that the photovoltaic/water-heating (PVW) system has economic advantages over the conventional photovoltaic (PV) installation. The system thermal performance under natural water circulation was found better than the pump-circulation mode. For a specific BiPVW system at a vertical wall of a fully air-conditioned building and with collectors equipped with flat-box-type thermal absorber and polycrystalline silicon cells, the year-round thermal and cell conversion efficiencies were found respectively 37.5% and 9.39% under typical Hong Kong weather conditions. The overall heat transmission through the PVW wall is reduced to 38% of the normal building facade. When serving as a water pre-heating system, the economical payback period was estimated around 14 years. This greatly enhances the PV market opportunities. (author)

  20. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Akinyele

    2017-11-01

    Full Text Available Batteries are promising storage technologies for stationary applications because of their maturity, and the ease with which they are designed and installed compared to other technologies. However, they pose threats to the environment and human health. Several studies have discussed the various battery technologies and applications, but evaluating the environmental impact of batteries in electrical systems remains a gap that requires concerted research efforts. This study first presents an overview of batteries and compares their technical properties such as the cycle life, power and energy densities, efficiencies and the costs. It proposes an optimal battery technology sizing and selection strategy, and then assesses the environmental impact of batteries in a typical renewable energy application by using a stand-alone photovoltaic (PV system as a case study. The greenhouse gas (GHG impact of the batteries is evaluated based on the life cycle emission rate parameter. Results reveal that the battery has a significant impact in the energy system, with a GHG impact of about 36–68% in a 1.5 kW PV system for different locations. The paper discusses new batteries, strategies to minimize battery impact and provides insights into the selection of batteries with improved cycling capacity, higher lifespan and lower cost that can achieve lower environmental impacts for future applications.

  1. Home Photovoltaic System Design in Pangkalpinang City

    Science.gov (United States)

    Sunanda, Wahri

    2018-02-01

    This research aims to obtain the design of home photovoltaic systems in Pangkalpinang and the opportunity of economic savings. The system consists of photovoltaic with batteries. Based on electricity consumption of several houses with installed power of 1300 VA and 2200 VA in Pangkalpinang for one year, the daily load of photovoltaic system is varied to 40%, 30% and 20% of the average value of the daily home electricity consumption. The investment costs, the cost of replacement parts and the cost of electricity consumption accrued to PLN during lifetime of systems (25 years) are also calculated. The result provided that there are no economic saving opportunities for photovoltaic systems with batteries at home with installed power of 1300 VA and 2200 VA in Pangkalpinang. The most economical is the photovoltaic system with the daily load of 20% of the average value of the daily home electricity consumption. The configuration of photovoltaic system for 1300 VA home consists of 10 modules of 200 wattpeak and 4 batteries 150 AH, 12 Volt while photovoltaic system for 2200 VA home consists of 15 modules of 200 wattpeak and 6 batteries 150 AH,12Volt.

  2. Molecular materials for photovoltaic applications

    International Nuclear Information System (INIS)

    Gegout, A.

    2006-10-01

    This work deals with the elaboration of new C60 derivatives functionalized with p-conjugated oligomers in order to prepare organic materials for photovoltaic applications. In a first approach, the donating ability of different OPV-C60 systems has been enhanced to optimize the electron transfer. First, the length of the conjugated system has been increased and two heptamers bearing one and two C60 moieties respectively, have been synthesized. Electronic properties of these compounds have revealed an electron transfer dependant of the solvent's polarity. Then, three other systems combining the C60 with OPV subunits bearing one or two diethyl-amino groups have been prepared. In such systems, the electron transfer process is optimized as the photophysical studies have revealed an electron transfer from the OPV to the C60 subunit with formation of a charge-separated state even in apolar solvents. A dendritic approach has also been developed. Original isomeric branched conjugated systems based on the oligophenylene-ethynylene framework have been prepared. The excited-state properties have been investigated to understand the influence of the conjugation pathways within theses isomeric systems. The functionalization of the dendritic OPE branches with the C60 has allowed the preparation of the first and second generations of fullero-dendrimers. The peripheral OPE dendrons are able to transfer the absorbed energy to the central core. The preparation of photovoltaic cells which incorporate these systems shows that under light irradiation, the material is able to generate electrons and holes, and also transport them in the device, thus leading to a photocurrent. (author)

  3. Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-15

    This report presents a description of the status of photovoltaic (PV) power systems in the 20 participating countries of the IEA Photovoltaic Power Systems Programme. A survey of the status of PV power systems applications and markets in each country has been conducted every two years for the past six years and biennial reports published. The decision has now been taken to move to shorter annual reports and this is the first such report. This report presents an overview of PV power systems applications and markets at the end of 1998 and analyses the trends in PV power systems implemented between 1992 and 1998. (author)

  4. Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 1998

    International Nuclear Information System (INIS)

    1999-10-01

    This report presents a description of the status of photovoltaic (PV) power systems in the 20 participating countries of the IEA Photovoltaic Power Systems Programme. A survey of the status of PV power systems applications and markets in each country has been conducted every two years for the past six years and biennial reports published. The decision has now been taken to move to shorter annual reports and this is the first such report. This report presents an overview of PV power systems applications and markets at the end of 1998 and analyses the trends in PV power systems implemented between 1992 and 1998. (author)

  5. 新能源光伏发电系统的应用%Application of photovoltaic power generation system of new energy

    Institute of Scientific and Technical Information of China (English)

    牟洪波; 贾承悦

    2014-01-01

    The new energy solar photovoltaic power generation system and its sustainable , clean without pollution and safety is the development direction of future energy.Application and photovoltaic power generation system more deeply into power the vast number of customers, in this paper, Qilu Industrial University 5MW photovoltaic power station as an example, introduces the main equipment of grid connected photovoltaic power generation system and the technical conditions and requirements .%新能源太阳能光伏发电系统其可持续性,清洁无污染及安全性是未来能源的发展方向。光伏发电系统的应用越来越深入到广大的电力客户当中,本文以齐鲁工业大学5MW光伏发电站为例,介绍了光伏发电系统并网的主要设备以及技术条件和要求。

  6. Photovoltaics: The present presages the future

    International Nuclear Information System (INIS)

    Thornton, J.; Brown, L.

    1992-01-01

    This article is a technical assessment on photovoltaics and what effect new technology has on the ability of photovoltaics to compete in the utility market. The topics of the article include the solar resource, photovoltaic cells and systems, thick and thin film cells, the spherical cell, photovoltaic modules and systems, photovoltaic economics and utility applications, and technology transfer programs in the area of photovoltaic manufacturing

  7. Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

  8. Added values of photovoltaic power systems

    International Nuclear Information System (INIS)

    2001-03-01

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20 th century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  9. Added values of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-15

    The structure, ownership and operation of electricity systems around the world are changing in response to industry restructuring, the availability of new technologies and increasing environmental awareness. At the same time, many countries have yet to provide basic energy services for their populations, particularly in areas not served by the electricity grid. Large-scale, central power generation and distribution which characterized the electricity industry for much of the 20{sup th} century is being challenged by new technologies, which are cleaner, faster to deploy and better matched to local requirements. Higher values are being placed on ancillary services, such as power system reliability and voltage stability, so that a simple comparison of energy cost is no longer appropriate as a measure of competitiveness. Solar photovoltaic electricity is unique amongst the new energy sources for the wide range of energy and non-energy benefits which can be provided, while the use of photovoltaic power systems as an integral part of a building provides the greatest opportunity for exploiting non-energy benefits and for adding value to the photovoltaic power system. This report documents the potential added values or non-energy benefits photovoltaic power systems can provide, the current state of market development and the key barriers faced by renewable energy technologies generally and photovoltaic power systems in particular. Means by which non-energy benefits may be used to overcome barriers to the use of photovoltaic power systems are then discussed, with specific attention to the use of building integrated photovoltaics. (author)

  10. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  11. Intermediate photovoltaic system application experiment operational performance report. Volume 6 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot. Also included are four site event report summaries, one involving hardware/maintenance for a power conditioning inverter, and the other three involving operations. (LEW)

  12. Photovoltaic roofing tile systems

    Science.gov (United States)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  13. Evaluation of a Distributed Photovoltaic System in Grid-Connected and Standalone Applications by Different MPPT Algorithms

    Directory of Open Access Journals (Sweden)

    Ru-Min Chao

    2018-06-01

    Full Text Available Due to the shortage of fossil fuel and the environmental pollution problem, solar energy applications have drawn a lot of attention worldwide. This paper reports the use of the latest patented distributed photovoltaic (PV power system design, including the two possible maximum power point tracking (MPPT algorithms, a power optimizer, and a PV power controller, in grid-connected and standalone applications. A distributed PV system with four amorphous silicon thin-film solar panels is used to evaluate both the quadratic maximization (QM and the Steepest descent (SD MPPT algorithms. The system’s design is different for the QM or the SD MPPT algorithm being used. The test result for the grid-connected silicon-based PV panels will also be reported. Considering the settling time for the power optimizer to be 20 ms, the test result shows that the tracking time for the QM method is close to 200 ms, which is faster when compared with the SD method whose tracking time is 500 ms. Besides this, the use of the QM method provides a more stable power output since the tracking is restricted by a local power optimizer rather than the global tracking the SD method uses. For a standalone PV application, a solar-powered boat design with 18 PV panels using a cascaded MPPT controller is introduced, and it provides flexibility in system design and the effective use of photovoltaic energy.

  14. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  15. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  16. Ampere hour method of sizing a stand alone photovoltaic system ...

    African Journals Online (AJOL)

    Stand-alone photovoltaic power systems are natural options for application in electrification of remote areas which are not served by the grid electricity supply system. An ampere-hour ... Sizing of the balance-of-system were carefully handled to avoid undersizing or oversizing and subsequent variation in supply reliability.

  17. Life Cycle Analysis for the Feasibility of Photovoltaic System Application in Indonesia

    Science.gov (United States)

    Yudha, H. M.; Dewi, T.; Risma, P.; Oktarina, Y.

    2018-03-01

    Electricity has become the basic need for everyone, from industry to domestic. Today electricity source still depends heavily on fossil fuels that soon will be diminished from the earth in around 50 years. This condition demands us to find the renewable energy to support our everyday life. One of the famous renewable energy sources is from solar, harnessed by energy conversion device named solar cells. Countries like Indonesia are gifted with an abundance of sunlight all the yearlong. The application of solar cells with its photovoltaic (PV) technology harnesses the sunlight and converts it into electricity. Although this technology is emerging very fast, it still has some limitation due to the current PV technology, economic feasibility, and its environmental impacts. Life cycle assessment is the method to analyze and evaluate the sustainability of PV system and its environmental impact. This paper presents literature study of PV system from the cradle to grave, it begins with the material choices (from the first generation and the possibility of the fourth generation), manufacturing process, implementation, and ends it with the after-life effect of PV modules. The result of this study will be the insights look of the PV system application in Indonesia, from the best option of material choice, the best method of application, the energy payback time, and finally the possible after life recycle of PV materials.

  18. Survey of photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    In developing this survey of photovoltaic systems, the University of Alabama in Huntsville assembled a task team to perform an extensive telephone survey of all known photovoltaic manufacturers. Three US companies accounted for 77% of the total domestic sales in 1978. They are Solarex Corporation, Solar Power Croporation, and ARCO Solar, Inc. This survey of solar photovoltaic (P/V) manufacturers and suppliers consists of three parts: a catalog of suppliers arranged alphabetically, data sheets on specific products, and typical operating, installation, or maintenance instructions and procedures. This report does not recommend or endorse any company product or information presented within as the results of this survey.

  19. Practical Handbook of Photovoltaics. Fundamentals and Applications

    International Nuclear Information System (INIS)

    Markvart, T.; Castaner, L.

    2003-01-01

    As part of the growing sustainable and renewable energy movement, the design, manufacture and use of photovoltaic devices is increasing in pace and frequency. This Handbook will be a 'benchmark' publication for those involved in the design, manufacture and use of these devices. It covers the principles of solar cell function, the raw materials, photovoltaic systems, standards, calibration, testing, economics and case studies. The editors have assembled a cast of internationally-respected contributors from industry and academia. The report is essential reading for: Physicists, electronic engineers, designers of systems, installers, architects, policy-makers relating to photovoltaics

  20. Study on the optimization of stand-alone type photovoltaic systems. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Geun; Song, Jin Soo; Kim, Boo ho; Park, I June; Jung, Meung Woong; Yoo, Kyun Joung; Kim, Hong Woo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The objectives of this study are to make a maximization of the operating efficiency of photovoltaic power systems, to improve stand- align PV systems design, technical operation and system analysis, and to promote technical cooperation of mutual interest in the area of IEA/PVPS program. This study aims to investigating the problems of applied photovoltaic power systems currently in operation to improve a system design, seeking remedies of individual PVPS applications to improve the system efficiency and reliability and to raise the system economics, and reporting the international movements of PV system dissemination and technical cooperation for developing countries. For the purpose of this works 1) Investigations of applications of existing photovoltaic power systems: - Photovoltaic electric sources used for expressway lamps - Optimum design of solar light with low pressure sodium lamps under 8 hours lighting a day at night by program-able electronic timer. 2) Comparative analyses of Marado PV system and propose a new reliable PV-diesel hybrid system and high efficiency operations. 3) Overall review of Hahwado 60 KWp PV system extending from 25 KWp and the remote monitoring systems for measurement of its operating results. 4) Introduction of IEA/PVPS international cooperating program, especially in task III for stand- alone PV systems and isolated islands and Exco meeting. As results, investigative findings of PVPS currently in operation and the work for improvement - Propose a prescription of Marado PV systems being blocked up by explosion of electrical demands from residence, parallel operational dual inverter with a big capacity. - There are shortage of solar generated power due to shortage of solar cell capacity that results in an increased operating time of diesel generator. Hence the insolation capacity of solar cell per household is continuously increased from the 0.5 KWp to 2 KWp in Hanwado island electrification.

  1. Solar Photovoltaic Electricity Applications in France. National Survey Report 2007

    International Nuclear Information System (INIS)

    Claverie, Andre; Jacquin, Philippe

    2008-01-01

    The overall power of installed PV systems in France in 2007 was 31,3 MW which represents a significant growth compared to 2006. This increase is mainly due to the national fiscal measures (new feed-in tariff and tax credit) launched in 2006. The implemented feed-in tariff model application supports building integration of photovoltaic generators with a much higher financial incentive than other type of photovoltaic installations. In the same way, local authorities like regional councils and departmental councils developed new policies to promote photovoltaics through specific grants. As the building integration of photovoltaic generators is encouraged by a feed-in tariff bonus, innovative products are appearing on the market or are under development. In parallel, actors like architects, designers, engineers are now paying attention to building integration of photovoltaic components (BIPV). New actors such as financial institutions, energy operators, and private investors have developed ambitious projects. With the increase of the market, new firms have been created including engineering, consultancies, electricity producers, PV products distributors and retailers, installation and maintenance companies. Photovoltaic industrial sector is getting stronger and large investments have been undertaken in order to develop a vertical integration of the photovoltaic value chain, from feedstock silicon production to final photovoltaic products. A new private-public consortium called 'PV Alliance Lab Fab' has been set up and an important R and D project under the name of 'Solar Nano Crystal' should start by the end of 2008. At the same time, R and D activities focus on photovoltaic silicon cells/modules conversion efficiency and long term reliability, production costs, new materials and device design, yield, environmental impact of industrial processes and optimisation of control and monitoring of photovoltaic systems. In addition to the ADEME and ANR

  2. Is organic photovoltaics promising for indoor applications?

    Science.gov (United States)

    Lee, Harrison K. H.; Li, Zhe; Durrant, James R.; Tsoi, Wing C.

    2016-06-01

    This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  3. Concentrator Photovoltaics

    CERN Document Server

    Luque, Antonio L

    2007-01-01

    Photovoltaic solar-energy conversion is one of the most promising technologies for generating renewable energy, and conversion of concentrated sunlight can lead to reduced cost for solar electricity. In fact, photovoltaic conversion of concentrated sunlight insures an efficient and cost-effective sustainable power resource. This book gives an overview of all components, e.g. cells, concentrators, modules and systems, for systems of concentrator photovoltaics. The authors report on significant results related to design, technology, and applications, and also cover the fundamental physics and market considerations. Specific contributions include: theory and practice of sunlight concentrators; an overview of concentrator PV activities; a description of concentrator solar cells; design and technology of modules and systems; manufacturing aspects; and a market study.

  4. Price-Efficiency Relationship for Photovoltaic Systems on a Global Basis

    Directory of Open Access Journals (Sweden)

    Mehmet Sait Cengiz

    2015-01-01

    Full Text Available Solar energy is the most abundant, useful, efficient, and environmentally friendly source of renewable energy. In addition, in recent years, the capacity of photovoltaic electricity generation systems has increased exponentially throughout the world given an increase in the economic viability and reliability of photovoltaic systems. Moreover, many studies state that photovoltaic power systems will play a key role in electricity generation in the future. When first produced, photovoltaic systems had short lifetimes. Currently, through development, the technology lifecycle of photovoltaic systems has increased to 20–25 years. Studies showed that photovoltaic systems would be broadly used in the future, a conclusion reached by considering the rapidly decreasing cost of photovoltaic systems. Because price analysis is very important for energy marketing, in this study, a review of the cost potential factors on photovoltaic panels is realized and the expected cost potential of photovoltaic systems is examined considering numerous studies.

  5. Application of the Filippov Method for the Stability Analysis of a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    PETREUS, D.

    2011-11-01

    Full Text Available This paper describes bifurcation phenomena of a photovoltaic system. The studied photovoltaic (PV system includes a solar panel, a boost converter, a maximum power point tracking (MPPT controller and a storage device. Computer simulations are performed to capture the effects of variation of some chosen parameters on the qualitative behavior of the system. The impact of the maximum power point (MPP current and voltage variations due to luminosity changes is determinate, as well as the load variation. The stability of the system is analyzed using the state transition matrix over one switching cycle (the monodromy matrix including the state transition matrices during each switching (the saltation matrices. This investigation is important to predict nonlinear phenomena and for the components dimensioning for a proper functioning.

  6. Photovoltaic power generation system free of bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  7. Fuzzy logic control of stand-alone photovoltaic system with battery storage

    Science.gov (United States)

    Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.

    Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.

  8. Structural evolution of utility systems and its implications for photovoltaic applications

    International Nuclear Information System (INIS)

    Iannucci, J.J.; Shugar, D.S.

    1993-01-01

    Photovoltaics (PV) differ substantially from the central generating stations traditionally employed by utilities. PV utilizes a fuel which disappears nightly, operating only while the sun shines. It has the potential of being highly reliable while requiring low levels of operating and maintenance attention, and it can be deployed in a highly modular fashion close to load. It is precisely these differences that give rise to PV's greatest opportunities in successfully entering the utility market. The purpose of this paper is to explore an emerging utility paradigm, the Distributed Utility concept, and how utilities might change their current planning and resource selection processes to take advantage of it, both to the betterment of the PV industry and the utility's customers. Out of this exploration emerges the photovoltaics Diffusion Model strategy that bridges the gap from currently economic stand-alone special applications of PV in utility operations to bulk power production. (author). 12 refs, 5 figs

  9. Vectorial Command of Induction Motor Pumping System Supplied by a Photovoltaic Generator

    Science.gov (United States)

    Makhlouf, Messaoud; Messai, Feyrouz; Benalla, Hocine

    2011-01-01

    With the continuous decrease of the cost of solar cells, there is an increasing interest and needs in photovoltaic (PV) system applications following standard of living improvements. Water pumping system powered by solar-cell generators are one of the most important applications. The fluctuation of solar energy on one hand, and the necessity to optimise available solar energy on the other, it is useful to develop new efficient and flexible modes to control motors that entrain the pump. A vectorial control of an asynchronous motor fed by a photovoltaic system is proposed. This paper investigates a photovoltaic-electro mechanic chain, composed of a PV generator, DC-AC converter, a vector controlled induction motor and centrifugal pump. The PV generator is forced to operate at its maximum power point by using an appropriate search algorithm integrated in the vector control. The optimization is realized without need to adding a DC-DC converter to the chain. The motor supply is also ensured in all insolation conditions. Simulation results show the effectiveness and feasibility of such an approach.

  10. Improving Thermal and Electrical Efficiency in Photovoltaic Thermal Systems for Sustainable Cooling System Integration

    Directory of Open Access Journals (Sweden)

    Mohammad Alobaid

    2018-06-01

    Full Text Available Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature.

  11. FY 2000 report on the demonstrative research for photovoltaic power generation system in Thailand. Demonstrative study on photovoltaic power generation grid-connected system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    In relation to the demonstrative study of the photovoltaic power system that is planned in Libong island, Thailand, the FY 2000 results were reported. In this R and D, construction/demonstrative operation were planned for a photovoltaic power station with a generation output of 100kW, photovoltaic power system in school facilities, and system for transmitting/distributing power to houses by connecting the power station and power system. In this fiscal year, the field survey was conducted together with the alteration from Yao Yai island, for which the demonstrative study was planned at first, to Libong island. The electric equipment was selected which met the requests from Thailand and the results of the field survey, and the basic design of the photovoltaic power generation/transmission/distribution system was completed. Based on this, the design/manufacture of photovoltaic power generation modules, power control equipment, measuring equipment, etc. were made. At the construction site of photovoltaic power station, construction work such as land formation was conducted. Further, Thai engineers who visited Japan did the following: discussions about power system, presence at test/inspection of photovoltaic power generation modules, visits to photovoltaic power stations, wind power stations, etc. (NEDO)

  12. Is organic photovoltaics promising for indoor applications?

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Harrison K. H.; Li, Zhe; Tsoi, Wing C., E-mail: w.c.tsoi@swansea.ac.uk [SPECIFIC, College of Engineering, Bay Campus, Swansea University, SA1 8EN Swansea (United Kingdom); Durrant, James R. [SPECIFIC, College of Engineering, Bay Campus, Swansea University, SA1 8EN Swansea (United Kingdom); Department of Chemistry, Imperial College London, SW7 2AZ London (United Kingdom)

    2016-06-20

    This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  13. Is organic photovoltaics promising for indoor applications?

    International Nuclear Information System (INIS)

    Lee, Harrison K. H.; Li, Zhe; Tsoi, Wing C.; Durrant, James R.

    2016-01-01

    This work utilizes organic photovoltaics (OPV) for indoor applications, such as powering small electronic devices or wireless connected Internet of Things. Three representative polymer-based OPV systems, namely, poly(3-hexylthiophene-2,5-diyl), poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′, 1′,3′-benzothiadiazole)], and poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  14. A Photovoltaic System Payback Calculator

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Daniel M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fleming, Jeffrey E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallegos, Gerald R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    The Roof Asset Management Program (RAMP) is a DOE NNSA initiative to manage roof repairs and replacement at NNSA facilities. In some cases, installation of a photovoltaic system on new roofs may be possible and desired for financial reasons and to meet federal renewable energy goals. One method to quantify the financial benefits of PV systems is the payback period, or the length of time required for a PV system to generate energy value equivalent to the system's cost. Sandia Laboratories created a simple spreadsheet-based solar energy valuation tool for use by RAMP personnel to quickly evaluate the estimated payback period of prospective or installed photovoltaic systems.

  15. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    OpenAIRE

    Yu, Xiangchun; Lin, Qingqing; Zhou, Xuedong; Yang, Zhibin

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province, fresh water resource becomes increasingly insufficient. Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy. This needs modern irrigation method. Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture, and will have directive significance for Hainan Province developi...

  16. Parametric study of laser photovoltaic energy converters

    Science.gov (United States)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  17. Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle

    International Nuclear Information System (INIS)

    Ezzat, M.F.; Dincer, I.

    2016-01-01

    Highlights: • A new integrated fuel cell-photovoltaic system for vehicle application is proposed. • Comprehensive energy and exergy analyses are conducted. • Detailed parametric study is performed. • Overall energy and exergy efficiencies are determined. • Photovoltaic utilization can save 561 g of hydrogen during 3 h drive. - Abstract: This paper deals with a new hybridly powered photovoltaic-fuel cell - Li-ion battery integrated system and is compared to a base system, consisting of PEM fuel cell and Li-ion battery. It investigates the effects of adding photovoltaic arrays to the base system and further effects on the overall energy and exergy efficiencies and hence hydrogen consumption. These two systems are analyzed and assessed both energetically and exergetically. The study results show that the overall energy and exergy efficiencies become 39.46% and 56.3%, respectively at a current density of 1150 mA/cm"2 for system 1 (fuel cell-battery). Moreover, energy and exergy efficiencies are found to be 39.86% and 56.63% at current density of 1150 mA/cm"2 for system 2 (fuel cell-battery-photovoltaics). Utilizing photovoltaic arrays in system 2 would recover 561 g of hydrogen through 3 h of continuous driving at max power of 98.32 kW, which is approximately 11.2% of the hydrogen storage tank used in the proposed systems. The effects of changing various system parameters on energy and exergy efficiencies of the overall system are also examined.

  18. Photovoltaic conversion in Austria: Inventory 1994

    International Nuclear Information System (INIS)

    Faninger, G.

    1995-05-01

    On January 1, 1995 photovoltaic systems with a maxiumum capacity of about 1063 kW (peak) were installed in Austria. 48% of the photovoltaic systems are connected with the grid, 24% are stand-alone systems and about 28% are small systems (<200 W) for different applications. (author)

  19. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  20. Application of Circuit Model for Photovoltaic Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Natarajan Pandiarajan

    2012-01-01

    Full Text Available Circuit model of photovoltaic (PV module is presented in this paper that can be used as a common platform by material scientists and power electronic circuit designers to develop better PV power plant. Detailed modeling procedure for the circuit model with numerical dimensions is presented using power system blockset of MATLAB/Simulink. The developed model is integrated with DC-DC boost converter with closed-loop control of maximum power point tracking (MPPT algorithm. Simulation results are validated with the experimental setup.

  1. A sensitivity analysis of central flat-plate photovoltaic systems and implications for national photovoltaics program planning

    Science.gov (United States)

    Crosetti, M. R.

    1985-01-01

    The sensitivity of the National Photovoltaic Research Program goals to changes in individual photovoltaic system parameters is explored. Using the relationship between lifetime cost and system performance parameters, tests were made to see how overall photovoltaic system energy costs are affected by changes in the goals set for module cost and efficiency, system component costs and efficiencies, operation and maintenance costs, and indirect costs. The results are presented in tables and figures for easy reference.

  2. Intermediate photovoltaic system application experiment operational performance report. Volume 4, for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Performance data are presented for the months of November and December, 1981 for a photovoltaic power supply at a Massachusetts school building. The data include: monthly and daily electrical energy produced; monthly and daily solar energy received; monthly and daily array efficiency; energy produced as a function of power level, voltage, cell temperature, and hour of the day; input, output, and efficiency of two power conditioner units and for the total power conditioning system; energy supplied by the photovoltaic system to the load during each day and month; photovoltaic system efficiency; capacity factor; daily system availability; monthly and hourly insolation; heating and cooling degree days; number of freeze/thaw cycles per month; monthly and hourly ambient temperature; monthly and hourly wind speed; wind direction distribution; hourly cell temperature; and data acquisition mode and recording interval plot. (LEW)

  3. New Best-Practices Guide for Photovoltaic System Operations and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-24

    Fact sheet summarizing technical report TP-7A40-67553. As solar photovoltaic (PV) systems have continued their transition from niche applications into large, mature markets in the United States, their potential as financial investments has risen accordingly. Mainstream investors, however, need to feel confident about the risk and return of solar photovoltaic (PV) systems before committing funds. A major influence on risk and return for PV is operations and maintenance (O&M) - but O&M practices and costs vary widely across the United States, making these variables difficult for investors to predict. To address this barrier to continued PV investment, the PV O&M Working Group has developed a new best-practices guide for PV O&M.

  4. 太阳能光伏发电系统在某电子工厂的应用%The Application of Solar Photovoltaic Power Generation System in an Electronic Factory

    Institute of Scientific and Technical Information of China (English)

    张金宝

    2015-01-01

    为了促进光伏发电技术的商业应用,针对电子类工厂的特点,提出了一种屋顶太阳能光伏发电系统方案。从光伏发电系统工作原理、电子类工厂用电负荷、电子类工厂光伏发电容量估算以及光伏发电系统方案等方面做了研究,为推广应用太阳能清洁能源的应用积累经验。%In order to promote the commercial application of photovoltaic technology, this paper proposes a solution of rooftop solar photovoltaic power generation system, according to the characteristics of electronics factories. The paper carry out research from the aspect of photovoltaic power generation system operating principle, electronics factories electricity load, electronics factories photovoltaic power generation capacity estimation and photovoltaic power generation system plan. The research will accumulate experience in promoting application of solar clean energy.

  5. Development of a general method for photovoltaic system analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nolay, P

    1987-01-01

    The photovoltaic conversion for energetic applications is now widely used, but its development still needs the resolution of many problems for the sizing and for the real working of the installations. The precise analysis of the components and whole system behaviour has led to the development of accurate models for the simulation of such systems. From this modelling phase, a simulation code has been built. The validation of this software has been achieved from experimental test measurements. Since the quality of the software depends on the precision of the input data, an original method of determination of component characteristics, by means of model identification, has been developed. These tools permit the prediction of system behaviour and the dynamic simulation of systems under real conditions. Used for the study of photovoltaic system sizing, this software has allowed the definition of new concepts which will serve as a basis for the development of a sizing method.

  6. Integrating photovoltaics into utility distribution systems

    International Nuclear Information System (INIS)

    Zaininger, H.W.; Barnes, P.R.

    1995-01-01

    Electric utility distribution system impacts associated with the integration of distributed photovoltaic (PV) energy sources vary from site to site and utility to utility. The objective of this paper is to examine several utility- and site-specific conditions which may affect economic viability of distributed PV applications to utility systems. Assessment methodology compatible with technical and economic assessment techniques employed by utility engineers and planners is employed to determine PV benefits for seven different utility systems. The seven case studies are performed using utility system characteristics and assumptions obtained from appropriate utility personnel. The resulting site-specific distributed PV benefits increase nonsite-specific generation system benefits available to central station PV plants as much as 46%, for one utility located in the Southwest

  7. Photovoltaic Solar Energy

    International Nuclear Information System (INIS)

    Gonzalez N, J.C.; Leal C, H.

    1998-01-01

    A short historical review of the technological advances; the current state and the perspectives of the materials for photovoltaic applications is made. Thereinafter, the general aspects of the physical principles and fundamental parameters that govern the operation of the solar cells are described. To way of the example, a methodology for the design and facilities size of a photovoltaic system is applied. Finally, the perspectives of photovoltaic solar energy in relationship to the market and political of development are mentioned

  8. Dynamic of small photovoltaic systems

    Science.gov (United States)

    Mehrmann, A.; Kleinkauf, W.; Pigorsch, W.; Steeb, H.

    The results of 1.5 yr of field-testing of two photovoltaic (PV) power plants, one equipped with an electrolyzer and H2 storage, are reported. Both systems were interconnected with the grid and featured the PV module, a power conditioning unit, ac and dc load connections, and control units. The rated power of both units was 100 Wp. The system with electrolysis was governed by control laws which maximized the electrolyzer current. The tests underscored the preference for a power conditioning unit, rather than direct output to load connections. A 1 kWp system was developed in a follow-up program and will be tested in concert with electrolysis and interconnection with several grid customers. The program is geared to eventual development of larger units for utility-size applications.

  9. US photovoltaic patents: 1991--1993

    Energy Technology Data Exchange (ETDEWEB)

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  10. Intermediate photovoltaic system application experiment operational performance report. Volume 7. Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    Performance data are given for a grid-connected photovoltaic power supply at a Massachusetts high school for the month of March, 1982. Data presented include: daily and monthly electrical energy produced; daily and monthly solar energy incident in the array plane; daily and monthly array efficiency; energy produced as a function of power level, voltage, cell temperature, and hour of the day; power conditioner input, output, and efficiency for two power conditioner units and for the overall power conditioning system; daily and monthly photovoltaic energy to load and the corresponding dollar value; grid to load energy from February 17 through April 5; photovoltaic system efficiency; capacity factor; daily system availability; daily and hourly insolation; heating and cooling degree days; hourly and monthly ambient temperature; hourly and monthly wind speed; wind direction distribution; number of freeze/thaw cycles; hourly cell temperature; and data acquisition mode and recording interval plot. Also included are seven summaries of site events. (LEW)

  11. Autonomous photovoltaic lighting system

    OpenAIRE

    Hafez, Ahmed A. A.; Montesinos Miracle, Daniel; Sudrià Andreu, Antoni

    2012-01-01

    This paper introduces a comparison between the conventional and Photovoltaic (PV) lighting systems. A simple sizing procedure for a PV stand-alone system was advised. The paper also proposes a novel PV lighting system. The proposed system is simple, compact and reliable. The system operation was investigated by thoroughly mathematical and simulation work.

  12. Biaxial Solar Tracking System Based on the MPPT Approach Integrating ICTs for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Raúl Gregor

    2015-01-01

    Full Text Available The smart grid and distributed generation based on renewable energy applications often involve the use of information and communication technology (ICT coupled with advanced control and monitoring algorithms to improve the efficiency and reliability of the electrical grid and renewable generation systems. Photovoltaic (PV systems have been recently applied with success in the fields of distributed generation due to their lower environmental impact where the electrical energy generation is related to the amount of solar irradiation and thus the angle of incident ray of the sun on the surface of the modules. This paper introduces an integration of ICTs in order to achieve the maximum power point tracking (MPPT using a biaxial solar tracking system for PV power applications. To generate the references for the digital control of azimuth and elevation angles a Global Positioning System (GPS by satellites is used which enables acquiring the geographic coordinates of the sun in real-time. As a total integration of the system a communication platform based on the 802.15.4 protocol for the wireless sensor networks (WSNs is adopted for supervising and monitoring the PV plant. A 2.4 kW prototype system is implemented to validate the proposed control scheme performance.

  13. Development of a microprocessor controller for stand-alone photovoltaic power systems

    Science.gov (United States)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    A controller for stand-alone photovoltaic systems has been developed using a low power CMOS microprocessor. It performs battery state of charge estimation, array control, load management, instrumentation, automatic testing, and communications functions. Array control options are sequential subarray switching and maximum power control. A calculator keypad and LCD display provides manual control, fault diagnosis and digital multimeter functions. An RS-232 port provides data logging or remote control capability. A prototype 5 kW unit has been built and tested successfully. The controller is expected to be useful in village photovoltaic power systems, large solar water pumping installations, and other battery management applications.

  14. Fiscal 1999 research and development of technologies for practical application of photovoltaic power generation systems. Research and development of photovoltaic power generation system evaluation technology (Research and development of system evaluation technology - Separate volume: Collection of data of photovoltaic power generation systems); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu - Bessatsu: taiyoko hatsuden system data shu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the establishment of technologies for optimum designs and optimum operation for various types of photovoltaic power systems, data are compiled in this volume, collected from the field test facilities and residential photovoltaic power systems. Operating data and meteorological data from the field test facilities (interconnection system, independent system, and water pump system) are arranged as easy-to-use supplementary data to help studies in relation to the 'energy flow in the test field facility systems' which is in the fiscal 1999 achievement report. As for data collected from residential photovoltaic power systems, they are arranged as easy-to-use supplementary data to help studies in relation to the 'Data and evaluation of residential photovoltaic power systems' which again belongs in the fiscal 1999 achievement report. (NEDO)

  15. Photovoltaic applications of Compound Parabolic Concentrator (CPC)

    Science.gov (United States)

    Winston, R.

    1975-01-01

    The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.

  16. Application of Photovoltaic Power Generation System in Green Building%光伏发电系统在绿色建筑中的应用

    Institute of Scientific and Technical Information of China (English)

    陆惠

    2014-01-01

    The photovoltaic power generation system converts solar energy into electrical energy that can be directly applied, which has also obtained the widespread application in the mo- dern green building. This paper wil analyze the photovoltaic power generation system, and on this basis, the author talks ab- out his views and understanding the photovoltaic power gen- eration system applied in green building, for reference.%光伏发电系统将太阳能转换成为可直接应用的电能,同时在现代绿色建筑中也得到了广泛的应用。本文将对光伏发电系统进行分析,并在此基础上就光伏发电系统在绿色建筑中的应用体现,谈一下自己的观点和认识,以供参考。

  17. Efficiencies and improvement potential of building integrated photovoltaic thermal (BIPVT) system

    International Nuclear Information System (INIS)

    Ibrahim, Adnan; Fudholi, Ahmad; Sopian, Kamaruzzaman; Othman, Mohd Yusof; Ruslan, Mohd Hafidz

    2014-01-01

    Highlights: • Performances analysis of BIPVT solar collector based on energy and exergy analyses. • A new absorber design of BIPVT solar collector is presented. • BIPVT solar collector is produced primary-energy saving efficiency from about 73% to 81%. • PVT energy efficiency varies between 55% and 62% where as the variation in the PVT exergy efficiency is from 12% to 14%. • The improvement potential is between 98 and 404 W. - Abstract: Building integrated photovoltaic thermal (BIPVT) system has been designed to produce both electricity and hot water and later integrated to building. The hot water is produced at the useful temperatures for the applications in Malaysia such as building integrated heating system and domestic hot water system as well as many industrial including agricultural and commercial applications. The photovoltaic thermal (PVT) system comprises of a high efficiency multicrystal photovoltaic (PV) module and spiral flow absorber for BIPVT application, have been performed and investigated. In this study, it was assumed that the absorber was attached underneath the flat plate single glazing sheet of polycrystalline silicon PV module and water has been used as a heat transfer medium in absorber. Performances analysis of BIPVT system based on energy and exergy analyses. It was based on efficiencies including energy and exergy, and exergetic improvement potential (IP) based on the metrological condition of Malaysia has been carried out. Results show that the hourly variation for BIPVT system, the PVT energy efficiency of 55–62% is higher than the PVT exergy efficiency of 12–14%. The improvement potential increases with increasing solar radiation, it is between 98 and 404 W. On the other hand, BIPVT system was produced primary-energy saving efficiency from about 73% to 81%

  18. Photovoltaic technologies for commercial power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    Photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  19. Stand-alone photovoltaic applications. Lessons learned

    International Nuclear Information System (INIS)

    Loois, G.; Van Hemert, B.

    1999-02-01

    The IEA Photovoltaic Power Systems Programme (PVPS) is one of the collaborative R and D agreements established within the IEA. The objective of Task III is to promote and facilitate the exchange of information and experiences in the field of PV Systems in Stand-alone and Island Applications (SAPV). The book focuses on the practical experiences gained, and does not aim to provide a complete manual on SAPV. When Task III started its activities in 1993, a collection of 50 'State of the art' projects was published in the book 'Examples of Stand-Alone Photovoltaic Systems'. This publication marked the base line for the work of the task. Now, in 1998, the showcases from each country demonstrate the lessons learned in five years of cooperation. The book consists of two parts. The first part contains eight chapters dealing with a specific aspect of stand-alone PV. The second part introduces 14 national showcase projects in a systematic presentation. Each chapter and showcase can be read independently from the rest of the book. Chapter 2, contributed by The Netherlands, analyses the market for stand-alone PV systems. It gives an overview of the 'traditional' application of stand-alone PV, which is the electrification of remote buildings and which has been addressed in depth in other publications. The focus is on the market niches of service applications that are also interesting for more densely populated areas, e.g. in industrialised countries. The United Kingdom illustrates the economic aspects in Chapter 3. Cost comparisons are made, but more important is the illustration of the non-financial considerations that make PV the preferred choice as a power source for many applications. Switzerland explores in Chapter 4 (financing aspects) different financing mechanisms, and financial policies used to overcome the initial cost barrier. Most of these approaches have been applied in developing countries rather than in the western world. Using various examples from all over the

  20. Photovoltaic Power Applications in France. National Survey Report 2011

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2012-01-01

    According to the French observation and statistics office (SOeS, 2012-02), the grid-connected installed photovoltaic (PV) power in France during 2011 was 1 634 MW compared with 817 MW in 2010. The installed grid-connected PV power doubled but the total number of systems decreased by 26 %. The 100 % annual power increase comes mainly from medium power systems (36 kW to 250 kW) contributing to 36 % and large power systems (> 250 kW) representing 46 % of annual installed power. Ground-mounted centralised systems connected to the electricity grid during 2011 are estimated at 402 MW and distributed systems (mainly building applications) reached 1 232 MW. Grid-connected cumulative PV power capacity at the end of 2011 was 2 802 MW (242 295 systems), compared with the 1 168 MW (163 004 systems) at the end of 2010. Building integrated residential systems of less than 3 kW represented 89 % of the total number of installations and 20 % of total cumulative power while systems of power greater than 36 kW represented 3 % of the number of installations and 69 % of total cumulative power capacity. By a decree dated 4 March 2011, a new support system was proposed with a target of 500 MW per year of new projects over the next few years. The government's policy confirmed its priority to focus on building-integrated photovoltaic applications. The new support system introduces two separate mechanisms, based on the power of the installations. Under the first mechanism, for installations on buildings of less than 100 kW, feed-in tariffs are adjusted each quarter based on the total volume of projects submitted during the previous quarter. The second support mechanism involves a bidding system for large roof installations and photovoltaic ground-mounted power plants greater than 100 kW. Market incentives and budget There are three kinds of market incentive: enhanced feed-in tariffs, income tax credits and direct financial subsidies from local authorities. The cost of promotion through

  1. Theory and applications for optimization of every part of a photovoltaic system

    Science.gov (United States)

    Redfield, D.

    1978-01-01

    A general method is presented for quantitatively optimizing the design of every part and fabrication step of an entire photovoltaic system, based on the criterion of minimum cost/Watt for the system output power. It is shown that no element or process step can be optimized properly by considering only its own cost and performance. Moreover, a fractional performance loss at any fabrication step within the cell or array produces the same fractional increase in the cost/Watt of the entire array, but not of the full system. One general equation is found to be capable of optimizing all parts of a system, although the cell and array steps are basically different from the power-handling elements. Applications of this analysis are given to show (1) when Si wafers should be cut to increase their packing fraction; and (2) what the optimum dimensions for solar cell metallizations are. The optimum shadow fraction of the fine grid is shown to be independent of metal cost and resistivity as well as cell size. The optimum thicknesses of both the fine grid and the bus bar are substantially greater than the values in general use, and the total array cost has a major effect on these values. By analogy, this analysis is adaptable to other solar energy systems.

  2. Performance analysis of a photovoltaic-thermochemical hybrid system prototype

    International Nuclear Information System (INIS)

    Li, Wenjia; Ling, Yunyi; Liu, Xiangxin; Hao, Yong

    2017-01-01

    Highlights: •A modular photovoltaic-thermochemical hybrid system prototype is proposed. •Net solar-electric efficiency up to 41% is achievable. •Stable solar power supply is achievable via convenient energy storage. •The modular design facilitates the scalability of the hybrid system. -- Abstract: A solar photovoltaic (PV) thermochemical hybrid system consisting of a point-focus Fresnel concentrator, a PV cell and a methanol thermochemical reactor is proposed. In particular, a reactor capable of operating under high solar concentration is designed, manufactured and tested. Studies on both kinetic and thermodynamic characteristics of the reactor and the system are performed. Analysis of numerical and experimental results shows that with cascaded solar energy utilization and synergy among different forms of energy, the hybrid system has the advantages of high net solar-electric efficiency (up to 41%), stable solar energy power supply, solar energy storage (via syngas) and flexibility in application scale. The hybrid system proposed in this work provides a potential solution to some key challenges of current solar energy utilization technologies.

  3. Thermocleavable pi-Conjugated polymers. Synthesis and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, M

    2009-10-15

    Polymer solar cells (plastic solar cells) have seen remarkable improvements in recent years where power conversion efficiencies of up to 6% have been reported for small area devices. However in terms of stability polymer solar cells degrade during illumination and in the dark leading to operational lifetimes that are generally very poor. There has been a recent interest in the operational stability of devices and more importantly on the understanding of why devices and materials break down. This has lead to the discovery of a new class of materials that enable exceptionally long device lifetimes (>20000 hours). This Ph.D. thesis describes the synthesis, characterization and photovoltaic applications of these novel polymer materials. A key feature of these materials is that solubilizing thermocleavable alkyl ester side chains are introduced on the polymer backbone. The side chains make the polymer soluble in organic solvents and allow film formation via solution processing. Subsequently they can be removed by heating in a post-processing step forming a harder insoluble material with enhanced stability. These new thermocleavable materials can potentially offer higher chromophore density, higher level processing and improved stability in a solar cell device. Methods are developed for the incorporation of alkoxy chains and thermocleavable ester groups on the benzothiadiazole and the thiophene units in an attempt to evolve the PDTBT system to a more advanced level. The synthesis and photovoltaic applications of the PDTTP and PDTBT systems is described. (author)

  4. Polymer substrates for flexible photovoltaic cells application in personal electronic system

    Science.gov (United States)

    Znajdek, K.; Sibiński, M.; Strąkowska, A.; Lisik, Z.

    2016-01-01

    The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For the most promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.

  5. ENERGY MANAGEMENT OF PHOTOVOLTAIC SYSTEMS USING FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Cristian MIRON

    2016-11-01

    Full Text Available Renewable energy generators show an accelerated growth both in terms of production wise, as well as in research fields. Focusing only on photovoltaic panels, the generated energy has the disadvantage of being strongly oscillatory in evolution. The classical solution is to create a network between photovoltaic farms spanning on large distances, in order to share the total energy before sending it to the clients. A solution that was recently proposed is going to use hydrogen in order to store the energy surplus. Fuel Cells (FCs represent energy generators whose energy vector is usually hydrogen. These have already started the transition from the laboratory context towards commercialization. Due to their high energy density, as well as their theoretical infinite storage capacity through hydrogen, configurations based on electrolyzers and FCs are seen as high potential storage systems, both for vehicle and for stationary applications. Therefore, a study on such distributed control systems is of high importance. This paper analyses the existing solutions, with emphasis on a particular case where a supervisory system is developed and tested in a specialised simulation software.

  6. Trends of Photovoltaic Research, Development and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Song, J. S.; Yoon, K. H.; Yu, K. J. [Korea Institute of Energy Research (Korea)

    2000-07-01

    The Korean National Photovoltaic Project was initiated on October 1989 to develop technologies for the generation of economically competitive electric power by photovoltaic systems. It consists of four stages through the year 2006 with technical goals and cost targets related with solar cells, balance of systems and system application. The objectives of the project are to utilize photovoltaic technology, to transfer developed technology to industries and end users by research activities and to diffuse photovoltaic systems by demonstration projects. This paper reviews long-term plan and status of technology R and D, and markets of photovoltaic. Some activities designed to promote collaboration with foreign countries are also introduced. (author). 14 refs., 3 figs., 3 tabs.

  7. An enhanced dynamic model of battery using genetic algorithm suitable for photovoltaic applications

    International Nuclear Information System (INIS)

    Blaifi, S.; Moulahoum, S.; Colak, I.; Merrouche, W.

    2016-01-01

    Highlights: • We proposed a developed dynamic battery model suitable for photovoltaic systems. • We used genetic algorithm optimization method to find parameters that gives minimized error. • The validation was carried out with real measurements from stand-alone photovoltaic string. - Abstract: Modeling of batteries in photovoltaic systems has been a major issue related to the random dynamic regime imposed by the changes of solar irradiation and ambient temperature added to the complexity of battery electrochemical and electrical behaviors. However, various approaches have been proposed to model the battery behavior by predicting from detailed electrochemical, electrical or analytical models to high-level stochastic models. In this paper, an improvement of dynamic electrical battery model is proposed by automatic parameter extraction using genetic algorithm in order to give usefulness and future implementation for practical application. It is highlighted that the enhancement of 21 values of the parameters of CEIMAT model presents a good agreement with real measurements for different modes like charge or discharge and various conditions.

  8. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  9. Development of a solar tracker for photovoltaic applications; Desenvolvimento de um rastreador solar para aplicacoes fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Daniel Rizzo; Lacerda Filho, Adilio Flauzino de; Resende, Ricardo C. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. Engenharia Agricola], E-mail: daniel.carvalho@ufv.br; Possi, Maurilio A [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Ciencia da Computacao; Ferreira, Ana Paula S [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Fitotecnia

    2012-11-01

    In this work are presented the design, construction and relevant results related to the production of electricity using a photovoltaic panel attached to the solar tracking mechanism. The objective was to develop a tracking device with high accuracy, reliable, low cost, high efficiency and easy operation, aiming at the possibility of residential, agricultural and industrial use of solar photovoltaic technologies with high efficiency of conversion. Was evaluated the performance of the tracker, comparing it to a fixed system and based on results analyzed, was observed a significant increase in energy production of photovoltaic panel attached to the tracking system, in relation to the fixed system the slope of the local latitude. Its performance was satisfactory, electromechanical structure requires no maintenance during the trial even when exposed to various weather conditions. The system showed great potential for application, usability and effectivity. (author)

  10. Distribution Grid Integration of Photovoltaic Systems in Germany – Implications on Grid Planning and Grid Operation

    International Nuclear Information System (INIS)

    Stetz, Thomas

    2017-01-01

    Photovoltaic is the most dispersed renewable energy source in Germany, typically interconnected to low and medium voltage systems. In recent years, cost-intensive grid reinforcements had to be undertaken all across Germany’s distribution grids in order to increase their hosting capacity for these photovoltaic installations. This paper presents an overview on research results which show that photovoltaic itself can provide ancillary services to reduce its cost of interconnection. Especially the provision of reactive power turned out to be a technically effective and economically efficient method to increase a grid’s hosting capacity for photovoltaic capacity. Different reactive power control methods were investigated, revealing significant differences with regards to their grid operation implications. Business cases for residential-scale photovoltaic applications have shifted from feed-in-tariff based active power feed-in to self-consumption. However, increasing the photovoltaic self-consumption by additional battery-storage systems is still not economically reliable in Germany. (author)

  11. The analysis of the economic and environmental effects of the application of a photovoltaic system to the EXCO (Ex. + Con. Bldg) in Daegu, South Korea

    International Nuclear Information System (INIS)

    Jang, M.H.; Hong, W.W.H.

    2004-01-01

    The aim of this thesis is to analyze the economic and environmental effects of the application of a photovoltaic system to the exhibition and convention building (EXCO). To determine the economic and environmental effects of the building, energy consumption data should be obtained. Three sides of the EXCO are assumed to be good places of a photovoltaic system. In order to understand the investment cost, the number of years required to recover the cost has to be calculated. In an environmental evaluation, the amount of carbon dioxide is also calculated over a period of time of 5,10,15 years. (author)

  12. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  13. High-resolution global irradiance monitoring from photovoltaic systems

    Science.gov (United States)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  14. Photovoltaic technologies for commerical power generation

    International Nuclear Information System (INIS)

    Carlson, D.E.

    1990-01-01

    The author reports photovoltaic power generation is an attractive source of energy since it involves the direct conversion of sunlight into electricity with no moving parts and no pollution. Following the demonstration of the first solar cell 35 years ago at Bell Laboratories, a steady stream of scientific and commercial progress has led to a rapid increase in applications in recent years. The first commercial application of solar cells occurred more than 20 years ago when they were used to supply power for space satellites, and even today photovoltaic arrays are used to supply electricity for most satellites and space probes. This paper reviews the status of the various photovoltaic technologies as well as present applications. The prospects for both distributed and central station grid-connected systems are discussed. The paper concludes with a discussion of the institutional and political factors that will affect the introduction of grid-connected photovoltaic power systems

  15. Optical properties of Sb(Se,Te)I and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Tablero, C., E-mail: ctablero@etsit.upm.es

    2016-09-05

    SbXI (X = Se, Te) are ferroelectric semiconductors that allow a variety of applications including optoelectronic and photovoltaic applications. An analysis of the optical properties is carried out starting from first-principles density-functional theory with orbital-dependent one-electron potentials. To go into the contributions to the optical properties more deeply, the absorption coefficients have been split into inter- and intra-species contributions and into atomic angular momentum contributions. The optical results are used to evaluate the efficiencies when this material is used to absorb sunlight at several sunlight concentrations and the usual radiative and the ferroelectric photovoltaic mechanisms. The results indicate their applicability in photovoltaic devices as absorbent of the solar spectrum with high conversion efficiency. - Highlights: • The SbXI (X = Se, Te) are ferroelectric semiconductors with a high optical absorption. • The absorption coefficients have been split into different contributions to understand the cause of the high absorption. • Using the first-principles results the maximum efficiency of this photovoltaic absorber material has been estimated. • The efficiency of this compound is near the maximum efficiency for single-gap solar cells even using small-width devices. • The coexistence of the R-PV and R-PV effects has been evaluated.

  16. Photovoltaic conference on system services

    International Nuclear Information System (INIS)

    Burges, Karsten; Freier, Karin; Vincent, Jeremy; Montigny, Marie; Engel, Bernd; Konstanciak, Wilhelm; Makdessi, Georges; Acres, Adrien; Schlaaff, Torsten; Defaix, Christophe

    2015-01-01

    The French-German office for Renewable energies (OFAEnR) organised a photovoltaic conference on system services and photovoltaic facilities. In the framework of this French-German exchange of experience, about 100 participants have analysed and discussed the regulatory, technical and economical context of system services, their evolution and implementation in the framework of an accelerated development of photovoltaic conversion in both countries. This document brings together the available presentations (slides) made during this event: 1 - Technical Introduction to system services: principles, actors and perspectives (Karsten Burges); 2 - Legal guidelines of EEG (Renewable energy Sources Act) and the System Stability Ordinance as well as future measures for PV grid integration (Karin Freier); 3 - evolution of ancillary services regulation; opening the possibility for new market players to participate in maintaining the system stability (Jeremy Vincent, Marie Montigny); 4 - Paradigm shift for ancillary services: PV as a new stakeholder (Bernd Engel); 5 - Challenges of RES integration (Wilhelm Konstanciak 6 - System services supplied by PV inverters, solutions for frequency and active/reactive power control at the injection point (Georges Makdessi); 7 - Grid disturbance abatement and voltage stability control by monitoring local scale PV production (Adrien Acres); 8 - Flexibly Adaptable Power Plant Controller - The Answer to Various Grid Requirements (Torsten Schlaaff); 9 - ENR-pool project: What kind of business model for ancillary services by PV power plants? (Christophe Defaix)

  17. A FEASIBILITY STUDY ON THE APPLICATION OF PHOTOVOLTAIC PANELS AS SUPPLEMENTARY POWER GENERATION FOR RESIDENCES IN SERRA CATARINENSE

    OpenAIRE

    Garcia, Dariu Schulle; Madruga, Gabriel Granzotto; Policapo Américo, Jonatas; Rodrigo de Oliveira, Joaquim; Frizzo Stefenon, Stéfano

    2017-01-01

    This article aims to present a study on the applicability of isolated photovoltaic systems. Therefore, it was necessary to conduct an economic feasibility analysis through a basic dimensioning of a photovoltaic power system, using as basis a residence located in the Serra Catarinense. This discussion was based on studies of Cabral et al (2013), Serrão (2010), and Vasconcelos (2013). The methodology was qualitative and quantitative by analyzing the inci...

  18. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  19. IEA PVPS Task 3. Use of photovoltaic systems in stand-alone and island applications. 'Swiss participation'; IEA PVPS Task 3. Use of photovoltaic systems in stand-alone and island applications. 'Participation Suisse'

    Energy Technology Data Exchange (ETDEWEB)

    Villoz, M. [Dynatex SA, Morges (Switzerland)

    2004-07-01

    This report describes the work done during five years of the second phase of Task 3 of the photovoltaic power systems programme of the International Energy Agency (IEA-PVPS). Task 3 activities were concentrated on stand-alone photovoltaic systems with the main effort on improving the quality and reducing the cost of these systems. The work was divided in 2 sub-tasks whose first one was concentrated on quality insurance schemes and second one on technical recommendations coming from practical experience. Twelve original reports have been published covering topics that can be sorted in 4 categories: the first one is dedicated on quality issues with a review of existing standards in the participating countries and a double paper giving quality assurance recommendations on project management and examples of applying these rules in practical cases. The second category dwelled on photovoltaic systems with papers on charge controllers, on lightning protection and monitoring of systems. The third category presents interesting studies on the storage of energy which remains the main subject where improvements should be made in order to lower the cost of energy; four papers describe the management and the test procedures of lead-acid batteries, how to choose a lead-acid battery and finally are there alternatives to lead-acid batteries for the storage of photovoltaic electricity. The last category worked on loads and users of renewable energy and gives a large amount of experience with loads, how to choose them and how the energy can be better used through demand side management. (author)

  20. Systems Integration | Photovoltaic Research | NREL

    Science.gov (United States)

    Integration Systems Integration The National Center for Photovoltaics (NCPV) at NREL provides grid integration support, system-level testing, and systems analysis for the Department of Energy's solar distributed grid integration projects supported by the SunShot Initiative. These projects address technical

  1. Remote residential photovoltaic systems in British Columbia: A study

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, R B

    1989-01-01

    A survey of existing residential photovoltaic power systems in remote areas in British Columbia was conducted to collect data on system performance. The 80 respondents had systems with arrays ranging from 5 to 875 watts, costing from $200 to $14,000. An overwhelming majority of users expressed overall satisfaction with the contribution of photovoltaic technology to their life style. Specific advantages of photovoltaic systems over alternative energy sources included cost-effectiveness, low maintenance, lack of noise and pollution, and ease of operation. Problems with the systems included low winter power, unsatisfactory load matching, and improper operation of associated battery storage systems. It was noted that load profile estimation and system sizing calculations are difficult because control over user behavior with respect to the power system is nearly non-existent when compared to industrial installations. Low-level ampere-hour monitoring of 10 representative sites was carried out and results are presented, giving the power contributions of the photovoltaic system along with any backup system that may be present. Remote residential photovoltaic systems should continue to gain acceptance and more widespread use, especially as module costs drop and more efficient loads (especially appliances such as refrigerators) become practical. 10 figs., 2 tabs.

  2. Characterization of lithium batteries for application to photovoltaic systems

    International Nuclear Information System (INIS)

    Guzman Ortiz, S.

    2015-01-01

    This master's thesis addresses the characterization of four different types of Battery technologies; the li-ion, the LiFePO4, the lead crystal and the lead acid. Because these devices are used in electric applications, calculations were made to assess the capacities and energies of the batteries while at different discharges ratios in runs from 5 to 50 hours, which are the most common on the photovoltaic sector. Also, we observed the behavior of the batteries when put through a rise of temperature to measure the fluctuations in the voltage, capacity and energy. Tests were performed at constant power to observe the behavior of the discharge intensity. When making the comparisons of the capacity and the energy, the LiFePO4 battery proved to be the best and better behavior in the tests at constant discharge rates. (Author)

  3. Photovoltaic Solar Energy : From Fundamentals to Applications

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A.

    2016-01-01

    Solar PV is now the third most important renewable energy source, after hydro and wind power, in terms of global installed capacity. Bringing together the expertise of international PV specialists Photovoltaic Solar Energy: From Fundamentals to Applications provides a comprehensive and up-to-date

  4. A dynamic model of a photovoltaic vapour compression system

    International Nuclear Information System (INIS)

    Renno, C.

    2009-01-01

    A dynamic simulation of a photovoltaic vapour compression system is presented in this paper. In particular, there are several options to convert solar energy into refrigeration effect such as the absorption cycle, the thermo-mechanical refrigeration systems, the regenerative desiccant process or the steam jet system. This effect can also be produced by a conventional vapor compression cycle in which the compressor is driven by an electric motor supplied by means of photovoltaic cells. It is also possible to produce the cooling effect adopting the thermoelectric refrigeration, with electricity supplied by means of photovoltaic cells. Absorption and solar mechanical systems are necessarily larger and require extensive plumbing and electrical connections. The dynamic model allows to obtain some characteristic temperatures of the photovoltaic system and the energy consumptions with and without load perturbations. This model results a useful tool to study the dynamic working, for example, of photovoltaic refrigerators used in rural areas and remote islands, for their simple structure and low costs, to preserve foodstuffs, vaccines and other life saving medicines. (author)

  5. A web-based three-tier control and monitoring application for integrated facility management of photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Apostolos Meliones

    2014-01-01

    Full Text Available The architecture of a control system can be designed vertically with the distinction between functional levels. We adopt this layered approach for the design and implementation of a network-based control and monitoring application. In this paper we present the design and implementation of a network-based management application for controlling and monitoring the input and output data of remote equipment aiming at performance macro-observation, alarm detection, handling operation failures, installation security, access control, collection and recording of statistical data and provisioning of reports. The main services provided to the user and operating over the public internet and/or mobile network include control, monitoring, notification, reporting and data export. Our proposed system consists of a front-end for field (site-level control and monitoring as well as a service back-end which undertakes to collect, store and manage data from all remote installations. Hierarchical data acquisition methodology and performance macro-observation are according to the IEC 61724 standard. We have successfully used our control and monitoring application for integrated facility management of photovoltaic plant installations; nevertheless it can be easily migrated to other renewable energy generation installations and remote automation applications in general.

  6. Designing a concentrating photovoltaic (CPV) system in adjunct with a silicon photovoltaic panel for a solar competition car

    Science.gov (United States)

    Arias-Rosales, Andrés.; Barrera-Velásquez, Jorge; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2014-06-01

    Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle "Primavera", competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work. Design considerations, the system development process and implementation are presented in this document considering both the restrictions of the context and the interaction of the CPV system with the solar car setup. The measured data evidences the advantage of using this complementary system during the competition and the potential this technology has for further developments.

  7. Photovoltaic applications for rural areas in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P. [Helsinki Univ. of Technology, Espoo (Finland); Faninger-Lund, H. [Solpros Ay, Helsinki (Finland)

    1997-12-31

    The photovoltaic (PV) markets have grown in the EU by ca 25 % per year during the past decade. World-wide the production of photovoltaic cells has exceeded the 80 MW{sub e}/a limit. The costs of PV modules have dropped by a factor of 5 during the last ten years and is now at the level of 4-5 USD/W{sub p}. The cost reductions mean on the hand new market segments for PV in the future. The market potential of photovoltaics, the financial issues connected to this, the PV system technology, the basic system design and the examples of typical projects are discussed in the presentation

  8. Photovoltaic applications for rural areas in North-East Europe

    International Nuclear Information System (INIS)

    Lund, P.; Faninger-Lund, H.

    1997-01-01

    The photovoltaic (PV) markets have grown in the EU by ca 25 % per year during the past decade. World-wide the production of photovoltaic cells has exceeded the 80 MW e /a limit. The costs of PV modules have dropped by a factor of 5 during the last ten years and is now at the level of 4-5 USD/W p . The cost reductions mean on the hand new market segments for PV in the future. The market potential of photovoltaics, the financial issues connected to this, the PV system technology, the basic system design and the examples of typical projects are discussed in the presentation

  9. Photovoltaic applications for rural areas in North-East Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P [Helsinki Univ. of Technology, Espoo (Finland); Faninger-Lund, H [Solpros Ay, Helsinki (Finland)

    1998-12-31

    The photovoltaic (PV) markets have grown in the EU by ca 25 % per year during the past decade. World-wide the production of photovoltaic cells has exceeded the 80 MW{sub e}/a limit. The costs of PV modules have dropped by a factor of 5 during the last ten years and is now at the level of 4-5 USD/W{sub p}. The cost reductions mean on the hand new market segments for PV in the future. The market potential of photovoltaics, the financial issues connected to this, the PV system technology, the basic system design and the examples of typical projects are discussed in the presentation

  10. MODELING SIMULATION AND PERFORMANCE STUDY OF GRIDCONNECTED PHOTOVOLTAIC ENERGY SYSTEM

    OpenAIRE

    Nagendra K; Karthik J; Keerthi Rao C; Kumar Raja Pemmadi

    2017-01-01

    This paper presents Modeling Simulation of grid connected Photovoltaic Energy System and performance study using MATLAB/Simulink. The Photovoltaic energy system is considered in three main parts PV Model, Power conditioning System and Grid interface. The Photovoltaic Model is inter-connected with grid through full scale power electronic devices. The simulation is conducted on the PV energy system at normal temperature and at constant load by using MATLAB.

  11. RMS Current of a Photovoltaic Generator in Grid-Connected PV Systems: Definition and Application

    Directory of Open Access Journals (Sweden)

    P. J. Pérez

    2008-01-01

    Full Text Available This paper includes a definition of a new and original concept in the photovoltaic field, RMS current of a photovoltaic generator for grid-connected systems. The RMS current is very useful for calculating energy losses in cables used in a PV generator. As well, a current factor has been defined in order to simplify RMS current calculation. This factor provides an immediate (quick and easy calculation method for the RMS current that does not depend on the case particular conditions (orientation, location, etc.. RMS current and current factor values have been calculated for different locations and modules.

  12. Batteryless photovoltaic reverse-osmosis desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, M.; Miranda, M.; Gwillim, J.; Rowbottom, A.; Draisey, I.

    2001-07-01

    The aim of this project was to design an efficient cost-effective batteryless photovoltaic-powered seawater reverse-osmosis desalination system, to deliver in the order of 3 m{sup 3} of fresh drinking water per day. The desalination of seawater to produce fresh drinking water is extremely valuable on islands and in coastal regions wherever natural freshwater is scarce. Existing small-scale desalination equipment, suitable for areas of medium and low population density, often requires a copious and constant supply of energy, either electricity or diesel. If supply of these fuels is expensive or insecure, but the area has a good solar resource, the use of photovoltaic power is an attractive option. Existing demonstrations of photovoltaic-powered desalination generally employ lead-acid batteries, which allow the equipment to operate at a constant flow, but are notoriously problematic in practice. The system developed in this project runs at variable flow, enabling it to make efficient use of the naturally varying solar resource, without need of batteries. In a sense, the freshwater tank is providing the energy storage. In this project, we have reviewed the merits of a wide variety of reverse-osmosis system configurations and component options. We have completed extensive in-house testing and characterisation of major hardware components and used the results to construct detailed software models. Using these, we have designed a system that meets the above project aim, and we have predicted its performance in detail. Our designs show that a system costing 23,055 pounds stirling will produce 1424 m{sup 3} of fresh drinking water annually - an average of just over 3.9 m{sup 3}/day. The system has no fuel costs and no batteries. The overall cost of water, including full maintenance, is 2.00 pounds stirling per m{sup 3}. The energy consumption (photovoltaic-electricity) is typically between 3.2 and 3.7 kWh/m{sup 3} depending on the solar irradiance and feed water

  13. Low-cost data acquisition systems for photovoltaic system monitoring and usage statistics

    Science.gov (United States)

    Fanourakis, S.; Wang, K.; McCarthy, P.; Jiao, L.

    2017-11-01

    This paper presents the design of a low-cost data acquisition system for monitoring a photovoltaic system’s electrical quantities, battery temperatures, and state of charge of the battery. The electrical quantities are the voltages and currents of the solar panels, the battery, and the system loads. The system uses an Atmega328p microcontroller to acquire data from the photovoltaic system’s charge controller. It also records individual load information using current sensing resistors along with a voltage amplification circuit and an analog to digital converter. The system is used in conjunction with a wall power data acquisition system for the recording of regional power outages. Both data acquisition systems record data in micro SD cards. The data has been successfully acquired from both systems and has been used to monitor the status of the PV system and the local power grid. As more data is gathered it can be used for the maintenance and improvement of the photovoltaic system through analysis of the photovoltaic system’s parameters and usage statistics.

  14. Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT System

    Directory of Open Access Journals (Sweden)

    Lian Zhang

    2017-04-01

    Full Text Available In recent years, with the development of photovoltaic system and photo-thermal system technology, hybrid photovoltaic-thermal (PVT technology has been a breakthrough in many aspects. This paper describes the movable hybrid PVT system from the aspects of appearance structure, energy flow, and control circuit. The system is equipped with rolling wheels and the simulated light sources also can be removed so that the system can be used in the outdoor conditions. The movable system is also suitable for the PVT system and its related applications without any external power supply. This system combines two technologies: photovoltaic power generation and photo-thermal utilization. The first part of the power supply is for the systems own output power supply, and the second part is for generating thermal energy. The two separate parts can be controlled and monitored respectively through the control circuits and the touch screens. The experimental results show that the system can generate 691 kWh electric energy and 3047.8 kWh thermal energy each year under normal working conditions. The efficiency of the proposed movable hybrid PVT system is calculated to be approximately 42.82% using the revised equations that are proposed in this paper. Therefore, the movable hybrid PVT system can meet the daily demands of hot water and electricity power in remote areas or islands and other non-grid areas. It also can be used to conduct experiment tests for the PVT system.

  15. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Yin, Ershuai; Li, Qiang; Xuan, Yimin

    2017-01-01

    Highlights: • A detailed thermal resistance analysis of the PV-TE hybrid system is proposed. • c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system. • Some criteria for selecting coupling devices and optimal design are obtained. • A detailed process of designing the practical PV-TE hybrid system is provided. - Abstract: The thermal resistance theory is introduced into the theoretical model of the photovoltaic-thermoelectric (PV-TE) hybrid system. A detailed thermal resistance analysis is proposed to optimize the design of the coupled system in terms of optimal total conversion efficiency. Systems using four types of photovoltaic cells are investigated, including monocrystalline silicon photovoltaic cell, polycrystalline silicon photovoltaic cell, amorphous silicon photovoltaic cell and polymer photovoltaic cell. Three cooling methods, including natural cooling, forced air cooling and water cooling, are compared, which demonstrates a significant superiority of water cooling for the concentrating photovoltaic-thermoelectric hybrid system. Influences of the optical concentrating ratio and velocity of water are studied together and the optimal values are revealed. The impacts of the thermal resistances of the contact surface, TE generator and the upper heat loss thermal resistance on the property of the coupled system are investigated, respectively. The results indicate that amorphous silicon PV cell and polymer PV cell are more appropriate for the concentrating hybrid system. Enlarging the thermal resistance of the thermoelectric generator can significantly increase the performance of the coupled system using amorphous silicon PV cell or polymer PV cell.

  16. Interim performance criteria for photovoltaic energy systems. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  17. Outdoor thermal and electrical characterisation of photovoltaic modules and systems

    OpenAIRE

    Herteleer, Bert

    2016-01-01

    Current and future investors in photovoltaic systems are interested in how well the system performs, and how predictable this is over the expected lifetime. To do so, models have been developed and measurements of photovoltaic systems have been done. This dissertation presents the outdoor measurement set-up that has been developed for thermal and electrical characterisation of photovoltaic modules and systems, aimed at measuring transient effects and changes. The main design decisions and ...

  18. Distributed photovoltaic system evaluation by Arizona Public Service Company

    International Nuclear Information System (INIS)

    Lambeth, R.; Lepley, T.

    1993-01-01

    Arizona Public Service Company (APS) has performed a study of the APS system to (1) determine whether APS has high-value distributed applications of photovoltaics (PV), (2) quantify the value of a distributed PV system, (3) compare the APS results with the earlier PG ampersand E results and (4) estimate whether there will be significant market for these applications at APS. The study confirmed that there is a value to distributing PV generation throughout the utility distribution system. The breakeven cost for a PV system in APS' best location is $3.44/watt, in 1996 dollars. Feeders which meet all the criteria and which will be eligible for full benefits are relatively rare. However, a PV system will usually have more value if it is distributed rather than installed at a central station site

  19. Grid-Connected Photovoltaic System with Active Power Filtering Functionality

    Directory of Open Access Journals (Sweden)

    Joaquín Vaquero

    2018-01-01

    Full Text Available Solar panels are an attractive and growing source of renewable energy in commercial and residential applications. Its use connected to the grid by means of a power converter results in a grid-connected photovoltaic system. In order to optimize this system, it is interesting to integrate several functionalities into the power converter, such as active power filtering and power factor correction. Nonlinear loads connected to the grid generate current harmonics, which deteriorates the mains power quality. Active power filters can compensate these current harmonics. A photovoltaic system with added harmonic compensation and power factor correction capabilities is proposed in this paper. A sliding mode controller is employed to control the power converter, implemented on the CompactRIO digital platform from National Instruments Corporation, allowing user friendly operation and easy tuning. The power system consists of two stages, a DC/DC boost converter and a single-phase inverter, and it is able to inject active power into the grid while compensating the current harmonics generated by nonlinear loads at the point of common coupling. The operation, design, simulation, and experimental results for the proposed system are discussed.

  20. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    Energy Technology Data Exchange (ETDEWEB)

    Dones, Roberto [Paul Scherrer Inst., Villigen (Switzerland); Frischknecht, Rolf [Federal Institute of Technology, Zurich (Switzerland)

    1998-04-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  1. Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains

    International Nuclear Information System (INIS)

    Dones, Roberto; Frischknecht, Rolf

    1998-01-01

    The methodology used and results obtained for grid-connected photovoltaic (PV) plants in recent Swiss life-cycle assessment (LCA) studies on current and future energy systems are discussed. Mono- and polycrystalline silicon cell technologies utilised in current panels as well as monocrystalline and amorphous cells for future applications were analysed from Swiss conditions. The environmental inventories of slanted-roof solar panels and large plants are presented. Greenhouse gas emissions from present and future electricity systems are compared. The high electricity requirements for manufacturing determine most of the environmental burdens associated with current photovoltaics. However, due to increasing efficiency of production processes and cells, the environmental performance of PV systems is likely to improve substantially in the future. (Author)

  2. Optimal system sizing in grid-connected photovoltaic applications

    Science.gov (United States)

    Simoens, H. M.; Baert, D. H.; de Mey, G.

    A costs/benefits analysis for optimizing the combination of photovoltaic (PV) panels, batteries and an inverter for grid interconnected systems at a 500 W/day Belgian residence is presented. It is assumed that some power purchases from the grid will always be necessary, and that excess PV power can be fed into the grid. A minimal value for the cost divided by the performance is defined for economic optimization. Shortages and excesses are calculated for PV panels of 0.5-10 kWp output, with consideration given to the advantages of a battery back-up. The minimal economic value is found to increase with the magnitude of PV output, and an inverter should never be rated at more than half the array maximum output. A maximum panel size for the Belgian residence is projected to be 6 kWp.

  3. Studies of a photovoltaic-thermal solar during system for rural applications

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Y.; Yatim, B.; Bakar, N.A. [Kebangsaan Malaysia Univ., Bangi, Selangor (Malaysia). Center for Applied Physics Studies; Sopian, K. [Kebangsaan Malaysia Univ., Bangi, Selangor (Malaysia). Dept. of Mechanical and Material Engineering

    2007-07-01

    The use of solar drying is increasing in areas where the use of abundant, renewable and clean solar energy is advantageous. Particularly in developing countries and in rural areas, the traditional open-air drying methods are being substituted by the more effective and more economic solar drying technologies. Since the air collector is the most important component of a solar food drying system, improvement of the design of collectors would lead to better performance of the system. This paper presented a new design of a photovoltaic-thermal (PVT) solar drying system. In order to achieve an efficient design of an air collector suitable for a solar dryer, the results of an experimental study of PVT solar air collector was conducted and presented. The paper presented the methodology and discussed a series of experiments that were conducted under Malaysian climatic conditions. The paper discussed the design of a double pass photovoltaic-thermal solar air collector with compound parabolic concentrator (CPC) and fins. The collector design concept and the collector array were demonstrated. The performance of the collector was examined over a wide range of operating conditions. Results of the test were then presented and discussed. It was concluded that the performance of the solar collector was satisfactory. The quality attributes such as colour, flavour, and taste were significantly improved since it was protected from rain, dust, and insects, in contrast to sun drying. 10 refs., 8 figs.

  4. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  5. Systems and methods for photovoltaic string protection

    Science.gov (United States)

    Krein, Philip T.; Kim, Katherine A.; Pilawa-Podgurski, Robert C. N.

    2017-10-25

    A system and method includes a circuit for protecting a photovoltaic string. A bypass switch connects in parallel to the photovoltaic string and a hot spot protection switch connects in series with the photovoltaic string. A first control signal controls opening and closing of the bypass switch and a second control signal controls opening and closing of the hot spot protection switch. Upon detection of a hot spot condition the first control signal closes the bypass switch and after the bypass switch is closed the second control signal opens the hot spot protection switch.

  6. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - R and D of evaluation technology of the photovoltaic power system. R and D of the system evaluation technology; 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu - System hyoka gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Based on the evaluation method for the performance prediction system of the standard photovoltaic power system, the R and D were conducted of the system generation output prediction technology which is general-purpose, simplified and applicable to various kinds of photovoltaic power system for residential use, and the FY 2000 results were summed up. In this fiscal year, the photovoltaic power system for residential use was increasingly installed at 15 places, and 100 sites in total were made database and analyzed. As to the development of simulation technology, technology of calculation was established such as the simulation of multi-plane array composition and correction of multi-plane array incidence. Further, technical information on system trouble and knowledge/information/proposal for reducing power generation loss were arranged by design parameter. Using the data on solar radiation/power loss at sites of residential use photovoltaic power systems installed in the Kanto area, value analysis of the capacity of wide area facilities of the photovoltaic power system was made by the statistical method. This study was compiled into the revised edition of design manual. (NEDO)

  7. A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    M. Sarvi

    2013-01-01

    Full Text Available DC/DC converters are widely used in many industrial and electrical systems. As DC/DC converters are nonlinear and time-variant systems, the application of linear control techniques for the control of these converters is not suitable. In this paper, a new sliding mode controller is proposed as the indirect control method and compared to a simple direct control method in order to control a buck converter in photovoltaic applications. The solar arrays are dependent power sources with nonlinear voltage-current characteristics under different environmental conditions (insolation and temperature. From this point of view, the DC/DC converter is particularly suitable for the application of the sliding mode control in photovoltaic application, because of its controllable states. Simulations are performed in Matlab/Simulink software. The simulation results are presented for a step change in reference voltage and input voltage as well as step load variations. The simulations results of proposed method are compared with the conventional PID controller. The results show the good performance of the proposed sliding mode controller. The proposed method can be used for the other DC/DC converter.

  8. Statistical Analysis of the Grid Connected Photovoltaic System Performance Ratio

    Directory of Open Access Journals (Sweden)

    Javier Vilariño-García

    2017-05-01

    Full Text Available A methodology based on the application of variance analysis and Tukey's method to a data set of solar radiation in the plane of the photovoltaic modules and the corresponding values of power delivered to the grid at intervals of 10 minutes presents from sunrise to sunset during the 52 weeks of the year 2013. These data were obtained through a monitoring system located in a photovoltaic plant of 10 MW of rated power located in Cordoba, consisting of 16 transformers and 98 investors. The application of the comparative method among the middle of the performance index of the processing centers to detect with an analysis of variance if there is significant difference in average at least the rest at a level of significance of 5% and then by testing Tukey which one or more processing centers that are below average due to a fault to be detected and corrected are.

  9. Urban photovoltaic electricity policies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at urban photovoltaic electricity policies. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy as a significant and sustainable renewable energy option. The objective of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. The goal of the study presented was to evaluate a standardised basis for urban policies regarding photovoltaic integration in a set of cities in the countries participating in the IEA's Task 10, Urban Scale PV. The investigation was focused on three topics: the present state of the policies, the prospects for future policies fostering photovoltaic deployment and the prospects for future policies to cope with large-scale photovoltaic integration. The first section analyses the state of the policies; this analysis is then confirmed in section 2, which deals with present obstacles to PV deployment and solutions to overcome them. The third section investigates future prospects for PV deployment with the question of mastering large scale integration. The report concludes that cities could formulate urban solutions by developing integrated, specific provisions for PV deployment in their urban infrastructure planning.

  10. Energizing architecture. Design and photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lueling, Claudia (ed.)

    2009-07-01

    Power generation by photovoltaic systems and buildings is much more than just an alternative to traditional electric power generation. As the planning and design of photovoltaics is increasingly shifting to the forefront, it is rapidly becoming a new challenge for architecture. This book describes the whole spectrum of possible applications - from inspiration to detail - of photovoltaics as an integral part of building envelopes and introduces groundbreaking examples and visions for the future, in which photovoltaic elements work as a successful part of exterior facades - combined with highly luminous and economical illuminated wallpaper and curtains inside buildings. Its range extends from early designs by artists such as Daniel Hausig to aspects of material selection to detail drawings of implemented solutions. The enormous variety of possible applications of this new (building) material demonstrates the huge potential it possesses. (orig.)

  11. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Mohammadnezami

    2015-03-01

    Full Text Available A complete hybrid system including a photovoltaic cell, a wind turbine, and battery is modeled to determine the best approach for sizing the system to meet the electrical energy needs of a residential building. In evaluating system performance, the city of Tehran is used as a case study. Matlab software is used for analyzing the data and optimizing the system for the given application. Further, the cost of the system design is investigated, and shows that the electrical cost of the hybrid system in Tehran is 0.62 US$/kWh, which is 78% less expensive than a wind turbine system and 34% less expensive than a photovoltaic system.

  12. Low-voltage grid-connection of photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Collinson, A.; Thornycroft, J.

    1999-07-01

    This report summarises the results of a project aimed at developing technical guidelines concerning grid connected photovoltaic (PV) inverter generators which are to be published in draft form as the {sup U}K Technical Guidelines for Inverter Connected Single Phase Photovoltaic (PV) Generators up to 5kVA{sup .} The background to the use of PV in the UK is traced, and the technical criteria for electrical integration of PV systems, and UK guidelines for grid connected PV systems are examined. The findings of the working group of the International Energy Agency (IEA) Implementing Agreement on Photovoltaic Power Systems are also presented in this report. Appendices discuss the UK technical guidelines, the IEA Task V activities,, utility aspects of grid-connected PV systems, and demonstration tests on grid-connected PV systems, and lists Task V reports.

  13. Intermediate photovoltaic system application experiment operational performance. Executive summary. Volume 6 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-04-01

    Performance data are given for a 95 kW-peak grid connected flat panel photovoltaic power supply at a Massachusetts high school for the month of March 1982. Data presented include daily and monthly electrical energy produced by the photovoltaic system, daily and monthly solar energy incident in the plane of the array, efficiency of the solar cell array and of the power conditioner and of the system overall, the capacity factor, solar insolation, and the data acquisition mode and recording interval plot. (LEW)

  14. New Sunshine Program for Fiscal 2000. International cooperative project for developing photovoltaic power system practicalization technology (General edition); 2000 nendo New sunshine keikaku. Taiyoko hatsuden system jitsuyoka gijustu kaihatsu kokusai kyoryoku jigyo (Sogoban)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Fiscal 2000 international cooperation for the research, development, and popularization of photovoltaic power systems is compiled. In carrying out international cooperation relating to the photovoltaic power generation program of IEA (International Energy Agency), etc., officers were sent to the 15th and 16th executive committee meetings, where they deliberated on plan formulation and budget making. They also participated in the activities of Task 1: Exchange and dissemination of information on photovoltaic power systems, Task 2: Operational performance and design of photovoltaic power systems and subsystems, Task 3: Use of photovoltaic power systems in stand-alone and island applications, Task 5: Design and grid interconnection of building integrated and other dispersed photovoltaic systems, Task 7: Photovoltaic power systems in the built environment, Task 8: Study on very large scale photovoltaic power generation systems in deserts and other unexploited regions, and Task 9: Technical co-operation for photovoltaic market deployment. A discussion was made on the holding of a 4th IEA photovoltaic power system executive conference. In addition, Japan-Australia and Japan-Oman bilateral cooperative projects were implemented. (NEDO)

  15. UPVG efforts to commercialize photovoltaics

    International Nuclear Information System (INIS)

    Serfass, J.A.; Wills, B.N.

    1995-01-01

    The Utility PhotoVoltaic Group (UPVG) was formed in October of 1992 with a mission to accelerate the use of cost-effective small-scale and emerging grid-connected applications of photovoltaics for the benefit of electric utilities and their customers. The UPVG is now implementing a program to install up to 50 megawatts of photovoltaics in small-scale and grid-connected applications. This program, called TEAM-UP, is a partnership of the US electric utility industry and the US Department of Energy to help develop utility PV markets. TEAM-UP is a utility-directed program to significantly increase utility PV experience by promoting installations of utility PV systems. Two primary program areas are proposed for TEAM-UP: (1) Small-Scale Applications (SSA)--an initiative to aggregate utility purchases of small-scale, grid-independent applications; and (2) Grid-Connected Applications (GCA)--an initiative to identify and competitively award cost-sharing contracts for grid-connected PV systems with high market growth potential, or collective purchase programs involving multiple buyers. This paper describes these programs and outlines the schedule, the procurement status, and the results of the TEAM-UP process

  16. Potential of energy saving with photovoltaic systems; Potencialidad de ahorro de energia con sistemas fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Guzman S, Eusebio; Bratu S, Neagu [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1998-12-31

    This paper presents an approach on the application of photovoltaic systems in energy saving. The problem of the electric energy demand in the coming years is analyzed and its consequences on the environment and on the energy reserves of conventional sources. A model of the electric circuit equivalent to a photovoltaic cell illustrates the behavior of the photovoltaic cell in function of the climatological conditions. The former in order to show some of the limiting factors in this type of generator. Also, the evolution of the applications of the photovoltaic systems and its forecasting in the installed capacity in the next 20 years, is described. [Espanol] En este trabajo se presenta un enfoque de la aplicacion de los sistemas fotovoltaicos en el ahorro de energia. Se plantea el problema del crecimiento de la demanda energetica en los proximos anos y sus consecuencias sobre el medio ambiente y las reservas de energia por fuentes convencionales. Un modelo del circuito electrico equivalente de una celda fotovoltaica ilustra el comportamiento del generador fotovoltaico en funcion de las condiciones climatologicas. Lo anterior con el fin de mostrar algunas limitantes de este tipo de generador. Tambien se describe la evolucion de las aplicaciones de los sistemas fotovoltaicos y el pronostico de la potencia instalada en los proximos 20 anos.

  17. Potential of energy saving with photovoltaic systems; Potencialidad de ahorro de energia con sistemas fotovoltaicos

    Energy Technology Data Exchange (ETDEWEB)

    Guzman S, Eusebio; Bratu S, Neagu [Universidad Autonoma Metropolitana, Mexico, D. F. (Mexico)

    1999-12-31

    This paper presents an approach on the application of photovoltaic systems in energy saving. The problem of the electric energy demand in the coming years is analyzed and its consequences on the environment and on the energy reserves of conventional sources. A model of the electric circuit equivalent to a photovoltaic cell illustrates the behavior of the photovoltaic cell in function of the climatological conditions. The former in order to show some of the limiting factors in this type of generator. Also, the evolution of the applications of the photovoltaic systems and its forecasting in the installed capacity in the next 20 years, is described. [Espanol] En este trabajo se presenta un enfoque de la aplicacion de los sistemas fotovoltaicos en el ahorro de energia. Se plantea el problema del crecimiento de la demanda energetica en los proximos anos y sus consecuencias sobre el medio ambiente y las reservas de energia por fuentes convencionales. Un modelo del circuito electrico equivalente de una celda fotovoltaica ilustra el comportamiento del generador fotovoltaico en funcion de las condiciones climatologicas. Lo anterior con el fin de mostrar algunas limitantes de este tipo de generador. Tambien se describe la evolucion de las aplicaciones de los sistemas fotovoltaicos y el pronostico de la potencia instalada en los proximos 20 anos.

  18. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  19. Analysis of the Photovoltaic Market 2001. Cost of PV Components and Systems

    International Nuclear Information System (INIS)

    Balenzategui Manzanares, J. L.

    2002-01-01

    This document tries to study the development and evolution of the photovoltaic market at a national and international scale, and to analyse its current status at the end of 2001. The paper broaches the study from different points of view. At the first step, the actual great expansion of the global market is analysed by means of the data for international sales and shipments of photovoltaic modules, which are completed with figures of the main countries and manufacturing companies involved in the market, the end-use applications, the installed power per country, the technologies used and the evolution of the cost of the modules. By using the same kind of parameters, the particular conditions of the Spanish market is then analysed, and the current national norms and plans for promotion and their short term perspectives are reviewed and discussed. As a complementary aspect, a simple cost analysis of the main components of a photovoltaic system in the Spanish market is carried out, together with the costs of complete installations. The average values for components and systems are obtained and are compared with those from preceding years. These data allow evaluating in practice how the global situation is reflected in the final cost of the photovoltaic devices for consumers. (Author) 56 refs

  20. Optimization of Photovoltaic Self-consumption using Domestic Hot Water Systems

    Directory of Open Access Journals (Sweden)

    Ângelo Casaleiro

    2018-06-01

    Full Text Available Electrified domestic hot water systems, being deferrable loads, are an important demand side management tool and thus have the potential to enhance photovoltaic self-consumption. This study addresses the energy and economic performance of photovoltaic self-consumption by using a typical Portuguese dwelling. Five system configurations were simulated: a gas boiler (with/without battery and an electric boiler (without demand management and with genetic and heuristic optimization. A sensitivity analysis on photovoltaic capacity shows the optimum photovoltaic sizing to be in the range 1.0 to 2.5 kWp. The gas boiler scenario and the heuristic scenario present the best levelized cost of energy, respectively, for the lower and higher photovoltaic capacities. The use of a battery shows the highest levelized cost of energy and the heuristic scenario shows the highest solar fraction (56.9%. Results also highlight the great potential on increasing photovoltaic size when coupled with electrified domestic hot water systems, to accommodate higher solar fractions and achieve lower costs, through energy management.

  1. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    Science.gov (United States)

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian; Cheng, Feng; Greenwood, Wesley; Hawkins, Jonathan; Willard, Steve

    2017-06-27

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unit and the photovoltaic energy source.

  2. Sliding mode controller for a photovoltaic pumping system

    Science.gov (United States)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  3. US Photovoltaic Patents, 1988--1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  4. Design method for photovoltaics-battery storage systems under tropical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, A I.E.; Bassyouni, A H; Al-Motawakel, M K

    1989-01-01

    A very limited number of the available design methods can be used with confidence in sizing and costing the stand-alone photovoltaic-battery storage systems operating under the weather conditions of the tropical countries located between 0 and 30/sup 0/N. For this reason we investigated the performance and economics of various photovoltaic-battery storage system configurations. The aim was to prepare a number of sizing and costing design diagrams which detail the effect of climatic, social, and economics parameters on the choice of the stand-alone photovoltaic-battery storage systems. Our strategy was to guide designers, particularly those trying to utilize the stand-alone photovoltaic-battery storage systems in Sana'a (15/sup 0/N) and Cairo (30/sup 0/N), to the logic for selecting a system that physically and economically matches the site potential and the user's electrical needs. Considered here are the relatively small stand-alone photovoltaic-battery storage systems that can be purchased by individuals or commercial and governmental firms to supply all or part of the electrical needs consumed in residence, farms, remote rural communities, or small factories.

  5. Photovoltaic solar panel for a hybrid PV/thermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenko, R.; Licea-Jimenez, L.; Perez-Garcia, S.A.; Perez-Robles, J.F.; Gonzalez-Hernandez, J.; Vorobiev, Y. [CINVESTAV-Queretaro, (Mexico); Vorobiev, P. [Universidad Autonoma de Queretaro, (Mexico). Facultad de Ingenieria; Dehesa-Carrasco, U. [Instituto Tec. Del Istmo, Oaxaco (Mexico). Dep. de Ingenieria Electromecanica

    2004-05-01

    The hybrid PV-thermal system was studied, with the photovoltaic panel (PVP) area much smaller than that of the solar collector. Performance of the different panels in the system was investigated, in particular, those made of crystalline (c-) Si, {alpha}-Si and CuInSe{sub 2} as well as different materials and constructions for the thermal contact between the panel and the collector. Our conclusion is that the PVP for application in a hybrid system needs a special design providing efficient heat extraction from it. PVP was designed and made. Its study has shown that this design provides the high electrical and thermal efficiency of the hybrid system. (author)

  6. Fiscal 1976 Sunshine Project result report. Research on solar energy utilization systems (photovoltaic power generation); 1976 nendo taiyo energy riyo system chosa kenkyu seika hokokusho. Taiyoko hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This report describes the fiscal 1976 research result on the technical and economical perspectives of various solar cells, high-efficiency solar cell and its evaluation technique, and a photovoltaic power generation system and its applications. On Si single-crystal slice solar cell, it was pointed out that cost reduction by automatic production process using no vacuum process is essential. On Si thin film solar cell, some problems to be solved for development of particle accelerating growth technique were pointed out. Study was also made on 2-6 group compound semiconductor solar cell, 3-5 group bulk crystal solar cell, 3-5 group thin film solar cell, solar collection solar cell, and raw polycrystal Si materials. On photovoltaic power generation systems, it was reconfirmed through reconsideration of power generation systems for every application that the photovoltaic power generation system for residences is promising. On medium- scale power generation systems, study was made on power load and system configuration in consideration of applications to electric railway, highway, and power source of isolated islands. (NEDO)

  7. Federal policies to promote the widespread utilization of photovoltaic systems. Volume two. Technical document

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The question of photovoltaic system interactions with electric utility grids is addressed. Discussions of system configurations, effects on utility dispatch and generation planning, effects of utility rate structures on photovoltaic deployment and vice versa, interactions of photovoltaic and electrical storage systems, effects on end-use reliability, and the ultimate limitations on photovoltaic penetration into electric grids are presented. Photovoltaic system economic issues are considered. Discussions of the high first cost and the Program plans and strategies to reduce costs (and PV prices), expected evolution of photovoltaic technology, effects of various financial incentives on photovoltaics, implications of utility vs non-utility ownership of photovoltaics, likelihood that sufficient capital will be available to adequately finance the deployment of photovoltaic systems, current status and expected evolution of the photovoltaic supply industry, and the programmatic activities directed at aiding the evolution of a healthy, competitive industry are presented. The basic issues of photovoltaic market development are studied. The potential of various market segments and the complexity involved in defining and identifying the various segments; issues to be faced in deployment of dispersed photovoltaic systems including innovation acceptance on the part of the building industry, building codes, zoning, insurance, information dissemination, public acceptance, solar access, state and local solar photovoltaic incentives, and the implications for urban and suburban land use; and the need for, and method of development of, photovoltaic standards and warranties on photovoltaic systems are discussed. The conclusions of the report with respect to the information requested by Congress are summarized, and findings for congressional action are presented. (WHK)

  8. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Research and development of photovoltaic system evaluation technology (Research and development of system evaluation technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu (system hyoka gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In relation with several types of standard photovoltaic power generation systems expected to be put to practical use, design parameters are quantified, databases are utilized, and simulation technologies are developed, while collecting data from test facilities constructed to simulate them, for the development of evaluation techniques indispensable for the efficient improvement of photovoltaic power generation systems. In fiscal 1998, data were collected from verification test facilities and residential photovoltaic systems sited across Japan. The collected data were subjected to analysis and simulation, by which correction factors were calculated for smudge, spectral response, incident radiation, and temperature. Furthermore, load matching factors and storage battery contribution rates were calculated by simulation for the stand-alone photovoltaic systems sited in five Japanese cities, each comprising an array, storage battery, charge/discharge controller, DC-DC converter, and a load. Reference is also made to a survey of trends of technology development. (NEDO)

  9. Solar photovoltaic power generation system and understanding of green energy

    International Nuclear Information System (INIS)

    Yoo, Chun Sik

    2004-03-01

    This book introduces sunlight generation system and green energy, which includes new and renewable energy such as photovoltaic power generation, solar thermal, wind power, bio energy, waste energy, geothermal energy, ocean energy and fuel cell photovoltaic industry like summary, technology trend, market trend, development strategy of the industry in Korea, and other countries, design of photovoltaic power generation system supporting policy and related business of new and renewable energy.

  10. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  11. Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Seng, Lim Yun [Department of Physical Science, Electrical and Electronic Engineering, Tunku Abdul Rahman University, 53300 Setapak, Kuala Lumpur (Malaysia); Lalchand, G.; Sow Lin, Gladys Mak [Malaysia Energy Centre, Building Integrated Photovoltaic Project (Malaysia)

    2008-06-15

    Malaysia has identified photovoltaic systems as one of the most promising renewable sources. A great deal of efforts has been undertaken to promote the wide applications of PV systems. With the recent launch of a PV market induction programme known as SURIA 1000 in conjunction with other relevant activities undertaken under the national project of Malaysia Building Integrated Photovoltaic (MBIPV), the market of PV systems begins to be stimulated in the country. As a result, a wide range of technical, environmental and economic issues with regard to the connection of PV systems to local distribution networks becomes apparent. Numerous studies were therefore carried out in collaboration with Malaysian Energy Centre to address a number of those important issues. The findings of the studies are presented in the paper and can be served as supplementary information to parties who are directly and indirectly involved in the PV sector in Malaysia. (author)

  12. Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia

    International Nuclear Information System (INIS)

    Seng, Lim Yun; Lalchand, G.; Sow Lin, Gladys Mak

    2008-01-01

    Malaysia has identified photovoltaic systems as one of the most promising renewable sources. A great deal of efforts has been undertaken to promote the wide applications of PV systems. With the recent launch of a PV market induction programme known as SURIA 1000 in conjunction with other relevant activities undertaken under the national project of Malaysia Building Integrated Photovoltaic (MBIPV), the market of PV systems begins to be stimulated in the country. As a result, a wide range of technical, environmental and economic issues with regard to the connection of PV systems to local distribution networks becomes apparent. Numerous studies were therefore carried out in collaboration with Malaysian Energy Centre to address a number of those important issues. The findings of the studies are presented in the paper and can be served as supplementary information to parties who are directly and indirectly involved in the PV sector in Malaysia. (author)

  13. A program plan for photovoltaic buildings in Florida

    International Nuclear Information System (INIS)

    Ventre, Gerard G.

    1999-01-01

    The Florida Photovoltaic (PV) Buildings Program will conduct a variety of application experiments over the next decade to gather information that will help define the costs, value and benefits of using photovoltaics with buildings. Four main sources of revenue will support the program: a photovoltaic system buy down (from the present through December 2001), green pricing (present to 2010 and beyond), buy up by end users, and contracts, grants and other subsidies. To give the program sufficient breadth, three different application experiments are planned for each of nine target groups. The data and information from these experiments will help reduce or eliminate key barriers to the commercialisation of photovoltaic buildings. (Author)

  14. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  15. Factors Associated with Photovoltaic System Costs (Topical Issues Brief)

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, J.

    2001-06-12

    A variety of factors can affect the cost of photovoltaic systems. This report analyses the relationship among such factors by using information entered into a voluntary registry of PV systems and performing regression analyses. The results showed statistically significant relationships between photovoltaic system cost and (a) grid connection, (b) installation year, (c) areas where the utility had entered into volume purchasing agreements.

  16. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Risk analysis of islanding of photovoltaic power systems within low voltage distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, N. [Freelance Consultant, Hillside House, Swindon SN1 3QA (United Kingdom); Thornycroft, J. [Halcrow Group Ltd, Burderop Park, Swindon SN4 0QD (United Kingdom); Collinson, A. [EA Technology, Capenhurst Technology Park, Chester CH1 6ES (United Kingdom)

    2002-03-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme presents the results of a risk analysis concerning photovoltaic power systems islanding in low-voltage distribution networks. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. The purpose of this study was to apply formal risk analysis techniques to the issue of islanding of photovoltaic power systems within low voltage distribution networks. The aim was to determine the additional level of risk that islanding could present to the safety of customers and network maintenance staff. The study identified the reliability required for islanding detection and control systems based on standard procedures for developing a safety assurance strategy. The main conclusions are presented and discussed and recommendations are made. The report is concluded with an appendix that lists the relative risks involved.

  17. Neural network based photovoltaic electrical forecasting in south Algeria

    International Nuclear Information System (INIS)

    Hamid Oudjana, S.; Hellal, A.; Hadj Mahammed, I

    2014-01-01

    Photovoltaic electrical forecasting is significance for the optimal operation and power predication of grid-connected photovoltaic (PV) plants, and it is important task in renewable energy electrical system planning and operating. This paper explores the application of neural networks (NN) to study the design of photovoltaic electrical forecasting systems for one week ahead using weather databases include the global irradiance, and temperature of Ghardaia city (south of Algeria) for one year of 2013 using a data acquisition system. Simulations were run and the results are discussed showing that neural networks Technique is capable to decrease the photovoltaic electrical forecasting error. (author)

  18. Intermediate photovoltaic system application experiment operational performance report: Volume 5, for Beverly High School, Beverly, Mass.

    Science.gov (United States)

    1982-02-01

    Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.

  19. Developing a mobile stand alone photovoltaic generator

    International Nuclear Information System (INIS)

    Soler-Bientz, R.; Ricalde-Cab, L.O.; Solis-Rodriguez, L.E.

    2006-01-01

    This paper describes a recent work developed to create a mobile stand alone photovoltaic generator that can be easily relocated in remote areas to evaluate the feasibility of photovoltaic energy applications. A set of sensors were installed to monitor the electric current and voltage of the energy generated, the energy stored and the energy used by the loads that may be connected to the system. Other parameters like solar radiations (both on the horizontal and on the photovoltaic generation planes) and temperatures (of both the environment and the photovoltaic module) were monitored. This was done while considering the important role of temperature in the photovoltaic module performance. Finally, a measurement and communication hardware was installed to interface the system developed with a conventional computer. In this way, the performance of the overall system in real rural conditions could be evaluated efficiently. Visual software that reads, visualizes and saves the data generated by the system was also developed by means of the LabVIEW programming environment

  20. Battery charging characteristics in small scaled photovoltaic system using resonant DC-DC converter with electric isolation

    International Nuclear Information System (INIS)

    Isoda, H.; Kimura, G.; Shioya, M.

    1990-01-01

    The solar energy has been drawing attention of the whole world as a clean and infinite energy, since the globe resource, the globe ecology and so on came into question. The wide applications of the solar energy are being expected in a range from electric power plants to household systems. But the output power induced in the photovoltaic modules is influenced by an intensity of the solar radiation, a temperature of the solar cells and so on, so the various useful forms of the solar energy are being proposed for a purpose of stable power supply. a system described in this paper is a small scaled photovoltaic system with storage batteries. This paper describes the theoretical analyses of the photovoltaic system using a resonant DC-DC converter in order to clarify a desirable circuit condition, besides the experimental results of the battery charging characteristics are presented

  1. Photovoltaic systems: state of the art and short-medium term perspectives

    International Nuclear Information System (INIS)

    Brofferio, Sergio C.; Rota, Alberto

    2006-01-01

    The paper presents and discusses, from a technology and economic point of view, the characteristics, performances, issues and perspectives of the thin films and the solar concentrating photovoltaic systems in the short and medium terms. Both have well based motivations to be an evolutionary step of current wafer based Silicon systems: the former as Building Integrated Photovoltaic and the latter as high density and high power photovoltaic systems [it

  2. Intermediate photovoltaic system application experiment operational performance report. Volume 5 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Performance data are presented for the month of January, 1982 for a grid-connected photovoltaic power supply at a Massachusetts high school. Data presented include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplied to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot. Also included are summaries of two problems with the operating data acquisition system. (LEW)

  3. Simulation of the optimal size of photovoltaic system using ...

    African Journals Online (AJOL)

    . ... is composed of photovoltaic array, power tracker, battery storage, inverter and load. The data used were the sunshine duration and solar radiation intensity for ... covered by the photovoltaic system without battery storage, monthly-average ...

  4. Safety-related requirements for photovoltaic modules and arrays

    Science.gov (United States)

    Levins, A.; Smoot, A.; Wagner, R.

    1984-01-01

    Safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications are investigated. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the Underwriters Laboratory UL investigation of the photovoltaic module evaluated to the provisions of the proposed UL standard for plat plate photovoltaic modules and panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit groundings, and the type of circuit ground are covered.

  5. Detection of arcing location on photovoltaic systems using filters

    Science.gov (United States)

    Johnson, Jay

    2018-02-20

    The present invention relates to photovoltaic systems capable of identifying the location of an arc-fault. In particular, such systems include a unique filter connected to each photovoltaic (PV) string, thereby providing a unique filtered noise profile associated with a particular PV string. Also described herein are methods for identifying and isolating such arc-faults.

  6. Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems

    International Nuclear Information System (INIS)

    Ahmed, Nabil A.; Miyatake, Masafumi; Al-Othman, A.K.

    2008-01-01

    In this paper a hybrid energy system combining variable speed wind turbine, solar photovoltaic and fuel cell generation systems is presented to supply continuous power to residential power applications as stand-alone loads. The wind and photovoltaic systems are used as main energy sources while the fuel cell is used as secondary or back-up energy source. Three individual dc-dc boost converters are used to control the power flow to the load. A simple and cost effective control with dc-dc converters is used for maximum power point tracking and hence maximum power extracting from the wind turbine and the solar photovoltaic systems. The hybrid system is sized to power a typical 2 kW/150 V dc load as telecommunication power plants or ac residential power applications in isolated islands continuously throughout the year. The results show that even when the sun and wind are not available; the system is reliable and available and it can supply high-quality power to the load. The simulation results which proved the accuracy of the proposed controllers are given to demonstrate the availability of the proposed system in this paper. Also, a complete description of the management and control system is presented

  7. Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications

    International Nuclear Information System (INIS)

    Tsuanyo, David; Azoumah, Yao; Aussel, Didier; Neveu, Pierre

    2015-01-01

    This paper presents a new model and optimization procedure for off-grid hybrid PV (photovoltaic)/Diesel systems operating without battery storage. The proposed technico-economic model takes into account the variability of both the solar irradiation and the electrical loads. It allows optimizing the design and the operation of the hybrid systems by searching their lowest LCOE (Levelized Cost of Electricity). Two cases have been investigated: identical Diesel generators and Diesel generators with different sizes, and both are compared to conventional standalone Diesel generator systems. For the same load profile, the optimization results show that the LCOE of the optimized batteryless hybrid solar PV/Diesel (0.289 €/kWh for the hybrid system with identical Diesel generators and 0.284 €/kWh for the hybrid system with different sizes of Diesel generators) is lower than the LCOE obtained with standalone Diesel generators (0.32 €/kWh for the both cases). The obtained results are then confirmed by HOMER (Hybrid Optimization Model for Electric Renewables) software. - Highlights: • A technico-economic model for optimal design and operation management of batteryless hybrid systems is developed. • The model allows optimizing design and operation of hybrid systems by ensuring their lowest LCOE. • The model was validated by HOMER. • Batteryless hybrid system are suitable for off-grid applications

  8. Economic viability of photovoltaic power for development assistance applications

    Science.gov (United States)

    Bifano, W. J.

    1982-01-01

    This paper briefly discusses the development assistance market and examines a number of specific photovoltaic (PV) development assistance field tests, including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators, based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  9. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2017-01-01

    A continuous booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the imperative demand of “clean” power generation from renewables. Grid-connected PV systems will thus become an even more active player in the future mixed power systems, which...... systems. This chapter thus gives an overview of the advancement of power electronics converters in single-phase grid-connected PV systems, being commonly used in residential applications. Demands to single-phase grid-connected PV systems and the general control strategies are also addressed...... are linked together by a vast of power electronics converters and the power grid. In order to achieve a reliable and efficient power generation from PV systems, more stringent demands have been imposed on the entire PV system. It, in return, advances the development of the power converter technology in PV...

  10. The value of residential photovoltaic systems: A comprehensive assessment

    Science.gov (United States)

    Borden, C. S.

    1983-01-01

    Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.

  11. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  12. A new mobile application for maintenance tasks in photovoltaic installations by using GPS data

    International Nuclear Information System (INIS)

    Fernández-Pacheco, D.G.; Molina-Martínez, J.M.; Ruiz-Canales, A.; Jiménez, M.

    2012-01-01

    Highlights: ► Portable and easy-to-use solution to detect possible failures at a PV installation. ► Calculation of solar and photovoltaic parameters by using a mobile device with GPS. ► No software which confers this utility to a mobile device can be found in the market. - Abstract: The application of the Information and Communication Technologies (ICTs) to the photovoltaic (PV) energy sector has increased notably in the last years. This paper presents a new mobile software application for maintenance tasks in PV installations by determining the PV output power of the system, the daily energy production, the clear-sky global solar radiation and other parameters associated with solar position from Global Position Data in handheld devices endowed with Android or Windows Mobile operating systems. The calculation of these parameters permits a technician to know if the PV plant is working properly, since the difference between the PV output power supplied by the installation in a clear-sky day for a determined hourly period and the values estimated by the application should be minimal. In case of fixed installations, the application also permits to determine if the PV module support structures of the installation are correctly oriented. Some comparisons between data supplied by four real PV installations and data calculated by the proposed application were performed for evaluation purposes.

  13. Study on High energy efficiency photovoltaic facility agricultural system in tropical area of China

    Directory of Open Access Journals (Sweden)

    Ge Zhiwu

    2018-01-01

    Full Text Available The photovoltaic facility agriculture is developing rapidly in recent years, but there are many problems brought out, even in some important demonstration projects, due to the lack of standards. In order to solve some of these problems, we set up a photovoltaic facilities agricultural system in Guilinyang University City, Haikou, China and make an in-depth study on the photovoltaic facility agricultural system and its related problems. In this paper we disclose some of the experimental results. We plant corianders under two kinds of solar cell panels and general double glass assembly already sold on the market. Experiments showed that the square format cell panels are much better than row type, and the next one is general double glass assembly sold on the market, the last is the case without any shelter. 30 days after planting, the height of coriander plants are 50mm, 30mm, 23mm and 20mm correspondingly. The two typical solar cell panels have gaps between cells, and can save much more energy and improve power generation efficiency, we arrange the panels at optimum tilted angle, and design the system as open structure to save more energy. The photovoltaic facilities agricultural system we set up in Guilinyang University City can achieve much high solar energy efficiency than others and has broad application prospects.

  14. Photovoltaic electricity industry and markets Status and trends in France 1992-2002 - Technical report. Survey report of photovoltaic power applications in France 2002

    International Nuclear Information System (INIS)

    Claverie, Andre; Juquois, Fabrice

    2003-01-01

    The report provides a picture of the photovoltaic industry and its applications in France covering the years 1992 to end 2002. The main stream of photovoltaic (PV) activity in France is that of off-grid power systems. Nevertheless, the ADEME and other public authority partners decided in 1999 to contribute to the funding of grid-connected distributed photovoltaic power systems. During the year 2002, 3,4 MW of photovoltaic power systems were installed in France and its overseas departments. The annual off-grid PV power system market remains stable at around 2,4 MW per year and that of grid-connected distributed power systems reached almost 1 MW in 2002. The total cumulative installed PV power in France is 17 MW of which 15 MW are off-grid systems and 2 MW are grid-connected distributed PV power systems. This installed capacity represents the annual production of 15 GWh of electricity. The PV cell/module industry remains very active. The annual production of photovoltaic multi-crystalline silicon cells increased by 25 % during the year 2002 to reach 17 MW while the production of amorphous silicon thin film modules increased slightly to go over half a megawatt. Two French companies started introducing on the market photovoltaic modules specifically designed for building integration. Price of photovoltaic power systems is decreasing towards 20 euros per watt for off-grid systems under public funding and turnkey prices for grid-connected distributed PV power systems vary from 6 to 8 euros per watt according to the level of building integration. Business turnover of main companies covering the whole field of cell/module manufacturing and PV power system developers/installers, increased 18 % in 2002 to reach 130 million euros. Due to a Governmental decision taken in 1998, the ADEME increased its annual public budget for the promotion of PV in France to reach around 10 MEUR per year. This new measure allowed a) to reactivate the ADEME's research and technological

  15. Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications.

    Science.gov (United States)

    Xiao, Zewen; Zhou, Yuanyuan; Hosono, Hideo; Kamiya, Toshio; Padture, Nitin P

    2018-02-16

    The bandgap is the most important physical property that determines the potential of semiconductors for photovoltaic (PV) applications. This Minireview discusses the parameters affecting the bandgap of perovskite semiconductors that are being widely studied for PV applications, and the recent progress in the optimization of the bandgaps of these materials. Perspectives are also provided for guiding future research in this area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Seawater pumping as an electricity storage solution for photovoltaic energy systems

    International Nuclear Information System (INIS)

    Manfrida, Giampaolo; Secchi, Riccardo

    2014-01-01

    The stochastic nature of several renewable energy sources has raised the problem of designing and building storage facilities, which can help the electricity grid to sustain larger and larger contribution of renewable energy. Seawater pumped electricity storage is proposed as a good option for PV (Photovoltaic) or solar thermal power plants, located in suitable places close to the coast line. Solar radiation has a natural daily cycle, and storage reservoirs of limited capacity can substantially reduce the load to the electricity grid. Different modes of pump operation (fixed or variable speed) are considered, the preliminary sizing of the PV field and seawater reservoir is performed, and the results are comparatively assessed over a year-long simulated operation. The results show that PV pumped storage, even if not profitable in the present situation of the renewable energy Italian electricity market, is effective in decreasing the load on the transmission grid, and would possibly be attractive in the future, also in the light of developing off-grid applications. - Highlights: • A grid-connected seawater pumping system using photovoltaic power is proposed and its performance analyzed. • Year-round simulations are run with different sizes of photovoltaic field and reservoir. • An analysis is run about the profitability of the storage system, examining performance indexes and the cost of plant. • The system proposed appears near to attract the interest of the market

  17. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system

    International Nuclear Information System (INIS)

    Khatib, Tamer; Ibrahim, Ibrahim A.; Mohamed, Azah

    2016-01-01

    Highlights: • We review the current methods for sizing standalone PV systems. • We review the current criteria adapted in sizing standalone PV systems. • We review current method for sizing battery in standalone PV systems. - Abstract: The reliance of future energy demand on standalone PV system is based on its payback period and particular electrical grid parity prices. This highlights the importance for optimum and applicable methods for sizing these systems. Moreover, the designers are being more sensitive toward simple and reliable sizing models for standalone PV system. This paper proposes a review on important knowledge that needs to be taken into account while designing and implementing standalone PV systems. Such a knowledge includes configurations of standalone photovoltaic system, evaluation criteria for unit sizing, sizing methodologies. Moreover, this review provides highlights on challenges and limitations of standalone PV system size optimization techniques.

  18. A reliable, fast and low cost maximum power point tracker for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain)

    2010-01-15

    This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)

  19. Active and reactive power neurocontroller for grid-connected photovoltaic generation system

    Directory of Open Access Journals (Sweden)

    I. Abadlia

    2016-03-01

    Full Text Available Many researchers have contributed to the development of a firm foundation for analysis and design of control applications in grid-connected renewable energy sources. This paper presents an intelligent control algorithm fond on artificial neural networks for active and reactive power controller in grid-connected photovoltaic generation system. The system is devices into two parts in which each part contains an inverter with control algorithm. A DC/DC converter in output voltage established by control magnitude besides maximum power point tracker algorithm always finds optimal power of the PV array in use. A DC/AC hysteresis inverter designed can synchronize a sinusoidal current output with the grid voltage and accurate an independent active and reactive power control. Simulation results confirm the validation of the purpose. Neurocontroller based active and reactive power presents an efficiency control that guarantees good response to the steps changing in active and reactive power with an acceptable current/voltage synchronism. In this paper the power circuit and the control system of the presented grid-connected photovoltaic generation system is simulated and tested by MatLab/Simulink.

  20. Photovoltaic Thermal panels in collective thermal solar systems

    International Nuclear Information System (INIS)

    Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.; De Lange, E.T.N.; Smit, W.F.

    2003-12-01

    A feasibility study has been carried out to assess the options to apply photovoltaic/thermal panels (PVT-panels) in collective solar thermal systems in urban areas in the Netherlands. The study was focused on the technical (architecture and installations) and the economical feasibility of collective PVT-systems in comparison with conventional solar thermal systems and combinations of photovoltaic (PV) panels and solar collectors. The results of the study also give insight into cost and the market for PVT-panels. Three case studies in which collective solar collector systems were applied are analyzed again by simulating the installation of a PVT-panels system and a separate solar thermal PV system [nl

  1. Photovoltaic systems concept study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The work performed in the conceptual design and systems analysis of three sizes of photovoltaic solar electric power systems is contained in five volumes consisting of nine sections plus appendices. Separate abstracts were prepared for the two sections in this volume. (MHR)

  2. Design and simulation of a low concentrating photovoltaic/thermal system

    International Nuclear Information System (INIS)

    Rosell, J.I.; Vallverdu, X.; Lechon, M.A.; Ibanez, M.

    2005-01-01

    The advantages of photovoltaic/thermal (PV/T) collectors and low solar concentration technologies are combined into a photovoltaic/thermal system to increase the solar energy conversion efficiency. This paper presents a prototype 11X concentration rate and two axis tracking system. The main novelty is the coupling of a linear Fresnel concentrator with a channel photovoltaic/thermal collector. An analytical model to simulate the thermal behaviour of the prototype is proposed and validated. Measured thermal performance of the solar system gives values above 60%. Theoretical analysis confirms that thermal conduction between the PV cells and the absorber plate is a critical parameter

  3. Photovoltaic Power Systems and the National Electrical Code: Suggested Practices

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-02-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently.

  4. Fuzzy Logic System for Intermixed Biogas and Photovoltaics Measurement and Control

    Directory of Open Access Journals (Sweden)

    Liston Matindife

    2018-01-01

    Full Text Available This study develops a new integrated measurement and control system for intermixed biogas and photovoltaic systems to achieve safe and optimal energy usage. Literature and field studies show that existing control methods on small- to medium-scale systems fall short of comprehensive system optimization and fault diagnosis, hence the need to revisit these control methods. The control strategy developed in this study is intelligent as it is wholly based on fuzzy logic algorithms. Fuzzy logic controllers due to their superior nonlinear problem solving capabilities to classical controllers considerably simplify controller design. The mathematical models that define classical controllers are difficult or impossible to realize in biogas and photovoltaic generation process. A microcontroller centered fuzzy logic measurement and control embedded system is designed and developed on the existing hybrid biogas and photovoltaic installations. The designed system is able to accurately predict digester stability, quantify biogas output, and carry out biogas fault detection and control. Optimized battery charging and photovoltaic fault detection and control are also successfully implemented. The system is able to optimize the operation and performance of biogas and photovoltaic energy generation.

  5. Solar energy scenarios in Brazil. Part two: Photovoltaics applications

    International Nuclear Information System (INIS)

    Martins, F.R.; Ruether, R.; Pereira, E.B.; Abreu, S.L.

    2008-01-01

    This paper discusses some energy scenarios for photovoltaic applications in Brazil engendered by using SWERA database in order to demonstrate its potential for feasibility analysis and application in the energy planning for electricity generation. It discusses two major different markets: hybrid PV-Diesel installations in mini-grids of the off-grid Brazilian electricity system in the Amazon region, and grid-connected PV in urban areas of the interconnected Brazilian electricity system. The potential for using PV is huge, and can be estimated in tens to hundreds of MWp in the Amazon region alone, even if only a fraction of the existing Diesel-fired plants with a total installed capacity of over 620 MVA would fit to run in an optimum Diesel/PV mix. Most of the major cities in Brazil present greater electricity demand in summertime with the demand peak happening in the daytime period. This energy profile match the actual solar resource assessment provided by SWERA Data Archive, enabling grid-connected PV systems to provide an important contribution to the utility's capacity

  6. MODEL PREDICTIVE CONTROL FOR PHOTOVOLTAIC STATION MAXIMUM POWER POINT TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    I. Elzein

    2015-01-01

    Full Text Available The purpose of this paper is to present an alternative maximum power point tracking, MPPT, algorithm for a photovoltaic module, PVM, to produce the maximum power, Pmax, using the optimal duty ratio, D, for different types of converters and load matching.We present a state-based approach to the design of the maximum power point tracker for a stand-alone photovoltaic power generation system. The system under consideration consists of a solar array with nonlinear time-varying characteristics, a step-up converter with appropriate filter.The proposed algorithm has the advantages of maximizing the efficiency of the power utilization, can be integrated to other MPPT algorithms without affecting the PVM performance, is excellent for Real-Time applications and is a robust analytical method, different from the traditional MPPT algorithms which are more based on trial and error, or comparisons between present and past states. The procedure to calculate the optimal duty ratio for a buck, boost and buck-boost converters, to transfer the maximum power from a PVM to a load, is presented in the paper. Additionally, the existence and uniqueness of optimal internal impedance, to transfer the maximum power from a photovoltaic module using load matching, is proved.

  7. Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System.

    Science.gov (United States)

    Ma, Nan; Zhang, Kewei; Yang, Ya

    2017-12-01

    Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7-4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8-20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near-UV irradiations. Here, a ferroelectric BaTiO 3 film-based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light-induced photovoltaic-pyroelectric coupled effect. A self-powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Task 5. Grid interconnection of building integrated and other dispersed photovoltaic power systems. Grid-connected photovoltaic power systems: power value and capacity value of PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F.

    2002-02-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the power value and capacity value of photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and dispersed PV power systems. This report summarises the results of a study aimed to assess the benefits that may be obtained when distributed PV production systems are present in a low-voltage grid. The basic aspects concerning the power-value and those related to the capacity-value are discussed. Data obtained from simulations are presented and discussed. A simple concept shows that great variation occurs if varying load patterns are taken into account. The power-value of PV generation in the grid varies instant by instant depending on the current level of power production and on the surrounding load conditions. Although the three case-studies considered do not cover all the possibilities of coupling between PV and loads, the results obtained show a good differentiation among users with PV production which leads to interesting conclusions.

  9. Electrical Rating of Concentrated Photovoltaic (CPV) Systems: Long-Term Performance Analysis and Comparison to Conventional PV Systems

    KAUST Repository

    Burhan, Muhammad

    2016-02-29

    The dynamic nature of meteorological data and the commercial availability of diverse photovoltaic systems, ranging from single-junction silicon-based PV panels to concentrated photovoltaic (CPV) systems utilizing multi-junction solar cells and a two-axis solar tracker, demand a simple but accurate methodology for energy planners and PV system designers to understand the economic feasibility of photovoltaic or renewable energy systems. In this paper, an electrical rating methodology is proposed that provides a common playing field for planners, consumers and PV manufacturers to evaluate the long-term performance of photovoltaic systems, as long-term electricity rating is deemed to be a quick and accurate method to evaluate economic viability and determine plant sizes and photovoltaic system power production. A long-term performance analysis based on monthly and electrical ratings (in kWh/m2/year) of two developed CPV prototypes, the Cassegrain mini dish and Fresnel lens CPVs with triple-junction solar cells operating under the meteorological conditions of Singapore, is presented in this paper. Performances are compared to other conventional photovoltaic systems.

  10. Antitrust implications of utility participation in the market for remote photovoltaic systems

    International Nuclear Information System (INIS)

    Starrs, T.J.

    1994-01-01

    Remote photovoltaic systems are an important niche market in the development of a viable photovoltaics industry. Electric utilities in the US have started offering remote photovoltaic service. Utilities have the potential to use their monopoly power in regulated markets to unfair competitive advantage in competitive markets. Therefore, utility participation in remote photovoltaic markets raises potentially significant issues of antitrust law and policy. This paper describes some of the legal and factual criteria that US courts and regulatory agencies are likely to use in assessing the antitrust implications of utility participation in the market for remote photovoltaic systems

  11. Photovoltaics for professionals solar electric systems marketing, design and installation

    CERN Document Server

    Falk, Antony; Remmers, Karl-Heinz

    2007-01-01

    For the building industry, the installation of photovoltaic systems has become a new field of activity. Interest in solar energy is growing and future business prospects are excellent. Photovoltaics for Professionals describes the practicalities of marketing, designing and installing photovoltaic systems, both grid-tied and stand-alone. It has been written for electricians, technicians, builders, architects and building engineers who want to get involved in this expanding industry. It answers all the beginner's questions as well as serving as a textbook and work of reference

  12. Distributed photovoltaic generation in Brazil: An economic viability analysis of small-scale photovoltaic systems in the residential and commercial sectors

    International Nuclear Information System (INIS)

    Holdermann, Claudius; Kissel, Johannes; Beigel, Jürgen

    2014-01-01

    This paper examines the economic viability of small-scale, grid-connected photovoltaics in the Brazilian residential and commercial sectors after the introduction of the net metering regulation in April 2012. This study uses the discounted cash flow method to calculate the specific investment costs that are necessary for photovoltaic systems to be economically viable for each of the 63 distribution networks in Brazil. We compare these values to the system costs that are estimated in the comprehensive study on photovoltaics that was developed by the Brazilian Association of Electric and Electronic Industries (ABINEE). In our calculation, we utilize the current electricity tariffs, including fees and taxes, which we obtained through telephone interviews and publicly available information. We obtained a second important parameter by simulating PV-systems with the program PV ⁎ Sol at the distribution company headquarters' locations. In our base case scenario that reflects the current situation, in none of the distribution networks photovoltaics is economically viable in either the commercial or residential sectors. We improved the environment for grid-connected photovoltaics in our scenarios by assuming both lower PV-system costs and a lower discount rate to determine the effect on photovoltaics viability. - Highlights: • We calculate the economic viability of photovoltaics in the residential and commercial sectors in Brazil. • The PV ⁎ Sol simulations are carried out at the headquarter locations for the 63 distribution companies. • Currently in none of the distribution networks, photovoltaics is economically viable in either the commercial or residential sectors. • We analyze how the variation of the specific investment costs and of the discount rate affects the economic viability

  13. Development of solar energy for efficient PV application systems

    International Nuclear Information System (INIS)

    Said, Aziz

    2006-01-01

    It is essential to increase research, development, awareness for the application of solar energy as an important source of life. The cost of PV systems has decreased due to the improvement in techniques of manufacturing and performance. In reality, photovoltaic is one technology that allows the production of electricity with only two components: technological, which is the PV module and environmental, which is the sun. The knowledge of the components market represents a critical parameters in establishing sustainable industrial applications on different activity sectors. This paper illustrates the advantages of using photovoltaic in rural area and their economic and environmental impact. In regions where petroleum or other fossil fuels are not available, and where these remote area are not connected to the electrical grid, there is a strong and increasing demand for the technologies related to photovoltaic application systems. Water extracting and pumping, telecommunication and lighting, irrigation systems, electrical driven cars and trucks represent some of these important applications. The paper also develops critical skills for the most useful PV application in Egypt and provide to the industry a development forecast for the new technology. Then an initiation contacts and cooperation on PV application between industries specially in North Africa Middle East in order to improve the reliability and to get cheaper systems.(Author)

  14. Performance testing and economic analysis of a photovoltaic flywheel energy storage and conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R. D.; Millner, A. R.; Jarvinen, P. O.

    1980-01-01

    A subscale prototype of a flywheel energy storage and conversion system for use with photovoltaic power systems of residential and intermediate load-center size has been designed, built and tested by MIT Lincoln Laboratory. System design, including details of such key components as magnetic bearings, motor generator, and power conditioning electronics, is described. Performance results of prototype testing are given and indicate that this system is the equal of or superior to battery-inverter systems for the same application. Results of cost and user-worth analysis show that residential systems are economically feasible in stand-alone and in some utility-interactive applications.

  15. Practical aspects of photovoltaic technology, applications and cost (revised)

    Science.gov (United States)

    Rosenblum, L.

    1985-01-01

    The purpose of this text is to provide the reader with the background, understanding, and computational tools needed to master the practical aspects of photovoltaic (PV) technology, application, and cost. The focus is on stand-alone, silicon solar cell, flat-plate systems in the range of 1 to 25 kWh/day output. Technology topics covered include operation and performance of each of the major system components (e.g., modules, array, battery, regulators, controls, and instrumentation), safety, installation, operation and maintenance, and electrical loads. Application experience and trends are presented. Indices of electrical service performance - reliability, availability, and voltage control - are discussed, and the known service performance of central station electric grid, diesel-generator, and PV stand-alone systems are compared. PV system sizing methods are reviewed and compared, and a procedure for rapid sizing is described and illustrated by the use of several sample cases. The rapid sizing procedure yields an array and battery size that corresponds to a minimum cost system for a given load requirement, insulation condition, and desired level of service performance. PV system capital cost and levelized energy cost are derived as functions of service performance and insulation. Estimates of future trends in PV system costs are made.

  16. Photovoltaic energy systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    The ongoing research, development, and demonstration efforts of the Photovoltaics Program are highlighted and each of the US Department of Energy's current photovoltaics projects initiated or renewed during fiscal year 1981 is described, including its title, directing organization, project engineer, contractor, principal investigator, contract period, funding, and objectives. The Photovoltaics Program is briefly summarized, including the history and organization and highlights of the research and development and of planning, assessment, and integration. Also summarized is the Federal Photovoltaic Utilization Program. An exhaustive bibliography is included. (LEW)

  17. Photovoltaic power without batteries for continuous cathodic protection

    Science.gov (United States)

    Muehl, W. W., Sr.

    1994-02-01

    The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.

  18. Automatic outdoor monitoring system for photovoltaic panels.

    Science.gov (United States)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  19. Automatic outdoor monitoring system for photovoltaic panels

    Energy Technology Data Exchange (ETDEWEB)

    Stefancich, Marco [Consiglio Nazionale delle Ricerce, Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR-IMEM), Parco Area delle Scienze 37/A, 43124 Parma, Italy; Simpson, Lin [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA; Chiesa, Matteo [Masdar Institute of Science and Technology, P.O. Box 54224, Masdar City, Abu Dhabi, United Arab Emirates

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  20. Distributed photovoltaic systems - Addressing the utility interface issues

    Science.gov (United States)

    Firstman, S. I.; Vachtsevanos, G. J.

    This paper reviews work conducted in the United States on the impact of dispersed photovoltaic sources upon utility operations. The photovoltaic (PV) arrays are roof-mounted on residential houses and connected, via appropriate power conditioning equipment, to the utility grid. The presence of such small (4-6 Kw) dispersed generators on the distribution network raises questions of a technical, economic and institutional nature. After a brief identification of utility interface issues, the paper addresses such technical concerns as protection of equipment and personnel safety, power quality and utility operational stability. A combination of experimental and analytical approaches has been adopted to arrive at solutions to these problems. Problem areas, under various PV system penetration scenarios, are identified and conceptual designs of protection and control equipment and operating policies are developed so that system reliability is maintained while minimizing capital costs. It is hoped that the resolution of balance-of-system and grid interface questions will ascertain the economic viability of photovoltaic systems and assist in their widespread utilization in the future.

  1. Development and design of photovoltaic power prediction system

    Science.gov (United States)

    Wang, Zhijia; Zhou, Hai; Cheng, Xu

    2018-02-01

    In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.

  2. Central station market development strategies for photovoltaics

    Science.gov (United States)

    1980-01-01

    Federal market development strategies designed to accelerate the market penetration of central station applications of photovoltaic energy system are analyzed. Since no specific goals were set for the commercialization of central station applications, strategic principles are explored which, when coupled with specific objectives for central stations, can produce a market development implementation plan. The study includes (1) background information on the National Photovoltaic Program, photovoltaic technology, and central stations; (2) a brief market assessment; (3) a discussion of the viewpoints of the electric utility industry with respect to solar energy; (4) a discussion of commercialization issues; and (5) strategy principles. It is recommended that a set of specific goals and objectives be defined for the photovoltaic central station program, and that these goals and objectives evolve into an implementation plan that identifies the appropriate federal role.

  3. A high performance DC-DC converter with intelligent control for photovoltaic applications

    OpenAIRE

    M. Niroomand; M. Sherkat; M. Soheili

    2013-01-01

    In this paper, a SEPIC (Single-Ended Primary Inductance Converter) with high efficiency has been proposed for photovoltaic applications. In the proposed converter, an auxiliary circuit without any additional switches has been used. The switch works under ZCS and ZVS conditions. No auxiliary switch was added to the circuit, thus any additional drive circuit is not needed. The proposed control system based on fuzzy logic method, has shown the smart accurate and faster tracking of the maximum po...

  4. Systematic procedures for sizing photovoltaic pumping system, using water tank storage

    International Nuclear Information System (INIS)

    Hamidat, A.; Benyoucef, B.

    2009-01-01

    In this work, the performances of the photovoltaic pumping destined to supply drinking water in remote and scattered small villages have been studied. The methodology adopted proposes various procedures based on the water consumption profiles, total head, tank capacity and photovoltaic array peak power. A method of the load losses probability (LLP) has been used to optimize sizing of the photovoltaic pumping systems with a similarity between the storage energy in batteries and water in tanks. The results were carried out using measured meteorological data for four localities in Algeria: Algiers and Oran in the north, Bechar and Tamanrasset in the south. The results show that the performance of the photovoltaic pumping system depends deeply on the pumping total head and the peak power of the photovoltaic array. Also, for the southern localities, the LLP method shows that the size of the photovoltaic array varies versus LLP on a small scale. On the other hand, for the northern localities, the sizing of the photovoltaic array is situated on a large scale power. Because of the current high crud-oil price, the photovoltaic pumping still to be the best adopted energy resource to supply drinking water in remote and scattered villages

  5. Redrawing the solar map of South Africa for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Munzhedzi, R.; Sebitosi, A.B. [Electrical Engineering, University of Cape Town, Private Bag, Rm 522.2 Menzies Building, Rondebosch 7701, Cape Town (South Africa)

    2009-01-15

    The South African solar map has been redrawn to make it applicable to photovoltaic installations. This has been done with the aim of reducing the cost of solar PV installations in South Africa through accurate energy resource assessment and competent system design. Climate data software as well as solar design software was used to aid this process. The new map provides an alternative to the map in current use, which only considers radiation, whereas many more factors affect the output of a panel, such as wind, cloud cover and humidity. All these are taken into account when drawing the new map. (author)

  6. Low-Cost, High Efficiency, Silicon Based Photovoltaic Devices

    Science.gov (United States)

    2015-08-27

    for photovoltaic applications. Figure 14: (a) Absorption and scattering efficiencies versus sizes of Au nanoparticle at 550 nm, (b) scattering...efficiency as a function of wavelength for different Au nanoparticles sizes . 32 Review of plasmonics light trapping for photovoltaic application...ensure that the irradiation variation was within 3%. The external quantum efficiency (EQE) system used a 300W Xenon light source with a spot size of 1mm

  7. Performance Analysis of a Photovoltaic-Thermal Integrated System

    International Nuclear Information System (INIS)

    Radziemska, E.

    2009-01-01

    The present commercial photovoltaic solar cells (PV) converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is highly desirable to obtain efficiency increase. The total efficiency of 60-80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV). In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings the destroyed exergy has been called energy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiencies in a system. This information, which cannot be provided by other means (e.g., an energy analysis), is very useful for the improvement and cost-effectiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solar watt module.

  8. Performance Analysis of a Photovoltaic-Thermal Integrated System

    Directory of Open Access Journals (Sweden)

    Ewa Radziemska

    2009-01-01

    Full Text Available The present commercial photovoltaic solar cells (PV converts solar energy into electricity with a relatively low efficiency, less than 20%. More than 80% of the absorbed solar energy is dumped to the surroundings again after photovoltaic conversion. Hybrid PV/T systems consist of PV modules coupled with the heat extraction devices. The PV/T collectors generate electric power and heat simultaneously. Stabilizing temperature of photovoltaic modules at low level is higly desirable to obtain efficiency increase. The total efficiency of 60–80% can be achieved with the whole PV/T system provided that the T system is operated near ambient temperature. The value of the low-T heat energy is typically much smaller than the value of the PV electricity. The PV/T systems can exist in many designs, but the most common models are with the use of water or air as a working fuid. Efficiency is the most valuable parameter for the economic analysis. It has substantial meaning in the case of installations with great nominal power, as air-cooled Building Integrated Photovoltaic Systems (BIPV. In this paper the performance analysis of a hybrid PV/T system is presented: an energetic analysis as well as an exergetic analysis. Exergy is always destroyed when a process involves a temperature change. This destruction is proportional to the entropy increase of the system together with its surroundings—the destroyed exergy has been called anergy. Exergy analysis identifies the location, the magnitude, and the sources of thermodynamic inefficiences in a system. This information, which cannot be provided by other means (e.g., an energy analysis, is very useful for the improvement and cost-effictiveness of the system. Calculations were carried out for the tested water-cooled ASE-100-DGL-SM Solarwatt module.

  9. Photovoltaic electricity applications: history and perspectives

    International Nuclear Information System (INIS)

    Juquois, F.

    2010-01-01

    The photoelectric effect has been characterized in 1839 by Henry Becquerel. More than one hundred years later, in 1958, the first photovoltaic cell is developed for the space exploration. After the first oil shock in 1973, the occidental governments have started considering photovoltaic as one of the potential alternative to fossil in the future. 36 years later, photovoltaic is blossoming on the roof tops of dwellings and commercial buildings, as well as on the poor agricultural value lands. (author)

  10. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    Science.gov (United States)

    Zhang, Xianghua; Korolkov, Ilia; Fan, Bo; Cathelinaud, Michel; Ma, Hongli; Adam, Jean-Luc; Merdrignac, Odile; Calvez, Laurent; Lhermite, Hervé; Brizoual, Laurent Le; Pasquinelli, Marcel; Simon, Jean-Jacques

    2018-03-01

    In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2-Sb2Se3-CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  11. High-efficiency photovoltaic technology including thermoelectric generation

    Science.gov (United States)

    Fisac, Miguel; Villasevil, Francesc X.; López, Antonio M.

    2014-04-01

    Nowadays, photovoltaic solar energy is a clean and reliable source for producing electric power. Most photovoltaic systems have been designed and built up for use in applications with low power requirements. The efficiency of solar cells is quite low, obtaining best results in monocrystalline silicon structures, with an efficiency of about 18%. When temperature rises, photovoltaic cell efficiency decreases, given that the short-circuit current is slightly increased, and the open-circuit voltage, fill factor and power output are reduced. To ensure that this does not affect performance, this paper describes how to interconnect photovoltaic and thermoelectric technology into a single structure. The temperature gradient in the solar panel is used to supply thermoelectric cells, which generate electricity, achieving a positive contribution to the total balance of the complete system.

  12. Porous Nanomaterials for Ultrabroadband Omnidirectional Anti-Reflection Surfaces with Applications in High Concentration Photovoltaics

    KAUST Repository

    Yao, Yuan

    2016-12-06

    Materials for nanoporous coatings that exploit optimized chemistries and self-assembly processes offer capabilities to reach ≈98% transmission efficiency and negligible scattering losses over the broad wavelength range of the solar spectrum from 350 nm to 1.5 μm, on both flat and curved glass substrates. These nanomaterial anti-reflection coatings also offer wide acceptance angles, up to ±40°, for both s- and p-polarization states of incident light. Carefully controlled bilayer films have allowed for the fabrication of dual-sided, gradient index profiles on plano-convex lens elements. In concentration photovoltaics platforms, the resultant enhancements in the photovoltaics efficiencies are ≈8%, as defined by experimental measurements on systems that use microscale triple-junction solar cells. These materials and their applications in technologies that require control over interface reflections have the potential for broad utility in imaging systems, photolithography, light-emitting diodes, and display technologies.

  13. Design of Residential Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Mathe, Laszlo

    2017-01-01

    Renewable energy has become very important both worldwide and on the European market, mainly due to the decrease in the photovoltaic (PV) system cost (up to 75%) during the last decade. PV installations worldwide have reached 227 GW at the end of 2015 with a predicted extra 50 GW of new...

  14. Photovoltaic Subcontract Program

    Energy Technology Data Exchange (ETDEWEB)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  15. Grid-connected wind and photovoltaic system

    Science.gov (United States)

    Devabakthuni, Sindhuja

    The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.

  16. Development of a software application to evaluate the performance and energy losses of grid-connected photovoltaic systems

    International Nuclear Information System (INIS)

    Trillo-Montero, D.; Santiago, I.; Luna-Rodriguez, J.J.; Real-Calvo, R.

    2014-01-01

    Highlights: • Software application to perform an automated analysis of grid-connected PV systems. • It integrates data from all devices registering data on typical PV installations. • Flexible to analyze installations with different configurations and components. • An analysis of two grid-connected PV systems located in Andalusia, was performed. • Temperature losses in summer months varying between 15% and 25% of energy production. - Abstract: The aim of this paper was to design and develop a software application that enables users to perform an automated analysis of data from the monitoring of grid-connected photovoltaic (PV) systems. This application integrates data from all devices already in operation such as environmental sensors, inverters and meters, which record information on typical PV installations. This required the development of a Relational Database Management System (RDBMS), consisting of a series of linked databases, enabling all PV system information to be stored; and a software, called S·lar, which enables all information from the monitoring to be automatically migrated to the database as well as determining some standard magnitudes related to performances and losses of PV installation components at different time scales. A visualization tool, which is both graphical and numerical, makes access to all of the information be a simple task. Moreover, the application enables relationships between parameters and/or magnitudes to be easily established. Furthermore, it can perform a preliminary analysis of the influence of PV installations on the distribution grids where the produced electricity is injected. The operation of such a software application was implemented by performing the analysis of two grid-connected PV installations located in Andalusia, Spain, via data monitoring therein. The monitoring took place from January 2011 to May 2012

  17. Flexible Power Control of Photovoltaic Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Sangwongwanich, Ariya; Yang, Yongheng

    2018-01-01

    With a still increasing penetration level of grid-connected photovoltaic (PV) systems, more advanced and flexible control functionalities are demanded. To ensure a smooth and friendly integration between the PV systems and the grid, the power generated by the PV system needs to be flexible...

  18. The future of the photovoltaic market (demand side/supply side)

    International Nuclear Information System (INIS)

    Zahedi, A.

    1998-01-01

    At present the main PV application market sectors are communications, leisure, boating, solar home systems, and water pumping. It is predicted that in the future, the largest photovoltaic market segments will be solar home photovoltaic systems, grid-connected small-scale photovoltaic systems, grid-connected medium-to-large scale photovoltaic systems, the communications sector and in the electrification of remote and isolated areas. The main factors favoring photovoltaic technology in remote and isolated areas result from: the high costs of conventional energy sources in remote locations; the loss of a scale-economy effect, which means specific costs of small photovoltaic systems are not much higher than those of larger photovoltaic systems; price of fuel, fuel transportation and spare part supplies. The major factors inhibiting the photovoltaic technology include high initial costs, lack of skilled man power, lack of good quality data and social acceptance. A roof top mounted photovoltaic system is one type of PV system which has attracted lots of interest among the people of north America and Europe. The generation of electricity by this system is attractive because: generation is on-site. This results in reduction of transmission costs and transmission losses; the cost of roofing tiles can be eliminated by using mounted PV systems instead; there is no need for additional land for power generation; visual impacts are limited. The objective of this paper is to review the development of the photovoltaic market in the recent 10 year period and discuss the future markets for this technology with respect to supply and demand

  19. Performance investigation of low – Concentration photovoltaic systems under hot and arid conditions: Experimental and numerical results

    International Nuclear Information System (INIS)

    Yousef, Mohamed S.; Abdel Rahman, Ali K.; Ookawara, S.

    2016-01-01

    Highlights: • Influence of cooling on the performance of photovoltaic systems. • A comprehensive model (optical, thermal, and electrical) was developed. • Experimental measurements were conducted under hot climate conditions. • For conventional photovoltaic with cooling, about 11% more power was obtained. • For concentrated photovoltaic with cooling, about 15% more power was obtained. - Abstract: In this study, a comparative performance analysis was performed between a conventional photovoltaic system and a low-concentration photovoltaic system. Two typical photovoltaic modules and two compound parabolic concentrating photovoltaic systems were examined. A Cooling system was employed to lower the temperature of the solar cells in each of the two configurations. Experimental and numerical investigations of the performance of the two arrangements with and without cooling were presented. Experiments were conducted outdoors at the Egypt-Japan University of Science and Technology, subjected to the hot climate conditions of New Borg El-Arab City, Alexandria, Egypt (Longitude/Latitude: E 029°42′/N 30°55′). A comprehensive system model was established, which comprises an optical model, coupled with thermal and electrical models. The coupled model was developed analytically and solved numerically, using MATLAB software, to assess the overall performance of the two configurations, considering the concentration ratio of the concentrated photovoltaic system to be 2.4X. The results indicated that cooling the solar panels considerably improved the electrical power yield of the photovoltaic systems. By employing cooling, the temperatures of the conventional photovoltaic system and the concentrated photovoltaic system were effectively lowered by approximately 25% and 30%, respectively, resulting in a significant enhancement in the electrical power output of the photovoltaic system by 11% and that of the concentrated photovoltaic system by 15%. Furthermore, the

  20. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Science.gov (United States)

    2010-10-05

    ... Determination Concerning Solar Photovoltaic Panel Systems AGENCY: U.S. Customs and Border Protection, Department... Procurement; Title III, Trade Agreements Act of 1979; Country of Origin of solar photovoltaic panel system... solar photovoltaic (``PV'') panel systems contain both U.S. and foreign-origin raw materials and...

  1. 浅谈光伏供电系统在高能耗工业园区的应用%Application of photovoltaic power supply system in high energy consumption industrial park

    Institute of Scientific and Technical Information of China (English)

    刘勇; 杨喜海; 张立永; 王醒东

    2017-01-01

    光伏供电系统随着企业领导者环保意识的提高而被越来越重视.简单介绍了国家和地方相继出台的太阳能光伏发电鼓励政策,介绍了光伏发电系统的设计和计算方案,侧重描述了新型储能电池——全钒液流电池在光伏发电储能系统中的应用,并客观分析了光伏发电项目在全寿命周期的经济效益情况和环境效益情况.%With the increase of environmental awareness of enterprise leaders,photovoltaic power supply system is more and more important.The national and local encourage policy about solar energy photovoltaic power generation was introduced,and the design and calculation scheme of photovoltaic power generation system and the application of new energy storage battery-all vanadium redox flow battery in photovoltaic power generation energy storage system were emphatically described.The economic benefits and environmental benefits in the full life cycle of the photovoltaic power generation projects was objectively analyzed.

  2. Isolated high-efficiency DC/DC converter for photovoltaic applications

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Wijnands, C.G.E.; Duarte, J.L.

    2012-01-01

    While an increasing number of photovoltaic (PV) systems is installed, those systems typically use central inverters. In practical cases, output-power differences between PV modules will cause these central-inverter-based systems not to achieve Maximum Power Point (MPP) for each PV module.

  3. Performance of Integrated Photovoltaic Roofs

    NARCIS (Netherlands)

    Hendriks, N.A.; Pol, van de N.; Wisse, J.A.; Hendriks, N.A.; Schellen, H.L.; Spoel, van der W.H.

    2000-01-01

    The application of Photovoltaic (PV) systems has been supported strongly by the Dutch Government during the recent years. Several big projects have been heavily subsidised. At first instance this seems surprising, because the costs for PV -systems are very high, specifically in The Netherlands, with

  4. An inverter/controller subsystem optimized for photovoltaic applications

    Science.gov (United States)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  5. Monocrystalline silicon solar cells applied in photovoltaic system

    OpenAIRE

    L.A. Dobrzański; A. Drygała; M. Giedroć; M. Macek

    2012-01-01

    Purpose: The aim of the paper is to fabricate the monocrystalline silicon solar cells using the conventional technology by means of screen printing process and to make of them photovoltaic system.Design/methodology/approach: The investigation of current – voltage characteristic to determinate basic electrical properties of monocrystalline silicon solar cells were investigated under Standard Test Condition. Photovoltaic module was produced from solar cells with the largest short-circuit curren...

  6. Model Predictive Control techniques with application to photovoltaic, DC Microgrid, and a multi-sourced hybrid energy system

    Science.gov (United States)

    Shadmand, Mohammad Bagher

    Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in

  7. Investigation of a demonstrating photo-voltaic system

    International Nuclear Information System (INIS)

    Platikanov, S.; Markova, D.; Tsankov, P.; Grachki, I.

    2002-01-01

    A photovoltaic system for converting solar energy into electric energy has been built in the Technical University of Gabrovo. The measurements results of the solar radiation daily variation, temperature, illuminations and other technical characteristics of PV system are shown graphically. (authors)

  8. Effects of design on cost of flat-plate solar photovoltaic arrays for terrestrial central station power applications

    Science.gov (United States)

    Tsou, P.; Stolte, W.

    1978-01-01

    The paper examines the impact of module and array designs on the balance-of-plant costs for flat-plate terrestrial central station power applications. Consideration is given to the following types of arrays: horizontal, tandem, augmented, tilt adjusted, and E-W tracking. The life-cycle cost of a 20-year plant life serves as the costing criteria for making design and cost tradeoffs. A tailored code of accounts is developed for determining consistent photovoltaic power plant costs and providing credible photovoltaic system cost baselines for flat-plate module and array designs by costing several varying array design approaches.

  9. Photovoltaic Energy Harvester with Power Management System

    Directory of Open Access Journals (Sweden)

    M. Ferri

    2010-01-01

    Full Text Available We present a photovoltaic energy harvester, realized in 0.35-μm CMOS technology. The proposed system collects light energy from the environment, by means of 2-mm2 on-chip integrated microsolar cells, and accumulates it in an external capacitor. While the capacitor is charging, the load is disconnected. When the energy in the external capacitor is enough to operate the load for a predefined time slot, the load is connected to the capacitor by a power management circuit. The choice of the value of the capacitance determines the operating time slot for the load. The proposed solution is suitable for discrete-time-regime applications, such as sensor network nodes, or, in general, systems that require power supply periodically for short time slots. The power management circuit includes a charge pump, a comparator, a level shifter, and a linear voltage regulator. The whole system has been extensively simulated, integrated, and experimentally characterized.

  10. Photovoltaic system costs using local labor and materials in developing countries

    Science.gov (United States)

    Jacobson, E.; Fletcher, G.; Hein, G.

    1980-05-01

    The use of photovoltaic (PV) technology in countries that do not presently have high technology industrial capacity was investigated. The relative cost of integrating indigenous labor (and manufacturing where available) into the balance of the system industry of seven countries (Egypt, Haiti, the Ivory Coast, Kenya, Mexico, Nepal, and the Phillipines) was determined. The results were then generalized to other countries, at most levels of development. The results of the study imply several conclusions: (1) the cost of installing and maintaining comparable photovoltaic systems in developing countries is less than in the United States; (2) skills and some materials are available in the seven subject countries that may be applied to constructing and maintaining PV systems; (3) there is an interest in foreign countries in photovoltaics; and (4) conversations with foreign nationals suggest that photovoltaics must be introduced in foreign markets as an appropriate technology with high technology components rather than as a high technology system.

  11. Robust Controller to Extract the Maximum Power of a Photovoltaic System

    Directory of Open Access Journals (Sweden)

    OULD CHERCHALI Noureddine

    2014-05-01

    Full Text Available This paper proposes a technique of intelligent control to track the maximum power point (MPPT of a photovoltaic system . The PV system is non-linear and it is exposed to external perturbations like temperature and solar irradiation. Fuzzy logic control is known for its stability and robustness. FLC is adopted in this work for the improvement and optimization of control performance of a photovoltaic system. Another technique called perturb and observe (P & O is studied and compared with the FLC technique. The PV system is constituted of a photovoltaic panel (PV, a DC-DC converter (Boost and a battery like a load. The simulation results are developed in MATLAB / Simulink software. The results show that the controller based on fuzzy logic is better and faster than the conventional controller perturb and observe (P & O and gives a good maximum power of a photovoltaic generator under different changes of weather conditions.

  12. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system 660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  13. In- and Ga-based inorganic double perovskites with direct bandgaps for photovoltaic applications.

    Science.gov (United States)

    Dai, Jun; Ma, Liang; Ju, Minggang; Huang, Jinsong; Zeng, Xiao Cheng

    2017-08-16

    Double perovskites in the form of A 2 B'B''X 6 (A = Cs, B' = Ag, B'' = Bi) have been reported as potential alternatives to lead-containing organometal trihalide perovskites. However, all double perovskites synthesized to date exhibit indirect bandgaps >1.95 eV, which are undesirable for photovoltaic and optoelectronic applications. Herein, we report a comprehensive computer-aided screening of In- and Ga-based double perovskites for potential photovoltaic applications. To this end, several preconditions are implemented for the screening of optimal candidates, which include structural stability, electronic bandgaps, and optical absorption. Importantly, four In- and Ga-based double perovskites are identified to possess direct bandgaps within the desirable range of 0.9-1.6 eV for photovoltaic applications. Dominant optical absorption of the four double perovskites is found to be in the UV range. The structural and thermal stability of the four double perovskites are examined using both the empirical Goldschmidt ratio and convex-hull calculations. Only Cs 2 AgInBr 6 is predicted to be thermodynamically stable.

  14. PV Horizon : Proceedings of the Workshop on Photovoltaic Hybrid Systems. CD ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The aim of this workshop was to share information on current photovoltaic (PV) and hybrid system technology, and to present information on international experience and trends in research and development. It brought together 70 experts from Canada, the United States, several European countries, Japan and Australia. Currently, PV hybrid systems are used for stand-alone projects in telecommunication applications, remote housing, and leisure lodges. The applications for these sectors are well known and the technology is cost effective. Other applications are for micro-grid applications such as small remote islands, village power and tourist resorts. The costs for these types of applications can also be effective as long as the power demand is relatively low. A keynote presentation which highlighted the current application of PV hybrid systems, was followed by three sessions dealing with international experience with hybrid systems, the research and development opportunities for hybrid systems, and visual presentations on a range of subjects dealing with PV hybrid systems, their components, system integration, standards, guidelines, and control system issues. It was noted that the future for renewables looks bright, particularly for developing countries. Their use will also reduce the environmental footprint of remote power solutions. refs., tabs., figs.

  15. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    Directory of Open Access Journals (Sweden)

    Zhang Xianghua

    2018-01-01

    Full Text Available In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2–Sb2Se3–CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  16. Values and potentials of grid-connected solar photovoltaic applications in Malaysia

    International Nuclear Information System (INIS)

    Ahmad Hadri Haris; Iszuan Shah Syed Ismail

    2006-01-01

    Since early 1998, TNB Research Sdn Bhd has been conducting a pilot project to evaluate the performance and economics of grid-connected solar photovoltaic (PV) applications in Malaysia. The project is co-funded by Tenaga Nasional Berhad (TNB) and Malaysia Electricity Supply Industry Trust Account (MESITA). Currently, research project is being concluded with many valuable findings that would be able to provide the direction for the next solar PV development in Malaysia. In total, six pilot grid-connected solar PV systems were installed, where five are located within Klang Valley area and one in Port Dickson. The systems installation and commissioning were staggered between August 1998 to November 2001. A variety of building type was also selected for the system installation. In addition, various PV systems technologies and configurations were applied with average PV power capacity of 3 kW. These variances provide a good opportunity to assess the actual performances and economics of the solar PV applications under the Malaysian environment. This paper would discuss some of the findings, but with a focus on the values and potentials of the grid-connected solar PV applications in Malaysia

  17. Procedure for Installing a photovoltaic system on roofs in Cuban Ron Corporation S.A

    International Nuclear Information System (INIS)

    Guzmán Villavicencio, Mayra; Águila Bernal, Inoel; Torres Águila, José M.; Soto Castellón, Carlos R.

    2017-01-01

    In this work, a methodological procedure developed from experiences gained during the project "Photovoltaic installation on the roofs of the Central Rum Factory for operation in self consumption and public MT grid connection” is presented, which was held along with UGAO-AINAIR signature. It is developed taking into account the need to further consolidate the dominance of this alternative energy technology, which is the first experience in such facilities for both, the rum industry and process industries in Cuba. There are no technical rules that regulate requirements to be considered during the conceptual stage of projects for the introduction of photovoltaic systems connected to the grid. The methodological procedure presented provides guidance for its application in other entities, resulting necessary its elaboration to ensure technical stability and reliability of systems during its life. (author)

  18. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  19. Post Feed-in Scheme Photovoltaic System Feasibility Evaluation in Italy: Sicilian Case Studies

    Directory of Open Access Journals (Sweden)

    Riccardo Squatrito

    2014-11-01

    Full Text Available Thanks to national energy policies, over recent years the Italian photovoltaic (PV sector has undergone an extraordinary growth, also affecting the primary sector. In this context, Mediterranean greenhouses are well-adapted to photovoltaic systems because they represent one of the most energy-intensive sectors in agriculture. The Italian feed-in scheme ended at the beginning of 2013, making it necessary to investigate the feasibility of photovoltaic systems devoid of any electricity production-related incentives. In this paper, production cost and profitability analyses of photovoltaic electricity have been conducted, considering Mediterranean solar greenhouses in which, thanks to net metering, all the electricity produced by photovoltaic panels is self-consumed. Our results showed that grid parity is already reached for Sicilian PV systems with a capacity greater than 50 kW. Moreover, net present value, internal rate of return and discounted payback time all demonstrate the high economic convenience of all the photovoltaic investments analyzed, due to the huge savings on energy expenditures.

  20. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production...... of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking...... process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking...

  1. Tracking strategy for photovoltaic solar systems in high latitudes

    International Nuclear Information System (INIS)

    Quesada, Guillermo; Guillon, Laura; Rousse, Daniel R.; Mehrtash, Mostafa; Dutil, Yvan; Paradis, Pierre-Luc

    2015-01-01

    Highlights: • In cloudy conditions tracking the sun is ineffective. • A methodology to estimate a theoretical threshold for solar tracking was developed. • A tracking strategy to maximize electricity production was proposed. - Abstract: Several studies show that from about 20% to 50% more solar energy can be recovered by using photovoltaic systems that track the sun rather than systems set at a fixed angle. For overcast or cloudy days, recent studies propose the use of a set position in which each photovoltaic panel faces toward the zenith (horizontal position). Compared to a panel that follows the sun’s path, this approach claims that a horizontal panel increases the amount of solar radiation captured and subsequently the quantity of electricity produced. The present work assesses a solar tracking photovoltaic panel hourly and seasonally in high latitudes. A theoretical method based on an isotropic sky model was formulated, implemented, and used in a case study analysis of a grid-connected photovoltaic system in Montreal, Canada. The results obtained, based on the definition of a critical hourly global solar radiation, were validated numerically and experimentally. The study confirmed that a zenith-set sun tracking strategy for overcast or mostly cloudy days in summer is not advantageous

  2. Advanced silicon materials for photovoltaic applications

    CERN Document Server

    Pizzini, Sergio

    2012-01-01

    Today, the silicon feedstock for photovoltaic cells comes from processes which were originally developed for the microelectronic industry. It covers almost 90% of the photovoltaic market, with mass production volume at least one order of magnitude larger than those devoted to microelectronics. However, it is hard to imagine that this kind of feedstock (extremely pure but heavily penalized by its high energy cost) could remain the only source of silicon for a photovoltaic market which is in continuous expansion, and which has a cumulative growth rate in excess of 30% in the last few years. Ev

  3. 太阳能光伏提水系统在海南农业中的应用%Application of Solar Photovoltaic Water Pumping System in Agriculture in Hainan

    Institute of Scientific and Technical Information of China (English)

    杨志斌; 林青青; 黎勇; 陈建梅; 周学东; 于向春

    2013-01-01

    The present situation of Hainan agricultural irrigation is analyzed. Basic principle, necessity and feasibility of application about solar photovoltaic water pumping system are introduced. It is very important to develop solar photovoltaic agriculture of Hainan.%分析海南农业灌溉的现状,阐述太阳能光伏提水系统基本原理及其在海南农业应用的必要性和可行性,对海南发展光伏农业具有重要的指导意义.

  4. Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation

    International Nuclear Information System (INIS)

    Ferroni, Ferruccio; Hopkirk, Robert J.

    2016-01-01

    Many people believe renewable energy sources to be capable of substituting fossil or nuclear energy. However there exist very few scientifically sound studies, which apply due diligence to substantiating this impression. In the present paper, the case of photovoltaic power sources in regions of moderate insolation is analysed critically by using the concept of Energy Return on Energy Invested (ERoEI, also called EROI). But the methodology for calculating the ERoEI differs greatly from author-to-author. The main differences between solar PV Systems are between the current ERoEI and what is called the extended ERoEI (ERoEI EXT ). The current methodology recommended by the International Energy Agency is not strictly applicable for comparing photovoltaic (PV) power generation with other systems. The main reasons are due to the fact that on one hand, solar electricity is very material-intensive, labour-intensive and capital-intensive and on the other hand the solar radiation exhibits a rather low power density. - Highlights: •Data are available from several years of photovoltaic energy experience in northern Europe. •These are used to show the way to calculate a full, extended ERoEI. •The viability and sustainability in these latitudes of photovoltaic energy is questioned. •Use of photovoltaic technology is shown to result in creation of an energy sink.

  5. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate...... feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT ≈ 1, the CPV/TEG system is more efficient...

  6. Photovoltaic array mounting apparatus, systems, and methods

    Science.gov (United States)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  7. Efficient scale for photovoltaic systems and Florida's solar rebate program

    International Nuclear Information System (INIS)

    Burkart, Christopher S.; Arguea, Nestor M.

    2012-01-01

    This paper presents a critical view of Florida's photovoltaic (PV) subsidy system and proposes an econometric model of PV system installation and generation costs. Using information on currently installed systems, average installation cost relations for residential and commercial systems are estimated and cost-efficient scales of installation panel wattage are identified. Productive efficiency in annual generating capacity is also examined under flexible panel efficiency assumptions. We identify potential gains in efficiency and suggest changes in subsidy system constraints, providing important guidance for the implementation of future incentive programs. Specifically, we find that the subsidy system discouraged residential applicants from installing at the cost-efficient scale but over-incentivized commercial applicants, resulting in inefficiently sized installations. - Highlights: ► Describe a PV solar incentive system in the U.S. state of Florida. ► Combine geocoded installation site data with a detailed irradiance map. ► Estimate installation and production costs across a large sample. ► Identify inefficiencies in the incentive system. ► Suggest changes to policy that would improve economic efficiency.

  8. Optimum Design Of Grid Connected Photovoltaic System Using Concentrators

    Directory of Open Access Journals (Sweden)

    Eng. Mohammed Fawzy

    2015-08-01

    Full Text Available Abstract Due to the increasing demand of electrical energy in Egypt and also in many neighboring countries around the world the main problem facing electrical energy production using classical methods such steam power stations is the depletion of fossil fuels. The gap between the electrical energy demand and the continuous increase on the fossil fuel cost make the problem of electricity generation more sophisticated. With the continuous decrease of the photovoltaic PV technologies cost it doesnt make sense neglecting the importance of electricity production using solar photovoltaic PV especially that the annual average daily energy received is about 6 kamp12310whmamp123112day in Cairo Egypt 30N.In this work a detailed simulation model including photovoltaic PV module characteristics and climatic conditions of Cairo Egypt is developed. The model compares fixed PV systems electrical energy output with photovoltaic PV system using concentrators and double axis tracker systems. The comparison includes the energy generated area required as well as the cost per kwh generated. The optimality criterion is the cost per kwh generated. The system that gives the minimum cost per kwh is the optimum system. To verify the developed model the simulation results of fixed PV modules and CPV using tracking system obtained by the model are compared with practical measurements of 40KW peak station erected in Cairo Egypt 30N.Very good agreement between measured values and results obtained from detailed simulation model. For fixed PV system the detailed economic analysis showed that it gives minimum cost perkwh generated Comparisons among these systems are presented. For Cairo results showed that a cost of about 6 to 9 US centskwh is attainable.

  9. Market definition study of photovoltaic power for remote villages in developing countries

    Science.gov (United States)

    Ragsdale, C.; Quashie, P.

    1980-01-01

    The potential market of photovoltaic systems in remote village applications in developing countries is assessed. It is indicated that photovoltaic technology is cost-competitive with diesel generators in many remote village applications. The major barriers to development of this market are the limited financial resources on the part of developing countries, and lack of awareness of photovoltaics as a viable option in rural electrification. A comprehensive information, education and demonstration program should be established as soon as possible to convince the potential customer countries and the various financial institutions of the viability of photovoltaics as an electricity option for developing countries.

  10. Design of a holographic micro-scale spectrum-splitting photovoltaic system

    Science.gov (United States)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Russo, Juan M.; Kostuk, Raymond K.

    2015-09-01

    Micro-scale PV technology combines the high conversion efficiency of concentrated photovoltaics (CPV) with the low costs and the simple form of flat panel PV. Some of the benefits of micro-scale PV include: reduced semiconductor material usage; improved heat rejection capacity; and more versatile PV cell interconnect configurations. Spectrumsplitting is also a beneficial technique to increase the efficiency and reduce the cost of photovoltaic systems. It spatially separates the incident solar spectrum into spectral components and directs them to PV cells with matching bandgaps. This approach avoids the current and lattice matching problems that exist in tandem multi-junction systems. In this paper, we applied the ideas of spectrum-splitting in a micro-scale PV system, and demonstrated a holographic micro-scale spectrum-splitting photovoltaic system. This system consists of a volume transmission hologram in combination with a micro-lens array. An analysis methodology was developed to design the system and determine the performance of the resulting system. The spatial characteristics of the dispersed spectrum, the overall system conversion efficiency, and the improvement over best bandgap will be discussed.

  11. Solar Photovoltaic Electricity Applications in France. National Survey Report 2008

    International Nuclear Information System (INIS)

    Durand, Yvonnick; Jacquin, Philippe

    2009-01-01

    According to a report by the French Renewable Energy Syndicate (SER), France had an installed photovoltaic fleet of 180 MW in late 2008, a substantial increase from 2007 (75 MW). This growth is largely due to the government's market-supporting policy that implemented a tax and tariff policy which encourages individuals to invest in so-called 'building integrated' systems; the goal of this policy is to bring together innovation in the building industry and the development of renewable energy among the French energy mix. The key event for the future of renewable energy and the photovoltaic sector in France was the 'Grenelle of the Environment'. This government initiative, launched in late 2007, became the subject of public debate and afterwards led to a bill which set the conditions under which France wishes to grow solar power's share of its energy mix. Working committees that bring together representatives from government authorities and industrial and public renewable energy stakeholders have proposed benchmarks. A few proposals with particular significance for photovoltaic power have been adopted by the government: - objectives for PV cumulative installed capacity in France of 1 100 MW in 2012 and 5 400 MW in 2020; - confirmation until 2012 of the current feed-in tariffs and the creation of an additional one targeting installations on large buildings such as commercial and industrial sheds. This tariff shall be set approximately at 0,45 EUR per kWh; - a call for tenders for the construction by 2011 of at least one solar photovoltaic power plant in each French region, for a total installed capacity of 300 MW. The nationally initiated actions for growing the market are heavily relayed by public assistance to regional councils, general councils, communities of communes and communes themselves, in accordance with their own particular specifications. The incentive to purchase electricity produced by built-in installations has caused a

  12. Expected energy production evaluation for photovoltaic systems

    DEFF Research Database (Denmark)

    Ding, Yi; Østergaard, Jacob; Peng, Wang

    2011-01-01

    A photovoltaic (PV) system consists of many solar panels, which are connected in series, parallel or a combination of both. Energy production for the PV system with various configurations is different. In this paper, a methodology is developed to evaluate and analyze the expected energy production...

  13. DOE LeRC photovoltaic systems test facility

    Science.gov (United States)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  14. Control aspects of the Schuchuli Village stand-alone photovoltaic power system

    Science.gov (United States)

    Groumpos, P. P.; Culler, J. E.; Delombard, R.

    1984-11-01

    A photovoltaic power system in an Arizona Indian village was installed. The control subsystem of this photovoltaic power system was analyzed. The four major functions of the control subsystem are: (1) voltage regulation; (2) load management; (3) water pump control; and (4) system protection. The control subsystem functions flowcharts for the control subsystem operation, and a computer program that models the control subsystem are presented.

  15. Voltage Quality Improvement Using Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Denisa Galzina

    2015-06-01

    This paper briefly shows the methods of power quality improvement, and then the results of on-site power quality measurements in the grid before and after the connection of the solar photovoltaic system.

  16. Technology fundamentals: photovoltaic systems

    International Nuclear Information System (INIS)

    Quaschning, V.

    2006-01-01

    The generation of electric power from photovoltaic systems is described in detail. The mechanism of operation of solar cells is described in terms of photons, electrons, charge carriers and charge separation. The various cells, modules, technical terms and related technology are discussed. The chemical elements used in solar cells are mentioned and the manufacturing processes described. The technical advantages of the newer thin-film modules over the traditional silicon cells are given but at present manufacturing cost is limiting their production. Both stand-alone and grid-connected PV systems are described. The potential market for PV systems is discussed. It is suggested that PV could eventually meet the total global electric power demand. (author)

  17. Experimental Performance Investigation of Photovoltaic/Thermal (PV–T System

    Directory of Open Access Journals (Sweden)

    Bakir C.

    2013-04-01

    Full Text Available Photovoltaic solar cells convert light energy from the sun into electricity. Photovoltaic cells are produced by semi-conducting materials to convert the energy into electricity and during this process heat is absorbed by the solar radiation. This heat causes a loss of electricity generation efficiencies.In this study, an experimental setup was designed and established to test two separate photovoltaic panel systems with alone PV and with water cooling system PV/T to examine the heat effect on PV systems. The absorbed heat energy behind the photovoltaic cell's surface in insulated ambient was removed by means of a water cooling system and the tests for both systems were simultaneously performed along the July 2011. It is found that without active water cooling, the temperature of the PV module was higher during day time and solar cells could only achieve around 8% conversion efficiency. On the other hand, when the PV module was operated with active water cooling condition, the temperature dropped significantly, leading to an increase in the efficiency of solarcells as much as 13.6%. Gained from absorbed solar heat and maximum thermal conversion efficiencies of the system are determined as 49% and 51% for two different mass flow rates. It is observed that water flow rate is effective on the increasing the conversion efficiency as well as absorption and transitionrates of cover glass in PV/T (PV–Thermal collector, the insulation material and cell efficiency. As a conclusion, the conversion efficiency of the PV system with water cooling might be improved on average about 10%. Therefore, it is recommended that PV system should be designed with most efficient type cooling system to enhance the efficiency and to decrease the payback period.

  18. Intermediate Photovoltaic System Application Experiment operational performance: executive summary. Volume for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    For the momth of July 1981, performance data are given for a grid-connected 100 kW photovoltaic flat panel power system at a high school in Massachusetts. The total electrical energy produced solar energy incident on the solar cells, array and system efficiency, capacity factor and insolation are given for the month and the daily energy production and incident solar energy are graphed. (LEW)

  19. Thermal photovoltaic solar integrated system analysis using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ashhab, S. [Hashemite Univ., Zarqa (Jordan). Dept. of Mechanical Engineering

    2007-07-01

    The energy demand in Jordan is primarily met by petroleum products. As such, the development of renewable energy systems is quite attractive. In particular, solar energy is a promising renewable energy source in Jordan and has been used for food canning, paper production, air-conditioning and sterilization. Artificial neural networks (ANNs) have received significant attention due to their capabilities in forecasting, modelling of complex nonlinear systems and control. ANNs have been used for forecasting solar energy. This paper presented a study that examined a thermal photovoltaic solar integrated system that was built in Jordan. Historical input-output system data that was collected experimentally was used to train an ANN that predicted the collector, PV module, pump and total efficiencies. The model predicted the efficiencies well and can therefore be utilized to find the operating conditions of the system that will produce the maximum system efficiencies. The paper provided a description of the photovoltaic solar system including equations for PV module efficiency; pump efficiency; and total efficiency. The paper also presented data relevant to the system performance and neural networks. The results of a neural net model were also presented based on the thermal PV solar integrated system data that was collected. It was concluded that the neural net model of the thermal photovoltaic solar integrated system set the background for achieving the best system performance. 10 refs., 6 figs.

  20. Simulation of an active cooling system for photovoltaic modules

    International Nuclear Information System (INIS)

    Abdelhakim, Lotfi

    2016-01-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  1. Simulation of an active cooling system for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhakim, Lotfi [Széchenyi István University of Applied Sciences, Department of Mathematics, P.O.Box 701, H-9007 Győr (Hungary)

    2016-06-08

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  2. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  3. Photovoltaic programme - edition 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This publication issued by the Swiss Federal Office of Energy's Photovoltaics (PV) Programme presents an overview (in English) of activities and projects in the photovoltaics research and pilot and demonstration area in Switzerland. Progress in the area of future solar cell technologies, modules and building integration, system technologies, planning and operating aids is summarised. Also, PV for applications in developing countries, thermo-photovoltaics and international co-operation are commented on. In the area of pilot and demonstration projects, component development, PV integration in sloping roofs, on flat roofs and noise barriers as well as further PV plant are looked at. Also, measurement campaigns, studies, statistics and further PV-related topics are summarised. This volume also presents the abstracts of reports made by the project managers of 73 research and pilot and demonstration projects in these areas for 2002.

  4. Experimental characterization of a concentrating photovoltaic system varying the light concentration

    International Nuclear Information System (INIS)

    Renno, C.; Petito, F.; Landi, G.; Neitzert, H.C.

    2017-01-01

    Highlights: • Experimental characterization of a concentrating photovoltaic system. • Analysis of the point-focus concentrating system performances. • Photovoltaic system parameters as function of the concentration factor. - Abstract: The concentrating photovoltaic system represents one of the most promising solar technologies because it allows a more efficient energy conversion. When a CPV system is designed, the main parameter which has to be considered is the concentration factor that affects both the system energy performances and its configuration. An experimental characterization of a CPV system previously realized at the University of Salerno, is presented in this paper considering several aspects related to the optical configuration, the concentration factor and the solar cell used. In particular, the parameters of an Indium Gallium Phosphide/Gallium Arsenide/Germanium triple-junction solar cell are investigated as function of the concentration factor determined by means of an experimental procedure that uses different optical configurations. The maximum concentration factor reached by the CPV system is 310 suns. The cell parameters dependence on the concentration is reported together with an electroluminescence analysis of the Indium Gallium Phosphide/Gallium Arsenide/Germanium cell. A monitoring of the electrical power provided by the system during its working is also presented corresponding to different direct irradiance values. A mean power of 2.95 W with an average efficiency of 32.8% is obtained referring to a mean irradiance of 930 W/m"2; lower values are obtained when the irradiance is highly fluctuating. The concentrating photovoltaic system electric energy output is estimated considering different concentration levels; the maximal obtained value is 23.5 W h on a sunny day at 310×. Finally, the temperature of the triple-junction solar cell is evaluated for different months in order to evaluate the potential annual thermal energy production

  5. ANFIS-based modelling for photovoltaic power supply system: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, Adel [Faculty of Sciences and Technology, Department of Electronics, LAMEL, Jijel University, Ouled-Aissa, P.O. Box 98, Jijel 18000 (Algeria); Kalogirou, Soteris A. [Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O. Box 50329, Limassol 3603 (Cyprus)

    2011-01-15

    Due to the various seasonal, monthly and daily changes in meteorological data, it is relatively difficult to find a suitable model for Photovoltaic power supply (PVPS) system. This paper deals with the modelling and simulation of a PVPS system using an Adaptive Neuro-Fuzzy Inference Scheme (ANFIS) and the proposition of a new expert configuration PVPS system. For the modelling of the PVPS system, it is required to find suitable models for its different components (ANFIS PV generator, ANFIS battery and ANFIS regulator) that could give satisfactory results under variable climatic conditions in order to test its performance and reliability. A database of measured climate data (global radiation, temperature and humidity) and electrical data (photovoltaic, battery and regulator voltage and current) of a PVPS system installed in Tahifet (south of Algeria) has been recorded for the period from 1992 to 1997. These data have been used for the modelling and simulation of the PVPS system. The results indicated that the reliability and the accuracy of the simulated system are excellent and the correlation coefficient between measured values and those estimated by the ANFIS gave a good prediction accuracy of 98%. Additionally, test results show that the ANFIS performed better than the Artificial Neural Network (ANN), which has also being tried to model the system. In addition, a new configuration of an expert PVPS system is proposed in this work. The predicted electrical data by the ANFIS model can be used for several applications in PV systems. (author)

  6. Photovoltaic applications of Cu(Sb,Bi)SM (M = Ag, Pb, Pt)

    Science.gov (United States)

    Tablero, C.

    2017-04-01

    Ternary Cu-(Sb,Bi)-S compounds are great absorbents of the solar radiation with a variety of applications including optoelectronic and photovoltaic applications. The analyses of several quaternary semiconductors derived from Cu-(Sb,Bi)-S materials is carried out using first-principles density-functional theory with orbital-dependent one-electron potentials. These analyses focus on the optoelectronic properties and the potential for solar cells. The optical properties are obtained from first-principles calculations, and split into inter- and intra-shell-species contributions in order to quantify the optical transitions responsible for the absorption. The absorption coefficients are then used as criteria to evaluate the efficiencies of these materials under several sunlight concentrations. The results indicate high energy photovoltaic conversion efficiency because of the large intra shell s-p absorption of the S and Sb or Bi atomic species.

  7. Photovoltaics - 10 years after Cherry Hill

    Science.gov (United States)

    Ralph, E. L.

    The status of R&D programs connected with photovoltaic (PV) systems 10 years after the Cherry Hill workshop on 'Photovoltaic Conversion of Solar Energy for Terrestrial Applications' is assessed. The five categories of research recommended by the Cherry Hill Workshop are listed in a table together with their recommended research budget allocations. The workshop categories include: single-crystal Si cells; poly-Si cells; systems and diagnostics. Categories for thin film CdS/Cu2S and CuInSe2 cells are also included. The roles of government and private utility companies in providing adequate financial support for PV research programs is emphasized.

  8. Design, development and deployment of public service photovoltaic power/load systems for the Gabonese Republic

    Science.gov (United States)

    Kaszeta, William J.

    1987-01-01

    Five different types of public service photovoltaic power/load systems installed in the Gabonese Republic are discussed. The village settings, the systems, performance results and some problems encountered are described. Most of the systems performed well, but some of the systems had problems due to failure of components or installation errors. The project was reasonably successful in collecting and reporting data for system performance evaluation that will be useful for guiding officials and system designers involved in village power applications in developing countries.

  9. Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe

    Directory of Open Access Journals (Sweden)

    Henrik Zsiborács

    2018-06-01

    Full Text Available Solar energy has an increasing role in the global energy mix. The need for flexible storage photovoltaic systems and energy storage in electricity networks is becoming increasingly important as more generating capacity uses solar and wind energy. This paper is a study on the economic questions related to flexible storage photovoltaic systems of household size in 2018. The aim is to clarify whether it is possible in the European Union to achieve a payback of the costs of flexible storage photovoltaic system investments for residential customers considering the technology-specific storage aspects prevalent in 2018. We studied seven different flexible storage photovoltaic investments with different battery technologies in Germany, France, Italy, and Spain because, in Europe, these countries have a prominent role with regard to the spread of photovoltaic technology. These investment alternatives are studied with the help of economic indicators for the different cases of the selected countries. At the end of our paper we come to the conclusion that an investment of a flexible storage photovoltaic (PV system with Olivine-type-LiFePO4, Lithium-Ion, Vented lead-acid battery (OPzS, Sealed lead-acid battery (OPzV, and Aqueous Hybrid Ion (AHI batteries can have a positive net present value due to the high electricity prices in Germany and in Spain. The most cost-effective technology was the Olivine-type-LiFePO4 and the Lithium-Ion at the time of the study. We suggest the provision of governmental support and uniform European modifications to the regulatory framework, especially concerning grid fees and tariffs, which would be necessary in the beginning to help to introduce these flexible storage PV systems to the market.

  10. On the design of product integrated photovoltaic systems

    NARCIS (Netherlands)

    Reich, N.H.

    2010-01-01

    With photovoltaic (PV) systems it is possible to create electricity generation systems for a wide range of purposes, of literally any size (microwatts to gigawatts). Solar cells deployed in large scale, grid-connected PV systems may energize millions of electric appliances connected by a utility

  11. High-Efficiency Isolated Photovoltaic Microinverter Using Wide-Band Gap Switches for Standalone and Grid-Tied Applications

    Directory of Open Access Journals (Sweden)

    Yu-Chen Liu

    2018-03-01

    Full Text Available An isolated photovoltaic micro-inverter for standalone and grid-tied applications is designed and implemented to achieve high efficiency. System configuration and design considerations, including the proposed active-clamp forward-flyback resonant converter for the DC-DC stage and a dual-frequency full-bridge inverter for the DC-AC stage, are analyzed and discussed. A prototype microinverter system is built and tested. Experimental results verify the feasibility of the proposed system, which achieves 95% power conversion efficiency at full load.

  12. Task V of the IEA Photovoltaic Power Systems Program: Accomplishments and Activities

    International Nuclear Information System (INIS)

    Bower, Ward

    1999-01-01

    The International Energy Agency (IEA) is an energy forum for 24 industrialized countries and was established in 1974 as an autonomous body within the Organization for Economic Cooperation and Development (OECD). The IEA Photovoltaic Power Systems (PVPS) program implementing agreement was signed in 1993, and renewed for another five years in 1998. Twenty-two countries are collaborating under the auspices of the IEA in the PVPS to address common technical and informational barriers that often limit the rate at which photovoltaic technologies advance into the markets. Task V of the IEA PVPS is entitled ''Grid Interconnection of Building-Integrated and Other Dispersed Photovoltaic Power Systems.'' The task sponsored a workshop in September 1997 on grid-interconnection of photovoltaic systems and is planning a second workshop to address impacts of more penetration of dispersed systems into the utility grid. This paper will summarize the accomplishments of Task V over the last five years and will detail the planned work for the next three years

  13. Lead/acid batteries for photovoltaic applications. Test results and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Copetti, J B [CIEMAT, Inst. de Energias Renovables, Madrid (Spain); Chenlo, F [CIEMAT, Inst. de Energias Renovables, Madrid (Spain)

    1994-01-01

    This work presents the results of experiments carried out on lead/acid batteries during charge and discharge processes at different currents and temperatures, selected to a cover a large range of operating conditions, including those encountered in photovoltaic (PV) system applications. The results allow us to verify the relations among the battery external parameters (voltage, current, state-of-charge and temperature), the behaviour of the internal resistance, and to deduce a model that represents the discharge and charge processes, including the overcharge. Finally, normalized equations with respect to the battery capacity are proposed, which allow us to fix the values of parameters and hence the model is valid for any type and size of lead/acid battery. (orig.)

  14. Standalone Photovoltaic System Sizing using Peak Sun Hour Method and Evaluation by TRNSYS Simulation

    OpenAIRE

    Riza, Dimas Firmanda Al; Gilani, Syed Ihtshamul-Haq

    2016-01-01

    This paper presents sizing and evaluation of a standalone photovoltaic system for residential load. Peak Sun Hour method is used to determine photovoltaic panel and battery capacity, then the sizing results is tested and evaluated using hourly time-step transient simulation model by using TRNSYS 16.0. The results shows for typical Malaysian terraced house that have about 6 kWh daily electricity load, the photovoltaic system requirement consist of 1.9 kWp photovoltaic panel and 2200 Ah battery...

  15. Technical analysis - an economic system outdoor lighting, powered with solar photovoltaic

    International Nuclear Information System (INIS)

    Tomas, Lay Portuondo; Belen, Acosta Herrera

    2011-01-01

    The mains characteristics of LED output lighting are high efficiency, long lifetime and the ability of low level voltage operation, making it suitable for working with photovoltaic panels. In the beginning this application was constrained to isolated and disaster areas where there are not possibilities of connection with the electric grid, this situation is changing as a consequence of the systematic price reduction in photovoltaic panels and LEDs and the increasing of the efficiency of this light source, therefore this option has become attractive in lighting projects of new facilities. It is important to know that in our country we have the means for the design and manufacturing of the elements of the lighting system and for making the lighting project, assuring a high level of national production integration. In this work the factors that make possible the feasibility of this type of illumination are analyzed and several options for its implementation are proposed. (author)

  16. System design optimization for stand-alone photovoltaic systems sizing by using superstructure model

    International Nuclear Information System (INIS)

    Azau, M A M; Jaafar, S; Samsudin, K

    2013-01-01

    Although the photovoltaic (PV) systems have been increasingly installed as an alternative and renewable green power generation, the initial set up cost, maintenance cost and equipment mismatch are some of the key issues that slows down the installation in small household. This paper presents the design optimization of stand-alone photovoltaic systems using superstructure model where all possible types of technology of the equipment are captured and life cycle cost analysis is formulated as a mixed integer programming (MIP). A model for investment planning of power generation and long-term decision model are developed in order to help the system engineer to build a cost effective system.

  17. Hybrid photovoltaic-diesel-battery systems for remote energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Bopp, G.; Gabler, H.; Kiefer, K.; Preiser, K.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)

    1997-12-31

    Photovoltaic solar generators combined with diesel engines and battery energy storage are powering isolated mountain lodges, information centres in nature parks, isolated farms or dwellings all over Europe. A total of 300000 buildings in Europe are estimated to be not connected to the public grid. This represents a major market potential for photovoltaics, as often photovoltaic power generation is less expensive than a connection to the electric utility. The Fraunhofer Institute for Solar Energy Systems ISE has planned, realized and monitored about 30 hybrid remote energy supply systems with PV generators typically around 5 kW for loads typically around 20 kWh per day. More than one hundred years of operational experience accumulated so far, are a sound foundation on which to draw an interim balance over problems solved and technical questions still under development. Room for further technical development is seen in the domain of system reliability and the reduction of operating costs as well as in the optimization of the utilisation of the electric energy produced by the PV generator. (orig.) 8 refs.

  18. Experiment Investigation on Electrical and Thermal Performances of a Semitransparent Photovoltaic/Thermal System with Water Cooling

    Directory of Open Access Journals (Sweden)

    Guiqiang Li

    2014-01-01

    Full Text Available Different from the semitransparent building integrated photovoltaic/thermal (BIPV/T system with air cooling, the semitransparent BIPV/T system with water cooling is rare, especially based on the silicon solar cells. In this paper, a semitransparent photovoltaic/thermal system (SPV/T with water cooling was set up, which not only would provide the electrical power and hot water, but also could attain the natural illumination for the building. The PV efficiency, thermal efficiency, and exergy analysis were all adopted to illustrate the performance of SPV/T system. The results showed that the PV efficiency and the thermal efficiency were about 11.5% and 39.5%, respectively, on the typical sunny day. Furthermore, the PV and thermal efficiencies fit curves were made to demonstrate the SPV/T performance more comprehensively. The performance analysis indicated that the SPV/T system has a good application prospect for building.

  19. Sensitivity analysis for photovoltaic water pumping systems: Energetic and economic studies

    International Nuclear Information System (INIS)

    Yahyaoui, Imene; Atieh, Ahmad; Serna, Alvaro; Tadeo, Fernando

    2017-01-01

    Highlights: • An algorithm for sizing a PV water pumping components is studied in depth. • The strategy ensures the system autonomy and pumping the needed water. • The algorithm is tested by measured data and compared with the results of HOMER. • Economic study of systems equipped diesel generator three countries is detailed. - Abstract: In agricultural remote areas where electrical energy is required to supply water pumping plants, photovoltaic modules are considered a good option to generate electricity. The reliability of autonomous Photovoltaic water pumping plants depends essentially on the system components size, which should meet the criteria related to the plant autonomy and the water volume required for irrigation. In this context, this research paper proposes an approach to size the elements of an autonomous photovoltaic system equipped with an energy storage device (a battery bank), and which is used to supply a water-pumping plant with electricity. The proposed approach determines the optimal surface of the photovoltaic modules, the optimal capacity of the battery bank and the volume of the water storage tank. The optimization approach takes into account the monthly average solar radiation, the fulfillment of the water needed for the crops’ irrigation and the number of the days of autonomy. Measured climatic data of 10 ha situated in Northern Tunisia and planted with tomato are used in the optimization process, which is conducted during the tomato vegetative cycle (from March to July). The optimal results achieved for this farm are 101.5 m"2 of photovoltaic modules’ surface, 1680 A h/12 V of the battery bank and 1800 m3 of the volume of the water storage tank. Then, to verify the reliability of the proposed optimization approach, the results of the proposed sizing algorithm are compared with those of a commercial optimization tool named HOMER, which shows better results using the proposed approach. Finally, the economic reliability of the

  20. Photovoltaic solar energy; Photovoltaische Solarenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the 27th symposium of the Ostbayerische Technologie-Transfer-Institut e.V. (Regensburg, Federal Republic of Germany) from 29th February to 02th March, 2012, at Banz monastery near Bad Staffelstein (Federal Republic of Germany), the following lectures were held: (1) EEG 12: State of the art and impacts (K. Freier); (2) Promising markets - PV market potentials Europe (M. Lohr); (3) Expansion requires restructuring - Research promotion for renewable energy and renewable energy supply systems (K. Deller); (4) Fields of application and potentials of photovoltaics in Germany without an enhanced EEG compensation (V. Quaschning); (5) ''Smart Solar Grid'' - Results of the analysis and solar roof potential of the first test area of the public utility Ulm (H. Ruf); (6) Power limitation at PV plants - Adjustment of modelling methods and comparison of different location (J. von Appen); (7) Exploitations to the power limitation till to 70 % of the module capacity (B. Giesler); (8) Actual procedural results of the clearing house EEG to photovoltaics and modifications at PV by means of the EEG 2012 (M. Winkler); (9) Grid integration of PV plants from a legal point of view (M. von Oppen); (10) EEG 2012 - Abetment or brake? PV and other renewable energies in comparison (M. Reichmuth); (11) On the precision of radiation and photovoltaics component models (J. Schumacher); (12) Impact of global radiation data with different properties on the performance ratio and prognosticated energy efficiency of photovoltaic power plants (M. Egler); (13) Quantification of superelevations of irradiation in high-resolution DWD datasets for different locations in Germany (M. Zehner); (14) Prognosis of the regional PV performance with measuring data of PV plant and satellite pictures (Y.-M. Saint-Drenan); (15) Photovoltaics and wind power: perfectly complementing power technologies using Central Germany as an example (C. Breyer); (16) Which and how much storages are necessary

  1. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  2. Photovoltaic systems in Indonesia

    International Nuclear Information System (INIS)

    Tjaroko, T.; Bakker, P. de

    2001-01-01

    The article discusses the reasons for the slow growth of the photovoltaic industry in Indonesia where more than 100 million people have no access to electricity, but there is an abundance of solar power. There should be considerable scope for solar home systems in particular. Barriers to expansion of the PV market have included the devaluation of the rupee and the failure of many government-initiated projects. It is concluded that at present, the purchasing power of individuals is insufficient for the potential PV market to expand

  3. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  4. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  5. Operational test for photovoltaic pumping systems; Procedimento para averiguacao operacional de sistemas fotovoltaicos de bombeamento

    Energy Technology Data Exchange (ETDEWEB)

    Fedrizzi, Maria Cristina; Brito, Alaan Ubaiara; Zilles, Roberto [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Lab. de Sistemas Fotovoltaicos], e-mail: fedrizzi@iee.usp.br, e-mail: alaan@iee.usp.br, e-mail: zilles@iee.usp.br

    2004-07-01

    This paper presents an operational test for photovoltaic pumping systems daily production, m{sup 3}/dia. The procedure does not involve expensive instrumentation and is easy to be applied in the field as acceptance and qualification tools. In this way, the paper presents the boundary conditions for operational test accomplishment that allows its application. (author)

  6. Application of Distributed DC/DC Electronics in Photovoltaic Systems

    Science.gov (United States)

    Kabala, Michael

    In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.

  7. Development of photovoltaic array and module safety requirements

    Science.gov (United States)

    1982-01-01

    Safety requirements for photovoltaic module and panel designs and configurations likely to be used in residential, intermediate, and large-scale applications were identified and developed. The National Electrical Code and Building Codes were reviewed with respect to present provisions which may be considered to affect the design of photovoltaic modules. Limited testing, primarily in the roof fire resistance field was conducted. Additional studies and further investigations led to the development of a proposed standard for safety for flat-plate photovoltaic modules and panels. Additional work covered the initial investigation of conceptual approaches and temporary deployment, for concept verification purposes, of a differential dc ground-fault detection circuit suitable as a part of a photovoltaic array safety system.

  8. 上海地区绿色建筑中光伏系统应用分析%Application of Photovoltaic Technology in Green Buildings in Shanghai

    Institute of Scientific and Technical Information of China (English)

    胡一东; 谭洪卫

    2017-01-01

    which accounted for 14. 3%and 10. 7%respectively, a small part for commercial buildings accounted for 3. 6%. From the perspective of storey distribution, Photovoltaic technology is mainly used in multistory office building, the proportion is 65%and the utility ratio is 35%in high-rise office building. Exhibition hall presented highest Photovoltaic energy substitution rate followed by residence and office, shopping mall has the lowest value generally. Thirdly, PV installation potential is limited in city, but it can be developed and installed in factories,warehouses and other industrial buildings, large municipal facilities ( airport, station, etc. ) and the agricultural husbandry and fishery facilities in the future. What' s more, from the perspective of building adaptability, the most ideal installation direction is South with less deviation and more solar radiation per unit area, so PV modules should be installed facing south as far as possible. The best installation angle in Shanghai is 23°. The PV system installed with best installation angle is recommended in order to maximize the solar energy resources utilization. Photoelectric conversion efficiency increased from 12 . 52%to 15. 05%before and after cleaning increased by 2. 53%, which shows that cleaning is necessary to improve performance, so cleaning the system frequently is also recommended to improve the performance. Last but not the least, investment payback period of public buildings and residential project are relatively short, which are 5. 7 and 5. 8 years. The cost effectiveness is only 1/5 of the payback period during 2009 and 2012 . Current photovoltaic system costs have fallen sharply and PV subsidy policy dynamics is big in Shanghai, so the application potential of photovoltaic technology is very great in Shanghai in the future. In summary, existing situation of photovoltaic technology ' s application has been investigated and the adaptability and economy of photovoltaic technology in different

  9. SUNRAYCE 1993: Working safely with lead-acid batteries and photovoltaic power systems

    Science.gov (United States)

    Dephillips, M. P.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-11-01

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have 'hands-on' contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  10. Maximun power point tracker of photovoltaic s panels for stand alone systems

    International Nuclear Information System (INIS)

    Stoll, R; Manno, R

    2005-01-01

    The low energetic efficiency of photovoltaic s panels is known, in addition, due to the use of linear regulators, which dissipate an important bit of the generated energy, the efficiency of the photovoltaic systems is still smaller.Also, the I-V characteristic curve of the photovoltaic modules depends on the solar radiation and the own temperature; consequently, the maximum power point (Wp) changes permanently.In conclusion, to produce electricity with photovoltaic panels is very expensive. However due to preserve the environment this technology is widely used.With the purpose of optimizing the amount of energy produced by the photovoltaic system, two complementary methods are used.One is the Maximum Power Point Tracker (MPPT) system and the other one is the Solar Tracker system.The objective of this project is to reduce that cost increasing the amount of energy produced by the solar panels using a Maximum Power Point Tracker system.This device consists of a DC/DC buck converter of high performance, controlled by a PIC 16F873 micro controller; which carries out the conversions of the analogical signals of the solar array to digital signals (ADC), the PIC output digital signals to the PWM control of the power FET (DAC), and calculates the Duty Cycle (D) for the point of I-V curve where this product becomes maximum.Measurements for different loads and battery charges were made.With the obtained results, the comparisons with a conventional system were made, a greater cession of energy to the load is observed.The main conclusion of this work is: Using a MPPT device to making work the PV module during the greater possible time near the maximum power point, the efficiency of the photovoltaic systems can be increased

  11. A new DC/AC boost transformerless converter in application of photovoltaic power generation

    DEFF Research Database (Denmark)

    Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents a new DC/AC boost transformerless converter in the applications of photovoltaic (PV) power generation. A new circuit topology of single phase full bridge power inverter with additional DC/DC boost stage is proposed. The proposed topology overcomes two commonly existing......, and then converts the DC into AC to supply the load. A special modulation technique is proposed to eliminate the leakage current which is commonly presents in PV transformerless power generation, helps to increase the system efficiency and output performance....

  12. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  13. Studies of a photovoltaic-thermal solar dryi system for rural applications

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    Importance of solar drying in increasing worldwide. especially in areas where the use of abundant, renewable and clean solar energy is essentially advantageous. In developing countries and in rural areas the traditional open-air drying methods should be substituted by the more effective and more economic solar drying technologies. In the present work, a new design of a photovoltaic-thermal (PV/T) solar drying system was fabricated. An experimental study of PV/T solar air collector has been performed towards achieving n efficient design of air collector suitable foe a solar dryer. A series of experiments were conducted based on the ASHRAE standard, under Malaysia Climatic conditions. The performance of the collector is examined over a wide range of operating conditions. Results of the test are presented and discussed.(Author)

  14. Photovoltaic demonstration projects 2

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W B; Hacker, R J [Halcrow (William) and Partners, Swindon (UK); Kaut, W [eds.

    1989-01-01

    This book, the proceedings of the third Photovoltaic Contractors' Meeting organised by the Commission of the European Communities, Directorate-General for Energy provides an overview of the photovoltaic demonstration projects which have been supported by the Energy Directorate of the Commission of the European Communities since 1983. It includes reports by each of the contractors who submitted proposals in 1983, 1984 and 1985, describing progress with their projects. The different technologies which are being demonstrated concern the modules, the cabling of the array, structure design, storage strategy and power conditioning. The various applications include powering of houses, villages, recreation centres, water desalination, communications, dairy farms, water pumping and warning systems. (author).

  15. Department of Energy: Photovoltaics program - FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The National Photovoltaic Program supports efforts to make PV an important part of the US economy through three main program elements: Research and Development, Technology Development, and Systems Engineering and Applications. (1) Research and Development activities generate new ideas, test the latest scientific theories, and push the limits of PV efficiencies in laboratory and prototype materials and devices. (2) Technology Development activities apply laboratory innovations to products to improve PV technology and the manufacturing techniques used to produce PV systems for the market. (3) Systems Engineering and Applications activities help improve PV systems and validate these improvements through tests, measurements, and deployment of prototypes. In addition, applications research validates, sales, maintenance, and financing mechanisms worldwide. (4) Environmental, Health, Safety and Resource Characterization activities help to define environmental, health and safety issues for those facilities engaged in the manufacture of PV products and organizations engaged in PV research and development. All PV Program activities are planned and executed in close collaboration and partnership with the U.S. PV industry. The overall PV Program is planned to be a balanced effort of research, manufacturing development, and market development. Critical to the success of this strategy is the National Photovoltaic Program`s effort to reduce the cost of electricity generated by photovoltaic. The program is doing this in three primary ways: by making devices more efficient, by making PV systems less expensive, and by validating the technology through measurements, tests, and prototypes.

  16. Photovoltaic systems for Malaysian islands: Effects of interest rates, diesel prices and load sizes

    International Nuclear Information System (INIS)

    Lau, K.Y.; Tan, C.W.; Yatim, A.H.M.

    2015-01-01

    Standalone diesel systems have been widely used on Malaysian islands due to the isolated locations of the islands. Nevertheless, the high diesel prices and the high cost of transporting diesel to islands cause the use of standalone diesel systems to be uneconomical. This study analyzes the feasibility of implementing PV (photovoltaic) systems as alternatives to standalone diesel systems by considering the effects of annual real interest rates, diesel prices and load sizes, using the HOMER (hybrid optimization of multiple energy resources) software. The results indicate that, at the ordinary diesel price of $ 0.61/L, low interest rates (0–3%) are desirable for the implementation of hybrid PV/diesel with battery systems over standalone diesel systems, regardless of the load sizes. Although different load sizes may affect the decisions on the implementation of PV systems at higher interest rates (6–9%), these effects become less pronounced as the price of diesel increases to $ 1.22/L or higher. Also, under high diesel prices, the choice of optimal system configurations obtained for small load sizes should be applicable for larger load sizes, albeit with different component ratings. Although the current study is intended for Malaysian islands, the findings can be generalized for other places with similar solar radiation levels. - Highlights: • Photovoltaic systems for Malaysian islands have been analyzed using HOMER. • Interest rates, diesel prices and load sizes affect optimal system configurations. • Effects of interest rates and load sizes reduce with increasing diesel prices. • Photovoltaic systems' implementation is feasible at high diesel prices. • The findings can be generalized for places with similar solar radiation levels

  17. Conductive subtract development without corrosion for photovoltaic applications on porcelain stoneware according to free electrodes process

    International Nuclear Information System (INIS)

    Reyes-Tolosa, M. D.; Al Aajmi, M.; Orozco-Messana, J.; Donderis, V.; Pascual, M.; Hernandez-Fenollosa, M. A.

    2010-01-01

    In the incipient world of functional industrial ceramics with photovoltaic applications, there is a need to reduce production costs while maximizing the systems useful life. The thin contact layers currently being manufactured are based on vacuum systems with high production costs and major problems of accelerated corrosion in photovoltaic applications. The electroless process produces very even and compact layers with very low costs through chelate-based chemicals. These layers have been formulated in this study with a view to obtaining appropriate electric characteristics for an optimum photoelectric performance in the assemblies. The morphological requirements are previously fitted through a glaze that acts as a barrier layer between the deposited coating and the porcelain tile, applied through tape casting. The characterisation of the metal layers obtained is started by SEM, an AFM and the Hall effect in order to determine the morphology and chemical characteristics required for these contact layers. The electric characterisation also allows their capacity for offering an optimum performance in the assemblies to be assessed. Finally, the performance of these layers with respect to corrosion is assessed in order to complete the assessment of their industrial suitability. (Author) 13 refs.

  18. Hybrid system power generation'wind-photovoltaic' connected to the ...

    African Journals Online (AJOL)

    Hybrid system power generation'wind-photovoltaic' connected to the ... from Hybrid System, power delivered to or from grid and phase voltage of the inverter leg. ... Renewable Energy, Electrical Network 220 kV, Hybrid System, Solar, MPPT.

  19. Solar photovoltaic water pumping system using a new linear actuator

    OpenAIRE

    Andrada Gascón, Pedro; Castro, Javier

    2007-01-01

    In this paper a photovoltaic solar pumping system using a new linear actuator is presented. This linear actuator is a double-sided flat two-phase variable-reluctance linear stepper motor that moves a piston-type water pump with the help of a rope, a pulley and a counterweight. The entire actuator pump ensemble is controlled by a simple electronic unit that manages the electric power generated by a photovoltaic array. The proposed system is suitable for rural communities in developing...

  20. Sizing and modelling of photovoltaic water pumping system

    Science.gov (United States)

    Al-Badi, A.; Yousef, H.; Al Mahmoudi, T.; Al-Shammaki, M.; Al-Abri, A.; Al-Hinai, A.

    2018-05-01

    With the decline in price of the photovoltaics (PVs) their use as a power source for water pumping is the most attractive solution instead of using diesel generators or electric motors driven by a grid system. In this paper, a method to design a PV pumping system is presented and discussed, which is then used to calculate the required size of the PV for an existing farm. Furthermore, the amount of carbon dioxide emissions saved by the use of PV water pumping system instead of using diesel-fuelled generators or electrical motor connected to the grid network is calculated. In addition, an experimental set-up is developed for the PV water pumping system using both DC and AC motors with batteries. The experimental tests are used to validate the developed MATLAB model. This research work demonstrates that using the PV water pumping system is not only improving the living conditions in rural areas but it is also protecting the environment and can be a cost-effective application in remote locations.

  1. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  2. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation and stabil......The highly increasing penetration of single-phase photovoltaic (PV) systems pushes the grid requirements related to the integration of PV power systems to be updated. These upcoming regulations are expected to direct the grid-connected renewable generators to support the grid operation...

  3. Photovoltaics for telecommunications networks in Libya, uses and experiences

    International Nuclear Information System (INIS)

    Ibrahim, Ibrahim M. Saleh; Adam, M. S.; Ben-Hamed, Khalifa

    2006-01-01

    The use of photovoltaic systems as a stand-alone power supply in Libyan telecommunication networks has been in use since 1980. It was proved that PV generators are reliable and cost effective in this type of applications in comparison with diesel generators. In Libya about 100 photovoltaic systems were put into work to supply electricity for repeater stations instead of diesel generators, these PV systems proved to be reliable, very low or no communication stops, and and more economical in comparison with stations running by diesel generators, a wide knowledge of experience has been built of using photovoltaic systems in this applications. This paper is focusing on the role of stand-alone PV systems in communication networks of Libya, as a stand alone power source for telecommunication repeater stations. We will evaluate some of these systems after ten years of work, discuss the past experience, their reliability, and running cost, Stand-alone systems can be used in telecommunication networks, and in general the experienced advantages of using PV solar generators can be summarized as low running cost, high reliability, fewer services visits,, low maintenance cost, less number of thefts, no communication stops.(Author)

  4. Outdoor Performance Comparison of Concentrator Photovoltaic and Flat Plate Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Hidaka Yoshihide

    2016-01-01

    Full Text Available Output characteristics of tracking type concentrator photovoltaic (CPV system, multi-crystalline silicon (mc-Si PV system, CIGS PV system, and amorphous silicon (a-Si PV system were analyzed in the data period of a year from August 2013 to July 2014. In this study, we analyzed the influence of environmental factors using average photon energy (APE and temperature of solar cell (Tcell. The characteristics of 14 kW CPV system, 50 kW mc-Si PV system, 60 kW CIGS PV system, 1.35 kW a-Si PV system were evaluated and compared. As a result, the output performance of CPV was highest between the four systems at the most frequent conditions in the outdoor environment.

  5. RTI photovoltaic concentrator applications experiment. Phase I. System design. Final report, 1 June 1978-28 February 1979

    Energy Technology Data Exchange (ETDEWEB)

    Burger, R M; Whisnant, R A; Drake, W C; Daluge, D R; Alberts, R D

    1979-03-01

    An experiment has been designed in which a 100 kW photovoltaic concentrator system serving the electrical load provided by an energy-efficient office-laboratory building will be built and operated in the Research Triangle Park of North Carolina. Since the purpose of the experiment is to provide the essential data for design and installation of future operational systems, the system is designed for operational flexibility. In its main operational mode, a defined primary load is diverted from the utility during all peak-demand periods. This requires the use of 1000 kWh of lead-acid batteries for energy storage. Other operational modes provide for obtaining data on peak demand reduction, on alternative battery use strategies, and on system performance with an isolated load. Operation of the system in parallel with utility-supplied power requires that the photovoltaic array outputs be inverted and that the power be controlled to achieve the operational objectives. Ten 2-axis tracking arrays consisting of 70X parabolic concentrators are used. The system will provide approximately 103 megawatt-hours of power annually to the load and the design is compatible with future retrofits including more efficient solar cells, higher concentration ratios, thermal energy collection, and other technological developments, ensuring its usefulness in research and development beyond the PRDA-35 experiment.

  6. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics...

  7. SUNRAYCE 93: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-11-03

    The US Department of Energy (DOE) is sponsoring SUNRAYCE 93 to advance tile technology and use of photovoltaics and electric vehicles. Participants will use cars powered by photovoltaic modules and lead-acid storage batteries. This brochure, prepared for students and faculty participating in this race, outlines the health hazards presented by these electrical systems, and gives guidance on strategies for their safe usage. At the outset, it should be noted that working with photovoltaic systems and batteries requires electric vehicle drivers and technicians to have {open_quotes}hands-on{close_quotes} contact with the car on a daily basis. It is important that no one work near a photovoltaic energy system or battery, either in a vehicle or on the bench, unless they familiarize themselves with the components in use, and know and observe safe work practices including the safety precautions described in the manuals provided by the various equipment vendors and this document.

  8. A Single-Phase Voltage-Controlled Grid-Connected Photovoltaic System With Power Quality Conditioner Functionality

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Liserre, Marco; Mastromauro, R. A.

    2009-01-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. Also low power PV systems can be designed to improve the power quality. This paper presents a single-phase photovoltaic system that provides grid voltage support and compensation o...

  9. Cost of photovoltaic energy systems as determined by balance-of-system costs

    Science.gov (United States)

    Rosenblum, L.

    1978-01-01

    The effect of the balance-of-system (BOS), i.e., the total system less the modules, on photo-voltaic energy system costs is discussed for multikilowatt, flat-plate systems. Present BOS costs are in the range of 10 to 16 dollars per peak watt (1978 dollars). BOS costs represent approximately 50% of total system cost. The possibility of future BOS cost reduction is examined. It is concluded that, given the nature of BOS costs and the lack of comprehensive national effort focussed on cost reduction, it is unlikely that BOS costs will decline greatly in the next several years. This prognosis is contrasted with the expectations of the Department of Energy National Photovoltaic Program goals and pending legislation in the Congress which require a BOS cost reduction of an order of magnitude or more by the mid-1980s.

  10. Photovoltaic product directory and buyers guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  11. A report on the performance of a grid connected photovoltaic power generation system

    International Nuclear Information System (INIS)

    Mohd Azhar Abdul Rahman; Mohd Surif Abdul Wahab; Azmi Omar

    2000-01-01

    Malaysia is located almost on the equator and is blessed with an abundance of sunlight almost all year round. So obviously, with the right planning and strategies that are coupled to the right technology and development in the market, the potential for photovoltaic system as an alternative source of power in this country looks promising and is constantly gaining ground and popularity. Sunlight is free and the photovoltaic system is also emission and pollution free which is a guest boost to the current worldwide effort to reduce the global environmental problems. Utility giant Tenaga Nasional Berhad is in line with the Government aspiration to promote the development of solar photovoltaic in the country, who believe in the success and acceptance potential of the photovoltaic system as an alternative source of power generation for long term energy option. In March 1998, a contract was awarded by Tenaga Nasional Berhad to its research subsidiary, Tenaga Nasional Research and Development Sdn. Bhd. to undertake a pilot research project on the development of a grid connected photovoltaic system. This research project is co-funded by the Electric Supply Industry Trust fund. One of the main objective of this research project is to seek the best approach to popularize the Grid Connected Photovoltaic System for domestic as well as suitable commercial premises in this country. This paper will report the initial findings of the project in terms of technical capability and commercial liability. (Author)

  12. Impact Analysis of Peng-Hu Power System Connected with a Photovoltaic System

    DEFF Research Database (Denmark)

    Wang, Li; Nguyen, Ha Thi; Yan, Chih-Hao

    2014-01-01

    With the rapid increase of photovoltaic (PV) systems installed in power systems in the recent years, the negative impacts on power quality of distribution networks due to highpenetration PV systems can be increased. This paper presents the system-impact analyzed results of a 0.6-MW PV system conn...

  13. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  14. Simulation and Modeling of a Five -Level (NPC Inverter Fed by a Photovoltaic Generator and Integrated in a Hybrid Wind-PV Power System

    Directory of Open Access Journals (Sweden)

    M. Rezki,

    2017-08-01

    Full Text Available A distributed hybrid coordinated wind photovoltaic (PV power system was proposed in this paper. As oil and coal reserves are being depleted whilst at the same time the energy demand is growing, it is important to consider alternative energy generating techniques. Today, the five-level (NPC inverter represents a good alternative for several industrial applications. To take advantage of the five-level inverter topology and the benefits of renewable energy represented by a photovoltaic generator, a new scheme of these controllers is proposed in this work. This paper outlines the design of a hybrid power system consisting of a solar photovoltaic (PV and a wind power system. The system is modeled in Matlab Simulink and tested for various conditions. The model and results are discussed in this paper.

  15. Research on simulated devices for Solar photovoltaic grid-connected generation system

    Directory of Open Access Journals (Sweden)

    quan-zhu Zhang

    2017-01-01

    Full Text Available On the standpoint of energy conservation and emission reduction, one device simulated photovoltaic grid-connected generation system based on SPWM was designed in the paper. And DC/AC inverter could transduce efficiently direct current to alternating current. The MCU(Micro-Control-Unit, in this system could achieve the control method for maximum-power-point and tracking for frequency and phase. Moreover, the MCU could implement PWM (Plus-Width Modulating through programming. The system showed clearly the whole photovoltaic grid-connected generation system using simulated methods and ways.

  16. Modeling and simulation of the solar concentrator in photovoltaic systems through the application of a new BRDF function model

    Science.gov (United States)

    Plachta, Kamil

    2016-04-01

    The paper presents a new algorithm that uses a combination of two models of BRDF functions: Torrance-Sparrow model and HTSG model. The knowledge of technical parameters of a surface is especially useful in the construction of the solar concentrator. The concentrator directs the reflected solar radiation on the surface of photovoltaic panels, increasing the amount of incident radiance. The software applying algorithm allows to calculate surface parameters of the solar concentrator. Performed simulation showing the share of diffuse component and directional component in reflected stream for surfaces made from particular materials. The impact of share of each component in reflected stream on the efficiency of the solar concentrator and photovoltaic surface has also been described. Subsequently, simulation change the value of voltage, current and power output of monocrystalline photovoltaic panels installed in a solar concentrator system has been made for selected surface of materials solar concentrator.

  17. Morphology of polymer-based films for organic photovoltaics

    OpenAIRE

    Ruderer, Matthias A.

    2012-01-01

    In this thesis, polymer-based films are examined for applications in organic photovoltaics. Polymer-fullerene, polymer-polymer and diblock copolymer systems are characterized as active layer materials. The focus is on experimental parameters influencing the morphology formation of the active layer in organic solar cells. Scattering and imaging techniques provide a complete understanding of the internal structure on different length scales which is compared to spectroscopic and photovoltaic pr...

  18. Photovoltaic System in Progress

    DEFF Research Database (Denmark)

    Shoro, Ghulam Mustafa; Hussain, Dil Muhammad Akbar; Sera, Dezso

    2013-01-01

    This paper provides a comprehensive update on photovoltaic (PV) technologies and the materials. In recent years, targeted research advancement has been made in the photovoltaic cell technologies to reduce cost and increase efficiency. Presently, several types of PV solar panels are commercially...... falls in the third generation PV technologies. However, Multi-junction Cells are still considered new and have not yet achieved commercialization status. The fundamental change observed among all generations has been how the semiconductor material is employed and the development associated with crystal...

  19. On application of a new hybrid maximum power point tracking (MPPT) based photovoltaic system to the closed plant factory

    International Nuclear Information System (INIS)

    Jiang, Joe-Air; Su, Yu-Li; Shieh, Jyh-Cherng; Kuo, Kun-Chang; Lin, Tzu-Shiang; Lin, Ta-Te; Fang, Wei; Chou, Jui-Jen; Wang, Jen-Cheng

    2014-01-01

    Highlights: • Hybrid MPPT method was developed and utilized in a PV system of closed plant factory. • The tracking of the maximum power output of PV system can be achieved in real time. • Hybrid MPPT method not only decreases energy loss but increases power utilization. • The feasibility of applying PV system to the closed plant factory has been examined. • The PV system significantly reduced CO 2 emissions and curtailed the fossil fuels. - Abstract: Photovoltaic (PV) generation systems have been shown to have a promising role for use in high electric-load buildings, such as the closed plant factory which is dependent upon artificial lighting. The power generated by the PV systems can be either directly supplied to the buildings or fed back into the electrical grid to reduce the high economic costs and environmental impact associated with the traditional energy sources such as nuclear power and fossil fuels. However, PV systems usually suffer from low energy-conversion efficiency, and it is therefore necessary to improve their performance by tackling the energy loss issues. The maximum power point tracking (MPPT) control technique is essential to the PV-assisted generation systems in order to achieve the maximum power output in real time. In this study, we integrate the previously proposed direct-prediction MPP method with a perturbation and observation (P and O) method to develop a new hybrid MPPT method. The proposed MPPT method is further utilized in the PV inverters in a PV system installed on the roof of a closed plant factory at National Taiwan University. The tested PV system is constructed as a two-stage grid-connected photovoltaic power conditioning (PVPC) system with a boost-buck full bridge design configuration. A control scheme based on the hybrid MPPT method is also developed and implemented in the PV inverters of the PVPC system to achieve tracking of the maximum power output of the PV system in real time. Based on experimental results

  20. Impact of Balance Of System (BOS) costs on photovoltaic power systems

    Science.gov (United States)

    Hein, G. F.; Cusick, J. P.; Poley, W. A.

    1978-01-01

    The Department of Energy has developed a program to effect a large reduction in the price of photovoltaic modules, with significant progress already achieved toward the 1986 goal of 50 cents/watt (1975 dollars). Remaining elements of a P/V power system (structure, battery storage, regulation, control, and wiring) are also significant cost items. The costs of these remaining elements are commonly referred to as Balance-of-System (BOS) costs. The BOS costs are less well defined and documented than module costs. The Lewis Research Center (LeRC) in 1976/77 and with two village power experiments that will be installed in 1978. The costs were divided into five categories and analyzed. A regression analysis was performed to determine correlations of BOS Costs per peak watt, with power size for these photovoltaic systems. The statistical relationship may be used for flat-plate, DC systems ranging from 100 to 4,000 peak watts. A survey of suppliers was conducted for comparison with the predicted BOS cost relationship.

  1. PV Obelisk - Information system with photovoltaics

    International Nuclear Information System (INIS)

    Ruoss, D.; Rasmussen, J.

    2004-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the development of an information system powered by a photovoltaic (PV) array. As an innovative approach, the 'PV-Obelisk' project is the combination of PV with a multi-functional pillar made of natural stone in an aesthetic way. The PV modules serve both as a power supply and as a design element. Two initial prototypes led the way to a third, optimised consumer configuration that was planned to guarantee maximum user frequency. Test operation in front of the 'Heidiland' motor way restaurant confirmed the market analyses made and delivered the expected results. The product, whose three LCD displays are updated via a mobile telephony-based text-message system, proved its technical reliability and showed a high user frequency. Because of the high overall energy consumption, PV power can only partially contribute to the energy supply needed. Various compromises in the technical and aesthetic areas are discussed that were made for the sake of product acceptance in the market. The range of application areas for such a 'PV Obelisk' are discussed and the need for early co-ordination with urban planners is stressed

  2. Design of boat powered photovoltaic systems

    International Nuclear Information System (INIS)

    Syafaruddin; Galla, D; Ajami, W.A.F.A.

    2014-01-01

    The solar energy has high potential applications in Indonesia since the country is located close to the equatorial region that makes the sun is almost bright along the day. In this paper, the boat power photovoltaic system is proposed. Such design may promote new innovations technically and economically in water transportation system since the country demography is almost 75% surrounded by water. The electricity energy is harvested from the sun through the PV panel then stored in the battery by solar charge control mechanism in order to rotate the prime mover of the boat by means the DC motor. The shaft of the DC motor is directly connected to the boat propeller and the speed motor is regulated by the pulse width modulation (PWM) technique generated from the AVR microcontroller ATmega16. The final design is obtained that for the boat with the total weight of 531.1758 kg, it may operate for 1.26 hours with the knot speed of 3.11 when 2 PV panels of 50 W, 2 DC motor of 0.3 kW and battery of 100 Ah capacity are used with the overall efficiency performance not less than 87.4%. (author)

  3. Model of a photovoltaic system design; Modelo de um projeto de um sistema fotovoltaico

    Energy Technology Data Exchange (ETDEWEB)

    Leva, Flavia Fernandes de; Salerno, Carlos Henrique; Camacho, Jose Roberto; Guimaraes, Sebastiao Camargo [Universidade Federal de Uberlandia (UFU), MG (Brazil). Fac. de Engenharia Eletrica. Nucleo de Eletricidade Rural e Fontes Alternativas de Energia

    2004-07-01

    All over the world it has happened an increase in interest for photovoltaic systems, mainly motivated by cost reduction of solar cells and by the growing environmental problems caused by traditional forms of generating energy. The use of photovoltaic systems has slowly gained space, mainly in areas where the access to the conventional electrical energy is still economically unviable, however, it can be used also where conventional energy is extensively used, in order to make electricity bills less expensive. Avoiding excesses is an important factor to be considered in the photovoltaic systems dimensioning, the use of electrical and should present a low energy consumption. Therefore, the last of this paper is to show the main calculation and analysis that should be make in order to get a more precise dimensioning of the photovoltaic system. (author)

  4. Optimization of stand-alone photovoltaic systems with hydrogen storage for total energy self-sufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1991-01-01

    A new method for optimization of stand-alone photovoltaic-hydrogen energy systems is presented. The methodology gives the optimum values for the solar array and hydrogen storage size for any given system configuration and geographical site. Sensitivity analyses have been performed to study the effect of subsystem efficiencies on the total system performance and sizing, and also to identify possibilities for further improvements. Optimum system configurations have also been derived. The results indicate that a solar-hydrogen energy system is a very promising potential alternative for low power applications requiring a total electricity self-sufficiency. (Author).

  5. Intermediate photovoltaic system application experiment operational performance report. Volume 9 for Beverly High School, Beverly, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Presented are the data accumulated during May 1982 at the intermediate photovoltaic project at Beverly High School, Beverly, Massachusetts. Generated energy and environmental (weather) data are presented graphically. Explanations of irregularities not attributable to weather are provided. Due to computer damage data were acquired for only the first 7 days of the month, although the PV system continued normal operation.

  6. Photovoltaics as a worldwide energy source

    International Nuclear Information System (INIS)

    Jones, G.J.

    1991-01-01

    Photovoltaic energy systems have historically been treated as a bulk power generation source for the future. However, utilities and other agencies involved with electrification throughout the world are beginning to find photovoltaics a least-cost option to meet specific loads both for themselves and their customers, in both off-grid and grid-connected applications. These expanding markets offer the potential of hundreds of megawatts of sales in the coming decade, but a strategy addressing both industrial growth and user acceptance is necessary to capitalize on this opportunity. 11 refs

  7. Thin film coatings for space electrical power system applications

    Science.gov (United States)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  8. Use of appliances in stand-alone PV power supply systems: problems and solutions. Task 3 use of photovoltaic power systems in stand-alone and island applications

    Energy Technology Data Exchange (ETDEWEB)

    Vallve, X.; Gafas, G. [IEA PVPS, Task 3 (Spain); Villoz, M. [IEA PVPS, Task 3 (Switzerland); Wilshaw, A. [IEA PVPS, Task 3 (United Kingdom); Jacquin, P. [IEA PVPS, Task 3 (France)

    2002-09-15

    In Stand-Alone Photovoltaic Systems (SAPV systems), special attention must be paid to the used appliances and loads. Inappropriate loads are very often the origin of PV system malfunction or failure. Start-up power peaks, or reactive power and harmonic distortion can cause system signal instability and protective devices will close the system down. A well-matched load together with a carefully selected choice of appliances can lead to significant savings in terms of reduced need for PV and electricity storage capacity. Conversely, inefficient appliances and processes, standby loads and inappropriate loads will increase the requirement for expensive PV and storage capacity. This paper presents a survey of real cases with load related problems in worldwide applications, their effect on quality and cost of the service and the solutions that were adopted and suggested alternative solutions. One of the main conclusions of the work is the importance to integrate the choice of the appliance while designing the SAPV system. (author)

  9. Energy technologies for distributed utility applications: Cost and performance trends, and implications for photovoltaics

    International Nuclear Information System (INIS)

    Eyer, J.M.

    1994-01-01

    Utilities are evaluating several electric generation and storage (G ampersand S) technologies for distributed utility (DU) applications. Attributes of leading DU technologies and implications for photovoltaics (PV) are described. Included is a survey of present and projected cost and performance for: (1) small, advanced combustion turbines (CTs); (2) advanced, natural gas-fired, diesel engines (diesel engines); and (3) advanced lead-acid battery systems (batteries). Technology drivers and relative qualitative benefits are described. A levelized energy cost-based cost target for PV for DU applications is provided. The analysis addresses only relative cost, for PV and for three selected alternative DU technologies. Comparable size, utility, and benefits are assumed, although relative value is application-specific and often technology- and site-specific

  10. Modeling of a solar photovoltaic water pumping system under the influence of panel cooling

    Directory of Open Access Journals (Sweden)

    Chinathambi Gopal

    2017-01-01

    Full Text Available In this paper, the performance of a solar photovoltaic water pumping system was improved by maintaining the cell temperature in the range between 30°C and 40°C. Experiments have been conducted on a laboratory experimental set-up installed with 6.4 m2 solar panel (by providing air cooling either on the top surface or over the beneath surface of the panel to operate a centrifugal pump with a rated capacity of 0.5 HP. The performance characteristics of the photovoltaic panel (such as, cell temperature, photovoltaic panel output, and photovoltaic efficiency, pump performance characteristics (such as pump efficiency and discharge, and system performance characteristics are observed with reference to solar irradiation, ambient temperature and wind velocity. A thermal model has been developed to predict the variations of photovoltaic cell temperature based on the measured glass and tedlar temperatures. The influences of cell temperature and solar irradiation on the performance of the system are described. The results concluded that cooling of photovoltaic panel on beneath surface has maintained the cell temperature in the range between 30°C and 40°C and improved the overall efficiency by about 1.8% when compared to the system without panel cooling.

  11. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    Science.gov (United States)

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Intermediate photovoltaic system application experiment operational performance. Volume 5, for Beverly High School, Beverly, MA. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1982-03-01

    Performance data are given for a grid-connected, 100 kW, flat panel photovoltaic power system at a Massachusetts high school for the month of February 1982. Data include daily and monthly electrical energy produced, daily and monthly plane-of-array incident solar energy, array efficiency, power conditioner efficiency, system efficiency, capacity factor, and monthly average insolation. Also included is the data acquisition mode and recording interval plot. (LEW)

  13. Photovoltaic module mounting system

    Science.gov (United States)

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  14. A quantitative method for photovoltaic encapsulation system optimization

    Science.gov (United States)

    Garcia, A., III; Minning, C. P.; Cuddihy, E. F.

    1981-01-01

    It is pointed out that the design of encapsulation systems for flat plate photovoltaic modules requires the fulfillment of conflicting design requirements. An investigation was conducted with the objective to find an approach which will make it possible to determine a system with optimum characteristics. The results of the thermal, optical, structural, and electrical isolation analyses performed in the investigation indicate the major factors in the design of terrestrial photovoltaic modules. For defect-free materials, minimum encapsulation thicknesses are determined primarily by structural considerations. Cell temperature is not strongly affected by encapsulant thickness or thermal conductivity. The emissivity of module surfaces exerts a significant influence on cell temperature. Encapsulants should be elastomeric, and ribs are required on substrate modules. Aluminum is unsuitable as a substrate material. Antireflection coating is required on cell surfaces.

  15. Models used to assess the performance of photovoltaic systems.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Klise, Geoffrey T.

    2009-12-01

    This report documents the various photovoltaic (PV) performance models and software developed and utilized by researchers at Sandia National Laboratories (SNL) in support of the Photovoltaics and Grid Integration Department. In addition to PV performance models, hybrid system and battery storage models are discussed. A hybrid system using other distributed sources and energy storage can help reduce the variability inherent in PV generation, and due to the complexity of combining multiple generation sources and system loads, these models are invaluable for system design and optimization. Energy storage plays an important role in reducing PV intermittency and battery storage models are used to understand the best configurations and technologies to store PV generated electricity. Other researcher's models used by SNL are discussed including some widely known models that incorporate algorithms developed at SNL. There are other models included in the discussion that are not used by or were not adopted from SNL research but may provide some benefit to researchers working on PV array performance, hybrid system models and energy storage. The paper is organized into three sections to describe the different software models as applied to photovoltaic performance, hybrid systems, and battery storage. For each model, there is a description which includes where to find the model, whether it is currently maintained and any references that may be available. Modeling improvements underway at SNL include quantifying the uncertainty of individual system components, the overall uncertainty in modeled vs. measured results and modeling large PV systems. SNL is also conducting research into the overall reliability of PV systems.

  16. Experimental validation of a heat transfer model for concentrating photovoltaic system

    International Nuclear Information System (INIS)

    Sendhil Kumar, Natarajan; Matty, Katz; Rita, Ebner; Simon, Weingaertner; Ortrun, Aßländer; Alex, Cole; Roland, Wertz; Tim, Giesen; Tapas Kumar, Mallick

    2012-01-01

    In this paper, a three dimensional heat transfer model is presented for a novel concentrating photovoltaic design for Active Solar Panel Initiative System (ASPIS). The concentration ratio of two systems (early and integrated prototype) are 5× and 10× respectively, designed for roof-top integrated Photovoltaic systems. ANSYS 12.1, CFX package was effectively used to predict the temperatures of the components of the both ASPIS systems at various boundary conditions. The predicted component temperatures of an early prototype were compared with experimental results of ASPIS, which were carried out in Solecta – Israel and at the Austrian Institute of Technology (AIT) – Austria. It was observed that the solar cell and lens temperature prediction shows good agreement with Solecta measurements. The minimum and maximum deviation of 3.8% and 17.9% were observed between numerical and Solecta measurements and the maximum deviations of 16.9% were observed between modeling and AIT measurements. Thus, the developed validated thermal model enables to predict the component temperatures for concentrating photovoltaic systems. - Highlights: ► Experimentally validated heat transfer model for concentrating Photovoltaic system developed. ► Predictions of solar cell temperatures for parallactic tracking CPV system for roof integration. ► The ASPIS module contains 2 mm wide 216 solar cells manufactured based on SATURN technology. ► A solar cell temperature of 44 °C was predicted for solar radiation intensity was 1000 W/m 2 and ambient temperature was 20 °C. ► Average deviation was 6% and enabled to predict temperature of any CPV system.

  17. Model-based fault detection algorithm for photovoltaic system monitoring

    KAUST Repository

    Harrou, Fouzi; Sun, Ying; Saidi, Ahmed

    2018-01-01

    Reliable detection of faults in PV systems plays an important role in improving their reliability, productivity, and safety. This paper addresses the detection of faults in the direct current (DC) side of photovoltaic (PV) systems using a

  18. Grid-connected photovoltaic system design for local government ...

    African Journals Online (AJOL)

    Grid-connected photovoltaic system design for local government offices in Nigeria. ... Nigerian Journal of Technology. Journal Home ... It is neat, silent and elegant process of generating electric power in environmentally friendly manner. In this ...

  19. Profitability considerations for photovoltaics-based solar cooling systems; Wirtschaftlichkeitsbetrachtungen fuer photovoltaik-basierte solare Kuehlsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Kohlenbach, Paul [Beuth Hochschule fuer Technik, Berlin (Germany). Fachbereich VIII

    2016-07-01

    In the present article it is studied, under which boundary conditions the application of photovoltaics-based cooling systems is presently economically meaningful. A comparison with a net-drived cold-water set (100 kW{sub r} 5000 full hours/year) as reference system is made. As influence quantity the levelized cost of cooling energy (LCCE) is defined. Following options were studied: - PV system is directly conducted to the cooling facility by means of physical cable connection - PV system is separately fed into the current network and payed back via feeding compensation. Additionally sensitivity analyses of selected parameters on the refrigeration costs were studied.

  20. Designing with solar power a source book for building integrated photovoltaics (BIPV)

    CERN Document Server

    Prasad, Deo

    2014-01-01

    Designing with Solar Power is the result of international collaborative research and development work carried out within the framework of the International Energy Agency's Photovoltaic Power Systems Programme (PVPS) and performed within its Task 7 on 'Photovoltaic power systems in the built environment'.Each chapter of this precisely detailed and informative book has been prepared by an international expert in a specific area related to the development, use and application of building-integrated photovoltaics (BiPV). Chapters not only cover the basics of solar power and electrical concepts, bu

  1. Photovoltaic engineering handbook

    Energy Technology Data Exchange (ETDEWEB)

    Lasnier, F; Ang, T G [Asian Institute of Technolgoy, Bangkok (TH)

    1990-01-01

    The Photovoltaic Engineering Handbook is a comprehensive 'nuts and bolts' guide to photovoltaic technology and systems engineering aimed at engineers and designers in the field. It is the first book to look closely at the practical problems involved in evaluating and setting up a PV power system. The authors' comprehensive insight into the different procedures and decisions that a designer needs to make. The book is unique in its coverage and the technical information is presented in a concise and simple way to enable engineers from a wide range of backgrounds to initiate, assess, analyse and design a PV system. Energy planners making decisions on the most appropriate system for specific needs will also benefit from reading this book. Topics covered include technological processes, including solar cell technology, the photovoltaic generator, photovoltaic systems engineering; characterization and testing methods, sizing procedure; economic analysis and instrumentation. (author).

  2. Design for Reliability of Power Electronics for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Sangwongwanich, Ariya; Blaabjerg, Frede

    2016-01-01

    Power electronics is the enabling technology for optimizing energy harvesting from renewable systems like Photovoltaic (PV) and wind power systems, and also for interfacing grid-friendly energy systems. Advancements in the power semiconductor technology (e.g., wide band-gap devices) have pushed...... the conversion efficiency of power electronics to above 98%, where however te reliability of power electronics is becoming of high concern. Therefore, it is important to design for reliable power electronic systems to lower the risks of many failures during operation; otherwise will increase the cost...... for maintenance and reputation, thus affecting the cost of PV energy. Today's PV power conversion applications require the power electronic systems with low failure rates during a service life of 20 years or even more. To achieve so, it is vital to know the main life-limiting factors of power electronic systems...

  3. Dissemination of photovoltaics in the Gambia

    Energy Technology Data Exchange (ETDEWEB)

    Able-Thomas, U.; Pearsall, N.M. [University of Northumbria, Newcastle upon Tyne (United Kingdom); Hill, R.; O`Keefe, P. [University of Northumbria, Newcastle upon Tyne (United Kingdom)

    1995-11-01

    The Gambia has abundant solar energy but a significant shortfall in electrical generation and distribution capacity, along with a growing demand for electricity. This paper will outline areas in the application of photovoltaics (PV) in The Gambia which are both technically and economically viable. Photovoltaics is beginning to contribute to developmental efforts, but this contribution is rarely quantified. The paper will discuss the socio-economic benefits that The Gambia has derived from this appropriate technology. The application of PV on a scale much wider than at present will require strengthening of the infrastructure in PV systems, construction and maintenance and financing. The infrastructural needs of the country and its manufacturing capabilities will be assessed along with the organizational aspects for successful PV dissemination. (Author)

  4. Summary of third international executive conference on photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, W.

    2001-07-01

    In December 1990, the International Energy Agency (IEA) invited photovoltaic manufacturers, electrical utilities, and government leaders to a groundbreaking First Congress of Executives conference in Taormina, Italy. The purpose was to develop a strategic approach to PV market development. The Taormina Congress focused on the diffusion of applications based on cost-effectiveness. A second IEA International Conference was held in Sun Valley, Idaho, in September 1995, focusing on the implementation of physical markets based on profit opportunities. Discussions in Sun Valley included the integration of utility and PV businesses into new partnerships in the developing world. By 1995, the strategic interaction of utility activity with photovoltaic technology was recognised and a number of new business opportunities were identified in both industrialised and developing countries. The November 1999 conference, held in Venice, Italy, has taken things a step further. It focused on communicating the 'value of the sun', as well as bringing in the developing business interests and expanding roles of the building construction industries and finance institutions. This theme was considered as being the most important issue of the conference and led to the conclusion that just selling kilowatt-hours is not enough, as the market needs complete products and better concepts. Further, all of the relevant stakeholders, including PV industry, project developers, architects, local, regional and national governments, and the IEA should collaborate in a world-wide effort to accelerate the growth of markets for photovoltaic electricity. The conference was designed to provide a unique forum for senior executives from the energy and building sectors, the photovoltaic industry, financial institutions and governments. The aim was to discuss and jointly develop strategic business opportunities for photovoltaics in a rapidly changing energy market and to take the growing movement

  5. National Survey Report of PV Power Applications in France 2012. Photovoltaic Power Applications in France - National Survey Report 2012

    International Nuclear Information System (INIS)

    Durand, Yvonnick

    2013-05-01

    The PV power of all grid-connected photovoltaic systems installed in 2012 stood at 1 079 MW. This represented a 38 % fall compared with 2011. New grid-connected distributed systems, the majority of which were building-integrated, represented a total power of 756 MW, while grid-connected centralised ground-based power plants accounted for 323 MW. New PV installations in mainland France accounted for 35 % of total new electricity production capacity commissioned in 2012. The off-grid stand-alone photovoltaic system sector remains marginal with around 0,2 MW installed. The cumulative power capacity of all photovoltaic systems in operation at the end of 2012 stood at 4 003 MW (281 724 systems) representing an increase of 37% compared with 2011. Residential systems less than or equal to 3 kW accounted for 86% of all installations and 16 % of total power capacity, while systems exceeding 250 kW accounted for 0,3% of all installations and 44% of total capacity. In 2012, photovoltaic electricity production accounted for 0,7% of France's total electricity production. In France, the estimated average price of European-manufactured photovoltaic modules stood at 0,72 EUR/W in 2012. The fall in prices observed over the last two years has led to substantial growth in the medium-power and high-power systems sector. The turnkey price stood at around 3,7 EUR/W in 2012 for building-integrated residential systems (IAB) using European modules. The price of simplified building-integrated systems (ISB) on commercial and industrial buildings stood at 2,0 EUR/W, and at 1,6 EUR/W for high-power grid-connected ground-mounted systems (all prices mentioned are exclusive of VAT). The French photovoltaic component industry faced stiff international competition in 2012. The industrial value chain has, on the whole, remained relatively unscathed, but small installation companies have been the worst affected. Upstream of the PV sector, photovoltaic-grade silicon manufacturing is currently at

  6. Sizing and economic analysis of stand alone photovoltaic system with hydrogen storage

    Science.gov (United States)

    Nordin, N. D.; Rahman, H. A.

    2017-11-01

    This paper proposes a design steps in sizing of standalone photovoltaic system with hydrogen storage using intuitive method. The main advantage of this method is it uses a direct mathematical approach to find system’s size based on daily load consumption and average irradiation data. The keys of system design are to satisfy a pre-determined load requirement and maintain hydrogen storage’s state of charge during low solar irradiation period. To test the effectiveness of the proposed method, a case study is conducted using Kuala Lumpur’s generated meteorological data and rural area’s typical daily load profile of 2.215 kWh. In addition, an economic analysis is performed to appraise the proposed system feasibility. The finding shows that the levelized cost of energy for proposed system is RM 1.98 kWh. However, based on sizing results obtained using a published method with AGM battery as back-up supply, the system cost is lower and more economically viable. The feasibility of PV system with hydrogen storage can be improved if the efficiency of hydrogen storage technologies significantly increases in the future. Hence, a sensitivity analysis is performed to verify the effect of electrolyzer and fuel cell efficiencies towards levelized cost of energy. Efficiencies of electrolyzer and fuel cell available in current market are validated using laboratory’s experimental data. This finding is needed to envisage the applicability of photovoltaic system with hydrogen storage as a future power supply source in Malaysia.

  7. Public attitudes towards photovoltaic developments: Case study from Greece

    International Nuclear Information System (INIS)

    Tsantopoulos, Georgios; Arabatzis, Garyfallos; Tampakis, Stilianos

    2014-01-01

    The present decade is considered to be vitally important both as regards addressing energy requirements and for environmental protection purposes. The decisions taken, both on an individual and a collective level, will have a decisive impact on the environment, and primarily on climate change, due to the increased energy demands and the need to reduce carbon use in energy generation. The present study was designed and carried out while an extensive debate was ongoing in Greece regarding changes to the legislative framework that would specifically disallow new applications for the installation of photovoltaic systems; its aim is to depict the attitude of Greek citizens, through the completion of 1068 questionnaires. The research results show that over half the respondents are informed about the use of photovoltaic systems for electricity generation. Furthermore, almost half are willing to invest in such systems, either at home or on a plot of land. The factors contributing to the installation of photovoltaic systems are mainly “environmental”, “financial” and “social”. Finally, the citizens who are most willing to invest in residential photovoltaic systems are mainly university or technical school graduates; they would rather take such a decision after being motivated by institutional bodies and would do so for reasons of recognition. - Highlights: • The circumstances for RES are favorable both in the EU and in Greece. • The growth of renewable energy sources, particularly photovoltaic systems, is provenly following an upward trend. • The photovoltaic electricity production is an environmentally-friendly, sustainable and socially acceptable answer to the future energy requirements of society. • The Greek citizens state that they are adequately informed and sufficiently willing to invest in photovoltaic systems either residentially or in a plot of land

  8. Probability of islanding in utility networks due to grid connected photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, B.

    2002-09-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme takes a look at the probability of islanding in utility networks due to grid-connected photovoltaic power systems. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the results on a study on the probability of islanding in power networks with a high penetration level of grid connected PV-systems. The results are based on measurements performed during one year in a Dutch utility network. The measurements of active and reactive power were taken every second for two years and stored in a computer for off-line analysis. The area examined and its characteristics are described, as are the test set-up and the equipment used. The ratios between load and PV-power are discussed. The general conclusion is that the probability of islanding is virtually zero for low, medium and high penetration levels of PV-systems.

  9. Module-level DC/DC conversion for photovoltaic systems

    NARCIS (Netherlands)

    Bergveld, H.J.; Büthker, D.; Castello, C.; Doorn, T.S.; Jong, de A.; van Otten, R.; Waal, de K.

    2011-01-01

    Photovoltaic (PV) systems are increasingly used to generate electrical energy from solar irradiance incident on PV modules. Each PV module is formed by placing a large amount of PV cells, typically 60, in series. The PV system is then formed by placing a number, typically 10–12, of PV modules in

  10. Fiscal 2000 achievement report. International demonstrative development of photovoltaic power generation system (Demonstrative study on grid-connected photovoltaic power generation system in Thailand); 2000 nendo seika hokokusho. Taiyoko hatsuden system kokusai kyodo jissho kaihatsu - Taiyoko hatsuden keitou renkei system jissho kenkyu (Tai)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    A demonstrative study was conducted in Thailand for grasping the effect on small electricity grids when several photovoltaic power generation systems, including AC modules, are connected to the grid. In fiscal 2000, surveys and studies were conducted about the data of the local power system, where to install the demonstrative system, and how to install the same, which were necessary for working out a basic design for Libong Island newly designated as the site for the demonstrative system. It was then concluded that the demonstrative system be a grid-connected 100 kW-level photovoltaic system comprising one main photovoltaic power station (85 kW), photovoltaic power systems for school buildings (3-6 kW, three schools), and AC modules (110 W, 10 locations). The manufacture of solar cell modules, grid-connected power conditioners, and measuring devices were completed. Civil engineering work and construction were under way on the site, including the construction of a management building, installation of concrete bases for solar cell arrays, construction of fences surrounding the site, and so forth. (NEDO)

  11. The influence of spatial orientation of the photovoltaic system to generate electricy

    Directory of Open Access Journals (Sweden)

    Umihanić Midhat Š.

    2015-01-01

    Full Text Available Solar energy, or solar energy, is an inexhaustible energy resource. Solar energy is the cleanest of all renewable energy sources with the least negative impact on the environment and therefore this energy resource gives great importance. Utilization of solar energy as possible its transformation into electricity using photovoltaic ( PV photovoltaic systems. The main problem in PV systems is their small degree of efficiency. On the laboratory conditions of about 30 %. when the coefficient or factor in the commercial utilization of the system, about 15 %. Therefore, every step toward increasing capacity utilization of such systems brings tremendous results in terms of energy yield. More efficient capacity utilization of such systems can be improved by selecting the optimal position PV system in relation to the geometry of the Sun - Earth. This paper aims to show the influence of the spatial orientation of the PV system to the capacity utilization factor of PV systems, or to produce electricity. For simulation and analysis used PVGIS ( Photovoltaic Geographical Information System Interactive Maps on-line calculator.

  12. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  13. Research and design of photovoltaic power monitoring system based on Zig Bee

    Science.gov (United States)

    Zhu, Lijuan; Yun, Zhonghua; Bianbawangdui; Bianbaciren

    2018-01-01

    In order to monitor and study the impact of environmental parameters on photovoltaic cells, a photovoltaic cell monitoring system based on ZigBee is designed. The system uses ZigBee wireless communication technology to achieve real-time acquisition of P-I-V curves and environmental parameters of terminal nodes, and transfer the data to the coordinator, the coordinator communicates with the STM32 through the serial port. In addition, STM32 uses the serial port to transfer data to the host computer written by LabVIEW, and the collected data is displayed in real time, as well as stored in the background database. The experimental results show that the system has a stable performance, accurate measurement, high sensitivity, high reliability, can better realize real-time collection of photovoltaic cell characteristics and environmental parameters.

  14. Reconfiguration of photovoltaic panels for reducing the hydrogen consumption in fuel cells of hybrid systems

    Directory of Open Access Journals (Sweden)

    Daniel González-Montoya

    2017-05-01

    Full Text Available Hybrid generation combines advantages from fuel cell systems with non-predictable generation approaches, such as photovoltaic and wind generators. In such hybrid systems, it is desirable to minimize as much as possible the fuel consumption, for the sake of reducing costs and increasing the system autonomy. This paper proposes an optimization algorithm, referred to as population-based incremental learning, in order to maximize the produced power of a photovoltaic generator. This maximization reduces the fuel consumption in the hybrid aggregation. Moreover, the algorithm's speed enables the real-time computation of the best configuration for the photovoltaic system, which also optimizes the fuel consumption in the complementary fuel cell system. Finally, a system experimental validation is presented considering 6 photovoltaic modules and a NEXA 1.2KW fuel cell. Such a validation demonstrates the effectiveness of the proposed algorithm to reduce the hydrogen consumption in these hybrid systems.

  15. Modeling Photovoltaic Power

    OpenAIRE

    Mavromatakis, F.; Franghiadakis, Y.; Vignola, F.

    2016-01-01

    A robust and reliable model describing the power produced by a photovoltaic system is needed in order to be able to detect module failures, inverter malfunction, shadowing effects and other factors that may result to energy losses. In addition, a reliable model enables an investor to perform accurate estimates of the system energy production, payback times etc. The model utilizes the global irradiance reaching the plane of the photovoltaic modules since in almost all Photovoltaic (PV) facilit...

  16. Development of small-scale photovoltaic systems; Le photovoltaique au coin de la rue

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-04-01

    Small-scale photovoltaic installations are becoming competitive because the decrease in the price of solar panels is now combined with a drop in the electrical consumption levels of urban equipment. Emergency stop telephones and pay-and-display ticket machines for motorists have now become the most visible applications of photovoltaic technology. Solar installations of less than 150 W capacity are more and more present in the urban environment. (A.L.B.)

  17. 2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications

    Science.gov (United States)

    Cheng, Kai; Guo, Yu; Han, Nannan; Jiang, Xue; Zhang, Junfeng; Ahuja, Rajeev; Su, Yan; Zhao, Jijun

    2018-04-01

    Solar photovoltaics provides a practical and sustainable solution to the increasing global energy demand. Using first-principles calculations, we investigate the energetics and electronic properties of two-dimensional lateral heterostructures by group-III monochalcogenides and explore their potential applications in photovoltaics. The band structures and formation energies from supercell calculations demonstrate that these heterostructures retain semiconducting behavior and might be synthesized in laboratory using the chemical vapor deposition technique. According to the computed band offsets, most of the heterojunctions belong to type II band alignment, which can prevent the recombination of electron-hole pairs. Besides, the electronic properties of these lateral heterostructures can be effectively tailored by the number of layers, leading to a high theoretical power conversion efficiency over 20%.

  18. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - R and D of evaluation technology of the photovoltaic power system. Separate volume. R and D of the system evaluation technology (Data book on the photovoltaic power system); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Taiyoko hatsuden system hyoka gijutsu no kenkyu kaihatsu - System hyoka gijutsu no kenkyu kaihatsu (Bessatsu : Taiyoko hatsuden system data shu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of establishing the optimum design and optimum operation technology of various kinds of photovoltaic power system, data were collected to make a data book on various kinds of photovoltaic power system of which the future commercialization is expected. Included in this data book were the monthly report on operation data on demonstrative test facilities at the Hamamatsu site of JQA (Japan Quality Assurance Organization), daily graph of insolation/temperature, monthly graph of wind direction/wind velocity. Further, as the data on the residential use photovoltaic power system, data on the following were summed up: information on the site of installation of the residential use photovoltaic power system (photo information, the state of installation such as sites installed more in FY 2000, drawings of module arrangement and measuring point layout, etc.), daily report on operation (graph of daily trends, daily report by site, hourly report by site, daily report on all sites, hourly report on all sites), operation data and performance indices, list of troubles arising in the residential use photovoltaic power system, other system information about residential use measuring data, power generation characteristics and {alpha}{sub pmax} of residential use solar cell modules, etc. (NEDO)

  19. Application of Bond Graph Modeling for Photovoltaic Module Simulation

    Directory of Open Access Journals (Sweden)

    Madi S.

    2016-01-01

    Full Text Available In this paper, photovoltaic generator is represented using the bond-graph methodology. Starting from the equivalent circuit the bond graph and the block diagram of the photovoltaic generator have been derived. Upon applying bond graph elements and rules a mathematical model of the photovoltaic generator is obtained. Simulation results of this obtained model using real recorded data (irradiation and temperature at the Renewable Energies Development Centre in Bouzaréah – Algeria are obtained using MATLAB/SMULINK software. The results have compared with datasheet of the photovoltaic generator for validation purposes.

  20. Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems

    Directory of Open Access Journals (Sweden)

    Flavio Ciccarelli

    2018-02-01

    Full Text Available The growing interest in the use of energy storage systems to improve the performance of tramways has prompted the development of control techniques and optimal storage devices, displacement, and sizing to obtain the maximum profit and reduce the total installation cost. Recently, the rapid diffusion of renewable energy generation from photovoltaic panels has also created a large interest in coupling renewable energy and storage units. This study analyzed the integration of a photovoltaic power plant, supercapacitor energy storage system, and railway power system. Random optimization was used to verify the feasibility of this integration in a real tramway electric system operating in the city of Naples, and the benefits and total cost of this integration were evaluated.

  1. Photovoltaic Product Directory and Buyers Guide

    Energy Technology Data Exchange (ETDEWEB)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  2. National Survey Report of PV Power Applications in The Netherlands 2009. Task 1. Exchange and dissemination of information on PV power systems

    International Nuclear Information System (INIS)

    2010-12-01

    The objective of Task 1 of the IEA Photovoltaic Power Systems Programme is to facilitate the exchange and dissemination of information on the technical, economic, environmental and social aspects of photovoltaic power systems. An important deliverable of Task 1 is the annual Trends in photovoltaic applications report. In parallel, National Survey Reports are produced annually by each Task 1 participant. This document is the Dutch National Survey Report for the year 2009. Information from this document will be used as input to the annual Trends in photovoltaic applications report.

  3. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  4. Design and implementation of DSP based solar converter for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Caliskan, Eser [TUBITAK - MRC, Kocaeli (Turkey). Energy Inst.; Ustun, Ozgur [Istanbul Technical Univ., Maslak (Turkey). Electrical Engineering Dept.

    2012-07-01

    This study discusses the design and implementation of a DSP controlled converter for photovoltaic system that can track the maximum power point, charge and discharge the battery. In the designed system, the boost converter operates the photovoltaic panels at the maximum power point and the bi-directional battery charger charges and discharges the battery bank as demanded. All required switching and control signals for these converters provided by the high performance C2000 series DSP produced by the Texas Instruments. The current, voltage and temperature data are collected by sensors from power stages by using DSP algorithms and the control signals are generated by the embedded software. The load bus is kept at constant voltage by the bi-directional battery charger. The boost converter is controlled by MPPT algorithms and the current sharing or battery charge modes are implemented depending on the radiation value. The designed photovoltaic system performance is verified by simulation and some experiments. (orig.)

  5. Electrodeposition of near stoichiometric CuInSe2 thin films for photovoltaic applications

    Science.gov (United States)

    Chandran, Ramkumar; Mallik, Archana

    2018-03-01

    This work investigates on the single step electrodeposition of quality CuInSe2 (CIS) thin film absorber layer for photovoltaics applications. The electrodeposition was carried using an aqueous acidic solution with a pH of 2.25. The deposition was carried using a three electrode system in potentiostatic conditions for 50 minutes. The as-deposited and nitrogen (N2) annealed films were characterized using XRD, FE-SEM and Raman spectroscopy. It has been observed that the SDS has the tendency to suppress the copper selenide (CuxSe) secondary phase which is detrimental to the device performance.

  6. Grid-connected photovoltaic power systems: survey of inverter and related protection equipments

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, T

    2002-12-15

    This report for the International Energy Agency (IEA) made by Task 5 of the Photovoltaic Power Systems (PVPS) programme reports on a survey made on inverter and related protection equipment. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. Task 5 deals with issues concerning grid-interconnection and distributed PV power systems. This report summarises the data obtained from survey of recent inverter technology and inverter protection equipment for grid interconnected PV systems. The results are based on the surveys using a questionnaire to identify the current status of grid-interconnection inverters. This report is to serve as a reference for those interested in installing grid-connected PV systems, electric utility company personnel, manufacturers and researchers. The results of the survey are presented and discussed. Technical and financial data is reviewed and two appendices provide details on the results obtained and those institutions involved in the survey.

  7. Research on a New Control Scheme of Photovoltaic Grid Power Generation System

    Directory of Open Access Journals (Sweden)

    Dong-Hui Li

    2014-01-01

    Full Text Available A new type of photovoltaic grid power generation system control scheme to solve the problems of the conventional photovoltaic grid power generation systems is presented. To aim at the oscillation and misjudgment of traditional perturbation observation method, an improved perturbation observation method comparing to the next moment power is proposed, combining with BOOST step-up circuit to realize the maximum power tracking. To counter the harmonic pollution problem in photovoltaic grid power generation system, the deadbeat control scheme in fundamental wave synchronous frequency rotating coordinate system of power grid is presented. A parameter optimization scheme based on positive feedback of active frequency shift island detection to solve the problems like the nondetection zone due to the import of disturbance in traditional island detection method is proposed. Finally, the results in simulation environment by MATLAB/Simulink simulation and experiment environment verify the validity and superiority of the proposed scheme.

  8. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Peter F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sekulic, William R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dreifuerst, Gary [Lawrence Livermore National Laboratory - retired

    2018-04-02

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can and do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.

  9. Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System

    Energy Technology Data Exchange (ETDEWEB)

    Barney, P.; Ingersoll, D.; Jungst, R.; O' Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-24

    We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

  10. Stand alone photovoltaic systems: guarantee of results

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This study aims to provide a guarantee of results for system performance for users of stand-alone photovoltaic (PV) systems, which have no back-up generator. The appropriate main performance criterion for PV systems is that a specified load is supplied with power either continuously or intermittently whenever the load requires power. A methodology to evaluate the power availability of stand-alone PV systems has been developed as part of the project, which encompasses power losses due to weather variations. The guarantee of results produced allows users to compare system designs from different manufacturers. (UK)

  11. Analysis and integration of multilevel inverter configuration with boost converters in a photovoltaic system

    International Nuclear Information System (INIS)

    Prabaharan, N.; Palanisamy, K.

    2016-01-01

    Highlights: • Integration of MLI with boost converters in photovoltaic system including MPPT. • Results are taken for different irradiations and different temperature condition. • Proposed system is tested with sudden step changes from standard test condition. • Analysis of switching losses and conduction loss is discussed. • Theoretical calculation of % THD using asymptotic formula is discussed. - Abstract: This paper proposes a single phase multilevel inverter configuration that conjoins three series connected full bridge inverter and a single half bridge inverter for renewable energy application especially photo-voltaic system. This configuration of multilevel inverter reduces the value of total harmonic distortion. The half bridge inverter utilized in the proposed configuration increases the output voltage level to nearly twice the output voltage level of a conventional cascaded H-bridge multilevel inverter. This higher output voltage level is generated with lesser number of power semiconductor switches compared to conventional configuration, thus reducing the total harmonic distortion and switching losses. The effectiveness of the proposed configuration is illustrated by replacing the isolated DC sources in multilevel inverter with individual photo-voltaic panels using separate perturb and observer based maximum power point tracking and boost converters. The verification of the proposed system is demonstrated successfully using MATLAB/Simulink based simulation with different irradiation and temperature conditions. Also, the transient operation of the system is verified with results depicted using step change in standard test condition. In the proposed system, total harmonic distortion of the output voltage is 9.85% without using passive filters and 3.91% with filter inductance. Theoretical calculation of the power losses and total harmonic distortion with mathematical equations are discussed. Selective experimental results are presented to prove the

  12. Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-15

    As part of the Photovoltaic Power Systems Programme, annual surveys of PV power applications and markets in the 20 participating countries are carried out. The objective of the survey reports is to present and interpret trends in both PV systems and components being used in the PV power systems market, as well as changing applications within that market, in the context of business situations, policies and relevant non-technical factors in the reporting countries. The survey report is not intended to serve as an introduction to PV, nor as a policy document. It is prepared to assist those responsible for developing the business strategies of PV companies and to aid the development of medium term plans for electricity utilities and other providers of energy services. It also provides guidance to government officials responsible for setting energy policy and preparing national energy plans. This report presents the results of the fifth International Survey. It provides an overview of PV power systems applications and markets in the reporting countries at the end of 1999 and analyses trends in the implementation of PV power systems between 1992 and 1999. (author)

  13. Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 1999

    International Nuclear Information System (INIS)

    2000-09-01

    As part of the Photovoltaic Power Systems Programme, annual surveys of PV power applications and markets in the 20 participating countries are carried out. The objective of the survey reports is to present and interpret trends in both PV systems and components being used in the PV power systems market, as well as changing applications within that market, in the context of business situations, policies and relevant non-technical factors in the reporting countries. The survey report is not intended to serve as an introduction to PV, nor as a policy document. It is prepared to assist those responsible for developing the business strategies of PV companies and to aid the development of medium term plans for electricity utilities and other providers of energy services. It also provides guidance to government officials responsible for setting energy policy and preparing national energy plans. This report presents the results of the fifth International Survey. It provides an overview of PV power systems applications and markets in the reporting countries at the end of 1999 and analyses trends in the implementation of PV power systems between 1992 and 1999. (author)

  14. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse Aistrup

    2017-01-01

    Concentrated photovoltaic (CPV) system integrated with thermoelectric generators (TEGs) is a novel technology that has potential to offer high efficient system. In this study, a thermally coupled model of concentrated photovoltaic-thermoelctric (CPV/TEG) system is established to investigate...... than CPV-only system. The results indicate that contribution of the TEG in power generation enhances at high sun concentrations. Depending to critical design parameters of the CPV and the TEG, there are optimal values for heat transfer coefficient in the heat sink that offer minimum energy cost....... feasibility of the hybrid system over wide range of solar concentrations and different types of heat sinks. The model takes into account critical design parameters in the CPV and the TEG module. The results of this study show that for thermoelectric materials with ZT ≈ 1, the CPV/TEG system is more efficient...

  15. Photovoltaic sources modeling

    CERN Document Server

    Petrone, Giovanni; Spagnuolo, Giovanni

    2016-01-01

    This comprehensive guide surveys all available models for simulating a photovoltaic (PV) generator at different levels of granularity, from cell to system level, in uniform as well as in mismatched conditions. Providing a thorough comparison among the models, engineers have all the elements needed to choose the right PV array model for specific applications or environmental conditions matched with the model of the electronic circuit used to maximize the PV power production.

  16. Energy management algorithm for an optimum control of a photovoltaic water pumping system

    International Nuclear Information System (INIS)

    Sallem, Souhir; Chaabene, Maher; Kamoun, M.B.A.

    2009-01-01

    The effectiveness of photovoltaic water pumping systems depends on the adequacy between the generated energy and the volume of pumped water. This paper presents an intelligent algorithm which makes decision on the interconnection modes and instants of photovoltaic installation components: battery, water pump and photovoltaic panel. The decision is made by fuzzy rules on the basis of the Photovoltaic Panel Generation (PVPG) forecast during a considered day, on the load required power, and by considering the battery safety. The algorithm aims to extend operation time of the water pump by controlling a switching unit which links the system components with respect to multi objective management criteria. The algorithm implementation demonstrates that the approach extends the pumping period for more than 5 h a day which gives a mean daily improvement of 97% of the water pumped volume.

  17. Photovoltaic plants in the electronic system

    International Nuclear Information System (INIS)

    Marzio, L.; Vigotti, R.

    1999-01-01

    The article provides a 1998 updated picture of Italy's and the world's photovoltaic market in terms of produced modules and total installed capacity, as well as market growth forecasts up to 2010. After a short description of the state-of-the-art of cell and module manufacturing, ana analysis of the cost of producing a photovoltaic kW is reported for different plant types: stand-alone plants with energy storage batteries, plants connected to low low voltage networks or intended for supporting medium voltage networks, hybrid plants with diesel sets. The article is concluded by illustrating ENEL's (Electric Power Production Company) engagement in the field of photovoltaic solar energy as regards theoretical studies, research and testing of new technologies, and installing plants; over nearly twenty years of activity, ENEL has designed and built a few hundreds of photovoltaic plants for a total capacity of about 4.000 kW, and is currently in the process of setting up a further 370 kW [it

  18. Modeling, performance analysis and economic feasibility of a mirror-augmented photovoltaic system

    International Nuclear Information System (INIS)

    Fortunato, B.; Torresi, M.; Deramo, A.

    2014-01-01

    Highlights: • Mathematical modeling for the energy yield in Mirror Augmented PV systems. • Simplified analytical expression for skyview factor applicable to MAPV. • Economic appraisal of MAPV systems: NPV, DPBP, IRR and LCC. - Abstract: In the last years, solar photovoltaic (PV) systems have had great impetus with research and demonstration projects, both in Italy and other European countries. The main problems with solar PV are the cost of solar electricity, which is still higher compared with other renewables (such as wind or biomass), due to the cost of semi-conductors, and the low conversion efficiency. However, PV panel prices are rapidly decreasing benefiting from favorable economies of scale. For instance, according to the Energy Information Administration (EIA) the US average levelized costs for plants entering service in the 2018 should be 144.3$/MW h for solar PV, whereas 111.0$/MW h for biomass and 86.6$/MW h for wind (Levelized Cost of New Generation Resources in the Annual Energy Outlook, 2013). In order to increase the electric yield of PV modules (which can be even doubled with respect to constant tilt configurations), without significantly increasing the system costs, it was decided to consider the addition of inclined mirrors at both sides of the PV modules, so as to deflect more solar rays towards them, as in Mirror-Augmented Photovoltaic (MAPV) systems. The system preserves its constructive simplicity with commercial flat PV modules even though dual axis tracker must be implemented, since MAPV systems harness mainly the direct radiation. The performance analysis of MAPV systems starts from the calculation of the global irradiation on the surface of the PV module which is a sum of the direct sunlight on it and the irradiation reflected by the mirrors. A mathematical model of a MAPV system is presented, which takes into account not only the increase of direct (or beam) radiation, due to the mirrors, but also the reduction of both the diffuse

  19. Present condition and the future of photovoltaic generating systems. Part 5. Future perspective of photovoltaic power systems; Taiyo hikarihatsuden system no genjo to shorai. 5. Taiyo hikarihatsuden system no shorai tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Horigome, T

    1994-12-20

    In this paper, as the future perspective of photovoltaic power systems, the establishment of the legal environment for the popularization of the photovoltaic power systems in large amounts and the future prediction of the popularization of power generation are described. Specially the following grand ideas are introduced: building in high seas regeneratable energy transformation plants with solar energy as the main energy, generating combined power of photovoltaic, solar heat, wave and temperature difference of the sea water, biomass, solar-bio power generating without CO2 exhaustion, building hard solar plants to produce electricity, hydrogen, methanol and fresh water from regeneratable energy, and breeding fish, shells and see weed in the sea pasture land under the plants, which are the so called `Energy sea pasture high breed plants (REPO Plan)` and also space power generating i.e. setting up special satellites for solar power generation in synchronous orbits, generating power through solar batteries or solar heat and then transmitting it to the earth through microwave. 12 refs., 4 figs.

  20. Impact of the Implementation of Photovoltaic Panels at Cayo Santa Maria Electric System

    International Nuclear Information System (INIS)

    Gallego Landera, Yandi Aníbal; Casas Fernandez, Leonardo; Garcia Sanchez, Zaid; Rivas Arocha, Yanet

    2017-01-01

    The global interest in encouraging the use of renewable energy has triggered a massive opening unconventional generation units. In view of the current incentives at country level for the installation of photovoltaic panels (PFV), it is possible to foresee that in the future there will be high penetration of distributed generation of this type connected to the electrical system. In our province, Cayo Santa Maria isolated system has three areas for the installation of PFV. As stated above and considering that high penetration levels of photovoltaic generation produces static and dynamic effects in connected isolated systems, it is essential to conduct studies systemically to determine the impact that would produce this connection, taking into consideration its location, technology, modeling and penetration level. The analysis allows to know how beneficial or harmful the installation of photovoltaic generators can be in that system. (author)

  1. Power control strategy of a photovoltaic power plant for microgrid applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Francois, Bruno [Ecole Centrale de Lille, Cite Scientifique, Villeneuve d' Ascq (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Degobert, Philippe [Ecole Nationale Superieure d' Arts et Metiers, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP); Robyns, Benoit [Hautes Etudes d' Ingenieur, Lille (FR). Laboratoire d' Electrotechnique et d' Electronique de Puissance de Lille (L2EP)

    2008-07-01

    Photovoltaic power plants operates currently maximal power point tracking (MPPT). For microgrid applications, however, a PV power plant can not operate in the MPPT mode in all conditions. When a microgrid is islanded from the grid with few loads, a limitation of the produced power by PV plants is required and prescribed by the Distribution System Operator. This paper proposes a power control technique integrated into a dynamic model of a PV power plant by using equivalent continuous models of power electronic converters. The power limitation mode of the PV is performed by applying the correct PV terminal voltage, which corresponds to the prescribed power reference. The proposed global model is validated by simulations with the help of Matlab-Simulink trademark. (orig.)

  2. Recent Developments in Maximum Power Point Tracking Technologies for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Nevzat Onat

    2010-01-01

    Full Text Available In photovoltaic (PV system applications, it is very important to design a system for operating of the solar cells (SCs under best conditions and highest efficiency. Maximum power point (MPP varies depending on the angle of sunlight on the surface of the panel and cell temperature. Hence, the operating point of the load is not always MPP of PV system. Therefore, in order to supply reliable energy to the load, PV systems are designed to include more than the required number of modules. The solution to this problem is that switching power converters are used, that is called maximum power point tracker (MPPT. In this study, the various aspects of these algorithms have been analyzed in detail. Classifications, definitions, and basic equations of the most widely used MPPT technologies are given. Moreover, a comparison was made in the conclusion.

  3. Grid-Tied Photovoltaic Power System

    Science.gov (United States)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM

  4. Intermediate photovoltaic system application experiment operational performance, executive summary. Volume 3 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Performance data for the months of November and December, 1981 are given for a utility connected 100 kW solar photovoltaic flat panel power system at a Massachusetts school building. Data given include: monthly and daily energy produced; monthly and daily solar energy incident on the collectors; monthly array efficiency; monthly power conditioner efficiency; monthly system efficiency; monthly capacity factor; and monthly average insolation. Also included are a plot of data acquisition mode and recording interval for each day of each month, and a malfunction report regarding the data acquisition system. (LEW)

  5. Federal policies to promote the widespread utilization of photovoltaic systems. Supplement: review and critique

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.L.

    1980-04-15

    This document is intended as a supplement to the two-volume report entitled Federal Policies to Promote the Widespread Utilization of Photovoltaic Systems that was submitted to Congress by the Department of Energy in February and April of 1980. This supplement contains review comments prepared by knowledgeable experts who reviewed early drafts of the Congressional report. Responses to the review comments by the Jet Propulsion Laboratory, preparer of the Congressional report, are also included in this supplement. The Congressional report, mandated in the Solar Photovoltaic Energy Research, Development, and Demonstration Act of 1978 (P.L. 95-590), discusses various issues related to promoting the deployment of photovoltaic systems through the Federal Photovoltaic Program. Various program strategies and funding levels are examined.

  6. Photovoltaic energy cost limit

    International Nuclear Information System (INIS)

    Coiante, D.

    1992-01-01

    Referring to a photovoltaic system for grid connected applications, a parametric expression of kWh cost is derived. The limit of kWh cost is carried out extrapolating the values of cost components to their lowest figure. The reliability of the forecast is checked by disaggregating kWh cost in direct and indirect costs and by discussing the possible cost reduction of each component

  7. Photovoltaics in the Department of Defense

    International Nuclear Information System (INIS)

    Chapman, R.N.

    1997-01-01

    This paper documents the history of photovoltaic use within the Department of Defense leading up to the installation of 2.1 MW of photovoltaics underway today. This history describes the evolution of the Department of Defense's Tri-Service Photovoltaic Review Committee and the committee's strategic plan to realize photovoltaic's full potential through outreach, conditioning of the federal procurement system, and specific project development. The Photovoltaic Review Committee estimates photovoltaic's potential at nearly 4,000 MW, of which about 700 MW are considered to be cost-effective at today's prices. The paper describes photovoltaic's potential within the Department of Defense, the status and features of the 2.1-MW worth of photovoltaic systems under installation, and how these systems are selected and implemented. The paper also documents support provided to the Department of Defense by the Department of Energy dating back to the late 70s. copyright 1997 American Institute of Physics

  8. Technical analysis of photovoltaic/wind systems with hydrogen storage

    Directory of Open Access Journals (Sweden)

    Bakić Vukman V.

    2012-01-01

    Full Text Available The technical analysis of a hybrid wind-photovoltaic energy system with hydrogen gas storage was studied. The market for the distributed power generation based on renewable energy is increasing, particularly for the standalone mini-grid applications. The main design components of PV/Wind hybrid system are the PV panels, the wind turbine and an alkaline electrolyzer with tank. The technical analysis is based on the transient system simulation program TRNSYS 16. The study is realized using the meteorological data for a Typical Metrological Year (TMY for region of Novi Sad, Belgrade cities and Kopaonik national park in Serbia. The purpose of the study is to design a realistic energy system that maximizes the use of renewable energy and minimizes the use of fossil fuels. The reduction in the CO2 emissions is also analyzed in the paper. [Acknowledgment. This paper is the result of the investigations carried out within the scientific project TR33036 supported by the Ministry of Science of the Republic of Serbia.

  9. Emerging Novel Metal Electrodes for Photovoltaic Applications.

    Science.gov (United States)

    Lu, Haifei; Ren, Xingang; Ouyang, Dan; Choy, Wallace C H

    2018-04-01

    Emerging novel metal electrodes not only serve as the collector of free charge carriers, but also function as light trapping designs in photovoltaics. As a potential alternative to commercial indium tin oxide, transparent electrodes composed of metal nanowire, metal mesh, and ultrathin metal film are intensively investigated and developed for achieving high optical transmittance and electrical conductivity. Moreover, light trapping designs via patterning of the back thick metal electrode into different nanostructures, which can deliver a considerable efficiency improvement of photovoltaic devices, contribute by the plasmon-enhanced light-mattering interactions. Therefore, here the recent works of metal-based transparent electrodes and patterned back electrodes in photovoltaics are reviewed, which may push the future development of this exciting field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Organic photovoltaics

    DEFF Research Database (Denmark)

    Demming, Anna; Krebs, Frederik C; Chen, Hongzheng

    2013-01-01

    's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic...... solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency...... of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating...

  11. Intermediate photovoltaic system application experiment operational performance executive summary. Volume 4. For Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Performance data are given for a 100 kW grid-connected flat panel photovoltaic power supply at a Massachusetts high school for the month of January, 1982. Data given include daily and monthly electrical energy produced, daily and monthly plane-of-array solar energy incident, array efficiency, power conditioner efficiency, system efficiency, capacity factor, and average plane-of-array insolation. Also included are the data acquisition mode and recording interval plot and two site event report summaries involving the data acquisition system. (LEW)

  12. Community-scale solar photovoltaics: housing and public development examples

    Energy Technology Data Exchange (ETDEWEB)

    Komoto, K.

    2008-03-15

    This report for the International Energy Agency (IEA) made by Task 10 of the Photovoltaic Power Systems (PVPS) programme takes a look at community-scale photovoltaics. The mission of the Photovoltaic Power Systems Programme is to enhance the international collaboration efforts which accelerate the development and deployment of photovoltaic solar energy. The aim of Task 10 is stated as being to enhance the opportunities for wide-scale, solution-oriented application of photovoltaics in the urban environment. This report provides examples of housing developments and incorporated townships that have integrated multiple stakeholder values into business solutions. The authors are of the opinion that builders, developers, architects and engineers need to consider orientation, aesthetics, load diversity, energy efficiency, grid infrastructure and end use. Residential and commercial building owners or occupants need to consider the design of electric services relative to loads, green image, and economic opportunities such as feed-in tariffs. Local government should give preference to granting permission to high-performance building projects. It is suggested that the finance and insurance sector consider the operational savings in overall debt allowances. System manufacturers and integrators should develop standardised systems. In the emerging PV community market, utilities are quickly gaining awareness of business opportunities. The need for professionals and skilled labour is quoted as having grown as drastically as the PV market itself.

  13. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    OpenAIRE

    Cen Zhaohui

    2017-01-01

    Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model....

  14. Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-15

    As part of the PVPS programme, annual surveys of photovoltaics (PV) power applications and markets in the 20 participating countries are carried out. The objective of the survey reports is to present and interpret trends in both PV systems and components being used in the PV power systems market, and changing applications for these products within that market. These trends are analyzed in the context of the business, policy and non-technical environment in the reporting countries. The survey report is not intended to serve as an introduction to PV, nor as a policy document. It is prepared to assist those responsible for developing the business strategies of PV companies and to aid the development of medium term plans for electricity utilities and other providers of energy services. It also provides guidance to government officials responsible for setting energy policy and preparing national energy plans. This report presents the results of the sixth international survey. It provides an overview of PV power systems applications and markets in the reporting countries at the end of 2000 and analyses trends in the implementation of PV power systems between 1992 and 2000. (author)

  15. Trends in photovoltaic applications. Survey report of selected IEA countries between 1992 and 2000

    International Nuclear Information System (INIS)

    2001-09-01

    As part of the PVPS programme, annual surveys of photovoltaics (PV) power applications and markets in the 20 participating countries are carried out. The objective of the survey reports is to present and interpret trends in both PV systems and components being used in the PV power systems market, and changing applications for these products within that market. These trends are analyzed in the context of the business, policy and non-technical environment in the reporting countries. The survey report is not intended to serve as an introduction to PV, nor as a policy document. It is prepared to assist those responsible for developing the business strategies of PV companies and to aid the development of medium term plans for electricity utilities and other providers of energy services. It also provides guidance to government officials responsible for setting energy policy and preparing national energy plans. This report presents the results of the sixth international survey. It provides an overview of PV power systems applications and markets in the reporting countries at the end of 2000 and analyses trends in the implementation of PV power systems between 1992 and 2000. (author)

  16. Low-Cost SCADA System Using Arduino and Reliance SCADA for a Stand-Alone Photovoltaic System

    Directory of Open Access Journals (Sweden)

    Ibrahim Allafi

    2018-01-01

    Full Text Available SCADA (supervisory control and data acquisition systems are currently employed in many applications, such as home automation, greenhouse automation, and hybrid power systems. Commercial SCADA systems are costly to set up and maintain; therefore those are not used for small renewable energy systems. This paper demonstrates applying Reliance SCADA and Arduino Uno on a small photovoltaic (PV power system to monitor the PV current, voltage, and battery, as well as efficiency. The designed system uses low-cost sensors, an Arduino Uno microcontroller, and free Reliance SCADA software. The Arduino Uno microcontroller collects data from sensors and communicates with a computer through a USB cable. Uno has been programmed to transmit data to Reliance SCADA on PC. In addition, Modbus library has been uploaded on Arduino to allow communication between the Arduino and our SCADA system by using MODBUS RTU protocol. The results of the experiments demonstrate that SCADA works in real time and can be effectively used in monitoring a solar energy system.

  17. Photovoltaic power systems energy storage

    International Nuclear Information System (INIS)

    Buldini, P.L.

    1991-01-01

    Basically, the solar photovoltaic power system consists of: Array of solar panels; Charge/voltage stabilizer; Blocking diode and Storage device. The storage device is a very important part of the system due to the necessity to harmonize the inevitable time shift between energy supply and demand. As energy storage, different devices can be utilized, such as hydropumping, air or other gas compression, flywheel, superconducting magnet, hydrogen generation and so on, but actually secondary (rechargeable) electrochemical cells appear to be the best storage device, due to the direct use for recharge of the d.c. current provided by the solar panels, without any intermediate step of energy transformation and its consequent loss of efficiency

  18. Repetitive controller for improving grid-connected photovoltaic systems

    NARCIS (Netherlands)

    Almeida, de P.M.; Duarte, J.L.; Ribeiro, P.F.; Barbosa, P.G.

    2014-01-01

    This study presents the modelling and design steps of a discrete time recursive repetitive controller (RC) to be used in a grid-connected photovoltaic (PV) system. It is shown that the linear synchronous reference frame proportional-integral controller, originally designed to control the converter's

  19. Boost converter with combined control loop for a stand-alone photovoltaic battery charge system

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Knott, Arnold; Thomsen, Ole Cornelius

    2013-01-01

    frequency avoids perturbations in the load being propagated to the photovoltaic panel and thus deviating the operating point. Linearization of the photovoltaic panel and converter state-space modeling is performed. In order to achieve stable operation under all operating conditions, the photovoltaic panel......The converter control scheme plays an important role in the performance of maximum power point tracking (MPPT) algorithms. In this paper, an input voltage control with double loop for a stand-alone photovoltaic system is designed and tested. The inner current control loop with high crossover...

  20. Chaos Synchronization Based Novel Real-Time Intelligent Fault Diagnosis for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2014-01-01

    Full Text Available The traditional solar photovoltaic fault diagnosis system needs two to three sets of sensing elements to capture fault signals as fault features and many fault diagnosis methods cannot be applied with real time. The fault diagnosis method proposed in this study needs only one set of sensing elements to intercept the fault features of the system, which can be real-time-diagnosed by creating the fault data of only one set of sensors. The aforesaid two points reduce the cost and fault diagnosis time. It can improve the construction of the huge database. This study used Matlab to simulate the faults in the solar photovoltaic system. The maximum power point tracker (MPPT is used to keep a stable power supply to the system when the system has faults. The characteristic signal of system fault voltage is captured and recorded, and the dynamic error of the fault voltage signal is extracted by chaos synchronization. Then, the extension engineering is used to implement the fault diagnosis. Finally, the overall fault diagnosis system only needs to capture the voltage signal of the solar photovoltaic system, and the fault type can be diagnosed instantly.

  1. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    Science.gov (United States)

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  2. Photovoltaic technology diffusion. Contact and interact

    International Nuclear Information System (INIS)

    Kruijsen, J.

    1999-09-01

    How can the diffusion of photovoltaic technologies be advanced? Photovoltaics convert light into electrical energy. They are environmentally friendly, reliable and have minimal maintenance requirements. Up to now, their introduction into the electricity market has been dominated by a technology push perspective. However, this has not yet resulted in a large-scale implementation. This thesis describes a network approach to advance photovoltaic diffusion and presents four guiding principles intended for the parties concerned: those who supply the photovoltaic technologies (e.g., developers of photovoltaic cells); those who integrate photovoltaic technologies into (new) product systems (e.g., engineering firms); the users of photovoltaic systems (e.g., housing corporations); and those who stimulate the use of photovoltaics (e.g., policymakers, subsidisers, branch organisations, financial institutes, and NGOs). refs

  3. Organic photovoltaics. Technology and market

    International Nuclear Information System (INIS)

    Brabec, Christoph J.

    2004-01-01

    Organic photovoltaics has come into the international research focus during the past three years. Up to now main efforts have focused on the improvement of the solar conversion efficiency, and in recent efforts 5% white light efficiencies on the device level have been realized. Despite this in comparison to inorganic technologies low efficiency, organic photovoltaics is evaluated as one of the future key technologies opening up completely new applications and markets for photovoltaics. The key property which makes organic photovoltaics so attractive is the potential of reel to reel processing on low cost substrates with standard coating and printing processes. In this contribution we discuss the economical and technical production aspects for organic photovoltaics

  4. Prognostics and health management of photovoltaic systems

    Science.gov (United States)

    Johnson, Jay; Riley, Daniel

    2018-04-10

    The various technologies presented herein relate to providing prognosis and health management (PHM) of a photovoltaic (PV) system. A PV PHM system can eliminate long-standing issues associated with detecting performance reduction in PV systems. The PV PHM system can utilize an ANN model with meteorological and power input data to facilitate alert generation in the event of a performance reduction without the need for information about the PV PHM system components and design. Comparisons between system data and the PHM model can provide scheduling of maintenance on an as-needed basis. The PHM can also provide an approach for monitoring system/component degradation over the lifetime of the PV system.

  5. A low cost wireless data acquisition system for a remote photovoltaic (PV) water pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoubi, A.; Mechlouch, R. F.; Brahim, A. B. [National School of Engineering of Gabes, Gabes University, Chemical and Processes Engineering Department, Gabes (Tunisia)

    2011-07-01

    This paper presents the design and development of a 16F877 microcontroller-based wireless data acquisition system and a study of the feasibility of different existing methodologies linked to field data acquisition from remote photovoltaic (PV) water pumping systems. Various existing data transmission techniques were studied, especially satellite, radio, Global System for Mobile Communication (GSM) and General Packet Radio Service (GPRS). The system's hardware and software and an application to test its performance are described. The system will be used for reading, storing and analyzing information from several PV water pumping stations situated in remote areas in the arid region of the south of Tunisia. The remote communications are based on the GSM network and, in particular, on the Short text Message Service (SMS). With this integrated system, we can compile a complete database of the different parameters related to the PV water pumping systems of Tunisia. This data could be made available to interested parties over the Internet. (authors)

  6. Intelligent Maximum Power Point Tracking Using Fuzzy Logic for Solar Photovoltaic Systems Under Non-Uniform Irradiation Conditions

    OpenAIRE

    P. Selvam; S. Senthil Kumar

    2016-01-01

    Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit c...

  7. Determination of energy to be supplied by photovoltaic systems for fan-pad systems in cooling process of greenhouses

    International Nuclear Information System (INIS)

    Romantchik, Eugenio; Ríos, Eduardo; Sánchez, Elisa; López, Irineo; Sánchez, José Reyes

    2017-01-01

    Intending to increase the reliability of photovoltaic systems in agriculture sector, this work was developed to calculate the energy required by fan-pad systems for the cooling process in greenhouses. This calculation aims to ensure that the cooling process is completely sustainable. Today, there are no scientific tools to determine the electrical energy consumed by air exhaust fans. In order to address this problem, a mathematical model that predicts the greenhouse temperatures and ventilation rates, was calibrated with experimental data. The results correspond to a typical summer day with high solar radiation and showed that mathematical model can enhance the management of the energy for the cooling process. These results are: power of exhaust fans and their operating hours. It was used a methodology for selection of photovoltaic systems in order to design grid-connected configurations systems capable of producing, at least, the whole of the required energy by three greenhouses with different areas. It is concluded that the accuracy of the model is acceptable and with the methodology of selection of photovoltaic systems represent a reliable tool for calculus of electric power [W] and electric energy [kWh] consumed by the fans, which represent the main and initial design parameter of any type of photovoltaic system.

  8. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  9. New Sunshine Program for fiscal 2000. Development of photovoltaic power system commercialization technology (Development of ultrahigh-efficiency crystalline compound solar cell manufacturing technology - Surveys and studies of peripheral key technologies/Surveys of ultrahigh-efficiency solar cell application fields); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu - Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu, Shuhen yoso gijutsu ni kansuru chosa kenkyu (Chokokoritsu taiyo denchi tou oyo bunya kaitaku chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Surveys and studies were conducted in order to make propositions concerning the fields of application wherein the merits of ultrahigh-efficiency solar cells would be fully utilized. A questionnaire was held about solar cell application fields, and studies were made about new systems based on the need in the market for specific solar cell goods and capable of supporting their mass diffusion. Proposed as the result was the establishment of a rental (lease) system for photovoltaic power systems, a local photovoltaics advisory system, a market for used photovoltaic power systems, and so forth. In the feasibility study of photovoltaic power generation on unused land in agricultural villages, surveys were conducted concerning energy problems, the energy structure, the actual state of energy consumption, the abandoned farm and its utilization, and so forth. Propositions involving photovoltaic power feasibility were then made, which covered power consumption for greenhouse culture, energy supply for producing methanol out of biomass, power sources for insect incapacitating yellow fluorescent lamps, power sources for livestock barn air-conditioning, power sources for animal excretion treatment, and so forth. (NEDO)

  10. Low earth orbit environmental effects on the space station photovoltaic power generation systems

    International Nuclear Information System (INIS)

    Nahra, H.K.

    1977-01-01

    A summary of the Low Earth Orbital Environment, its impact on the photovoltaic power systems of the space station and the solutions implemented to resolve the environmental concerns or issues are described. Low Earth Orbital Environment (LEO) presents several concerns to the photovoltaic power systems of the space station. These concerns include atomic oxygen interaction with the polymeric substrate of the solar arrays, ionized environment effects on the array operating voltage, the effects of the meteoroids and debris impacts and penetration through the different layers of the solar cells and their circuits, and the high energy particle and radiation effects on the overall solar array performance. Potential solutions to some of the degrading environmental interactions that will provide the photovoltaic power system of the space station with the desired life are also summarized

  11. Overview of Single-Phase Grid-Connected Photovoltaic Systems

    OpenAIRE

    Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    A still booming installation of solar photovoltaic (PV) systems has been witnessed worldwide. It is mainly driven by the demand of “clean” power generation. Grid-connected PV systems will become an even active player in the future mixed power systems, which are linked by a vast of power electronics converters. In order to achieve a reliable and efficient power generation from PV systems, stringent demands have been imposed on the entire PV system. It in return advances the development of powe...

  12. A Simulation Method to Find the Optimal Design of Photovoltaic Home System in Malaysia, Case Study: A Building Integrated Photovoltaic in Putra Jaya

    OpenAIRE

    Riza Muhida; Maisarah Ali; Puteri Shireen Jahn Kassim; Muhammad Abu Eusuf; Agus G.E. Sutjipto; Afzeri

    2009-01-01

    Over recent years, the number of building integrated photovoltaic (BIPV) installations for home systems have been increasing in Malaysia. The paper concerns an analysis - as part of current Research and Development (R&D) efforts - to integrate photovoltaics as an architectural feature of a detached house in the new satellite township of Putrajaya, Malaysia. The analysis was undertaken using calculation and simulation tools to optimize performance of BIPV home system. In this study, a the simu...

  13. PWM Regulation of Grid-Tied PV System on the Base of Photovoltaic-Fed Diode-Clamped Inverters

    Directory of Open Access Journals (Sweden)

    Oleschuk V.I.

    2015-12-01

    Full Text Available Investigation of grid-tied photovoltaic system on the base of two diode-clamped inverters, controlled by specific algorithms of pulse-width modulation (PWM, has been done. This system includes two strings of photovoltaic panels feeding two diode-clamped inverters. The outputs of inverters are connected with the corresponding windings on the primary side of three-phase transformer, connected with a grid. In order to reduce phase voltage distortion and to increase efficiency of operation of the system, special scheme of control and modulation of inverters has been used, providing minimization of common-mode voltages and voltage waveforms symmetries under different operating conditions. Detailed simulation of processes in this photovoltaic-fed power conversion system has been executed. The results of simulations verify good performance of photovoltaic system regulated in accordance with specific strategy of control and modulation.

  14. Intermediate photovoltaic system application experiment operational performance report. Volume 2 for Beverly High School, Beverly, MA

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    For the month of July 1981, performance data are listed and graphed for an intermediate photovoltaic system at a high school in Massachusetts. The energy production, incident solar energy and efficiency are given, and the daily energy production and efficiency, and energy production as a function of power and voltage are graphed. The output of the power conditioner, insolation, heating and cooling loads, temperature and wind data, and the number of freeze-thaw cycles are given. (LEW)

  15. Novel structuring routines of titania films for application in photovoltaics

    OpenAIRE

    Niedermeier, Martin A.

    2014-01-01

    Novel routines to structure titania thin films on various length scales are investigated regarding photovoltaic applications. The main focus of the investigations lies on the custom-tailoring of the morphologies of the titania films using sol-gel chemistry in combination with block copolymer templating. Additionally, a low-temperature routine for functional hybrid films as well as the growth of gold as electrode material on top of an organic hole-conductor are investigated. Im Hinblick auf...

  16. Analysis of financial support for photovoltaic system installation with the economic simulation model

    International Nuclear Information System (INIS)

    Imamura, E.; Uchiyama, Y.

    1994-01-01

    The authors developed a penetration method of dispersed generation technologies and tried to investigate economic simulation on photovoltaic systems. The model is composed of several analysis modules; a technology application module, a regional meteorology module, cost modules such as capital cost, power generation cost, marginal cost and avoided cost, and a logistic penetration module. The database management system of application forms, meteorological data, energy demand and equipment costs is also developed to support the model. The main purpose of the study is to make clear impacts to the power supply configuration and cost/benefit effects when PV systems are installed into several different sectors in Japan. The ultimate potential of PV system is 235, 103MWp and its market potential is 15,172 MWp in Japan. Market penetration highly depends on cost learning factors of several components of PV system. The installed capacity with 50% subsidy is 5 times larger than that with 67%. In conclusion, it is feasible for government or utilities to financially support the promotion and installation of PV systems as the electricity supply system

  17. Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system

    International Nuclear Information System (INIS)

    Gazda, Wiesław; Stanek, Wojciech

    2016-01-01

    Highlights: • Biogas cooling, heating and power and photovoltaic systems were studied. • Biogas and solar energy for production of energy carriers were used. • Primary energy savings for trigeneration and photovoltaic plants were examined. • Reduction of CO_2 emission were estimated. - Abstract: The biogas fired tri-generation system for cooling, heating and electricity generation (BCCHP + PV) supported by a photovoltaic system (PV) is discussed and analyzed from energetic and ecological effectiveness point of view. Analyzed system is based on the internal combustion engine and the adsorption machine. For the evaluation of primary energy savings in the BCCHP aided by PV system, the indicators of the total primary energy savings (TPES) and relative primary energy savings ΔPES were defined. Also an analysis is carried out of the reduction of greenhouse gases emission. In the ecological potential evaluation, the environmental impact as an indicator of the total greenhouse gasses reduction (TGHGR) is taken into account. The presented detailed algorithm for the evaluation of the multigeneration system in the global balance boundary can be applied for the analysis of energy effects (consumption of primary energy) as well as ecological effect (emission of greenhouse gasses) for real data (e.g. hour by hour through the year of operation) taking into account random availability of renewable energy. It allows to take into account a very important factor characterized for renewable energy systems (RES) which is the variability or random availability (e.g. in the case of photovoltaic – PV) of primary energy. Particularly in the presented work the effects of the analysis and the application of the discusses algorithms have been demonstrated for the hour-by-hour availability of solar radiation and for the daily changing availability of chemical energy of biogas. Additionally, the energy and ecological evaluation algorithms have been integrated with the methods offered

  18. Photovoltaics

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the photovoltaics. It presents the principles and the applications, the issues and the current technology, the challenges and the Group Total commitment in the domain. (A.L.B.)

  19. Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment

    Directory of Open Access Journals (Sweden)

    Mahmoud Shakouri

    2016-03-01

    Full Text Available The amount of electricity generated by Photovoltaic (PV systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in Supplementary materials. The application of these files can be generalized to variety of communities interested in investing on PV systems. Keywords: Community solar, Photovoltaic system, Portfolio theory, Energy optimization, Electricity volatility

  20. SERF photovoltaic systems. Technical report on system performance for the period, August 1, 1994--July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, E.E. van; Strand, T.R.; Hansen, R.

    1996-06-01

    This report presents an analysis of performance data on the two identical, 6 kW{sub ac}, grid-connected photovoltaic systems located on the roof of the Solar Energy Research Facility building at the National Renewable Energy Laboratory in Golden, Colorado. The data cover the monitoring period August 1, 1994, to July 31, 1995, and the performance parameters analyzed include direct current and alternating current power, aperture-area efficiency, energy, capacity factor, and performance index. These parameters are compared to plane-of-array irradiance, ambient temperature, and back-of-module temperature as a function of time, either daily or monthly. We also obtained power ratings of the systems for data corresponding to different test conditions. This study has shown, in addition to expected seasonal trends, that system monitoring is a valuable tool in assessing performance and detecting faulty equipment. Furthermore, methods applied for this analysis may be used to evaluate and compare systems using cells of different technologies. The systems were both found to be operating at approximately 7% below their estimated rating, which was based on Photovoltaics for Utility-Scale Applications test conditions. This may be attributed to the design inverter efficiency being estimated at 95% compared to measured values of approximately 88%, as well as the fact that aperture-area efficiency that was overestimated at 12.8% compared to a measured value of 11.0%. The continuous monitoring also revealed faulty peak-power point tracking equipment.